[docs] Fix build-docs.sh
[llvm-project.git] / clang / lib / CodeGen / CGExprCXX.cpp
blobb889a4e05ee1547264f067774e1cbd123f8f175b
1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with code generation of C++ expressions
11 //===----------------------------------------------------------------------===//
13 #include "CGCUDARuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CodeGenFunction.h"
18 #include "ConstantEmitter.h"
19 #include "TargetInfo.h"
20 #include "clang/Basic/CodeGenOptions.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "llvm/IR/Intrinsics.h"
24 using namespace clang;
25 using namespace CodeGen;
27 namespace {
28 struct MemberCallInfo {
29 RequiredArgs ReqArgs;
30 // Number of prefix arguments for the call. Ignores the `this` pointer.
31 unsigned PrefixSize;
35 static MemberCallInfo
36 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
37 llvm::Value *This, llvm::Value *ImplicitParam,
38 QualType ImplicitParamTy, const CallExpr *CE,
39 CallArgList &Args, CallArgList *RtlArgs) {
40 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
41 isa<CXXOperatorCallExpr>(CE));
42 assert(MD->isInstance() &&
43 "Trying to emit a member or operator call expr on a static method!");
45 // Push the this ptr.
46 const CXXRecordDecl *RD =
47 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
48 Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
50 // If there is an implicit parameter (e.g. VTT), emit it.
51 if (ImplicitParam) {
52 Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
55 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
56 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
57 unsigned PrefixSize = Args.size() - 1;
59 // And the rest of the call args.
60 if (RtlArgs) {
61 // Special case: if the caller emitted the arguments right-to-left already
62 // (prior to emitting the *this argument), we're done. This happens for
63 // assignment operators.
64 Args.addFrom(*RtlArgs);
65 } else if (CE) {
66 // Special case: skip first argument of CXXOperatorCall (it is "this").
67 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
68 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
69 CE->getDirectCallee());
70 } else {
71 assert(
72 FPT->getNumParams() == 0 &&
73 "No CallExpr specified for function with non-zero number of arguments");
75 return {required, PrefixSize};
78 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
79 const CXXMethodDecl *MD, const CGCallee &Callee,
80 ReturnValueSlot ReturnValue,
81 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
82 const CallExpr *CE, CallArgList *RtlArgs) {
83 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
84 CallArgList Args;
85 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
86 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
87 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
88 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
89 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
90 CE && CE == MustTailCall,
91 CE ? CE->getExprLoc() : SourceLocation());
94 RValue CodeGenFunction::EmitCXXDestructorCall(
95 GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy,
96 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) {
97 const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl());
99 assert(!ThisTy.isNull());
100 assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() &&
101 "Pointer/Object mixup");
103 LangAS SrcAS = ThisTy.getAddressSpace();
104 LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace();
105 if (SrcAS != DstAS) {
106 QualType DstTy = DtorDecl->getThisType();
107 llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy);
108 This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS,
109 NewType);
112 CallArgList Args;
113 commonEmitCXXMemberOrOperatorCall(*this, DtorDecl, This, ImplicitParam,
114 ImplicitParamTy, CE, Args, nullptr);
115 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
116 ReturnValueSlot(), Args, nullptr, CE && CE == MustTailCall,
117 CE ? CE->getExprLoc() : SourceLocation{});
120 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
121 const CXXPseudoDestructorExpr *E) {
122 QualType DestroyedType = E->getDestroyedType();
123 if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
124 // Automatic Reference Counting:
125 // If the pseudo-expression names a retainable object with weak or
126 // strong lifetime, the object shall be released.
127 Expr *BaseExpr = E->getBase();
128 Address BaseValue = Address::invalid();
129 Qualifiers BaseQuals;
131 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
132 if (E->isArrow()) {
133 BaseValue = EmitPointerWithAlignment(BaseExpr);
134 const auto *PTy = BaseExpr->getType()->castAs<PointerType>();
135 BaseQuals = PTy->getPointeeType().getQualifiers();
136 } else {
137 LValue BaseLV = EmitLValue(BaseExpr);
138 BaseValue = BaseLV.getAddress(*this);
139 QualType BaseTy = BaseExpr->getType();
140 BaseQuals = BaseTy.getQualifiers();
143 switch (DestroyedType.getObjCLifetime()) {
144 case Qualifiers::OCL_None:
145 case Qualifiers::OCL_ExplicitNone:
146 case Qualifiers::OCL_Autoreleasing:
147 break;
149 case Qualifiers::OCL_Strong:
150 EmitARCRelease(Builder.CreateLoad(BaseValue,
151 DestroyedType.isVolatileQualified()),
152 ARCPreciseLifetime);
153 break;
155 case Qualifiers::OCL_Weak:
156 EmitARCDestroyWeak(BaseValue);
157 break;
159 } else {
160 // C++ [expr.pseudo]p1:
161 // The result shall only be used as the operand for the function call
162 // operator (), and the result of such a call has type void. The only
163 // effect is the evaluation of the postfix-expression before the dot or
164 // arrow.
165 EmitIgnoredExpr(E->getBase());
168 return RValue::get(nullptr);
171 static CXXRecordDecl *getCXXRecord(const Expr *E) {
172 QualType T = E->getType();
173 if (const PointerType *PTy = T->getAs<PointerType>())
174 T = PTy->getPointeeType();
175 const RecordType *Ty = T->castAs<RecordType>();
176 return cast<CXXRecordDecl>(Ty->getDecl());
179 // Note: This function also emit constructor calls to support a MSVC
180 // extensions allowing explicit constructor function call.
181 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
182 ReturnValueSlot ReturnValue) {
183 const Expr *callee = CE->getCallee()->IgnoreParens();
185 if (isa<BinaryOperator>(callee))
186 return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
188 const MemberExpr *ME = cast<MemberExpr>(callee);
189 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
191 if (MD->isStatic()) {
192 // The method is static, emit it as we would a regular call.
193 CGCallee callee =
194 CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
195 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
196 ReturnValue);
199 bool HasQualifier = ME->hasQualifier();
200 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
201 bool IsArrow = ME->isArrow();
202 const Expr *Base = ME->getBase();
204 return EmitCXXMemberOrOperatorMemberCallExpr(
205 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
208 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
209 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
210 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
211 const Expr *Base) {
212 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
214 // Compute the object pointer.
215 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
217 const CXXMethodDecl *DevirtualizedMethod = nullptr;
218 if (CanUseVirtualCall &&
219 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
220 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
221 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
222 assert(DevirtualizedMethod);
223 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
224 const Expr *Inner = Base->IgnoreParenBaseCasts();
225 if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
226 MD->getReturnType().getCanonicalType())
227 // If the return types are not the same, this might be a case where more
228 // code needs to run to compensate for it. For example, the derived
229 // method might return a type that inherits form from the return
230 // type of MD and has a prefix.
231 // For now we just avoid devirtualizing these covariant cases.
232 DevirtualizedMethod = nullptr;
233 else if (getCXXRecord(Inner) == DevirtualizedClass)
234 // If the class of the Inner expression is where the dynamic method
235 // is defined, build the this pointer from it.
236 Base = Inner;
237 else if (getCXXRecord(Base) != DevirtualizedClass) {
238 // If the method is defined in a class that is not the best dynamic
239 // one or the one of the full expression, we would have to build
240 // a derived-to-base cast to compute the correct this pointer, but
241 // we don't have support for that yet, so do a virtual call.
242 DevirtualizedMethod = nullptr;
246 bool TrivialForCodegen =
247 MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion());
248 bool TrivialAssignment =
249 TrivialForCodegen &&
250 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
251 !MD->getParent()->mayInsertExtraPadding();
253 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
254 // operator before the LHS.
255 CallArgList RtlArgStorage;
256 CallArgList *RtlArgs = nullptr;
257 LValue TrivialAssignmentRHS;
258 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
259 if (OCE->isAssignmentOp()) {
260 if (TrivialAssignment) {
261 TrivialAssignmentRHS = EmitLValue(CE->getArg(1));
262 } else {
263 RtlArgs = &RtlArgStorage;
264 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
265 drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
266 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
271 LValue This;
272 if (IsArrow) {
273 LValueBaseInfo BaseInfo;
274 TBAAAccessInfo TBAAInfo;
275 Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
276 This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
277 } else {
278 This = EmitLValue(Base);
281 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
282 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
283 // constructing a new complete object of type Ctor.
284 assert(!RtlArgs);
285 assert(ReturnValue.isNull() && "Constructor shouldn't have return value");
286 CallArgList Args;
287 commonEmitCXXMemberOrOperatorCall(
288 *this, Ctor, This.getPointer(*this), /*ImplicitParam=*/nullptr,
289 /*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
291 EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
292 /*Delegating=*/false, This.getAddress(*this), Args,
293 AggValueSlot::DoesNotOverlap, CE->getExprLoc(),
294 /*NewPointerIsChecked=*/false);
295 return RValue::get(nullptr);
298 if (TrivialForCodegen) {
299 if (isa<CXXDestructorDecl>(MD))
300 return RValue::get(nullptr);
302 if (TrivialAssignment) {
303 // We don't like to generate the trivial copy/move assignment operator
304 // when it isn't necessary; just produce the proper effect here.
305 // It's important that we use the result of EmitLValue here rather than
306 // emitting call arguments, in order to preserve TBAA information from
307 // the RHS.
