1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "clang/Driver/Driver.h"
10 #include "ToolChains/AIX.h"
11 #include "ToolChains/AMDGPU.h"
12 #include "ToolChains/AMDGPUOpenMP.h"
13 #include "ToolChains/AVR.h"
14 #include "ToolChains/Ananas.h"
15 #include "ToolChains/BareMetal.h"
16 #include "ToolChains/CSKYToolChain.h"
17 #include "ToolChains/Clang.h"
18 #include "ToolChains/CloudABI.h"
19 #include "ToolChains/Contiki.h"
20 #include "ToolChains/CrossWindows.h"
21 #include "ToolChains/Cuda.h"
22 #include "ToolChains/Darwin.h"
23 #include "ToolChains/DragonFly.h"
24 #include "ToolChains/FreeBSD.h"
25 #include "ToolChains/Fuchsia.h"
26 #include "ToolChains/Gnu.h"
27 #include "ToolChains/HIPAMD.h"
28 #include "ToolChains/HIPSPV.h"
29 #include "ToolChains/HLSL.h"
30 #include "ToolChains/Haiku.h"
31 #include "ToolChains/Hexagon.h"
32 #include "ToolChains/Hurd.h"
33 #include "ToolChains/Lanai.h"
34 #include "ToolChains/Linux.h"
35 #include "ToolChains/MSP430.h"
36 #include "ToolChains/MSVC.h"
37 #include "ToolChains/MinGW.h"
38 #include "ToolChains/Minix.h"
39 #include "ToolChains/MipsLinux.h"
40 #include "ToolChains/Myriad.h"
41 #include "ToolChains/NaCl.h"
42 #include "ToolChains/NetBSD.h"
43 #include "ToolChains/OpenBSD.h"
44 #include "ToolChains/PPCFreeBSD.h"
45 #include "ToolChains/PPCLinux.h"
46 #include "ToolChains/PS4CPU.h"
47 #include "ToolChains/RISCVToolchain.h"
48 #include "ToolChains/SPIRV.h"
49 #include "ToolChains/Solaris.h"
50 #include "ToolChains/TCE.h"
51 #include "ToolChains/VEToolchain.h"
52 #include "ToolChains/WebAssembly.h"
53 #include "ToolChains/XCore.h"
54 #include "ToolChains/ZOS.h"
55 #include "clang/Basic/TargetID.h"
56 #include "clang/Basic/Version.h"
57 #include "clang/Config/config.h"
58 #include "clang/Driver/Action.h"
59 #include "clang/Driver/Compilation.h"
60 #include "clang/Driver/DriverDiagnostic.h"
61 #include "clang/Driver/InputInfo.h"
62 #include "clang/Driver/Job.h"
63 #include "clang/Driver/Options.h"
64 #include "clang/Driver/Phases.h"
65 #include "clang/Driver/SanitizerArgs.h"
66 #include "clang/Driver/Tool.h"
67 #include "clang/Driver/ToolChain.h"
68 #include "clang/Driver/Types.h"
69 #include "llvm/ADT/ArrayRef.h"
70 #include "llvm/ADT/STLExtras.h"
71 #include "llvm/ADT/SmallSet.h"
72 #include "llvm/ADT/StringExtras.h"
73 #include "llvm/ADT/StringRef.h"
74 #include "llvm/ADT/StringSet.h"
75 #include "llvm/ADT/StringSwitch.h"
76 #include "llvm/Config/llvm-config.h"
77 #include "llvm/MC/TargetRegistry.h"
78 #include "llvm/Option/Arg.h"
79 #include "llvm/Option/ArgList.h"
80 #include "llvm/Option/OptSpecifier.h"
81 #include "llvm/Option/OptTable.h"
82 #include "llvm/Option/Option.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/ErrorHandling.h"
85 #include "llvm/Support/ExitCodes.h"
86 #include "llvm/Support/FileSystem.h"
87 #include "llvm/Support/FormatVariadic.h"
88 #include "llvm/Support/Host.h"
89 #include "llvm/Support/MD5.h"
90 #include "llvm/Support/Path.h"
91 #include "llvm/Support/PrettyStackTrace.h"
92 #include "llvm/Support/Process.h"
93 #include "llvm/Support/Program.h"
94 #include "llvm/Support/StringSaver.h"
95 #include "llvm/Support/VirtualFileSystem.h"
96 #include "llvm/Support/raw_ostream.h"
101 #include <unistd.h> // getpid
104 using namespace clang::driver
;
105 using namespace clang
;
106 using namespace llvm::opt
;
108 static llvm::Optional
<llvm::Triple
>
109 getOffloadTargetTriple(const Driver
&D
, const ArgList
&Args
) {
110 auto OffloadTargets
= Args
.getAllArgValues(options::OPT_offload_EQ
);
111 // Offload compilation flow does not support multiple targets for now. We
112 // need the HIPActionBuilder (and possibly the CudaActionBuilder{,Base}too)
113 // to support multiple tool chains first.
114 switch (OffloadTargets
.size()) {
116 D
.Diag(diag::err_drv_only_one_offload_target_supported
);
119 D
.Diag(diag::err_drv_invalid_or_unsupported_offload_target
) << "";
124 return llvm::Triple(OffloadTargets
[0]);
127 static llvm::Optional
<llvm::Triple
>
128 getNVIDIAOffloadTargetTriple(const Driver
&D
, const ArgList
&Args
,
129 const llvm::Triple
&HostTriple
) {
130 if (!Args
.hasArg(options::OPT_offload_EQ
)) {
131 return llvm::Triple(HostTriple
.isArch64Bit() ? "nvptx64-nvidia-cuda"
132 : "nvptx-nvidia-cuda");
134 auto TT
= getOffloadTargetTriple(D
, Args
);
135 if (TT
&& (TT
->getArch() == llvm::Triple::spirv32
||
136 TT
->getArch() == llvm::Triple::spirv64
)) {
137 if (Args
.hasArg(options::OPT_emit_llvm
))
139 D
.Diag(diag::err_drv_cuda_offload_only_emit_bc
);
142 D
.Diag(diag::err_drv_invalid_or_unsupported_offload_target
) << TT
->str();
145 static llvm::Optional
<llvm::Triple
>
146 getHIPOffloadTargetTriple(const Driver
&D
, const ArgList
&Args
) {
147 if (!Args
.hasArg(options::OPT_offload_EQ
)) {
148 return llvm::Triple("amdgcn-amd-amdhsa"); // Default HIP triple.
150 auto TT
= getOffloadTargetTriple(D
, Args
);
153 if (TT
->getArch() == llvm::Triple::amdgcn
&&
154 TT
->getVendor() == llvm::Triple::AMD
&&
155 TT
->getOS() == llvm::Triple::AMDHSA
)
157 if (TT
->getArch() == llvm::Triple::spirv64
)
159 D
.Diag(diag::err_drv_invalid_or_unsupported_offload_target
) << TT
->str();
164 std::string
Driver::GetResourcesPath(StringRef BinaryPath
,
165 StringRef CustomResourceDir
) {
166 // Since the resource directory is embedded in the module hash, it's important
167 // that all places that need it call this function, so that they get the
168 // exact same string ("a/../b/" and "b/" get different hashes, for example).
170 // Dir is bin/ or lib/, depending on where BinaryPath is.
171 std::string Dir
= std::string(llvm::sys::path::parent_path(BinaryPath
));
173 SmallString
<128> P(Dir
);
174 if (CustomResourceDir
!= "") {
175 llvm::sys::path::append(P
, CustomResourceDir
);
177 // On Windows, libclang.dll is in bin/.
178 // On non-Windows, libclang.so/.dylib is in lib/.
179 // With a static-library build of libclang, LibClangPath will contain the
180 // path of the embedding binary, which for LLVM binaries will be in bin/.
181 // ../lib gets us to lib/ in both cases.
182 P
= llvm::sys::path::parent_path(Dir
);
183 llvm::sys::path::append(P
, CLANG_INSTALL_LIBDIR_BASENAME
, "clang",
184 CLANG_VERSION_STRING
);
187 return std::string(P
.str());
190 Driver::Driver(StringRef ClangExecutable
, StringRef TargetTriple
,
191 DiagnosticsEngine
&Diags
, std::string Title
,
192 IntrusiveRefCntPtr
<llvm::vfs::FileSystem
> VFS
)
193 : Diags(Diags
), VFS(std::move(VFS
)), Mode(GCCMode
),
194 SaveTemps(SaveTempsNone
), BitcodeEmbed(EmbedNone
),
195 Offload(OffloadHostDevice
), CXX20HeaderType(HeaderMode_None
),
196 ModulesModeCXX20(false), LTOMode(LTOK_None
),
197 ClangExecutable(ClangExecutable
), SysRoot(DEFAULT_SYSROOT
),
198 DriverTitle(Title
), CCCPrintBindings(false), CCPrintOptions(false),
199 CCPrintHeaders(false), CCLogDiagnostics(false), CCGenDiagnostics(false),
200 CCPrintProcessStats(false), TargetTriple(TargetTriple
), Saver(Alloc
),
201 CheckInputsExist(true), ProbePrecompiled(true),
202 SuppressMissingInputWarning(false) {
203 // Provide a sane fallback if no VFS is specified.
205 this->VFS
= llvm::vfs::getRealFileSystem();
207 Name
= std::string(llvm::sys::path::filename(ClangExecutable
));
208 Dir
= std::string(llvm::sys::path::parent_path(ClangExecutable
));
209 InstalledDir
= Dir
; // Provide a sensible default installed dir.
211 if ((!SysRoot
.empty()) && llvm::sys::path::is_relative(SysRoot
)) {
212 // Prepend InstalledDir if SysRoot is relative
213 SmallString
<128> P(InstalledDir
);
214 llvm::sys::path::append(P
, SysRoot
);
215 SysRoot
= std::string(P
);
218 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
219 SystemConfigDir
= CLANG_CONFIG_FILE_SYSTEM_DIR
;
221 #if defined(CLANG_CONFIG_FILE_USER_DIR)
222 UserConfigDir
= CLANG_CONFIG_FILE_USER_DIR
;
225 // Compute the path to the resource directory.
226 ResourceDir
= GetResourcesPath(ClangExecutable
, CLANG_RESOURCE_DIR
);
229 void Driver::setDriverMode(StringRef Value
) {
230 static const std::string OptName
=
231 getOpts().getOption(options::OPT_driver_mode
).getPrefixedName();
232 if (auto M
= llvm::StringSwitch
<llvm::Optional
<DriverMode
>>(Value
)
233 .Case("gcc", GCCMode
)
234 .Case("g++", GXXMode
)
235 .Case("cpp", CPPMode
)
237 .Case("flang", FlangMode
)
238 .Case("dxc", DXCMode
)
242 Diag(diag::err_drv_unsupported_option_argument
) << OptName
<< Value
;
245 InputArgList
Driver::ParseArgStrings(ArrayRef
<const char *> ArgStrings
,
247 bool &ContainsError
) {
248 llvm::PrettyStackTraceString
CrashInfo("Command line argument parsing");
249 ContainsError
= false;
251 unsigned IncludedFlagsBitmask
;
252 unsigned ExcludedFlagsBitmask
;
253 std::tie(IncludedFlagsBitmask
, ExcludedFlagsBitmask
) =
254 getIncludeExcludeOptionFlagMasks(IsClCompatMode
);
256 // Make sure that Flang-only options don't pollute the Clang output
257 // TODO: Make sure that Clang-only options don't pollute Flang output
259 ExcludedFlagsBitmask
|= options::FlangOnlyOption
;
261 unsigned MissingArgIndex
, MissingArgCount
;
263 getOpts().ParseArgs(ArgStrings
, MissingArgIndex
, MissingArgCount
,
264 IncludedFlagsBitmask
, ExcludedFlagsBitmask
);
266 // Check for missing argument error.
267 if (MissingArgCount
) {
268 Diag(diag::err_drv_missing_argument
)
269 << Args
.getArgString(MissingArgIndex
) << MissingArgCount
;
271 Diags
.getDiagnosticLevel(diag::err_drv_missing_argument
,
272 SourceLocation()) > DiagnosticsEngine::Warning
;
275 // Check for unsupported options.
276 for (const Arg
*A
: Args
) {
277 if (A
->getOption().hasFlag(options::Unsupported
)) {
279 auto ArgString
= A
->getAsString(Args
);
281 if (getOpts().findNearest(
282 ArgString
, Nearest
, IncludedFlagsBitmask
,
283 ExcludedFlagsBitmask
| options::Unsupported
) > 1) {
284 DiagID
= diag::err_drv_unsupported_opt
;
285 Diag(DiagID
) << ArgString
;
287 DiagID
= diag::err_drv_unsupported_opt_with_suggestion
;
288 Diag(DiagID
) << ArgString
<< Nearest
;
290 ContainsError
|= Diags
.getDiagnosticLevel(DiagID
, SourceLocation()) >
291 DiagnosticsEngine::Warning
;
295 // Warn about -mcpu= without an argument.
296 if (A
->getOption().matches(options::OPT_mcpu_EQ
) && A
->containsValue("")) {
297 Diag(diag::warn_drv_empty_joined_argument
) << A
->getAsString(Args
);
298 ContainsError
|= Diags
.getDiagnosticLevel(
299 diag::warn_drv_empty_joined_argument
,
300 SourceLocation()) > DiagnosticsEngine::Warning
;
304 for (const Arg
*A
: Args
.filtered(options::OPT_UNKNOWN
)) {
306 auto ArgString
= A
->getAsString(Args
);
308 if (getOpts().findNearest(
309 ArgString
, Nearest
, IncludedFlagsBitmask
, ExcludedFlagsBitmask
) > 1) {
310 DiagID
= IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
311 : diag::err_drv_unknown_argument
;
312 Diags
.Report(DiagID
) << ArgString
;
315 ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
316 : diag::err_drv_unknown_argument_with_suggestion
;
317 Diags
.Report(DiagID
) << ArgString
<< Nearest
;
319 ContainsError
|= Diags
.getDiagnosticLevel(DiagID
, SourceLocation()) >
320 DiagnosticsEngine::Warning
;
326 // Determine which compilation mode we are in. We look for options which
327 // affect the phase, starting with the earliest phases, and record which
328 // option we used to determine the final phase.
329 phases::ID
Driver::getFinalPhase(const DerivedArgList
&DAL
,
330 Arg
**FinalPhaseArg
) const {
331 Arg
*PhaseArg
= nullptr;
332 phases::ID FinalPhase
;
334 // -{E,EP,P,M,MM} only run the preprocessor.
335 if (CCCIsCPP() || (PhaseArg
= DAL
.getLastArg(options::OPT_E
)) ||
336 (PhaseArg
= DAL
.getLastArg(options::OPT__SLASH_EP
)) ||
337 (PhaseArg
= DAL
.getLastArg(options::OPT_M
, options::OPT_MM
)) ||
338 (PhaseArg
= DAL
.getLastArg(options::OPT__SLASH_P
)) ||
340 FinalPhase
= phases::Preprocess
;
342 // --precompile only runs up to precompilation.
343 // Options that cause the output of C++20 compiled module interfaces or
344 // header units have the same effect.
345 } else if ((PhaseArg
= DAL
.getLastArg(options::OPT__precompile
)) ||
346 (PhaseArg
= DAL
.getLastArg(options::OPT_extract_api
)) ||
347 (PhaseArg
= DAL
.getLastArg(options::OPT_fmodule_header
,
348 options::OPT_fmodule_header_EQ
))) {
349 FinalPhase
= phases::Precompile
;
350 // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
351 } else if ((PhaseArg
= DAL
.getLastArg(options::OPT_fsyntax_only
)) ||
352 (PhaseArg
= DAL
.getLastArg(options::OPT_print_supported_cpus
)) ||
353 (PhaseArg
= DAL
.getLastArg(options::OPT_module_file_info
)) ||
354 (PhaseArg
= DAL
.getLastArg(options::OPT_verify_pch
)) ||
355 (PhaseArg
= DAL
.getLastArg(options::OPT_rewrite_objc
)) ||
356 (PhaseArg
= DAL
.getLastArg(options::OPT_rewrite_legacy_objc
)) ||
357 (PhaseArg
= DAL
.getLastArg(options::OPT__migrate
)) ||
358 (PhaseArg
= DAL
.getLastArg(options::OPT__analyze
)) ||
359 (PhaseArg
= DAL
.getLastArg(options::OPT_emit_ast
))) {
360 FinalPhase
= phases::Compile
;
362 // -S only runs up to the backend.
363 } else if ((PhaseArg
= DAL
.getLastArg(options::OPT_S
))) {
364 FinalPhase
= phases::Backend
;
366 // -c compilation only runs up to the assembler.
367 } else if ((PhaseArg
= DAL
.getLastArg(options::OPT_c
))) {
368 FinalPhase
= phases::Assemble
;
370 } else if ((PhaseArg
= DAL
.getLastArg(options::OPT_emit_interface_stubs
))) {
371 FinalPhase
= phases::IfsMerge
;
373 // Otherwise do everything.
375 FinalPhase
= phases::Link
;
378 *FinalPhaseArg
= PhaseArg
;
383 static Arg
*MakeInputArg(DerivedArgList
&Args
, const OptTable
&Opts
,
384 StringRef Value
, bool Claim
= true) {
385 Arg
*A
= new Arg(Opts
.getOption(options::OPT_INPUT
), Value
,
386 Args
.getBaseArgs().MakeIndex(Value
), Value
.data());
387 Args
.AddSynthesizedArg(A
);
393 DerivedArgList
*Driver::TranslateInputArgs(const InputArgList
&Args
) const {
394 const llvm::opt::OptTable
&Opts
= getOpts();
395 DerivedArgList
*DAL
= new DerivedArgList(Args
);
397 bool HasNostdlib
= Args
.hasArg(options::OPT_nostdlib
);
398 bool HasNostdlibxx
= Args
.hasArg(options::OPT_nostdlibxx
);
399 bool HasNodefaultlib
= Args
.hasArg(options::OPT_nodefaultlibs
);
400 bool IgnoreUnused
= false;
401 for (Arg
*A
: Args
) {
405 if (A
->getOption().matches(options::OPT_start_no_unused_arguments
)) {
409 if (A
->getOption().matches(options::OPT_end_no_unused_arguments
)) {
410 IgnoreUnused
= false;
414 // Unfortunately, we have to parse some forwarding options (-Xassembler,
415 // -Xlinker, -Xpreprocessor) because we either integrate their functionality
416 // (assembler and preprocessor), or bypass a previous driver ('collect2').
418 // Rewrite linker options, to replace --no-demangle with a custom internal
420 if ((A
->getOption().matches(options::OPT_Wl_COMMA
) ||
421 A
->getOption().matches(options::OPT_Xlinker
)) &&
422 A
->containsValue("--no-demangle")) {
423 // Add the rewritten no-demangle argument.
424 DAL
->AddFlagArg(A
, Opts
.getOption(options::OPT_Z_Xlinker__no_demangle
));
426 // Add the remaining values as Xlinker arguments.
427 for (StringRef Val
: A
->getValues())
428 if (Val
!= "--no-demangle")
429 DAL
->AddSeparateArg(A
, Opts
.getOption(options::OPT_Xlinker
), Val
);
434 // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
435 // some build systems. We don't try to be complete here because we don't
436 // care to encourage this usage model.
437 if (A
->getOption().matches(options::OPT_Wp_COMMA
) &&
438 (A
->getValue(0) == StringRef("-MD") ||
439 A
->getValue(0) == StringRef("-MMD"))) {
440 // Rewrite to -MD/-MMD along with -MF.
441 if (A
->getValue(0) == StringRef("-MD"))
442 DAL
->AddFlagArg(A
, Opts
.getOption(options::OPT_MD
));
444 DAL
->AddFlagArg(A
, Opts
.getOption(options::OPT_MMD
));
445 if (A
->getNumValues() == 2)
446 DAL
->AddSeparateArg(A
, Opts
.getOption(options::OPT_MF
), A
->getValue(1));
450 // Rewrite reserved library names.
451 if (A
->getOption().matches(options::OPT_l
)) {
452 StringRef Value
= A
->getValue();
454 // Rewrite unless -nostdlib is present.
455 if (!HasNostdlib
&& !HasNodefaultlib
&& !HasNostdlibxx
&&
457 DAL
->AddFlagArg(A
, Opts
.getOption(options::OPT_Z_reserved_lib_stdcxx
));
461 // Rewrite unconditionally.
462 if (Value
== "cc_kext") {
463 DAL
->AddFlagArg(A
, Opts
.getOption(options::OPT_Z_reserved_lib_cckext
));
468 // Pick up inputs via the -- option.
469 if (A
->getOption().matches(options::OPT__DASH_DASH
)) {
471 for (StringRef Val
: A
->getValues())
472 DAL
->append(MakeInputArg(*DAL
, Opts
, Val
, false));
479 // Enforce -static if -miamcu is present.
480 if (Args
.hasFlag(options::OPT_miamcu
, options::OPT_mno_iamcu
, false))
481 DAL
->AddFlagArg(nullptr, Opts
.getOption(options::OPT_static
));
483 // Add a default value of -mlinker-version=, if one was given and the user
484 // didn't specify one.
485 #if defined(HOST_LINK_VERSION)
486 if (!Args
.hasArg(options::OPT_mlinker_version_EQ
) &&
487 strlen(HOST_LINK_VERSION
) > 0) {
488 DAL
->AddJoinedArg(0, Opts
.getOption(options::OPT_mlinker_version_EQ
),
490 DAL
->getLastArg(options::OPT_mlinker_version_EQ
)->claim();
497 /// Compute target triple from args.
499 /// This routine provides the logic to compute a target triple from various
500 /// args passed to the driver and the default triple string.
501 static llvm::Triple
computeTargetTriple(const Driver
&D
,
502 StringRef TargetTriple
,
504 StringRef DarwinArchName
= "") {
505 // FIXME: Already done in Compilation *Driver::BuildCompilation
506 if (const Arg
*A
= Args
.getLastArg(options::OPT_target
))
507 TargetTriple
= A
->getValue();
509 llvm::Triple
Target(llvm::Triple::normalize(TargetTriple
));
511 // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
512 // -gnu* only, and we can not change this, so we have to detect that case as
513 // being the Hurd OS.
514 if (TargetTriple
.contains("-unknown-gnu") || TargetTriple
.contains("-pc-gnu"))
515 Target
.setOSName("hurd");
517 // Handle Apple-specific options available here.
518 if (Target
.isOSBinFormatMachO()) {
519 // If an explicit Darwin arch name is given, that trumps all.
520 if (!DarwinArchName
.empty()) {
521 tools::darwin::setTripleTypeForMachOArchName(Target
, DarwinArchName
);
525 // Handle the Darwin '-arch' flag.
526 if (Arg
*A
= Args
.getLastArg(options::OPT_arch
)) {
527 StringRef ArchName
= A
->getValue();
528 tools::darwin::setTripleTypeForMachOArchName(Target
, ArchName
);
532 // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
533 // '-mbig-endian'/'-EB'.
534 if (Arg
*A
= Args
.getLastArg(options::OPT_mlittle_endian
,
535 options::OPT_mbig_endian
)) {
536 if (A
->getOption().matches(options::OPT_mlittle_endian
)) {
537 llvm::Triple LE
= Target
.getLittleEndianArchVariant();
538 if (LE
.getArch() != llvm::Triple::UnknownArch
)
539 Target
= std::move(LE
);
541 llvm::Triple BE
= Target
.getBigEndianArchVariant();
542 if (BE
.getArch() != llvm::Triple::UnknownArch
)
543 Target
= std::move(BE
);
547 // Skip further flag support on OSes which don't support '-m32' or '-m64'.
548 if (Target
.getArch() == llvm::Triple::tce
||
549 Target
.getOS() == llvm::Triple::Minix
)
552 // On AIX, the env OBJECT_MODE may affect the resulting arch variant.
553 if (Target
.isOSAIX()) {
554 if (Optional
<std::string
> ObjectModeValue
=
555 llvm::sys::Process::GetEnv("OBJECT_MODE")) {
556 StringRef ObjectMode
= *ObjectModeValue
;
557 llvm::Triple::ArchType AT
= llvm::Triple::UnknownArch
;
559 if (ObjectMode
.equals("64")) {
560 AT
= Target
.get64BitArchVariant().getArch();
561 } else if (ObjectMode
.equals("32")) {
562 AT
= Target
.get32BitArchVariant().getArch();
564 D
.Diag(diag::err_drv_invalid_object_mode
) << ObjectMode
;
567 if (AT
!= llvm::Triple::UnknownArch
&& AT
!= Target
.getArch())
572 // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
573 Arg
*A
= Args
.getLastArg(options::OPT_m64
, options::OPT_mx32
,
574 options::OPT_m32
, options::OPT_m16
);
576 llvm::Triple::ArchType AT
= llvm::Triple::UnknownArch
;
578 if (A
->getOption().matches(options::OPT_m64
)) {
579 AT
= Target
.get64BitArchVariant().getArch();
580 if (Target
.getEnvironment() == llvm::Triple::GNUX32
)
581 Target
.setEnvironment(llvm::Triple::GNU
);
582 else if (Target
.getEnvironment() == llvm::Triple::MuslX32
)
583 Target
.setEnvironment(llvm::Triple::Musl
);
584 } else if (A
->getOption().matches(options::OPT_mx32
) &&
585 Target
.get64BitArchVariant().getArch() == llvm::Triple::x86_64
) {
586 AT
= llvm::Triple::x86_64
;
587 if (Target
.getEnvironment() == llvm::Triple::Musl
)
588 Target
.setEnvironment(llvm::Triple::MuslX32
);
590 Target
.setEnvironment(llvm::Triple::GNUX32
);
591 } else if (A
->getOption().matches(options::OPT_m32
)) {
592 AT
= Target
.get32BitArchVariant().getArch();
593 if (Target
.getEnvironment() == llvm::Triple::GNUX32
)
594 Target
.setEnvironment(llvm::Triple::GNU
);
595 else if (Target
.getEnvironment() == llvm::Triple::MuslX32
)
596 Target
.setEnvironment(llvm::Triple::Musl
);
597 } else if (A
->getOption().matches(options::OPT_m16
) &&
598 Target
.get32BitArchVariant().getArch() == llvm::Triple::x86
) {
599 AT
= llvm::Triple::x86
;
600 Target
.setEnvironment(llvm::Triple::CODE16
);
603 if (AT
!= llvm::Triple::UnknownArch
&& AT
!= Target
.getArch()) {
605 if (Target
.isWindowsGNUEnvironment())
606 toolchains::MinGW::fixTripleArch(D
, Target
, Args
);
610 // Handle -miamcu flag.
611 if (Args
.hasFlag(options::OPT_miamcu
, options::OPT_mno_iamcu
, false)) {
612 if (Target
.get32BitArchVariant().getArch() != llvm::Triple::x86
)
613 D
.Diag(diag::err_drv_unsupported_opt_for_target
) << "-miamcu"
616 if (A
&& !A
->getOption().matches(options::OPT_m32
))
617 D
.Diag(diag::err_drv_argument_not_allowed_with
)
618 << "-miamcu" << A
->getBaseArg().getAsString(Args
);
620 Target
.setArch(llvm::Triple::x86
);
621 Target
.setArchName("i586");
622 Target
.setEnvironment(llvm::Triple::UnknownEnvironment
);
623 Target
.setEnvironmentName("");
624 Target
.setOS(llvm::Triple::ELFIAMCU
);
625 Target
.setVendor(llvm::Triple::UnknownVendor
);
626 Target
.setVendorName("intel");
629 // If target is MIPS adjust the target triple
630 // accordingly to provided ABI name.
631 A
= Args
.getLastArg(options::OPT_mabi_EQ
);
632 if (A
&& Target
.isMIPS()) {
633 StringRef ABIName
= A
->getValue();
634 if (ABIName
== "32") {
635 Target
= Target
.get32BitArchVariant();
636 if (Target
.getEnvironment() == llvm::Triple::GNUABI64
||
637 Target
.getEnvironment() == llvm::Triple::GNUABIN32
)
638 Target
.setEnvironment(llvm::Triple::GNU
);
639 } else if (ABIName
== "n32") {
640 Target
= Target
.get64BitArchVariant();
641 if (Target
.getEnvironment() == llvm::Triple::GNU
||
642 Target
.getEnvironment() == llvm::Triple::GNUABI64
)
643 Target
.setEnvironment(llvm::Triple::GNUABIN32
);
644 } else if (ABIName
== "64") {
645 Target
= Target
.get64BitArchVariant();
646 if (Target
.getEnvironment() == llvm::Triple::GNU
||
647 Target
.getEnvironment() == llvm::Triple::GNUABIN32
)
648 Target
.setEnvironment(llvm::Triple::GNUABI64
);
652 // If target is RISC-V adjust the target triple according to
653 // provided architecture name
654 A
= Args
.getLastArg(options::OPT_march_EQ
);
655 if (A
&& Target
.isRISCV()) {
656 StringRef ArchName
= A
->getValue();
657 if (ArchName
.startswith_insensitive("rv32"))
658 Target
.setArch(llvm::Triple::riscv32
);
659 else if (ArchName
.startswith_insensitive("rv64"))
660 Target
.setArch(llvm::Triple::riscv64
);
666 // Parse the LTO options and record the type of LTO compilation
667 // based on which -f(no-)?lto(=.*)? or -f(no-)?offload-lto(=.*)?
668 // option occurs last.
669 static driver::LTOKind
parseLTOMode(Driver
&D
, const llvm::opt::ArgList
&Args
,
670 OptSpecifier OptEq
, OptSpecifier OptNeg
) {
671 if (!Args
.hasFlag(OptEq
, OptNeg
, false))
674 const Arg
*A
= Args
.getLastArg(OptEq
);
675 StringRef LTOName
= A
->getValue();
677 driver::LTOKind LTOMode
= llvm::StringSwitch
<LTOKind
>(LTOName
)
678 .Case("full", LTOK_Full
)
679 .Case("thin", LTOK_Thin
)
680 .Default(LTOK_Unknown
);
682 if (LTOMode
== LTOK_Unknown
) {
683 D
.Diag(diag::err_drv_unsupported_option_argument
)
684 << A
->getOption().getName() << A
->getValue();
690 // Parse the LTO options.
