1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This contains code to emit Objective-C code as LLVM code.
11 //===----------------------------------------------------------------------===//
13 #include "CGDebugInfo.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/StmtObjC.h"
23 #include "clang/Basic/Diagnostic.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/Analysis/ObjCARCUtil.h"
27 #include "llvm/BinaryFormat/MachO.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/InlineAsm.h"
30 using namespace clang
;
31 using namespace CodeGen
;
33 typedef llvm::PointerIntPair
<llvm::Value
*,1,bool> TryEmitResult
;
35 tryEmitARCRetainScalarExpr(CodeGenFunction
&CGF
, const Expr
*e
);
36 static RValue
AdjustObjCObjectType(CodeGenFunction
&CGF
,
40 /// Given the address of a variable of pointer type, find the correct
41 /// null to store into it.
42 static llvm::Constant
*getNullForVariable(Address addr
) {
43 llvm::Type
*type
= addr
.getElementType();
44 return llvm::ConstantPointerNull::get(cast
<llvm::PointerType
>(type
));
47 /// Emits an instance of NSConstantString representing the object.
48 llvm::Value
*CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral
*E
)
51 CGM
.getObjCRuntime().GenerateConstantString(E
->getString()).getPointer();
52 // FIXME: This bitcast should just be made an invariant on the Runtime.
53 return llvm::ConstantExpr::getBitCast(C
, ConvertType(E
->getType()));
56 /// EmitObjCBoxedExpr - This routine generates code to call
57 /// the appropriate expression boxing method. This will either be
58 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
59 /// or [NSValue valueWithBytes:objCType:].
62 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr
*E
) {
63 // Generate the correct selector for this literal's concrete type.
65 const ObjCMethodDecl
*BoxingMethod
= E
->getBoxingMethod();
66 const Expr
*SubExpr
= E
->getSubExpr();
68 if (E
->isExpressibleAsConstantInitializer()) {
69 ConstantEmitter
ConstEmitter(CGM
);
70 return ConstEmitter
.tryEmitAbstract(E
, E
->getType());
73 assert(BoxingMethod
->isClassMethod() && "BoxingMethod must be a class method");
74 Selector Sel
= BoxingMethod
->getSelector();
76 // Generate a reference to the class pointer, which will be the receiver.
77 // Assumes that the method was introduced in the class that should be
78 // messaged (avoids pulling it out of the result type).
79 CGObjCRuntime
&Runtime
= CGM
.getObjCRuntime();
80 const ObjCInterfaceDecl
*ClassDecl
= BoxingMethod
->getClassInterface();
81 llvm::Value
*Receiver
= Runtime
.GetClass(*this, ClassDecl
);
84 const ParmVarDecl
*ArgDecl
= *BoxingMethod
->param_begin();
85 QualType ArgQT
= ArgDecl
->getType().getUnqualifiedType();
87 // ObjCBoxedExpr supports boxing of structs and unions
88 // via [NSValue valueWithBytes:objCType:]
89 const QualType
ValueType(SubExpr
->getType().getCanonicalType());
90 if (ValueType
->isObjCBoxableRecordType()) {
91 // Emit CodeGen for first parameter
92 // and cast value to correct type
93 Address Temporary
= CreateMemTemp(SubExpr
->getType());
94 EmitAnyExprToMem(SubExpr
, Temporary
, Qualifiers(), /*isInit*/ true);
95 llvm::Value
*BitCast
=
96 Builder
.CreateBitCast(Temporary
.getPointer(), ConvertType(ArgQT
));
97 Args
.add(RValue::get(BitCast
), ArgQT
);
99 // Create char array to store type encoding
101 getContext().getObjCEncodingForType(ValueType
, Str
);
102 llvm::Constant
*GV
= CGM
.GetAddrOfConstantCString(Str
).getPointer();
104 // Cast type encoding to correct type
105 const ParmVarDecl
*EncodingDecl
= BoxingMethod
->parameters()[1];
106 QualType EncodingQT
= EncodingDecl
->getType().getUnqualifiedType();
107 llvm::Value
*Cast
= Builder
.CreateBitCast(GV
, ConvertType(EncodingQT
));
109 Args
.add(RValue::get(Cast
), EncodingQT
);
111 Args
.add(EmitAnyExpr(SubExpr
), ArgQT
);
114 RValue result
= Runtime
.GenerateMessageSend(
115 *this, ReturnValueSlot(), BoxingMethod
->getReturnType(), Sel
, Receiver
,
116 Args
, ClassDecl
, BoxingMethod
);
117 return Builder
.CreateBitCast(result
.getScalarVal(),
118 ConvertType(E
->getType()));
121 llvm::Value
*CodeGenFunction::EmitObjCCollectionLiteral(const Expr
*E
,
122 const ObjCMethodDecl
*MethodWithObjects
) {
123 ASTContext
&Context
= CGM
.getContext();
124 const ObjCDictionaryLiteral
*DLE
= nullptr;
125 const ObjCArrayLiteral
*ALE
= dyn_cast
<ObjCArrayLiteral
>(E
);
127 DLE
= cast
<ObjCDictionaryLiteral
>(E
);
129 // Optimize empty collections by referencing constants, when available.
130 uint64_t NumElements
=
131 ALE
? ALE
->getNumElements() : DLE
->getNumElements();
132 if (NumElements
== 0 && CGM
.getLangOpts().ObjCRuntime
.hasEmptyCollections()) {
133 StringRef ConstantName
= ALE
? "__NSArray0__" : "__NSDictionary0__";
134 QualType
IdTy(CGM
.getContext().getObjCIdType());
135 llvm::Constant
*Constant
=
136 CGM
.CreateRuntimeVariable(ConvertType(IdTy
), ConstantName
);
137 LValue LV
= MakeNaturalAlignAddrLValue(Constant
, IdTy
);
138 llvm::Value
*Ptr
= EmitLoadOfScalar(LV
, E
->getBeginLoc());
139 cast
<llvm::LoadInst
>(Ptr
)->setMetadata(
140 CGM
.getModule().getMDKindID("invariant.load"),
141 llvm::MDNode::get(getLLVMContext(), None
));
142 return Builder
.CreateBitCast(Ptr
, ConvertType(E
->getType()));
145 // Compute the type of the array we're initializing.
146 llvm::APInt
APNumElements(Context
.getTypeSize(Context
.getSizeType()),
148 QualType ElementType
= Context
.getObjCIdType().withConst();
149 QualType ElementArrayType
150 = Context
.getConstantArrayType(ElementType
, APNumElements
, nullptr,
151 ArrayType::Normal
, /*IndexTypeQuals=*/0);
153 // Allocate the temporary array(s).
154 Address Objects
= CreateMemTemp(ElementArrayType
, "objects");
155 Address Keys
= Address::invalid();
157 Keys
= CreateMemTemp(ElementArrayType
, "keys");
159 // In ARC, we may need to do extra work to keep all the keys and
160 // values alive until after the call.
161 SmallVector
<llvm::Value
*, 16> NeededObjects
;
162 bool TrackNeededObjects
=
163 (getLangOpts().ObjCAutoRefCount
&&
164 CGM
.getCodeGenOpts().OptimizationLevel
!= 0);
166 // Perform the actual initialialization of the array(s).
167 for (uint64_t i
= 0; i
< NumElements
; i
++) {
169 // Emit the element and store it to the appropriate array slot.
170 const Expr
*Rhs
= ALE
->getElement(i
);
171 LValue LV
= MakeAddrLValue(Builder
.CreateConstArrayGEP(Objects
, i
),
172 ElementType
, AlignmentSource::Decl
);
174 llvm::Value
*value
= EmitScalarExpr(Rhs
);
175 EmitStoreThroughLValue(RValue::get(value
), LV
, true);
176 if (TrackNeededObjects
) {
177 NeededObjects
.push_back(value
);
180 // Emit the key and store it to the appropriate array slot.
181 const Expr
*Key
= DLE
->getKeyValueElement(i
).Key
;
182 LValue KeyLV
= MakeAddrLValue(Builder
.CreateConstArrayGEP(Keys
, i
),
183 ElementType
, AlignmentSource::Decl
);
184 llvm::Value
*keyValue
= EmitScalarExpr(Key
);
185 EmitStoreThroughLValue(RValue::get(keyValue
), KeyLV
, /*isInit=*/true);
187 // Emit the value and store it to the appropriate array slot.
188 const Expr
*Value
= DLE
->getKeyValueElement(i
).Value
;
189 LValue ValueLV
= MakeAddrLValue(Builder
.CreateConstArrayGEP(Objects
, i
),
190 ElementType
, AlignmentSource::Decl
);
191 llvm::Value
*valueValue
= EmitScalarExpr(Value
);
192 EmitStoreThroughLValue(RValue::get(valueValue
), ValueLV
, /*isInit=*/true);
193 if (TrackNeededObjects
) {
194 NeededObjects
.push_back(keyValue
);
195 NeededObjects
.push_back(valueValue
);
200 // Generate the argument list.
202 ObjCMethodDecl::param_const_iterator PI
= MethodWithObjects
->param_begin();
203 const ParmVarDecl
*argDecl
= *PI
++;
204 QualType ArgQT
= argDecl
->getType().getUnqualifiedType();
205 Args
.add(RValue::get(Objects
.getPointer()), ArgQT
);
208 ArgQT
= argDecl
->getType().getUnqualifiedType();
209 Args
.add(RValue::get(Keys
.getPointer()), ArgQT
);
212 ArgQT
= argDecl
->getType().getUnqualifiedType();
214 llvm::ConstantInt::get(CGM
.getTypes().ConvertType(ArgQT
), NumElements
);
215 Args
.add(RValue::get(Count
), ArgQT
);
217 // Generate a reference to the class pointer, which will be the receiver.
218 Selector Sel
= MethodWithObjects
->getSelector();
219 QualType ResultType
= E
->getType();
220 const ObjCObjectPointerType
*InterfacePointerType
221 = ResultType
->getAsObjCInterfacePointerType();
222 ObjCInterfaceDecl
*Class
223 = InterfacePointerType
->getObjectType()->getInterface();
224 CGObjCRuntime
&Runtime
= CGM
.getObjCRuntime();
225 llvm::Value
*Receiver
= Runtime
.GetClass(*this, Class
);
227 // Generate the message send.
228 RValue result
= Runtime
.GenerateMessageSend(
229 *this, ReturnValueSlot(), MethodWithObjects
->getReturnType(), Sel
,
230 Receiver
, Args
, Class
, MethodWithObjects
);
232 // The above message send needs these objects, but in ARC they are
233 // passed in a buffer that is essentially __unsafe_unretained.
234 // Therefore we must prevent the optimizer from releasing them until
236 if (TrackNeededObjects
) {
237 EmitARCIntrinsicUse(NeededObjects
);
240 return Builder
.CreateBitCast(result
.getScalarVal(),
241 ConvertType(E
->getType()));
244 llvm::Value
*CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral
*E
) {
245 return EmitObjCCollectionLiteral(E
, E
->getArrayWithObjectsMethod());
248 llvm::Value
*CodeGenFunction::EmitObjCDictionaryLiteral(
249 const ObjCDictionaryLiteral
*E
) {
250 return EmitObjCCollectionLiteral(E
, E
->getDictWithObjectsMethod());
254 llvm::Value
*CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr
*E
) {
256 // Note that this implementation allows for non-constant strings to be passed
257 // as arguments to @selector(). Currently, the only thing preventing this
258 // behaviour is the type checking in the front end.
259 return CGM
.getObjCRuntime().GetSelector(*this, E
->getSelector());
262 llvm::Value
*CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr
*E
) {
263 // FIXME: This should pass the Decl not the name.
264 return CGM
.getObjCRuntime().GenerateProtocolRef(*this, E
->getProtocol());
267 /// Adjust the type of an Objective-C object that doesn't match up due
268 /// to type erasure at various points, e.g., related result types or the use
269 /// of parameterized classes.
270 static RValue
AdjustObjCObjectType(CodeGenFunction
&CGF
, QualType ExpT
,
272 if (!ExpT
->isObjCRetainableType())
275 // If the converted types are the same, we're done.
276 llvm::Type
*ExpLLVMTy
= CGF
.ConvertType(ExpT
);
277 if (ExpLLVMTy
== Result
.getScalarVal()->getType())
280 // We have applied a substitution. Cast the rvalue appropriately.
281 return RValue::get(CGF
.Builder
.CreateBitCast(Result
.getScalarVal(),
285 /// Decide whether to extend the lifetime of the receiver of a
286 /// returns-inner-pointer message.
288 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr
*message
) {
289 switch (message
->getReceiverKind()) {
291 // For a normal instance message, we should extend unless the
292 // receiver is loaded from a variable with precise lifetime.
293 case ObjCMessageExpr::Instance
: {
294 const Expr
*receiver
= message
->getInstanceReceiver();
296 // Look through OVEs.
297 if (auto opaque
= dyn_cast
<OpaqueValueExpr
>(receiver
)) {
298 if (opaque
->getSourceExpr())
299 receiver
= opaque
->getSourceExpr()->IgnoreParens();
302 const ImplicitCastExpr
*ice
= dyn_cast
<ImplicitCastExpr
>(receiver
);
303 if (!ice
|| ice
->getCastKind() != CK_LValueToRValue
) return true;
304 receiver
= ice
->getSubExpr()->IgnoreParens();
306 // Look through OVEs.
307 if (auto opaque
= dyn_cast
<OpaqueValueExpr
>(receiver
)) {
308 if (opaque
->getSourceExpr())
309 receiver
= opaque
->getSourceExpr()->IgnoreParens();
312 // Only __strong variables.
313 if (receiver
->getType().getObjCLifetime() != Qualifiers::OCL_Strong
)
316 // All ivars and fields have precise lifetime.
317 if (isa
<MemberExpr
>(receiver
) || isa
<ObjCIvarRefExpr
>(receiver
))
320 // Otherwise, check for variables.
321 const DeclRefExpr
*declRef
= dyn_cast
<DeclRefExpr
>(ice
->getSubExpr());
322 if (!declRef
) return true;
323 const VarDecl
*var
= dyn_cast
<VarDecl
>(declRef
->getDecl());
324 if (!var
) return true;
326 // All variables have precise lifetime except local variables with
327 // automatic storage duration that aren't specially marked.
328 return (var
->hasLocalStorage() &&
329 !var
->hasAttr
<ObjCPreciseLifetimeAttr
>());
332 case ObjCMessageExpr::Class
:
333 case ObjCMessageExpr::SuperClass
:
334 // It's never necessary for class objects.
337 case ObjCMessageExpr::SuperInstance
:
338 // We generally assume that 'self' lives throughout a method call.
342 llvm_unreachable("invalid receiver kind");
345 /// Given an expression of ObjC pointer type, check whether it was
346 /// immediately loaded from an ARC __weak l-value.
347 static const Expr
*findWeakLValue(const Expr
*E
) {
348 assert(E
->getType()->isObjCRetainableType());
349 E
= E
->IgnoreParens();
350 if (auto CE
= dyn_cast
<CastExpr
>(E
)) {
351 if (CE
->getCastKind() == CK_LValueToRValue
) {
352 if (CE
->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak
)
353 return CE
->getSubExpr();
360 /// The ObjC runtime may provide entrypoints that are likely to be faster
361 /// than an ordinary message send of the appropriate selector.
363 /// The entrypoints are guaranteed to be equivalent to just sending the
364 /// corresponding message. If the entrypoint is implemented naively as just a
365 /// message send, using it is a trade-off: it sacrifices a few cycles of
366 /// overhead to save a small amount of code. However, it's possible for
367 /// runtimes to detect and special-case classes that use "standard"
368 /// behavior; if that's dynamically a large proportion of all objects, using
369 /// the entrypoint will also be faster than using a message send.
371 /// If the runtime does support a required entrypoint, then this method will
372 /// generate a call and return the resulting value. Otherwise it will return
373 /// None and the caller can generate a msgSend instead.
374 static Optional
<llvm::Value
*>
375 tryGenerateSpecializedMessageSend(CodeGenFunction
&CGF
, QualType ResultType
,
376 llvm::Value
*Receiver
,
377 const CallArgList
& Args
, Selector Sel
,
378 const ObjCMethodDecl
*method
,
379 bool isClassMessage
) {
381 if (!CGM
.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls
)
384 auto &Runtime
= CGM
.getLangOpts().ObjCRuntime
;
385 switch (Sel
.getMethodFamily()) {
387 if (isClassMessage
&&
388 Runtime
.shouldUseRuntimeFunctionsForAlloc() &&
389 ResultType
->isObjCObjectPointerType()) {
390 // [Foo alloc] -> objc_alloc(Foo) or
391 // [self alloc] -> objc_alloc(self)
392 if (Sel
.isUnarySelector() && Sel
.getNameForSlot(0) == "alloc")
393 return CGF
.EmitObjCAlloc(Receiver
, CGF
.ConvertType(ResultType
));
394 // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
395 // [self allocWithZone:nil] -> objc_allocWithZone(self)
396 if (Sel
.isKeywordSelector() && Sel
.getNumArgs() == 1 &&
397 Args
.size() == 1 && Args
.front().getType()->isPointerType() &&
398 Sel
.getNameForSlot(0) == "allocWithZone") {
399 const llvm::Value
* arg
= Args
.front().getKnownRValue().getScalarVal();
400 if (isa
<llvm::ConstantPointerNull
>(arg
))
401 return CGF
.EmitObjCAllocWithZone(Receiver
,
402 CGF
.ConvertType(ResultType
));
408 case OMF_autorelease
:
409 if (ResultType
->isObjCObjectPointerType() &&
410 CGM
.getLangOpts().getGC() == LangOptions::NonGC
&&
411 Runtime
.shouldUseARCFunctionsForRetainRelease())
412 return CGF
.EmitObjCAutorelease(Receiver
, CGF
.ConvertType(ResultType
));
416 if (ResultType
->isObjCObjectPointerType() &&
417 CGM
.getLangOpts().getGC() == LangOptions::NonGC
&&
418 Runtime
.shouldUseARCFunctionsForRetainRelease())
419 return CGF
.EmitObjCRetainNonBlock(Receiver
, CGF
.ConvertType(ResultType
));
423 if (ResultType
->isVoidType() &&
424 CGM
.getLangOpts().getGC() == LangOptions::NonGC
&&
425 Runtime
.shouldUseARCFunctionsForRetainRelease()) {
426 CGF
.EmitObjCRelease(Receiver
, ARCPreciseLifetime
);
437 CodeGen::RValue
CGObjCRuntime::GeneratePossiblySpecializedMessageSend(
438 CodeGenFunction
&CGF
, ReturnValueSlot Return
, QualType ResultType
,
439 Selector Sel
, llvm::Value
*Receiver
, const CallArgList
&Args
,
440 const ObjCInterfaceDecl
*OID
, const ObjCMethodDecl
*Method
,
441 bool isClassMessage
) {
442 if (Optional
<llvm::Value
*> SpecializedResult
=
443 tryGenerateSpecializedMessageSend(CGF
, ResultType
, Receiver
, Args
,
444 Sel
, Method
, isClassMessage
)) {
445 return RValue::get(*SpecializedResult
);
447 return GenerateMessageSend(CGF
, Return
, ResultType
, Sel
, Receiver
, Args
, OID
,
451 static void AppendFirstImpliedRuntimeProtocols(
452 const ObjCProtocolDecl
*PD
,
453 llvm::UniqueVector
<const ObjCProtocolDecl
*> &PDs
) {
454 if (!PD
->isNonRuntimeProtocol()) {
455 const auto *Can
= PD
->getCanonicalDecl();
460 for (const auto *ParentPD
: PD
->protocols())
461 AppendFirstImpliedRuntimeProtocols(ParentPD
, PDs
);
464 std::vector
<const ObjCProtocolDecl
*>
465 CGObjCRuntime::GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin
,
466 ObjCProtocolDecl::protocol_iterator end
) {
467 std::vector
<const ObjCProtocolDecl
*> RuntimePds
;
468 llvm::DenseSet
<const ObjCProtocolDecl
*> NonRuntimePDs
;
470 for (; begin
!= end
; ++begin
) {
471 const auto *It
= *begin
;
472 const auto *Can
= It
->getCanonicalDecl();
473 if (Can
->isNonRuntimeProtocol())
474 NonRuntimePDs
.insert(Can
);
476 RuntimePds
.push_back(Can
);
479 // If there are no non-runtime protocols then we can just stop now.
480 if (NonRuntimePDs
.empty())
483 // Else we have to search through the non-runtime protocol's inheritancy
484 // hierarchy DAG stopping whenever a branch either finds a runtime protocol or
485 // a non-runtime protocol without any parents. These are the "first-implied"
486 // protocols from a non-runtime protocol.
487 llvm::UniqueVector
<const ObjCProtocolDecl
*> FirstImpliedProtos
;
488 for (const auto *PD
: NonRuntimePDs
)
489 AppendFirstImpliedRuntimeProtocols(PD
, FirstImpliedProtos
);
491 // Walk the Runtime list to get all protocols implied via the inclusion of
492 // this protocol, e.g. all protocols it inherits from including itself.
493 llvm::DenseSet
<const ObjCProtocolDecl
*> AllImpliedProtocols
;
494 for (const auto *PD
: RuntimePds
) {
495 const auto *Can
= PD
->getCanonicalDecl();
496 AllImpliedProtocols
.insert(Can
);
497 Can
->getImpliedProtocols(AllImpliedProtocols
);
500 // Similar to above, walk the list of first-implied protocols to find the set
501 // all the protocols implied excluding the listed protocols themselves since
502 // they are not yet a part of the `RuntimePds` list.