308 LValue RHS = isa<CXXOperatorCallExpr>(CE)
309 ? TrivialAssignmentRHS
310 : EmitLValue(*CE->arg_begin());
311 EmitAggregateAssign(This, RHS, CE->getType());
312 return RValue::get(This.getPointer(*this));
315 assert(MD->getParent()->mayInsertExtraPadding() &&
316 "unknown trivial member function");
319 // Compute the function type we're calling.
320 const CXXMethodDecl *CalleeDecl =
321 DevirtualizedMethod ? DevirtualizedMethod : MD;
322 const CGFunctionInfo *FInfo = nullptr;
323 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
324 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
325 GlobalDecl(Dtor, Dtor_Complete));
326 else
327 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
329 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
331 // C++11 [class.mfct.non-static]p2:
332 // If a non-static member function of a class X is called for an object that
333 // is not of type X, or of a type derived from X, the behavior is undefined.
334 SourceLocation CallLoc;
335 ASTContext &C = getContext();
336 if (CE)
337 CallLoc = CE->getExprLoc();
339 SanitizerSet SkippedChecks;
340 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
341 auto *IOA = CMCE->getImplicitObjectArgument();
342 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
343 if (IsImplicitObjectCXXThis)
344 SkippedChecks.set(SanitizerKind::Alignment, true);
345 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
346 SkippedChecks.set(SanitizerKind::Null, true);
348 EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc,
349 This.getPointer(*this),
350 C.getRecordType(CalleeDecl->getParent()),
351 /*Alignment=*/CharUnits::Zero(), SkippedChecks);
353 // C++ [class.virtual]p12:
354 // Explicit qualification with the scope operator (5.1) suppresses the
355 // virtual call mechanism.
357 // We also don't emit a virtual call if the base expression has a record type
358 // because then we know what the type is.
359 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
361 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
362 assert(CE->arg_begin() == CE->arg_end() &&
363 "Destructor shouldn't have explicit parameters");
364 assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
365 if (UseVirtualCall) {
366 CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete,
367 This.getAddress(*this),
368 cast<CXXMemberCallExpr>(CE));
369 } else {
370 GlobalDecl GD(Dtor, Dtor_Complete);
371 CGCallee Callee;
372 if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
373 Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
374 else if (!DevirtualizedMethod)
375 Callee =
376 CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD);
377 else {
378 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD);
381 QualType ThisTy =
382 IsArrow ? Base->getType()->getPointeeType() : Base->getType();
383 EmitCXXDestructorCall(GD, Callee, This.getPointer(*this), ThisTy,
384 /*ImplicitParam=*/nullptr,
385 /*ImplicitParamTy=*/QualType(), CE);
387 return RValue::get(nullptr);
390 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
391 // 'CalleeDecl' instead.
393 CGCallee Callee;
394 if (UseVirtualCall) {
395 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(*this), Ty);
396 } else {
397 if (SanOpts.has(SanitizerKind::CFINVCall) &&
398 MD->getParent()->isDynamicClass()) {
399 llvm::Value *VTable;
400 const CXXRecordDecl *RD;
401 std::tie(VTable, RD) = CGM.getCXXABI().LoadVTablePtr(
402 *this, This.getAddress(*this), CalleeDecl->getParent());
403 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
406 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
407 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
408 else if (!DevirtualizedMethod)
409 Callee =
410 CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
411 else {
412 Callee =
413 CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
414 GlobalDecl(DevirtualizedMethod));
418 if (MD->isVirtual()) {
419 Address NewThisAddr =
420 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
421 *this, CalleeDecl, This.getAddress(*this), UseVirtualCall);
422 This.setAddress(NewThisAddr);
425 return EmitCXXMemberOrOperatorCall(
426 CalleeDecl, Callee, ReturnValue, This.getPointer(*this),
427 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
430 RValue
431 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
432 ReturnValueSlot ReturnValue) {
433 const BinaryOperator *BO =
434 cast<BinaryOperator>(E->getCallee()->IgnoreParens());
435 const Expr *BaseExpr = BO->getLHS();
436 const Expr *MemFnExpr = BO->getRHS();
438 const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>();
439 const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>();
440 const auto *RD =
441 cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl());
443 // Emit the 'this' pointer.
444 Address This = Address::invalid();
445 if (BO->getOpcode() == BO_PtrMemI)
446 This = EmitPointerWithAlignment(BaseExpr);
447 else
448 This = EmitLValue(BaseExpr).getAddress(*this);
450 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
451 QualType(MPT->getClass(), 0));
453 // Get the member function pointer.
454 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
456 // Ask the ABI to load the callee. Note that This is modified.
457 llvm::Value *ThisPtrForCall = nullptr;
458 CGCallee Callee =
459 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
460 ThisPtrForCall, MemFnPtr, MPT);
462 CallArgList Args;
464 QualType ThisType =
465 getContext().getPointerType(getContext().getTagDeclType(RD));
467 // Push the this ptr.
468 Args.add(RValue::get(ThisPtrForCall), ThisType);
470 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
472 // And the rest of the call args
473 EmitCallArgs(Args, FPT, E->arguments());
474 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
475 /*PrefixSize=*/0),
476 Callee, ReturnValue, Args, nullptr, E == MustTailCall,
477 E->getExprLoc());
480 RValue
481 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
482 const CXXMethodDecl *MD,
483 ReturnValueSlot ReturnValue) {
484 assert(MD->isInstance() &&
485 "Trying to emit a member call expr on a static method!");
486 return EmitCXXMemberOrOperatorMemberCallExpr(
487 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
488 /*IsArrow=*/false, E->getArg(0));
491 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
492 ReturnValueSlot ReturnValue) {
493 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
496 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
497 Address DestPtr,
498 const CXXRecordDecl *Base) {
499 if (Base->isEmpty())
500 return;
502 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
504 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
505 CharUnits NVSize = Layout.getNonVirtualSize();
507 // We cannot simply zero-initialize the entire base sub-object if vbptrs are
508 // present, they are initialized by the most derived class before calling the
509 // constructor.
510 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
511 Stores.emplace_back(CharUnits::Zero(), NVSize);
513 // Each store is split by the existence of a vbptr.
514 CharUnits VBPtrWidth = CGF.getPointerSize();
515 std::vector<CharUnits> VBPtrOffsets =
516 CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
517 for (CharUnits VBPtrOffset : VBPtrOffsets) {
518 // Stop before we hit any virtual base pointers located in virtual bases.
519 if (VBPtrOffset >= NVSize)
520 break;
521 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
522 CharUnits LastStoreOffset = LastStore.first;
523 CharUnits LastStoreSize = LastStore.second;
525 CharUnits SplitBeforeOffset = LastStoreOffset;
526 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
527 assert(!SplitBeforeSize.isNegative() && "negative store size!");
528 if (!SplitBeforeSize.isZero())
529 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
531 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
532 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
533 assert(!SplitAfterSize.isNegative() && "negative store size!");
534 if (!SplitAfterSize.isZero())
535 Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
538 // If the type contains a pointer to data member we can't memset it to zero.
539 // Instead, create a null constant and copy it to the destination.
540 // TODO: there are other patterns besides zero that we can usefully memset,
541 // like -1, which happens to be the pattern used by member-pointers.
542 // TODO: isZeroInitializable can be over-conservative in the case where a
543 // virtual base contains a member pointer.
544 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
545 if (!NullConstantForBase->isNullValue()) {
546 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
547 CGF.CGM.getModule(), NullConstantForBase->getType(),
548 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
549 NullConstantForBase, Twine());
551 CharUnits Align =
552 std::max(Layout.getNonVirtualAlignment(), DestPtr.getAlignment());
553 NullVariable->setAlignment(Align.getAsAlign());
555 Address SrcPtr =
556 Address(CGF.EmitCastToVoidPtr(NullVariable), CGF.Int8Ty, Align);
558 // Get and call the appropriate llvm.memcpy overload.
559 for (std::pair<CharUnits, CharUnits> Store : Stores) {
560 CharUnits StoreOffset = Store.first;
561 CharUnits StoreSize = Store.second;
562 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
563 CGF.Builder.CreateMemCpy(
564 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
565 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
566 StoreSizeVal);
569 // Otherwise, just memset the whole thing to zero. This is legal
570 // because in LLVM, all default initializers (other than the ones we just
571 // handled above) are guaranteed to have a bit pattern of all zeros.
572 } else {
573 for (std::pair<CharUnits, CharUnits> Store : Stores) {
574 CharUnits StoreOffset = Store.first;
575 CharUnits StoreSize = Store.second;
576 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
577 CGF.Builder.CreateMemSet(
578 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
579 CGF.Builder.getInt8(0), StoreSizeVal);
584 void
585 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
586 AggValueSlot Dest) {
587 assert(!Dest.isIgnored() && "Must have a destination!");
588 const CXXConstructorDecl *CD = E->getConstructor();
590 // If we require zero initialization before (or instead of) calling the
591 // constructor, as can be the case with a non-user-provided default
592 // constructor, emit the zero initialization now, unless destination is
593 // already zeroed.
594 if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
595 switch (E->getConstructionKind()) {
596 case CXXConstructExpr::CK_Delegating:
597 case CXXConstructExpr::CK_Complete:
598 EmitNullInitialization(Dest.getAddress(), E->getType());
599 break;
600 case CXXConstructExpr::CK_VirtualBase:
601 case CXXConstructExpr::CK_NonVirtualBase:
602 EmitNullBaseClassInitialization(*this, Dest.getAddress(),
603 CD->getParent());
604 break;
608 // If this is a call to a trivial default constructor, do nothing.