691 void Driver::setLTOMode(const llvm::opt::ArgList
&Args
) {
693 parseLTOMode(*this, Args
, options::OPT_flto_EQ
, options::OPT_fno_lto
);
695 OffloadLTOMode
= parseLTOMode(*this, Args
, options::OPT_foffload_lto_EQ
,
696 options::OPT_fno_offload_lto
);
699 /// Compute the desired OpenMP runtime from the flags provided.
700 Driver::OpenMPRuntimeKind
Driver::getOpenMPRuntime(const ArgList
&Args
) const {
701 StringRef
RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME
);
703 const Arg
*A
= Args
.getLastArg(options::OPT_fopenmp_EQ
);
705 RuntimeName
= A
->getValue();
707 auto RT
= llvm::StringSwitch
<OpenMPRuntimeKind
>(RuntimeName
)
708 .Case("libomp", OMPRT_OMP
)
709 .Case("libgomp", OMPRT_GOMP
)
710 .Case("libiomp5", OMPRT_IOMP5
)
711 .Default(OMPRT_Unknown
);
713 if (RT
== OMPRT_Unknown
) {
715 Diag(diag::err_drv_unsupported_option_argument
)
716 << A
->getOption().getName() << A
->getValue();
718 // FIXME: We could use a nicer diagnostic here.
719 Diag(diag::err_drv_unsupported_opt
) << "-fopenmp";
725 void Driver::CreateOffloadingDeviceToolChains(Compilation
&C
,
731 // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
732 // or HIP type. However, mixed CUDA/HIP compilation is not supported.
734 llvm::any_of(Inputs
, [](std::pair
<types::ID
, const llvm::opt::Arg
*> &I
) {
735 return types::isCuda(I
.first
);
739 [](std::pair
<types::ID
, const llvm::opt::Arg
*> &I
) {
740 return types::isHIP(I
.first
);
742 C
.getInputArgs().hasArg(options::OPT_hip_link
);
743 if (IsCuda
&& IsHIP
) {
744 Diag(clang::diag::err_drv_mix_cuda_hip
);
748 const ToolChain
*HostTC
= C
.getSingleOffloadToolChain
<Action::OFK_Host
>();
749 const llvm::Triple
&HostTriple
= HostTC
->getTriple();
750 auto OFK
= Action::OFK_Cuda
;
752 getNVIDIAOffloadTargetTriple(*this, C
.getInputArgs(), HostTriple
);
755 // Use the CUDA and host triples as the key into the ToolChains map,
756 // because the device toolchain we create depends on both.
757 auto &CudaTC
= ToolChains
[CudaTriple
->str() + "/" + HostTriple
.str()];
759 CudaTC
= std::make_unique
<toolchains::CudaToolChain
>(
760 *this, *CudaTriple
, *HostTC
, C
.getInputArgs());
762 C
.addOffloadDeviceToolChain(CudaTC
.get(), OFK
);
764 if (auto *OMPTargetArg
=
765 C
.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ
)) {
766 Diag(clang::diag::err_drv_unsupported_opt_for_language_mode
)
767 << OMPTargetArg
->getSpelling() << "HIP";
770 const ToolChain
*HostTC
= C
.getSingleOffloadToolChain
<Action::OFK_Host
>();
771 auto OFK
= Action::OFK_HIP
;
772 auto HIPTriple
= getHIPOffloadTargetTriple(*this, C
.getInputArgs());
775 auto *HIPTC
= &getOffloadingDeviceToolChain(C
.getInputArgs(), *HIPTriple
,
777 assert(HIPTC
&& "Could not create offloading device tool chain.");
778 C
.addOffloadDeviceToolChain(HIPTC
, OFK
);
784 // We need to generate an OpenMP toolchain if the user specified targets with
785 // the -fopenmp-targets option or used --offload-arch with OpenMP enabled.
786 bool IsOpenMPOffloading
=
787 C
.getInputArgs().hasFlag(options::OPT_fopenmp
, options::OPT_fopenmp_EQ
,
788 options::OPT_fno_openmp
, false) &&
789 (C
.getInputArgs().hasArg(options::OPT_fopenmp_targets_EQ
) ||
790 C
.getInputArgs().hasArg(options::OPT_offload_arch_EQ
));
791 if (IsOpenMPOffloading
) {
792 // We expect that -fopenmp-targets is always used in conjunction with the
793 // option -fopenmp specifying a valid runtime with offloading support, i.e.
794 // libomp or libiomp.
795 OpenMPRuntimeKind RuntimeKind
= getOpenMPRuntime(C
.getInputArgs());
796 if (RuntimeKind
!= OMPRT_OMP
&& RuntimeKind
!= OMPRT_IOMP5
) {
797 Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets
);
801 llvm::StringMap
<llvm::DenseSet
<StringRef
>> DerivedArchs
;
802 llvm::StringMap
<StringRef
> FoundNormalizedTriples
;
803 llvm::SmallVector
<StringRef
, 4> OpenMPTriples
;
805 // If the user specified -fopenmp-targets= we create a toolchain for each
806 // valid triple. Otherwise, if only --offload-arch= was specified we instead
807 // attempt to derive the appropriate toolchains from the arguments.
808 if (Arg
*OpenMPTargets
=
809 C
.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ
)) {
810 if (OpenMPTargets
&& !OpenMPTargets
->getNumValues()) {
811 Diag(clang::diag::warn_drv_empty_joined_argument
)
812 << OpenMPTargets
->getAsString(C
.getInputArgs());
815 llvm::copy(OpenMPTargets
->getValues(), std::back_inserter(OpenMPTriples
));
816 } else if (C
.getInputArgs().hasArg(options::OPT_offload_arch_EQ
) &&
818 const ToolChain
*HostTC
= C
.getSingleOffloadToolChain
<Action::OFK_Host
>();
819 auto AMDTriple
= getHIPOffloadTargetTriple(*this, C
.getInputArgs());
820 auto NVPTXTriple
= getNVIDIAOffloadTargetTriple(*this, C
.getInputArgs(),
821 HostTC
->getTriple());
823 // Attempt to deduce the offloading triple from the set of architectures.
824 // We can only correctly deduce NVPTX / AMDGPU triples currently.
825 llvm::DenseSet
<StringRef
> Archs
=
826 getOffloadArchs(C
, C
.getArgs(), Action::OFK_OpenMP
, nullptr);
827 for (StringRef Arch
: Archs
) {
828 if (NVPTXTriple
&& IsNVIDIAGpuArch(StringToCudaArch(
829 getProcessorFromTargetID(*NVPTXTriple
, Arch
)))) {
830 DerivedArchs
[NVPTXTriple
->getTriple()].insert(Arch
);
831 } else if (AMDTriple
&&
832 IsAMDGpuArch(StringToCudaArch(
833 getProcessorFromTargetID(*AMDTriple
, Arch
)))) {
834 DerivedArchs
[AMDTriple
->getTriple()].insert(Arch
);
836 Diag(clang::diag::err_drv_failed_to_deduce_target_from_arch
) << Arch
;
841 for (const auto &TripleAndArchs
: DerivedArchs
)
842 OpenMPTriples
.push_back(TripleAndArchs
.first());
845 for (StringRef Val
: OpenMPTriples
) {
846 llvm::Triple
TT(ToolChain::getOpenMPTriple(Val
));
847 std::string NormalizedName
= TT
.normalize();
849 // Make sure we don't have a duplicate triple.
850 auto Duplicate
= FoundNormalizedTriples
.find(NormalizedName
);
851 if (Duplicate
!= FoundNormalizedTriples
.end()) {
852 Diag(clang::diag::warn_drv_omp_offload_target_duplicate
)
853 << Val
<< Duplicate
->second
;
857 // Store the current triple so that we can check for duplicates in the
858 // following iterations.
859 FoundNormalizedTriples
[NormalizedName
] = Val
;
861 // If the specified target is invalid, emit a diagnostic.
862 if (TT
.getArch() == llvm::Triple::UnknownArch
)
863 Diag(clang::diag::err_drv_invalid_omp_target
) << Val
;
866 // Device toolchains have to be selected differently. They pair host
867 // and device in their implementation.
868 if (TT
.isNVPTX() || TT
.isAMDGCN()) {
869 const ToolChain
*HostTC
=
870 C
.getSingleOffloadToolChain
<Action::OFK_Host
>();
871 assert(HostTC
&& "Host toolchain should be always defined.");
873 ToolChains
[TT
.str() + "/" + HostTC
->getTriple().normalize()];
876 DeviceTC
= std::make_unique
<toolchains::CudaToolChain
>(
877 *this, TT
, *HostTC
, C
.getInputArgs());
878 else if (TT
.isAMDGCN())
879 DeviceTC
= std::make_unique
<toolchains::AMDGPUOpenMPToolChain
>(
880 *this, TT
, *HostTC
, C
.getInputArgs());
882 assert(DeviceTC
&& "Device toolchain not defined.");
887 TC
= &getToolChain(C
.getInputArgs(), TT
);
888 C
.addOffloadDeviceToolChain(TC
, Action::OFK_OpenMP
);
889 if (DerivedArchs
.find(TT
.getTriple()) != DerivedArchs
.end())
890 KnownArchs
[TC
] = DerivedArchs
[TT
.getTriple()];
893 } else if (C
.getInputArgs().hasArg(options::OPT_fopenmp_targets_EQ
)) {
894 Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets
);
899 // TODO: Add support for other offloading programming models here.
903 /// Looks the given directories for the specified file.
905 /// \param[out] FilePath File path, if the file was found.
906 /// \param[in] Dirs Directories used for the search.
907 /// \param[in] FileName Name of the file to search for.
908 /// \return True if file was found.
910 /// Looks for file specified by FileName sequentially in directories specified
913 static bool searchForFile(SmallVectorImpl
<char> &FilePath
,
914 ArrayRef
<StringRef
> Dirs
, StringRef FileName
,
915 llvm::vfs::FileSystem
&FS
) {
916 SmallString
<128> WPath
;
917 for (const StringRef
&Dir
: Dirs
) {
921 llvm::sys::path::append(WPath
, Dir
, FileName
);
922 llvm::sys::path::native(WPath
);
923 auto Status
= FS
.status(WPath
);
924 if (Status
&& Status
->getType() == llvm::sys::fs::file_type::regular_file
) {
925 FilePath
= std::move(WPath
);
932 bool Driver::readConfigFile(StringRef FileName
) {
933 // Try reading the given file.
934 SmallVector
<const char *, 32> NewCfgArgs
;
935 if (!llvm::cl::readConfigFile(FileName
, Saver
, NewCfgArgs
, getVFS())) {
936 Diag(diag::err_drv_cannot_read_config_file
) << FileName
;
940 // Read options from config file.
941 llvm::SmallString
<128> CfgFileName(FileName
);
942 llvm::sys::path::native(CfgFileName
);
943 ConfigFile
= std::string(CfgFileName
);
945 CfgOptions
= std::make_unique
<InputArgList
>(
946 ParseArgStrings(NewCfgArgs
, IsCLMode(), ContainErrors
));
952 if (CfgOptions
->hasArg(options::OPT_config
)) {
954 Diag(diag::err_drv_nested_config_file
);
958 // Claim all arguments that come from a configuration file so that the driver
959 // does not warn on any that is unused.
960 for (Arg
*A
: *CfgOptions
)
965 bool Driver::loadConfigFile() {
966 std::string CfgFileName
;
967 bool FileSpecifiedExplicitly
= false;
969 // Process options that change search path for config files.
971 if (CLOptions
->hasArg(options::OPT_config_system_dir_EQ
)) {
972 SmallString
<128> CfgDir
;
974 CLOptions
->getLastArgValue(options::OPT_config_system_dir_EQ
));
975 if (CfgDir
.empty() || getVFS().makeAbsolute(CfgDir
))
976 SystemConfigDir
.clear();
978 SystemConfigDir
= static_cast<std::string
>(CfgDir
);
980 if (CLOptions
->hasArg(options::OPT_config_user_dir_EQ
)) {
981 SmallString
<128> CfgDir
;
983 CLOptions
->getLastArgValue(options::OPT_config_user_dir_EQ
));
984 if (CfgDir
.empty() || getVFS().makeAbsolute(CfgDir
))
985 UserConfigDir
.clear();
987 UserConfigDir
= static_cast<std::string
>(CfgDir
);
991 // First try to find config file specified in command line.
993 std::vector
<std::string
> ConfigFiles
=
994 CLOptions
->getAllArgValues(options::OPT_config
);
995 if (ConfigFiles
.size() > 1) {
996 if (!llvm::all_equal(ConfigFiles
)) {
997 Diag(diag::err_drv_duplicate_config
);
1002 if (!ConfigFiles
.empty()) {
1003 CfgFileName
= ConfigFiles
.front();
1004 assert(!CfgFileName
.empty());
1006 // If argument contains directory separator, treat it as a path to
1007 // configuration file.
1008 if (llvm::sys::path::has_parent_path(CfgFileName
)) {
1009 SmallString
<128> CfgFilePath(CfgFileName
);
1010 if (llvm::sys::path::is_relative(CfgFilePath
)) {
1011 if (getVFS().makeAbsolute(CfgFilePath
))
1013 auto Status
= getVFS().status(CfgFilePath
);
1015 Status
->getType() != llvm::sys::fs::file_type::regular_file
) {
1016 Diag(diag::err_drv_config_file_not_exist
) << CfgFilePath
;
1020 return readConfigFile(CfgFilePath
);
1023 FileSpecifiedExplicitly
= true;
1027 if (!(CLOptions
&& CLOptions
->hasArg(options::OPT_no_default_config
))) {
1028 // If config file is not specified explicitly, try to deduce configuration
1029 // from executable name. For instance, an executable 'armv7l-clang' will
1030 // search for config file 'armv7l-clang.cfg'.
1031 if (CfgFileName
.empty() && !ClangNameParts
.TargetPrefix
.empty())
1033 ClangNameParts
.TargetPrefix
+ '-' + ClangNameParts
.ModeSuffix
;
1036 if (CfgFileName
.empty())
1039 // Determine architecture part of the file name, if it is present.
1040 StringRef CfgFileArch
= CfgFileName
;
1041 size_t ArchPrefixLen
= CfgFileArch
.find('-');
1042 if (ArchPrefixLen
== StringRef::npos
)
1043 ArchPrefixLen
= CfgFileArch
.size();
1044 llvm::Triple CfgTriple
;
1045 CfgFileArch
= CfgFileArch
.take_front(ArchPrefixLen
);
1046 CfgTriple
= llvm::Triple(llvm::Triple::normalize(CfgFileArch
));
1047 if (CfgTriple
.getArch() == llvm::Triple::ArchType::UnknownArch
)
1050 if (!StringRef(CfgFileName
).endswith(".cfg"))
1051 CfgFileName
+= ".cfg";
1053 // If config file starts with architecture name and command line options
1054 // redefine architecture (with options like -m32 -LE etc), try finding new
1055 // config file with that architecture.
1056 SmallString
<128> FixedConfigFile
;
1057 size_t FixedArchPrefixLen
= 0;
1058 if (ArchPrefixLen
) {
1059 // Get architecture name from config file name like 'i386.cfg' or
1060 // 'armv7l-clang.cfg'.
1061 // Check if command line options changes effective triple.
1062 llvm::Triple EffectiveTriple
= computeTargetTriple(*this,
1063 CfgTriple
.getTriple(), *CLOptions
);
1064 if (CfgTriple
.getArch() != EffectiveTriple
.getArch()) {
1065 FixedConfigFile
= EffectiveTriple
.getArchName();
1066 FixedArchPrefixLen
= FixedConfigFile
.size();
1067 // Append the rest of original file name so that file name transforms
1068 // like: i386-clang.cfg -> x86_64-clang.cfg.
1069 if (ArchPrefixLen
< CfgFileName
.size())
1070 FixedConfigFile
+= CfgFileName
.substr(ArchPrefixLen
);
1074 // Prepare list of directories where config file is searched for.
1075 StringRef CfgFileSearchDirs
[] = {UserConfigDir
, SystemConfigDir
, Dir
};
1077 // Try to find config file. First try file with corrected architecture.
1078 llvm::SmallString
<128> CfgFilePath
;
1079 if (!FixedConfigFile
.empty()) {
1080 if (searchForFile(CfgFilePath
, CfgFileSearchDirs
, FixedConfigFile
,
1082 return readConfigFile(CfgFilePath
);
1083 // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'.
1084 FixedConfigFile
.resize(FixedArchPrefixLen
);
1085 FixedConfigFile
.append(".cfg");
1086 if (searchForFile(CfgFilePath
, CfgFileSearchDirs
, FixedConfigFile
,
1088 return readConfigFile(CfgFilePath
);
1091 // Then try original file name.
1092 if (searchForFile(CfgFilePath
, CfgFileSearchDirs
, CfgFileName
, getVFS()))
1093 return readConfigFile(CfgFilePath
);
1095 // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'.
1096 if (!ClangNameParts
.ModeSuffix
.empty() &&
1097 !ClangNameParts
.TargetPrefix
.empty()) {
1098 CfgFileName
.assign(ClangNameParts
.TargetPrefix
);
1099 CfgFileName
.append(".cfg");
1100 if (searchForFile(CfgFilePath
, CfgFileSearchDirs
, CfgFileName
, getVFS()))
1101 return readConfigFile(CfgFilePath
);
1104 // Report error but only if config file was specified explicitly, by option
1105 // --config. If it was deduced from executable name, it is not an error.
1106 if (FileSpecifiedExplicitly
) {
1107 Diag(diag::err_drv_config_file_not_found
) << CfgFileName
;
1108 for (const StringRef
&SearchDir
: CfgFileSearchDirs
)
1109 if (!SearchDir
.empty())
1110 Diag(diag::note_drv_config_file_searched_in
) << SearchDir
;
1117 Compilation
*Driver::BuildCompilation(ArrayRef
<const char *> ArgList
) {
1118 llvm::PrettyStackTraceString
CrashInfo("Compilation construction");
1120 // FIXME: Handle environment options which affect driver behavior, somewhere
1121 // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
1123 // We look for the driver mode option early, because the mode can affect
1124 // how other options are parsed.
1126 auto DriverMode
= getDriverMode(ClangExecutable
, ArgList
.slice(1));
1127 if (!DriverMode
.empty())
1128 setDriverMode(DriverMode
);
1130 // FIXME: What are we going to do with -V and -b?
1132 // Arguments specified in command line.
1134 CLOptions
= std::make_unique
<InputArgList
>(
1135 ParseArgStrings(ArgList
.slice(1), IsCLMode(), ContainsError
));
1137 // Try parsing configuration file.
1139 ContainsError
= loadConfigFile();
1140 bool HasConfigFile
= !ContainsError
&& (CfgOptions
.get() != nullptr);
1142 // All arguments, from both config file and command line.
1143 InputArgList Args
= std::move(HasConfigFile
? std::move(*CfgOptions
)
1144 : std::move(*CLOptions
));
1146 // The args for config files or /clang: flags belong to different InputArgList
1147 // objects than Args. This copies an Arg from one of those other InputArgLists
1148 // to the ownership of Args.
1149 auto appendOneArg
= [&Args
](const Arg
*Opt
, const Arg
*BaseArg
) {
1150 unsigned Index
= Args
.MakeIndex(Opt
->getSpelling());
1151 Arg
*Copy
= new llvm::opt::Arg(Opt
->getOption(), Args
.getArgString(Index
),
1153 Copy
->getValues() = Opt
->getValues();
1154 if (Opt
->isClaimed())
1156 Copy
->setOwnsValues(Opt
->getOwnsValues());
1157 Opt
->setOwnsValues(false);
1162 for (auto *Opt
: *CLOptions
) {
1163 if (Opt
->getOption().matches(options::OPT_config
))
1165 const Arg
*BaseArg
= &Opt
->getBaseArg();
1168 appendOneArg(Opt
, BaseArg
);
1171 // In CL mode, look for any pass-through arguments
1172 if (IsCLMode() && !ContainsError
) {
1173 SmallVector
<const char *, 16> CLModePassThroughArgList
;
1174 for (const auto *A
: Args
.filtered(options::OPT__SLASH_clang
)) {
1176 CLModePassThroughArgList
.push_back(A
->getValue());
1179 if (!CLModePassThroughArgList
.empty()) {
1180 // Parse any pass through args using default clang processing rather
1181 // than clang-cl processing.
1182 auto CLModePassThroughOptions
= std::make_unique
<InputArgList
>(
1183 ParseArgStrings(CLModePassThroughArgList
, false, ContainsError
));
1186 for (auto *Opt
: *CLModePassThroughOptions
) {
1187 appendOneArg(Opt
, nullptr);
1192 // Check for working directory option before accessing any files
1193 if (Arg
*WD
= Args
.getLastArg(options::OPT_working_directory
))
1194 if (VFS
->setCurrentWorkingDirectory(WD
->getValue()))
1195 Diag(diag::err_drv_unable_to_set_working_directory
) << WD
->getValue();
1197 // FIXME: This stuff needs to go into the Compilation, not the driver.
1198 bool CCCPrintPhases
;
1200 // Silence driver warnings if requested
1201 Diags
.setIgnoreAllWarnings(Args
.hasArg(options::OPT_w
));
1203 // -canonical-prefixes, -no-canonical-prefixes are used very early in main.
1204 Args
.ClaimAllArgs(options::OPT_canonical_prefixes
);
1205 Args
.ClaimAllArgs(options::OPT_no_canonical_prefixes
);
1207 // f(no-)integated-cc1 is also used very early in main.
1208 Args
.ClaimAllArgs(options::OPT_fintegrated_cc1
);
1209 Args
.ClaimAllArgs(options::OPT_fno_integrated_cc1
);
1212 Args
.ClaimAllArgs(options::OPT_pipe
);
1214 // Extract -ccc args.
1216 // FIXME: We need to figure out where this behavior should live. Most of it
1217 // should be outside in the client; the parts that aren't should have proper
1218 // options, either by introducing new ones or by overloading gcc ones like -V
1220 CCCPrintPhases
= Args
.hasArg(options::OPT_ccc_print_phases
);
1221 CCCPrintBindings
= Args
.hasArg(options::OPT_ccc_print_bindings
);
1222 if (const Arg
*A
= Args
.getLastArg(options::OPT_ccc_gcc_name
))
1223 CCCGenericGCCName
= A
->getValue();
1225 // Process -fproc-stat-report options.
1226 if (const Arg
*A
= Args
.getLastArg(options::OPT_fproc_stat_report_EQ
)) {
1227 CCPrintProcessStats
= true;
1228 CCPrintStatReportFilename
= A
->getValue();
1230 if (Args
.hasArg(options::OPT_fproc_stat_report
))
1231 CCPrintProcessStats
= true;
1233 // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
1234 // and getToolChain is const.
1236 // clang-cl targets MSVC-style Win32.
1237 llvm::Triple
T(TargetTriple
);
1238 T
.setOS(llvm::Triple::Win32
);
1239 T
.setVendor(llvm::Triple::PC
);
1240 T
.setEnvironment(llvm::Triple::MSVC
);
1241 T
.setObjectFormat(llvm::Triple::COFF
);
1242 TargetTriple
= T
.str();
1243 } else if (IsDXCMode()) {
1244 // Build TargetTriple from target_profile option for clang-dxc.
1245 if (const Arg
*A
= Args
.getLastArg(options::OPT_target_profile
)) {
1246 StringRef TargetProfile
= A
->getValue();
1248 toolchains::HLSLToolChain::parseTargetProfile(TargetProfile
))
1249 TargetTriple
= *Triple
;
1251 Diag(diag::err_drv_invalid_directx_shader_module
) << TargetProfile
;
1255 Diag(diag::err_drv_dxc_missing_target_profile
);
1259 if (const Arg
*A
= Args
.getLastArg(options::OPT_target
))
1260 TargetTriple
= A
->getValue();
1261 if (const Arg
*A
= Args
.getLastArg(options::OPT_ccc_install_dir
))
1262 Dir
= InstalledDir
= A
->getValue();
1263 for (const Arg
*A
: Args
.filtered(options::OPT_B
)) {
1265 PrefixDirs
.push_back(A
->getValue(0));
1267 if (Optional
<std::string
> CompilerPathValue
=
1268 llvm::sys::Process::GetEnv("COMPILER_PATH")) {
1269 StringRef CompilerPath
= *CompilerPathValue
;
1270 while (!CompilerPath
.empty()) {
1271 std::pair
<StringRef
, StringRef
> Split
=
1272 CompilerPath
.split(llvm::sys::EnvPathSeparator
);
1273 PrefixDirs
.push_back(std::string(Split
.first
));
1274 CompilerPath
= Split
.second
;
1277 if (const Arg
*A
= Args
.getLastArg(options::OPT__sysroot_EQ
))
1278 SysRoot
= A
->getValue();
1279 if (const Arg
*A
= Args
.getLastArg(options::OPT__dyld_prefix_EQ
))
1280 DyldPrefix
= A
->getValue();
1282 if (const Arg
*A
= Args
.getLastArg(options::OPT_resource_dir
))
1283 ResourceDir
= A
->getValue();
1285 if (const Arg
*A
= Args
.getLastArg(options::OPT_save_temps_EQ
)) {
1286 SaveTemps
= llvm::StringSwitch
<SaveTempsMode
>(A
->getValue())
1287 .Case("cwd", SaveTempsCwd
)
1288 .Case("obj", SaveTempsObj
)
1289 .Default(SaveTempsCwd
);
1292 if (const Arg
*A
= Args
.getLastArg(options::OPT_offload_host_only
,
1293 options::OPT_offload_device_only
,
1294 options::OPT_offload_host_device
)) {
1295 if (A
->getOption().matches(options::OPT_offload_host_only
))
1296 Offload
= OffloadHost
;
1297 else if (A
->getOption().matches(options::OPT_offload_device_only
))
1298 Offload
= OffloadDevice
;
1300 Offload
= OffloadHostDevice
;
1305 // Process -fembed-bitcode= flags.
1306 if (Arg
*A
= Args
.getLastArg(options::OPT_fembed_bitcode_EQ
)) {
1307 StringRef Name
= A
->getValue();
1308 unsigned Model
= llvm::StringSwitch
<unsigned>(Name
)
1309 .Case("off", EmbedNone
)
1310 .Case("all", EmbedBitcode
)
1311 .Case("bitcode", EmbedBitcode
)
1312 .Case("marker", EmbedMarker
)
1315 Diags
.Report(diag::err_drv_invalid_value
) << A
->getAsString(Args
)
1318 BitcodeEmbed
= static_cast<BitcodeEmbedMode
>(Model
);
1321 // Remove existing compilation database so that each job can append to it.
1322 if (Arg
*A
= Args
.getLastArg(options::OPT_MJ
))
1323 llvm::sys::fs::remove(A
->getValue());
1325 // Setting up the jobs for some precompile cases depends on whether we are
1326 // treating them as PCH, implicit modules or C++20 ones.
1327 // TODO: inferring the mode like this seems fragile (it meets the objective
1328 // of not requiring anything new for operation, however).
1329 const Arg
*Std
= Args
.getLastArg(options::OPT_std_EQ
);
1331 !Args
.hasArg(options::OPT_fmodules
) && Std
&&
1332 (Std
->containsValue("c++20") || Std
->containsValue("c++2b") ||
1333 Std
->containsValue("c++2a") || Std
->containsValue("c++latest"));
1335 // Process -fmodule-header{=} flags.
1336 if (Arg
*A
= Args
.getLastArg(options::OPT_fmodule_header_EQ
,
1337 options::OPT_fmodule_header
)) {
1338 // These flags force C++20 handling of headers.
1339 ModulesModeCXX20
= true;
1340 if (A
->getOption().matches(options::OPT_fmodule_header
))
1341 CXX20HeaderType
= HeaderMode_Default
;
1343 StringRef ArgName
= A
->getValue();
1344 unsigned Kind
= llvm::StringSwitch
<unsigned>(ArgName
)
1345 .Case("user", HeaderMode_User
)
1346 .Case("system", HeaderMode_System
)
1349 Diags
.Report(diag::err_drv_invalid_value
)
1350 << A
->getAsString(Args
) << ArgName
;
1352 CXX20HeaderType
= static_cast<ModuleHeaderMode
>(Kind
);
1356 std::unique_ptr
<llvm::opt::InputArgList
> UArgs
=
1357 std::make_unique
<InputArgList
>(std::move(Args
));
1359 // Perform the default argument translations.
1360 DerivedArgList
*TranslatedArgs
= TranslateInputArgs(*UArgs
);
1362 // Owned by the host.
1363 const ToolChain
&TC
= getToolChain(
1364 *UArgs
, computeTargetTriple(*this, TargetTriple
, *UArgs
));
1366 // The compilation takes ownership of Args.
1367 Compilation
*C
= new Compilation(*this, TC
, UArgs
.release(), TranslatedArgs
,
1370 if (!HandleImmediateArgs(*C
))
1373 // Construct the list of inputs.
1375 BuildInputs(C
->getDefaultToolChain(), *TranslatedArgs
, Inputs
);
1377 // Populate the tool chains for the offloading devices, if any.
1378 CreateOffloadingDeviceToolChains(*C
, Inputs
);
1380 // Construct the list of abstract actions to perform for this compilation. On
1381 // MachO targets this uses the driver-driver and universal actions.
1382 if (TC
.getTriple().isOSBinFormatMachO())
1383 BuildUniversalActions(*C
, C
->getDefaultToolChain(), Inputs
);
1385 BuildActions(*C
, C
->getArgs(), Inputs
, C
->getActions());
1387 if (CCCPrintPhases
) {
1397 static void printArgList(raw_ostream
&OS
, const llvm::opt::ArgList
&Args
) {
1398 llvm::opt::ArgStringList ASL
;
1399 for (const auto *A
: Args
) {
1400 // Use user's original spelling of flags. For example, use
1401 // `/source-charset:utf-8` instead of `-finput-charset=utf-8` if the user
1402 // wrote the former.