503 for (const auto *PD
: FirstImpliedProtos
) {
504 PD
->getImpliedProtocols(AllImpliedProtocols
);
507 // From the first-implied list we have to finish building the final protocol
508 // list. If a protocol in the first-implied list was already implied via some
509 // inheritance path through some other protocols then it would be redundant to
510 // add it here and so we skip over it.
511 for (const auto *PD
: FirstImpliedProtos
) {
512 if (!AllImpliedProtocols
.contains(PD
)) {
513 RuntimePds
.push_back(PD
);
520 /// Instead of '[[MyClass alloc] init]', try to generate
521 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
522 /// caller side, as well as the optimized objc_alloc.
523 static Optional
<llvm::Value
*>
524 tryEmitSpecializedAllocInit(CodeGenFunction
&CGF
, const ObjCMessageExpr
*OME
) {
525 auto &Runtime
= CGF
.getLangOpts().ObjCRuntime
;
526 if (!Runtime
.shouldUseRuntimeFunctionForCombinedAllocInit())
529 // Match the exact pattern '[[MyClass alloc] init]'.
530 Selector Sel
= OME
->getSelector();
531 if (OME
->getReceiverKind() != ObjCMessageExpr::Instance
||
532 !OME
->getType()->isObjCObjectPointerType() || !Sel
.isUnarySelector() ||
533 Sel
.getNameForSlot(0) != "init")
536 // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'
537 // with 'cls' a Class.
539 dyn_cast
<ObjCMessageExpr
>(OME
->getInstanceReceiver()->IgnoreParenCasts());
542 Selector SubSel
= SubOME
->getSelector();
544 if (!SubOME
->getType()->isObjCObjectPointerType() ||
545 !SubSel
.isUnarySelector() || SubSel
.getNameForSlot(0) != "alloc")
548 llvm::Value
*Receiver
= nullptr;
549 switch (SubOME
->getReceiverKind()) {
550 case ObjCMessageExpr::Instance
:
551 if (!SubOME
->getInstanceReceiver()->getType()->isObjCClassType())
553 Receiver
= CGF
.EmitScalarExpr(SubOME
->getInstanceReceiver());
556 case ObjCMessageExpr::Class
: {
557 QualType ReceiverType
= SubOME
->getClassReceiver();
558 const ObjCObjectType
*ObjTy
= ReceiverType
->castAs
<ObjCObjectType
>();
559 const ObjCInterfaceDecl
*ID
= ObjTy
->getInterface();
560 assert(ID
&& "null interface should be impossible here");
561 Receiver
= CGF
.CGM
.getObjCRuntime().GetClass(CGF
, ID
);
564 case ObjCMessageExpr::SuperInstance
:
565 case ObjCMessageExpr::SuperClass
:
569 return CGF
.EmitObjCAllocInit(Receiver
, CGF
.ConvertType(OME
->getType()));
572 RValue
CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr
*E
,
573 ReturnValueSlot Return
) {
574 // Only the lookup mechanism and first two arguments of the method
575 // implementation vary between runtimes. We can get the receiver and
576 // arguments in generic code.
578 bool isDelegateInit
= E
->isDelegateInitCall();
580 const ObjCMethodDecl
*method
= E
->getMethodDecl();
582 // If the method is -retain, and the receiver's being loaded from
583 // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
584 if (method
&& E
->getReceiverKind() == ObjCMessageExpr::Instance
&&
585 method
->getMethodFamily() == OMF_retain
) {
586 if (auto lvalueExpr
= findWeakLValue(E
->getInstanceReceiver())) {
587 LValue lvalue
= EmitLValue(lvalueExpr
);
588 llvm::Value
*result
= EmitARCLoadWeakRetained(lvalue
.getAddress(*this));
589 return AdjustObjCObjectType(*this, E
->getType(), RValue::get(result
));
593 if (Optional
<llvm::Value
*> Val
= tryEmitSpecializedAllocInit(*this, E
))
594 return AdjustObjCObjectType(*this, E
->getType(), RValue::get(*Val
));
596 // We don't retain the receiver in delegate init calls, and this is
597 // safe because the receiver value is always loaded from 'self',
598 // which we zero out. We don't want to Block_copy block receivers,
602 CGM
.getLangOpts().ObjCAutoRefCount
&&
604 method
->hasAttr
<NSConsumesSelfAttr
>());
606 CGObjCRuntime
&Runtime
= CGM
.getObjCRuntime();
607 bool isSuperMessage
= false;
608 bool isClassMessage
= false;
609 ObjCInterfaceDecl
*OID
= nullptr;
611 QualType ReceiverType
;
612 llvm::Value
*Receiver
= nullptr;
613 switch (E
->getReceiverKind()) {
614 case ObjCMessageExpr::Instance
:
615 ReceiverType
= E
->getInstanceReceiver()->getType();
616 isClassMessage
= ReceiverType
->isObjCClassType();
618 TryEmitResult ter
= tryEmitARCRetainScalarExpr(*this,
619 E
->getInstanceReceiver());
620 Receiver
= ter
.getPointer();
621 if (ter
.getInt()) retainSelf
= false;
623 Receiver
= EmitScalarExpr(E
->getInstanceReceiver());
626 case ObjCMessageExpr::Class
: {
627 ReceiverType
= E
->getClassReceiver();
628 OID
= ReceiverType
->castAs
<ObjCObjectType
>()->getInterface();
629 assert(OID
&& "Invalid Objective-C class message send");
630 Receiver
= Runtime
.GetClass(*this, OID
);
631 isClassMessage
= true;
635 case ObjCMessageExpr::SuperInstance
:
636 ReceiverType
= E
->getSuperType();
637 Receiver
= LoadObjCSelf();
638 isSuperMessage
= true;
641 case ObjCMessageExpr::SuperClass
:
642 ReceiverType
= E
->getSuperType();
643 Receiver
= LoadObjCSelf();
644 isSuperMessage
= true;
645 isClassMessage
= true;
650 Receiver
= EmitARCRetainNonBlock(Receiver
);
652 // In ARC, we sometimes want to "extend the lifetime"
653 // (i.e. retain+autorelease) of receivers of returns-inner-pointer
655 if (getLangOpts().ObjCAutoRefCount
&& method
&&
656 method
->hasAttr
<ObjCReturnsInnerPointerAttr
>() &&
657 shouldExtendReceiverForInnerPointerMessage(E
))
658 Receiver
= EmitARCRetainAutorelease(ReceiverType
, Receiver
);
660 QualType ResultType
= method
? method
->getReturnType() : E
->getType();
663 EmitCallArgs(Args
, method
, E
->arguments(), /*AC*/AbstractCallee(method
));
665 // For delegate init calls in ARC, do an unsafe store of null into
666 // self. This represents the call taking direct ownership of that
667 // value. We have to do this after emitting the other call
668 // arguments because they might also reference self, but we don't
669 // have to worry about any of them modifying self because that would
670 // be an undefined read and write of an object in unordered
672 if (isDelegateInit
) {
673 assert(getLangOpts().ObjCAutoRefCount
&&
674 "delegate init calls should only be marked in ARC");
676 // Do an unsafe store of null into self.
678 GetAddrOfLocalVar(cast
<ObjCMethodDecl
>(CurCodeDecl
)->getSelfDecl());
679 Builder
.CreateStore(getNullForVariable(selfAddr
), selfAddr
);
683 if (isSuperMessage
) {
684 // super is only valid in an Objective-C method
685 const ObjCMethodDecl
*OMD
= cast
<ObjCMethodDecl
>(CurFuncDecl
);
686 bool isCategoryImpl
= isa
<ObjCCategoryImplDecl
>(OMD
->getDeclContext());
687 result
= Runtime
.GenerateMessageSendSuper(*this, Return
, ResultType
,
689 OMD
->getClassInterface(),
696 // Call runtime methods directly if we can.
697 result
= Runtime
.GeneratePossiblySpecializedMessageSend(
698 *this, Return
, ResultType
, E
->getSelector(), Receiver
, Args
, OID
,
699 method
, isClassMessage
);
702 // For delegate init calls in ARC, implicitly store the result of
703 // the call back into self. This takes ownership of the value.
704 if (isDelegateInit
) {
706 GetAddrOfLocalVar(cast
<ObjCMethodDecl
>(CurCodeDecl
)->getSelfDecl());
707 llvm::Value
*newSelf
= result
.getScalarVal();
709 // The delegate return type isn't necessarily a matching type; in
710 // fact, it's quite likely to be 'id'.
711 llvm::Type
*selfTy
= selfAddr
.getElementType();
712 newSelf
= Builder
.CreateBitCast(newSelf
, selfTy
);
714 Builder
.CreateStore(newSelf
, selfAddr
);
717 return AdjustObjCObjectType(*this, E
->getType(), result
);
721 struct FinishARCDealloc final
: EHScopeStack::Cleanup
{
722 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
723 const ObjCMethodDecl
*method
= cast
<ObjCMethodDecl
>(CGF
.CurCodeDecl
);
725 const ObjCImplDecl
*impl
= cast
<ObjCImplDecl
>(method
->getDeclContext());
726 const ObjCInterfaceDecl
*iface
= impl
->getClassInterface();
727 if (!iface
->getSuperClass()) return;
729 bool isCategory
= isa
<ObjCCategoryImplDecl
>(impl
);
731 // Call [super dealloc] if we have a superclass.
732 llvm::Value
*self
= CGF
.LoadObjCSelf();
735 CGF
.CGM
.getObjCRuntime().GenerateMessageSendSuper(CGF
, ReturnValueSlot(),
736 CGF
.getContext().VoidTy
,
737 method
->getSelector(),
741 /*is class msg*/ false,
748 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
749 /// the LLVM function and sets the other context used by
751 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl
*OMD
,
752 const ObjCContainerDecl
*CD
) {
753 SourceLocation StartLoc
= OMD
->getBeginLoc();
754 FunctionArgList args
;
755 // Check if we should generate debug info for this method.
756 if (OMD
->hasAttr
<NoDebugAttr
>())
757 DebugInfo
= nullptr; // disable debug info indefinitely for this function
759 llvm::Function
*Fn
= CGM
.getObjCRuntime().GenerateMethod(OMD
, CD
);
761 const CGFunctionInfo
&FI
= CGM
.getTypes().arrangeObjCMethodDeclaration(OMD
);
762 if (OMD
->isDirectMethod()) {
763 Fn
->setVisibility(llvm::Function::HiddenVisibility
);
764 CGM
.SetLLVMFunctionAttributes(OMD
, FI
, Fn
, /*IsThunk=*/false);
765 CGM
.SetLLVMFunctionAttributesForDefinition(OMD
, Fn
);
767 CGM
.SetInternalFunctionAttributes(OMD
, Fn
, FI
);
770 args
.push_back(OMD
->getSelfDecl());
771 args
.push_back(OMD
->getCmdDecl());
773 args
.append(OMD
->param_begin(), OMD
->param_end());
776 CurEHLocation
= OMD
->getEndLoc();
778 StartFunction(OMD
, OMD
->getReturnType(), Fn
, FI
, args
,
779 OMD
->getLocation(), StartLoc
);
781 if (OMD
->isDirectMethod()) {
782 // This function is a direct call, it has to implement a nil check
785 // TODO: possibly have several entry points to elide the check
786 CGM
.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn
, OMD
, CD
);
789 // In ARC, certain methods get an extra cleanup.
790 if (CGM
.getLangOpts().ObjCAutoRefCount
&&
791 OMD
->isInstanceMethod() &&
792 OMD
->getSelector().isUnarySelector()) {
793 const IdentifierInfo
*ident
=
794 OMD
->getSelector().getIdentifierInfoForSlot(0);
795 if (ident
->isStr("dealloc"))
796 EHStack
.pushCleanup
<FinishARCDealloc
>(getARCCleanupKind());
800 static llvm::Value
*emitARCRetainLoadOfScalar(CodeGenFunction
&CGF
,
801 LValue lvalue
, QualType type
);
803 /// Generate an Objective-C method. An Objective-C method is a C function with
804 /// its pointer, name, and types registered in the class structure.
805 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl
*OMD
) {
806 StartObjCMethod(OMD
, OMD
->getClassInterface());
807 PGO
.assignRegionCounters(GlobalDecl(OMD
), CurFn
);
808 assert(isa
<CompoundStmt
>(OMD
->getBody()));
809 incrementProfileCounter(OMD
->getBody());
810 EmitCompoundStmtWithoutScope(*cast
<CompoundStmt
>(OMD
->getBody()));
811 FinishFunction(OMD
->getBodyRBrace());
814 /// emitStructGetterCall - Call the runtime function to load a property
815 /// into the return value slot.
816 static void emitStructGetterCall(CodeGenFunction
&CGF
, ObjCIvarDecl
*ivar
,
817 bool isAtomic
, bool hasStrong
) {
818 ASTContext
&Context
= CGF
.getContext();
821 CGF
.EmitLValueForIvar(CGF
.TypeOfSelfObject(), CGF
.LoadObjCSelf(), ivar
, 0)
824 // objc_copyStruct (ReturnValue, &structIvar,
825 // sizeof (Type of Ivar), isAtomic, false);
829 CGF
.Builder
.CreateBitCast(CGF
.ReturnValue
.getPointer(), CGF
.VoidPtrTy
);
830 args
.add(RValue::get(dest
), Context
.VoidPtrTy
);
832 src
= CGF
.Builder
.CreateBitCast(src
, CGF
.VoidPtrTy
);
833 args
.add(RValue::get(src
), Context
.VoidPtrTy
);
835 CharUnits size
= CGF
.getContext().getTypeSizeInChars(ivar
->getType());
836 args
.add(RValue::get(CGF
.CGM
.getSize(size
)), Context
.getSizeType());
837 args
.add(RValue::get(CGF
.Builder
.getInt1(isAtomic
)), Context
.BoolTy
);
838 args
.add(RValue::get(CGF
.Builder
.getInt1(hasStrong
)), Context
.BoolTy
);
840 llvm::FunctionCallee fn
= CGF
.CGM
.getObjCRuntime().GetGetStructFunction();
841 CGCallee callee
= CGCallee::forDirect(fn
);
842 CGF
.EmitCall(CGF
.getTypes().arrangeBuiltinFunctionCall(Context
.VoidTy
, args
),
843 callee
, ReturnValueSlot(), args
);
846 /// Determine whether the given architecture supports unaligned atomic
847 /// accesses. They don't have to be fast, just faster than a function
848 /// call and a mutex.
849 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch
) {
850 // FIXME: Allow unaligned atomic load/store on x86. (It is not
851 // currently supported by the backend.)
855 /// Return the maximum size that permits atomic accesses for the given
857 static CharUnits
getMaxAtomicAccessSize(CodeGenModule
&CGM
,
858 llvm::Triple::ArchType arch
) {
859 // ARM has 8-byte atomic accesses, but it's not clear whether we
860 // want to rely on them here.
862 // In the default case, just assume that any size up to a pointer is
863 // fine given adequate alignment.
864 return CharUnits::fromQuantity(CGM
.PointerSizeInBytes
);
868 class PropertyImplStrategy
{
871 /// The 'native' strategy is to use the architecture's provided
872 /// reads and writes.
875 /// Use objc_setProperty and objc_getProperty.
878 /// Use objc_setProperty for the setter, but use expression
879 /// evaluation for the getter.
880 SetPropertyAndExpressionGet
,
882 /// Use objc_copyStruct.
885 /// The 'expression' strategy is to emit normal assignment or
886 /// lvalue-to-rvalue expressions.
890 StrategyKind
getKind() const { return StrategyKind(Kind
); }
892 bool hasStrongMember() const { return HasStrong
; }
893 bool isAtomic() const { return IsAtomic
; }
894 bool isCopy() const { return IsCopy
; }
896 CharUnits
getIvarSize() const { return IvarSize
; }
897 CharUnits
getIvarAlignment() const { return IvarAlignment
; }
899 PropertyImplStrategy(CodeGenModule
&CGM
,
900 const ObjCPropertyImplDecl
*propImpl
);
904 unsigned IsAtomic
: 1;
906 unsigned HasStrong
: 1;
909 CharUnits IvarAlignment
;
913 /// Pick an implementation strategy for the given property synthesis.
914 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule
&CGM
,
915 const ObjCPropertyImplDecl
*propImpl
) {
916 const ObjCPropertyDecl
*prop
= propImpl
->getPropertyDecl();
917 ObjCPropertyDecl::SetterKind setterKind
= prop
->getSetterKind();
919 IsCopy
= (setterKind
== ObjCPropertyDecl::Copy
);
920 IsAtomic
= prop
->isAtomic();
921 HasStrong
= false; // doesn't matter here.
923 // Evaluate the ivar's size and alignment.
924 ObjCIvarDecl
*ivar
= propImpl
->getPropertyIvarDecl();
925 QualType ivarType
= ivar
->getType();
926 auto TInfo
= CGM
.getContext().getTypeInfoInChars(ivarType
);
927 IvarSize
= TInfo
.Width
;
928 IvarAlignment
= TInfo
.Align
;
930 // If we have a copy property, we always have to use setProperty.
931 // If the property is atomic we need to use getProperty, but in
932 // the nonatomic case we can just use expression.
934 Kind
= IsAtomic
? GetSetProperty
: SetPropertyAndExpressionGet
;
939 if (setterKind
== ObjCPropertyDecl::Retain
) {
940 // In GC-only, there's nothing special that needs to be done.
941 if (CGM
.getLangOpts().getGC() == LangOptions::GCOnly
) {
944 // In ARC, if the property is non-atomic, use expression emission,
945 // which translates to objc_storeStrong. This isn't required, but
946 // it's slightly nicer.
947 } else if (CGM
.getLangOpts().ObjCAutoRefCount
&& !IsAtomic
) {
948 // Using standard expression emission for the setter is only
949 // acceptable if the ivar is __strong, which won't be true if
950 // the property is annotated with __attribute__((NSObject)).
951 // TODO: falling all the way back to objc_setProperty here is
952 // just laziness, though; we could still use objc_storeStrong
953 // if we hacked it right.
954 if (ivarType
.getObjCLifetime() == Qualifiers::OCL_Strong
)
957 Kind
= SetPropertyAndExpressionGet
;
960 // Otherwise, we need to at least use setProperty. However, if
961 // the property isn't atomic, we can use normal expression
962 // emission for the getter.
963 } else if (!IsAtomic
) {
964 Kind
= SetPropertyAndExpressionGet
;
967 // Otherwise, we have to use both setProperty and getProperty.
969 Kind
= GetSetProperty
;
974 // If we're not atomic, just use expression accesses.
980 // Properties on bitfield ivars need to be emitted using expression
981 // accesses even if they're nominally atomic.
982 if (ivar
->isBitField()) {
987 // GC-qualified or ARC-qualified ivars need to be emitted as
988 // expressions. This actually works out to being atomic anyway,
989 // except for ARC __strong, but that should trigger the above code.
990 if (ivarType
.hasNonTrivialObjCLifetime() ||
991 (CGM
.getLangOpts().getGC() &&
992 CGM
.getContext().getObjCGCAttrKind(ivarType
))) {
997 // Compute whether the ivar has strong members.
998 if (CGM
.getLangOpts().getGC())
999 if (const RecordType
*recordType
= ivarType
->getAs
<RecordType
>())
1000 HasStrong
= recordType
->getDecl()->hasObjectMember();
1002 // We can never access structs with object members with a native
1003 // access, because we need to use write barriers. This is what
1004 // objc_copyStruct is for.
1010 // Otherwise, this is target-dependent and based on the size and
1011 // alignment of the ivar.
1013 // If the size of the ivar is not a power of two, give up. We don't
1014 // want to get into the business of doing compare-and-swaps.
1015 if (!IvarSize
.isPowerOfTwo()) {
1020 llvm::Triple::ArchType arch
=
1021 CGM
.getTarget().getTriple().getArch();
1023 // Most architectures require memory to fit within a single cache
1024 // line, so the alignment has to be at least the size of the access.
1025 // Otherwise we have to grab a lock.
1026 if (IvarAlignment
< IvarSize
&& !hasUnalignedAtomics(arch
)) {
1031 // If the ivar's size exceeds the architecture's maximum atomic
1032 // access size, we have to use CopyStruct.
1033 if (IvarSize
> getMaxAtomicAccessSize(CGM
, arch
)) {
1038 // Otherwise, we can use native loads and stores.
1042 /// Generate an Objective-C property getter function.
1044 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1045 /// is illegal within a category.
1046 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl
*IMP
,
1047 const ObjCPropertyImplDecl
*PID
) {
1048 llvm::Constant
*AtomicHelperFn
=
1049 CodeGenFunction(CGM
).GenerateObjCAtomicGetterCopyHelperFunction(PID
);
1050 ObjCMethodDecl
*OMD
= PID
->getGetterMethodDecl();
1051 assert(OMD
&& "Invalid call to generate getter (empty method)");
1052 StartObjCMethod(OMD
, IMP
->getClassInterface());
1054 generateObjCGetterBody(IMP
, PID
, OMD
, AtomicHelperFn
);
1056 FinishFunction(OMD
->getEndLoc());
1059 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl
*propImpl
) {
1060 const Expr
*getter
= propImpl
->getGetterCXXConstructor();
1061 if (!getter
) return true;
1063 // Sema only makes only of these when the ivar has a C++ class type,
1064 // so the form is pretty constrained.
1066 // If the property has a reference type, we might just be binding a
1067 // reference, in which case the result will be a gl-value. We should
1068 // treat this as a non-trivial operation.
1069 if (getter
->isGLValue())
1072 // If we selected a trivial copy-constructor, we're okay.