609 if (CD->isTrivial() && CD->isDefaultConstructor())
610 return;
612 // Elide the constructor if we're constructing from a temporary.
613 if (getLangOpts().ElideConstructors && E->isElidable()) {
614 // FIXME: This only handles the simplest case, where the source object
615 // is passed directly as the first argument to the constructor.
616 // This should also handle stepping though implicit casts and
617 // conversion sequences which involve two steps, with a
618 // conversion operator followed by a converting constructor.
619 const Expr *SrcObj = E->getArg(0);
620 assert(SrcObj->isTemporaryObject(getContext(), CD->getParent()));
621 assert(
622 getContext().hasSameUnqualifiedType(E->getType(), SrcObj->getType()));
623 EmitAggExpr(SrcObj, Dest);
624 return;
627 if (const ArrayType *arrayType
628 = getContext().getAsArrayType(E->getType())) {
629 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
630 Dest.isSanitizerChecked());
631 } else {
632 CXXCtorType Type = Ctor_Complete;
633 bool ForVirtualBase = false;
634 bool Delegating = false;
636 switch (E->getConstructionKind()) {
637 case CXXConstructExpr::CK_Delegating:
638 // We should be emitting a constructor; GlobalDecl will assert this
639 Type = CurGD.getCtorType();
640 Delegating = true;
641 break;
643 case CXXConstructExpr::CK_Complete:
644 Type = Ctor_Complete;
645 break;
647 case CXXConstructExpr::CK_VirtualBase:
648 ForVirtualBase = true;
649 [[fallthrough]];
651 case CXXConstructExpr::CK_NonVirtualBase:
652 Type = Ctor_Base;
655 // Call the constructor.
656 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E);
660 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
661 const Expr *Exp) {
662 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
663 Exp = E->getSubExpr();
664 assert(isa<CXXConstructExpr>(Exp) &&
665 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
666 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
667 const CXXConstructorDecl *CD = E->getConstructor();
668 RunCleanupsScope Scope(*this);
670 // If we require zero initialization before (or instead of) calling the
671 // constructor, as can be the case with a non-user-provided default
672 // constructor, emit the zero initialization now.
673 // FIXME. Do I still need this for a copy ctor synthesis?
674 if (E->requiresZeroInitialization())
675 EmitNullInitialization(Dest, E->getType());
677 assert(!getContext().getAsConstantArrayType(E->getType())
678 && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
679 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
682 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
683 const CXXNewExpr *E) {
684 if (!E->isArray())
685 return CharUnits::Zero();
687 // No cookie is required if the operator new[] being used is the
688 // reserved placement operator new[].
689 if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
690 return CharUnits::Zero();
692 return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
695 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
696 const CXXNewExpr *e,
697 unsigned minElements,
698 llvm::Value *&numElements,
699 llvm::Value *&sizeWithoutCookie) {
700 QualType type = e->getAllocatedType();
702 if (!e->isArray()) {
703 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
704 sizeWithoutCookie
705 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
706 return sizeWithoutCookie;
709 // The width of size_t.
710 unsigned sizeWidth = CGF.SizeTy->getBitWidth();
712 // Figure out the cookie size.
713 llvm::APInt cookieSize(sizeWidth,
714 CalculateCookiePadding(CGF, e).getQuantity());
716 // Emit the array size expression.
717 // We multiply the size of all dimensions for NumElements.
718 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
719 numElements =
720 ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType());
721 if (!numElements)
722 numElements = CGF.EmitScalarExpr(*e->getArraySize());
723 assert(isa<llvm::IntegerType>(numElements->getType()));
725 // The number of elements can be have an arbitrary integer type;
726 // essentially, we need to multiply it by a constant factor, add a
727 // cookie size, and verify that the result is representable as a
728 // size_t. That's just a gloss, though, and it's wrong in one
729 // important way: if the count is negative, it's an error even if
730 // the cookie size would bring the total size >= 0.
731 bool isSigned
732 = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
733 llvm::IntegerType *numElementsType
734 = cast<llvm::IntegerType>(numElements->getType());
735 unsigned numElementsWidth = numElementsType->getBitWidth();
737 // Compute the constant factor.
738 llvm::APInt arraySizeMultiplier(sizeWidth, 1);
739 while (const ConstantArrayType *CAT
740 = CGF.getContext().getAsConstantArrayType(type)) {
741 type = CAT->getElementType();
742 arraySizeMultiplier *= CAT->getSize();
745 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
746 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
747 typeSizeMultiplier *= arraySizeMultiplier;
749 // This will be a size_t.
750 llvm::Value *size;
752 // If someone is doing 'new int[42]' there is no need to do a dynamic check.
753 // Don't bloat the -O0 code.
754 if (llvm::ConstantInt *numElementsC =
755 dyn_cast<llvm::ConstantInt>(numElements)) {
756 const llvm::APInt &count = numElementsC->getValue();
758 bool hasAnyOverflow = false;
760 // If 'count' was a negative number, it's an overflow.
761 if (isSigned && count.isNegative())
762 hasAnyOverflow = true;
764 // We want to do all this arithmetic in size_t. If numElements is
765 // wider than that, check whether it's already too big, and if so,
766 // overflow.
767 else if (numElementsWidth > sizeWidth &&
768 numElementsWidth - sizeWidth > count.countLeadingZeros())
769 hasAnyOverflow = true;
771 // Okay, compute a count at the right width.
772 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
774 // If there is a brace-initializer, we cannot allocate fewer elements than
775 // there are initializers. If we do, that's treated like an overflow.
776 if (adjustedCount.ult(minElements))
777 hasAnyOverflow = true;
779 // Scale numElements by that. This might overflow, but we don't
780 // care because it only overflows if allocationSize does, too, and
781 // if that overflows then we shouldn't use this.
782 numElements = llvm::ConstantInt::get(CGF.SizeTy,
783 adjustedCount * arraySizeMultiplier);
785 // Compute the size before cookie, and track whether it overflowed.
786 bool overflow;
787 llvm::APInt allocationSize
788 = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
789 hasAnyOverflow |= overflow;
791 // Add in the cookie, and check whether it's overflowed.
792 if (cookieSize != 0) {
793 // Save the current size without a cookie. This shouldn't be
794 // used if there was overflow.
795 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
797 allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
798 hasAnyOverflow |= overflow;
801 // On overflow, produce a -1 so operator new will fail.
802 if (hasAnyOverflow) {
803 size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
804 } else {
805 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
808 // Otherwise, we might need to use the overflow intrinsics.
809 } else {
810 // There are up to five conditions we need to test for:
811 // 1) if isSigned, we need to check whether numElements is negative;
812 // 2) if numElementsWidth > sizeWidth, we need to check whether
813 // numElements is larger than something representable in size_t;
814 // 3) if minElements > 0, we need to check whether numElements is smaller
815 // than that.
816 // 4) we need to compute
817 // sizeWithoutCookie := numElements * typeSizeMultiplier
818 // and check whether it overflows; and
819 // 5) if we need a cookie, we need to compute
820 // size := sizeWithoutCookie + cookieSize
821 // and check whether it overflows.
823 llvm::Value *hasOverflow = nullptr;
825 // If numElementsWidth > sizeWidth, then one way or another, we're
826 // going to have to do a comparison for (2), and this happens to
827 // take care of (1), too.
828 if (numElementsWidth > sizeWidth) {
829 llvm::APInt threshold(numElementsWidth, 1);
830 threshold <<= sizeWidth;
832 llvm::Value *thresholdV
833 = llvm::ConstantInt::get(numElementsType, threshold);
835 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
836 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
838 // Otherwise, if we're signed, we want to sext up to size_t.
839 } else if (isSigned) {
840 if (numElementsWidth < sizeWidth)
841 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
843 // If there's a non-1 type size multiplier, then we can do the
844 // signedness check at the same time as we do the multiply
845 // because a negative number times anything will cause an
846 // unsigned overflow. Otherwise, we have to do it here. But at least
847 // in this case, we can subsume the >= minElements check.
848 if (typeSizeMultiplier == 1)
849 hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
850 llvm::ConstantInt::get(CGF.SizeTy, minElements));
852 // Otherwise, zext up to size_t if necessary.
853 } else if (numElementsWidth < sizeWidth) {
854 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
857 assert(numElements->getType() == CGF.SizeTy);
859 if (minElements) {
860 // Don't allow allocation of fewer elements than we have initializers.
861 if (!hasOverflow) {
862 hasOverflow = CGF.Builder.CreateICmpULT(numElements,
863 llvm::ConstantInt::get(CGF.SizeTy, minElements));
864 } else if (numElementsWidth > sizeWidth) {
865 // The other existing overflow subsumes this check.
866 // We do an unsigned comparison, since any signed value < -1 is
867 // taken care of either above or below.
868 hasOverflow = CGF.Builder.CreateOr(hasOverflow,
869 CGF.Builder.CreateICmpULT(numElements,
870 llvm::ConstantInt::get(CGF.SizeTy, minElements)));
874 size = numElements;
876 // Multiply by the type size if necessary. This multiplier
877 // includes all the factors for nested arrays.