1403 while (A
->getAlias())
1405 A
->render(Args
, ASL
);
1408 for (auto I
= ASL
.begin(), E
= ASL
.end(); I
!= E
; ++I
) {
1409 if (I
!= ASL
.begin())
1411 llvm::sys::printArg(OS
, *I
, true);
1416 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename
,
1417 SmallString
<128> &CrashDiagDir
) {
1418 using namespace llvm::sys
;
1419 assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1420 "Only knows about .crash files on Darwin");
1422 // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1423 // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1424 // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1425 path::home_directory(CrashDiagDir
);
1426 if (CrashDiagDir
.startswith("/var/root"))
1428 path::append(CrashDiagDir
, "Library/Logs/DiagnosticReports");
1436 fs::file_status FileStatus
;
1437 TimePoint
<> LastAccessTime
;
1438 SmallString
<128> CrashFilePath
;
1439 // Lookup the .crash files and get the one generated by a subprocess spawned
1440 // by this driver invocation.
1441 for (fs::directory_iterator
File(CrashDiagDir
, EC
), FileEnd
;
1442 File
!= FileEnd
&& !EC
; File
.increment(EC
)) {
1443 StringRef FileName
= path::filename(File
->path());
1444 if (!FileName
.startswith(Name
))
1446 if (fs::status(File
->path(), FileStatus
))
1448 llvm::ErrorOr
<std::unique_ptr
<llvm::MemoryBuffer
>> CrashFile
=
1449 llvm::MemoryBuffer::getFile(File
->path());
1452 // The first line should start with "Process:", otherwise this isn't a real
1454 StringRef Data
= CrashFile
.get()->getBuffer();
1455 if (!Data
.startswith("Process:"))
1457 // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1458 size_t ParentProcPos
= Data
.find("Parent Process:");
1459 if (ParentProcPos
== StringRef::npos
)
1461 size_t LineEnd
= Data
.find_first_of("\n", ParentProcPos
);
1462 if (LineEnd
== StringRef::npos
)
1464 StringRef ParentProcess
= Data
.slice(ParentProcPos
+15, LineEnd
).trim();
1465 int OpenBracket
= -1, CloseBracket
= -1;
1466 for (size_t i
= 0, e
= ParentProcess
.size(); i
< e
; ++i
) {
1467 if (ParentProcess
[i
] == '[')
1469 if (ParentProcess
[i
] == ']')
1472 // Extract the parent process PID from the .crash file and check whether
1473 // it matches this driver invocation pid.
1475 if (OpenBracket
< 0 || CloseBracket
< 0 ||
1476 ParentProcess
.slice(OpenBracket
+ 1, CloseBracket
)
1477 .getAsInteger(10, CrashPID
) || CrashPID
!= PID
) {
1481 // Found a .crash file matching the driver pid. To avoid getting an older
1482 // and misleading crash file, continue looking for the most recent.
1483 // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1484 // multiple crashes poiting to the same parent process. Since the driver
1485 // does not collect pid information for the dispatched invocation there's
1486 // currently no way to distinguish among them.
1487 const auto FileAccessTime
= FileStatus
.getLastModificationTime();
1488 if (FileAccessTime
> LastAccessTime
) {
1489 CrashFilePath
.assign(File
->path());
1490 LastAccessTime
= FileAccessTime
;
1494 // If found, copy it over to the location of other reproducer files.
1495 if (!CrashFilePath
.empty()) {
1496 EC
= fs::copy_file(CrashFilePath
, ReproCrashFilename
);
1505 // When clang crashes, produce diagnostic information including the fully
1506 // preprocessed source file(s). Request that the developer attach the
1507 // diagnostic information to a bug report.
1508 void Driver::generateCompilationDiagnostics(
1509 Compilation
&C
, const Command
&FailingCommand
,
1510 StringRef AdditionalInformation
, CompilationDiagnosticReport
*Report
) {
1511 if (C
.getArgs().hasArg(options::OPT_fno_crash_diagnostics
))
1515 if (Arg
*A
= C
.getArgs().getLastArg(options::OPT_fcrash_diagnostics_EQ
)) {
1516 Level
= llvm::StringSwitch
<unsigned>(A
->getValue())
1518 .Case("compiler", 1)
1525 // Don't try to generate diagnostics for dsymutil jobs.
1526 if (FailingCommand
.getCreator().isDsymutilJob())
1530 ArgStringList SavedTemps
;
1531 if (FailingCommand
.getCreator().isLinkJob()) {
1532 C
.getDefaultToolChain().GetLinkerPath(&IsLLD
);
1533 if (!IsLLD
|| Level
< 2)
1536 // If lld crashed, we will re-run the same command with the input it used
1537 // to have. In that case we should not remove temp files in
1538 // initCompilationForDiagnostics yet. They will be added back and removed
1540 SavedTemps
= std::move(C
.getTempFiles());
1541 assert(!C
.getTempFiles().size());
1544 // Print the version of the compiler.
1545 PrintVersion(C
, llvm::errs());
1547 // Suppress driver output and emit preprocessor output to temp file.
1548 CCGenDiagnostics
= true;
1550 // Save the original job command(s).
1551 Command Cmd
= FailingCommand
;
1553 // Keep track of whether we produce any errors while trying to produce
1554 // preprocessed sources.
1555 DiagnosticErrorTrap
Trap(Diags
);
1557 // Suppress tool output.
1558 C
.initCompilationForDiagnostics();
1560 // Construct the list of inputs.
1562 BuildInputs(C
.getDefaultToolChain(), C
.getArgs(), Inputs
);
1564 for (InputList::iterator it
= Inputs
.begin(), ie
= Inputs
.end(); it
!= ie
;) {
1565 bool IgnoreInput
= false;
1567 // Ignore input from stdin or any inputs that cannot be preprocessed.
1568 // Check type first as not all linker inputs have a value.
1569 if (types::getPreprocessedType(it
->first
) == types::TY_INVALID
) {
1571 } else if (!strcmp(it
->second
->getValue(), "-")) {
1572 Diag(clang::diag::note_drv_command_failed_diag_msg
)
1573 << "Error generating preprocessed source(s) - "
1574 "ignoring input from stdin.";
1579 it
= Inputs
.erase(it
);
1586 if (Inputs
.empty()) {
1587 Diag(clang::diag::note_drv_command_failed_diag_msg
)
1588 << "Error generating preprocessed source(s) - "
1589 "no preprocessable inputs.";
1593 // Don't attempt to generate preprocessed files if multiple -arch options are
1594 // used, unless they're all duplicates.
1595 llvm::StringSet
<> ArchNames
;
1596 for (const Arg
*A
: C
.getArgs()) {
1597 if (A
->getOption().matches(options::OPT_arch
)) {
1598 StringRef ArchName
= A
->getValue();
1599 ArchNames
.insert(ArchName
);
1602 if (ArchNames
.size() > 1) {
1603 Diag(clang::diag::note_drv_command_failed_diag_msg
)
1604 << "Error generating preprocessed source(s) - cannot generate "
1605 "preprocessed source with multiple -arch options.";
1609 // Construct the list of abstract actions to perform for this compilation. On
1610 // Darwin OSes this uses the driver-driver and builds universal actions.
1611 const ToolChain
&TC
= C
.getDefaultToolChain();
1612 if (TC
.getTriple().isOSBinFormatMachO())
1613 BuildUniversalActions(C
, TC
, Inputs
);
1615 BuildActions(C
, C
.getArgs(), Inputs
, C
.getActions());
1619 // If there were errors building the compilation, quit now.
1620 if (Trap
.hasErrorOccurred()) {
1621 Diag(clang::diag::note_drv_command_failed_diag_msg
)
1622 << "Error generating preprocessed source(s).";
1626 // Generate preprocessed output.
1627 SmallVector
<std::pair
<int, const Command
*>, 4> FailingCommands
;
1628 C
.ExecuteJobs(C
.getJobs(), FailingCommands
);
1630 // If any of the preprocessing commands failed, clean up and exit.
1631 if (!FailingCommands
.empty()) {
1632 Diag(clang::diag::note_drv_command_failed_diag_msg
)
1633 << "Error generating preprocessed source(s).";
1637 // If lld failed, rerun it again with --reproduce.
1639 const char *TmpName
= CreateTempFile(C
, "linker-crash", "tar");
1640 Command NewLLDInvocation
= Cmd
;
1641 llvm::opt::ArgStringList ArgList
= NewLLDInvocation
.getArguments();
1642 StringRef ReproduceOption
=
1643 C
.getDefaultToolChain().getTriple().isWindowsMSVCEnvironment()
1646 ArgList
.push_back(Saver
.save(Twine(ReproduceOption
) + TmpName
).data());
1647 NewLLDInvocation
.replaceArguments(std::move(ArgList
));
1649 // Redirect stdout/stderr to /dev/null.
1650 NewLLDInvocation
.Execute({None
, {""}, {""}}, nullptr, nullptr);
1653 const ArgStringList
&TempFiles
= C
.getTempFiles();
1654 if (TempFiles
.empty()) {
1655 Diag(clang::diag::note_drv_command_failed_diag_msg
)
1656 << "Error generating preprocessed source(s).";
1660 Diag(clang::diag::note_drv_command_failed_diag_msg
)
1661 << "\n********************\n\n"
1662 "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1663 "Preprocessed source(s) and associated run script(s) are located at:";
1665 SmallString
<128> VFS
;
1666 SmallString
<128> ReproCrashFilename
;
1667 for (const char *TempFile
: TempFiles
) {
1668 Diag(clang::diag::note_drv_command_failed_diag_msg
) << TempFile
;
1670 Report
->TemporaryFiles
.push_back(TempFile
);
1671 if (ReproCrashFilename
.empty()) {
1672 ReproCrashFilename
= TempFile
;
1673 llvm::sys::path::replace_extension(ReproCrashFilename
, ".crash");
1675 if (StringRef(TempFile
).endswith(".cache")) {
1676 // In some cases (modules) we'll dump extra data to help with reproducing
1677 // the crash into a directory next to the output.
1678 VFS
= llvm::sys::path::filename(TempFile
);
1679 llvm::sys::path::append(VFS
, "vfs", "vfs.yaml");
1683 for (const char *TempFile
: SavedTemps
)
1684 C
.addTempFile(TempFile
);
1686 // Assume associated files are based off of the first temporary file.
1687 CrashReportInfo
CrashInfo(TempFiles
[0], VFS
);
1689 llvm::SmallString
<128> Script(CrashInfo
.Filename
);
1690 llvm::sys::path::replace_extension(Script
, "sh");
1692 llvm::raw_fd_ostream
ScriptOS(Script
, EC
, llvm::sys::fs::CD_CreateNew
,
1693 llvm::sys::fs::FA_Write
,
1694 llvm::sys::fs::OF_Text
);
1696 Diag(clang::diag::note_drv_command_failed_diag_msg
)
1697 << "Error generating run script: " << Script
<< " " << EC
.message();
1699 ScriptOS
<< "# Crash reproducer for " << getClangFullVersion() << "\n"
1700 << "# Driver args: ";
1701 printArgList(ScriptOS
, C
.getInputArgs());
1702 ScriptOS
<< "# Original command: ";
1703 Cmd
.Print(ScriptOS
, "\n", /*Quote=*/true);
1704 Cmd
.Print(ScriptOS
, "\n", /*Quote=*/true, &CrashInfo
);
1705 if (!AdditionalInformation
.empty())
1706 ScriptOS
<< "\n# Additional information: " << AdditionalInformation
1709 Report
->TemporaryFiles
.push_back(std::string(Script
.str()));
1710 Diag(clang::diag::note_drv_command_failed_diag_msg
) << Script
;
1713 // On darwin, provide information about the .crash diagnostic report.
1714 if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1715 SmallString
<128> CrashDiagDir
;
1716 if (getCrashDiagnosticFile(ReproCrashFilename
, CrashDiagDir
)) {
1717 Diag(clang::diag::note_drv_command_failed_diag_msg
)
1718 << ReproCrashFilename
.str();
1719 } else { // Suggest a directory for the user to look for .crash files.
1720 llvm::sys::path::append(CrashDiagDir
, Name
);
1721 CrashDiagDir
+= "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1722 Diag(clang::diag::note_drv_command_failed_diag_msg
)
1723 << "Crash backtrace is located in";
1724 Diag(clang::diag::note_drv_command_failed_diag_msg
)
1725 << CrashDiagDir
.str();
1726 Diag(clang::diag::note_drv_command_failed_diag_msg
)
1727 << "(choose the .crash file that corresponds to your crash)";
1731 for (const auto &A
: C
.getArgs().filtered(options::OPT_frewrite_map_file_EQ
))
1732 Diag(clang::diag::note_drv_command_failed_diag_msg
) << A
->getValue();
1734 Diag(clang::diag::note_drv_command_failed_diag_msg
)
1735 << "\n\n********************";
1738 void Driver::setUpResponseFiles(Compilation
&C
, Command
&Cmd
) {
1739 // Since commandLineFitsWithinSystemLimits() may underestimate system's
1740 // capacity if the tool does not support response files, there is a chance/
1741 // that things will just work without a response file, so we silently just
1743 if (Cmd
.getResponseFileSupport().ResponseKind
==
1744 ResponseFileSupport::RF_None
||
1745 llvm::sys::commandLineFitsWithinSystemLimits(Cmd
.getExecutable(),
1746 Cmd
.getArguments()))
1749 std::string TmpName
= GetTemporaryPath("response", "txt");
1750 Cmd
.setResponseFile(C
.addTempFile(C
.getArgs().MakeArgString(TmpName
)));
1753 int Driver::ExecuteCompilation(
1755 SmallVectorImpl
<std::pair
<int, const Command
*>> &FailingCommands
) {
1756 if (C
.getArgs().hasArg(options::OPT_fdriver_only
)) {
1757 if (C
.getArgs().hasArg(options::OPT_v
))
1758 C
.getJobs().Print(llvm::errs(), "\n", true);
1760 C
.ExecuteJobs(C
.getJobs(), FailingCommands
, /*LogOnly=*/true);
1762 // If there were errors building the compilation, quit now.
1763 if (!FailingCommands
.empty() || Diags
.hasErrorOccurred())
1769 // Just print if -### was present.
1770 if (C
.getArgs().hasArg(options::OPT__HASH_HASH_HASH
)) {
1771 C
.getJobs().Print(llvm::errs(), "\n", true);
1775 // If there were errors building the compilation, quit now.
1776 if (Diags
.hasErrorOccurred())
1779 // Set up response file names for each command, if necessary.
1780 for (auto &Job
: C
.getJobs())
1781 setUpResponseFiles(C
, Job
);
1783 C
.ExecuteJobs(C
.getJobs(), FailingCommands
);
1785 // If the command succeeded, we are done.
1786 if (FailingCommands
.empty())
1789 // Otherwise, remove result files and print extra information about abnormal
1792 for (const auto &CmdPair
: FailingCommands
) {
1793 int CommandRes
= CmdPair
.first
;
1794 const Command
*FailingCommand
= CmdPair
.second
;
1796 // Remove result files if we're not saving temps.
1797 if (!isSaveTempsEnabled()) {
1798 const JobAction
*JA
= cast
<JobAction
>(&FailingCommand
->getSource());
1799 C
.CleanupFileMap(C
.getResultFiles(), JA
, true);
1801 // Failure result files are valid unless we crashed.
1803 C
.CleanupFileMap(C
.getFailureResultFiles(), JA
, true);
1807 // llvm/lib/Support/Unix/Signals.inc will exit with a special return code
1808 // for SIGPIPE. Do not print diagnostics for this case.
1809 if (CommandRes
== EX_IOERR
) {
1815 // Print extra information about abnormal failures, if possible.
1817 // This is ad-hoc, but we don't want to be excessively noisy. If the result
1818 // status was 1, assume the command failed normally. In particular, if it
1819 // was the compiler then assume it gave a reasonable error code. Failures
1820 // in other tools are less common, and they generally have worse
1821 // diagnostics, so always print the diagnostic there.
1822 const Tool
&FailingTool
= FailingCommand
->getCreator();
1824 if (!FailingCommand
->getCreator().hasGoodDiagnostics() || CommandRes
!= 1) {
1825 // FIXME: See FIXME above regarding result code interpretation.
1827 Diag(clang::diag::err_drv_command_signalled
)
1828 << FailingTool
.getShortName();
1830 Diag(clang::diag::err_drv_command_failed
)
1831 << FailingTool
.getShortName() << CommandRes
;
1837 void Driver::PrintHelp(bool ShowHidden
) const {
1838 unsigned IncludedFlagsBitmask
;
1839 unsigned ExcludedFlagsBitmask
;
1840 std::tie(IncludedFlagsBitmask
, ExcludedFlagsBitmask
) =
1841 getIncludeExcludeOptionFlagMasks(IsCLMode());
1843 ExcludedFlagsBitmask
|= options::NoDriverOption
;
1845 ExcludedFlagsBitmask
|= HelpHidden
;
1848 IncludedFlagsBitmask
|= options::FlangOption
;
1850 ExcludedFlagsBitmask
|= options::FlangOnlyOption
;
1852 std::string Usage
= llvm::formatv("{0} [options] file...", Name
).str();
1853 getOpts().printHelp(llvm::outs(), Usage
.c_str(), DriverTitle
.c_str(),
1854 IncludedFlagsBitmask
, ExcludedFlagsBitmask
,
1855 /*ShowAllAliases=*/false);
1858 void Driver::PrintVersion(const Compilation
&C
, raw_ostream
&OS
) const {
1859 if (IsFlangMode()) {
1860 OS
<< getClangToolFullVersion("flang-new") << '\n';
1862 // FIXME: The following handlers should use a callback mechanism, we don't
1863 // know what the client would like to do.
1864 OS
<< getClangFullVersion() << '\n';
1866 const ToolChain
&TC
= C
.getDefaultToolChain();
1867 OS
<< "Target: " << TC
.getTripleString() << '\n';
1869 // Print the threading model.
1870 if (Arg
*A
= C
.getArgs().getLastArg(options::OPT_mthread_model
)) {
1871 // Don't print if the ToolChain would have barfed on it already
1872 if (TC
.isThreadModelSupported(A
->getValue()))
1873 OS
<< "Thread model: " << A
->getValue();
1875 OS
<< "Thread model: " << TC
.getThreadModel();
1878 // Print out the install directory.
1879 OS
<< "InstalledDir: " << InstalledDir
<< '\n';
1881 // If configuration file was used, print its path.
1882 if (!ConfigFile
.empty())
1883 OS
<< "Configuration file: " << ConfigFile
<< '\n';
1886 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
1888 static void PrintDiagnosticCategories(raw_ostream
&OS
) {
1889 // Skip the empty category.
1890 for (unsigned i
= 1, max
= DiagnosticIDs::getNumberOfCategories(); i
!= max
;
1892 OS
<< i
<< ',' << DiagnosticIDs::getCategoryNameFromID(i
) << '\n';
1895 void Driver::HandleAutocompletions(StringRef PassedFlags
) const {
1896 if (PassedFlags
== "")
1898 // Print out all options that start with a given argument. This is used for
1899 // shell autocompletion.
1900 std::vector
<std::string
> SuggestedCompletions
;
1901 std::vector
<std::string
> Flags
;
1903 unsigned int DisableFlags
=
1904 options::NoDriverOption
| options::Unsupported
| options::Ignored
;
1906 // Make sure that Flang-only options don't pollute the Clang output
1907 // TODO: Make sure that Clang-only options don't pollute Flang output
1909 DisableFlags
|= options::FlangOnlyOption
;
1911 // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
1912 // because the latter indicates that the user put space before pushing tab
1913 // which should end up in a file completion.
1914 const bool HasSpace
= PassedFlags
.endswith(",");
1916 // Parse PassedFlags by "," as all the command-line flags are passed to this
1917 // function separated by ","
1918 StringRef TargetFlags
= PassedFlags
;
1919 while (TargetFlags
!= "") {
1921 std::tie(CurFlag
, TargetFlags
) = TargetFlags
.split(",");
1922 Flags
.push_back(std::string(CurFlag
));
1925 // We want to show cc1-only options only when clang is invoked with -cc1 or
1927 if (llvm::is_contained(Flags
, "-Xclang") || llvm::is_contained(Flags
, "-cc1"))
1928 DisableFlags
&= ~options::NoDriverOption
;
1930 const llvm::opt::OptTable
&Opts
= getOpts();
1932 Cur
= Flags
.at(Flags
.size() - 1);
1934 if (Flags
.size() >= 2) {
1935 Prev
= Flags
.at(Flags
.size() - 2);
1936 SuggestedCompletions
= Opts
.suggestValueCompletions(Prev
, Cur
);
1939 if (SuggestedCompletions
.empty())
1940 SuggestedCompletions
= Opts
.suggestValueCompletions(Cur
, "");
1942 // If Flags were empty, it means the user typed `clang [tab]` where we should
1943 // list all possible flags. If there was no value completion and the user
1944 // pressed tab after a space, we should fall back to a file completion.
1945 // We're printing a newline to be consistent with what we print at the end of
1947 if (SuggestedCompletions
.empty() && HasSpace
&& !Flags
.empty()) {
1948 llvm::outs() << '\n';
1952 // When flag ends with '=' and there was no value completion, return empty
1953 // string and fall back to the file autocompletion.
1954 if (SuggestedCompletions
.empty() && !Cur
.endswith("=")) {
1955 // If the flag is in the form of "--autocomplete=-foo",
1956 // we were requested to print out all option names that start with "-foo".
1957 // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
1958 SuggestedCompletions
= Opts
.findByPrefix(Cur
, DisableFlags
);
1960 // We have to query the -W flags manually as they're not in the OptTable.
1961 // TODO: Find a good way to add them to OptTable instead and them remove
1963 for (StringRef S
: DiagnosticIDs::getDiagnosticFlags())
1964 if (S
.startswith(Cur
))
1965 SuggestedCompletions
.push_back(std::string(S
));
1968 // Sort the autocomplete candidates so that shells print them out in a
1969 // deterministic order. We could sort in any way, but we chose
1970 // case-insensitive sorting for consistency with the -help option
1971 // which prints out options in the case-insensitive alphabetical order.
1972 llvm::sort(SuggestedCompletions
, [](StringRef A
, StringRef B
) {
1973 if (int X
= A
.compare_insensitive(B
))
1975 return A
.compare(B
) > 0;
1978 llvm::outs() << llvm::join(SuggestedCompletions
, "\n") << '\n';
1981 bool Driver::HandleImmediateArgs(const Compilation
&C
) {
1982 // The order these options are handled in gcc is all over the place, but we
1983 // don't expect inconsistencies w.r.t. that to matter in practice.
1985 if (C
.getArgs().hasArg(options::OPT_dumpmachine
)) {
1986 llvm::outs() << C
.getDefaultToolChain().getTripleString() << '\n';
1990 if (C
.getArgs().hasArg(options::OPT_dumpversion
)) {
1991 // Since -dumpversion is only implemented for pedantic GCC compatibility, we
1992 // return an answer which matches our definition of __VERSION__.
1993 llvm::outs() << CLANG_VERSION_STRING
<< "\n";
1997 if (C
.getArgs().hasArg(options::OPT__print_diagnostic_categories
)) {
1998 PrintDiagnosticCategories(llvm::outs());
2002 if (C
.getArgs().hasArg(options::OPT_help
) ||
2003 C
.getArgs().hasArg(options::OPT__help_hidden
)) {
2004 PrintHelp(C
.getArgs().hasArg(options::OPT__help_hidden
));
2008 if (C
.getArgs().hasArg(options::OPT__version
)) {
2009 // Follow gcc behavior and use stdout for --version and stderr for -v.
2010 PrintVersion(C
, llvm::outs());
2014 if (C
.getArgs().hasArg(options::OPT_v
) ||
2015 C
.getArgs().hasArg(options::OPT__HASH_HASH_HASH
) ||
2016 C
.getArgs().hasArg(options::OPT_print_supported_cpus
)) {
2017 PrintVersion(C
, llvm::errs());
2018 SuppressMissingInputWarning
= true;
2021 if (C
.getArgs().hasArg(options::OPT_v
)) {
2022 if (!SystemConfigDir
.empty())
2023 llvm::errs() << "System configuration file directory: "
2024 << SystemConfigDir
<< "\n";
2025 if (!UserConfigDir
.empty())
2026 llvm::errs() << "User configuration file directory: "
2027 << UserConfigDir
<< "\n";
2030 const ToolChain
&TC
= C
.getDefaultToolChain();
2032 if (C
.getArgs().hasArg(options::OPT_v
))
2033 TC
.printVerboseInfo(llvm::errs());
2035 if (C
.getArgs().hasArg(options::OPT_print_resource_dir
)) {
2036 llvm::outs() << ResourceDir
<< '\n';
2040 if (C
.getArgs().hasArg(options::OPT_print_search_dirs
)) {
2041 llvm::outs() << "programs: =";
2042 bool separator
= false;
2043 // Print -B and COMPILER_PATH.
2044 for (const std::string
&Path
: PrefixDirs
) {
2046 llvm::outs() << llvm::sys::EnvPathSeparator
;
2047 llvm::outs() << Path
;
2050 for (const std::string
&Path
: TC
.getProgramPaths()) {
2052 llvm::outs() << llvm::sys::EnvPathSeparator
;
2053 llvm::outs() << Path
;
2056 llvm::outs() << "\n";
2057 llvm::outs() << "libraries: =" << ResourceDir
;
2059 StringRef sysroot
= C
.getSysRoot();
2061 for (const std::string
&Path
: TC
.getFilePaths()) {
2062 // Always print a separator. ResourceDir was the first item shown.
2063 llvm::outs() << llvm::sys::EnvPathSeparator
;
2064 // Interpretation of leading '=' is needed only for NetBSD.
2066 llvm::outs() << sysroot
<< Path
.substr(1);
2068 llvm::outs() << Path
;
2070 llvm::outs() << "\n";
2074 if (C
.getArgs().hasArg(options::OPT_print_runtime_dir
)) {
2075 std::string RuntimePath
;
2076 // Get the first existing path, if any.
2077 for (auto Path
: TC
.getRuntimePaths()) {
2078 if (getVFS().exists(Path
)) {
2083 if (!RuntimePath
.empty())
2084 llvm::outs() << RuntimePath
<< '\n';
2086 llvm::outs() << TC
.getCompilerRTPath() << '\n';
2090 if (C
.getArgs().hasArg(options::OPT_print_diagnostic_options
)) {
2091 std::vector
<std::string
> Flags
= DiagnosticIDs::getDiagnosticFlags();
2092 for (std::size_t I
= 0; I
!= Flags
.size(); I
+= 2)
2093 llvm::outs() << " " << Flags
[I
] << "\n " << Flags
[I
+ 1] << "\n\n";
2097 // FIXME: The following handlers should use a callback mechanism, we don't
2098 // know what the client would like to do.
2099 if (Arg
*A
= C
.getArgs().getLastArg(options::OPT_print_file_name_EQ
)) {
2100 llvm::outs() << GetFilePath(A
->getValue(), TC
) << "\n";
2104 if (Arg
*A
= C
.getArgs().getLastArg(options::OPT_print_prog_name_EQ
)) {
2105 StringRef ProgName
= A
->getValue();
2107 // Null program name cannot have a path.
2108 if (! ProgName
.empty())
2109 llvm::outs() << GetProgramPath(ProgName
, TC
);
2111 llvm::outs() << "\n";
2115 if (Arg
*A
= C
.getArgs().getLastArg(options::OPT_autocomplete
)) {
2116 StringRef PassedFlags
= A
->getValue();
2117 HandleAutocompletions(PassedFlags
);
2121 if (C
.getArgs().hasArg(options::OPT_print_libgcc_file_name
)) {
2122 ToolChain::RuntimeLibType RLT
= TC
.GetRuntimeLibType(C
.getArgs());
2123 const llvm::Triple
Triple(TC
.ComputeEffectiveClangTriple(C
.getArgs()));
2124 RegisterEffectiveTriple
TripleRAII(TC
, Triple
);
2126 case ToolChain::RLT_CompilerRT
:
2127 llvm::outs() << TC
.getCompilerRT(C
.getArgs(), "builtins") << "\n";
2129 case ToolChain::RLT_Libgcc
:
2130 llvm::outs() << GetFilePath("libgcc.a", TC
) << "\n";
2136 if (C
.getArgs().hasArg(options::OPT_print_multi_lib
)) {
2137 for (const Multilib
&Multilib
: TC
.getMultilibs())
2138 llvm::outs() << Multilib
<< "\n";
2142 if (C
.getArgs().hasArg(options::OPT_print_multi_directory
)) {
2143 const Multilib
&Multilib
= TC
.getMultilib();
2144 if (Multilib
.gccSuffix().empty())
2145 llvm::outs() << ".\n";
2147 StringRef
Suffix(Multilib
.gccSuffix());
2148 assert(Suffix
.front() == '/');
2149 llvm::outs() << Suffix
.substr(1) << "\n";
2154 if (C
.getArgs().hasArg(options::OPT_print_target_triple
)) {
2155 llvm::outs() << TC
.getTripleString() << "\n";
2159 if (C
.getArgs().hasArg(options::OPT_print_effective_triple
)) {
2160 const llvm::Triple
Triple(TC
.ComputeEffectiveClangTriple(C
.getArgs()));
2161 llvm::outs() << Triple
.getTriple() << "\n";
2165 if (C
.getArgs().hasArg(options::OPT_print_targets
)) {
2166 llvm::TargetRegistry::printRegisteredTargetsForVersion(llvm::outs());
2179 // Display an action graph human-readably. Action A is the "sink" node
2180 // and latest-occuring action. Traversal is in pre-order, visiting the
2181 // inputs to each action before printing the action itself.
2182 static unsigned PrintActions1(const Compilation
&C
, Action
*A
,
2183 std::map
<Action
*, unsigned> &Ids
,
2184 Twine Indent
= {}, int Kind
= TopLevelAction
) {
2185 if (Ids
.count(A
)) // A was already visited.