1073 if (const CXXConstructExpr
*construct
= dyn_cast
<CXXConstructExpr
>(getter
))
1074 return (construct
->getConstructor()->isTrivial());
1076 // The constructor might require cleanups (in which case it's never
1078 assert(isa
<ExprWithCleanups
>(getter
));
1082 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
1083 /// copy the ivar into the resturn slot.
1084 static void emitCPPObjectAtomicGetterCall(CodeGenFunction
&CGF
,
1085 llvm::Value
*returnAddr
,
1087 llvm::Constant
*AtomicHelperFn
) {
1088 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
1092 // The 1st argument is the return Slot.
1093 args
.add(RValue::get(returnAddr
), CGF
.getContext().VoidPtrTy
);
1095 // The 2nd argument is the address of the ivar.
1096 llvm::Value
*ivarAddr
=
1097 CGF
.EmitLValueForIvar(CGF
.TypeOfSelfObject(), CGF
.LoadObjCSelf(), ivar
, 0)
1099 ivarAddr
= CGF
.Builder
.CreateBitCast(ivarAddr
, CGF
.Int8PtrTy
);
1100 args
.add(RValue::get(ivarAddr
), CGF
.getContext().VoidPtrTy
);
1102 // Third argument is the helper function.
1103 args
.add(RValue::get(AtomicHelperFn
), CGF
.getContext().VoidPtrTy
);
1105 llvm::FunctionCallee copyCppAtomicObjectFn
=
1106 CGF
.CGM
.getObjCRuntime().GetCppAtomicObjectGetFunction();
1107 CGCallee callee
= CGCallee::forDirect(copyCppAtomicObjectFn
);
1109 CGF
.getTypes().arrangeBuiltinFunctionCall(CGF
.getContext().VoidTy
, args
),
1110 callee
, ReturnValueSlot(), args
);
1114 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl
*classImpl
,
1115 const ObjCPropertyImplDecl
*propImpl
,
1116 const ObjCMethodDecl
*GetterMethodDecl
,
1117 llvm::Constant
*AtomicHelperFn
) {
1118 // If there's a non-trivial 'get' expression, we just have to emit that.
1119 if (!hasTrivialGetExpr(propImpl
)) {
1120 if (!AtomicHelperFn
) {
1121 auto *ret
= ReturnStmt::Create(getContext(), SourceLocation(),
1122 propImpl
->getGetterCXXConstructor(),
1123 /* NRVOCandidate=*/nullptr);
1124 EmitReturnStmt(*ret
);
1127 ObjCIvarDecl
*ivar
= propImpl
->getPropertyIvarDecl();
1128 emitCPPObjectAtomicGetterCall(*this, ReturnValue
.getPointer(),
1129 ivar
, AtomicHelperFn
);
1134 const ObjCPropertyDecl
*prop
= propImpl
->getPropertyDecl();
1135 QualType propType
= prop
->getType();
1136 ObjCMethodDecl
*getterMethod
= propImpl
->getGetterMethodDecl();
1138 ObjCIvarDecl
*ivar
= propImpl
->getPropertyIvarDecl();
1140 // Pick an implementation strategy.
1141 PropertyImplStrategy
strategy(CGM
, propImpl
);
1142 switch (strategy
.getKind()) {
1143 case PropertyImplStrategy::Native
: {
1144 // We don't need to do anything for a zero-size struct.
1145 if (strategy
.getIvarSize().isZero())
1148 LValue LV
= EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar
, 0);
1150 // Currently, all atomic accesses have to be through integer
1151 // types, so there's no point in trying to pick a prettier type.
1152 uint64_t ivarSize
= getContext().toBits(strategy
.getIvarSize());
1153 llvm::Type
*bitcastType
= llvm::Type::getIntNTy(getLLVMContext(), ivarSize
);
1155 // Perform an atomic load. This does not impose ordering constraints.
1156 Address ivarAddr
= LV
.getAddress(*this);
1157 ivarAddr
= Builder
.CreateElementBitCast(ivarAddr
, bitcastType
);
1158 llvm::LoadInst
*load
= Builder
.CreateLoad(ivarAddr
, "load");
1159 load
->setAtomic(llvm::AtomicOrdering::Unordered
);
1161 // Store that value into the return address. Doing this with a
1162 // bitcast is likely to produce some pretty ugly IR, but it's not
1163 // the *most* terrible thing in the world.
1164 llvm::Type
*retTy
= ConvertType(getterMethod
->getReturnType());
1165 uint64_t retTySize
= CGM
.getDataLayout().getTypeSizeInBits(retTy
);
1166 llvm::Value
*ivarVal
= load
;
1167 if (ivarSize
> retTySize
) {
1168 bitcastType
= llvm::Type::getIntNTy(getLLVMContext(), retTySize
);
1169 ivarVal
= Builder
.CreateTrunc(load
, bitcastType
);
1171 Builder
.CreateStore(ivarVal
,
1172 Builder
.CreateElementBitCast(ReturnValue
, bitcastType
));
1174 // Make sure we don't do an autorelease.
1175 AutoreleaseResult
= false;
1179 case PropertyImplStrategy::GetSetProperty
: {
1180 llvm::FunctionCallee getPropertyFn
=
1181 CGM
.getObjCRuntime().GetPropertyGetFunction();
1182 if (!getPropertyFn
) {
1183 CGM
.ErrorUnsupported(propImpl
, "Obj-C getter requiring atomic copy");
1186 CGCallee callee
= CGCallee::forDirect(getPropertyFn
);
1188 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1189 // FIXME: Can't this be simpler? This might even be worse than the
1190 // corresponding gcc code.
1192 Builder
.CreateLoad(GetAddrOfLocalVar(getterMethod
->getCmdDecl()), "cmd");
1193 llvm::Value
*self
= Builder
.CreateBitCast(LoadObjCSelf(), VoidPtrTy
);
1194 llvm::Value
*ivarOffset
=
1195 EmitIvarOffset(classImpl
->getClassInterface(), ivar
);
1198 args
.add(RValue::get(self
), getContext().getObjCIdType());
1199 args
.add(RValue::get(cmd
), getContext().getObjCSelType());
1200 args
.add(RValue::get(ivarOffset
), getContext().getPointerDiffType());
1201 args
.add(RValue::get(Builder
.getInt1(strategy
.isAtomic())),
1202 getContext().BoolTy
);
1204 // FIXME: We shouldn't need to get the function info here, the
1205 // runtime already should have computed it to build the function.
1206 llvm::CallBase
*CallInstruction
;
1207 RValue RV
= EmitCall(getTypes().arrangeBuiltinFunctionCall(
1208 getContext().getObjCIdType(), args
),
1209 callee
, ReturnValueSlot(), args
, &CallInstruction
);
1210 if (llvm::CallInst
*call
= dyn_cast
<llvm::CallInst
>(CallInstruction
))
1211 call
->setTailCall();
1213 // We need to fix the type here. Ivars with copy & retain are
1214 // always objects so we don't need to worry about complex or
1216 RV
= RValue::get(Builder
.CreateBitCast(
1218 getTypes().ConvertType(getterMethod
->getReturnType())));
1220 EmitReturnOfRValue(RV
, propType
);
1222 // objc_getProperty does an autorelease, so we should suppress ours.
1223 AutoreleaseResult
= false;
1228 case PropertyImplStrategy::CopyStruct
:
1229 emitStructGetterCall(*this, ivar
, strategy
.isAtomic(),
1230 strategy
.hasStrongMember());
1233 case PropertyImplStrategy::Expression
:
1234 case PropertyImplStrategy::SetPropertyAndExpressionGet
: {
1235 LValue LV
= EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar
, 0);
1237 QualType ivarType
= ivar
->getType();
1238 switch (getEvaluationKind(ivarType
)) {
1240 ComplexPairTy pair
= EmitLoadOfComplex(LV
, SourceLocation());
1241 EmitStoreOfComplex(pair
, MakeAddrLValue(ReturnValue
, ivarType
),
1245 case TEK_Aggregate
: {
1246 // The return value slot is guaranteed to not be aliased, but
1247 // that's not necessarily the same as "on the stack", so
1248 // we still potentially need objc_memmove_collectable.
1249 EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue
, ivarType
),
1250 /* Src= */ LV
, ivarType
, getOverlapForReturnValue());
1255 if (propType
->isReferenceType()) {
1256 value
= LV
.getAddress(*this).getPointer();
1258 // We want to load and autoreleaseReturnValue ARC __weak ivars.
1259 if (LV
.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak
) {
1260 if (getLangOpts().ObjCAutoRefCount
) {
1261 value
= emitARCRetainLoadOfScalar(*this, LV
, ivarType
);
1263 value
= EmitARCLoadWeak(LV
.getAddress(*this));
1266 // Otherwise we want to do a simple load, suppressing the
1267 // final autorelease.
1269 value
= EmitLoadOfLValue(LV
, SourceLocation()).getScalarVal();
1270 AutoreleaseResult
= false;
1273 value
= Builder
.CreateBitCast(
1274 value
, ConvertType(GetterMethodDecl
->getReturnType()));
1277 EmitReturnOfRValue(RValue::get(value
), propType
);
1281 llvm_unreachable("bad evaluation kind");
1285 llvm_unreachable("bad @property implementation strategy!");
1288 /// emitStructSetterCall - Call the runtime function to store the value
1289 /// from the first formal parameter into the given ivar.
1290 static void emitStructSetterCall(CodeGenFunction
&CGF
, ObjCMethodDecl
*OMD
,
1291 ObjCIvarDecl
*ivar
) {
1292 // objc_copyStruct (&structIvar, &Arg,
1293 // sizeof (struct something), true, false);
1296 // The first argument is the address of the ivar.
1297 llvm::Value
*ivarAddr
=
1298 CGF
.EmitLValueForIvar(CGF
.TypeOfSelfObject(), CGF
.LoadObjCSelf(), ivar
, 0)
1300 ivarAddr
= CGF
.Builder
.CreateBitCast(ivarAddr
, CGF
.Int8PtrTy
);
1301 args
.add(RValue::get(ivarAddr
), CGF
.getContext().VoidPtrTy
);
1303 // The second argument is the address of the parameter variable.
1304 ParmVarDecl
*argVar
= *OMD
->param_begin();
1305 DeclRefExpr
argRef(CGF
.getContext(), argVar
, false,
1306 argVar
->getType().getNonReferenceType(), VK_LValue
,
1308 llvm::Value
*argAddr
= CGF
.EmitLValue(&argRef
).getPointer(CGF
);
1309 argAddr
= CGF
.Builder
.CreateBitCast(argAddr
, CGF
.Int8PtrTy
);
1310 args
.add(RValue::get(argAddr
), CGF
.getContext().VoidPtrTy
);
1312 // The third argument is the sizeof the type.
1314 CGF
.CGM
.getSize(CGF
.getContext().getTypeSizeInChars(ivar
->getType()));
1315 args
.add(RValue::get(size
), CGF
.getContext().getSizeType());
1317 // The fourth argument is the 'isAtomic' flag.
1318 args
.add(RValue::get(CGF
.Builder
.getTrue()), CGF
.getContext().BoolTy
);
1320 // The fifth argument is the 'hasStrong' flag.
1321 // FIXME: should this really always be false?
1322 args
.add(RValue::get(CGF
.Builder
.getFalse()), CGF
.getContext().BoolTy
);
1324 llvm::FunctionCallee fn
= CGF
.CGM
.getObjCRuntime().GetSetStructFunction();
1325 CGCallee callee
= CGCallee::forDirect(fn
);
1327 CGF
.getTypes().arrangeBuiltinFunctionCall(CGF
.getContext().VoidTy
, args
),
1328 callee
, ReturnValueSlot(), args
);
1331 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1332 /// the value from the first formal parameter into the given ivar, using
1333 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1334 static void emitCPPObjectAtomicSetterCall(CodeGenFunction
&CGF
,
1335 ObjCMethodDecl
*OMD
,
1337 llvm::Constant
*AtomicHelperFn
) {
1338 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1342 // The first argument is the address of the ivar.
1343 llvm::Value
*ivarAddr
=
1344 CGF
.EmitLValueForIvar(CGF
.TypeOfSelfObject(), CGF
.LoadObjCSelf(), ivar
, 0)
1346 ivarAddr
= CGF
.Builder
.CreateBitCast(ivarAddr
, CGF
.Int8PtrTy
);
1347 args
.add(RValue::get(ivarAddr
), CGF
.getContext().VoidPtrTy
);
1349 // The second argument is the address of the parameter variable.
1350 ParmVarDecl
*argVar
= *OMD
->param_begin();
1351 DeclRefExpr
argRef(CGF
.getContext(), argVar
, false,
1352 argVar
->getType().getNonReferenceType(), VK_LValue
,
1354 llvm::Value
*argAddr
= CGF
.EmitLValue(&argRef
).getPointer(CGF
);
1355 argAddr
= CGF
.Builder
.CreateBitCast(argAddr
, CGF
.Int8PtrTy
);
1356 args
.add(RValue::get(argAddr
), CGF
.getContext().VoidPtrTy
);
1358 // Third argument is the helper function.
1359 args
.add(RValue::get(AtomicHelperFn
), CGF
.getContext().VoidPtrTy
);
1361 llvm::FunctionCallee fn
=
1362 CGF
.CGM
.getObjCRuntime().GetCppAtomicObjectSetFunction();
1363 CGCallee callee
= CGCallee::forDirect(fn
);
1365 CGF
.getTypes().arrangeBuiltinFunctionCall(CGF
.getContext().VoidTy
, args
),
1366 callee
, ReturnValueSlot(), args
);
1370 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl
*PID
) {
1371 Expr
*setter
= PID
->getSetterCXXAssignment();
1372 if (!setter
) return true;
1374 // Sema only makes only of these when the ivar has a C++ class type,
1375 // so the form is pretty constrained.
1377 // An operator call is trivial if the function it calls is trivial.
1378 // This also implies that there's nothing non-trivial going on with
1379 // the arguments, because operator= can only be trivial if it's a
1380 // synthesized assignment operator and therefore both parameters are
1382 if (CallExpr
*call
= dyn_cast
<CallExpr
>(setter
)) {
1383 if (const FunctionDecl
*callee
1384 = dyn_cast_or_null
<FunctionDecl
>(call
->getCalleeDecl()))
1385 if (callee
->isTrivial())
1390 assert(isa
<ExprWithCleanups
>(setter
));
1394 static bool UseOptimizedSetter(CodeGenModule
&CGM
) {
1395 if (CGM
.getLangOpts().getGC() != LangOptions::NonGC
)
1397 return CGM
.getLangOpts().ObjCRuntime
.hasOptimizedSetter();
1401 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl
*classImpl
,
1402 const ObjCPropertyImplDecl
*propImpl
,
1403 llvm::Constant
*AtomicHelperFn
) {
1404 ObjCIvarDecl
*ivar
= propImpl
->getPropertyIvarDecl();
1405 ObjCMethodDecl
*setterMethod
= propImpl
->getSetterMethodDecl();
1407 // Just use the setter expression if Sema gave us one and it's
1409 if (!hasTrivialSetExpr(propImpl
)) {
1410 if (!AtomicHelperFn
)
1411 // If non-atomic, assignment is called directly.
1412 EmitStmt(propImpl
->getSetterCXXAssignment());
1414 // If atomic, assignment is called via a locking api.
1415 emitCPPObjectAtomicSetterCall(*this, setterMethod
, ivar
,
1420 PropertyImplStrategy
strategy(CGM
, propImpl
);
1421 switch (strategy
.getKind()) {
1422 case PropertyImplStrategy::Native
: {
1423 // We don't need to do anything for a zero-size struct.
1424 if (strategy
.getIvarSize().isZero())
1427 Address argAddr
= GetAddrOfLocalVar(*setterMethod
->param_begin());
1430 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar
, /*quals*/ 0);
1431 Address ivarAddr
= ivarLValue
.getAddress(*this);
1433 // Currently, all atomic accesses have to be through integer
1434 // types, so there's no point in trying to pick a prettier type.
1435 llvm::Type
*bitcastType
=
1436 llvm::Type::getIntNTy(getLLVMContext(),
1437 getContext().toBits(strategy
.getIvarSize()));
1439 // Cast both arguments to the chosen operation type.
1440 argAddr
= Builder
.CreateElementBitCast(argAddr
, bitcastType
);
1441 ivarAddr
= Builder
.CreateElementBitCast(ivarAddr
, bitcastType
);
1443 // This bitcast load is likely to cause some nasty IR.
1444 llvm::Value
*load
= Builder
.CreateLoad(argAddr
);
1446 // Perform an atomic store. There are no memory ordering requirements.
1447 llvm::StoreInst
*store
= Builder
.CreateStore(load
, ivarAddr
);
1448 store
->setAtomic(llvm::AtomicOrdering::Unordered
);
1452 case PropertyImplStrategy::GetSetProperty
:
1453 case PropertyImplStrategy::SetPropertyAndExpressionGet
: {
1455 llvm::FunctionCallee setOptimizedPropertyFn
= nullptr;
1456 llvm::FunctionCallee setPropertyFn
= nullptr;
1457 if (UseOptimizedSetter(CGM
)) {
1458 // 10.8 and iOS 6.0 code and GC is off
1459 setOptimizedPropertyFn
=
1460 CGM
.getObjCRuntime().GetOptimizedPropertySetFunction(
1461 strategy
.isAtomic(), strategy
.isCopy());
1462 if (!setOptimizedPropertyFn
) {
1463 CGM
.ErrorUnsupported(propImpl
, "Obj-C optimized setter - NYI");
1468 setPropertyFn
= CGM
.getObjCRuntime().GetPropertySetFunction();
1469 if (!setPropertyFn
) {
1470 CGM
.ErrorUnsupported(propImpl
, "Obj-C setter requiring atomic copy");
1475 // Emit objc_setProperty((id) self, _cmd, offset, arg,
1476 // <is-atomic>, <is-copy>).
1478 Builder
.CreateLoad(GetAddrOfLocalVar(setterMethod
->getCmdDecl()));
1480 Builder
.CreateBitCast(LoadObjCSelf(), VoidPtrTy
);
1481 llvm::Value
*ivarOffset
=
1482 EmitIvarOffset(classImpl
->getClassInterface(), ivar
);
1483 Address argAddr
= GetAddrOfLocalVar(*setterMethod
->param_begin());
1484 llvm::Value
*arg
= Builder
.CreateLoad(argAddr
, "arg");
1485 arg
= Builder
.CreateBitCast(arg
, VoidPtrTy
);
1488 args
.add(RValue::get(self
), getContext().getObjCIdType());
1489 args
.add(RValue::get(cmd
), getContext().getObjCSelType());
1490 if (setOptimizedPropertyFn
) {
1491 args
.add(RValue::get(arg
), getContext().getObjCIdType());
1492 args
.add(RValue::get(ivarOffset
), getContext().getPointerDiffType());
1493 CGCallee callee
= CGCallee::forDirect(setOptimizedPropertyFn
);
1494 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy
, args
),
1495 callee
, ReturnValueSlot(), args
);
1497 args
.add(RValue::get(ivarOffset
), getContext().getPointerDiffType());
1498 args
.add(RValue::get(arg
), getContext().getObjCIdType());
1499 args
.add(RValue::get(Builder
.getInt1(strategy
.isAtomic())),
1500 getContext().BoolTy
);
1501 args
.add(RValue::get(Builder
.getInt1(strategy
.isCopy())),
1502 getContext().BoolTy
);
1503 // FIXME: We shouldn't need to get the function info here, the runtime
1504 // already should have computed it to build the function.
1505 CGCallee callee
= CGCallee::forDirect(setPropertyFn
);
1506 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy
, args
),
1507 callee
, ReturnValueSlot(), args
);
1513 case PropertyImplStrategy::CopyStruct
:
1514 emitStructSetterCall(*this, setterMethod
, ivar
);
1517 case PropertyImplStrategy::Expression
:
1521 // Otherwise, fake up some ASTs and emit a normal assignment.
1522 ValueDecl
*selfDecl
= setterMethod
->getSelfDecl();
1523 DeclRefExpr
self(getContext(), selfDecl
, false, selfDecl
->getType(),
1524 VK_LValue
, SourceLocation());
1525 ImplicitCastExpr
selfLoad(ImplicitCastExpr::OnStack
, selfDecl
->getType(),
1526 CK_LValueToRValue
, &self
, VK_PRValue
,
1527 FPOptionsOverride());
1528 ObjCIvarRefExpr
ivarRef(ivar
, ivar
->getType().getNonReferenceType(),
1529 SourceLocation(), SourceLocation(),
1530 &selfLoad
, true, true);
1532 ParmVarDecl
*argDecl
= *setterMethod
->param_begin();
1533 QualType argType
= argDecl
->getType().getNonReferenceType();
1534 DeclRefExpr
arg(getContext(), argDecl
, false, argType
, VK_LValue
,
1536 ImplicitCastExpr
argLoad(ImplicitCastExpr::OnStack
,
1537 argType
.getUnqualifiedType(), CK_LValueToRValue
,
1538 &arg
, VK_PRValue
, FPOptionsOverride());
1540 // The property type can differ from the ivar type in some situations with
1541 // Objective-C pointer types, we can always bit cast the RHS in these cases.
1542 // The following absurdity is just to ensure well-formed IR.