879 // This step also causes numElements to be scaled up by the
880 // nested-array factor if necessary. Overflow on this computation
881 // can be ignored because the result shouldn't be used if
882 // allocation fails.
883 if (typeSizeMultiplier != 1) {
884 llvm::Function *umul_with_overflow
885 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
887 llvm::Value *tsmV =
888 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
889 llvm::Value *result =
890 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
892 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
893 if (hasOverflow)
894 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
895 else
896 hasOverflow = overflowed;
898 size = CGF.Builder.CreateExtractValue(result, 0);
900 // Also scale up numElements by the array size multiplier.
901 if (arraySizeMultiplier != 1) {
902 // If the base element type size is 1, then we can re-use the
903 // multiply we just did.
904 if (typeSize.isOne()) {
905 assert(arraySizeMultiplier == typeSizeMultiplier);
906 numElements = size;
908 // Otherwise we need a separate multiply.
909 } else {
910 llvm::Value *asmV =
911 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
912 numElements = CGF.Builder.CreateMul(numElements, asmV);
915 } else {
916 // numElements doesn't need to be scaled.
917 assert(arraySizeMultiplier == 1);
920 // Add in the cookie size if necessary.
921 if (cookieSize != 0) {
922 sizeWithoutCookie = size;
924 llvm::Function *uadd_with_overflow
925 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
927 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
928 llvm::Value *result =
929 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
931 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
932 if (hasOverflow)
933 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
934 else
935 hasOverflow = overflowed;
937 size = CGF.Builder.CreateExtractValue(result, 0);
940 // If we had any possibility of dynamic overflow, make a select to
941 // overwrite 'size' with an all-ones value, which should cause
942 // operator new to throw.
943 if (hasOverflow)
944 size = CGF.Builder.CreateSelect(hasOverflow,
945 llvm::Constant::getAllOnesValue(CGF.SizeTy),
946 size);
949 if (cookieSize == 0)
950 sizeWithoutCookie = size;
951 else
952 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
954 return size;
957 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
958 QualType AllocType, Address NewPtr,
959 AggValueSlot::Overlap_t MayOverlap) {
960 // FIXME: Refactor with EmitExprAsInit.
961 switch (CGF.getEvaluationKind(AllocType)) {
962 case TEK_Scalar:
963 CGF.EmitScalarInit(Init, nullptr,
964 CGF.MakeAddrLValue(NewPtr, AllocType), false);
965 return;
966 case TEK_Complex:
967 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
968 /*isInit*/ true);
969 return;
970 case TEK_Aggregate: {
971 AggValueSlot Slot
972 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
973 AggValueSlot::IsDestructed,
974 AggValueSlot::DoesNotNeedGCBarriers,
975 AggValueSlot::IsNotAliased,
976 MayOverlap, AggValueSlot::IsNotZeroed,
977 AggValueSlot::IsSanitizerChecked);
978 CGF.EmitAggExpr(Init, Slot);
979 return;
982 llvm_unreachable("bad evaluation kind");
985 void CodeGenFunction::EmitNewArrayInitializer(
986 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
987 Address BeginPtr, llvm::Value *NumElements,
988 llvm::Value *AllocSizeWithoutCookie) {
989 // If we have a type with trivial initialization and no initializer,
990 // there's nothing to do.
991 if (!E->hasInitializer())
992 return;
994 Address CurPtr = BeginPtr;
996 unsigned InitListElements = 0;
998 const Expr *Init = E->getInitializer();
999 Address EndOfInit = Address::invalid();
1000 QualType::DestructionKind DtorKind = ElementType.isDestructedType();
1001 EHScopeStack::stable_iterator Cleanup;
1002 llvm::Instruction *CleanupDominator = nullptr;
1004 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
1005 CharUnits ElementAlign =
1006 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
1008 // Attempt to perform zero-initialization using memset.
1009 auto TryMemsetInitialization = [&]() -> bool {
1010 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
1011 // we can initialize with a memset to -1.
1012 if (!CGM.getTypes().isZeroInitializable(ElementType))
1013 return false;
1015 // Optimization: since zero initialization will just set the memory
1016 // to all zeroes, generate a single memset to do it in one shot.
1018 // Subtract out the size of any elements we've already initialized.
1019 auto *RemainingSize = AllocSizeWithoutCookie;
1020 if (InitListElements) {
1021 // We know this can't overflow; we check this when doing the allocation.
1022 auto *InitializedSize = llvm::ConstantInt::get(
1023 RemainingSize->getType(),
1024 getContext().getTypeSizeInChars(ElementType).getQuantity() *
1025 InitListElements);
1026 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
1029 // Create the memset.
1030 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1031 return true;
1034 // If the initializer is an initializer list, first do the explicit elements.
1035 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1036 // Initializing from a (braced) string literal is a special case; the init
1037 // list element does not initialize a (single) array element.
1038 if (ILE->isStringLiteralInit()) {
1039 // Initialize the initial portion of length equal to that of the string
1040 // literal. The allocation must be for at least this much; we emitted a
1041 // check for that earlier.
1042 AggValueSlot Slot =
1043 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1044 AggValueSlot::IsDestructed,
1045 AggValueSlot::DoesNotNeedGCBarriers,
1046 AggValueSlot::IsNotAliased,
1047 AggValueSlot::DoesNotOverlap,
1048 AggValueSlot::IsNotZeroed,
1049 AggValueSlot::IsSanitizerChecked);
1050 EmitAggExpr(ILE->getInit(0), Slot);
1052 // Move past these elements.
1053 InitListElements =
1054 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1055 ->getSize().getZExtValue();
1056 CurPtr = Builder.CreateConstInBoundsGEP(
1057 CurPtr, InitListElements, "string.init.end");
1059 // Zero out the rest, if any remain.
1060 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1061 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1062 bool OK = TryMemsetInitialization();
1063 (void)OK;
1064 assert(OK && "couldn't memset character type?");
1066 return;
1069 InitListElements = ILE->getNumInits();
1071 // If this is a multi-dimensional array new, we will initialize multiple
1072 // elements with each init list element.
1073 QualType AllocType = E->getAllocatedType();
1074 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1075 AllocType->getAsArrayTypeUnsafe())) {
1076 ElementTy = ConvertTypeForMem(AllocType);
1077 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1078 InitListElements *= getContext().getConstantArrayElementCount(CAT);
1081 // Enter a partial-destruction Cleanup if necessary.
1082 if (needsEHCleanup(DtorKind)) {
1083 // In principle we could tell the Cleanup where we are more
1084 // directly, but the control flow can get so varied here that it
1085 // would actually be quite complex. Therefore we go through an
1086 // alloca.
1087 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1088 "array.init.end");
1089 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1090 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1091 ElementType, ElementAlign,
1092 getDestroyer(DtorKind));
1093 Cleanup = EHStack.stable_begin();
1096 CharUnits StartAlign = CurPtr.getAlignment();
1097 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1098 // Tell the cleanup that it needs to destroy up to this
1099 // element. TODO: some of these stores can be trivially
1100 // observed to be unnecessary.
1101 if (EndOfInit.isValid()) {
1102 auto FinishedPtr =
1103 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1104 Builder.CreateStore(FinishedPtr, EndOfInit);
1106 // FIXME: If the last initializer is an incomplete initializer list for
1107 // an array, and we have an array filler, we can fold together the two
1108 // initialization loops.
1109 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1110 ILE->getInit(i)->getType(), CurPtr,
1111 AggValueSlot::DoesNotOverlap);
1112 CurPtr = Address(Builder.CreateInBoundsGEP(
1113 CurPtr.getElementType(), CurPtr.getPointer(),
1114 Builder.getSize(1), "array.exp.next"),
1115 CurPtr.getElementType(),
1116 StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1119 // The remaining elements are filled with the array filler expression.
1120 Init = ILE->getArrayFiller();
1122 // Extract the initializer for the individual array elements by pulling
1123 // out the array filler from all the nested initializer lists. This avoids
1124 // generating a nested loop for the initialization.
1125 while (Init && Init->getType()->isConstantArrayType()) {
1126 auto *SubILE = dyn_cast<InitListExpr>(Init);
1127 if (!SubILE)
1128 break;
1129 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1130 Init = SubILE->getArrayFiller();
1133 // Switch back to initializing one base element at a time.
1134 CurPtr = Builder.CreateElementBitCast(CurPtr, BeginPtr.getElementType());
1137 // If all elements have already been initialized, skip any further
1138 // initialization.
1139 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1140 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1141 // If there was a Cleanup, deactivate it.
1142 if (CleanupDominator)
1143 DeactivateCleanupBlock(Cleanup, CleanupDominator);
1144 return;
1147 assert(Init && "have trailing elements to initialize but no initializer");
1149 // If this is a constructor call, try to optimize it out, and failing that
1150 // emit a single loop to initialize all remaining elements.
1151 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1152 CXXConstructorDecl *Ctor = CCE->getConstructor();
1153 if (Ctor->isTrivial()) {
1154 // If new expression did not specify value-initialization, then there
1155 // is no initialization.
1156 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1157 return;
1159 if (TryMemsetInitialization())
1160 return;
1163 // Store the new Cleanup position for irregular Cleanups.
1165 // FIXME: Share this cleanup with the constructor call emission rather than
1166 // having it create a cleanup of its own.
1167 if (EndOfInit.isValid())
1168 Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1170 // Emit a constructor call loop to initialize the remaining elements.