2189 llvm::raw_string_ostream
os(str
);
2191 auto getSibIndent
= [](int K
) -> Twine
{
2192 return (K
== HeadSibAction
) ? " " : (K
== OtherSibAction
) ? "| " : "";
2195 Twine SibIndent
= Indent
+ getSibIndent(Kind
);
2196 int SibKind
= HeadSibAction
;
2197 os
<< Action::getClassName(A
->getKind()) << ", ";
2198 if (InputAction
*IA
= dyn_cast
<InputAction
>(A
)) {
2199 os
<< "\"" << IA
->getInputArg().getValue() << "\"";
2200 } else if (BindArchAction
*BIA
= dyn_cast
<BindArchAction
>(A
)) {
2201 os
<< '"' << BIA
->getArchName() << '"' << ", {"
2202 << PrintActions1(C
, *BIA
->input_begin(), Ids
, SibIndent
, SibKind
) << "}";
2203 } else if (OffloadAction
*OA
= dyn_cast
<OffloadAction
>(A
)) {
2204 bool IsFirst
= true;
2205 OA
->doOnEachDependence(
2206 [&](Action
*A
, const ToolChain
*TC
, const char *BoundArch
) {
2207 assert(TC
&& "Unknown host toolchain");
2208 // E.g. for two CUDA device dependences whose bound arch is sm_20 and
2209 // sm_35 this will generate:
2210 // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
2211 // (nvptx64-nvidia-cuda:sm_35) {#ID}
2215 os
<< A
->getOffloadingKindPrefix();
2217 os
<< TC
->getTriple().normalize();
2219 os
<< ":" << BoundArch
;
2222 os
<< " {" << PrintActions1(C
, A
, Ids
, SibIndent
, SibKind
) << "}";
2224 SibKind
= OtherSibAction
;
2227 const ActionList
*AL
= &A
->getInputs();
2230 const char *Prefix
= "{";
2231 for (Action
*PreRequisite
: *AL
) {
2232 os
<< Prefix
<< PrintActions1(C
, PreRequisite
, Ids
, SibIndent
, SibKind
);
2234 SibKind
= OtherSibAction
;
2241 // Append offload info for all options other than the offloading action
2242 // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
2243 std::string offload_str
;
2244 llvm::raw_string_ostream
offload_os(offload_str
);
2245 if (!isa
<OffloadAction
>(A
)) {
2246 auto S
= A
->getOffloadingKindPrefix();
2248 offload_os
<< ", (" << S
;
2249 if (A
->getOffloadingArch())
2250 offload_os
<< ", " << A
->getOffloadingArch();
2255 auto getSelfIndent
= [](int K
) -> Twine
{
2256 return (K
== HeadSibAction
) ? "+- " : (K
== OtherSibAction
) ? "|- " : "";
2259 unsigned Id
= Ids
.size();
2261 llvm::errs() << Indent
+ getSelfIndent(Kind
) << Id
<< ": " << os
.str() << ", "
2262 << types::getTypeName(A
->getType()) << offload_os
.str() << "\n";
2267 // Print the action graphs in a compilation C.
2268 // For example "clang -c file1.c file2.c" is composed of two subgraphs.
2269 void Driver::PrintActions(const Compilation
&C
) const {
2270 std::map
<Action
*, unsigned> Ids
;
2271 for (Action
*A
: C
.getActions())
2272 PrintActions1(C
, A
, Ids
);
2275 /// Check whether the given input tree contains any compilation or
2276 /// assembly actions.
2277 static bool ContainsCompileOrAssembleAction(const Action
*A
) {
2278 if (isa
<CompileJobAction
>(A
) || isa
<BackendJobAction
>(A
) ||
2279 isa
<AssembleJobAction
>(A
))
2282 return llvm::any_of(A
->inputs(), ContainsCompileOrAssembleAction
);
2285 void Driver::BuildUniversalActions(Compilation
&C
, const ToolChain
&TC
,
2286 const InputList
&BAInputs
) const {
2287 DerivedArgList
&Args
= C
.getArgs();
2288 ActionList
&Actions
= C
.getActions();
2289 llvm::PrettyStackTraceString
CrashInfo("Building universal build actions");
2290 // Collect the list of architectures. Duplicates are allowed, but should only
2291 // be handled once (in the order seen).
2292 llvm::StringSet
<> ArchNames
;
2293 SmallVector
<const char *, 4> Archs
;
2294 for (Arg
*A
: Args
) {
2295 if (A
->getOption().matches(options::OPT_arch
)) {
2296 // Validate the option here; we don't save the type here because its
2297 // particular spelling may participate in other driver choices.
2298 llvm::Triple::ArchType Arch
=
2299 tools::darwin::getArchTypeForMachOArchName(A
->getValue());
2300 if (Arch
== llvm::Triple::UnknownArch
) {
2301 Diag(clang::diag::err_drv_invalid_arch_name
) << A
->getAsString(Args
);
2306 if (ArchNames
.insert(A
->getValue()).second
)
2307 Archs
.push_back(A
->getValue());
2311 // When there is no explicit arch for this platform, make sure we still bind
2312 // the architecture (to the default) so that -Xarch_ is handled correctly.
2314 Archs
.push_back(Args
.MakeArgString(TC
.getDefaultUniversalArchName()));
2316 ActionList SingleActions
;
2317 BuildActions(C
, Args
, BAInputs
, SingleActions
);
2319 // Add in arch bindings for every top level action, as well as lipo and
2320 // dsymutil steps if needed.
2321 for (Action
* Act
: SingleActions
) {
2322 // Make sure we can lipo this kind of output. If not (and it is an actual
2323 // output) then we disallow, since we can't create an output file with the
2324 // right name without overwriting it. We could remove this oddity by just
2325 // changing the output names to include the arch, which would also fix
2326 // -save-temps. Compatibility wins for now.
2328 if (Archs
.size() > 1 && !types::canLipoType(Act
->getType()))
2329 Diag(clang::diag::err_drv_invalid_output_with_multiple_archs
)
2330 << types::getTypeName(Act
->getType());
2333 for (unsigned i
= 0, e
= Archs
.size(); i
!= e
; ++i
)
2334 Inputs
.push_back(C
.MakeAction
<BindArchAction
>(Act
, Archs
[i
]));
2336 // Lipo if necessary, we do it this way because we need to set the arch flag
2337 // so that -Xarch_ gets overwritten.
2338 if (Inputs
.size() == 1 || Act
->getType() == types::TY_Nothing
)
2339 Actions
.append(Inputs
.begin(), Inputs
.end());
2341 Actions
.push_back(C
.MakeAction
<LipoJobAction
>(Inputs
, Act
->getType()));
2343 // Handle debug info queries.
2344 Arg
*A
= Args
.getLastArg(options::OPT_g_Group
);
2345 bool enablesDebugInfo
= A
&& !A
->getOption().matches(options::OPT_g0
) &&
2346 !A
->getOption().matches(options::OPT_gstabs
);
2347 if ((enablesDebugInfo
|| willEmitRemarks(Args
)) &&
2348 ContainsCompileOrAssembleAction(Actions
.back())) {
2350 // Add a 'dsymutil' step if necessary, when debug info is enabled and we
2351 // have a compile input. We need to run 'dsymutil' ourselves in such cases
2352 // because the debug info will refer to a temporary object file which
2353 // will be removed at the end of the compilation process.
2354 if (Act
->getType() == types::TY_Image
) {
2356 Inputs
.push_back(Actions
.back());
2359 C
.MakeAction
<DsymutilJobAction
>(Inputs
, types::TY_dSYM
));
2362 // Verify the debug info output.
2363 if (Args
.hasArg(options::OPT_verify_debug_info
)) {
2364 Action
* LastAction
= Actions
.back();
2366 Actions
.push_back(C
.MakeAction
<VerifyDebugInfoJobAction
>(
2367 LastAction
, types::TY_Nothing
));
2373 bool Driver::DiagnoseInputExistence(const DerivedArgList
&Args
, StringRef Value
,
2374 types::ID Ty
, bool TypoCorrect
) const {
2375 if (!getCheckInputsExist())
2378 // stdin always exists.
2382 // If it's a header to be found in the system or user search path, then defer
2383 // complaints about its absence until those searches can be done. When we
2384 // are definitely processing headers for C++20 header units, extend this to
2385 // allow the user to put "-fmodule-header -xc++-header vector" for example.
2386 if (Ty
== types::TY_CXXSHeader
|| Ty
== types::TY_CXXUHeader
||
2387 (ModulesModeCXX20
&& Ty
== types::TY_CXXHeader
))
2390 if (getVFS().exists(Value
))
2394 // Check if the filename is a typo for an option flag. OptTable thinks
2395 // that all args that are not known options and that start with / are
2396 // filenames, but e.g. `/diagnostic:caret` is more likely a typo for
2397 // the option `/diagnostics:caret` than a reference to a file in the root
2399 unsigned IncludedFlagsBitmask
;
2400 unsigned ExcludedFlagsBitmask
;
2401 std::tie(IncludedFlagsBitmask
, ExcludedFlagsBitmask
) =
2402 getIncludeExcludeOptionFlagMasks(IsCLMode());
2403 std::string Nearest
;
2404 if (getOpts().findNearest(Value
, Nearest
, IncludedFlagsBitmask
,
2405 ExcludedFlagsBitmask
) <= 1) {
2406 Diag(clang::diag::err_drv_no_such_file_with_suggestion
)
2407 << Value
<< Nearest
;
2412 // In CL mode, don't error on apparently non-existent linker inputs, because
2413 // they can be influenced by linker flags the clang driver might not
2416 // - `clang-cl main.cc ole32.lib` in a a non-MSVC shell will make the driver
2417 // module look for an MSVC installation in the registry. (We could ask
2418 // the MSVCToolChain object if it can find `ole32.lib`, but the logic to
2419 // look in the registry might move into lld-link in the future so that
2420 // lld-link invocations in non-MSVC shells just work too.)
2421 // - `clang-cl ... /link ...` can pass arbitrary flags to the linker,
2422 // including /libpath:, which is used to find .lib and .obj files.
2423 // So do not diagnose this on the driver level. Rely on the linker diagnosing
2424 // it. (If we don't end up invoking the linker, this means we'll emit a
2425 // "'linker' input unused [-Wunused-command-line-argument]" warning instead
2428 // Only do this skip after the typo correction step above. `/Brepo` is treated
2429 // as TY_Object, but it's clearly a typo for `/Brepro`. It seems fine to emit
2430 // an error if we have a flag that's within an edit distance of 1 from a
2431 // flag. (Users can use `-Wl,` or `/linker` to launder the flag past the
2432 // driver in the unlikely case they run into this.)
2434 // Don't do this for inputs that start with a '/', else we'd pass options
2435 // like /libpath: through to the linker silently.
2437 // Emitting an error for linker inputs can also cause incorrect diagnostics
2438 // with the gcc driver. The command
2439 // clang -fuse-ld=lld -Wl,--chroot,some/dir /file.o
2440 // will make lld look for some/dir/file.o, while we will diagnose here that
2441 // `/file.o` does not exist. However, configure scripts check if
2442 // `clang /GR-` compiles without error to see if the compiler is cl.exe,
2443 // so we can't downgrade diagnostics for `/GR-` from an error to a warning
2444 // in cc mode. (We can in cl mode because cl.exe itself only warns on
2446 if (IsCLMode() && Ty
== types::TY_Object
&& !Value
.startswith("/"))
2449 Diag(clang::diag::err_drv_no_such_file
) << Value
;
2453 // Get the C++20 Header Unit type corresponding to the input type.
2454 static types::ID
CXXHeaderUnitType(ModuleHeaderMode HM
) {
2456 case HeaderMode_User
:
2457 return types::TY_CXXUHeader
;
2458 case HeaderMode_System
:
2459 return types::TY_CXXSHeader
;
2460 case HeaderMode_Default
:
2462 case HeaderMode_None
:
2463 llvm_unreachable("should not be called in this case");
2465 return types::TY_CXXHUHeader
;
2468 // Construct a the list of inputs and their types.
2469 void Driver::BuildInputs(const ToolChain
&TC
, DerivedArgList
&Args
,
2470 InputList
&Inputs
) const {
2471 const llvm::opt::OptTable
&Opts
= getOpts();
2472 // Track the current user specified (-x) input. We also explicitly track the
2473 // argument used to set the type; we only want to claim the type when we
2474 // actually use it, so we warn about unused -x arguments.
2475 types::ID InputType
= types::TY_Nothing
;
2476 Arg
*InputTypeArg
= nullptr;
2478 // The last /TC or /TP option sets the input type to C or C++ globally.
2479 if (Arg
*TCTP
= Args
.getLastArgNoClaim(options::OPT__SLASH_TC
,
2480 options::OPT__SLASH_TP
)) {
2481 InputTypeArg
= TCTP
;
2482 InputType
= TCTP
->getOption().matches(options::OPT__SLASH_TC
)
2486 Arg
*Previous
= nullptr;
2487 bool ShowNote
= false;
2489 Args
.filtered(options::OPT__SLASH_TC
, options::OPT__SLASH_TP
)) {
2491 Diag(clang::diag::warn_drv_overriding_flag_option
)
2492 << Previous
->getSpelling() << A
->getSpelling();
2498 Diag(clang::diag::note_drv_t_option_is_global
);
2500 // No driver mode exposes -x and /TC or /TP; we don't support mixing them.
2501 assert(!Args
.hasArg(options::OPT_x
) && "-x and /TC or /TP is not allowed");
2504 // Warn -x after last input file has no effect
2506 Arg
*LastXArg
= Args
.getLastArgNoClaim(options::OPT_x
);
2507 Arg
*LastInputArg
= Args
.getLastArgNoClaim(options::OPT_INPUT
);
2508 if (LastXArg
&& LastInputArg
&& LastInputArg
->getIndex() < LastXArg
->getIndex())
2509 Diag(clang::diag::warn_drv_unused_x
) << LastXArg
->getValue();
2512 for (Arg
*A
: Args
) {
2513 if (A
->getOption().getKind() == Option::InputClass
) {
2514 const char *Value
= A
->getValue();
2515 types::ID Ty
= types::TY_INVALID
;
2517 // Infer the input type if necessary.
2518 if (InputType
== types::TY_Nothing
) {
2519 // If there was an explicit arg for this, claim it.
2521 InputTypeArg
->claim();
2523 // stdin must be handled specially.
2524 if (memcmp(Value
, "-", 2) == 0) {
2525 if (IsFlangMode()) {
2526 Ty
= types::TY_Fortran
;
2528 // If running with -E, treat as a C input (this changes the
2529 // builtin macros, for example). This may be overridden by -ObjC
2532 // Otherwise emit an error but still use a valid type to avoid
2533 // spurious errors (e.g., no inputs).
2534 assert(!CCGenDiagnostics
&& "stdin produces no crash reproducer");
2535 if (!Args
.hasArgNoClaim(options::OPT_E
) && !CCCIsCPP())
2536 Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
2537 : clang::diag::err_drv_unknown_stdin_type
);
2541 // Otherwise lookup by extension.
2542 // Fallback is C if invoked as C preprocessor, C++ if invoked with
2543 // clang-cl /E, or Object otherwise.
2544 // We use a host hook here because Darwin at least has its own
2545 // idea of what .s is.
2546 if (const char *Ext
= strrchr(Value
, '.'))
2547 Ty
= TC
.LookupTypeForExtension(Ext
+ 1);
2549 if (Ty
== types::TY_INVALID
) {
2550 if (IsCLMode() && (Args
.hasArgNoClaim(options::OPT_E
) || CCGenDiagnostics
))
2552 else if (CCCIsCPP() || CCGenDiagnostics
)
2555 Ty
= types::TY_Object
;
2558 // If the driver is invoked as C++ compiler (like clang++ or c++) it
2559 // should autodetect some input files as C++ for g++ compatibility.
2561 types::ID OldTy
= Ty
;
2562 Ty
= types::lookupCXXTypeForCType(Ty
);
2564 // Do not complain about foo.h, when we are known to be processing
2565 // it as a C++20 header unit.
2566 if (Ty
!= OldTy
&& !(OldTy
== types::TY_CHeader
&& hasHeaderMode()))
2567 Diag(clang::diag::warn_drv_treating_input_as_cxx
)
2568 << getTypeName(OldTy
) << getTypeName(Ty
);
2571 // If running with -fthinlto-index=, extensions that normally identify
2572 // native object files actually identify LLVM bitcode files.
2573 if (Args
.hasArgNoClaim(options::OPT_fthinlto_index_EQ
) &&
2574 Ty
== types::TY_Object
)
2575 Ty
= types::TY_LLVM_BC
;
2578 // -ObjC and -ObjC++ override the default language, but only for "source
2579 // files". We just treat everything that isn't a linker input as a
2582 // FIXME: Clean this up if we move the phase sequence into the type.
2583 if (Ty
!= types::TY_Object
) {
2584 if (Args
.hasArg(options::OPT_ObjC
))
2585 Ty
= types::TY_ObjC
;
2586 else if (Args
.hasArg(options::OPT_ObjCXX
))
2587 Ty
= types::TY_ObjCXX
;
2590 // Disambiguate headers that are meant to be header units from those
2591 // intended to be PCH. Avoid missing '.h' cases that are counted as
2592 // C headers by default - we know we are in C++ mode and we do not
2593 // want to issue a complaint about compiling things in the wrong mode.
2594 if ((Ty
== types::TY_CXXHeader
|| Ty
== types::TY_CHeader
) &&
2596 Ty
= CXXHeaderUnitType(CXX20HeaderType
);
2598 assert(InputTypeArg
&& "InputType set w/o InputTypeArg");
2599 if (!InputTypeArg
->getOption().matches(options::OPT_x
)) {
2600 // If emulating cl.exe, make sure that /TC and /TP don't affect input
2602 const char *Ext
= strrchr(Value
, '.');
2603 if (Ext
&& TC
.LookupTypeForExtension(Ext
+ 1) == types::TY_Object
)
2604 Ty
= types::TY_Object
;
2606 if (Ty
== types::TY_INVALID
) {
2608 InputTypeArg
->claim();
2612 if (DiagnoseInputExistence(Args
, Value
, Ty
, /*TypoCorrect=*/true))
2613 Inputs
.push_back(std::make_pair(Ty
, A
));
2615 } else if (A
->getOption().matches(options::OPT__SLASH_Tc
)) {
2616 StringRef Value
= A
->getValue();
2617 if (DiagnoseInputExistence(Args
, Value
, types::TY_C
,
2618 /*TypoCorrect=*/false)) {
2619 Arg
*InputArg
= MakeInputArg(Args
, Opts
, A
->getValue());
2620 Inputs
.push_back(std::make_pair(types::TY_C
, InputArg
));
2623 } else if (A
->getOption().matches(options::OPT__SLASH_Tp
)) {
2624 StringRef Value
= A
->getValue();
2625 if (DiagnoseInputExistence(Args
, Value
, types::TY_CXX
,
2626 /*TypoCorrect=*/false)) {
2627 Arg
*InputArg
= MakeInputArg(Args
, Opts
, A
->getValue());
2628 Inputs
.push_back(std::make_pair(types::TY_CXX
, InputArg
));
2631 } else if (A
->getOption().hasFlag(options::LinkerInput
)) {
2632 // Just treat as object type, we could make a special type for this if
2634 Inputs
.push_back(std::make_pair(types::TY_Object
, A
));
2636 } else if (A
->getOption().matches(options::OPT_x
)) {
2638 InputType
= types::lookupTypeForTypeSpecifier(A
->getValue());
2641 // Follow gcc behavior and treat as linker input for invalid -x
2642 // options. Its not clear why we shouldn't just revert to unknown; but
2643 // this isn't very important, we might as well be bug compatible.
2645 Diag(clang::diag::err_drv_unknown_language
) << A
->getValue();
2646 InputType
= types::TY_Object
;
2649 // If the user has put -fmodule-header{,=} then we treat C++ headers as
2650 // header unit inputs. So we 'promote' -xc++-header appropriately.
2651 if (InputType
== types::TY_CXXHeader
&& hasHeaderMode())
2652 InputType
= CXXHeaderUnitType(CXX20HeaderType
);
2653 } else if (A
->getOption().getID() == options::OPT_U
) {
2654 assert(A
->getNumValues() == 1 && "The /U option has one value.");
2655 StringRef Val
= A
->getValue(0);
2656 if (Val
.find_first_of("/\\") != StringRef::npos
) {
2657 // Warn about e.g. "/Users/me/myfile.c".
2658 Diag(diag::warn_slash_u_filename
) << Val
;
2659 Diag(diag::note_use_dashdash
);
2663 if (CCCIsCPP() && Inputs
.empty()) {
2664 // If called as standalone preprocessor, stdin is processed
2665 // if no other input is present.
2666 Arg
*A
= MakeInputArg(Args
, Opts
, "-");
2667 Inputs
.push_back(std::make_pair(types::TY_C
, A
));
2672 /// Provides a convenient interface for different programming models to generate
2673 /// the required device actions.
2674 class OffloadingActionBuilder final
{
2675 /// Flag used to trace errors in the builder.
2676 bool IsValid
= false;
2678 /// The compilation that is using this builder.
2681 /// Map between an input argument and the offload kinds used to process it.
2682 std::map
<const Arg
*, unsigned> InputArgToOffloadKindMap
;
2684 /// Map between a host action and its originating input argument.
2685 std::map
<Action
*, const Arg
*> HostActionToInputArgMap
;
2687 /// Builder interface. It doesn't build anything or keep any state.
2688 class DeviceActionBuilder
{
2690 typedef const llvm::SmallVectorImpl
<phases::ID
> PhasesTy
;
2692 enum ActionBuilderReturnCode
{
2693 // The builder acted successfully on the current action.
2695 // The builder didn't have to act on the current action.
2697 // The builder was successful and requested the host action to not be
2703 /// Compilation associated with this builder.
2706 /// Tool chains associated with this builder. The same programming
2707 /// model may have associated one or more tool chains.
2708 SmallVector
<const ToolChain
*, 2> ToolChains
;
2710 /// The derived arguments associated with this builder.
2711 DerivedArgList
&Args
;
2713 /// The inputs associated with this builder.
2714 const Driver::InputList
&Inputs
;
2716 /// The associated offload kind.
2717 Action::OffloadKind AssociatedOffloadKind
= Action::OFK_None
;
2720 DeviceActionBuilder(Compilation
&C
, DerivedArgList
&Args
,
2721 const Driver::InputList
&Inputs
,
2722 Action::OffloadKind AssociatedOffloadKind
)
2723 : C(C
), Args(Args
), Inputs(Inputs
),
2724 AssociatedOffloadKind(AssociatedOffloadKind
) {}
2725 virtual ~DeviceActionBuilder() {}
2727 /// Fill up the array \a DA with all the device dependences that should be
2728 /// added to the provided host action \a HostAction. By default it is
2730 virtual ActionBuilderReturnCode
2731 getDeviceDependences(OffloadAction::DeviceDependences
&DA
,
2732 phases::ID CurPhase
, phases::ID FinalPhase
,
2734 return ABRT_Inactive
;
2737 /// Update the state to include the provided host action \a HostAction as a
2738 /// dependency of the current device action. By default it is inactive.
2739 virtual ActionBuilderReturnCode
addDeviceDependences(Action
*HostAction
) {
2740 return ABRT_Inactive
;
2743 /// Append top level actions generated by the builder.
2744 virtual void appendTopLevelActions(ActionList
&AL
) {}
2746 /// Append linker device actions generated by the builder.
2747 virtual void appendLinkDeviceActions(ActionList
&AL
) {}
2749 /// Append linker host action generated by the builder.
2750 virtual Action
* appendLinkHostActions(ActionList
&AL
) { return nullptr; }
2752 /// Append linker actions generated by the builder.
2753 virtual void appendLinkDependences(OffloadAction::DeviceDependences
&DA
) {}
2755 /// Initialize the builder. Return true if any initialization errors are
2757 virtual bool initialize() { return false; }
2759 /// Return true if the builder can use bundling/unbundling.
2760 virtual bool canUseBundlerUnbundler() const { return false; }
2762 /// Return true if this builder is valid. We have a valid builder if we have
2763 /// associated device tool chains.
2764 bool isValid() { return !ToolChains
.empty(); }
2766 /// Return the associated offload kind.
2767 Action::OffloadKind
getAssociatedOffloadKind() {
2768 return AssociatedOffloadKind
;
2772 /// Base class for CUDA/HIP action builder. It injects device code in
2773 /// the host backend action.
2774 class CudaActionBuilderBase
: public DeviceActionBuilder
{
2776 /// Flags to signal if the user requested host-only or device-only
2778 bool CompileHostOnly
= false;
2779 bool CompileDeviceOnly
= false;
2780 bool EmitLLVM
= false;
2781 bool EmitAsm
= false;
2783 /// ID to identify each device compilation. For CUDA it is simply the
2784 /// GPU arch string. For HIP it is either the GPU arch string or GPU
2785 /// arch string plus feature strings delimited by a plus sign, e.g.
2788 /// Target ID string which is persistent throughout the compilation.
2790 TargetID(CudaArch Arch
) { ID
= CudaArchToString(Arch
); }
2791 TargetID(const char *ID
) : ID(ID
) {}
2792 operator const char *() { return ID
; }
2793 operator StringRef() { return StringRef(ID
); }
2795 /// List of GPU architectures to use in this compilation.
2796 SmallVector
<TargetID
, 4> GpuArchList
;
2798 /// The CUDA actions for the current input.
2799 ActionList CudaDeviceActions
;
2801 /// The CUDA fat binary if it was generated for the current input.
2802 Action
*CudaFatBinary
= nullptr;
2804 /// Flag that is set to true if this builder acted on the current input.
2805 bool IsActive
= false;
2807 /// Flag for -fgpu-rdc.
2808 bool Relocatable
= false;
2810 /// Default GPU architecture if there's no one specified.
2811 CudaArch DefaultCudaArch
= CudaArch::UNKNOWN
;
2813 /// Method to generate compilation unit ID specified by option
2815 enum UseCUIDKind
{ CUID_Hash
, CUID_Random
, CUID_None
, CUID_Invalid
};
2816 UseCUIDKind UseCUID
= CUID_Hash
;
2818 /// Compilation unit ID specified by option '-cuid='.
2819 StringRef FixedCUID
;
2822 CudaActionBuilderBase(Compilation
&C
, DerivedArgList
&Args
,
2823 const Driver::InputList
&Inputs
,
2824 Action::OffloadKind OFKind
)
2825 : DeviceActionBuilder(C
, Args
, Inputs
, OFKind
) {}
2827 ActionBuilderReturnCode
addDeviceDependences(Action
*HostAction
) override
{
2828 // While generating code for CUDA, we only depend on the host input action
2829 // to trigger the creation of all the CUDA device actions.
2831 // If we are dealing with an input action, replicate it for each GPU
2832 // architecture. If we are in host-only mode we return 'success' so that
2833 // the host uses the CUDA offload kind.
2834 if (auto *IA
= dyn_cast
<InputAction
>(HostAction
)) {
2835 assert(!GpuArchList
.empty() &&
2836 "We should have at least one GPU architecture.");
2838 // If the host input is not CUDA or HIP, we don't need to bother about
2840 if (!(IA
->getType() == types::TY_CUDA
||
2841 IA
->getType() == types::TY_HIP
||
2842 IA
->getType() == types::TY_PP_HIP
)) {
2843 // The builder will ignore this input.
2845 return ABRT_Inactive
;
2848 // Set the flag to true, so that the builder acts on the current input.
2851 if (CompileHostOnly
)
2852 return ABRT_Success
;
2854 // Replicate inputs for each GPU architecture.
2855 auto Ty
= IA
->getType() == types::TY_HIP
? types::TY_HIP_DEVICE
2856 : types::TY_CUDA_DEVICE
;
2857 std::string CUID
= FixedCUID
.str();
2859 if (UseCUID
== CUID_Random
)
2860 CUID
= llvm::utohexstr(llvm::sys::Process::GetRandomNumber(),
2861 /*LowerCase=*/true);
2862 else if (UseCUID
== CUID_Hash
) {
2864 llvm::MD5::MD5Result Hash
;
2865 SmallString
<256> RealPath
;
2866 llvm::sys::fs::real_path(IA
->getInputArg().getValue(), RealPath
,
2867 /*expand_tilde=*/true);
2868 Hasher
.update(RealPath
);
2869 for (auto *A
: Args
) {
2870 if (A
->getOption().matches(options::OPT_INPUT
))
2872 Hasher
.update(A
->getAsString(Args
));
2875 CUID
= llvm::utohexstr(Hash
.low(), /*LowerCase=*/true);
2880 for (unsigned I
= 0, E
= GpuArchList
.size(); I
!= E
; ++I
) {
2881 CudaDeviceActions
.push_back(
2882 C
.MakeAction
<InputAction
>(IA
->getInputArg(), Ty
, IA
->getId()));
2885 return ABRT_Success
;
2888 // If this is an unbundling action use it as is for each CUDA toolchain.
2889 if (auto *UA
= dyn_cast
<OffloadUnbundlingJobAction
>(HostAction
)) {
2891 // If -fgpu-rdc is disabled, should not unbundle since there is no
2892 // device code to link.
2893 if (UA
->getType() == types::TY_Object
&& !Relocatable
)
2894 return ABRT_Inactive
;
2896 CudaDeviceActions
.clear();
2897 auto *IA
= cast
<InputAction
>(UA
->getInputs().back());
2898 std::string FileName
= IA
->getInputArg().getAsString(Args
);
2899 // Check if the type of the file is the same as the action. Do not
2900 // unbundle it if it is not. Do not unbundle .so files, for example,
2901 // which are not object files.
2902 if (IA
->getType() == types::TY_Object
&&
2903 (!llvm::sys::path::has_extension(FileName
) ||
2904 types::lookupTypeForExtension(
2905 llvm::sys::path::extension(FileName
).drop_front()) !=
2907 return ABRT_Inactive
;
2909 for (auto Arch
: GpuArchList
) {
2910 CudaDeviceActions
.push_back(UA
);
2911 UA
->registerDependentActionInfo(ToolChains
[0], Arch
,
2912 AssociatedOffloadKind
);
2915 return ABRT_Success
;
2918 return IsActive
? ABRT_Success
: ABRT_Inactive
;
2921 void appendTopLevelActions(ActionList
&AL
) override
{
2922 // Utility to append actions to the top level list.