1543 CastKind argCK
= CK_NoOp
;
1544 if (ivarRef
.getType()->isObjCObjectPointerType()) {
1545 if (argLoad
.getType()->isObjCObjectPointerType())
1547 else if (argLoad
.getType()->isBlockPointerType())
1548 argCK
= CK_BlockPointerToObjCPointerCast
;
1550 argCK
= CK_CPointerToObjCPointerCast
;
1551 } else if (ivarRef
.getType()->isBlockPointerType()) {
1552 if (argLoad
.getType()->isBlockPointerType())
1555 argCK
= CK_AnyPointerToBlockPointerCast
;
1556 } else if (ivarRef
.getType()->isPointerType()) {
1558 } else if (argLoad
.getType()->isAtomicType() &&
1559 !ivarRef
.getType()->isAtomicType()) {
1560 argCK
= CK_AtomicToNonAtomic
;
1561 } else if (!argLoad
.getType()->isAtomicType() &&
1562 ivarRef
.getType()->isAtomicType()) {
1563 argCK
= CK_NonAtomicToAtomic
;
1565 ImplicitCastExpr
argCast(ImplicitCastExpr::OnStack
, ivarRef
.getType(), argCK
,
1566 &argLoad
, VK_PRValue
, FPOptionsOverride());
1567 Expr
*finalArg
= &argLoad
;
1568 if (!getContext().hasSameUnqualifiedType(ivarRef
.getType(),
1570 finalArg
= &argCast
;
1572 BinaryOperator
*assign
= BinaryOperator::Create(
1573 getContext(), &ivarRef
, finalArg
, BO_Assign
, ivarRef
.getType(),
1574 VK_PRValue
, OK_Ordinary
, SourceLocation(), FPOptionsOverride());
1578 /// Generate an Objective-C property setter function.
1580 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1581 /// is illegal within a category.
1582 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl
*IMP
,
1583 const ObjCPropertyImplDecl
*PID
) {
1584 llvm::Constant
*AtomicHelperFn
=
1585 CodeGenFunction(CGM
).GenerateObjCAtomicSetterCopyHelperFunction(PID
);
1586 ObjCMethodDecl
*OMD
= PID
->getSetterMethodDecl();
1587 assert(OMD
&& "Invalid call to generate setter (empty method)");
1588 StartObjCMethod(OMD
, IMP
->getClassInterface());
1590 generateObjCSetterBody(IMP
, PID
, AtomicHelperFn
);
1592 FinishFunction(OMD
->getEndLoc());
1596 struct DestroyIvar final
: EHScopeStack::Cleanup
{
1599 const ObjCIvarDecl
*ivar
;
1600 CodeGenFunction::Destroyer
*destroyer
;
1601 bool useEHCleanupForArray
;
1603 DestroyIvar(llvm::Value
*addr
, const ObjCIvarDecl
*ivar
,
1604 CodeGenFunction::Destroyer
*destroyer
,
1605 bool useEHCleanupForArray
)
1606 : addr(addr
), ivar(ivar
), destroyer(destroyer
),
1607 useEHCleanupForArray(useEHCleanupForArray
) {}
1609 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
1611 = CGF
.EmitLValueForIvar(CGF
.TypeOfSelfObject(), addr
, ivar
, /*CVR*/ 0);
1612 CGF
.emitDestroy(lvalue
.getAddress(CGF
), ivar
->getType(), destroyer
,
1613 flags
.isForNormalCleanup() && useEHCleanupForArray
);
1618 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1619 static void destroyARCStrongWithStore(CodeGenFunction
&CGF
,
1622 llvm::Value
*null
= getNullForVariable(addr
);
1623 CGF
.EmitARCStoreStrongCall(addr
, null
, /*ignored*/ true);
1626 static void emitCXXDestructMethod(CodeGenFunction
&CGF
,
1627 ObjCImplementationDecl
*impl
) {
1628 CodeGenFunction::RunCleanupsScope
scope(CGF
);
1630 llvm::Value
*self
= CGF
.LoadObjCSelf();
1632 const ObjCInterfaceDecl
*iface
= impl
->getClassInterface();
1633 for (const ObjCIvarDecl
*ivar
= iface
->all_declared_ivar_begin();
1634 ivar
; ivar
= ivar
->getNextIvar()) {
1635 QualType type
= ivar
->getType();
1637 // Check whether the ivar is a destructible type.
1638 QualType::DestructionKind dtorKind
= type
.isDestructedType();
1639 if (!dtorKind
) continue;
1641 CodeGenFunction::Destroyer
*destroyer
= nullptr;
1643 // Use a call to objc_storeStrong to destroy strong ivars, for the
1644 // general benefit of the tools.
1645 if (dtorKind
== QualType::DK_objc_strong_lifetime
) {
1646 destroyer
= destroyARCStrongWithStore
;
1648 // Otherwise use the default for the destruction kind.
1650 destroyer
= CGF
.getDestroyer(dtorKind
);
1653 CleanupKind cleanupKind
= CGF
.getCleanupKind(dtorKind
);
1655 CGF
.EHStack
.pushCleanup
<DestroyIvar
>(cleanupKind
, self
, ivar
, destroyer
,
1656 cleanupKind
& EHCleanup
);
1659 assert(scope
.requiresCleanups() && "nothing to do in .cxx_destruct?");
1662 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl
*IMP
,
1665 MD
->createImplicitParams(CGM
.getContext(), IMP
->getClassInterface());
1666 StartObjCMethod(MD
, IMP
->getClassInterface());
1668 // Emit .cxx_construct.
1670 // Suppress the final autorelease in ARC.
1671 AutoreleaseResult
= false;
1673 for (const auto *IvarInit
: IMP
->inits()) {
1674 FieldDecl
*Field
= IvarInit
->getAnyMember();
1675 ObjCIvarDecl
*Ivar
= cast
<ObjCIvarDecl
>(Field
);
1676 LValue LV
= EmitLValueForIvar(TypeOfSelfObject(),
1677 LoadObjCSelf(), Ivar
, 0);
1678 EmitAggExpr(IvarInit
->getInit(),
1679 AggValueSlot::forLValue(LV
, *this, AggValueSlot::IsDestructed
,
1680 AggValueSlot::DoesNotNeedGCBarriers
,
1681 AggValueSlot::IsNotAliased
,
1682 AggValueSlot::DoesNotOverlap
));
1684 // constructor returns 'self'.
1685 CodeGenTypes
&Types
= CGM
.getTypes();
1686 QualType
IdTy(CGM
.getContext().getObjCIdType());
1687 llvm::Value
*SelfAsId
=
1688 Builder
.CreateBitCast(LoadObjCSelf(), Types
.ConvertType(IdTy
));
1689 EmitReturnOfRValue(RValue::get(SelfAsId
), IdTy
);
1691 // Emit .cxx_destruct.
1693 emitCXXDestructMethod(*this, IMP
);
1698 llvm::Value
*CodeGenFunction::LoadObjCSelf() {
1699 VarDecl
*Self
= cast
<ObjCMethodDecl
>(CurFuncDecl
)->getSelfDecl();
1700 DeclRefExpr
DRE(getContext(), Self
,
1701 /*is enclosing local*/ (CurFuncDecl
!= CurCodeDecl
),
1702 Self
->getType(), VK_LValue
, SourceLocation());
1703 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE
), SourceLocation());
1706 QualType
CodeGenFunction::TypeOfSelfObject() {
1707 const ObjCMethodDecl
*OMD
= cast
<ObjCMethodDecl
>(CurFuncDecl
);
1708 ImplicitParamDecl
*selfDecl
= OMD
->getSelfDecl();
1709 const ObjCObjectPointerType
*PTy
= cast
<ObjCObjectPointerType
>(
1710 getContext().getCanonicalType(selfDecl
->getType()));
1711 return PTy
->getPointeeType();
1714 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt
&S
){
1715 llvm::FunctionCallee EnumerationMutationFnPtr
=
1716 CGM
.getObjCRuntime().EnumerationMutationFunction();
1717 if (!EnumerationMutationFnPtr
) {
1718 CGM
.ErrorUnsupported(&S
, "Obj-C fast enumeration for this runtime");
1721 CGCallee EnumerationMutationFn
=
1722 CGCallee::forDirect(EnumerationMutationFnPtr
);
1724 CGDebugInfo
*DI
= getDebugInfo();
1726 DI
->EmitLexicalBlockStart(Builder
, S
.getSourceRange().getBegin());
1728 RunCleanupsScope
ForScope(*this);
1730 // The local variable comes into scope immediately.
1731 AutoVarEmission variable
= AutoVarEmission::invalid();
1732 if (const DeclStmt
*SD
= dyn_cast
<DeclStmt
>(S
.getElement()))
1733 variable
= EmitAutoVarAlloca(*cast
<VarDecl
>(SD
->getSingleDecl()));
1735 JumpDest LoopEnd
= getJumpDestInCurrentScope("forcoll.end");
1737 // Fast enumeration state.
1738 QualType StateTy
= CGM
.getObjCFastEnumerationStateType();
1739 Address StatePtr
= CreateMemTemp(StateTy
, "state.ptr");
1740 EmitNullInitialization(StatePtr
, StateTy
);
1742 // Number of elements in the items array.
1743 static const unsigned NumItems
= 16;
1745 // Fetch the countByEnumeratingWithState:objects:count: selector.
1746 IdentifierInfo
*II
[] = {
1747 &CGM
.getContext().Idents
.get("countByEnumeratingWithState"),
1748 &CGM
.getContext().Idents
.get("objects"),
1749 &CGM
.getContext().Idents
.get("count")
1751 Selector FastEnumSel
=
1752 CGM
.getContext().Selectors
.getSelector(std::size(II
), &II
[0]);
1755 getContext().getConstantArrayType(getContext().getObjCIdType(),
1756 llvm::APInt(32, NumItems
), nullptr,
1757 ArrayType::Normal
, 0);
1758 Address ItemsPtr
= CreateMemTemp(ItemsTy
, "items.ptr");
1760 // Emit the collection pointer. In ARC, we do a retain.
1761 llvm::Value
*Collection
;
1762 if (getLangOpts().ObjCAutoRefCount
) {
1763 Collection
= EmitARCRetainScalarExpr(S
.getCollection());
1765 // Enter a cleanup to do the release.
1766 EmitObjCConsumeObject(S
.getCollection()->getType(), Collection
);
1768 Collection
= EmitScalarExpr(S
.getCollection());
1771 // The 'continue' label needs to appear within the cleanup for the
1772 // collection object.
1773 JumpDest AfterBody
= getJumpDestInCurrentScope("forcoll.next");
1775 // Send it our message:
1778 // The first argument is a temporary of the enumeration-state type.
1779 Args
.add(RValue::get(StatePtr
.getPointer()),
1780 getContext().getPointerType(StateTy
));
1782 // The second argument is a temporary array with space for NumItems
1783 // pointers. We'll actually be loading elements from the array
1784 // pointer written into the control state; this buffer is so that
1785 // collections that *aren't* backed by arrays can still queue up
1786 // batches of elements.
1787 Args
.add(RValue::get(ItemsPtr
.getPointer()),
1788 getContext().getPointerType(ItemsTy
));
1790 // The third argument is the capacity of that temporary array.
1791 llvm::Type
*NSUIntegerTy
= ConvertType(getContext().getNSUIntegerType());
1792 llvm::Constant
*Count
= llvm::ConstantInt::get(NSUIntegerTy
, NumItems
);
1793 Args
.add(RValue::get(Count
), getContext().getNSUIntegerType());
1795 // Start the enumeration.
1797 CGM
.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1798 getContext().getNSUIntegerType(),
1799 FastEnumSel
, Collection
, Args
);
1801 // The initial number of objects that were returned in the buffer.
1802 llvm::Value
*initialBufferLimit
= CountRV
.getScalarVal();
1804 llvm::BasicBlock
*EmptyBB
= createBasicBlock("forcoll.empty");
1805 llvm::BasicBlock
*LoopInitBB
= createBasicBlock("forcoll.loopinit");
1807 llvm::Value
*zero
= llvm::Constant::getNullValue(NSUIntegerTy
);
1809 // If the limit pointer was zero to begin with, the collection is
1810 // empty; skip all this. Set the branch weight assuming this has the same
1811 // probability of exiting the loop as any other loop exit.
1812 uint64_t EntryCount
= getCurrentProfileCount();
1813 Builder
.CreateCondBr(
1814 Builder
.CreateICmpEQ(initialBufferLimit
, zero
, "iszero"), EmptyBB
,
1816 createProfileWeights(EntryCount
, getProfileCount(S
.getBody())));
1818 // Otherwise, initialize the loop.
1819 EmitBlock(LoopInitBB
);
1821 // Save the initial mutations value. This is the value at an
1822 // address that was written into the state object by
1823 // countByEnumeratingWithState:objects:count:.
1824 Address StateMutationsPtrPtr
=
1825 Builder
.CreateStructGEP(StatePtr
, 2, "mutationsptr.ptr");
1826 llvm::Value
*StateMutationsPtr
1827 = Builder
.CreateLoad(StateMutationsPtrPtr
, "mutationsptr");
1829 llvm::Type
*UnsignedLongTy
= ConvertType(getContext().UnsignedLongTy
);
1830 llvm::Value
*initialMutations
=
1831 Builder
.CreateAlignedLoad(UnsignedLongTy
, StateMutationsPtr
,
1832 getPointerAlign(), "forcoll.initial-mutations");
1834 // Start looping. This is the point we return to whenever we have a
1835 // fresh, non-empty batch of objects.
1836 llvm::BasicBlock
*LoopBodyBB
= createBasicBlock("forcoll.loopbody");
1837 EmitBlock(LoopBodyBB
);
1839 // The current index into the buffer.
1840 llvm::PHINode
*index
= Builder
.CreatePHI(NSUIntegerTy
, 3, "forcoll.index");
1841 index
->addIncoming(zero
, LoopInitBB
);
1843 // The current buffer size.
1844 llvm::PHINode
*count
= Builder
.CreatePHI(NSUIntegerTy
, 3, "forcoll.count");
1845 count
->addIncoming(initialBufferLimit
, LoopInitBB
);
1847 incrementProfileCounter(&S
);
1849 // Check whether the mutations value has changed from where it was
1850 // at start. StateMutationsPtr should actually be invariant between
1852 StateMutationsPtr
= Builder
.CreateLoad(StateMutationsPtrPtr
, "mutationsptr");
1853 llvm::Value
*currentMutations
1854 = Builder
.CreateAlignedLoad(UnsignedLongTy
, StateMutationsPtr
,
1855 getPointerAlign(), "statemutations");
1857 llvm::BasicBlock
*WasMutatedBB
= createBasicBlock("forcoll.mutated");
1858 llvm::BasicBlock
*WasNotMutatedBB
= createBasicBlock("forcoll.notmutated");
1860 Builder
.CreateCondBr(Builder
.CreateICmpEQ(currentMutations
, initialMutations
),
1861 WasNotMutatedBB
, WasMutatedBB
);
1863 // If so, call the enumeration-mutation function.
1864 EmitBlock(WasMutatedBB
);
1865 llvm::Type
*ObjCIdType
= ConvertType(getContext().getObjCIdType());
1867 Builder
.CreateBitCast(Collection
, ObjCIdType
);
1869 Args2
.add(RValue::get(V
), getContext().getObjCIdType());
1870 // FIXME: We shouldn't need to get the function info here, the runtime already
1871 // should have computed it to build the function.
1873 CGM
.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy
, Args2
),
1874 EnumerationMutationFn
, ReturnValueSlot(), Args2
);
1876 // Otherwise, or if the mutation function returns, just continue.
1877 EmitBlock(WasNotMutatedBB
);
1879 // Initialize the element variable.
1880 RunCleanupsScope
elementVariableScope(*this);
1881 bool elementIsVariable
;
1882 LValue elementLValue
;
1883 QualType elementType
;
1884 if (const DeclStmt
*SD
= dyn_cast
<DeclStmt
>(S
.getElement())) {
1885 // Initialize the variable, in case it's a __block variable or something.
1886 EmitAutoVarInit(variable
);
1888 const VarDecl
*D
= cast
<VarDecl
>(SD
->getSingleDecl());
1889 DeclRefExpr
tempDRE(getContext(), const_cast<VarDecl
*>(D
), false,
1890 D
->getType(), VK_LValue
, SourceLocation());
1891 elementLValue
= EmitLValue(&tempDRE
);
1892 elementType
= D
->getType();
1893 elementIsVariable
= true;
1895 if (D
->isARCPseudoStrong())
1896 elementLValue
.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone
);
1898 elementLValue
= LValue(); // suppress warning
1899 elementType
= cast
<Expr
>(S
.getElement())->getType();
1900 elementIsVariable
= false;
1902 llvm::Type
*convertedElementType
= ConvertType(elementType
);
1904 // Fetch the buffer out of the enumeration state.
1905 // TODO: this pointer should actually be invariant between
1906 // refreshes, which would help us do certain loop optimizations.
1907 Address StateItemsPtr
=
1908 Builder
.CreateStructGEP(StatePtr
, 1, "stateitems.ptr");
1909 llvm::Value
*EnumStateItems
=
1910 Builder
.CreateLoad(StateItemsPtr
, "stateitems");
1912 // Fetch the value at the current index from the buffer.
1913 llvm::Value
*CurrentItemPtr
= Builder
.CreateGEP(
1914 ObjCIdType
, EnumStateItems
, index
, "currentitem.ptr");
1915 llvm::Value
*CurrentItem
=
1916 Builder
.CreateAlignedLoad(ObjCIdType
, CurrentItemPtr
, getPointerAlign());
1918 if (SanOpts
.has(SanitizerKind::ObjCCast
)) {
1919 // Before using an item from the collection, check that the implicit cast
1920 // from id to the element type is valid. This is done with instrumentation
1921 // roughly corresponding to:
1923 // if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ }
1924 const ObjCObjectPointerType
*ObjPtrTy
=
1925 elementType
->getAsObjCInterfacePointerType();
1926 const ObjCInterfaceType
*InterfaceTy
=
1927 ObjPtrTy
? ObjPtrTy
->getInterfaceType() : nullptr;
1929 SanitizerScope
SanScope(this);
1930 auto &C
= CGM
.getContext();
1931 assert(InterfaceTy
->getDecl() && "No decl for ObjC interface type");
1932 Selector IsKindOfClassSel
= GetUnarySelector("isKindOfClass", C
);
1933 CallArgList IsKindOfClassArgs
;
1935 CGM
.getObjCRuntime().GetClass(*this, InterfaceTy
->getDecl());
1936 IsKindOfClassArgs
.add(RValue::get(Cls
), C
.getObjCClassType());
1937 llvm::Value
*IsClass
=
1938 CGM
.getObjCRuntime()
1939 .GenerateMessageSend(*this, ReturnValueSlot(), C
.BoolTy
,
1940 IsKindOfClassSel
, CurrentItem
,
1943 llvm::Constant
*StaticData
[] = {
1944 EmitCheckSourceLocation(S
.getBeginLoc()),
1945 EmitCheckTypeDescriptor(QualType(InterfaceTy
, 0))};
1946 EmitCheck({{IsClass
, SanitizerKind::ObjCCast
}},
1947 SanitizerHandler::InvalidObjCCast
,
1948 ArrayRef
<llvm::Constant
*>(StaticData
), CurrentItem
);
1952 // Cast that value to the right type.
1953 CurrentItem
= Builder
.CreateBitCast(CurrentItem
, convertedElementType
,
1956 // Make sure we have an l-value. Yes, this gets evaluated every
1957 // time through the loop.
1958 if (!elementIsVariable
) {
1959 elementLValue
= EmitLValue(cast
<Expr
>(S
.getElement()));
1960 EmitStoreThroughLValue(RValue::get(CurrentItem
), elementLValue
);
1962 EmitStoreThroughLValue(RValue::get(CurrentItem
), elementLValue
,
1966 // If we do have an element variable, this assignment is the end of
1967 // its initialization.
1968 if (elementIsVariable
)
1969 EmitAutoVarCleanups(variable
);
1971 // Perform the loop body, setting up break and continue labels.
1972 BreakContinueStack
.push_back(BreakContinue(LoopEnd
, AfterBody
));
1974 RunCleanupsScope
Scope(*this);
1975 EmitStmt(S
.getBody());
1977 BreakContinueStack
.pop_back();
1979 // Destroy the element variable now.
1980 elementVariableScope
.ForceCleanup();
1982 // Check whether there are more elements.
1983 EmitBlock(AfterBody
.getBlock());
1985 llvm::BasicBlock
*FetchMoreBB
= createBasicBlock("forcoll.refetch");
1987 // First we check in the local buffer.
1988 llvm::Value
*indexPlusOne
=
1989 Builder
.CreateAdd(index
, llvm::ConstantInt::get(NSUIntegerTy
, 1));
1991 // If we haven't overrun the buffer yet, we can continue.
1992 // Set the branch weights based on the simplifying assumption that this is
1993 // like a while-loop, i.e., ignoring that the false branch fetches more
1994 // elements and then returns to the loop.
1995 Builder
.CreateCondBr(
1996 Builder
.CreateICmpULT(indexPlusOne
, count
), LoopBodyBB
, FetchMoreBB
,
1997 createProfileWeights(getProfileCount(S
.getBody()), EntryCount
));
1999 index
->addIncoming(indexPlusOne
, AfterBody
.getBlock());
2000 count
->addIncoming(count
, AfterBody
.getBlock());
2002 // Otherwise, we have to fetch more elements.
2003 EmitBlock(FetchMoreBB
);
2006 CGM
.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2007 getContext().getNSUIntegerType(),
2008 FastEnumSel
, Collection
, Args
);
2010 // If we got a zero count, we're done.
2011 llvm::Value
*refetchCount
= CountRV
.getScalarVal();
2013 // (note that the message send might split FetchMoreBB)
2014 index
->addIncoming(zero
, Builder
.GetInsertBlock());
2015 count
->addIncoming(refetchCount
, Builder
.GetInsertBlock());
2017 Builder
.CreateCondBr(Builder
.CreateICmpEQ(refetchCount
, zero
),
2018 EmptyBB
, LoopBodyBB
);
2020 // No more elements.
2023 if (!elementIsVariable
) {
2024 // If the element was not a declaration, set it to be null.