1171 if (InitListElements)
1172 NumElements = Builder.CreateSub(
1173 NumElements,
1174 llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1175 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1176 /*NewPointerIsChecked*/true,
1177 CCE->requiresZeroInitialization());
1178 return;
1181 // If this is value-initialization, we can usually use memset.
1182 ImplicitValueInitExpr IVIE(ElementType);
1183 if (isa<ImplicitValueInitExpr>(Init)) {
1184 if (TryMemsetInitialization())
1185 return;
1187 // Switch to an ImplicitValueInitExpr for the element type. This handles
1188 // only one case: multidimensional array new of pointers to members. In
1189 // all other cases, we already have an initializer for the array element.
1190 Init = &IVIE;
1193 // At this point we should have found an initializer for the individual
1194 // elements of the array.
1195 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1196 "got wrong type of element to initialize");
1198 // If we have an empty initializer list, we can usually use memset.
1199 if (auto *ILE = dyn_cast<InitListExpr>(Init))
1200 if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1201 return;
1203 // If we have a struct whose every field is value-initialized, we can
1204 // usually use memset.
1205 if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1206 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1207 if (RType->getDecl()->isStruct()) {
1208 unsigned NumElements = 0;
1209 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1210 NumElements = CXXRD->getNumBases();
1211 for (auto *Field : RType->getDecl()->fields())
1212 if (!Field->isUnnamedBitfield())
1213 ++NumElements;
1214 // FIXME: Recurse into nested InitListExprs.
1215 if (ILE->getNumInits() == NumElements)
1216 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1217 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1218 --NumElements;
1219 if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1220 return;
1225 // Create the loop blocks.
1226 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1227 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1228 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1230 // Find the end of the array, hoisted out of the loop.
1231 llvm::Value *EndPtr =
1232 Builder.CreateInBoundsGEP(BeginPtr.getElementType(), BeginPtr.getPointer(),
1233 NumElements, "array.end");
1235 // If the number of elements isn't constant, we have to now check if there is
1236 // anything left to initialize.
1237 if (!ConstNum) {
1238 llvm::Value *IsEmpty =
1239 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1240 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1243 // Enter the loop.
1244 EmitBlock(LoopBB);
1246 // Set up the current-element phi.
1247 llvm::PHINode *CurPtrPhi =
1248 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1249 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1251 CurPtr = Address(CurPtrPhi, CurPtr.getElementType(), ElementAlign);
1253 // Store the new Cleanup position for irregular Cleanups.
1254 if (EndOfInit.isValid())
1255 Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1257 // Enter a partial-destruction Cleanup if necessary.
1258 if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1259 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1260 ElementType, ElementAlign,
1261 getDestroyer(DtorKind));
1262 Cleanup = EHStack.stable_begin();
1263 CleanupDominator = Builder.CreateUnreachable();
1266 // Emit the initializer into this element.
1267 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1268 AggValueSlot::DoesNotOverlap);
1270 // Leave the Cleanup if we entered one.
1271 if (CleanupDominator) {
1272 DeactivateCleanupBlock(Cleanup, CleanupDominator);
1273 CleanupDominator->eraseFromParent();
1276 // Advance to the next element by adjusting the pointer type as necessary.
1277 llvm::Value *NextPtr =
1278 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1279 "array.next");
1281 // Check whether we've gotten to the end of the array and, if so,
1282 // exit the loop.
1283 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1284 Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1285 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1287 EmitBlock(ContBB);
1290 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1291 QualType ElementType, llvm::Type *ElementTy,
1292 Address NewPtr, llvm::Value *NumElements,
1293 llvm::Value *AllocSizeWithoutCookie) {
1294 ApplyDebugLocation DL(CGF, E);
1295 if (E->isArray())
1296 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1297 AllocSizeWithoutCookie);
1298 else if (const Expr *Init = E->getInitializer())
1299 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1300 AggValueSlot::DoesNotOverlap);
1303 /// Emit a call to an operator new or operator delete function, as implicitly
1304 /// created by new-expressions and delete-expressions.
1305 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1306 const FunctionDecl *CalleeDecl,
1307 const FunctionProtoType *CalleeType,
1308 const CallArgList &Args) {
1309 llvm::CallBase *CallOrInvoke;
1310 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1311 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1312 RValue RV =
1313 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1314 Args, CalleeType, /*ChainCall=*/false),
1315 Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1317 /// C++1y [expr.new]p10:
1318 /// [In a new-expression,] an implementation is allowed to omit a call
1319 /// to a replaceable global allocation function.
1321 /// We model such elidable calls with the 'builtin' attribute.
1322 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1323 if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1324 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1325 CallOrInvoke->addFnAttr(llvm::Attribute::Builtin);
1328 return RV;
1331 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1332 const CallExpr *TheCall,
1333 bool IsDelete) {
1334 CallArgList Args;
1335 EmitCallArgs(Args, Type, TheCall->arguments());
1336 // Find the allocation or deallocation function that we're calling.
1337 ASTContext &Ctx = getContext();
1338 DeclarationName Name = Ctx.DeclarationNames
1339 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1341 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1342 if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1343 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1344 return EmitNewDeleteCall(*this, FD, Type, Args);
1345 llvm_unreachable("predeclared global operator new/delete is missing");
1348 namespace {
1349 /// The parameters to pass to a usual operator delete.
1350 struct UsualDeleteParams {
1351 bool DestroyingDelete = false;
1352 bool Size = false;
1353 bool Alignment = false;
1357 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1358 UsualDeleteParams Params;
1360 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1361 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1363 // The first argument is always a void*.
1364 ++AI;
1366 // The next parameter may be a std::destroying_delete_t.
1367 if (FD->isDestroyingOperatorDelete()) {
1368 Params.DestroyingDelete = true;
1369 assert(AI != AE);
1370 ++AI;
1373 // Figure out what other parameters we should be implicitly passing.
1374 if (AI != AE && (*AI)->isIntegerType()) {
1375 Params.Size = true;
1376 ++AI;
1379 if (AI != AE && (*AI)->isAlignValT()) {
1380 Params.Alignment = true;
1381 ++AI;
1384 assert(AI == AE && "unexpected usual deallocation function parameter");
1385 return Params;
1388 namespace {
1389 /// A cleanup to call the given 'operator delete' function upon abnormal
1390 /// exit from a new expression. Templated on a traits type that deals with
1391 /// ensuring that the arguments dominate the cleanup if necessary.
1392 template<typename Traits>
1393 class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1394 /// Type used to hold llvm::Value*s.
1395 typedef typename Traits::ValueTy ValueTy;
1396 /// Type used to hold RValues.
1397 typedef typename Traits::RValueTy RValueTy;
1398 struct PlacementArg {
1399 RValueTy ArgValue;
1400 QualType ArgType;
1403 unsigned NumPlacementArgs : 31;
1404 unsigned PassAlignmentToPlacementDelete : 1;
1405 const FunctionDecl *OperatorDelete;
1406 ValueTy Ptr;
1407 ValueTy AllocSize;
1408 CharUnits AllocAlign;
1410 PlacementArg *getPlacementArgs() {
1411 return reinterpret_cast<PlacementArg *>(this + 1);
1414 public:
1415 static size_t getExtraSize(size_t NumPlacementArgs) {
1416 return NumPlacementArgs * sizeof(PlacementArg);
1419 CallDeleteDuringNew(size_t NumPlacementArgs,
1420 const FunctionDecl *OperatorDelete, ValueTy Ptr,
1421 ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1422 CharUnits AllocAlign)
1423 : NumPlacementArgs(NumPlacementArgs),
1424 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1425 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1426 AllocAlign(AllocAlign) {}
1428 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1429 assert(I < NumPlacementArgs && "index out of range");
1430 getPlacementArgs()[I] = {Arg, Type};
1433 void Emit(CodeGenFunction &CGF, Flags flags) override {
1434 const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>();
1435 CallArgList DeleteArgs;
1437 // The first argument is always a void* (or C* for a destroying operator
1438 // delete for class type C).
1439 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1441 // Figure out what other parameters we should be implicitly passing.
1442 UsualDeleteParams Params;
1443 if (NumPlacementArgs) {
1444 // A placement deallocation function is implicitly passed an alignment
1445 // if the placement allocation function was, but is never passed a size.
1446 Params.Alignment = PassAlignmentToPlacementDelete;
1447 } else {
1448 // For a non-placement new-expression, 'operator delete' can take a
1449 // size and/or an alignment if it has the right parameters.
1450 Params = getUsualDeleteParams(OperatorDelete);
1453 assert(!Params.DestroyingDelete &&
1454 "should not call destroying delete in a new-expression");
1456 // The second argument can be a std::size_t (for non-placement delete).
1457 if (Params.Size)
1458 DeleteArgs.add(Traits::get(CGF, AllocSize),
1459 CGF.getContext().getSizeType());
1461 // The next (second or third) argument can be a std::align_val_t, which
1462 // is an enum whose underlying type is std::size_t.
1463 // FIXME: Use the right type as the parameter type. Note that in a call
1464 // to operator delete(size_t, ...), we may not have it available.
1465 if (Params.Alignment)
1466 DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1467 CGF.SizeTy, AllocAlign.getQuantity())),
1468 CGF.getContext().getSizeType());
1470 // Pass the rest of the arguments, which must match exactly.