2923 auto AddTopLevel
= [&](Action
*A
, TargetID TargetID
) {
2924 OffloadAction::DeviceDependences Dep
;
2925 Dep
.add(*A
, *ToolChains
.front(), TargetID
, AssociatedOffloadKind
);
2926 AL
.push_back(C
.MakeAction
<OffloadAction
>(Dep
, A
->getType()));
2929 // If we have a fat binary, add it to the list.
2930 if (CudaFatBinary
) {
2931 AddTopLevel(CudaFatBinary
, CudaArch::UNUSED
);
2932 CudaDeviceActions
.clear();
2933 CudaFatBinary
= nullptr;
2937 if (CudaDeviceActions
.empty())
2940 // If we have CUDA actions at this point, that's because we have a have
2941 // partial compilation, so we should have an action for each GPU
2943 assert(CudaDeviceActions
.size() == GpuArchList
.size() &&
2944 "Expecting one action per GPU architecture.");
2945 assert(ToolChains
.size() == 1 &&
2946 "Expecting to have a single CUDA toolchain.");
2947 for (unsigned I
= 0, E
= GpuArchList
.size(); I
!= E
; ++I
)
2948 AddTopLevel(CudaDeviceActions
[I
], GpuArchList
[I
]);
2950 CudaDeviceActions
.clear();
2953 /// Get canonicalized offload arch option. \returns empty StringRef if the
2954 /// option is invalid.
2955 virtual StringRef
getCanonicalOffloadArch(StringRef Arch
) = 0;
2957 virtual llvm::Optional
<std::pair
<llvm::StringRef
, llvm::StringRef
>>
2958 getConflictOffloadArchCombination(const std::set
<StringRef
> &GpuArchs
) = 0;
2960 bool initialize() override
{
2961 assert(AssociatedOffloadKind
== Action::OFK_Cuda
||
2962 AssociatedOffloadKind
== Action::OFK_HIP
);
2964 // We don't need to support CUDA.
2965 if (AssociatedOffloadKind
== Action::OFK_Cuda
&&
2966 !C
.hasOffloadToolChain
<Action::OFK_Cuda
>())
2969 // We don't need to support HIP.
2970 if (AssociatedOffloadKind
== Action::OFK_HIP
&&
2971 !C
.hasOffloadToolChain
<Action::OFK_HIP
>())
2974 Relocatable
= Args
.hasFlag(options::OPT_fgpu_rdc
,
2975 options::OPT_fno_gpu_rdc
, /*Default=*/false);
2977 const ToolChain
*HostTC
= C
.getSingleOffloadToolChain
<Action::OFK_Host
>();
2978 assert(HostTC
&& "No toolchain for host compilation.");
2979 if (HostTC
->getTriple().isNVPTX() ||
2980 HostTC
->getTriple().getArch() == llvm::Triple::amdgcn
) {
2981 // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
2982 // an error and abort pipeline construction early so we don't trip
2983 // asserts that assume device-side compilation.
2984 C
.getDriver().Diag(diag::err_drv_cuda_host_arch
)
2985 << HostTC
->getTriple().getArchName();
2989 ToolChains
.push_back(
2990 AssociatedOffloadKind
== Action::OFK_Cuda
2991 ? C
.getSingleOffloadToolChain
<Action::OFK_Cuda
>()
2992 : C
.getSingleOffloadToolChain
<Action::OFK_HIP
>());
2994 CompileHostOnly
= C
.getDriver().offloadHostOnly();
2995 CompileDeviceOnly
= C
.getDriver().offloadDeviceOnly();
2996 EmitLLVM
= Args
.getLastArg(options::OPT_emit_llvm
);
2997 EmitAsm
= Args
.getLastArg(options::OPT_S
);
2998 FixedCUID
= Args
.getLastArgValue(options::OPT_cuid_EQ
);
2999 if (Arg
*A
= Args
.getLastArg(options::OPT_fuse_cuid_EQ
)) {
3000 StringRef UseCUIDStr
= A
->getValue();
3001 UseCUID
= llvm::StringSwitch
<UseCUIDKind
>(UseCUIDStr
)
3002 .Case("hash", CUID_Hash
)
3003 .Case("random", CUID_Random
)
3004 .Case("none", CUID_None
)
3005 .Default(CUID_Invalid
);
3006 if (UseCUID
== CUID_Invalid
) {
3007 C
.getDriver().Diag(diag::err_drv_invalid_value
)
3008 << A
->getAsString(Args
) << UseCUIDStr
;
3009 C
.setContainsError();
3014 // --offload and --offload-arch options are mutually exclusive.
3015 if (Args
.hasArgNoClaim(options::OPT_offload_EQ
) &&
3016 Args
.hasArgNoClaim(options::OPT_offload_arch_EQ
,
3017 options::OPT_no_offload_arch_EQ
)) {
3018 C
.getDriver().Diag(diag::err_opt_not_valid_with_opt
) << "--offload-arch"
3022 // Collect all offload arch parameters, removing duplicates.
3023 std::set
<StringRef
> GpuArchs
;
3025 for (Arg
*A
: Args
) {
3026 if (!(A
->getOption().matches(options::OPT_offload_arch_EQ
) ||
3027 A
->getOption().matches(options::OPT_no_offload_arch_EQ
)))
3031 for (StringRef ArchStr
: llvm::split(A
->getValue(), ",")) {
3032 if (A
->getOption().matches(options::OPT_no_offload_arch_EQ
) &&
3036 ArchStr
= getCanonicalOffloadArch(ArchStr
);
3037 if (ArchStr
.empty()) {
3039 } else if (A
->getOption().matches(options::OPT_offload_arch_EQ
))
3040 GpuArchs
.insert(ArchStr
);
3041 else if (A
->getOption().matches(options::OPT_no_offload_arch_EQ
))
3042 GpuArchs
.erase(ArchStr
);
3044 llvm_unreachable("Unexpected option.");
3049 auto &&ConflictingArchs
= getConflictOffloadArchCombination(GpuArchs
);
3050 if (ConflictingArchs
) {
3051 C
.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo
)
3052 << ConflictingArchs
->first
<< ConflictingArchs
->second
;
3053 C
.setContainsError();
3057 // Collect list of GPUs remaining in the set.
3058 for (auto Arch
: GpuArchs
)
3059 GpuArchList
.push_back(Arch
.data());
3061 // Default to sm_20 which is the lowest common denominator for
3062 // supported GPUs. sm_20 code should work correctly, if
3063 // suboptimally, on all newer GPUs.
3064 if (GpuArchList
.empty()) {
3065 if (ToolChains
.front()->getTriple().isSPIRV())
3066 GpuArchList
.push_back(CudaArch::Generic
);
3068 GpuArchList
.push_back(DefaultCudaArch
);
3075 /// \brief CUDA action builder. It injects device code in the host backend
3077 class CudaActionBuilder final
: public CudaActionBuilderBase
{
3079 CudaActionBuilder(Compilation
&C
, DerivedArgList
&Args
,
3080 const Driver::InputList
&Inputs
)
3081 : CudaActionBuilderBase(C
, Args
, Inputs
, Action::OFK_Cuda
) {
3082 DefaultCudaArch
= CudaArch::SM_35
;
3085 StringRef
getCanonicalOffloadArch(StringRef ArchStr
) override
{
3086 CudaArch Arch
= StringToCudaArch(ArchStr
);
3087 if (Arch
== CudaArch::UNKNOWN
|| !IsNVIDIAGpuArch(Arch
)) {
3088 C
.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch
) << ArchStr
;
3091 return CudaArchToString(Arch
);
3094 llvm::Optional
<std::pair
<llvm::StringRef
, llvm::StringRef
>>
3095 getConflictOffloadArchCombination(
3096 const std::set
<StringRef
> &GpuArchs
) override
{
3100 ActionBuilderReturnCode
3101 getDeviceDependences(OffloadAction::DeviceDependences
&DA
,
3102 phases::ID CurPhase
, phases::ID FinalPhase
,
3103 PhasesTy
&Phases
) override
{
3105 return ABRT_Inactive
;
3107 // If we don't have more CUDA actions, we don't have any dependences to
3108 // create for the host.
3109 if (CudaDeviceActions
.empty())
3110 return ABRT_Success
;
3112 assert(CudaDeviceActions
.size() == GpuArchList
.size() &&
3113 "Expecting one action per GPU architecture.");
3114 assert(!CompileHostOnly
&&
3115 "Not expecting CUDA actions in host-only compilation.");
3117 // If we are generating code for the device or we are in a backend phase,
3118 // we attempt to generate the fat binary. We compile each arch to ptx and
3119 // assemble to cubin, then feed the cubin *and* the ptx into a device
3120 // "link" action, which uses fatbinary to combine these cubins into one
3121 // fatbin. The fatbin is then an input to the host action if not in
3122 // device-only mode.
3123 if (CompileDeviceOnly
|| CurPhase
== phases::Backend
) {
3124 ActionList DeviceActions
;
3125 for (unsigned I
= 0, E
= GpuArchList
.size(); I
!= E
; ++I
) {
3126 // Produce the device action from the current phase up to the assemble
3128 for (auto Ph
: Phases
) {
3129 // Skip the phases that were already dealt with.
3132 // We have to be consistent with the host final phase.
3133 if (Ph
> FinalPhase
)
3136 CudaDeviceActions
[I
] = C
.getDriver().ConstructPhaseAction(
3137 C
, Args
, Ph
, CudaDeviceActions
[I
], Action::OFK_Cuda
);
3139 if (Ph
== phases::Assemble
)
3143 // If we didn't reach the assemble phase, we can't generate the fat
3144 // binary. We don't need to generate the fat binary if we are not in
3145 // device-only mode.
3146 if (!isa
<AssembleJobAction
>(CudaDeviceActions
[I
]) ||
3150 Action
*AssembleAction
= CudaDeviceActions
[I
];
3151 assert(AssembleAction
->getType() == types::TY_Object
);
3152 assert(AssembleAction
->getInputs().size() == 1);
3154 Action
*BackendAction
= AssembleAction
->getInputs()[0];
3155 assert(BackendAction
->getType() == types::TY_PP_Asm
);
3157 for (auto &A
: {AssembleAction
, BackendAction
}) {
3158 OffloadAction::DeviceDependences DDep
;
3159 DDep
.add(*A
, *ToolChains
.front(), GpuArchList
[I
], Action::OFK_Cuda
);
3160 DeviceActions
.push_back(
3161 C
.MakeAction
<OffloadAction
>(DDep
, A
->getType()));
3165 // We generate the fat binary if we have device input actions.
3166 if (!DeviceActions
.empty()) {
3168 C
.MakeAction
<LinkJobAction
>(DeviceActions
, types::TY_CUDA_FATBIN
);
3170 if (!CompileDeviceOnly
) {
3171 DA
.add(*CudaFatBinary
, *ToolChains
.front(), /*BoundArch=*/nullptr,
3173 // Clear the fat binary, it is already a dependence to an host
3175 CudaFatBinary
= nullptr;
3178 // Remove the CUDA actions as they are already connected to an host
3179 // action or fat binary.
3180 CudaDeviceActions
.clear();
3183 // We avoid creating host action in device-only mode.
3184 return CompileDeviceOnly
? ABRT_Ignore_Host
: ABRT_Success
;
3185 } else if (CurPhase
> phases::Backend
) {
3186 // If we are past the backend phase and still have a device action, we
3187 // don't have to do anything as this action is already a device
3188 // top-level action.
3189 return ABRT_Success
;
3192 assert(CurPhase
< phases::Backend
&& "Generating single CUDA "
3193 "instructions should only occur "
3194 "before the backend phase!");
3196 // By default, we produce an action for each device arch.
3197 for (Action
*&A
: CudaDeviceActions
)
3198 A
= C
.getDriver().ConstructPhaseAction(C
, Args
, CurPhase
, A
);
3200 return ABRT_Success
;
3203 /// \brief HIP action builder. It injects device code in the host backend
3205 class HIPActionBuilder final
: public CudaActionBuilderBase
{
3206 /// The linker inputs obtained for each device arch.
3207 SmallVector
<ActionList
, 8> DeviceLinkerInputs
;
3208 // The default bundling behavior depends on the type of output, therefore
3209 // BundleOutput needs to be tri-value: None, true, or false.
3210 // Bundle code objects except --no-gpu-output is specified for device
3211 // only compilation. Bundle other type of output files only if
3212 // --gpu-bundle-output is specified for device only compilation.
3213 Optional
<bool> BundleOutput
;
3216 HIPActionBuilder(Compilation
&C
, DerivedArgList
&Args
,
3217 const Driver::InputList
&Inputs
)
3218 : CudaActionBuilderBase(C
, Args
, Inputs
, Action::OFK_HIP
) {
3219 DefaultCudaArch
= CudaArch::GFX803
;
3220 if (Args
.hasArg(options::OPT_gpu_bundle_output
,
3221 options::OPT_no_gpu_bundle_output
))
3222 BundleOutput
= Args
.hasFlag(options::OPT_gpu_bundle_output
,
3223 options::OPT_no_gpu_bundle_output
, true);
3226 bool canUseBundlerUnbundler() const override
{ return true; }
3228 StringRef
getCanonicalOffloadArch(StringRef IdStr
) override
{
3229 llvm::StringMap
<bool> Features
;
3230 // getHIPOffloadTargetTriple() is known to return valid value as it has
3231 // been called successfully in the CreateOffloadingDeviceToolChains().
3232 auto ArchStr
= parseTargetID(
3233 *getHIPOffloadTargetTriple(C
.getDriver(), C
.getInputArgs()), IdStr
,
3236 C
.getDriver().Diag(clang::diag::err_drv_bad_target_id
) << IdStr
;
3237 C
.setContainsError();
3240 auto CanId
= getCanonicalTargetID(*ArchStr
, Features
);
3241 return Args
.MakeArgStringRef(CanId
);
3244 llvm::Optional
<std::pair
<llvm::StringRef
, llvm::StringRef
>>
3245 getConflictOffloadArchCombination(
3246 const std::set
<StringRef
> &GpuArchs
) override
{
3247 return getConflictTargetIDCombination(GpuArchs
);
3250 ActionBuilderReturnCode
3251 getDeviceDependences(OffloadAction::DeviceDependences
&DA
,
3252 phases::ID CurPhase
, phases::ID FinalPhase
,
3253 PhasesTy
&Phases
) override
{
3255 return ABRT_Inactive
;
3257 // amdgcn does not support linking of object files, therefore we skip
3258 // backend and assemble phases to output LLVM IR. Except for generating
3259 // non-relocatable device code, where we generate fat binary for device
3260 // code and pass to host in Backend phase.
3261 if (CudaDeviceActions
.empty())
3262 return ABRT_Success
;
3264 assert(((CurPhase
== phases::Link
&& Relocatable
) ||
3265 CudaDeviceActions
.size() == GpuArchList
.size()) &&
3266 "Expecting one action per GPU architecture.");
3267 assert(!CompileHostOnly
&&
3268 "Not expecting HIP actions in host-only compilation.");
3270 if (!Relocatable
&& CurPhase
== phases::Backend
&& !EmitLLVM
&&
3272 // If we are in backend phase, we attempt to generate the fat binary.
3273 // We compile each arch to IR and use a link action to generate code
3274 // object containing ISA. Then we use a special "link" action to create
3275 // a fat binary containing all the code objects for different GPU's.
3276 // The fat binary is then an input to the host action.
3277 for (unsigned I
= 0, E
= GpuArchList
.size(); I
!= E
; ++I
) {
3278 if (C
.getDriver().isUsingLTO(/*IsOffload=*/true)) {
3279 // When LTO is enabled, skip the backend and assemble phases and
3280 // use lld to link the bitcode.
3282 AL
.push_back(CudaDeviceActions
[I
]);
3283 // Create a link action to link device IR with device library
3284 // and generate ISA.
3285 CudaDeviceActions
[I
] =
3286 C
.MakeAction
<LinkJobAction
>(AL
, types::TY_Image
);
3288 // When LTO is not enabled, we follow the conventional
3289 // compiler phases, including backend and assemble phases.
3291 Action
*BackendAction
= nullptr;
3292 if (ToolChains
.front()->getTriple().isSPIRV()) {
3293 // Emit LLVM bitcode for SPIR-V targets. SPIR-V device tool chain
3294 // (HIPSPVToolChain) runs post-link LLVM IR passes.
3295 types::ID Output
= Args
.hasArg(options::OPT_S
)
3297 : types::TY_LLVM_BC
;
3299 C
.MakeAction
<BackendJobAction
>(CudaDeviceActions
[I
], Output
);
3301 BackendAction
= C
.getDriver().ConstructPhaseAction(
3302 C
, Args
, phases::Backend
, CudaDeviceActions
[I
],
3303 AssociatedOffloadKind
);
3304 auto AssembleAction
= C
.getDriver().ConstructPhaseAction(
3305 C
, Args
, phases::Assemble
, BackendAction
,
3306 AssociatedOffloadKind
);
3307 AL
.push_back(AssembleAction
);
3308 // Create a link action to link device IR with device library
3309 // and generate ISA.
3310 CudaDeviceActions
[I
] =
3311 C
.MakeAction
<LinkJobAction
>(AL
, types::TY_Image
);
3314 // OffloadingActionBuilder propagates device arch until an offload
3315 // action. Since the next action for creating fatbin does
3316 // not have device arch, whereas the above link action and its input
3317 // have device arch, an offload action is needed to stop the null
3318 // device arch of the next action being propagated to the above link
3320 OffloadAction::DeviceDependences DDep
;
3321 DDep
.add(*CudaDeviceActions
[I
], *ToolChains
.front(), GpuArchList
[I
],
3322 AssociatedOffloadKind
);
3323 CudaDeviceActions
[I
] = C
.MakeAction
<OffloadAction
>(
3324 DDep
, CudaDeviceActions
[I
]->getType());
3327 if (!CompileDeviceOnly
|| !BundleOutput
|| *BundleOutput
) {
3328 // Create HIP fat binary with a special "link" action.
3329 CudaFatBinary
= C
.MakeAction
<LinkJobAction
>(CudaDeviceActions
,
3330 types::TY_HIP_FATBIN
);
3332 if (!CompileDeviceOnly
) {
3333 DA
.add(*CudaFatBinary
, *ToolChains
.front(), /*BoundArch=*/nullptr,
3334 AssociatedOffloadKind
);
3335 // Clear the fat binary, it is already a dependence to an host
3337 CudaFatBinary
= nullptr;
3340 // Remove the CUDA actions as they are already connected to an host
3341 // action or fat binary.
3342 CudaDeviceActions
.clear();
3345 return CompileDeviceOnly
? ABRT_Ignore_Host
: ABRT_Success
;
3346 } else if (CurPhase
== phases::Link
) {
3347 // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
3348 // This happens to each device action originated from each input file.
3349 // Later on, device actions in DeviceLinkerInputs are used to create
3350 // device link actions in appendLinkDependences and the created device
3351 // link actions are passed to the offload action as device dependence.
3352 DeviceLinkerInputs
.resize(CudaDeviceActions
.size());
3353 auto LI
= DeviceLinkerInputs
.begin();
3354 for (auto *A
: CudaDeviceActions
) {
3359 // We will pass the device action as a host dependence, so we don't
3360 // need to do anything else with them.
3361 CudaDeviceActions
.clear();
3362 return CompileDeviceOnly
? ABRT_Ignore_Host
: ABRT_Success
;
3365 // By default, we produce an action for each device arch.
3366 for (Action
*&A
: CudaDeviceActions
)
3367 A
= C
.getDriver().ConstructPhaseAction(C
, Args
, CurPhase
, A
,
3368 AssociatedOffloadKind
);
3370 if (CompileDeviceOnly
&& CurPhase
== FinalPhase
&& BundleOutput
&&
3371 BundleOutput
.value()) {
3372 for (unsigned I
= 0, E
= GpuArchList
.size(); I
!= E
; ++I
) {
3373 OffloadAction::DeviceDependences DDep
;
3374 DDep
.add(*CudaDeviceActions
[I
], *ToolChains
.front(), GpuArchList
[I
],
3375 AssociatedOffloadKind
);
3376 CudaDeviceActions
[I
] = C
.MakeAction
<OffloadAction
>(
3377 DDep
, CudaDeviceActions
[I
]->getType());
3380 C
.MakeAction
<OffloadBundlingJobAction
>(CudaDeviceActions
);
3381 CudaDeviceActions
.clear();
3384 return (CompileDeviceOnly
&& CurPhase
== FinalPhase
) ? ABRT_Ignore_Host
3388 void appendLinkDeviceActions(ActionList
&AL
) override
{
3389 if (DeviceLinkerInputs
.size() == 0)
3392 assert(DeviceLinkerInputs
.size() == GpuArchList
.size() &&
3393 "Linker inputs and GPU arch list sizes do not match.");
3397 // Append a new link action for each device.
3398 // Each entry in DeviceLinkerInputs corresponds to a GPU arch.
3399 for (auto &LI
: DeviceLinkerInputs
) {
3401 types::ID Output
= Args
.hasArg(options::OPT_emit_llvm
)
3405 auto *DeviceLinkAction
= C
.MakeAction
<LinkJobAction
>(LI
, Output
);
3406 // Linking all inputs for the current GPU arch.
3407 // LI contains all the inputs for the linker.
3408 OffloadAction::DeviceDependences DeviceLinkDeps
;
3409 DeviceLinkDeps
.add(*DeviceLinkAction
, *ToolChains
[0],
3410 GpuArchList
[I
], AssociatedOffloadKind
);
3411 Actions
.push_back(C
.MakeAction
<OffloadAction
>(
3412 DeviceLinkDeps
, DeviceLinkAction
->getType()));
3415 DeviceLinkerInputs
.clear();
3417 // If emitting LLVM, do not generate final host/device compilation action
3418 if (Args
.hasArg(options::OPT_emit_llvm
)) {
3423 // Create a host object from all the device images by embedding them
3424 // in a fat binary for mixed host-device compilation. For device-only
3425 // compilation, creates a fat binary.
3426 OffloadAction::DeviceDependences DDeps
;
3427 if (!CompileDeviceOnly
|| !BundleOutput
|| *BundleOutput
) {
3428 auto *TopDeviceLinkAction
= C
.MakeAction
<LinkJobAction
>(
3430 CompileDeviceOnly
? types::TY_HIP_FATBIN
: types::TY_Object
);
3431 DDeps
.add(*TopDeviceLinkAction
, *ToolChains
[0], nullptr,
3432 AssociatedOffloadKind
);
3433 // Offload the host object to the host linker.
3435 C
.MakeAction
<OffloadAction
>(DDeps
, TopDeviceLinkAction
->getType()));
3441 Action
* appendLinkHostActions(ActionList
&AL
) override
{ return AL
.back(); }
3443 void appendLinkDependences(OffloadAction::DeviceDependences
&DA
) override
{}
3447 /// TODO: Add the implementation for other specialized builders here.
3450 /// Specialized builders being used by this offloading action builder.
3451 SmallVector
<DeviceActionBuilder
*, 4> SpecializedBuilders
;
3453 /// Flag set to true if all valid builders allow file bundling/unbundling.
3457 OffloadingActionBuilder(Compilation
&C
, DerivedArgList
&Args
,
3458 const Driver::InputList
&Inputs
)
3460 // Create a specialized builder for each device toolchain.
3464 // Create a specialized builder for CUDA.
3465 SpecializedBuilders
.push_back(new CudaActionBuilder(C
, Args
, Inputs
));
3467 // Create a specialized builder for HIP.
3468 SpecializedBuilders
.push_back(new HIPActionBuilder(C
, Args
, Inputs
));
3471 // TODO: Build other specialized builders here.
3474 // Initialize all the builders, keeping track of errors. If all valid
3475 // builders agree that we can use bundling, set the flag to true.
3476 unsigned ValidBuilders
= 0u;
3477 unsigned ValidBuildersSupportingBundling
= 0u;
3478 for (auto *SB
: SpecializedBuilders
) {
3479 IsValid
= IsValid
&& !SB
->initialize();
3481 // Update the counters if the builder is valid.
3482 if (SB
->isValid()) {
3484 if (SB
->canUseBundlerUnbundler())
3485 ++ValidBuildersSupportingBundling
;
3489 ValidBuilders
&& ValidBuilders
== ValidBuildersSupportingBundling
;
3492 ~OffloadingActionBuilder() {
3493 for (auto *SB
: SpecializedBuilders
)
3497 /// Record a host action and its originating input argument.
3498 void recordHostAction(Action
*HostAction
, const Arg
*InputArg
) {
3499 assert(HostAction
&& "Invalid host action");
3500 assert(InputArg
&& "Invalid input argument");
3501 auto Loc
= HostActionToInputArgMap
.find(HostAction
);
3502 if (Loc
== HostActionToInputArgMap
.end())
3503 HostActionToInputArgMap
[HostAction
] = InputArg
;
3504 assert(HostActionToInputArgMap
[HostAction
] == InputArg
&&
3505 "host action mapped to multiple input arguments");
3508 /// Generate an action that adds device dependences (if any) to a host action.
3509 /// If no device dependence actions exist, just return the host action \a
3510 /// HostAction. If an error is found or if no builder requires the host action
3511 /// to be generated, return nullptr.
3513 addDeviceDependencesToHostAction(Action
*HostAction
, const Arg
*InputArg
,
3514 phases::ID CurPhase
, phases::ID FinalPhase
,
3515 DeviceActionBuilder::PhasesTy
&Phases
) {
3519 if (SpecializedBuilders
.empty())
3522 assert(HostAction
&& "Invalid host action!");
3523 recordHostAction(HostAction
, InputArg
);
3525 OffloadAction::DeviceDependences DDeps
;
3526 // Check if all the programming models agree we should not emit the host
3527 // action. Also, keep track of the offloading kinds employed.
3528 auto &OffloadKind
= InputArgToOffloadKindMap
[InputArg
];
3529 unsigned InactiveBuilders
= 0u;
3530 unsigned IgnoringBuilders
= 0u;
3531 for (auto *SB
: SpecializedBuilders
) {
3532 if (!SB
->isValid()) {
3538 SB
->getDeviceDependences(DDeps
, CurPhase
, FinalPhase
, Phases
);
3540 // If the builder explicitly says the host action should be ignored,
3541 // we need to increment the variable that tracks the builders that request
3542 // the host object to be ignored.
3543 if (RetCode
== DeviceActionBuilder::ABRT_Ignore_Host
)
3546 // Unless the builder was inactive for this action, we have to record the
3547 // offload kind because the host will have to use it.
3548 if (RetCode
!= DeviceActionBuilder::ABRT_Inactive
)
3549 OffloadKind
|= SB
->getAssociatedOffloadKind();
3552 // If all builders agree that the host object should be ignored, just return
3554 if (IgnoringBuilders
&&
3555 SpecializedBuilders
.size() == (InactiveBuilders
+ IgnoringBuilders
))
3558 if (DDeps
.getActions().empty())
3561 // We have dependences we need to bundle together. We use an offload action
3563 OffloadAction::HostDependence
HDep(
3564 *HostAction
, *C
.getSingleOffloadToolChain
<Action::OFK_Host
>(),
3565 /*BoundArch=*/nullptr, DDeps
);
3566 return C
.MakeAction
<OffloadAction
>(HDep
, DDeps
);
3569 /// Generate an action that adds a host dependence to a device action. The
3570 /// results will be kept in this action builder. Return true if an error was
3572 bool addHostDependenceToDeviceActions(Action
*&HostAction
,
3573 const Arg
*InputArg
) {
3577 recordHostAction(HostAction
, InputArg
);
3579 // If we are supporting bundling/unbundling and the current action is an
3580 // input action of non-source file, we replace the host action by the
3581 // unbundling action. The bundler tool has the logic to detect if an input
3582 // is a bundle or not and if the input is not a bundle it assumes it is a
3583 // host file. Therefore it is safe to create an unbundling action even if
3584 // the input is not a bundle.
3585 if (CanUseBundler
&& isa
<InputAction
>(HostAction
) &&
3586 InputArg
->getOption().getKind() == llvm::opt::Option::InputClass
&&
3587 (!types::isSrcFile(HostAction
->getType()) ||
3588 HostAction
->getType() == types::TY_PP_HIP
)) {
3589 auto UnbundlingHostAction
=
3590 C
.MakeAction
<OffloadUnbundlingJobAction
>(HostAction
);
3591 UnbundlingHostAction
->registerDependentActionInfo(
3592 C
.getSingleOffloadToolChain
<Action::OFK_Host
>(),
3593 /*BoundArch=*/StringRef(), Action::OFK_Host
);
3594 HostAction
= UnbundlingHostAction
;
3595 recordHostAction(HostAction
, InputArg
);
3598 assert(HostAction
&& "Invalid host action!");
3600 // Register the offload kinds that are used.
3601 auto &OffloadKind
= InputArgToOffloadKindMap
[InputArg
];
3602 for (auto *SB
: SpecializedBuilders
) {
3606 auto RetCode
= SB
->addDeviceDependences(HostAction
);
3608 // Host dependences for device actions are not compatible with that same
3609 // action being ignored.
3610 assert(RetCode
!= DeviceActionBuilder::ABRT_Ignore_Host
&&
3611 "Host dependence not expected to be ignored.!");
3613 // Unless the builder was inactive for this action, we have to record the
3614 // offload kind because the host will have to use it.
3615 if (RetCode
!= DeviceActionBuilder::ABRT_Inactive
)
3616 OffloadKind
|= SB
->getAssociatedOffloadKind();
3619 // Do not use unbundler if the Host does not depend on device action.
3620 if (OffloadKind
== Action::OFK_None
&& CanUseBundler
)
3621 if (auto *UA
= dyn_cast
<OffloadUnbundlingJobAction
>(HostAction
))
3622 HostAction
= UA
->getInputs().back();
3627 /// Add the offloading top level actions to the provided action list. This
3628 /// function can replace the host action by a bundling action if the
3629 /// programming models allow it.