2026 llvm::Value
*null
= llvm::Constant::getNullValue(convertedElementType
);
2027 elementLValue
= EmitLValue(cast
<Expr
>(S
.getElement()));
2028 EmitStoreThroughLValue(RValue::get(null
), elementLValue
);
2032 DI
->EmitLexicalBlockEnd(Builder
, S
.getSourceRange().getEnd());
2034 ForScope
.ForceCleanup();
2035 EmitBlock(LoopEnd
.getBlock());
2038 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt
&S
) {
2039 CGM
.getObjCRuntime().EmitTryStmt(*this, S
);
2042 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt
&S
) {
2043 CGM
.getObjCRuntime().EmitThrowStmt(*this, S
);
2046 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
2047 const ObjCAtSynchronizedStmt
&S
) {
2048 CGM
.getObjCRuntime().EmitSynchronizedStmt(*this, S
);
2052 struct CallObjCRelease final
: EHScopeStack::Cleanup
{
2053 CallObjCRelease(llvm::Value
*object
) : object(object
) {}
2054 llvm::Value
*object
;
2056 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
2057 // Releases at the end of the full-expression are imprecise.
2058 CGF
.EmitARCRelease(object
, ARCImpreciseLifetime
);
2063 /// Produce the code for a CK_ARCConsumeObject. Does a primitive
2064 /// release at the end of the full-expression.
2065 llvm::Value
*CodeGenFunction::EmitObjCConsumeObject(QualType type
,
2066 llvm::Value
*object
) {
2067 // If we're in a conditional branch, we need to make the cleanup
2069 pushFullExprCleanup
<CallObjCRelease
>(getARCCleanupKind(), object
);
2073 llvm::Value
*CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type
,
2074 llvm::Value
*value
) {
2075 return EmitARCRetainAutorelease(type
, value
);
2078 /// Given a number of pointers, inform the optimizer that they're
2079 /// being intrinsically used up until this point in the program.
2080 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef
<llvm::Value
*> values
) {
2081 llvm::Function
*&fn
= CGM
.getObjCEntrypoints().clang_arc_use
;
2083 fn
= CGM
.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use
);
2085 // This isn't really a "runtime" function, but as an intrinsic it
2086 // doesn't really matter as long as we align things up.
2087 EmitNounwindRuntimeCall(fn
, values
);
2090 /// Emit a call to "clang.arc.noop.use", which consumes the result of a call
2091 /// that has operand bundle "clang.arc.attachedcall".
2092 void CodeGenFunction::EmitARCNoopIntrinsicUse(ArrayRef
<llvm::Value
*> values
) {
2093 llvm::Function
*&fn
= CGM
.getObjCEntrypoints().clang_arc_noop_use
;
2095 fn
= CGM
.getIntrinsic(llvm::Intrinsic::objc_clang_arc_noop_use
);
2096 EmitNounwindRuntimeCall(fn
, values
);
2099 static void setARCRuntimeFunctionLinkage(CodeGenModule
&CGM
, llvm::Value
*RTF
) {
2100 if (auto *F
= dyn_cast
<llvm::Function
>(RTF
)) {
2101 // If the target runtime doesn't naturally support ARC, emit weak
2102 // references to the runtime support library. We don't really
2103 // permit this to fail, but we need a particular relocation style.
2104 if (!CGM
.getLangOpts().ObjCRuntime
.hasNativeARC() &&
2105 !CGM
.getTriple().isOSBinFormatCOFF()) {
2106 F
->setLinkage(llvm::Function::ExternalWeakLinkage
);
2111 static void setARCRuntimeFunctionLinkage(CodeGenModule
&CGM
,
2112 llvm::FunctionCallee RTF
) {
2113 setARCRuntimeFunctionLinkage(CGM
, RTF
.getCallee());
2116 static llvm::Function
*getARCIntrinsic(llvm::Intrinsic::ID IntID
,
2117 CodeGenModule
&CGM
) {
2118 llvm::Function
*fn
= CGM
.getIntrinsic(IntID
);
2119 setARCRuntimeFunctionLinkage(CGM
, fn
);
2123 /// Perform an operation having the signature
2125 /// where a null input causes a no-op and returns null.
2126 static llvm::Value
*emitARCValueOperation(
2127 CodeGenFunction
&CGF
, llvm::Value
*value
, llvm::Type
*returnType
,
2128 llvm::Function
*&fn
, llvm::Intrinsic::ID IntID
,
2129 llvm::CallInst::TailCallKind tailKind
= llvm::CallInst::TCK_None
) {
2130 if (isa
<llvm::ConstantPointerNull
>(value
))
2134 fn
= getARCIntrinsic(IntID
, CGF
.CGM
);
2136 // Cast the argument to 'id'.
2137 llvm::Type
*origType
= returnType
? returnType
: value
->getType();
2138 value
= CGF
.Builder
.CreateBitCast(value
, CGF
.Int8PtrTy
);
2140 // Call the function.
2141 llvm::CallInst
*call
= CGF
.EmitNounwindRuntimeCall(fn
, value
);
2142 call
->setTailCallKind(tailKind
);
2144 // Cast the result back to the original type.
2145 return CGF
.Builder
.CreateBitCast(call
, origType
);
2148 /// Perform an operation having the following signature:
2150 static llvm::Value
*emitARCLoadOperation(CodeGenFunction
&CGF
, Address addr
,
2151 llvm::Function
*&fn
,
2152 llvm::Intrinsic::ID IntID
) {
2154 fn
= getARCIntrinsic(IntID
, CGF
.CGM
);
2156 // Cast the argument to 'id*'.
2157 llvm::Type
*origType
= addr
.getElementType();
2158 addr
= CGF
.Builder
.CreateElementBitCast(addr
, CGF
.Int8PtrTy
);
2160 // Call the function.
2161 llvm::Value
*result
= CGF
.EmitNounwindRuntimeCall(fn
, addr
.getPointer());
2163 // Cast the result back to a dereference of the original type.
2164 if (origType
!= CGF
.Int8PtrTy
)
2165 result
= CGF
.Builder
.CreateBitCast(result
, origType
);
2170 /// Perform an operation having the following signature:
2172 static llvm::Value
*emitARCStoreOperation(CodeGenFunction
&CGF
, Address addr
,
2174 llvm::Function
*&fn
,
2175 llvm::Intrinsic::ID IntID
,
2177 assert(addr
.getElementType() == value
->getType());
2180 fn
= getARCIntrinsic(IntID
, CGF
.CGM
);
2182 llvm::Type
*origType
= value
->getType();
2184 llvm::Value
*args
[] = {
2185 CGF
.Builder
.CreateBitCast(addr
.getPointer(), CGF
.Int8PtrPtrTy
),
2186 CGF
.Builder
.CreateBitCast(value
, CGF
.Int8PtrTy
)
2188 llvm::CallInst
*result
= CGF
.EmitNounwindRuntimeCall(fn
, args
);
2190 if (ignored
) return nullptr;
2192 return CGF
.Builder
.CreateBitCast(result
, origType
);
2195 /// Perform an operation having the following signature:
2196 /// void (i8**, i8**)
2197 static void emitARCCopyOperation(CodeGenFunction
&CGF
, Address dst
, Address src
,
2198 llvm::Function
*&fn
,
2199 llvm::Intrinsic::ID IntID
) {
2200 assert(dst
.getType() == src
.getType());
2203 fn
= getARCIntrinsic(IntID
, CGF
.CGM
);
2205 llvm::Value
*args
[] = {
2206 CGF
.Builder
.CreateBitCast(dst
.getPointer(), CGF
.Int8PtrPtrTy
),
2207 CGF
.Builder
.CreateBitCast(src
.getPointer(), CGF
.Int8PtrPtrTy
)
2209 CGF
.EmitNounwindRuntimeCall(fn
, args
);
2212 /// Perform an operation having the signature
2214 /// where a null input causes a no-op and returns null.
2215 static llvm::Value
*emitObjCValueOperation(CodeGenFunction
&CGF
,
2217 llvm::Type
*returnType
,
2218 llvm::FunctionCallee
&fn
,
2220 if (isa
<llvm::ConstantPointerNull
>(value
))
2224 llvm::FunctionType
*fnType
=
2225 llvm::FunctionType::get(CGF
.Int8PtrTy
, CGF
.Int8PtrTy
, false);
2226 fn
= CGF
.CGM
.CreateRuntimeFunction(fnType
, fnName
);
2228 // We have Native ARC, so set nonlazybind attribute for performance
2229 if (llvm::Function
*f
= dyn_cast
<llvm::Function
>(fn
.getCallee()))
2230 if (fnName
== "objc_retain")
2231 f
->addFnAttr(llvm::Attribute::NonLazyBind
);
2234 // Cast the argument to 'id'.
2235 llvm::Type
*origType
= returnType
? returnType
: value
->getType();
2236 value
= CGF
.Builder
.CreateBitCast(value
, CGF
.Int8PtrTy
);
2238 // Call the function.
2239 llvm::CallBase
*Inst
= CGF
.EmitCallOrInvoke(fn
, value
);
2241 // Mark calls to objc_autorelease as tail on the assumption that methods
2242 // overriding autorelease do not touch anything on the stack.
2243 if (fnName
== "objc_autorelease")
2244 if (auto *Call
= dyn_cast
<llvm::CallInst
>(Inst
))
2245 Call
->setTailCall();
2247 // Cast the result back to the original type.
2248 return CGF
.Builder
.CreateBitCast(Inst
, origType
);
2251 /// Produce the code to do a retain. Based on the type, calls one of:
2252 /// call i8* \@objc_retain(i8* %value)
2253 /// call i8* \@objc_retainBlock(i8* %value)
2254 llvm::Value
*CodeGenFunction::EmitARCRetain(QualType type
, llvm::Value
*value
) {
2255 if (type
->isBlockPointerType())
2256 return EmitARCRetainBlock(value
, /*mandatory*/ false);
2258 return EmitARCRetainNonBlock(value
);
2261 /// Retain the given object, with normal retain semantics.
2262 /// call i8* \@objc_retain(i8* %value)
2263 llvm::Value
*CodeGenFunction::EmitARCRetainNonBlock(llvm::Value
*value
) {
2264 return emitARCValueOperation(*this, value
, nullptr,
2265 CGM
.getObjCEntrypoints().objc_retain
,
2266 llvm::Intrinsic::objc_retain
);
2269 /// Retain the given block, with _Block_copy semantics.
2270 /// call i8* \@objc_retainBlock(i8* %value)
2272 /// \param mandatory - If false, emit the call with metadata
2273 /// indicating that it's okay for the optimizer to eliminate this call
2274 /// if it can prove that the block never escapes except down the stack.
2275 llvm::Value
*CodeGenFunction::EmitARCRetainBlock(llvm::Value
*value
,
2278 = emitARCValueOperation(*this, value
, nullptr,
2279 CGM
.getObjCEntrypoints().objc_retainBlock
,
2280 llvm::Intrinsic::objc_retainBlock
);
2282 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2283 // tell the optimizer that it doesn't need to do this copy if the
2284 // block doesn't escape, where being passed as an argument doesn't
2285 // count as escaping.
2286 if (!mandatory
&& isa
<llvm::Instruction
>(result
)) {
2287 llvm::CallInst
*call
2288 = cast
<llvm::CallInst
>(result
->stripPointerCasts());
2289 assert(call
->getCalledOperand() ==
2290 CGM
.getObjCEntrypoints().objc_retainBlock
);
2292 call
->setMetadata("clang.arc.copy_on_escape",
2293 llvm::MDNode::get(Builder
.getContext(), None
));
2299 static void emitAutoreleasedReturnValueMarker(CodeGenFunction
&CGF
) {
2300 // Fetch the void(void) inline asm which marks that we're going to
2301 // do something with the autoreleased return value.
2302 llvm::InlineAsm
*&marker
2303 = CGF
.CGM
.getObjCEntrypoints().retainAutoreleasedReturnValueMarker
;
2306 = CGF
.CGM
.getTargetCodeGenInfo()
2307 .getARCRetainAutoreleasedReturnValueMarker();
2309 // If we have an empty assembly string, there's nothing to do.
2310 if (assembly
.empty()) {
2312 // Otherwise, at -O0, build an inline asm that we're going to call
2314 } else if (CGF
.CGM
.getCodeGenOpts().OptimizationLevel
== 0) {
2315 llvm::FunctionType
*type
=
2316 llvm::FunctionType::get(CGF
.VoidTy
, /*variadic*/false);
2318 marker
= llvm::InlineAsm::get(type
, assembly
, "", /*sideeffects*/ true);
2320 // If we're at -O1 and above, we don't want to litter the code
2321 // with this marker yet, so leave a breadcrumb for the ARC
2322 // optimizer to pick up.
2324 const char *retainRVMarkerKey
= llvm::objcarc::getRVMarkerModuleFlagStr();
2325 if (!CGF
.CGM
.getModule().getModuleFlag(retainRVMarkerKey
)) {
2326 auto *str
= llvm::MDString::get(CGF
.getLLVMContext(), assembly
);
2327 CGF
.CGM
.getModule().addModuleFlag(llvm::Module::Error
,
2328 retainRVMarkerKey
, str
);
2333 // Call the marker asm if we made one, which we do only at -O0.
2335 CGF
.Builder
.CreateCall(marker
, None
, CGF
.getBundlesForFunclet(marker
));
2338 static llvm::Value
*emitOptimizedARCReturnCall(llvm::Value
*value
,
2340 CodeGenFunction
&CGF
) {
2341 emitAutoreleasedReturnValueMarker(CGF
);
2343 // Add operand bundle "clang.arc.attachedcall" to the call instead of emitting
2344 // retainRV or claimRV calls in the IR. We currently do this only when the
2345 // optimization level isn't -O0 since global-isel, which is currently run at
2346 // -O0, doesn't know about the operand bundle.
2347 ObjCEntrypoints
&EPs
= CGF
.CGM
.getObjCEntrypoints();
2348 llvm::Function
*&EP
= IsRetainRV
2349 ? EPs
.objc_retainAutoreleasedReturnValue
2350 : EPs
.objc_unsafeClaimAutoreleasedReturnValue
;
2351 llvm::Intrinsic::ID IID
=
2352 IsRetainRV
? llvm::Intrinsic::objc_retainAutoreleasedReturnValue
2353 : llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue
;
2354 EP
= getARCIntrinsic(IID
, CGF
.CGM
);
2356 llvm::Triple::ArchType Arch
= CGF
.CGM
.getTriple().getArch();
2358 // FIXME: Do this on all targets and at -O0 too. This can be enabled only if
2359 // the target backend knows how to handle the operand bundle.
2360 if (CGF
.CGM
.getCodeGenOpts().OptimizationLevel
> 0 &&
2361 (Arch
== llvm::Triple::aarch64
|| Arch
== llvm::Triple::x86_64
)) {
2362 llvm::Value
*bundleArgs
[] = {EP
};
2363 llvm::OperandBundleDef
OB("clang.arc.attachedcall", bundleArgs
);
2364 auto *oldCall
= cast
<llvm::CallBase
>(value
);
2365 llvm::CallBase
*newCall
= llvm::CallBase::addOperandBundle(
2366 oldCall
, llvm::LLVMContext::OB_clang_arc_attachedcall
, OB
, oldCall
);
2367 newCall
->copyMetadata(*oldCall
);
2368 oldCall
->replaceAllUsesWith(newCall
);
2369 oldCall
->eraseFromParent();
2370 CGF
.EmitARCNoopIntrinsicUse(newCall
);
2375 CGF
.CGM
.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail();
2376 llvm::CallInst::TailCallKind tailKind
=
2377 isNoTail
? llvm::CallInst::TCK_NoTail
: llvm::CallInst::TCK_None
;
2378 return emitARCValueOperation(CGF
, value
, nullptr, EP
, IID
, tailKind
);
2381 /// Retain the given object which is the result of a function call.
2382 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2384 /// Yes, this function name is one character away from a different
2385 /// call with completely different semantics.
2387 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value
*value
) {
2388 return emitOptimizedARCReturnCall(value
, true, *this);
2391 /// Claim a possibly-autoreleased return value at +0. This is only
2392 /// valid to do in contexts which do not rely on the retain to keep
2393 /// the object valid for all of its uses; for example, when
2394 /// the value is ignored, or when it is being assigned to an
2395 /// __unsafe_unretained variable.
2397 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2399 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value
*value
) {
2400 return emitOptimizedARCReturnCall(value
, false, *this);
2403 /// Release the given object.
2404 /// call void \@objc_release(i8* %value)
2405 void CodeGenFunction::EmitARCRelease(llvm::Value
*value
,
2406 ARCPreciseLifetime_t precise
) {
2407 if (isa
<llvm::ConstantPointerNull
>(value
)) return;
2409 llvm::Function
*&fn
= CGM
.getObjCEntrypoints().objc_release
;
2411 fn
= getARCIntrinsic(llvm::Intrinsic::objc_release
, CGM
);
2413 // Cast the argument to 'id'.
2414 value
= Builder
.CreateBitCast(value
, Int8PtrTy
);
2416 // Call objc_release.
2417 llvm::CallInst
*call
= EmitNounwindRuntimeCall(fn
, value
);
2419 if (precise
== ARCImpreciseLifetime
) {
2420 call
->setMetadata("clang.imprecise_release",
2421 llvm::MDNode::get(Builder
.getContext(), None
));
2425 /// Destroy a __strong variable.
2427 /// At -O0, emit a call to store 'null' into the address;
2428 /// instrumenting tools prefer this because the address is exposed,
2429 /// but it's relatively cumbersome to optimize.
2431 /// At -O1 and above, just load and call objc_release.
2433 /// call void \@objc_storeStrong(i8** %addr, i8* null)
2434 void CodeGenFunction::EmitARCDestroyStrong(Address addr
,
2435 ARCPreciseLifetime_t precise
) {
2436 if (CGM
.getCodeGenOpts().OptimizationLevel
== 0) {
2437 llvm::Value
*null
= getNullForVariable(addr
);
2438 EmitARCStoreStrongCall(addr
, null
, /*ignored*/ true);
2442 llvm::Value
*value
= Builder
.CreateLoad(addr
);
2443 EmitARCRelease(value
, precise
);
2446 /// Store into a strong object. Always calls this:
2447 /// call void \@objc_storeStrong(i8** %addr, i8* %value)
2448 llvm::Value
*CodeGenFunction::EmitARCStoreStrongCall(Address addr
,
2451 assert(addr
.getElementType() == value
->getType());
2453 llvm::Function
*&fn
= CGM
.getObjCEntrypoints().objc_storeStrong
;
2455 fn
= getARCIntrinsic(llvm::Intrinsic::objc_storeStrong
, CGM
);
2457 llvm::Value
*args
[] = {
2458 Builder
.CreateBitCast(addr
.getPointer(), Int8PtrPtrTy
),
2459 Builder
.CreateBitCast(value
, Int8PtrTy
)
2461 EmitNounwindRuntimeCall(fn
, args
);
2463 if (ignored
) return nullptr;
2467 /// Store into a strong object. Sometimes calls this:
2468 /// call void \@objc_storeStrong(i8** %addr, i8* %value)
2469 /// Other times, breaks it down into components.
2470 llvm::Value
*CodeGenFunction::EmitARCStoreStrong(LValue dst
,
2471 llvm::Value
*newValue
,
2473 QualType type
= dst
.getType();
2474 bool isBlock
= type
->isBlockPointerType();
2476 // Use a store barrier at -O0 unless this is a block type or the
2477 // lvalue is inadequately aligned.
2478 if (shouldUseFusedARCCalls() &&
2480 (dst
.getAlignment().isZero() ||
2481 dst
.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes
))) {
2482 return EmitARCStoreStrongCall(dst
.getAddress(*this), newValue
, ignored
);
2485 // Otherwise, split it out.
2487 // Retain the new value.
2488 newValue
= EmitARCRetain(type
, newValue
);
2490 // Read the old value.
2491 llvm::Value
*oldValue
= EmitLoadOfScalar(dst
, SourceLocation());
2493 // Store. We do this before the release so that any deallocs won't
2494 // see the old value.
2495 EmitStoreOfScalar(newValue
, dst
);
2497 // Finally, release the old value.
2498 EmitARCRelease(oldValue
, dst
.isARCPreciseLifetime());
2503 /// Autorelease the given object.
2504 /// call i8* \@objc_autorelease(i8* %value)
2505 llvm::Value
*CodeGenFunction::EmitARCAutorelease(llvm::Value
*value
) {
2506 return emitARCValueOperation(*this, value
, nullptr,
2507 CGM
.getObjCEntrypoints().objc_autorelease
,
2508 llvm::Intrinsic::objc_autorelease
);
2511 /// Autorelease the given object.
2512 /// call i8* \@objc_autoreleaseReturnValue(i8* %value)
2514 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value
*value
) {
2515 return emitARCValueOperation(*this, value
, nullptr,
2516 CGM
.getObjCEntrypoints().objc_autoreleaseReturnValue
,
2517 llvm::Intrinsic::objc_autoreleaseReturnValue
,
2518 llvm::CallInst::TCK_Tail
);
2521 /// Do a fused retain/autorelease of the given object.
2522 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2524 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value
*value
) {
2525 return emitARCValueOperation(*this, value
, nullptr,
2526 CGM
.getObjCEntrypoints().objc_retainAutoreleaseReturnValue
,
2527 llvm::Intrinsic::objc_retainAutoreleaseReturnValue
,
2528 llvm::CallInst::TCK_Tail
);
2531 /// Do a fused retain/autorelease of the given object.