1471 for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1472 auto Arg = getPlacementArgs()[I];
1473 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1476 // Call 'operator delete'.
1477 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1482 /// Enter a cleanup to call 'operator delete' if the initializer in a
1483 /// new-expression throws.
1484 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1485 const CXXNewExpr *E,
1486 Address NewPtr,
1487 llvm::Value *AllocSize,
1488 CharUnits AllocAlign,
1489 const CallArgList &NewArgs) {
1490 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1492 // If we're not inside a conditional branch, then the cleanup will
1493 // dominate and we can do the easier (and more efficient) thing.
1494 if (!CGF.isInConditionalBranch()) {
1495 struct DirectCleanupTraits {
1496 typedef llvm::Value *ValueTy;
1497 typedef RValue RValueTy;
1498 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1499 static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1502 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1504 DirectCleanup *Cleanup = CGF.EHStack
1505 .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1506 E->getNumPlacementArgs(),
1507 E->getOperatorDelete(),
1508 NewPtr.getPointer(),
1509 AllocSize,
1510 E->passAlignment(),
1511 AllocAlign);
1512 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1513 auto &Arg = NewArgs[I + NumNonPlacementArgs];
1514 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1517 return;
1520 // Otherwise, we need to save all this stuff.
1521 DominatingValue<RValue>::saved_type SavedNewPtr =
1522 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1523 DominatingValue<RValue>::saved_type SavedAllocSize =
1524 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1526 struct ConditionalCleanupTraits {
1527 typedef DominatingValue<RValue>::saved_type ValueTy;
1528 typedef DominatingValue<RValue>::saved_type RValueTy;
1529 static RValue get(CodeGenFunction &CGF, ValueTy V) {
1530 return V.restore(CGF);
1533 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1535 ConditionalCleanup *Cleanup = CGF.EHStack
1536 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1537 E->getNumPlacementArgs(),
1538 E->getOperatorDelete(),
1539 SavedNewPtr,
1540 SavedAllocSize,
1541 E->passAlignment(),
1542 AllocAlign);
1543 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1544 auto &Arg = NewArgs[I + NumNonPlacementArgs];
1545 Cleanup->setPlacementArg(
1546 I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1549 CGF.initFullExprCleanup();
1552 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1553 // The element type being allocated.
1554 QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1556 // 1. Build a call to the allocation function.
1557 FunctionDecl *allocator = E->getOperatorNew();
1559 // If there is a brace-initializer, cannot allocate fewer elements than inits.
1560 unsigned minElements = 0;
1561 if (E->isArray() && E->hasInitializer()) {
1562 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1563 if (ILE && ILE->isStringLiteralInit())
1564 minElements =
1565 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1566 ->getSize().getZExtValue();
1567 else if (ILE)
1568 minElements = ILE->getNumInits();
1571 llvm::Value *numElements = nullptr;
1572 llvm::Value *allocSizeWithoutCookie = nullptr;
1573 llvm::Value *allocSize =
1574 EmitCXXNewAllocSize(*this, E, minElements, numElements,
1575 allocSizeWithoutCookie);
1576 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1578 // Emit the allocation call. If the allocator is a global placement
1579 // operator, just "inline" it directly.
1580 Address allocation = Address::invalid();
1581 CallArgList allocatorArgs;
1582 if (allocator->isReservedGlobalPlacementOperator()) {
1583 assert(E->getNumPlacementArgs() == 1);
1584 const Expr *arg = *E->placement_arguments().begin();
1586 LValueBaseInfo BaseInfo;
1587 allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1589 // The pointer expression will, in many cases, be an opaque void*.
1590 // In these cases, discard the computed alignment and use the
1591 // formal alignment of the allocated type.
1592 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1593 allocation = allocation.withAlignment(allocAlign);
1595 // Set up allocatorArgs for the call to operator delete if it's not
1596 // the reserved global operator.
1597 if (E->getOperatorDelete() &&
1598 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1599 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1600 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1603 } else {
1604 const FunctionProtoType *allocatorType =
1605 allocator->getType()->castAs<FunctionProtoType>();
1606 unsigned ParamsToSkip = 0;
1608 // The allocation size is the first argument.
1609 QualType sizeType = getContext().getSizeType();
1610 allocatorArgs.add(RValue::get(allocSize), sizeType);
1611 ++ParamsToSkip;
1613 if (allocSize != allocSizeWithoutCookie) {
1614 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1615 allocAlign = std::max(allocAlign, cookieAlign);
1618 // The allocation alignment may be passed as the second argument.
1619 if (E->passAlignment()) {
1620 QualType AlignValT = sizeType;
1621 if (allocatorType->getNumParams() > 1) {
1622 AlignValT = allocatorType->getParamType(1);
1623 assert(getContext().hasSameUnqualifiedType(
1624 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1625 sizeType) &&
1626 "wrong type for alignment parameter");
1627 ++ParamsToSkip;
1628 } else {
1629 // Corner case, passing alignment to 'operator new(size_t, ...)'.
1630 assert(allocator->isVariadic() && "can't pass alignment to allocator");
1632 allocatorArgs.add(
1633 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1634 AlignValT);
1637 // FIXME: Why do we not pass a CalleeDecl here?
1638 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1639 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1641 RValue RV =
1642 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1644 // Set !heapallocsite metadata on the call to operator new.
1645 if (getDebugInfo())
1646 if (auto *newCall = dyn_cast<llvm::CallBase>(RV.getScalarVal()))
1647 getDebugInfo()->addHeapAllocSiteMetadata(newCall, allocType,
1648 E->getExprLoc());
1650 // If this was a call to a global replaceable allocation function that does
1651 // not take an alignment argument, the allocator is known to produce
1652 // storage that's suitably aligned for any object that fits, up to a known
1653 // threshold. Otherwise assume it's suitably aligned for the allocated type.
1654 CharUnits allocationAlign = allocAlign;
1655 if (!E->passAlignment() &&
1656 allocator->isReplaceableGlobalAllocationFunction()) {
1657 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1658 Target.getNewAlign(), getContext().getTypeSize(allocType)));
1659 allocationAlign = std::max(
1660 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1663 allocation = Address(RV.getScalarVal(), Int8Ty, allocationAlign);
1666 // Emit a null check on the allocation result if the allocation
1667 // function is allowed to return null (because it has a non-throwing
1668 // exception spec or is the reserved placement new) and we have an
1669 // interesting initializer will be running sanitizers on the initialization.
1670 bool nullCheck = E->shouldNullCheckAllocation() &&
1671 (!allocType.isPODType(getContext()) || E->hasInitializer() ||
1672 sanitizePerformTypeCheck());
1674 llvm::BasicBlock *nullCheckBB = nullptr;
1675 llvm::BasicBlock *contBB = nullptr;
1677 // The null-check means that the initializer is conditionally
1678 // evaluated.
1679 ConditionalEvaluation conditional(*this);
1681 if (nullCheck) {
1682 conditional.begin(*this);
1684 nullCheckBB = Builder.GetInsertBlock();
1685 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1686 contBB = createBasicBlock("new.cont");
1688 llvm::Value *isNull =
1689 Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1690 Builder.CreateCondBr(isNull, contBB, notNullBB);
1691 EmitBlock(notNullBB);
1694 // If there's an operator delete, enter a cleanup to call it if an
1695 // exception is thrown.
1696 EHScopeStack::stable_iterator operatorDeleteCleanup;
1697 llvm::Instruction *cleanupDominator = nullptr;
1698 if (E->getOperatorDelete() &&
1699 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1700 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1701 allocatorArgs);
1702 operatorDeleteCleanup = EHStack.stable_begin();
1703 cleanupDominator = Builder.CreateUnreachable();
1706 assert((allocSize == allocSizeWithoutCookie) ==
1707 CalculateCookiePadding(*this, E).isZero());
1708 if (allocSize != allocSizeWithoutCookie) {
1709 assert(E->isArray());
1710 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1711 numElements,
1712 E, allocType);
1715 llvm::Type *elementTy = ConvertTypeForMem(allocType);
1716 Address result = Builder.CreateElementBitCast(allocation, elementTy);
1718 // Passing pointer through launder.invariant.group to avoid propagation of
1719 // vptrs information which may be included in previous type.
1720 // To not break LTO with different optimizations levels, we do it regardless
1721 // of optimization level.
1722 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1723 allocator->isReservedGlobalPlacementOperator())
1724 result = Builder.CreateLaunderInvariantGroup(result);
1726 // Emit sanitizer checks for pointer value now, so that in the case of an
1727 // array it was checked only once and not at each constructor call. We may
1728 // have already checked that the pointer is non-null.
1729 // FIXME: If we have an array cookie and a potentially-throwing allocator,
1730 // we'll null check the wrong pointer here.
1731 SanitizerSet SkippedChecks;
1732 SkippedChecks.set(SanitizerKind::Null, nullCheck);
1733 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
1734 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1735 result.getPointer(), allocType, result.getAlignment(),
1736 SkippedChecks, numElements);
1738 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1739 allocSizeWithoutCookie);
1740 llvm::Value *resultPtr = result.getPointer();
1741 if (E->isArray()) {
1742 // NewPtr is a pointer to the base element type. If we're
1743 // allocating an array of arrays, we'll need to cast back to the
1744 // array pointer type.