3630 bool appendTopLevelActions(ActionList
&AL
, Action
*HostAction
,
3631 const Arg
*InputArg
) {
3633 recordHostAction(HostAction
, InputArg
);
3635 // Get the device actions to be appended.
3636 ActionList OffloadAL
;
3637 for (auto *SB
: SpecializedBuilders
) {
3640 SB
->appendTopLevelActions(OffloadAL
);
3643 // If we can use the bundler, replace the host action by the bundling one in
3644 // the resulting list. Otherwise, just append the device actions. For
3645 // device only compilation, HostAction is a null pointer, therefore only do
3646 // this when HostAction is not a null pointer.
3647 if (CanUseBundler
&& HostAction
&&
3648 HostAction
->getType() != types::TY_Nothing
&& !OffloadAL
.empty()) {
3649 // Add the host action to the list in order to create the bundling action.
3650 OffloadAL
.push_back(HostAction
);
3652 // We expect that the host action was just appended to the action list
3653 // before this method was called.
3654 assert(HostAction
== AL
.back() && "Host action not in the list??");
3655 HostAction
= C
.MakeAction
<OffloadBundlingJobAction
>(OffloadAL
);
3656 recordHostAction(HostAction
, InputArg
);
3657 AL
.back() = HostAction
;
3659 AL
.append(OffloadAL
.begin(), OffloadAL
.end());
3661 // Propagate to the current host action (if any) the offload information
3662 // associated with the current input.
3664 HostAction
->propagateHostOffloadInfo(InputArgToOffloadKindMap
[InputArg
],
3665 /*BoundArch=*/nullptr);
3669 void appendDeviceLinkActions(ActionList
&AL
) {
3670 for (DeviceActionBuilder
*SB
: SpecializedBuilders
) {
3673 SB
->appendLinkDeviceActions(AL
);
3677 Action
*makeHostLinkAction() {
3678 // Build a list of device linking actions.
3679 ActionList DeviceAL
;
3680 appendDeviceLinkActions(DeviceAL
);
3681 if (DeviceAL
.empty())
3684 // Let builders add host linking actions.
3685 Action
* HA
= nullptr;
3686 for (DeviceActionBuilder
*SB
: SpecializedBuilders
) {
3689 HA
= SB
->appendLinkHostActions(DeviceAL
);
3690 // This created host action has no originating input argument, therefore
3691 // needs to set its offloading kind directly.
3693 HA
->propagateHostOffloadInfo(SB
->getAssociatedOffloadKind(),
3694 /*BoundArch=*/nullptr);
3699 /// Processes the host linker action. This currently consists of replacing it
3700 /// with an offload action if there are device link objects and propagate to
3701 /// the host action all the offload kinds used in the current compilation. The
3702 /// resulting action is returned.
3703 Action
*processHostLinkAction(Action
*HostAction
) {
3704 // Add all the dependences from the device linking actions.
3705 OffloadAction::DeviceDependences DDeps
;
3706 for (auto *SB
: SpecializedBuilders
) {
3710 SB
->appendLinkDependences(DDeps
);
3713 // Calculate all the offload kinds used in the current compilation.
3714 unsigned ActiveOffloadKinds
= 0u;
3715 for (auto &I
: InputArgToOffloadKindMap
)
3716 ActiveOffloadKinds
|= I
.second
;
3718 // If we don't have device dependencies, we don't have to create an offload
3720 if (DDeps
.getActions().empty()) {
3721 // Set all the active offloading kinds to the link action. Given that it
3722 // is a link action it is assumed to depend on all actions generated so
3724 HostAction
->setHostOffloadInfo(ActiveOffloadKinds
,
3725 /*BoundArch=*/nullptr);
3726 // Propagate active offloading kinds for each input to the link action.
3727 // Each input may have different active offloading kind.
3728 for (auto *A
: HostAction
->inputs()) {
3729 auto ArgLoc
= HostActionToInputArgMap
.find(A
);
3730 if (ArgLoc
== HostActionToInputArgMap
.end())
3732 auto OFKLoc
= InputArgToOffloadKindMap
.find(ArgLoc
->second
);
3733 if (OFKLoc
== InputArgToOffloadKindMap
.end())
3735 A
->propagateHostOffloadInfo(OFKLoc
->second
, /*BoundArch=*/nullptr);
3740 // Create the offload action with all dependences. When an offload action
3741 // is created the kinds are propagated to the host action, so we don't have
3742 // to do that explicitly here.
3743 OffloadAction::HostDependence
HDep(
3744 *HostAction
, *C
.getSingleOffloadToolChain
<Action::OFK_Host
>(),
3745 /*BoundArch*/ nullptr, ActiveOffloadKinds
);
3746 return C
.MakeAction
<OffloadAction
>(HDep
, DDeps
);
3749 } // anonymous namespace.
3751 void Driver::handleArguments(Compilation
&C
, DerivedArgList
&Args
,
3752 const InputList
&Inputs
,
3753 ActionList
&Actions
) const {
3755 // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
3756 Arg
*YcArg
= Args
.getLastArg(options::OPT__SLASH_Yc
);
3757 Arg
*YuArg
= Args
.getLastArg(options::OPT__SLASH_Yu
);
3758 if (YcArg
&& YuArg
&& strcmp(YcArg
->getValue(), YuArg
->getValue()) != 0) {
3759 Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl
);
3760 Args
.eraseArg(options::OPT__SLASH_Yc
);
3761 Args
.eraseArg(options::OPT__SLASH_Yu
);
3762 YcArg
= YuArg
= nullptr;
3764 if (YcArg
&& Inputs
.size() > 1) {
3765 Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl
);
3766 Args
.eraseArg(options::OPT__SLASH_Yc
);
3771 phases::ID FinalPhase
= getFinalPhase(Args
, &FinalPhaseArg
);
3773 if (FinalPhase
== phases::Link
) {
3774 // Emitting LLVM while linking disabled except in HIPAMD Toolchain
3775 if (Args
.hasArg(options::OPT_emit_llvm
) && !Args
.hasArg(options::OPT_hip_link
))
3776 Diag(clang::diag::err_drv_emit_llvm_link
);
3777 if (IsCLMode() && LTOMode
!= LTOK_None
&&
3778 !Args
.getLastArgValue(options::OPT_fuse_ld_EQ
)
3779 .equals_insensitive("lld"))
3780 Diag(clang::diag::err_drv_lto_without_lld
);
3783 if (FinalPhase
== phases::Preprocess
|| Args
.hasArg(options::OPT__SLASH_Y_
)) {
3784 // If only preprocessing or /Y- is used, all pch handling is disabled.
3785 // Rather than check for it everywhere, just remove clang-cl pch-related
3787 Args
.eraseArg(options::OPT__SLASH_Fp
);
3788 Args
.eraseArg(options::OPT__SLASH_Yc
);
3789 Args
.eraseArg(options::OPT__SLASH_Yu
);
3790 YcArg
= YuArg
= nullptr;
3793 unsigned LastPLSize
= 0;
3794 for (auto &I
: Inputs
) {
3795 types::ID InputType
= I
.first
;
3796 const Arg
*InputArg
= I
.second
;
3798 auto PL
= types::getCompilationPhases(InputType
);
3799 LastPLSize
= PL
.size();
3801 // If the first step comes after the final phase we are doing as part of
3802 // this compilation, warn the user about it.
3803 phases::ID InitialPhase
= PL
[0];
3804 if (InitialPhase
> FinalPhase
) {
3805 if (InputArg
->isClaimed())
3808 // Claim here to avoid the more general unused warning.
3811 // Suppress all unused style warnings with -Qunused-arguments
3812 if (Args
.hasArg(options::OPT_Qunused_arguments
))
3815 // Special case when final phase determined by binary name, rather than
3816 // by a command-line argument with a corresponding Arg.
3818 Diag(clang::diag::warn_drv_input_file_unused_by_cpp
)
3819 << InputArg
->getAsString(Args
) << getPhaseName(InitialPhase
);
3820 // Special case '-E' warning on a previously preprocessed file to make
3822 else if (InitialPhase
== phases::Compile
&&
3823 (Args
.getLastArg(options::OPT__SLASH_EP
,
3824 options::OPT__SLASH_P
) ||
3825 Args
.getLastArg(options::OPT_E
) ||
3826 Args
.getLastArg(options::OPT_M
, options::OPT_MM
)) &&
3827 getPreprocessedType(InputType
) == types::TY_INVALID
)
3828 Diag(clang::diag::warn_drv_preprocessed_input_file_unused
)
3829 << InputArg
->getAsString(Args
) << !!FinalPhaseArg
3830 << (FinalPhaseArg
? FinalPhaseArg
->getOption().getName() : "");
3832 Diag(clang::diag::warn_drv_input_file_unused
)
3833 << InputArg
->getAsString(Args
) << getPhaseName(InitialPhase
)
3835 << (FinalPhaseArg
? FinalPhaseArg
->getOption().getName() : "");
3840 // Add a separate precompile phase for the compile phase.
3841 if (FinalPhase
>= phases::Compile
) {
3842 const types::ID HeaderType
= lookupHeaderTypeForSourceType(InputType
);
3843 // Build the pipeline for the pch file.
3844 Action
*ClangClPch
= C
.MakeAction
<InputAction
>(*InputArg
, HeaderType
);
3845 for (phases::ID Phase
: types::getCompilationPhases(HeaderType
))
3846 ClangClPch
= ConstructPhaseAction(C
, Args
, Phase
, ClangClPch
);
3848 Actions
.push_back(ClangClPch
);
3849 // The driver currently exits after the first failed command. This
3850 // relies on that behavior, to make sure if the pch generation fails,
3851 // the main compilation won't run.
3852 // FIXME: If the main compilation fails, the PCH generation should
3853 // probably not be considered successful either.
3858 // If we are linking, claim any options which are obviously only used for
3860 // FIXME: Understand why the last Phase List length is used here.
3861 if (FinalPhase
== phases::Link
&& LastPLSize
== 1) {
3862 Args
.ClaimAllArgs(options::OPT_CompileOnly_Group
);
3863 Args
.ClaimAllArgs(options::OPT_cl_compile_Group
);
3867 void Driver::BuildActions(Compilation
&C
, DerivedArgList
&Args
,
3868 const InputList
&Inputs
, ActionList
&Actions
) const {
3869 llvm::PrettyStackTraceString
CrashInfo("Building compilation actions");
3871 if (!SuppressMissingInputWarning
&& Inputs
.empty()) {
3872 Diag(clang::diag::err_drv_no_input_files
);
3876 // Diagnose misuse of /Fo.
3877 if (Arg
*A
= Args
.getLastArg(options::OPT__SLASH_Fo
)) {
3878 StringRef V
= A
->getValue();
3879 if (Inputs
.size() > 1 && !V
.empty() &&
3880 !llvm::sys::path::is_separator(V
.back())) {
3881 // Check whether /Fo tries to name an output file for multiple inputs.
3882 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources
)
3883 << A
->getSpelling() << V
;
3884 Args
.eraseArg(options::OPT__SLASH_Fo
);
3888 // Diagnose misuse of /Fa.
3889 if (Arg
*A
= Args
.getLastArg(options::OPT__SLASH_Fa
)) {
3890 StringRef V
= A
->getValue();
3891 if (Inputs
.size() > 1 && !V
.empty() &&
3892 !llvm::sys::path::is_separator(V
.back())) {
3893 // Check whether /Fa tries to name an asm file for multiple inputs.
3894 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources
)
3895 << A
->getSpelling() << V
;
3896 Args
.eraseArg(options::OPT__SLASH_Fa
);
3900 // Diagnose misuse of /o.
3901 if (Arg
*A
= Args
.getLastArg(options::OPT__SLASH_o
)) {
3902 if (A
->getValue()[0] == '\0') {
3903 // It has to have a value.
3904 Diag(clang::diag::err_drv_missing_argument
) << A
->getSpelling() << 1;
3905 Args
.eraseArg(options::OPT__SLASH_o
);
3909 handleArguments(C
, Args
, Inputs
, Actions
);
3911 // Builder to be used to build offloading actions.
3912 OffloadingActionBuilder
OffloadBuilder(C
, Args
, Inputs
);
3914 bool UseNewOffloadingDriver
=
3915 C
.isOffloadingHostKind(Action::OFK_OpenMP
) ||
3916 Args
.hasFlag(options::OPT_offload_new_driver
,
3917 options::OPT_no_offload_new_driver
, false);
3919 // Construct the actions to perform.
3920 HeaderModulePrecompileJobAction
*HeaderModuleAction
= nullptr;
3921 ExtractAPIJobAction
*ExtractAPIAction
= nullptr;
3922 ActionList LinkerInputs
;
3923 ActionList MergerInputs
;
3925 for (auto &I
: Inputs
) {
3926 types::ID InputType
= I
.first
;
3927 const Arg
*InputArg
= I
.second
;
3929 auto PL
= types::getCompilationPhases(*this, Args
, InputType
);
3933 auto FullPL
= types::getCompilationPhases(InputType
);
3935 // Build the pipeline for this file.
3936 Action
*Current
= C
.MakeAction
<InputAction
>(*InputArg
, InputType
);
3938 // Use the current host action in any of the offloading actions, if
3940 if (!UseNewOffloadingDriver
)
3941 if (OffloadBuilder
.addHostDependenceToDeviceActions(Current
, InputArg
))
3944 for (phases::ID Phase
: PL
) {
3946 // Add any offload action the host action depends on.
3947 if (!UseNewOffloadingDriver
)
3948 Current
= OffloadBuilder
.addDeviceDependencesToHostAction(
3949 Current
, InputArg
, Phase
, PL
.back(), FullPL
);
3953 // Queue linker inputs.
3954 if (Phase
== phases::Link
) {
3955 assert(Phase
== PL
.back() && "linking must be final compilation step.");
3956 // We don't need to generate additional link commands if emitting AMD bitcode
3957 if (!(C
.getInputArgs().hasArg(options::OPT_hip_link
) &&
3958 (C
.getInputArgs().hasArg(options::OPT_emit_llvm
))))
3959 LinkerInputs
.push_back(Current
);
3964 // TODO: Consider removing this because the merged may not end up being
3965 // the final Phase in the pipeline. Perhaps the merged could just merge
3966 // and then pass an artifact of some sort to the Link Phase.
3967 // Queue merger inputs.
3968 if (Phase
== phases::IfsMerge
) {
3969 assert(Phase
== PL
.back() && "merging must be final compilation step.");
3970 MergerInputs
.push_back(Current
);
3975 // Each precompiled header file after a module file action is a module
3976 // header of that same module file, rather than being compiled to a
3978 if (Phase
== phases::Precompile
&& HeaderModuleAction
&&
3979 getPrecompiledType(InputType
) == types::TY_PCH
) {
3980 HeaderModuleAction
->addModuleHeaderInput(Current
);
3985 if (Phase
== phases::Precompile
&& ExtractAPIAction
) {
3986 ExtractAPIAction
->addHeaderInput(Current
);
3991 // FIXME: Should we include any prior module file outputs as inputs of
3992 // later actions in the same command line?
3994 // Otherwise construct the appropriate action.
3995 Action
*NewCurrent
= ConstructPhaseAction(C
, Args
, Phase
, Current
);
3997 // We didn't create a new action, so we will just move to the next phase.
3998 if (NewCurrent
== Current
)
4001 if (auto *HMA
= dyn_cast
<HeaderModulePrecompileJobAction
>(NewCurrent
))
4002 HeaderModuleAction
= HMA
;
4003 else if (auto *EAA
= dyn_cast
<ExtractAPIJobAction
>(NewCurrent
))
4004 ExtractAPIAction
= EAA
;
4006 Current
= NewCurrent
;
4008 // Use the current host action in any of the offloading actions, if
4010 if (!UseNewOffloadingDriver
)
4011 if (OffloadBuilder
.addHostDependenceToDeviceActions(Current
, InputArg
))
4014 // Try to build the offloading actions and add the result as a dependency
4016 if (UseNewOffloadingDriver
)
4017 Current
= BuildOffloadingActions(C
, Args
, I
, Current
);
4019 if (Current
->getType() == types::TY_Nothing
)
4023 // If we ended with something, add to the output list.
4025 Actions
.push_back(Current
);
4027 // Add any top level actions generated for offloading.
4028 if (!UseNewOffloadingDriver
)
4029 OffloadBuilder
.appendTopLevelActions(Actions
, Current
, InputArg
);
4031 Current
->propagateHostOffloadInfo(C
.getActiveOffloadKinds(),
4032 /*BoundArch=*/nullptr);
4035 // Add a link action if necessary.
4037 if (LinkerInputs
.empty()) {
4039 if (getFinalPhase(Args
, &FinalPhaseArg
) == phases::Link
)
4040 if (!UseNewOffloadingDriver
)
4041 OffloadBuilder
.appendDeviceLinkActions(Actions
);
4044 if (!LinkerInputs
.empty()) {
4045 if (!UseNewOffloadingDriver
)
4046 if (Action
*Wrapper
= OffloadBuilder
.makeHostLinkAction())
4047 LinkerInputs
.push_back(Wrapper
);
4049 // Check if this Linker Job should emit a static library.
4050 if (ShouldEmitStaticLibrary(Args
)) {
4051 LA
= C
.MakeAction
<StaticLibJobAction
>(LinkerInputs
, types::TY_Image
);
4052 } else if (UseNewOffloadingDriver
||
4053 Args
.hasArg(options::OPT_offload_link
)) {
4054 LA
= C
.MakeAction
<LinkerWrapperJobAction
>(LinkerInputs
, types::TY_Image
);
4055 LA
->propagateHostOffloadInfo(C
.getActiveOffloadKinds(),
4056 /*BoundArch=*/nullptr);
4058 LA
= C
.MakeAction
<LinkJobAction
>(LinkerInputs
, types::TY_Image
);
4060 if (!UseNewOffloadingDriver
)
4061 LA
= OffloadBuilder
.processHostLinkAction(LA
);
4062 Actions
.push_back(LA
);
4065 // Add an interface stubs merge action if necessary.
4066 if (!MergerInputs
.empty())
4068 C
.MakeAction
<IfsMergeJobAction
>(MergerInputs
, types::TY_Image
));
4070 if (Args
.hasArg(options::OPT_emit_interface_stubs
)) {
4071 auto PhaseList
= types::getCompilationPhases(
4073 Args
.hasArg(options::OPT_c
) ? phases::Compile
: phases::IfsMerge
);
4075 ActionList MergerInputs
;
4077 for (auto &I
: Inputs
) {
4078 types::ID InputType
= I
.first
;
4079 const Arg
*InputArg
= I
.second
;
4081 // Currently clang and the llvm assembler do not support generating symbol
4082 // stubs from assembly, so we skip the input on asm files. For ifs files
4083 // we rely on the normal pipeline setup in the pipeline setup code above.
4084 if (InputType
== types::TY_IFS
|| InputType
== types::TY_PP_Asm
||
4085 InputType
== types::TY_Asm
)
4088 Action
*Current
= C
.MakeAction
<InputAction
>(*InputArg
, InputType
);
4090 for (auto Phase
: PhaseList
) {
4094 "IFS Pipeline can only consist of Compile followed by IfsMerge.");
4095 case phases::Compile
: {
4096 // Only IfsMerge (llvm-ifs) can handle .o files by looking for ifs
4097 // files where the .o file is located. The compile action can not
4099 if (InputType
== types::TY_Object
)
4102 Current
= C
.MakeAction
<CompileJobAction
>(Current
, types::TY_IFS_CPP
);
4105 case phases::IfsMerge
: {
4106 assert(Phase
== PhaseList
.back() &&
4107 "merging must be final compilation step.");
4108 MergerInputs
.push_back(Current
);
4115 // If we ended with something, add to the output list.
4117 Actions
.push_back(Current
);
4120 // Add an interface stubs merge action if necessary.
4121 if (!MergerInputs
.empty())
4123 C
.MakeAction
<IfsMergeJobAction
>(MergerInputs
, types::TY_Image
));
4126 // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a custom
4127 // Compile phase that prints out supported cpu models and quits.
4128 if (Arg
*A
= Args
.getLastArg(options::OPT_print_supported_cpus
)) {
4129 // Use the -mcpu=? flag as the dummy input to cc1.
4131 Action
*InputAc
= C
.MakeAction
<InputAction
>(*A
, types::TY_C
);
4133 C
.MakeAction
<PrecompileJobAction
>(InputAc
, types::TY_Nothing
));
4134 for (auto &I
: Inputs
)
4138 // Claim ignored clang-cl options.
4139 Args
.ClaimAllArgs(options::OPT_cl_ignored_Group
);
4142 /// Returns the canonical name for the offloading architecture when using a HIP
4143 /// or CUDA architecture.
4144 static StringRef
getCanonicalArchString(Compilation
&C
,
4145 const llvm::opt::DerivedArgList
&Args
,
4147 const llvm::Triple
&Triple
) {
4148 // Lookup the CUDA / HIP architecture string. Only report an error if we were
4149 // expecting the triple to be only NVPTX / AMDGPU.
4150 CudaArch Arch
= StringToCudaArch(getProcessorFromTargetID(Triple
, ArchStr
));
4151 if (Triple
.isNVPTX() &&
4152 (Arch
== CudaArch::UNKNOWN
|| !IsNVIDIAGpuArch(Arch
))) {
4153 C
.getDriver().Diag(clang::diag::err_drv_offload_bad_gpu_arch
)
4154 << "CUDA" << ArchStr
;
4156 } else if (Triple
.isAMDGPU() &&
4157 (Arch
== CudaArch::UNKNOWN
|| !IsAMDGpuArch(Arch
))) {
4158 C
.getDriver().Diag(clang::diag::err_drv_offload_bad_gpu_arch
)
4159 << "HIP" << ArchStr
;
4163 if (IsNVIDIAGpuArch(Arch
))
4164 return Args
.MakeArgStringRef(CudaArchToString(Arch
));
4166 if (IsAMDGpuArch(Arch
)) {
4167 llvm::StringMap
<bool> Features
;
4168 auto HIPTriple
= getHIPOffloadTargetTriple(C
.getDriver(), C
.getInputArgs());
4171 auto Arch
= parseTargetID(*HIPTriple
, ArchStr
, &Features
);
4173 C
.getDriver().Diag(clang::diag::err_drv_bad_target_id
) << ArchStr
;
4174 C
.setContainsError();
4177 return Args
.MakeArgStringRef(getCanonicalTargetID(*Arch
, Features
));
4180 // If the input isn't CUDA or HIP just return the architecture.
4184 /// Checks if the set offloading architectures does not conflict. Returns the
4185 /// incompatible pair if a conflict occurs.
4186 static llvm::Optional
<std::pair
<llvm::StringRef
, llvm::StringRef
>>
4187 getConflictOffloadArchCombination(const llvm::DenseSet
<StringRef
> &Archs
,
4188 Action::OffloadKind Kind
) {
4189 if (Kind
!= Action::OFK_HIP
)
4192 std::set
<StringRef
> ArchSet
;
4193 llvm::copy(Archs
, std::inserter(ArchSet
, ArchSet
.begin()));
4194 return getConflictTargetIDCombination(ArchSet
);
4197 llvm::DenseSet
<StringRef
>
4198 Driver::getOffloadArchs(Compilation
&C
, const llvm::opt::DerivedArgList
&Args
,
4199 Action::OffloadKind Kind
, const ToolChain
*TC
) const {
4201 TC
= &C
.getDefaultToolChain();
4203 // --offload and --offload-arch options are mutually exclusive.
4204 if (Args
.hasArgNoClaim(options::OPT_offload_EQ
) &&
4205 Args
.hasArgNoClaim(options::OPT_offload_arch_EQ
,
4206 options::OPT_no_offload_arch_EQ
)) {
4207 C
.getDriver().Diag(diag::err_opt_not_valid_with_opt
)
4209 << (Args
.hasArgNoClaim(options::OPT_offload_arch_EQ
)
4211 : "--no-offload-arch");
4214 if (KnownArchs
.find(TC
) != KnownArchs
.end())
4215 return KnownArchs
.lookup(TC
);
4217 llvm::DenseSet
<StringRef
> Archs
;
4218 for (auto *Arg
: Args
) {
4219 // Extract any '--[no-]offload-arch' arguments intended for this toolchain.
4220 std::unique_ptr
<llvm::opt::Arg
> ExtractedArg
= nullptr;
4221 if (Arg
->getOption().matches(options::OPT_Xopenmp_target_EQ
) &&
4222 ToolChain::getOpenMPTriple(Arg
->getValue(0)) == TC
->getTriple()) {
4224 unsigned Index
= Args
.getBaseArgs().MakeIndex(Arg
->getValue(1));
4225 ExtractedArg
= getOpts().ParseOneArg(Args
, Index
);
4226 Arg
= ExtractedArg
.get();
4229 if (Arg
->getOption().matches(options::OPT_offload_arch_EQ
)) {
4230 for (StringRef Arch
: llvm::split(Arg
->getValue(), ","))
4231 Archs
.insert(getCanonicalArchString(C
, Args
, Arch
, TC
->getTriple()));
4232 } else if (Arg
->getOption().matches(options::OPT_no_offload_arch_EQ
)) {
4233 for (StringRef Arch
: llvm::split(Arg
->getValue(), ",")) {
4234 if (Arch
== StringRef("all"))
4237 Archs
.erase(getCanonicalArchString(C
, Args
, Arch
, TC
->getTriple()));
4242 if (auto ConflictingArchs
= getConflictOffloadArchCombination(Archs
, Kind
)) {
4243 C
.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo
)
4244 << ConflictingArchs
->first
<< ConflictingArchs
->second
;
4245 C
.setContainsError();
4248 if (Archs
.empty()) {
4249 if (Kind
== Action::OFK_Cuda
)
4250 Archs
.insert(CudaArchToString(CudaArch::CudaDefault
));
4251 else if (Kind
== Action::OFK_HIP
)
4252 Archs
.insert(CudaArchToString(CudaArch::HIPDefault
));
4253 else if (Kind
== Action::OFK_OpenMP
)
4254 Archs
.insert(StringRef());
4256 Args
.ClaimAllArgs(options::OPT_offload_arch_EQ
);
4257 Args
.ClaimAllArgs(options::OPT_no_offload_arch_EQ
);
4263 Action
*Driver::BuildOffloadingActions(Compilation
&C
,
4264 llvm::opt::DerivedArgList
&Args
,
4265 const InputTy
&Input
,
4266 Action
*HostAction
) const {
4267 // Don't build offloading actions if explicitly disabled or we do not have a
4268 // valid source input and compile action to embed it in. If preprocessing only
4269 // ignore embedding.
4270 if (offloadHostOnly() || !types::isSrcFile(Input
.first
) ||
4271 !(isa
<CompileJobAction
>(HostAction
) ||
4272 getFinalPhase(Args
) == phases::Preprocess
))
4275 ActionList OffloadActions
;
4276 OffloadAction::DeviceDependences DDeps
;
4278 const Action::OffloadKind OffloadKinds
[] = {
4279 Action::OFK_OpenMP
, Action::OFK_Cuda
, Action::OFK_HIP
};
4281 for (Action::OffloadKind Kind
: OffloadKinds
) {
4282 SmallVector
<const ToolChain
*, 2> ToolChains
;
4283 ActionList DeviceActions
;
4285 auto TCRange
= C
.getOffloadToolChains(Kind
);
4286 for (auto TI
= TCRange
.first
, TE
= TCRange
.second
; TI
!= TE
; ++TI
)
4287 ToolChains
.push_back(TI
->second
);
4289 if (ToolChains
.empty())
4292 types::ID InputType
= Input
.first
;
4293 const Arg
*InputArg
= Input
.second
;
4295 // The toolchain can be active for unsupported file types.
4296 if ((Kind
== Action::OFK_Cuda
&& !types::isCuda(InputType
)) ||
4297 (Kind
== Action::OFK_HIP
&& !types::isHIP(InputType
)))
4300 // Get the product of all bound architectures and toolchains.
4301 SmallVector
<std::pair
<const ToolChain
*, StringRef
>> TCAndArchs
;
4302 for (const ToolChain
*TC
: ToolChains
)
4303 for (StringRef Arch
: getOffloadArchs(C
, Args
, Kind
, TC
))
4304 TCAndArchs
.push_back(std::make_pair(TC
, Arch
));
4306 for (unsigned I
= 0, E
= TCAndArchs
.size(); I
!= E
; ++I
)
4307 DeviceActions
.push_back(C
.MakeAction
<InputAction
>(*InputArg
, InputType
));
4309 if (DeviceActions
.empty())
4312 auto PL
= types::getCompilationPhases(*this, Args
, InputType
);
4314 for (phases::ID Phase
: PL
) {
4315 if (Phase
== phases::Link
) {
4316 assert(Phase
== PL
.back() && "linking must be final compilation step.");
4320 auto TCAndArch
= TCAndArchs
.begin();
4321 for (Action
*&A
: DeviceActions
) {
4322 if (A
->getType() == types::TY_Nothing
)
4325 A
= ConstructPhaseAction(C
, Args
, Phase
, A
, Kind
);
4327 if (isa
<CompileJobAction
>(A
) && isa
<CompileJobAction
>(HostAction
) &&
4328 Kind
== Action::OFK_OpenMP
&&
4329 HostAction
->getType() != types::TY_Nothing
) {
4330 // OpenMP offloading has a dependency on the host compile action to
4331 // identify which declarations need to be emitted. This shouldn't be
4332 // collapsed with any other actions so we can use it in the device.
4333 HostAction
->setCannotBeCollapsedWithNextDependentAction();
4334 OffloadAction::HostDependence
HDep(
4335 *HostAction
, *C
.getSingleOffloadToolChain
<Action::OFK_Host
>(),
4336 TCAndArch
->second
.data(), Kind
);
4337 OffloadAction::DeviceDependences DDep
;
4338 DDep
.add(*A
, *TCAndArch
->first
, TCAndArch
->second
.data(), Kind
);
4339 A
= C
.MakeAction
<OffloadAction
>(HDep
, DDep
);
4345 // Compiling HIP in non-RDC mode requires linking each action individually.