2532 /// call i8* \@objc_retainAutorelease(i8* %value)
2534 /// %retain = call i8* \@objc_retainBlock(i8* %value)
2535 /// call i8* \@objc_autorelease(i8* %retain)
2536 llvm::Value
*CodeGenFunction::EmitARCRetainAutorelease(QualType type
,
2537 llvm::Value
*value
) {
2538 if (!type
->isBlockPointerType())
2539 return EmitARCRetainAutoreleaseNonBlock(value
);
2541 if (isa
<llvm::ConstantPointerNull
>(value
)) return value
;
2543 llvm::Type
*origType
= value
->getType();
2544 value
= Builder
.CreateBitCast(value
, Int8PtrTy
);
2545 value
= EmitARCRetainBlock(value
, /*mandatory*/ true);
2546 value
= EmitARCAutorelease(value
);
2547 return Builder
.CreateBitCast(value
, origType
);
2550 /// Do a fused retain/autorelease of the given object.
2551 /// call i8* \@objc_retainAutorelease(i8* %value)
2553 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value
*value
) {
2554 return emitARCValueOperation(*this, value
, nullptr,
2555 CGM
.getObjCEntrypoints().objc_retainAutorelease
,
2556 llvm::Intrinsic::objc_retainAutorelease
);
2559 /// i8* \@objc_loadWeak(i8** %addr)
2560 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2561 llvm::Value
*CodeGenFunction::EmitARCLoadWeak(Address addr
) {
2562 return emitARCLoadOperation(*this, addr
,
2563 CGM
.getObjCEntrypoints().objc_loadWeak
,
2564 llvm::Intrinsic::objc_loadWeak
);
2567 /// i8* \@objc_loadWeakRetained(i8** %addr)
2568 llvm::Value
*CodeGenFunction::EmitARCLoadWeakRetained(Address addr
) {
2569 return emitARCLoadOperation(*this, addr
,
2570 CGM
.getObjCEntrypoints().objc_loadWeakRetained
,
2571 llvm::Intrinsic::objc_loadWeakRetained
);
2574 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2576 llvm::Value
*CodeGenFunction::EmitARCStoreWeak(Address addr
,
2579 return emitARCStoreOperation(*this, addr
, value
,
2580 CGM
.getObjCEntrypoints().objc_storeWeak
,
2581 llvm::Intrinsic::objc_storeWeak
, ignored
);
2584 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2585 /// Returns %value. %addr is known to not have a current weak entry.
2586 /// Essentially equivalent to:
2587 /// *addr = nil; objc_storeWeak(addr, value);
2588 void CodeGenFunction::EmitARCInitWeak(Address addr
, llvm::Value
*value
) {
2589 // If we're initializing to null, just write null to memory; no need
2590 // to get the runtime involved. But don't do this if optimization
2591 // is enabled, because accounting for this would make the optimizer
2592 // much more complicated.
2593 if (isa
<llvm::ConstantPointerNull
>(value
) &&
2594 CGM
.getCodeGenOpts().OptimizationLevel
== 0) {
2595 Builder
.CreateStore(value
, addr
);
2599 emitARCStoreOperation(*this, addr
, value
,
2600 CGM
.getObjCEntrypoints().objc_initWeak
,
2601 llvm::Intrinsic::objc_initWeak
, /*ignored*/ true);
2604 /// void \@objc_destroyWeak(i8** %addr)
2605 /// Essentially objc_storeWeak(addr, nil).
2606 void CodeGenFunction::EmitARCDestroyWeak(Address addr
) {
2607 llvm::Function
*&fn
= CGM
.getObjCEntrypoints().objc_destroyWeak
;
2609 fn
= getARCIntrinsic(llvm::Intrinsic::objc_destroyWeak
, CGM
);
2611 // Cast the argument to 'id*'.
2612 addr
= Builder
.CreateElementBitCast(addr
, Int8PtrTy
);
2614 EmitNounwindRuntimeCall(fn
, addr
.getPointer());
2617 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2618 /// Disregards the current value in %dest. Leaves %src pointing to nothing.
2619 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2620 void CodeGenFunction::EmitARCMoveWeak(Address dst
, Address src
) {
2621 emitARCCopyOperation(*this, dst
, src
,
2622 CGM
.getObjCEntrypoints().objc_moveWeak
,
2623 llvm::Intrinsic::objc_moveWeak
);
2626 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2627 /// Disregards the current value in %dest. Essentially
2628 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2629 void CodeGenFunction::EmitARCCopyWeak(Address dst
, Address src
) {
2630 emitARCCopyOperation(*this, dst
, src
,
2631 CGM
.getObjCEntrypoints().objc_copyWeak
,
2632 llvm::Intrinsic::objc_copyWeak
);
2635 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty
, Address DstAddr
,
2637 llvm::Value
*Object
= EmitARCLoadWeakRetained(SrcAddr
);
2638 Object
= EmitObjCConsumeObject(Ty
, Object
);
2639 EmitARCStoreWeak(DstAddr
, Object
, false);
2642 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty
, Address DstAddr
,
2644 llvm::Value
*Object
= EmitARCLoadWeakRetained(SrcAddr
);
2645 Object
= EmitObjCConsumeObject(Ty
, Object
);
2646 EmitARCStoreWeak(DstAddr
, Object
, false);
2647 EmitARCDestroyWeak(SrcAddr
);
2650 /// Produce the code to do a objc_autoreleasepool_push.
2651 /// call i8* \@objc_autoreleasePoolPush(void)
2652 llvm::Value
*CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2653 llvm::Function
*&fn
= CGM
.getObjCEntrypoints().objc_autoreleasePoolPush
;
2655 fn
= getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush
, CGM
);
2657 return EmitNounwindRuntimeCall(fn
);
2660 /// Produce the code to do a primitive release.
2661 /// call void \@objc_autoreleasePoolPop(i8* %ptr)
2662 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value
*value
) {
2663 assert(value
->getType() == Int8PtrTy
);
2665 if (getInvokeDest()) {
2666 // Call the runtime method not the intrinsic if we are handling exceptions
2667 llvm::FunctionCallee
&fn
=
2668 CGM
.getObjCEntrypoints().objc_autoreleasePoolPopInvoke
;
2670 llvm::FunctionType
*fnType
=
2671 llvm::FunctionType::get(Builder
.getVoidTy(), Int8PtrTy
, false);
2672 fn
= CGM
.CreateRuntimeFunction(fnType
, "objc_autoreleasePoolPop");
2673 setARCRuntimeFunctionLinkage(CGM
, fn
);
2676 // objc_autoreleasePoolPop can throw.
2677 EmitRuntimeCallOrInvoke(fn
, value
);
2679 llvm::FunctionCallee
&fn
= CGM
.getObjCEntrypoints().objc_autoreleasePoolPop
;
2681 fn
= getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop
, CGM
);
2683 EmitRuntimeCall(fn
, value
);
2687 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2688 /// Which is: [[NSAutoreleasePool alloc] init];
2689 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2690 /// init is declared as: - (id) init; in its NSObject super class.
2692 llvm::Value
*CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2693 CGObjCRuntime
&Runtime
= CGM
.getObjCRuntime();
2694 llvm::Value
*Receiver
= Runtime
.EmitNSAutoreleasePoolClassRef(*this);
2695 // [NSAutoreleasePool alloc]
2696 IdentifierInfo
*II
= &CGM
.getContext().Idents
.get("alloc");
2697 Selector AllocSel
= getContext().Selectors
.getSelector(0, &II
);
2700 Runtime
.GenerateMessageSend(*this, ReturnValueSlot(),
2701 getContext().getObjCIdType(),
2702 AllocSel
, Receiver
, Args
);
2705 Receiver
= AllocRV
.getScalarVal();
2706 II
= &CGM
.getContext().Idents
.get("init");
2707 Selector InitSel
= getContext().Selectors
.getSelector(0, &II
);
2709 Runtime
.GenerateMessageSend(*this, ReturnValueSlot(),
2710 getContext().getObjCIdType(),
2711 InitSel
, Receiver
, Args
);
2712 return InitRV
.getScalarVal();
2715 /// Allocate the given objc object.
2716 /// call i8* \@objc_alloc(i8* %value)
2717 llvm::Value
*CodeGenFunction::EmitObjCAlloc(llvm::Value
*value
,
2718 llvm::Type
*resultType
) {
2719 return emitObjCValueOperation(*this, value
, resultType
,
2720 CGM
.getObjCEntrypoints().objc_alloc
,
2724 /// Allocate the given objc object.
2725 /// call i8* \@objc_allocWithZone(i8* %value)
2726 llvm::Value
*CodeGenFunction::EmitObjCAllocWithZone(llvm::Value
*value
,
2727 llvm::Type
*resultType
) {
2728 return emitObjCValueOperation(*this, value
, resultType
,
2729 CGM
.getObjCEntrypoints().objc_allocWithZone
,
2730 "objc_allocWithZone");
2733 llvm::Value
*CodeGenFunction::EmitObjCAllocInit(llvm::Value
*value
,
2734 llvm::Type
*resultType
) {
2735 return emitObjCValueOperation(*this, value
, resultType
,
2736 CGM
.getObjCEntrypoints().objc_alloc_init
,
2740 /// Produce the code to do a primitive release.
2742 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value
*Arg
) {
2743 IdentifierInfo
*II
= &CGM
.getContext().Idents
.get("drain");
2744 Selector DrainSel
= getContext().Selectors
.getSelector(0, &II
);
2746 CGM
.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2747 getContext().VoidTy
, DrainSel
, Arg
, Args
);
2750 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction
&CGF
,
2753 CGF
.EmitARCDestroyStrong(addr
, ARCPreciseLifetime
);
2756 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction
&CGF
,
2759 CGF
.EmitARCDestroyStrong(addr
, ARCImpreciseLifetime
);
2762 void CodeGenFunction::destroyARCWeak(CodeGenFunction
&CGF
,
2765 CGF
.EmitARCDestroyWeak(addr
);
2768 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction
&CGF
, Address addr
,
2770 llvm::Value
*value
= CGF
.Builder
.CreateLoad(addr
);
2771 CGF
.EmitARCIntrinsicUse(value
);
2774 /// Autorelease the given object.
2775 /// call i8* \@objc_autorelease(i8* %value)
2776 llvm::Value
*CodeGenFunction::EmitObjCAutorelease(llvm::Value
*value
,
2777 llvm::Type
*returnType
) {
2778 return emitObjCValueOperation(
2779 *this, value
, returnType
,
2780 CGM
.getObjCEntrypoints().objc_autoreleaseRuntimeFunction
,
2781 "objc_autorelease");
2784 /// Retain the given object, with normal retain semantics.
2785 /// call i8* \@objc_retain(i8* %value)
2786 llvm::Value
*CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value
*value
,
2787 llvm::Type
*returnType
) {
2788 return emitObjCValueOperation(
2789 *this, value
, returnType
,
2790 CGM
.getObjCEntrypoints().objc_retainRuntimeFunction
, "objc_retain");
2793 /// Release the given object.
2794 /// call void \@objc_release(i8* %value)
2795 void CodeGenFunction::EmitObjCRelease(llvm::Value
*value
,
2796 ARCPreciseLifetime_t precise
) {
2797 if (isa
<llvm::ConstantPointerNull
>(value
)) return;
2799 llvm::FunctionCallee
&fn
=
2800 CGM
.getObjCEntrypoints().objc_releaseRuntimeFunction
;
2802 llvm::FunctionType
*fnType
=
2803 llvm::FunctionType::get(Builder
.getVoidTy(), Int8PtrTy
, false);
2804 fn
= CGM
.CreateRuntimeFunction(fnType
, "objc_release");
2805 setARCRuntimeFunctionLinkage(CGM
, fn
);
2806 // We have Native ARC, so set nonlazybind attribute for performance
2807 if (llvm::Function
*f
= dyn_cast
<llvm::Function
>(fn
.getCallee()))
2808 f
->addFnAttr(llvm::Attribute::NonLazyBind
);
2811 // Cast the argument to 'id'.
2812 value
= Builder
.CreateBitCast(value
, Int8PtrTy
);
2814 // Call objc_release.
2815 llvm::CallBase
*call
= EmitCallOrInvoke(fn
, value
);
2817 if (precise
== ARCImpreciseLifetime
) {
2818 call
->setMetadata("clang.imprecise_release",
2819 llvm::MDNode::get(Builder
.getContext(), None
));
2824 struct CallObjCAutoreleasePoolObject final
: EHScopeStack::Cleanup
{
2827 CallObjCAutoreleasePoolObject(llvm::Value
*token
) : Token(token
) {}
2829 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
2830 CGF
.EmitObjCAutoreleasePoolPop(Token
);
2833 struct CallObjCMRRAutoreleasePoolObject final
: EHScopeStack::Cleanup
{
2836 CallObjCMRRAutoreleasePoolObject(llvm::Value
*token
) : Token(token
) {}
2838 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
2839 CGF
.EmitObjCMRRAutoreleasePoolPop(Token
);
2844 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value
*Ptr
) {
2845 if (CGM
.getLangOpts().ObjCAutoRefCount
)
2846 EHStack
.pushCleanup
<CallObjCAutoreleasePoolObject
>(NormalCleanup
, Ptr
);
2848 EHStack
.pushCleanup
<CallObjCMRRAutoreleasePoolObject
>(NormalCleanup
, Ptr
);
2851 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime
) {
2853 case Qualifiers::OCL_None
:
2854 case Qualifiers::OCL_ExplicitNone
:
2855 case Qualifiers::OCL_Strong
:
2856 case Qualifiers::OCL_Autoreleasing
:
2859 case Qualifiers::OCL_Weak
:
2863 llvm_unreachable("impossible lifetime!");
2866 static TryEmitResult
tryEmitARCRetainLoadOfScalar(CodeGenFunction
&CGF
,
2869 llvm::Value
*result
;
2870 bool shouldRetain
= shouldRetainObjCLifetime(type
.getObjCLifetime());
2872 result
= CGF
.EmitLoadOfLValue(lvalue
, SourceLocation()).getScalarVal();
2874 assert(type
.getObjCLifetime() == Qualifiers::OCL_Weak
);
2875 result
= CGF
.EmitARCLoadWeakRetained(lvalue
.getAddress(CGF
));
2877 return TryEmitResult(result
, !shouldRetain
);
2880 static TryEmitResult
tryEmitARCRetainLoadOfScalar(CodeGenFunction
&CGF
,
2882 e
= e
->IgnoreParens();
2883 QualType type
= e
->getType();
2885 // If we're loading retained from a __strong xvalue, we can avoid
2886 // an extra retain/release pair by zeroing out the source of this
2887 // "move" operation.
2888 if (e
->isXValue() &&
2889 !type
.isConstQualified() &&
2890 type
.getObjCLifetime() == Qualifiers::OCL_Strong
) {
2892 LValue lv
= CGF
.EmitLValue(e
);
2894 // Load the object pointer.
2895 llvm::Value
*result
= CGF
.EmitLoadOfLValue(lv
,
2896 SourceLocation()).getScalarVal();
2898 // Set the source pointer to NULL.
2899 CGF
.EmitStoreOfScalar(getNullForVariable(lv
.getAddress(CGF
)), lv
);
2901 return TryEmitResult(result
, true);
2904 // As a very special optimization, in ARC++, if the l-value is the
2905 // result of a non-volatile assignment, do a simple retain of the
2906 // result of the call to objc_storeWeak instead of reloading.
2907 if (CGF
.getLangOpts().CPlusPlus
&&
2908 !type
.isVolatileQualified() &&
2909 type
.getObjCLifetime() == Qualifiers::OCL_Weak
&&
2910 isa
<BinaryOperator
>(e
) &&
2911 cast
<BinaryOperator
>(e
)->getOpcode() == BO_Assign
)
2912 return TryEmitResult(CGF
.EmitScalarExpr(e
), false);
2914 // Try to emit code for scalar constant instead of emitting LValue and
2915 // loading it because we are not guaranteed to have an l-value. One of such
2916 // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2917 if (const auto *decl_expr
= dyn_cast
<DeclRefExpr
>(e
)) {
2918 auto *DRE
= const_cast<DeclRefExpr
*>(decl_expr
);
2919 if (CodeGenFunction::ConstantEmission constant
= CGF
.tryEmitAsConstant(DRE
))
2920 return TryEmitResult(CGF
.emitScalarConstant(constant
, DRE
),
2921 !shouldRetainObjCLifetime(type
.getObjCLifetime()));
2924 return tryEmitARCRetainLoadOfScalar(CGF
, CGF
.EmitLValue(e
), type
);
2927 typedef llvm::function_ref
<llvm::Value
*(CodeGenFunction
&CGF
,
2928 llvm::Value
*value
)>
2931 /// Insert code immediately after a call.
2933 // FIXME: We should find a way to emit the runtime call immediately
2934 // after the call is emitted to eliminate the need for this function.
2935 static llvm::Value
*emitARCOperationAfterCall(CodeGenFunction
&CGF
,
2937 ValueTransform doAfterCall
,
2938 ValueTransform doFallback
) {
2939 CGBuilderTy::InsertPoint ip
= CGF
.Builder
.saveIP();
2940 auto *callBase
= dyn_cast
<llvm::CallBase
>(value
);
2942 if (callBase
&& llvm::objcarc::hasAttachedCallOpBundle(callBase
)) {
2943 // Fall back if the call base has operand bundle "clang.arc.attachedcall".
2944 value
= doFallback(CGF
, value
);
2945 } else if (llvm::CallInst
*call
= dyn_cast
<llvm::CallInst
>(value
)) {
2946 // Place the retain immediately following the call.
2947 CGF
.Builder
.SetInsertPoint(call
->getParent(),
2948 ++llvm::BasicBlock::iterator(call
));
2949 value
= doAfterCall(CGF
, value
);
2950 } else if (llvm::InvokeInst
*invoke
= dyn_cast
<llvm::InvokeInst
>(value
)) {
2951 // Place the retain at the beginning of the normal destination block.
2952 llvm::BasicBlock
*BB
= invoke
->getNormalDest();
2953 CGF
.Builder
.SetInsertPoint(BB
, BB
->begin());
2954 value
= doAfterCall(CGF
, value
);
2956 // Bitcasts can arise because of related-result returns. Rewrite
2958 } else if (llvm::BitCastInst
*bitcast
= dyn_cast
<llvm::BitCastInst
>(value
)) {
2959 // Change the insert point to avoid emitting the fall-back call after the
2961 CGF
.Builder
.SetInsertPoint(bitcast
->getParent(), bitcast
->getIterator());
2962 llvm::Value
*operand
= bitcast
->getOperand(0);
2963 operand
= emitARCOperationAfterCall(CGF
, operand
, doAfterCall
, doFallback
);
2964 bitcast
->setOperand(0, operand
);
2967 auto *phi
= dyn_cast
<llvm::PHINode
>(value
);
2968 if (phi
&& phi
->getNumIncomingValues() == 2 &&
2969 isa
<llvm::ConstantPointerNull
>(phi
->getIncomingValue(1)) &&
2970 isa
<llvm::CallBase
>(phi
->getIncomingValue(0))) {
2971 // Handle phi instructions that are generated when it's necessary to check
2972 // whether the receiver of a message is null.
2973 llvm::Value
*inVal
= phi
->getIncomingValue(0);
2974 inVal
= emitARCOperationAfterCall(CGF
, inVal
, doAfterCall
, doFallback
);
2975 phi
->setIncomingValue(0, inVal
);
2978 // Generic fall-back case.
2979 // Retain using the non-block variant: we never need to do a copy
2980 // of a block that's been returned to us.
2981 value
= doFallback(CGF
, value
);
2985 CGF
.Builder
.restoreIP(ip
);
2989 /// Given that the given expression is some sort of call (which does
2990 /// not return retained), emit a retain following it.
2991 static llvm::Value
*emitARCRetainCallResult(CodeGenFunction
&CGF
,
2993 llvm::Value
*value
= CGF
.EmitScalarExpr(e
);
2994 return emitARCOperationAfterCall(CGF
, value
,
2995 [](CodeGenFunction
&CGF
, llvm::Value
*value
) {
2996 return CGF
.EmitARCRetainAutoreleasedReturnValue(value
);
2998 [](CodeGenFunction
&CGF
, llvm::Value
*value
) {
2999 return CGF
.EmitARCRetainNonBlock(value
);
3003 /// Given that the given expression is some sort of call (which does
3004 /// not return retained), perform an unsafeClaim following it.
3005 static llvm::Value
*emitARCUnsafeClaimCallResult(CodeGenFunction
&CGF
,
3007 llvm::Value
*value
= CGF
.EmitScalarExpr(e
);
3008 return emitARCOperationAfterCall(CGF
, value
,
3009 [](CodeGenFunction
&CGF
, llvm::Value
*value
) {
3010 return CGF
.EmitARCUnsafeClaimAutoreleasedReturnValue(value
);
3012 [](CodeGenFunction
&CGF
, llvm::Value
*value
) {
3017 llvm::Value
*CodeGenFunction::EmitARCReclaimReturnedObject(const Expr
*E
,
3018 bool allowUnsafeClaim
) {
3019 if (allowUnsafeClaim
&&
3020 CGM
.getLangOpts().ObjCRuntime
.hasARCUnsafeClaimAutoreleasedReturnValue()) {
3021 return emitARCUnsafeClaimCallResult(*this, E
);
3023 llvm::Value
*value
= emitARCRetainCallResult(*this, E
);
3024 return EmitObjCConsumeObject(E
->getType(), value
);
3028 /// Determine whether it might be important to emit a separate
3029 /// objc_retain_block on the result of the given expression, or
3030 /// whether it's okay to just emit it in a +1 context.
3031 static bool shouldEmitSeparateBlockRetain(const Expr
*e
) {
3032 assert(e
->getType()->isBlockPointerType());
3033 e
= e
->IgnoreParens();
3035 // For future goodness, emit block expressions directly in +1
3036 // contexts if we can.