1745 llvm::Type *resultType = ConvertTypeForMem(E->getType());
1746 if (resultPtr->getType() != resultType)
1747 resultPtr = Builder.CreateBitCast(resultPtr, resultType);
1750 // Deactivate the 'operator delete' cleanup if we finished
1751 // initialization.
1752 if (operatorDeleteCleanup.isValid()) {
1753 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1754 cleanupDominator->eraseFromParent();
1757 if (nullCheck) {
1758 conditional.end(*this);
1760 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1761 EmitBlock(contBB);
1763 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1764 PHI->addIncoming(resultPtr, notNullBB);
1765 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1766 nullCheckBB);
1768 resultPtr = PHI;
1771 return resultPtr;
1774 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1775 llvm::Value *Ptr, QualType DeleteTy,
1776 llvm::Value *NumElements,
1777 CharUnits CookieSize) {
1778 assert((!NumElements && CookieSize.isZero()) ||
1779 DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1781 const auto *DeleteFTy = DeleteFD->getType()->castAs<FunctionProtoType>();
1782 CallArgList DeleteArgs;
1784 auto Params = getUsualDeleteParams(DeleteFD);
1785 auto ParamTypeIt = DeleteFTy->param_type_begin();
1787 // Pass the pointer itself.
1788 QualType ArgTy = *ParamTypeIt++;
1789 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1790 DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1792 // Pass the std::destroying_delete tag if present.
1793 llvm::AllocaInst *DestroyingDeleteTag = nullptr;
1794 if (Params.DestroyingDelete) {
1795 QualType DDTag = *ParamTypeIt++;
1796 llvm::Type *Ty = getTypes().ConvertType(DDTag);
1797 CharUnits Align = CGM.getNaturalTypeAlignment(DDTag);
1798 DestroyingDeleteTag = CreateTempAlloca(Ty, "destroying.delete.tag");
1799 DestroyingDeleteTag->setAlignment(Align.getAsAlign());
1800 DeleteArgs.add(
1801 RValue::getAggregate(Address(DestroyingDeleteTag, Ty, Align)), DDTag);
1804 // Pass the size if the delete function has a size_t parameter.
1805 if (Params.Size) {
1806 QualType SizeType = *ParamTypeIt++;
1807 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1808 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1809 DeleteTypeSize.getQuantity());
1811 // For array new, multiply by the number of elements.
1812 if (NumElements)
1813 Size = Builder.CreateMul(Size, NumElements);
1815 // If there is a cookie, add the cookie size.
1816 if (!CookieSize.isZero())
1817 Size = Builder.CreateAdd(
1818 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1820 DeleteArgs.add(RValue::get(Size), SizeType);
1823 // Pass the alignment if the delete function has an align_val_t parameter.
1824 if (Params.Alignment) {
1825 QualType AlignValType = *ParamTypeIt++;
1826 CharUnits DeleteTypeAlign =
1827 getContext().toCharUnitsFromBits(getContext().getTypeAlignIfKnown(
1828 DeleteTy, true /* NeedsPreferredAlignment */));
1829 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1830 DeleteTypeAlign.getQuantity());
1831 DeleteArgs.add(RValue::get(Align), AlignValType);
1834 assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1835 "unknown parameter to usual delete function");
1837 // Emit the call to delete.
1838 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1840 // If call argument lowering didn't use the destroying_delete_t alloca,
1841 // remove it again.
1842 if (DestroyingDeleteTag && DestroyingDeleteTag->use_empty())
1843 DestroyingDeleteTag->eraseFromParent();
1846 namespace {
1847 /// Calls the given 'operator delete' on a single object.
1848 struct CallObjectDelete final : EHScopeStack::Cleanup {
1849 llvm::Value *Ptr;
1850 const FunctionDecl *OperatorDelete;
1851 QualType ElementType;
1853 CallObjectDelete(llvm::Value *Ptr,
1854 const FunctionDecl *OperatorDelete,
1855 QualType ElementType)
1856 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1858 void Emit(CodeGenFunction &CGF, Flags flags) override {
1859 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1864 void
1865 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1866 llvm::Value *CompletePtr,
1867 QualType ElementType) {
1868 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1869 OperatorDelete, ElementType);
1872 /// Emit the code for deleting a single object with a destroying operator
1873 /// delete. If the element type has a non-virtual destructor, Ptr has already
1874 /// been converted to the type of the parameter of 'operator delete'. Otherwise
1875 /// Ptr points to an object of the static type.
1876 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1877 const CXXDeleteExpr *DE, Address Ptr,
1878 QualType ElementType) {
1879 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1880 if (Dtor && Dtor->isVirtual())
1881 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1882 Dtor);
1883 else
1884 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1887 /// Emit the code for deleting a single object.
1888 /// \return \c true if we started emitting UnconditionalDeleteBlock, \c false
1889 /// if not.
1890 static bool EmitObjectDelete(CodeGenFunction &CGF,
1891 const CXXDeleteExpr *DE,
1892 Address Ptr,
1893 QualType ElementType,
1894 llvm::BasicBlock *UnconditionalDeleteBlock) {
1895 // C++11 [expr.delete]p3:
1896 // If the static type of the object to be deleted is different from its
1897 // dynamic type, the static type shall be a base class of the dynamic type
1898 // of the object to be deleted and the static type shall have a virtual
1899 // destructor or the behavior is undefined.
1900 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1901 DE->getExprLoc(), Ptr.getPointer(),
1902 ElementType);
1904 const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1905 assert(!OperatorDelete->isDestroyingOperatorDelete());
1907 // Find the destructor for the type, if applicable. If the
1908 // destructor is virtual, we'll just emit the vcall and return.
1909 const CXXDestructorDecl *Dtor = nullptr;
1910 if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1911 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1912 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1913 Dtor = RD->getDestructor();
1915 if (Dtor->isVirtual()) {
1916 bool UseVirtualCall = true;
1917 const Expr *Base = DE->getArgument();
1918 if (auto *DevirtualizedDtor =
1919 dyn_cast_or_null<const CXXDestructorDecl>(
1920 Dtor->getDevirtualizedMethod(
1921 Base, CGF.CGM.getLangOpts().AppleKext))) {
1922 UseVirtualCall = false;
1923 const CXXRecordDecl *DevirtualizedClass =
1924 DevirtualizedDtor->getParent();
1925 if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) {
1926 // Devirtualized to the class of the base type (the type of the
1927 // whole expression).
1928 Dtor = DevirtualizedDtor;
1929 } else {
1930 // Devirtualized to some other type. Would need to cast the this
1931 // pointer to that type but we don't have support for that yet, so
1932 // do a virtual call. FIXME: handle the case where it is
1933 // devirtualized to the derived type (the type of the inner
1934 // expression) as in EmitCXXMemberOrOperatorMemberCallExpr.
1935 UseVirtualCall = true;
1938 if (UseVirtualCall) {
1939 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1940 Dtor);
1941 return false;
1947 // Make sure that we call delete even if the dtor throws.
1948 // This doesn't have to a conditional cleanup because we're going
1949 // to pop it off in a second.
1950 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1951 Ptr.getPointer(),
1952 OperatorDelete, ElementType);
1954 if (Dtor)
1955 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1956 /*ForVirtualBase=*/false,
1957 /*Delegating=*/false,
1958 Ptr, ElementType);
1959 else if (auto Lifetime = ElementType.getObjCLifetime()) {
1960 switch (Lifetime) {
1961 case Qualifiers::OCL_None:
1962 case Qualifiers::OCL_ExplicitNone:
1963 case Qualifiers::OCL_Autoreleasing:
1964 break;
1966 case Qualifiers::OCL_Strong:
1967 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1968 break;
1970 case Qualifiers::OCL_Weak:
1971 CGF.EmitARCDestroyWeak(Ptr);
1972 break;
1976 // When optimizing for size, call 'operator delete' unconditionally.
1977 if (CGF.CGM.getCodeGenOpts().OptimizeSize > 1) {
1978 CGF.EmitBlock(UnconditionalDeleteBlock);
1979 CGF.PopCleanupBlock();
1980 return true;
1983 CGF.PopCleanupBlock();
1984 return false;
1987 namespace {
1988 /// Calls the given 'operator delete' on an array of objects.
1989 struct CallArrayDelete final : EHScopeStack::Cleanup {
1990 llvm::Value *Ptr;
1991 const FunctionDecl *OperatorDelete;
1992 llvm::Value *NumElements;
1993 QualType ElementType;
1994 CharUnits CookieSize;
1996 CallArrayDelete(llvm::Value *Ptr,
1997 const FunctionDecl *OperatorDelete,
1998 llvm::Value *NumElements,
1999 QualType ElementType,
2000 CharUnits CookieSize)
2001 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
2002 ElementType(ElementType), CookieSize(CookieSize) {}
2004 void Emit(CodeGenFunction &CGF, Flags flags) override {
2005 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
2006 CookieSize);
2011 /// Emit the code for deleting an array of objects.
2012 static void EmitArrayDelete(CodeGenFunction &CGF,
2013 const CXXDeleteExpr *E,
2014 Address deletedPtr,
2015 QualType elementType) {
2016 llvm::Value *numElements = nullptr;
2017 llvm::Value *allocatedPtr = nullptr;
2018 CharUnits cookieSize;
2019 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
2020 numElements, allocatedPtr, cookieSize);
2022 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
2024 // Make sure that we call delete even if one of the dtors throws.