4346 for (Action
*&A
: DeviceActions
) {
4347 if (A
->getType() != types::TY_Object
|| Kind
!= Action::OFK_HIP
||
4348 Args
.hasFlag(options::OPT_fgpu_rdc
, options::OPT_fno_gpu_rdc
, false))
4350 ActionList LinkerInput
= {A
};
4351 A
= C
.MakeAction
<LinkJobAction
>(LinkerInput
, types::TY_Image
);
4354 auto TCAndArch
= TCAndArchs
.begin();
4355 for (Action
*A
: DeviceActions
) {
4356 DDeps
.add(*A
, *TCAndArch
->first
, TCAndArch
->second
.data(), Kind
);
4357 OffloadAction::DeviceDependences DDep
;
4358 DDep
.add(*A
, *TCAndArch
->first
, TCAndArch
->second
.data(), Kind
);
4359 OffloadActions
.push_back(C
.MakeAction
<OffloadAction
>(DDep
, A
->getType()));
4364 if (offloadDeviceOnly())
4365 return C
.MakeAction
<OffloadAction
>(DDeps
, types::TY_Nothing
);
4367 if (OffloadActions
.empty())
4370 OffloadAction::DeviceDependences DDep
;
4371 if (C
.isOffloadingHostKind(Action::OFK_Cuda
) &&
4372 !Args
.hasFlag(options::OPT_fgpu_rdc
, options::OPT_fno_gpu_rdc
, false)) {
4373 // If we are not in RDC-mode we just emit the final CUDA fatbinary for
4374 // each translation unit without requiring any linking.
4375 Action
*FatbinAction
=
4376 C
.MakeAction
<LinkJobAction
>(OffloadActions
, types::TY_CUDA_FATBIN
);
4377 DDep
.add(*FatbinAction
, *C
.getSingleOffloadToolChain
<Action::OFK_Cuda
>(),
4378 nullptr, Action::OFK_Cuda
);
4379 } else if (C
.isOffloadingHostKind(Action::OFK_HIP
) &&
4380 !Args
.hasFlag(options::OPT_fgpu_rdc
, options::OPT_fno_gpu_rdc
,
4382 // If we are not in RDC-mode we just emit the final HIP fatbinary for each
4383 // translation unit, linking each input individually.
4384 Action
*FatbinAction
=
4385 C
.MakeAction
<LinkJobAction
>(OffloadActions
, types::TY_HIP_FATBIN
);
4386 DDep
.add(*FatbinAction
, *C
.getSingleOffloadToolChain
<Action::OFK_HIP
>(),
4387 nullptr, Action::OFK_HIP
);
4389 // Package all the offloading actions into a single output that can be
4390 // embedded in the host and linked.
4391 Action
*PackagerAction
=
4392 C
.MakeAction
<OffloadPackagerJobAction
>(OffloadActions
, types::TY_Image
);
4393 DDep
.add(*PackagerAction
, *C
.getSingleOffloadToolChain
<Action::OFK_Host
>(),
4394 nullptr, C
.getActiveOffloadKinds());
4397 // If we are unable to embed a single device output into the host, we need to
4398 // add each device output as a host dependency to ensure they are still built.
4399 bool SingleDeviceOutput
= !llvm::any_of(OffloadActions
, [](Action
*A
) {
4400 return A
->getType() == types::TY_Nothing
;
4401 }) && isa
<CompileJobAction
>(HostAction
);
4402 OffloadAction::HostDependence
HDep(
4403 *HostAction
, *C
.getSingleOffloadToolChain
<Action::OFK_Host
>(),
4404 /*BoundArch=*/nullptr, SingleDeviceOutput
? DDep
: DDeps
);
4405 return C
.MakeAction
<OffloadAction
>(HDep
, SingleDeviceOutput
? DDep
: DDeps
);
4408 Action
*Driver::ConstructPhaseAction(
4409 Compilation
&C
, const ArgList
&Args
, phases::ID Phase
, Action
*Input
,
4410 Action::OffloadKind TargetDeviceOffloadKind
) const {
4411 llvm::PrettyStackTraceString
CrashInfo("Constructing phase actions");
4413 // Some types skip the assembler phase (e.g., llvm-bc), but we can't
4414 // encode this in the steps because the intermediate type depends on
4415 // arguments. Just special case here.
4416 if (Phase
== phases::Assemble
&& Input
->getType() != types::TY_PP_Asm
)
4419 // Build the appropriate action.
4422 llvm_unreachable("link action invalid here.");
4423 case phases::IfsMerge
:
4424 llvm_unreachable("ifsmerge action invalid here.");
4425 case phases::Preprocess
: {
4427 // -M and -MM specify the dependency file name by altering the output type,
4428 // -if -MD and -MMD are not specified.
4429 if (Args
.hasArg(options::OPT_M
, options::OPT_MM
) &&
4430 !Args
.hasArg(options::OPT_MD
, options::OPT_MMD
)) {
4431 OutputTy
= types::TY_Dependencies
;
4433 OutputTy
= Input
->getType();
4434 // For these cases, the preprocessor is only translating forms, the Output
4435 // still needs preprocessing.
4436 if (!Args
.hasFlag(options::OPT_frewrite_includes
,
4437 options::OPT_fno_rewrite_includes
, false) &&
4438 !Args
.hasFlag(options::OPT_frewrite_imports
,
4439 options::OPT_fno_rewrite_imports
, false) &&
4440 !Args
.hasFlag(options::OPT_fdirectives_only
,
4441 options::OPT_fno_directives_only
, false) &&
4443 OutputTy
= types::getPreprocessedType(OutputTy
);
4444 assert(OutputTy
!= types::TY_INVALID
&&
4445 "Cannot preprocess this input type!");
4447 return C
.MakeAction
<PreprocessJobAction
>(Input
, OutputTy
);
4449 case phases::Precompile
: {
4450 // API extraction should not generate an actual precompilation action.
4451 if (Args
.hasArg(options::OPT_extract_api
))
4452 return C
.MakeAction
<ExtractAPIJobAction
>(Input
, types::TY_API_INFO
);
4454 types::ID OutputTy
= getPrecompiledType(Input
->getType());
4455 assert(OutputTy
!= types::TY_INVALID
&&
4456 "Cannot precompile this input type!");
4458 // If we're given a module name, precompile header file inputs as a
4459 // module, not as a precompiled header.
4460 const char *ModName
= nullptr;
4461 if (OutputTy
== types::TY_PCH
) {
4462 if (Arg
*A
= Args
.getLastArg(options::OPT_fmodule_name_EQ
))
4463 ModName
= A
->getValue();
4465 OutputTy
= types::TY_ModuleFile
;
4468 if (Args
.hasArg(options::OPT_fsyntax_only
)) {
4469 // Syntax checks should not emit a PCH file
4470 OutputTy
= types::TY_Nothing
;
4474 return C
.MakeAction
<HeaderModulePrecompileJobAction
>(Input
, OutputTy
,
4476 return C
.MakeAction
<PrecompileJobAction
>(Input
, OutputTy
);
4478 case phases::Compile
: {
4479 if (Args
.hasArg(options::OPT_fsyntax_only
))
4480 return C
.MakeAction
<CompileJobAction
>(Input
, types::TY_Nothing
);
4481 if (Args
.hasArg(options::OPT_rewrite_objc
))
4482 return C
.MakeAction
<CompileJobAction
>(Input
, types::TY_RewrittenObjC
);
4483 if (Args
.hasArg(options::OPT_rewrite_legacy_objc
))
4484 return C
.MakeAction
<CompileJobAction
>(Input
,
4485 types::TY_RewrittenLegacyObjC
);
4486 if (Args
.hasArg(options::OPT__analyze
))
4487 return C
.MakeAction
<AnalyzeJobAction
>(Input
, types::TY_Plist
);
4488 if (Args
.hasArg(options::OPT__migrate
))
4489 return C
.MakeAction
<MigrateJobAction
>(Input
, types::TY_Remap
);
4490 if (Args
.hasArg(options::OPT_emit_ast
))
4491 return C
.MakeAction
<CompileJobAction
>(Input
, types::TY_AST
);
4492 if (Args
.hasArg(options::OPT_module_file_info
))
4493 return C
.MakeAction
<CompileJobAction
>(Input
, types::TY_ModuleFile
);
4494 if (Args
.hasArg(options::OPT_verify_pch
))
4495 return C
.MakeAction
<VerifyPCHJobAction
>(Input
, types::TY_Nothing
);
4496 if (Args
.hasArg(options::OPT_extract_api
))
4497 return C
.MakeAction
<ExtractAPIJobAction
>(Input
, types::TY_API_INFO
);
4498 return C
.MakeAction
<CompileJobAction
>(Input
, types::TY_LLVM_BC
);
4500 case phases::Backend
: {
4501 if (isUsingLTO() && TargetDeviceOffloadKind
== Action::OFK_None
) {
4503 Args
.hasArg(options::OPT_S
) ? types::TY_LTO_IR
: types::TY_LTO_BC
;
4504 return C
.MakeAction
<BackendJobAction
>(Input
, Output
);
4506 if (isUsingLTO(/* IsOffload */ true) &&
4507 TargetDeviceOffloadKind
!= Action::OFK_None
) {
4509 Args
.hasArg(options::OPT_S
) ? types::TY_LTO_IR
: types::TY_LTO_BC
;
4510 return C
.MakeAction
<BackendJobAction
>(Input
, Output
);
4512 if (Args
.hasArg(options::OPT_emit_llvm
) ||
4513 (TargetDeviceOffloadKind
== Action::OFK_HIP
&&
4514 Args
.hasFlag(options::OPT_fgpu_rdc
, options::OPT_fno_gpu_rdc
,
4517 Args
.hasArg(options::OPT_S
) ? types::TY_LLVM_IR
: types::TY_LLVM_BC
;
4518 return C
.MakeAction
<BackendJobAction
>(Input
, Output
);
4520 return C
.MakeAction
<BackendJobAction
>(Input
, types::TY_PP_Asm
);
4522 case phases::Assemble
:
4523 return C
.MakeAction
<AssembleJobAction
>(std::move(Input
), types::TY_Object
);
4526 llvm_unreachable("invalid phase in ConstructPhaseAction");
4529 void Driver::BuildJobs(Compilation
&C
) const {
4530 llvm::PrettyStackTraceString
CrashInfo("Building compilation jobs");
4532 Arg
*FinalOutput
= C
.getArgs().getLastArg(options::OPT_o
);
4534 // It is an error to provide a -o option if we are making multiple output
4535 // files. There are exceptions:
4537 // IfsMergeJob: when generating interface stubs enabled we want to be able to
4538 // generate the stub file at the same time that we generate the real
4539 // library/a.out. So when a .o, .so, etc are the output, with clang interface
4540 // stubs there will also be a .ifs and .ifso at the same location.
4542 // CompileJob of type TY_IFS_CPP: when generating interface stubs is enabled
4543 // and -c is passed, we still want to be able to generate a .ifs file while
4544 // we are also generating .o files. So we allow more than one output file in
4545 // this case as well.
4547 // OffloadClass of type TY_Nothing: device-only output will place many outputs
4548 // into a single offloading action. We should count all inputs to the action
4549 // as outputs. Also ignore device-only outputs if we're compiling with
4552 unsigned NumOutputs
= 0;
4553 unsigned NumIfsOutputs
= 0;
4554 for (const Action
*A
: C
.getActions()) {
4555 if (A
->getType() != types::TY_Nothing
&&
4556 !(A
->getKind() == Action::IfsMergeJobClass
||
4557 (A
->getType() == clang::driver::types::TY_IFS_CPP
&&
4558 A
->getKind() == clang::driver::Action::CompileJobClass
&&
4559 0 == NumIfsOutputs
++) ||
4560 (A
->getKind() == Action::BindArchClass
&& A
->getInputs().size() &&
4561 A
->getInputs().front()->getKind() == Action::IfsMergeJobClass
)))
4563 else if (A
->getKind() == Action::OffloadClass
&&
4564 A
->getType() == types::TY_Nothing
&&
4565 !C
.getArgs().hasArg(options::OPT_fsyntax_only
))
4566 NumOutputs
+= A
->size();
4569 if (NumOutputs
> 1) {
4570 Diag(clang::diag::err_drv_output_argument_with_multiple_files
);
4571 FinalOutput
= nullptr;
4575 const llvm::Triple
&RawTriple
= C
.getDefaultToolChain().getTriple();
4576 if (RawTriple
.isOSAIX()) {
4577 if (Arg
*A
= C
.getArgs().getLastArg(options::OPT_G
))
4578 Diag(diag::err_drv_unsupported_opt_for_target
)
4579 << A
->getSpelling() << RawTriple
.str();
4580 if (LTOMode
== LTOK_Thin
)
4581 Diag(diag::err_drv_clang_unsupported
) << "thinLTO on AIX";
4584 // Collect the list of architectures.
4585 llvm::StringSet
<> ArchNames
;
4586 if (RawTriple
.isOSBinFormatMachO())
4587 for (const Arg
*A
: C
.getArgs())
4588 if (A
->getOption().matches(options::OPT_arch
))
4589 ArchNames
.insert(A
->getValue());
4591 // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
4592 std::map
<std::pair
<const Action
*, std::string
>, InputInfoList
> CachedResults
;
4593 for (Action
*A
: C
.getActions()) {
4594 // If we are linking an image for multiple archs then the linker wants
4595 // -arch_multiple and -final_output <final image name>. Unfortunately, this
4596 // doesn't fit in cleanly because we have to pass this information down.
4598 // FIXME: This is a hack; find a cleaner way to integrate this into the
4600 const char *LinkingOutput
= nullptr;
4601 if (isa
<LipoJobAction
>(A
)) {
4603 LinkingOutput
= FinalOutput
->getValue();
4605 LinkingOutput
= getDefaultImageName();
4608 BuildJobsForAction(C
, A
, &C
.getDefaultToolChain(),
4609 /*BoundArch*/ StringRef(),
4610 /*AtTopLevel*/ true,
4611 /*MultipleArchs*/ ArchNames
.size() > 1,
4612 /*LinkingOutput*/ LinkingOutput
, CachedResults
,
4613 /*TargetDeviceOffloadKind*/ Action::OFK_None
);
4616 // If we have more than one job, then disable integrated-cc1 for now. Do this
4617 // also when we need to report process execution statistics.
4618 if (C
.getJobs().size() > 1 || CCPrintProcessStats
)
4619 for (auto &J
: C
.getJobs())
4620 J
.InProcess
= false;
4622 if (CCPrintProcessStats
) {
4623 C
.setPostCallback([=](const Command
&Cmd
, int Res
) {
4624 Optional
<llvm::sys::ProcessStatistics
> ProcStat
=
4625 Cmd
.getProcessStatistics();
4629 const char *LinkingOutput
= nullptr;
4631 LinkingOutput
= FinalOutput
->getValue();
4632 else if (!Cmd
.getOutputFilenames().empty())
4633 LinkingOutput
= Cmd
.getOutputFilenames().front().c_str();
4635 LinkingOutput
= getDefaultImageName();
4637 if (CCPrintStatReportFilename
.empty()) {
4638 using namespace llvm
;
4639 // Human readable output.
4640 outs() << sys::path::filename(Cmd
.getExecutable()) << ": "
4641 << "output=" << LinkingOutput
;
4642 outs() << ", total="
4643 << format("%.3f", ProcStat
->TotalTime
.count() / 1000.) << " ms"
4645 << format("%.3f", ProcStat
->UserTime
.count() / 1000.) << " ms"
4646 << ", mem=" << ProcStat
->PeakMemory
<< " Kb\n";
4650 llvm::raw_string_ostream
Out(Buffer
);
4651 llvm::sys::printArg(Out
, llvm::sys::path::filename(Cmd
.getExecutable()),
4654 llvm::sys::printArg(Out
, LinkingOutput
, true);
4655 Out
<< ',' << ProcStat
->TotalTime
.count() << ','
4656 << ProcStat
->UserTime
.count() << ',' << ProcStat
->PeakMemory
4660 llvm::raw_fd_ostream
OS(CCPrintStatReportFilename
, EC
,
4661 llvm::sys::fs::OF_Append
|
4662 llvm::sys::fs::OF_Text
);
4667 llvm::errs() << "ERROR: Cannot lock file "
4668 << CCPrintStatReportFilename
<< ": "
4669 << toString(L
.takeError()) << "\n";
4678 // If the user passed -Qunused-arguments or there were errors, don't warn
4679 // about any unused arguments.
4680 if (Diags
.hasErrorOccurred() ||
4681 C
.getArgs().hasArg(options::OPT_Qunused_arguments
))
4684 // Claim -fdriver-only here.
4685 (void)C
.getArgs().hasArg(options::OPT_fdriver_only
);
4687 (void)C
.getArgs().hasArg(options::OPT__HASH_HASH_HASH
);
4689 // Claim --driver-mode, --rsp-quoting, it was handled earlier.
4690 (void)C
.getArgs().hasArg(options::OPT_driver_mode
);
4691 (void)C
.getArgs().hasArg(options::OPT_rsp_quoting
);
4693 for (Arg
*A
: C
.getArgs()) {
4694 // FIXME: It would be nice to be able to send the argument to the
4695 // DiagnosticsEngine, so that extra values, position, and so on could be
4697 if (!A
->isClaimed()) {
4698 if (A
->getOption().hasFlag(options::NoArgumentUnused
))
4701 // Suppress the warning automatically if this is just a flag, and it is an
4702 // instance of an argument we already claimed.
4703 const Option
&Opt
= A
->getOption();
4704 if (Opt
.getKind() == Option::FlagClass
) {
4705 bool DuplicateClaimed
= false;
4707 for (const Arg
*AA
: C
.getArgs().filtered(&Opt
)) {
4708 if (AA
->isClaimed()) {
4709 DuplicateClaimed
= true;
4714 if (DuplicateClaimed
)
4718 // In clang-cl, don't mention unknown arguments here since they have
4719 // already been warned about.
4720 if (!IsCLMode() || !A
->getOption().matches(options::OPT_UNKNOWN
))
4721 Diag(clang::diag::warn_drv_unused_argument
)
4722 << A
->getAsString(C
.getArgs());
4728 /// Utility class to control the collapse of dependent actions and select the
4729 /// tools accordingly.
4730 class ToolSelector final
{
4731 /// The tool chain this selector refers to.
4732 const ToolChain
&TC
;
4734 /// The compilation this selector refers to.
4735 const Compilation
&C
;
4737 /// The base action this selector refers to.
4738 const JobAction
*BaseAction
;
4740 /// Set to true if the current toolchain refers to host actions.
4741 bool IsHostSelector
;
4743 /// Set to true if save-temps and embed-bitcode functionalities are active.
4747 /// Get previous dependent action or null if that does not exist. If
4748 /// \a CanBeCollapsed is false, that action must be legal to collapse or
4749 /// null will be returned.
4750 const JobAction
*getPrevDependentAction(const ActionList
&Inputs
,
4751 ActionList
&SavedOffloadAction
,
4752 bool CanBeCollapsed
= true) {
4753 // An option can be collapsed only if it has a single input.
4754 if (Inputs
.size() != 1)
4757 Action
*CurAction
= *Inputs
.begin();
4758 if (CanBeCollapsed
&&
4759 !CurAction
->isCollapsingWithNextDependentActionLegal())
4762 // If the input action is an offload action. Look through it and save any
4763 // offload action that can be dropped in the event of a collapse.
4764 if (auto *OA
= dyn_cast
<OffloadAction
>(CurAction
)) {
4765 // If the dependent action is a device action, we will attempt to collapse
4766 // only with other device actions. Otherwise, we would do the same but
4767 // with host actions only.
4768 if (!IsHostSelector
) {
4769 if (OA
->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
4771 OA
->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
4772 if (CanBeCollapsed
&&
4773 !CurAction
->isCollapsingWithNextDependentActionLegal())
4775 SavedOffloadAction
.push_back(OA
);
4776 return dyn_cast
<JobAction
>(CurAction
);
4778 } else if (OA
->hasHostDependence()) {
4779 CurAction
= OA
->getHostDependence();
4780 if (CanBeCollapsed
&&
4781 !CurAction
->isCollapsingWithNextDependentActionLegal())
4783 SavedOffloadAction
.push_back(OA
);
4784 return dyn_cast
<JobAction
>(CurAction
);
4789 return dyn_cast
<JobAction
>(CurAction
);
4792 /// Return true if an assemble action can be collapsed.
4793 bool canCollapseAssembleAction() const {
4794 return TC
.useIntegratedAs() && !SaveTemps
&&
4795 !C
.getArgs().hasArg(options::OPT_via_file_asm
) &&
4796 !C
.getArgs().hasArg(options::OPT__SLASH_FA
) &&
4797 !C
.getArgs().hasArg(options::OPT__SLASH_Fa
);
4800 /// Return true if a preprocessor action can be collapsed.
4801 bool canCollapsePreprocessorAction() const {
4802 return !C
.getArgs().hasArg(options::OPT_no_integrated_cpp
) &&
4803 !C
.getArgs().hasArg(options::OPT_traditional_cpp
) && !SaveTemps
&&
4804 !C
.getArgs().hasArg(options::OPT_rewrite_objc
);
4807 /// Struct that relates an action with the offload actions that would be
4808 /// collapsed with it.
4809 struct JobActionInfo final
{
4810 /// The action this info refers to.
4811 const JobAction
*JA
= nullptr;
4812 /// The offload actions we need to take care off if this action is
4814 ActionList SavedOffloadAction
;
4817 /// Append collapsed offload actions from the give nnumber of elements in the
4818 /// action info array.
4819 static void AppendCollapsedOffloadAction(ActionList
&CollapsedOffloadAction
,
4820 ArrayRef
<JobActionInfo
> &ActionInfo
,
4821 unsigned ElementNum
) {
4822 assert(ElementNum
<= ActionInfo
.size() && "Invalid number of elements.");
4823 for (unsigned I
= 0; I
< ElementNum
; ++I
)
4824 CollapsedOffloadAction
.append(ActionInfo
[I
].SavedOffloadAction
.begin(),
4825 ActionInfo
[I
].SavedOffloadAction
.end());
4828 /// Functions that attempt to perform the combining. They detect if that is
4829 /// legal, and if so they update the inputs \a Inputs and the offload action
4830 /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
4831 /// the combined action is returned. If the combining is not legal or if the
4832 /// tool does not exist, null is returned.
4833 /// Currently three kinds of collapsing are supported:
4834 /// - Assemble + Backend + Compile;
4835 /// - Assemble + Backend ;
4836 /// - Backend + Compile.
4838 combineAssembleBackendCompile(ArrayRef
<JobActionInfo
> ActionInfo
,
4840 ActionList
&CollapsedOffloadAction
) {
4841 if (ActionInfo
.size() < 3 || !canCollapseAssembleAction())
4843 auto *AJ
= dyn_cast
<AssembleJobAction
>(ActionInfo
[0].JA
);
4844 auto *BJ
= dyn_cast
<BackendJobAction
>(ActionInfo
[1].JA
);
4845 auto *CJ
= dyn_cast
<CompileJobAction
>(ActionInfo
[2].JA
);
4846 if (!AJ
|| !BJ
|| !CJ
)
4849 // Get compiler tool.
4850 const Tool
*T
= TC
.SelectTool(*CJ
);
4854 // Can't collapse if we don't have codegen support unless we are
4855 // emitting LLVM IR.
4856 bool OutputIsLLVM
= types::isLLVMIR(ActionInfo
[0].JA
->getType());
4857 if (!T
->hasIntegratedBackend() && !(OutputIsLLVM
&& T
->canEmitIR()))
4860 // When using -fembed-bitcode, it is required to have the same tool (clang)
4861 // for both CompilerJA and BackendJA. Otherwise, combine two stages.
4863 const Tool
*BT
= TC
.SelectTool(*BJ
);
4868 if (!T
->hasIntegratedAssembler())
4871 Inputs
= CJ
->getInputs();
4872 AppendCollapsedOffloadAction(CollapsedOffloadAction
, ActionInfo
,
4876 const Tool
*combineAssembleBackend(ArrayRef
<JobActionInfo
> ActionInfo
,
4878 ActionList
&CollapsedOffloadAction
) {
4879 if (ActionInfo
.size() < 2 || !canCollapseAssembleAction())
4881 auto *AJ
= dyn_cast
<AssembleJobAction
>(ActionInfo
[0].JA
);
4882 auto *BJ
= dyn_cast
<BackendJobAction
>(ActionInfo
[1].JA
);
4886 // Get backend tool.
4887 const Tool
*T
= TC
.SelectTool(*BJ
);
4891 if (!T
->hasIntegratedAssembler())
4894 Inputs
= BJ
->getInputs();
4895 AppendCollapsedOffloadAction(CollapsedOffloadAction
, ActionInfo
,
4899 const Tool
*combineBackendCompile(ArrayRef
<JobActionInfo
> ActionInfo
,
4901 ActionList
&CollapsedOffloadAction
) {
4902 if (ActionInfo
.size() < 2)
4904 auto *BJ
= dyn_cast
<BackendJobAction
>(ActionInfo
[0].JA
);
4905 auto *CJ
= dyn_cast
<CompileJobAction
>(ActionInfo
[1].JA
);
4909 // Check if the initial input (to the compile job or its predessor if one
4910 // exists) is LLVM bitcode. In that case, no preprocessor step is required
4911 // and we can still collapse the compile and backend jobs when we have
4912 // -save-temps. I.e. there is no need for a separate compile job just to
4913 // emit unoptimized bitcode.
4914 bool InputIsBitcode
= true;
4915 for (size_t i
= 1; i
< ActionInfo
.size(); i
++)
4916 if (ActionInfo
[i
].JA
->getType() != types::TY_LLVM_BC
&&
4917 ActionInfo
[i
].JA
->getType() != types::TY_LTO_BC
) {
4918 InputIsBitcode
= false;
4921 if (!InputIsBitcode
&& !canCollapsePreprocessorAction())
4924 // Get compiler tool.
4925 const Tool
*T
= TC
.SelectTool(*CJ
);
4929 // Can't collapse if we don't have codegen support unless we are
4930 // emitting LLVM IR.
4931 bool OutputIsLLVM
= types::isLLVMIR(ActionInfo
[0].JA
->getType());
4932 if (!T
->hasIntegratedBackend() && !(OutputIsLLVM
&& T
->canEmitIR()))
4935 if (T
->canEmitIR() && ((SaveTemps
&& !InputIsBitcode
) || EmbedBitcode
))
4938 Inputs
= CJ
->getInputs();
4939 AppendCollapsedOffloadAction(CollapsedOffloadAction
, ActionInfo
,
4944 /// Updates the inputs if the obtained tool supports combining with
4945 /// preprocessor action, and the current input is indeed a preprocessor
4946 /// action. If combining results in the collapse of offloading actions, those
4947 /// are appended to \a CollapsedOffloadAction.
4948 void combineWithPreprocessor(const Tool
*T
, ActionList
&Inputs
,
4949 ActionList
&CollapsedOffloadAction
) {
4950 if (!T
|| !canCollapsePreprocessorAction() || !T
->hasIntegratedCPP())
4953 // Attempt to get a preprocessor action dependence.
4954 ActionList PreprocessJobOffloadActions
;
4955 ActionList NewInputs
;
4956 for (Action
*A
: Inputs
) {
4957 auto *PJ
= getPrevDependentAction({A
}, PreprocessJobOffloadActions
);
4958 if (!PJ
|| !isa
<PreprocessJobAction
>(PJ
)) {
4959 NewInputs
.push_back(A
);
4963 // This is legal to combine. Append any offload action we found and add the
4964 // current input to preprocessor inputs.
4965 CollapsedOffloadAction
.append(PreprocessJobOffloadActions
.begin(),
4966 PreprocessJobOffloadActions
.end());
4967 NewInputs
.append(PJ
->input_begin(), PJ
->input_end());
4973 ToolSelector(const JobAction
*BaseAction
, const ToolChain
&TC
,
4974 const Compilation
&C
, bool SaveTemps
, bool EmbedBitcode
)
4975 : TC(TC
), C(C
), BaseAction(BaseAction
), SaveTemps(SaveTemps
),
4976 EmbedBitcode(EmbedBitcode
) {
4977 assert(BaseAction
&& "Invalid base action.");
4978 IsHostSelector
= BaseAction
->getOffloadingDeviceKind() == Action::OFK_None
;
4981 /// Check if a chain of actions can be combined and return the tool that can
4982 /// handle the combination of actions. The pointer to the current inputs \a
4983 /// Inputs and the list of offload actions \a CollapsedOffloadActions
4984 /// connected to collapsed actions are updated accordingly. The latter enables
4985 /// the caller of the selector to process them afterwards instead of just
4986 /// dropping them. If no suitable tool is found, null will be returned.
4987 const Tool
*getTool(ActionList
&Inputs
,
4988 ActionList
&CollapsedOffloadAction
) {
4990 // Get the largest chain of actions that we could combine.
4993 SmallVector
<JobActionInfo
, 5> ActionChain(1);
4994 ActionChain
.back().JA
= BaseAction
;
4995 while (ActionChain
.back().JA
) {
4996 const Action
*CurAction
= ActionChain
.back().JA
;
4998 // Grow the chain by one element.
4999 ActionChain
.resize(ActionChain
.size() + 1);
5000 JobActionInfo
&AI
= ActionChain
.back();
5002 // Attempt to fill it with the
5004 getPrevDependentAction(CurAction
->getInputs(), AI
.SavedOffloadAction
);
5007 // Pop the last action info as it could not be filled.
5008 ActionChain
.pop_back();
5011 // Attempt to combine actions. If all combining attempts failed, just return
5012 // the tool of the provided action. At the end we attempt to combine the
5013 // action with any preprocessor action it may depend on.