3037 if (isa
<BlockExpr
>(e
))
3040 if (const CastExpr
*cast
= dyn_cast
<CastExpr
>(e
)) {
3041 switch (cast
->getCastKind()) {
3042 // Emitting these operations in +1 contexts is goodness.
3043 case CK_LValueToRValue
:
3044 case CK_ARCReclaimReturnedObject
:
3045 case CK_ARCConsumeObject
:
3046 case CK_ARCProduceObject
:
3049 // These operations preserve a block type.
3052 return shouldEmitSeparateBlockRetain(cast
->getSubExpr());
3054 // These operations are known to be bad (or haven't been considered).
3055 case CK_AnyPointerToBlockPointerCast
:
3065 /// A CRTP base class for emitting expressions of retainable object
3066 /// pointer type in ARC.
3067 template <typename Impl
, typename Result
> class ARCExprEmitter
{
3069 CodeGenFunction
&CGF
;
3070 Impl
&asImpl() { return *static_cast<Impl
*>(this); }
3072 ARCExprEmitter(CodeGenFunction
&CGF
) : CGF(CGF
) {}
3075 Result
visit(const Expr
*e
);
3076 Result
visitCastExpr(const CastExpr
*e
);
3077 Result
visitPseudoObjectExpr(const PseudoObjectExpr
*e
);
3078 Result
visitBlockExpr(const BlockExpr
*e
);
3079 Result
visitBinaryOperator(const BinaryOperator
*e
);
3080 Result
visitBinAssign(const BinaryOperator
*e
);
3081 Result
visitBinAssignUnsafeUnretained(const BinaryOperator
*e
);
3082 Result
visitBinAssignAutoreleasing(const BinaryOperator
*e
);
3083 Result
visitBinAssignWeak(const BinaryOperator
*e
);
3084 Result
visitBinAssignStrong(const BinaryOperator
*e
);
3086 // Minimal implementation:
3087 // Result visitLValueToRValue(const Expr *e)
3088 // Result visitConsumeObject(const Expr *e)
3089 // Result visitExtendBlockObject(const Expr *e)
3090 // Result visitReclaimReturnedObject(const Expr *e)
3091 // Result visitCall(const Expr *e)
3092 // Result visitExpr(const Expr *e)
3094 // Result emitBitCast(Result result, llvm::Type *resultType)
3095 // llvm::Value *getValueOfResult(Result result)
3099 /// Try to emit a PseudoObjectExpr under special ARC rules.
3101 /// This massively duplicates emitPseudoObjectRValue.
3102 template <typename Impl
, typename Result
>
3104 ARCExprEmitter
<Impl
,Result
>::visitPseudoObjectExpr(const PseudoObjectExpr
*E
) {
3105 SmallVector
<CodeGenFunction::OpaqueValueMappingData
, 4> opaques
;
3107 // Find the result expression.
3108 const Expr
*resultExpr
= E
->getResultExpr();
3112 for (PseudoObjectExpr::const_semantics_iterator
3113 i
= E
->semantics_begin(), e
= E
->semantics_end(); i
!= e
; ++i
) {
3114 const Expr
*semantic
= *i
;
3116 // If this semantic expression is an opaque value, bind it
3117 // to the result of its source expression.
3118 if (const OpaqueValueExpr
*ov
= dyn_cast
<OpaqueValueExpr
>(semantic
)) {
3119 typedef CodeGenFunction::OpaqueValueMappingData OVMA
;
3122 // If this semantic is the result of the pseudo-object
3123 // expression, try to evaluate the source as +1.
3124 if (ov
== resultExpr
) {
3125 assert(!OVMA::shouldBindAsLValue(ov
));
3126 result
= asImpl().visit(ov
->getSourceExpr());
3127 opaqueData
= OVMA::bind(CGF
, ov
,
3128 RValue::get(asImpl().getValueOfResult(result
)));
3130 // Otherwise, just bind it.
3132 opaqueData
= OVMA::bind(CGF
, ov
, ov
->getSourceExpr());
3134 opaques
.push_back(opaqueData
);
3136 // Otherwise, if the expression is the result, evaluate it
3137 // and remember the result.
3138 } else if (semantic
== resultExpr
) {
3139 result
= asImpl().visit(semantic
);
3141 // Otherwise, evaluate the expression in an ignored context.
3143 CGF
.EmitIgnoredExpr(semantic
);
3147 // Unbind all the opaques now.
3148 for (unsigned i
= 0, e
= opaques
.size(); i
!= e
; ++i
)
3149 opaques
[i
].unbind(CGF
);
3154 template <typename Impl
, typename Result
>
3155 Result ARCExprEmitter
<Impl
, Result
>::visitBlockExpr(const BlockExpr
*e
) {
3156 // The default implementation just forwards the expression to visitExpr.
3157 return asImpl().visitExpr(e
);
3160 template <typename Impl
, typename Result
>
3161 Result ARCExprEmitter
<Impl
,Result
>::visitCastExpr(const CastExpr
*e
) {
3162 switch (e
->getCastKind()) {
3164 // No-op casts don't change the type, so we just ignore them.
3166 return asImpl().visit(e
->getSubExpr());
3168 // These casts can change the type.
3169 case CK_CPointerToObjCPointerCast
:
3170 case CK_BlockPointerToObjCPointerCast
:
3171 case CK_AnyPointerToBlockPointerCast
:
3173 llvm::Type
*resultType
= CGF
.ConvertType(e
->getType());
3174 assert(e
->getSubExpr()->getType()->hasPointerRepresentation());
3175 Result result
= asImpl().visit(e
->getSubExpr());
3176 return asImpl().emitBitCast(result
, resultType
);
3179 // Handle some casts specially.
3180 case CK_LValueToRValue
:
3181 return asImpl().visitLValueToRValue(e
->getSubExpr());
3182 case CK_ARCConsumeObject
:
3183 return asImpl().visitConsumeObject(e
->getSubExpr());
3184 case CK_ARCExtendBlockObject
:
3185 return asImpl().visitExtendBlockObject(e
->getSubExpr());
3186 case CK_ARCReclaimReturnedObject
:
3187 return asImpl().visitReclaimReturnedObject(e
->getSubExpr());
3189 // Otherwise, use the default logic.
3191 return asImpl().visitExpr(e
);
3195 template <typename Impl
, typename Result
>
3197 ARCExprEmitter
<Impl
,Result
>::visitBinaryOperator(const BinaryOperator
*e
) {
3198 switch (e
->getOpcode()) {
3200 CGF
.EmitIgnoredExpr(e
->getLHS());
3201 CGF
.EnsureInsertPoint();
3202 return asImpl().visit(e
->getRHS());
3205 return asImpl().visitBinAssign(e
);
3208 return asImpl().visitExpr(e
);
3212 template <typename Impl
, typename Result
>
3213 Result ARCExprEmitter
<Impl
,Result
>::visitBinAssign(const BinaryOperator
*e
) {
3214 switch (e
->getLHS()->getType().getObjCLifetime()) {
3215 case Qualifiers::OCL_ExplicitNone
:
3216 return asImpl().visitBinAssignUnsafeUnretained(e
);
3218 case Qualifiers::OCL_Weak
:
3219 return asImpl().visitBinAssignWeak(e
);
3221 case Qualifiers::OCL_Autoreleasing
:
3222 return asImpl().visitBinAssignAutoreleasing(e
);
3224 case Qualifiers::OCL_Strong
:
3225 return asImpl().visitBinAssignStrong(e
);
3227 case Qualifiers::OCL_None
:
3228 return asImpl().visitExpr(e
);
3230 llvm_unreachable("bad ObjC ownership qualifier");
3233 /// The default rule for __unsafe_unretained emits the RHS recursively,
3234 /// stores into the unsafe variable, and propagates the result outward.
3235 template <typename Impl
, typename Result
>
3236 Result ARCExprEmitter
<Impl
,Result
>::
3237 visitBinAssignUnsafeUnretained(const BinaryOperator
*e
) {
3238 // Recursively emit the RHS.
3239 // For __block safety, do this before emitting the LHS.
3240 Result result
= asImpl().visit(e
->getRHS());
3242 // Perform the store.
3244 CGF
.EmitCheckedLValue(e
->getLHS(), CodeGenFunction::TCK_Store
);
3245 CGF
.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result
)),
3251 template <typename Impl
, typename Result
>
3253 ARCExprEmitter
<Impl
,Result
>::visitBinAssignAutoreleasing(const BinaryOperator
*e
) {
3254 return asImpl().visitExpr(e
);
3257 template <typename Impl
, typename Result
>
3259 ARCExprEmitter
<Impl
,Result
>::visitBinAssignWeak(const BinaryOperator
*e
) {
3260 return asImpl().visitExpr(e
);
3263 template <typename Impl
, typename Result
>
3265 ARCExprEmitter
<Impl
,Result
>::visitBinAssignStrong(const BinaryOperator
*e
) {
3266 return asImpl().visitExpr(e
);
3269 /// The general expression-emission logic.
3270 template <typename Impl
, typename Result
>
3271 Result ARCExprEmitter
<Impl
,Result
>::visit(const Expr
*e
) {
3272 // We should *never* see a nested full-expression here, because if
3273 // we fail to emit at +1, our caller must not retain after we close
3274 // out the full-expression. This isn't as important in the unsafe
3276 assert(!isa
<ExprWithCleanups
>(e
));
3278 // Look through parens, __extension__, generic selection, etc.
3279 e
= e
->IgnoreParens();
3281 // Handle certain kinds of casts.
3282 if (const CastExpr
*ce
= dyn_cast
<CastExpr
>(e
)) {
3283 return asImpl().visitCastExpr(ce
);
3285 // Handle the comma operator.
3286 } else if (auto op
= dyn_cast
<BinaryOperator
>(e
)) {
3287 return asImpl().visitBinaryOperator(op
);
3289 // TODO: handle conditional operators here
3291 // For calls and message sends, use the retained-call logic.
3292 // Delegate inits are a special case in that they're the only
3293 // returns-retained expression that *isn't* surrounded by
3295 } else if (isa
<CallExpr
>(e
) ||
3296 (isa
<ObjCMessageExpr
>(e
) &&
3297 !cast
<ObjCMessageExpr
>(e
)->isDelegateInitCall())) {
3298 return asImpl().visitCall(e
);
3300 // Look through pseudo-object expressions.
3301 } else if (const PseudoObjectExpr
*pseudo
= dyn_cast
<PseudoObjectExpr
>(e
)) {
3302 return asImpl().visitPseudoObjectExpr(pseudo
);
3303 } else if (auto *be
= dyn_cast
<BlockExpr
>(e
))
3304 return asImpl().visitBlockExpr(be
);
3306 return asImpl().visitExpr(e
);
3311 /// An emitter for +1 results.
3312 struct ARCRetainExprEmitter
:
3313 public ARCExprEmitter
<ARCRetainExprEmitter
, TryEmitResult
> {
3315 ARCRetainExprEmitter(CodeGenFunction
&CGF
) : ARCExprEmitter(CGF
) {}
3317 llvm::Value
*getValueOfResult(TryEmitResult result
) {
3318 return result
.getPointer();
3321 TryEmitResult
emitBitCast(TryEmitResult result
, llvm::Type
*resultType
) {
3322 llvm::Value
*value
= result
.getPointer();
3323 value
= CGF
.Builder
.CreateBitCast(value
, resultType
);
3324 result
.setPointer(value
);
3328 TryEmitResult
visitLValueToRValue(const Expr
*e
) {
3329 return tryEmitARCRetainLoadOfScalar(CGF
, e
);
3332 /// For consumptions, just emit the subexpression and thus elide
3333 /// the retain/release pair.
3334 TryEmitResult
visitConsumeObject(const Expr
*e
) {
3335 llvm::Value
*result
= CGF
.EmitScalarExpr(e
);
3336 return TryEmitResult(result
, true);
3339 TryEmitResult
visitBlockExpr(const BlockExpr
*e
) {
3340 TryEmitResult result
= visitExpr(e
);
3341 // Avoid the block-retain if this is a block literal that doesn't need to be
3342 // copied to the heap.
3343 if (CGF
.CGM
.getCodeGenOpts().ObjCAvoidHeapifyLocalBlocks
&&
3344 e
->getBlockDecl()->canAvoidCopyToHeap())
3345 result
.setInt(true);
3349 /// Block extends are net +0. Naively, we could just recurse on
3350 /// the subexpression, but actually we need to ensure that the
3351 /// value is copied as a block, so there's a little filter here.
3352 TryEmitResult
visitExtendBlockObject(const Expr
*e
) {
3353 llvm::Value
*result
; // will be a +0 value
3355 // If we can't safely assume the sub-expression will produce a
3356 // block-copied value, emit the sub-expression at +0.
3357 if (shouldEmitSeparateBlockRetain(e
)) {
3358 result
= CGF
.EmitScalarExpr(e
);
3360 // Otherwise, try to emit the sub-expression at +1 recursively.
3362 TryEmitResult subresult
= asImpl().visit(e
);
3364 // If that produced a retained value, just use that.
3365 if (subresult
.getInt()) {
3369 // Otherwise it's +0.
3370 result
= subresult
.getPointer();
3373 // Retain the object as a block.
3374 result
= CGF
.EmitARCRetainBlock(result
, /*mandatory*/ true);
3375 return TryEmitResult(result
, true);
3378 /// For reclaims, emit the subexpression as a retained call and
3379 /// skip the consumption.
3380 TryEmitResult
visitReclaimReturnedObject(const Expr
*e
) {
3381 llvm::Value
*result
= emitARCRetainCallResult(CGF
, e
);
3382 return TryEmitResult(result
, true);
3385 /// When we have an undecorated call, retroactively do a claim.
3386 TryEmitResult
visitCall(const Expr
*e
) {
3387 llvm::Value
*result
= emitARCRetainCallResult(CGF
, e
);
3388 return TryEmitResult(result
, true);
3391 // TODO: maybe special-case visitBinAssignWeak?
3393 TryEmitResult
visitExpr(const Expr
*e
) {
3394 // We didn't find an obvious production, so emit what we've got and
3395 // tell the caller that we didn't manage to retain.
3396 llvm::Value
*result
= CGF
.EmitScalarExpr(e
);
3397 return TryEmitResult(result
, false);
3402 static TryEmitResult
3403 tryEmitARCRetainScalarExpr(CodeGenFunction
&CGF
, const Expr
*e
) {
3404 return ARCRetainExprEmitter(CGF
).visit(e
);
3407 static llvm::Value
*emitARCRetainLoadOfScalar(CodeGenFunction
&CGF
,
3410 TryEmitResult result
= tryEmitARCRetainLoadOfScalar(CGF
, lvalue
, type
);
3411 llvm::Value
*value
= result
.getPointer();
3412 if (!result
.getInt())
3413 value
= CGF
.EmitARCRetain(type
, value
);
3417 /// EmitARCRetainScalarExpr - Semantically equivalent to
3418 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3419 /// best-effort attempt to peephole expressions that naturally produce
3420 /// retained objects.
3421 llvm::Value
*CodeGenFunction::EmitARCRetainScalarExpr(const Expr
*e
) {
3422 // The retain needs to happen within the full-expression.
3423 if (const ExprWithCleanups
*cleanups
= dyn_cast
<ExprWithCleanups
>(e
)) {
3424 RunCleanupsScope
scope(*this);
3425 return EmitARCRetainScalarExpr(cleanups
->getSubExpr());
3428 TryEmitResult result
= tryEmitARCRetainScalarExpr(*this, e
);
3429 llvm::Value
*value
= result
.getPointer();
3430 if (!result
.getInt())
3431 value
= EmitARCRetain(e
->getType(), value
);
3436 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr
*e
) {
3437 // The retain needs to happen within the full-expression.
3438 if (const ExprWithCleanups
*cleanups
= dyn_cast
<ExprWithCleanups
>(e
)) {
3439 RunCleanupsScope
scope(*this);
3440 return EmitARCRetainAutoreleaseScalarExpr(cleanups
->getSubExpr());
3443 TryEmitResult result
= tryEmitARCRetainScalarExpr(*this, e
);
3444 llvm::Value
*value
= result
.getPointer();
3445 if (result
.getInt())
3446 value
= EmitARCAutorelease(value
);
3448 value
= EmitARCRetainAutorelease(e
->getType(), value
);
3452 llvm::Value
*CodeGenFunction::EmitARCExtendBlockObject(const Expr
*e
) {
3453 llvm::Value
*result
;
3456 if (shouldEmitSeparateBlockRetain(e
)) {
3457 result
= EmitScalarExpr(e
);
3460 TryEmitResult subresult
= tryEmitARCRetainScalarExpr(*this, e
);
3461 result
= subresult
.getPointer();
3462 doRetain
= !subresult
.getInt();
3466 result
= EmitARCRetainBlock(result
, /*mandatory*/ true);
3467 return EmitObjCConsumeObject(e
->getType(), result
);
3470 llvm::Value
*CodeGenFunction::EmitObjCThrowOperand(const Expr
*expr
) {
3471 // In ARC, retain and autorelease the expression.
3472 if (getLangOpts().ObjCAutoRefCount
) {
3473 // Do so before running any cleanups for the full-expression.
3474 // EmitARCRetainAutoreleaseScalarExpr does this for us.
3475 return EmitARCRetainAutoreleaseScalarExpr(expr
);
3478 // Otherwise, use the normal scalar-expression emission. The
3479 // exception machinery doesn't do anything special with the
3480 // exception like retaining it, so there's no safety associated with
3481 // only running cleanups after the throw has started, and when it
3482 // matters it tends to be substantially inferior code.
3483 return EmitScalarExpr(expr
);
3488 /// An emitter for assigning into an __unsafe_unretained context.
3489 struct ARCUnsafeUnretainedExprEmitter
:
3490 public ARCExprEmitter
<ARCUnsafeUnretainedExprEmitter
, llvm::Value
*> {
3492 ARCUnsafeUnretainedExprEmitter(CodeGenFunction
&CGF
) : ARCExprEmitter(CGF
) {}
3494 llvm::Value
*getValueOfResult(llvm::Value
*value
) {
3498 llvm::Value
*emitBitCast(llvm::Value
*value
, llvm::Type
*resultType
) {
3499 return CGF
.Builder
.CreateBitCast(value
, resultType
);
3502 llvm::Value
*visitLValueToRValue(const Expr
*e
) {
3503 return CGF
.EmitScalarExpr(e
);
3506 /// For consumptions, just emit the subexpression and perform the
3507 /// consumption like normal.
3508 llvm::Value
*visitConsumeObject(const Expr
*e
) {
3509 llvm::Value
*value
= CGF
.EmitScalarExpr(e
);
3510 return CGF
.EmitObjCConsumeObject(e
->getType(), value
);
3513 /// No special logic for block extensions. (This probably can't
3514 /// actually happen in this emitter, though.)
3515 llvm::Value
*visitExtendBlockObject(const Expr
*e
) {
3516 return CGF
.EmitARCExtendBlockObject(e
);
3519 /// For reclaims, perform an unsafeClaim if that's enabled.
3520 llvm::Value
*visitReclaimReturnedObject(const Expr
*e
) {
3521 return CGF
.EmitARCReclaimReturnedObject(e
, /*unsafe*/ true);
3524 /// When we have an undecorated call, just emit it without adding
3525 /// the unsafeClaim.
3526 llvm::Value
*visitCall(const Expr
*e
) {
3527 return CGF
.EmitScalarExpr(e
);
3530 /// Just do normal scalar emission in the default case.
3531 llvm::Value
*visitExpr(const Expr
*e
) {
3532 return CGF
.EmitScalarExpr(e
);
3537 static llvm::Value
*emitARCUnsafeUnretainedScalarExpr(CodeGenFunction
&CGF
,
3539 return ARCUnsafeUnretainedExprEmitter(CGF
).visit(e
);
3542 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3543 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3544 /// avoiding any spurious retains, including by performing reclaims
3545 /// with objc_unsafeClaimAutoreleasedReturnValue.
3546 llvm::Value
*CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr
*e
) {
3547 // Look through full-expressions.
3548 if (const ExprWithCleanups
*cleanups
= dyn_cast
<ExprWithCleanups
>(e
)) {
3549 RunCleanupsScope
scope(*this);
3550 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups
->getSubExpr());
3553 return emitARCUnsafeUnretainedScalarExpr(*this, e
);
3556 std::pair
<LValue
,llvm::Value
*>
3557 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator
*e
,
3559 // Evaluate the RHS first. If we're ignoring the result, assume
3560 // that we can emit at an unsafe +0.
3563 value
= EmitARCUnsafeUnretainedScalarExpr(e
->getRHS());
3565 value
= EmitScalarExpr(e
->getRHS());
3568 // Emit the LHS and perform the store.
3569 LValue lvalue
= EmitLValue(e
->getLHS());
3570 EmitStoreOfScalar(value
, lvalue
);
3572 return std::pair
<LValue
,llvm::Value
*>(std::move(lvalue
), value
);
3575 std::pair
<LValue
,llvm::Value
*>
3576 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator
*e
,
3578 // Evaluate the RHS first.
3579 TryEmitResult result
= tryEmitARCRetainScalarExpr(*this, e
->getRHS());
3580 llvm::Value
*value
= result
.getPointer();
3582 bool hasImmediateRetain
= result
.getInt();
3584 // If we didn't emit a retained object, and the l-value is of block
3585 // type, then we need to emit the block-retain immediately in case
3586 // it invalidates the l-value.