2025 const FunctionDecl *operatorDelete = E->getOperatorDelete();
2026 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
2027 allocatedPtr, operatorDelete,
2028 numElements, elementType,
2029 cookieSize);
2031 // Destroy the elements.
2032 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
2033 assert(numElements && "no element count for a type with a destructor!");
2035 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2036 CharUnits elementAlign =
2037 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
2039 llvm::Value *arrayBegin = deletedPtr.getPointer();
2040 llvm::Value *arrayEnd = CGF.Builder.CreateInBoundsGEP(
2041 deletedPtr.getElementType(), arrayBegin, numElements, "delete.end");
2043 // Note that it is legal to allocate a zero-length array, and we
2044 // can never fold the check away because the length should always
2045 // come from a cookie.
2046 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
2047 CGF.getDestroyer(dtorKind),
2048 /*checkZeroLength*/ true,
2049 CGF.needsEHCleanup(dtorKind));
2052 // Pop the cleanup block.
2053 CGF.PopCleanupBlock();
2056 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
2057 const Expr *Arg = E->getArgument();
2058 Address Ptr = EmitPointerWithAlignment(Arg);
2060 // Null check the pointer.
2062 // We could avoid this null check if we can determine that the object
2063 // destruction is trivial and doesn't require an array cookie; we can
2064 // unconditionally perform the operator delete call in that case. For now, we
2065 // assume that deleted pointers are null rarely enough that it's better to
2066 // keep the branch. This might be worth revisiting for a -O0 code size win.
2067 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
2068 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
2070 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
2072 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
2073 EmitBlock(DeleteNotNull);
2075 QualType DeleteTy = E->getDestroyedType();
2077 // A destroying operator delete overrides the entire operation of the
2078 // delete expression.
2079 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
2080 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2081 EmitBlock(DeleteEnd);
2082 return;
2085 // We might be deleting a pointer to array. If so, GEP down to the
2086 // first non-array element.
2087 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2088 if (DeleteTy->isConstantArrayType()) {
2089 llvm::Value *Zero = Builder.getInt32(0);
2090 SmallVector<llvm::Value*,8> GEP;
2092 GEP.push_back(Zero); // point at the outermost array
2094 // For each layer of array type we're pointing at:
2095 while (const ConstantArrayType *Arr
2096 = getContext().getAsConstantArrayType(DeleteTy)) {
2097 // 1. Unpeel the array type.
2098 DeleteTy = Arr->getElementType();
2100 // 2. GEP to the first element of the array.
2101 GEP.push_back(Zero);
2104 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getElementType(),
2105 Ptr.getPointer(), GEP, "del.first"),
2106 ConvertTypeForMem(DeleteTy), Ptr.getAlignment());
2109 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2111 if (E->isArrayForm()) {
2112 EmitArrayDelete(*this, E, Ptr, DeleteTy);
2113 EmitBlock(DeleteEnd);
2114 } else {
2115 if (!EmitObjectDelete(*this, E, Ptr, DeleteTy, DeleteEnd))
2116 EmitBlock(DeleteEnd);
2120 static bool isGLValueFromPointerDeref(const Expr *E) {
2121 E = E->IgnoreParens();
2123 if (const auto *CE = dyn_cast<CastExpr>(E)) {
2124 if (!CE->getSubExpr()->isGLValue())
2125 return false;
2126 return isGLValueFromPointerDeref(CE->getSubExpr());
2129 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2130 return isGLValueFromPointerDeref(OVE->getSourceExpr());
2132 if (const auto *BO = dyn_cast<BinaryOperator>(E))
2133 if (BO->getOpcode() == BO_Comma)
2134 return isGLValueFromPointerDeref(BO->getRHS());
2136 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2137 return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2138 isGLValueFromPointerDeref(ACO->getFalseExpr());
2140 // C++11 [expr.sub]p1:
2141 // The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2142 if (isa<ArraySubscriptExpr>(E))
2143 return true;
2145 if (const auto *UO = dyn_cast<UnaryOperator>(E))
2146 if (UO->getOpcode() == UO_Deref)
2147 return true;
2149 return false;
2152 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2153 llvm::Type *StdTypeInfoPtrTy) {
2154 // Get the vtable pointer.
2155 Address ThisPtr = CGF.EmitLValue(E).getAddress(CGF);
2157 QualType SrcRecordTy = E->getType();
2159 // C++ [class.cdtor]p4:
2160 // If the operand of typeid refers to the object under construction or
2161 // destruction and the static type of the operand is neither the constructor
2162 // or destructor’s class nor one of its bases, the behavior is undefined.
2163 CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
2164 ThisPtr.getPointer(), SrcRecordTy);
2166 // C++ [expr.typeid]p2:
2167 // If the glvalue expression is obtained by applying the unary * operator to
2168 // a pointer and the pointer is a null pointer value, the typeid expression
2169 // throws the std::bad_typeid exception.
2171 // However, this paragraph's intent is not clear. We choose a very generous
2172 // interpretation which implores us to consider comma operators, conditional
2173 // operators, parentheses and other such constructs.
2174 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2175 isGLValueFromPointerDeref(E), SrcRecordTy)) {
2176 llvm::BasicBlock *BadTypeidBlock =
2177 CGF.createBasicBlock("typeid.bad_typeid");
2178 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2180 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2181 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2183 CGF.EmitBlock(BadTypeidBlock);
2184 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2185 CGF.EmitBlock(EndBlock);
2188 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2189 StdTypeInfoPtrTy);
2192 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2193 llvm::Type *StdTypeInfoPtrTy =
2194 ConvertType(E->getType())->getPointerTo();
2196 if (E->isTypeOperand()) {
2197 llvm::Constant *TypeInfo =
2198 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2199 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2202 // C++ [expr.typeid]p2:
2203 // When typeid is applied to a glvalue expression whose type is a
2204 // polymorphic class type, the result refers to a std::type_info object
2205 // representing the type of the most derived object (that is, the dynamic
2206 // type) to which the glvalue refers.
2207 // If the operand is already most derived object, no need to look up vtable.
2208 if (E->isPotentiallyEvaluated() && !E->isMostDerived(getContext()))
2209 return EmitTypeidFromVTable(*this, E->getExprOperand(),
2210 StdTypeInfoPtrTy);
2212 QualType OperandTy = E->getExprOperand()->getType();
2213 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2214 StdTypeInfoPtrTy);
2217 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2218 QualType DestTy) {
2219 llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2220 if (DestTy->isPointerType())
2221 return llvm::Constant::getNullValue(DestLTy);
2223 /// C++ [expr.dynamic.cast]p9:
2224 /// A failed cast to reference type throws std::bad_cast
2225 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2226 return nullptr;
2228 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2229 return llvm::UndefValue::get(DestLTy);
2232 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2233 const CXXDynamicCastExpr *DCE) {
2234 CGM.EmitExplicitCastExprType(DCE, this);
2235 QualType DestTy = DCE->getTypeAsWritten();
2237 QualType SrcTy = DCE->getSubExpr()->getType();
2239 // C++ [expr.dynamic.cast]p7:
2240 // If T is "pointer to cv void," then the result is a pointer to the most
2241 // derived object pointed to by v.
2242 const PointerType *DestPTy = DestTy->getAs<PointerType>();
2244 bool isDynamicCastToVoid;
2245 QualType SrcRecordTy;
2246 QualType DestRecordTy;
2247 if (DestPTy) {
2248 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2249 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2250 DestRecordTy = DestPTy->getPointeeType();
2251 } else {
2252 isDynamicCastToVoid = false;
2253 SrcRecordTy = SrcTy;
2254 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2257 // C++ [class.cdtor]p5:
2258 // If the operand of the dynamic_cast refers to the object under
2259 // construction or destruction and the static type of the operand is not a
2260 // pointer to or object of the constructor or destructor’s own class or one
2261 // of its bases, the dynamic_cast results in undefined behavior.
2262 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2263 SrcRecordTy);
2265 if (DCE->isAlwaysNull())
2266 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2267 return T;
2269 assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2271 // C++ [expr.dynamic.cast]p4:
2272 // If the value of v is a null pointer value in the pointer case, the result
2273 // is the null pointer value of type T.
2274 bool ShouldNullCheckSrcValue =
2275 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2276 SrcRecordTy);
2278 llvm::BasicBlock *CastNull = nullptr;
2279 llvm::BasicBlock *CastNotNull = nullptr;
2280 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2282 if (ShouldNullCheckSrcValue) {
2283 CastNull = createBasicBlock("dynamic_cast.null");
2284 CastNotNull = createBasicBlock("dynamic_cast.notnull");
2286 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2287 Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2288 EmitBlock(CastNotNull);
2291 llvm::Value *Value;
2292 if (isDynamicCastToVoid) {
2293 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2294 DestTy);
2295 } else {
2296 assert(DestRecordTy->isRecordType() &&
2297 "destination type must be a record type!");
2298 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2299 DestTy, DestRecordTy, CastEnd);
2300 CastNotNull = Builder.GetInsertBlock();
2303 if (ShouldNullCheckSrcValue) {
2304 EmitBranch(CastEnd);
2306 EmitBlock(CastNull);
2307 EmitBranch(CastEnd);
2310 EmitBlock(CastEnd);
2312 if (ShouldNullCheckSrcValue) {
2313 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2314 PHI->addIncoming(Value, CastNotNull);
2315 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2317 Value = PHI;
2320 return Value;