3587 if (!hasImmediateRetain
&& e
->getType()->isBlockPointerType()) {
3588 value
= EmitARCRetainBlock(value
, /*mandatory*/ false);
3589 hasImmediateRetain
= true;
3592 LValue lvalue
= EmitLValue(e
->getLHS());
3594 // If the RHS was emitted retained, expand this.
3595 if (hasImmediateRetain
) {
3596 llvm::Value
*oldValue
= EmitLoadOfScalar(lvalue
, SourceLocation());
3597 EmitStoreOfScalar(value
, lvalue
);
3598 EmitARCRelease(oldValue
, lvalue
.isARCPreciseLifetime());
3600 value
= EmitARCStoreStrong(lvalue
, value
, ignored
);
3603 return std::pair
<LValue
,llvm::Value
*>(lvalue
, value
);
3606 std::pair
<LValue
,llvm::Value
*>
3607 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator
*e
) {
3608 llvm::Value
*value
= EmitARCRetainAutoreleaseScalarExpr(e
->getRHS());
3609 LValue lvalue
= EmitLValue(e
->getLHS());
3611 EmitStoreOfScalar(value
, lvalue
);
3613 return std::pair
<LValue
,llvm::Value
*>(lvalue
, value
);
3616 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3617 const ObjCAutoreleasePoolStmt
&ARPS
) {
3618 const Stmt
*subStmt
= ARPS
.getSubStmt();
3619 const CompoundStmt
&S
= cast
<CompoundStmt
>(*subStmt
);
3621 CGDebugInfo
*DI
= getDebugInfo();
3623 DI
->EmitLexicalBlockStart(Builder
, S
.getLBracLoc());
3625 // Keep track of the current cleanup stack depth.
3626 RunCleanupsScope
Scope(*this);
3627 if (CGM
.getLangOpts().ObjCRuntime
.hasNativeARC()) {
3628 llvm::Value
*token
= EmitObjCAutoreleasePoolPush();
3629 EHStack
.pushCleanup
<CallObjCAutoreleasePoolObject
>(NormalCleanup
, token
);
3631 llvm::Value
*token
= EmitObjCMRRAutoreleasePoolPush();
3632 EHStack
.pushCleanup
<CallObjCMRRAutoreleasePoolObject
>(NormalCleanup
, token
);
3635 for (const auto *I
: S
.body())
3639 DI
->EmitLexicalBlockEnd(Builder
, S
.getRBracLoc());
3642 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3643 /// make sure it survives garbage collection until this point.
3644 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value
*object
) {
3645 // We just use an inline assembly.
3646 llvm::FunctionType
*extenderType
3647 = llvm::FunctionType::get(VoidTy
, VoidPtrTy
, RequiredArgs::All
);
3648 llvm::InlineAsm
*extender
= llvm::InlineAsm::get(extenderType
,
3650 /* constraints */ "r",
3651 /* side effects */ true);
3653 object
= Builder
.CreateBitCast(object
, VoidPtrTy
);
3654 EmitNounwindRuntimeCall(extender
, object
);
3657 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3658 /// non-trivial copy assignment function, produce following helper function.
3659 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3662 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3663 const ObjCPropertyImplDecl
*PID
) {
3664 if (!getLangOpts().CPlusPlus
||
3665 !getLangOpts().ObjCRuntime
.hasAtomicCopyHelper())
3667 QualType Ty
= PID
->getPropertyIvarDecl()->getType();
3668 if (!Ty
->isRecordType())
3670 const ObjCPropertyDecl
*PD
= PID
->getPropertyDecl();
3671 if ((!(PD
->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic
)))
3673 llvm::Constant
*HelperFn
= nullptr;
3674 if (hasTrivialSetExpr(PID
))
3676 assert(PID
->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3677 if ((HelperFn
= CGM
.getAtomicSetterHelperFnMap(Ty
)))
3680 ASTContext
&C
= getContext();
3682 = &CGM
.getContext().Idents
.get("__assign_helper_atomic_property_");
3684 QualType ReturnTy
= C
.VoidTy
;
3685 QualType DestTy
= C
.getPointerType(Ty
);
3686 QualType SrcTy
= Ty
;
3688 SrcTy
= C
.getPointerType(SrcTy
);
3690 SmallVector
<QualType
, 2> ArgTys
;
3691 ArgTys
.push_back(DestTy
);
3692 ArgTys
.push_back(SrcTy
);
3693 QualType FunctionTy
= C
.getFunctionType(ReturnTy
, ArgTys
, {});
3695 FunctionDecl
*FD
= FunctionDecl::Create(
3696 C
, C
.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II
,
3697 FunctionTy
, nullptr, SC_Static
, false, false, false);
3699 FunctionArgList args
;
3700 ParmVarDecl
*Params
[2];
3701 ParmVarDecl
*DstDecl
= ParmVarDecl::Create(
3702 C
, FD
, SourceLocation(), SourceLocation(), nullptr, DestTy
,
3703 C
.getTrivialTypeSourceInfo(DestTy
, SourceLocation()), SC_None
,
3704 /*DefArg=*/nullptr);
3705 args
.push_back(Params
[0] = DstDecl
);
3706 ParmVarDecl
*SrcDecl
= ParmVarDecl::Create(
3707 C
, FD
, SourceLocation(), SourceLocation(), nullptr, SrcTy
,
3708 C
.getTrivialTypeSourceInfo(SrcTy
, SourceLocation()), SC_None
,
3709 /*DefArg=*/nullptr);
3710 args
.push_back(Params
[1] = SrcDecl
);
3711 FD
->setParams(Params
);
3713 const CGFunctionInfo
&FI
=
3714 CGM
.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy
, args
);
3716 llvm::FunctionType
*LTy
= CGM
.getTypes().GetFunctionType(FI
);
3718 llvm::Function
*Fn
=
3719 llvm::Function::Create(LTy
, llvm::GlobalValue::InternalLinkage
,
3720 "__assign_helper_atomic_property_",
3723 CGM
.SetInternalFunctionAttributes(GlobalDecl(), Fn
, FI
);
3725 StartFunction(FD
, ReturnTy
, Fn
, FI
, args
);
3727 DeclRefExpr
DstExpr(C
, DstDecl
, false, DestTy
, VK_PRValue
, SourceLocation());
3728 UnaryOperator
*DST
= UnaryOperator::Create(
3729 C
, &DstExpr
, UO_Deref
, DestTy
->getPointeeType(), VK_LValue
, OK_Ordinary
,
3730 SourceLocation(), false, FPOptionsOverride());
3732 DeclRefExpr
SrcExpr(C
, SrcDecl
, false, SrcTy
, VK_PRValue
, SourceLocation());
3733 UnaryOperator
*SRC
= UnaryOperator::Create(
3734 C
, &SrcExpr
, UO_Deref
, SrcTy
->getPointeeType(), VK_LValue
, OK_Ordinary
,
3735 SourceLocation(), false, FPOptionsOverride());
3737 Expr
*Args
[2] = {DST
, SRC
};
3738 CallExpr
*CalleeExp
= cast
<CallExpr
>(PID
->getSetterCXXAssignment());
3739 CXXOperatorCallExpr
*TheCall
= CXXOperatorCallExpr::Create(
3740 C
, OO_Equal
, CalleeExp
->getCallee(), Args
, DestTy
->getPointeeType(),
3741 VK_LValue
, SourceLocation(), FPOptionsOverride());
3746 HelperFn
= llvm::ConstantExpr::getBitCast(Fn
, VoidPtrTy
);
3747 CGM
.setAtomicSetterHelperFnMap(Ty
, HelperFn
);
3752 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3753 const ObjCPropertyImplDecl
*PID
) {
3754 if (!getLangOpts().CPlusPlus
||
3755 !getLangOpts().ObjCRuntime
.hasAtomicCopyHelper())
3757 const ObjCPropertyDecl
*PD
= PID
->getPropertyDecl();
3758 QualType Ty
= PD
->getType();
3759 if (!Ty
->isRecordType())
3761 if ((!(PD
->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic
)))
3763 llvm::Constant
*HelperFn
= nullptr;
3764 if (hasTrivialGetExpr(PID
))
3766 assert(PID
->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3767 if ((HelperFn
= CGM
.getAtomicGetterHelperFnMap(Ty
)))
3770 ASTContext
&C
= getContext();
3771 IdentifierInfo
*II
=
3772 &CGM
.getContext().Idents
.get("__copy_helper_atomic_property_");
3774 QualType ReturnTy
= C
.VoidTy
;
3775 QualType DestTy
= C
.getPointerType(Ty
);
3776 QualType SrcTy
= Ty
;
3778 SrcTy
= C
.getPointerType(SrcTy
);
3780 SmallVector
<QualType
, 2> ArgTys
;
3781 ArgTys
.push_back(DestTy
);
3782 ArgTys
.push_back(SrcTy
);
3783 QualType FunctionTy
= C
.getFunctionType(ReturnTy
, ArgTys
, {});
3785 FunctionDecl
*FD
= FunctionDecl::Create(
3786 C
, C
.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II
,
3787 FunctionTy
, nullptr, SC_Static
, false, false, false);
3789 FunctionArgList args
;
3790 ParmVarDecl
*Params
[2];
3791 ParmVarDecl
*DstDecl
= ParmVarDecl::Create(
3792 C
, FD
, SourceLocation(), SourceLocation(), nullptr, DestTy
,
3793 C
.getTrivialTypeSourceInfo(DestTy
, SourceLocation()), SC_None
,
3794 /*DefArg=*/nullptr);
3795 args
.push_back(Params
[0] = DstDecl
);
3796 ParmVarDecl
*SrcDecl
= ParmVarDecl::Create(
3797 C
, FD
, SourceLocation(), SourceLocation(), nullptr, SrcTy
,
3798 C
.getTrivialTypeSourceInfo(SrcTy
, SourceLocation()), SC_None
,
3799 /*DefArg=*/nullptr);
3800 args
.push_back(Params
[1] = SrcDecl
);
3801 FD
->setParams(Params
);
3803 const CGFunctionInfo
&FI
=
3804 CGM
.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy
, args
);
3806 llvm::FunctionType
*LTy
= CGM
.getTypes().GetFunctionType(FI
);
3808 llvm::Function
*Fn
= llvm::Function::Create(
3809 LTy
, llvm::GlobalValue::InternalLinkage
, "__copy_helper_atomic_property_",
3812 CGM
.SetInternalFunctionAttributes(GlobalDecl(), Fn
, FI
);
3814 StartFunction(FD
, ReturnTy
, Fn
, FI
, args
);
3816 DeclRefExpr
SrcExpr(getContext(), SrcDecl
, false, SrcTy
, VK_PRValue
,
3819 UnaryOperator
*SRC
= UnaryOperator::Create(
3820 C
, &SrcExpr
, UO_Deref
, SrcTy
->getPointeeType(), VK_LValue
, OK_Ordinary
,
3821 SourceLocation(), false, FPOptionsOverride());
3823 CXXConstructExpr
*CXXConstExpr
=
3824 cast
<CXXConstructExpr
>(PID
->getGetterCXXConstructor());
3826 SmallVector
<Expr
*, 4> ConstructorArgs
;
3827 ConstructorArgs
.push_back(SRC
);
3828 ConstructorArgs
.append(std::next(CXXConstExpr
->arg_begin()),
3829 CXXConstExpr
->arg_end());
3831 CXXConstructExpr
*TheCXXConstructExpr
=
3832 CXXConstructExpr::Create(C
, Ty
, SourceLocation(),
3833 CXXConstExpr
->getConstructor(),
3834 CXXConstExpr
->isElidable(),
3836 CXXConstExpr
->hadMultipleCandidates(),
3837 CXXConstExpr
->isListInitialization(),
3838 CXXConstExpr
->isStdInitListInitialization(),
3839 CXXConstExpr
->requiresZeroInitialization(),
3840 CXXConstExpr
->getConstructionKind(),
3843 DeclRefExpr
DstExpr(getContext(), DstDecl
, false, DestTy
, VK_PRValue
,
3846 RValue DV
= EmitAnyExpr(&DstExpr
);
3847 CharUnits Alignment
=
3848 getContext().getTypeAlignInChars(TheCXXConstructExpr
->getType());
3849 EmitAggExpr(TheCXXConstructExpr
,
3850 AggValueSlot::forAddr(
3851 Address(DV
.getScalarVal(), ConvertTypeForMem(Ty
), Alignment
),
3852 Qualifiers(), AggValueSlot::IsDestructed
,
3853 AggValueSlot::DoesNotNeedGCBarriers
,
3854 AggValueSlot::IsNotAliased
, AggValueSlot::DoesNotOverlap
));
3857 HelperFn
= llvm::ConstantExpr::getBitCast(Fn
, VoidPtrTy
);
3858 CGM
.setAtomicGetterHelperFnMap(Ty
, HelperFn
);
3863 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value
*Block
, QualType Ty
) {
3864 // Get selectors for retain/autorelease.
3865 IdentifierInfo
*CopyID
= &getContext().Idents
.get("copy");
3866 Selector CopySelector
=
3867 getContext().Selectors
.getNullarySelector(CopyID
);
3868 IdentifierInfo
*AutoreleaseID
= &getContext().Idents
.get("autorelease");
3869 Selector AutoreleaseSelector
=
3870 getContext().Selectors
.getNullarySelector(AutoreleaseID
);
3872 // Emit calls to retain/autorelease.
3873 CGObjCRuntime
&Runtime
= CGM
.getObjCRuntime();
3874 llvm::Value
*Val
= Block
;
3876 Result
= Runtime
.GenerateMessageSend(*this, ReturnValueSlot(),
3878 Val
, CallArgList(), nullptr, nullptr);
3879 Val
= Result
.getScalarVal();
3880 Result
= Runtime
.GenerateMessageSend(*this, ReturnValueSlot(),
3881 Ty
, AutoreleaseSelector
,
3882 Val
, CallArgList(), nullptr, nullptr);
3883 Val
= Result
.getScalarVal();
3887 static unsigned getBaseMachOPlatformID(const llvm::Triple
&TT
) {
3888 switch (TT
.getOS()) {
3889 case llvm::Triple::Darwin
:
3890 case llvm::Triple::MacOSX
:
3891 return llvm::MachO::PLATFORM_MACOS
;
3892 case llvm::Triple::IOS
:
3893 return llvm::MachO::PLATFORM_IOS
;
3894 case llvm::Triple::TvOS
:
3895 return llvm::MachO::PLATFORM_TVOS
;
3896 case llvm::Triple::WatchOS
:
3897 return llvm::MachO::PLATFORM_WATCHOS
;
3898 case llvm::Triple::DriverKit
:
3899 return llvm::MachO::PLATFORM_DRIVERKIT
;
3901 return /*Unknown platform*/ 0;
3905 static llvm::Value
*emitIsPlatformVersionAtLeast(CodeGenFunction
&CGF
,
3906 const VersionTuple
&Version
) {
3907 CodeGenModule
&CGM
= CGF
.CGM
;
3908 // Note: we intend to support multi-platform version checks, so reserve
3909 // the room for a dual platform checking invocation that will be
3910 // implemented in the future.
3911 llvm::SmallVector
<llvm::Value
*, 8> Args
;
3913 auto EmitArgs
= [&](const VersionTuple
&Version
, const llvm::Triple
&TT
) {
3914 Optional
<unsigned> Min
= Version
.getMinor(), SMin
= Version
.getSubminor();
3916 llvm::ConstantInt::get(CGM
.Int32Ty
, getBaseMachOPlatformID(TT
)));
3917 Args
.push_back(llvm::ConstantInt::get(CGM
.Int32Ty
, Version
.getMajor()));
3918 Args
.push_back(llvm::ConstantInt::get(CGM
.Int32Ty
, Min
.value_or(0)));
3919 Args
.push_back(llvm::ConstantInt::get(CGM
.Int32Ty
, SMin
.value_or(0)));
3922 assert(!Version
.empty() && "unexpected empty version");
3923 EmitArgs(Version
, CGM
.getTarget().getTriple());
3925 if (!CGM
.IsPlatformVersionAtLeastFn
) {
3926 llvm::FunctionType
*FTy
= llvm::FunctionType::get(
3927 CGM
.Int32Ty
, {CGM
.Int32Ty
, CGM
.Int32Ty
, CGM
.Int32Ty
, CGM
.Int32Ty
},
3929 CGM
.IsPlatformVersionAtLeastFn
=
3930 CGM
.CreateRuntimeFunction(FTy
, "__isPlatformVersionAtLeast");
3933 llvm::Value
*Check
=
3934 CGF
.EmitNounwindRuntimeCall(CGM
.IsPlatformVersionAtLeastFn
, Args
);
3935 return CGF
.Builder
.CreateICmpNE(Check
,
3936 llvm::Constant::getNullValue(CGM
.Int32Ty
));
3940 CodeGenFunction::EmitBuiltinAvailable(const VersionTuple
&Version
) {
3941 // Darwin uses the new __isPlatformVersionAtLeast family of routines.
3942 if (CGM
.getTarget().getTriple().isOSDarwin())
3943 return emitIsPlatformVersionAtLeast(*this, Version
);
3945 if (!CGM
.IsOSVersionAtLeastFn
) {
3946 llvm::FunctionType
*FTy
=
3947 llvm::FunctionType::get(Int32Ty
, {Int32Ty
, Int32Ty
, Int32Ty
}, false);
3948 CGM
.IsOSVersionAtLeastFn
=
3949 CGM
.CreateRuntimeFunction(FTy
, "__isOSVersionAtLeast");
3952 Optional
<unsigned> Min
= Version
.getMinor(), SMin
= Version
.getSubminor();
3953 llvm::Value
*Args
[] = {
3954 llvm::ConstantInt::get(CGM
.Int32Ty
, Version
.getMajor()),
3955 llvm::ConstantInt::get(CGM
.Int32Ty
, Min
.value_or(0)),
3956 llvm::ConstantInt::get(CGM
.Int32Ty
, SMin
.value_or(0))};
3958 llvm::Value
*CallRes
=
3959 EmitNounwindRuntimeCall(CGM
.IsOSVersionAtLeastFn
, Args
);
3961 return Builder
.CreateICmpNE(CallRes
, llvm::Constant::getNullValue(Int32Ty
));
3964 static bool isFoundationNeededForDarwinAvailabilityCheck(
3965 const llvm::Triple
&TT
, const VersionTuple
&TargetVersion
) {
3966 VersionTuple FoundationDroppedInVersion
;
3967 switch (TT
.getOS()) {
3968 case llvm::Triple::IOS
:
3969 case llvm::Triple::TvOS
:
3970 FoundationDroppedInVersion
= VersionTuple(/*Major=*/13);
3972 case llvm::Triple::WatchOS
:
3973 FoundationDroppedInVersion
= VersionTuple(/*Major=*/6);
3975 case llvm::Triple::Darwin
:
3976 case llvm::Triple::MacOSX
:
3977 FoundationDroppedInVersion
= VersionTuple(/*Major=*/10, /*Minor=*/15);
3979 case llvm::Triple::DriverKit
:
3980 // DriverKit doesn't need Foundation.
3983 llvm_unreachable("Unexpected OS");
3985 return TargetVersion
< FoundationDroppedInVersion
;
3988 void CodeGenModule::emitAtAvailableLinkGuard() {
3989 if (!IsPlatformVersionAtLeastFn
)
3991 // @available requires CoreFoundation only on Darwin.
3992 if (!Target
.getTriple().isOSDarwin())
3994 // @available doesn't need Foundation on macOS 10.15+, iOS/tvOS 13+, or
3996 if (!isFoundationNeededForDarwinAvailabilityCheck(
3997 Target
.getTriple(), Target
.getPlatformMinVersion()))
3999 // Add -framework CoreFoundation to the linker commands. We still want to
4000 // emit the core foundation reference down below because otherwise if
4001 // CoreFoundation is not used in the code, the linker won't link the
4003 auto &Context
= getLLVMContext();
4004 llvm::Metadata
*Args
[2] = {llvm::MDString::get(Context
, "-framework"),
4005 llvm::MDString::get(Context
, "CoreFoundation")};
4006 LinkerOptionsMetadata
.push_back(llvm::MDNode::get(Context
, Args
));
4007 // Emit a reference to a symbol from CoreFoundation to ensure that
4008 // CoreFoundation is linked into the final binary.
4009 llvm::FunctionType
*FTy
=
4010 llvm::FunctionType::get(Int32Ty
, {VoidPtrTy
}, false);
4011 llvm::FunctionCallee CFFunc
=
4012 CreateRuntimeFunction(FTy
, "CFBundleGetVersionNumber");
4014 llvm::FunctionType
*CheckFTy
= llvm::FunctionType::get(VoidTy
, {}, false);
4015 llvm::FunctionCallee CFLinkCheckFuncRef
= CreateRuntimeFunction(
4016 CheckFTy
, "__clang_at_available_requires_core_foundation_framework",
4017 llvm::AttributeList(), /*Local=*/true);
4018 llvm::Function
*CFLinkCheckFunc
=
4019 cast
<llvm::Function
>(CFLinkCheckFuncRef
.getCallee()->stripPointerCasts());
4020 if (CFLinkCheckFunc
->empty()) {
4021 CFLinkCheckFunc
->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage
);
4022 CFLinkCheckFunc
->setVisibility(llvm::GlobalValue::HiddenVisibility
);
4023 CodeGenFunction
CGF(*this);
4024 CGF
.Builder
.SetInsertPoint(CGF
.createBasicBlock("", CFLinkCheckFunc
));
4025 CGF
.EmitNounwindRuntimeCall(CFFunc
,
4026 llvm::Constant::getNullValue(VoidPtrTy
));
4027 CGF
.Builder
.CreateUnreachable();
4028 addCompilerUsedGlobal(CFLinkCheckFunc
);
4032 CGObjCRuntime::~CGObjCRuntime() {}