5016 const Tool
*T
= combineAssembleBackendCompile(ActionChain
, Inputs
,
5017 CollapsedOffloadAction
);
5019 T
= combineAssembleBackend(ActionChain
, Inputs
, CollapsedOffloadAction
);
5021 T
= combineBackendCompile(ActionChain
, Inputs
, CollapsedOffloadAction
);
5023 Inputs
= BaseAction
->getInputs();
5024 T
= TC
.SelectTool(*BaseAction
);
5027 combineWithPreprocessor(T
, Inputs
, CollapsedOffloadAction
);
5033 /// Return a string that uniquely identifies the result of a job. The bound arch
5034 /// is not necessarily represented in the toolchain's triple -- for example,
5035 /// armv7 and armv7s both map to the same triple -- so we need both in our map.
5036 /// Also, we need to add the offloading device kind, as the same tool chain can
5037 /// be used for host and device for some programming models, e.g. OpenMP.
5038 static std::string
GetTriplePlusArchString(const ToolChain
*TC
,
5039 StringRef BoundArch
,
5040 Action::OffloadKind OffloadKind
) {
5041 std::string TriplePlusArch
= TC
->getTriple().normalize();
5042 if (!BoundArch
.empty()) {
5043 TriplePlusArch
+= "-";
5044 TriplePlusArch
+= BoundArch
;
5046 TriplePlusArch
+= "-";
5047 TriplePlusArch
+= Action::GetOffloadKindName(OffloadKind
);
5048 return TriplePlusArch
;
5051 InputInfoList
Driver::BuildJobsForAction(
5052 Compilation
&C
, const Action
*A
, const ToolChain
*TC
, StringRef BoundArch
,
5053 bool AtTopLevel
, bool MultipleArchs
, const char *LinkingOutput
,
5054 std::map
<std::pair
<const Action
*, std::string
>, InputInfoList
>
5056 Action::OffloadKind TargetDeviceOffloadKind
) const {
5057 std::pair
<const Action
*, std::string
> ActionTC
= {
5058 A
, GetTriplePlusArchString(TC
, BoundArch
, TargetDeviceOffloadKind
)};
5059 auto CachedResult
= CachedResults
.find(ActionTC
);
5060 if (CachedResult
!= CachedResults
.end()) {
5061 return CachedResult
->second
;
5063 InputInfoList Result
= BuildJobsForActionNoCache(
5064 C
, A
, TC
, BoundArch
, AtTopLevel
, MultipleArchs
, LinkingOutput
,
5065 CachedResults
, TargetDeviceOffloadKind
);
5066 CachedResults
[ActionTC
] = Result
;
5070 InputInfoList
Driver::BuildJobsForActionNoCache(
5071 Compilation
&C
, const Action
*A
, const ToolChain
*TC
, StringRef BoundArch
,
5072 bool AtTopLevel
, bool MultipleArchs
, const char *LinkingOutput
,
5073 std::map
<std::pair
<const Action
*, std::string
>, InputInfoList
>
5075 Action::OffloadKind TargetDeviceOffloadKind
) const {
5076 llvm::PrettyStackTraceString
CrashInfo("Building compilation jobs");
5078 InputInfoList OffloadDependencesInputInfo
;
5079 bool BuildingForOffloadDevice
= TargetDeviceOffloadKind
!= Action::OFK_None
;
5080 if (const OffloadAction
*OA
= dyn_cast
<OffloadAction
>(A
)) {
5081 // The 'Darwin' toolchain is initialized only when its arguments are
5082 // computed. Get the default arguments for OFK_None to ensure that
5083 // initialization is performed before processing the offload action.
5084 // FIXME: Remove when darwin's toolchain is initialized during construction.
5085 C
.getArgsForToolChain(TC
, BoundArch
, Action::OFK_None
);
5087 // The offload action is expected to be used in four different situations.
5089 // a) Set a toolchain/architecture/kind for a host action:
5090 // Host Action 1 -> OffloadAction -> Host Action 2
5092 // b) Set a toolchain/architecture/kind for a device action;
5093 // Device Action 1 -> OffloadAction -> Device Action 2
5095 // c) Specify a device dependence to a host action;
5096 // Device Action 1 _
5098 // Host Action 1 ---> OffloadAction -> Host Action 2
5100 // d) Specify a host dependence to a device action.
5103 // Device Action 1 ---> OffloadAction -> Device Action 2
5105 // For a) and b), we just return the job generated for the dependences. For
5106 // c) and d) we override the current action with the host/device dependence
5107 // if the current toolchain is host/device and set the offload dependences
5108 // info with the jobs obtained from the device/host dependence(s).
5110 // If there is a single device option or has no host action, just generate
5112 if (OA
->hasSingleDeviceDependence() || !OA
->hasHostDependence()) {
5114 OA
->doOnEachDeviceDependence([&](Action
*DepA
, const ToolChain
*DepTC
,
5115 const char *DepBoundArch
) {
5116 DevA
.append(BuildJobsForAction(C
, DepA
, DepTC
, DepBoundArch
, AtTopLevel
,
5117 /*MultipleArchs*/ !!DepBoundArch
,
5118 LinkingOutput
, CachedResults
,
5119 DepA
->getOffloadingDeviceKind()));
5124 // If 'Action 2' is host, we generate jobs for the device dependences and
5125 // override the current action with the host dependence. Otherwise, we
5126 // generate the host dependences and override the action with the device
5127 // dependence. The dependences can't therefore be a top-level action.
5128 OA
->doOnEachDependence(
5129 /*IsHostDependence=*/BuildingForOffloadDevice
,
5130 [&](Action
*DepA
, const ToolChain
*DepTC
, const char *DepBoundArch
) {
5131 OffloadDependencesInputInfo
.append(BuildJobsForAction(
5132 C
, DepA
, DepTC
, DepBoundArch
, /*AtTopLevel=*/false,
5133 /*MultipleArchs*/ !!DepBoundArch
, LinkingOutput
, CachedResults
,
5134 DepA
->getOffloadingDeviceKind()));
5137 A
= BuildingForOffloadDevice
5138 ? OA
->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
5139 : OA
->getHostDependence();
5141 // We may have already built this action as a part of the offloading
5142 // toolchain, return the cached input if so.
5143 std::pair
<const Action
*, std::string
> ActionTC
= {
5144 OA
->getHostDependence(),
5145 GetTriplePlusArchString(TC
, BoundArch
, TargetDeviceOffloadKind
)};
5146 if (CachedResults
.find(ActionTC
) != CachedResults
.end()) {
5147 InputInfoList Inputs
= CachedResults
[ActionTC
];
5148 Inputs
.append(OffloadDependencesInputInfo
);
5153 if (const InputAction
*IA
= dyn_cast
<InputAction
>(A
)) {
5154 // FIXME: It would be nice to not claim this here; maybe the old scheme of
5155 // just using Args was better?
5156 const Arg
&Input
= IA
->getInputArg();
5158 if (Input
.getOption().matches(options::OPT_INPUT
)) {
5159 const char *Name
= Input
.getValue();
5160 return {InputInfo(A
, Name
, /* _BaseInput = */ Name
)};
5162 return {InputInfo(A
, &Input
, /* _BaseInput = */ "")};
5165 if (const BindArchAction
*BAA
= dyn_cast
<BindArchAction
>(A
)) {
5166 const ToolChain
*TC
;
5167 StringRef ArchName
= BAA
->getArchName();
5169 if (!ArchName
.empty())
5170 TC
= &getToolChain(C
.getArgs(),
5171 computeTargetTriple(*this, TargetTriple
,
5172 C
.getArgs(), ArchName
));
5174 TC
= &C
.getDefaultToolChain();
5176 return BuildJobsForAction(C
, *BAA
->input_begin(), TC
, ArchName
, AtTopLevel
,
5177 MultipleArchs
, LinkingOutput
, CachedResults
,
5178 TargetDeviceOffloadKind
);
5182 ActionList Inputs
= A
->getInputs();
5184 const JobAction
*JA
= cast
<JobAction
>(A
);
5185 ActionList CollapsedOffloadActions
;
5187 ToolSelector
TS(JA
, *TC
, C
, isSaveTempsEnabled(),
5188 embedBitcodeInObject() && !isUsingLTO());
5189 const Tool
*T
= TS
.getTool(Inputs
, CollapsedOffloadActions
);
5192 return {InputInfo()};
5194 if (BuildingForOffloadDevice
&&
5195 A
->getOffloadingDeviceKind() == Action::OFK_OpenMP
) {
5196 if (TC
->getTriple().isAMDGCN()) {
5197 // AMDGCN treats backend and assemble actions as no-op because
5198 // linker does not support object files.
5199 if (const BackendJobAction
*BA
= dyn_cast
<BackendJobAction
>(A
)) {
5200 return BuildJobsForAction(C
, *BA
->input_begin(), TC
, BoundArch
,
5201 AtTopLevel
, MultipleArchs
, LinkingOutput
,
5202 CachedResults
, TargetDeviceOffloadKind
);
5205 if (const AssembleJobAction
*AA
= dyn_cast
<AssembleJobAction
>(A
)) {
5206 return BuildJobsForAction(C
, *AA
->input_begin(), TC
, BoundArch
,
5207 AtTopLevel
, MultipleArchs
, LinkingOutput
,
5208 CachedResults
, TargetDeviceOffloadKind
);
5213 // If we've collapsed action list that contained OffloadAction we
5214 // need to build jobs for host/device-side inputs it may have held.
5215 for (const auto *OA
: CollapsedOffloadActions
)
5216 cast
<OffloadAction
>(OA
)->doOnEachDependence(
5217 /*IsHostDependence=*/BuildingForOffloadDevice
,
5218 [&](Action
*DepA
, const ToolChain
*DepTC
, const char *DepBoundArch
) {
5219 OffloadDependencesInputInfo
.append(BuildJobsForAction(
5220 C
, DepA
, DepTC
, DepBoundArch
, /* AtTopLevel */ false,
5221 /*MultipleArchs=*/!!DepBoundArch
, LinkingOutput
, CachedResults
,
5222 DepA
->getOffloadingDeviceKind()));
5225 // Only use pipes when there is exactly one input.
5226 InputInfoList InputInfos
;
5227 for (const Action
*Input
: Inputs
) {
5228 // Treat dsymutil and verify sub-jobs as being at the top-level too, they
5229 // shouldn't get temporary output names.
5230 // FIXME: Clean this up.
5231 bool SubJobAtTopLevel
=
5232 AtTopLevel
&& (isa
<DsymutilJobAction
>(A
) || isa
<VerifyJobAction
>(A
));
5233 InputInfos
.append(BuildJobsForAction(
5234 C
, Input
, TC
, BoundArch
, SubJobAtTopLevel
, MultipleArchs
, LinkingOutput
,
5235 CachedResults
, A
->getOffloadingDeviceKind()));
5238 // Always use the first file input as the base input.
5239 const char *BaseInput
= InputInfos
[0].getBaseInput();
5240 for (auto &Info
: InputInfos
) {
5241 if (Info
.isFilename()) {
5242 BaseInput
= Info
.getBaseInput();
5247 // ... except dsymutil actions, which use their actual input as the base
5249 if (JA
->getType() == types::TY_dSYM
)
5250 BaseInput
= InputInfos
[0].getFilename();
5252 // ... and in header module compilations, which use the module name.
5253 if (auto *ModuleJA
= dyn_cast
<HeaderModulePrecompileJobAction
>(JA
))
5254 BaseInput
= ModuleJA
->getModuleName();
5256 // Append outputs of offload device jobs to the input list
5257 if (!OffloadDependencesInputInfo
.empty())
5258 InputInfos
.append(OffloadDependencesInputInfo
.begin(),
5259 OffloadDependencesInputInfo
.end());
5261 // Set the effective triple of the toolchain for the duration of this job.
5262 llvm::Triple EffectiveTriple
;
5263 const ToolChain
&ToolTC
= T
->getToolChain();
5264 const ArgList
&Args
=
5265 C
.getArgsForToolChain(TC
, BoundArch
, A
->getOffloadingDeviceKind());
5266 if (InputInfos
.size() != 1) {
5267 EffectiveTriple
= llvm::Triple(ToolTC
.ComputeEffectiveClangTriple(Args
));
5269 // Pass along the input type if it can be unambiguously determined.
5270 EffectiveTriple
= llvm::Triple(
5271 ToolTC
.ComputeEffectiveClangTriple(Args
, InputInfos
[0].getType()));
5273 RegisterEffectiveTriple
TripleRAII(ToolTC
, EffectiveTriple
);
5275 // Determine the place to write output to, if any.
5277 InputInfoList UnbundlingResults
;
5278 if (auto *UA
= dyn_cast
<OffloadUnbundlingJobAction
>(JA
)) {
5279 // If we have an unbundling job, we need to create results for all the
5280 // outputs. We also update the results cache so that other actions using
5281 // this unbundling action can get the right results.
5282 for (auto &UI
: UA
->getDependentActionsInfo()) {
5283 assert(UI
.DependentOffloadKind
!= Action::OFK_None
&&
5284 "Unbundling with no offloading??");
5286 // Unbundling actions are never at the top level. When we generate the
5287 // offloading prefix, we also do that for the host file because the
5288 // unbundling action does not change the type of the output which can
5289 // cause a overwrite.
5290 std::string OffloadingPrefix
= Action::GetOffloadingFileNamePrefix(
5291 UI
.DependentOffloadKind
,
5292 UI
.DependentToolChain
->getTriple().normalize(),
5293 /*CreatePrefixForHost=*/true);
5294 auto CurI
= InputInfo(
5296 GetNamedOutputPath(C
, *UA
, BaseInput
, UI
.DependentBoundArch
,
5297 /*AtTopLevel=*/false,
5299 UI
.DependentOffloadKind
== Action::OFK_HIP
,
5302 // Save the unbundling result.
5303 UnbundlingResults
.push_back(CurI
);
5305 // Get the unique string identifier for this dependence and cache the
5308 if (TargetDeviceOffloadKind
== Action::OFK_HIP
) {
5309 if (UI
.DependentOffloadKind
== Action::OFK_Host
)
5312 Arch
= UI
.DependentBoundArch
;
5316 CachedResults
[{A
, GetTriplePlusArchString(UI
.DependentToolChain
, Arch
,
5317 UI
.DependentOffloadKind
)}] = {
5321 // Now that we have all the results generated, select the one that should be
5322 // returned for the current depending action.
5323 std::pair
<const Action
*, std::string
> ActionTC
= {
5324 A
, GetTriplePlusArchString(TC
, BoundArch
, TargetDeviceOffloadKind
)};
5325 assert(CachedResults
.find(ActionTC
) != CachedResults
.end() &&
5326 "Result does not exist??");
5327 Result
= CachedResults
[ActionTC
].front();
5328 } else if (JA
->getType() == types::TY_Nothing
)
5329 Result
= {InputInfo(A
, BaseInput
)};
5331 // We only have to generate a prefix for the host if this is not a top-level
5333 std::string OffloadingPrefix
= Action::GetOffloadingFileNamePrefix(
5334 A
->getOffloadingDeviceKind(), TC
->getTriple().normalize(),
5335 /*CreatePrefixForHost=*/isa
<OffloadPackagerJobAction
>(A
) ||
5336 !(A
->getOffloadingHostActiveKinds() == Action::OFK_None
||
5338 Result
= InputInfo(A
, GetNamedOutputPath(C
, *JA
, BaseInput
, BoundArch
,
5339 AtTopLevel
, MultipleArchs
,
5344 if (CCCPrintBindings
&& !CCGenDiagnostics
) {
5345 llvm::errs() << "# \"" << T
->getToolChain().getTripleString() << '"'
5346 << " - \"" << T
->getName() << "\", inputs: [";
5347 for (unsigned i
= 0, e
= InputInfos
.size(); i
!= e
; ++i
) {
5348 llvm::errs() << InputInfos
[i
].getAsString();
5350 llvm::errs() << ", ";
5352 if (UnbundlingResults
.empty())
5353 llvm::errs() << "], output: " << Result
.getAsString() << "\n";
5355 llvm::errs() << "], outputs: [";
5356 for (unsigned i
= 0, e
= UnbundlingResults
.size(); i
!= e
; ++i
) {
5357 llvm::errs() << UnbundlingResults
[i
].getAsString();
5359 llvm::errs() << ", ";
5361 llvm::errs() << "] \n";
5364 if (UnbundlingResults
.empty())
5366 C
, *JA
, Result
, InputInfos
,
5367 C
.getArgsForToolChain(TC
, BoundArch
, JA
->getOffloadingDeviceKind()),
5370 T
->ConstructJobMultipleOutputs(
5371 C
, *JA
, UnbundlingResults
, InputInfos
,
5372 C
.getArgsForToolChain(TC
, BoundArch
, JA
->getOffloadingDeviceKind()),
5378 const char *Driver::getDefaultImageName() const {
5379 llvm::Triple
Target(llvm::Triple::normalize(TargetTriple
));
5380 return Target
.isOSWindows() ? "a.exe" : "a.out";
5383 /// Create output filename based on ArgValue, which could either be a
5384 /// full filename, filename without extension, or a directory. If ArgValue
5385 /// does not provide a filename, then use BaseName, and use the extension
5386 /// suitable for FileType.
5387 static const char *MakeCLOutputFilename(const ArgList
&Args
, StringRef ArgValue
,
5389 types::ID FileType
) {
5390 SmallString
<128> Filename
= ArgValue
;
5392 if (ArgValue
.empty()) {
5393 // If the argument is empty, output to BaseName in the current dir.
5394 Filename
= BaseName
;
5395 } else if (llvm::sys::path::is_separator(Filename
.back())) {
5396 // If the argument is a directory, output to BaseName in that dir.
5397 llvm::sys::path::append(Filename
, BaseName
);
5400 if (!llvm::sys::path::has_extension(ArgValue
)) {
5401 // If the argument didn't provide an extension, then set it.
5402 const char *Extension
= types::getTypeTempSuffix(FileType
, true);
5404 if (FileType
== types::TY_Image
&&
5405 Args
.hasArg(options::OPT__SLASH_LD
, options::OPT__SLASH_LDd
)) {
5406 // The output file is a dll.
5410 llvm::sys::path::replace_extension(Filename
, Extension
);
5413 return Args
.MakeArgString(Filename
.c_str());
5416 static bool HasPreprocessOutput(const Action
&JA
) {
5417 if (isa
<PreprocessJobAction
>(JA
))
5419 if (isa
<OffloadAction
>(JA
) && isa
<PreprocessJobAction
>(JA
.getInputs()[0]))
5421 if (isa
<OffloadBundlingJobAction
>(JA
) &&
5422 HasPreprocessOutput(*(JA
.getInputs()[0])))
5427 const char *Driver::CreateTempFile(Compilation
&C
, StringRef Prefix
,
5428 StringRef Suffix
, bool MultipleArchs
,
5429 StringRef BoundArch
) const {
5430 SmallString
<128> TmpName
;
5431 Arg
*A
= C
.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir
);
5432 Optional
<std::string
> CrashDirectory
=
5433 CCGenDiagnostics
&& A
5434 ? std::string(A
->getValue())
5435 : llvm::sys::Process::GetEnv("CLANG_CRASH_DIAGNOSTICS_DIR");
5436 if (CrashDirectory
) {
5437 if (!getVFS().exists(*CrashDirectory
))
5438 llvm::sys::fs::create_directories(*CrashDirectory
);
5439 SmallString
<128> Path(*CrashDirectory
);
5440 llvm::sys::path::append(Path
, Prefix
);
5441 const char *Middle
= !Suffix
.empty() ? "-%%%%%%." : "-%%%%%%";
5442 if (std::error_code EC
=
5443 llvm::sys::fs::createUniqueFile(Path
+ Middle
+ Suffix
, TmpName
)) {
5444 Diag(clang::diag::err_unable_to_make_temp
) << EC
.message();
5448 if (MultipleArchs
&& !BoundArch
.empty()) {
5449 TmpName
= GetTemporaryDirectory(Prefix
);
5450 llvm::sys::path::append(TmpName
,
5451 Twine(Prefix
) + "-" + BoundArch
+ "." + Suffix
);
5453 TmpName
= GetTemporaryPath(Prefix
, Suffix
);
5456 return C
.addTempFile(C
.getArgs().MakeArgString(TmpName
));
5459 const char *Driver::GetNamedOutputPath(Compilation
&C
, const JobAction
&JA
,
5460 const char *BaseInput
,
5461 StringRef OrigBoundArch
, bool AtTopLevel
,
5463 StringRef OffloadingPrefix
) const {
5464 std::string BoundArch
= OrigBoundArch
.str();
5465 if (is_style_windows(llvm::sys::path::Style::native
)) {
5466 // BoundArch may contains ':', which is invalid in file names on Windows,
5467 // therefore replace it with '%'.
5468 std::replace(BoundArch
.begin(), BoundArch
.end(), ':', '@');
5471 llvm::PrettyStackTraceString
CrashInfo("Computing output path");
5472 // Output to a user requested destination?
5473 if (AtTopLevel
&& !isa
<DsymutilJobAction
>(JA
) && !isa
<VerifyJobAction
>(JA
)) {
5474 if (Arg
*FinalOutput
= C
.getArgs().getLastArg(options::OPT_o
))
5475 return C
.addResultFile(FinalOutput
->getValue(), &JA
);
5478 // For /P, preprocess to file named after BaseInput.
5479 if (C
.getArgs().hasArg(options::OPT__SLASH_P
)) {
5480 assert(AtTopLevel
&& isa
<PreprocessJobAction
>(JA
));
5481 StringRef BaseName
= llvm::sys::path::filename(BaseInput
);
5483 if (Arg
*A
= C
.getArgs().getLastArg(options::OPT__SLASH_Fi
))
5484 NameArg
= A
->getValue();
5485 return C
.addResultFile(
5486 MakeCLOutputFilename(C
.getArgs(), NameArg
, BaseName
, types::TY_PP_C
),
5490 // Default to writing to stdout?
5491 if (AtTopLevel
&& !CCGenDiagnostics
&& HasPreprocessOutput(JA
)) {
5495 if (JA
.getType() == types::TY_ModuleFile
&&
5496 C
.getArgs().getLastArg(options::OPT_module_file_info
)) {
5500 if (IsDXCMode() && !C
.getArgs().hasArg(options::OPT_o
))
5503 // Is this the assembly listing for /FA?
5504 if (JA
.getType() == types::TY_PP_Asm
&&
5505 (C
.getArgs().hasArg(options::OPT__SLASH_FA
) ||
5506 C
.getArgs().hasArg(options::OPT__SLASH_Fa
))) {
5507 // Use /Fa and the input filename to determine the asm file name.
5508 StringRef BaseName
= llvm::sys::path::filename(BaseInput
);
5509 StringRef FaValue
= C
.getArgs().getLastArgValue(options::OPT__SLASH_Fa
);
5510 return C
.addResultFile(
5511 MakeCLOutputFilename(C
.getArgs(), FaValue
, BaseName
, JA
.getType()),
5515 // Output to a temporary file?
5516 if ((!AtTopLevel
&& !isSaveTempsEnabled() &&
5517 !C
.getArgs().hasArg(options::OPT__SLASH_Fo
)) ||
5519 StringRef Name
= llvm::sys::path::filename(BaseInput
);
5520 std::pair
<StringRef
, StringRef
> Split
= Name
.split('.');
5521 const char *Suffix
= types::getTypeTempSuffix(JA
.getType(), IsCLMode());
5522 return CreateTempFile(C
, Split
.first
, Suffix
, MultipleArchs
, BoundArch
);
5525 SmallString
<128> BasePath(BaseInput
);
5526 SmallString
<128> ExternalPath("");
5529 // Dsymutil actions should use the full path.
5530 if (isa
<DsymutilJobAction
>(JA
) && C
.getArgs().hasArg(options::OPT_dsym_dir
)) {
5531 ExternalPath
+= C
.getArgs().getLastArg(options::OPT_dsym_dir
)->getValue();
5532 // We use posix style here because the tests (specifically
5533 // darwin-dsymutil.c) demonstrate that posix style paths are acceptable
5534 // even on Windows and if we don't then the similar test covering this
5536 llvm::sys::path::append(ExternalPath
, llvm::sys::path::Style::posix
,
5537 llvm::sys::path::filename(BasePath
));
5538 BaseName
= ExternalPath
;
5539 } else if (isa
<DsymutilJobAction
>(JA
) || isa
<VerifyJobAction
>(JA
))
5540 BaseName
= BasePath
;
5542 BaseName
= llvm::sys::path::filename(BasePath
);
5544 // Determine what the derived output name should be.
5545 const char *NamedOutput
;
5547 if ((JA
.getType() == types::TY_Object
|| JA
.getType() == types::TY_LTO_BC
) &&
5548 C
.getArgs().hasArg(options::OPT__SLASH_Fo
, options::OPT__SLASH_o
)) {
5549 // The /Fo or /o flag decides the object filename.
5552 .getLastArg(options::OPT__SLASH_Fo
, options::OPT__SLASH_o
)
5555 MakeCLOutputFilename(C
.getArgs(), Val
, BaseName
, types::TY_Object
);
5556 } else if (JA
.getType() == types::TY_Image
&&
5557 C
.getArgs().hasArg(options::OPT__SLASH_Fe
,
5558 options::OPT__SLASH_o
)) {
5559 // The /Fe or /o flag names the linked file.
5562 .getLastArg(options::OPT__SLASH_Fe
, options::OPT__SLASH_o
)
5565 MakeCLOutputFilename(C
.getArgs(), Val
, BaseName
, types::TY_Image
);
5566 } else if (JA
.getType() == types::TY_Image
) {
5568 // clang-cl uses BaseName for the executable name.
5570 MakeCLOutputFilename(C
.getArgs(), "", BaseName
, types::TY_Image
);
5572 SmallString
<128> Output(getDefaultImageName());
5573 // HIP image for device compilation with -fno-gpu-rdc is per compilation
5575 bool IsHIPNoRDC
= JA
.getOffloadingDeviceKind() == Action::OFK_HIP
&&
5576 !C
.getArgs().hasFlag(options::OPT_fgpu_rdc
,
5577 options::OPT_fno_gpu_rdc
, false);
5578 bool UseOutExtension
= IsHIPNoRDC
|| isa
<OffloadPackagerJobAction
>(JA
);
5579 if (UseOutExtension
) {
5581 llvm::sys::path::replace_extension(Output
, "");
5583 Output
+= OffloadingPrefix
;
5584 if (MultipleArchs
&& !BoundArch
.empty()) {
5586 Output
.append(BoundArch
);
5588 if (UseOutExtension
)
5590 NamedOutput
= C
.getArgs().MakeArgString(Output
.c_str());
5592 } else if (JA
.getType() == types::TY_PCH
&& IsCLMode()) {
5593 NamedOutput
= C
.getArgs().MakeArgString(GetClPchPath(C
, BaseName
));
5594 } else if ((JA
.getType() == types::TY_Plist
|| JA
.getType() == types::TY_AST
) &&
5595 C
.getArgs().hasArg(options::OPT__SLASH_o
)) {
5598 .getLastArg(options::OPT__SLASH_o
)
5601 MakeCLOutputFilename(C
.getArgs(), Val
, BaseName
, types::TY_Object
);
5603 const char *Suffix
= types::getTypeTempSuffix(JA
.getType(), IsCLMode());
5604 assert(Suffix
&& "All types used for output should have a suffix.");
5606 std::string::size_type End
= std::string::npos
;
5607 if (!types::appendSuffixForType(JA
.getType()))
5608 End
= BaseName
.rfind('.');
5609 SmallString
<128> Suffixed(BaseName
.substr(0, End
));
5610 Suffixed
+= OffloadingPrefix
;
5611 if (MultipleArchs
&& !BoundArch
.empty()) {
5613 Suffixed
.append(BoundArch
);
5615 // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
5616 // the unoptimized bitcode so that it does not get overwritten by the ".bc"
5617 // optimized bitcode output.
5618 auto IsHIPRDCInCompilePhase
= [](const JobAction
&JA
,
5619 const llvm::opt::DerivedArgList
&Args
) {
5620 // The relocatable compilation in HIP implies -emit-llvm. Similarly, use a
5621 // ".tmp.bc" suffix for the unoptimized bitcode (generated in the compile
5623 return isa
<CompileJobAction
>(JA
) &&
5624 JA
.getOffloadingDeviceKind() == Action::OFK_HIP
&&
5625 Args
.hasFlag(options::OPT_fgpu_rdc
, options::OPT_fno_gpu_rdc
,
5628 if (!AtTopLevel
&& JA
.getType() == types::TY_LLVM_BC
&&
5629 (C
.getArgs().hasArg(options::OPT_emit_llvm
) ||
5630 IsHIPRDCInCompilePhase(JA
, C
.getArgs())))
5634 NamedOutput
= C
.getArgs().MakeArgString(Suffixed
.c_str());
5637 // Prepend object file path if -save-temps=obj
5638 if (!AtTopLevel
&& isSaveTempsObj() && C
.getArgs().hasArg(options::OPT_o
) &&
5639 JA
.getType() != types::TY_PCH
) {
5640 Arg
*FinalOutput
= C
.getArgs().getLastArg(options::OPT_o
);
5641 SmallString
<128> TempPath(FinalOutput
->getValue());
5642 llvm::sys::path::remove_filename(TempPath
);
5643 StringRef OutputFileName
= llvm::sys::path::filename(NamedOutput
);
5644 llvm::sys::path::append(TempPath
, OutputFileName
);
5645 NamedOutput
= C
.getArgs().MakeArgString(TempPath
.c_str());
5648 // If we're saving temps and the temp file conflicts with the input file,
5649 // then avoid overwriting input file.
5650 if (!AtTopLevel
&& isSaveTempsEnabled() && NamedOutput
== BaseName
) {
5651 bool SameFile
= false;
5652 SmallString
<256> Result
;
5653 llvm::sys::fs::current_path(Result
);
5654 llvm::sys::path::append(Result
, BaseName
);
5655 llvm::sys::fs::equivalent(BaseInput
, Result
.c_str(), SameFile
);
5656 // Must share the same path to conflict.
5658 StringRef Name
= llvm::sys::path::filename(BaseInput
);
5659 std::pair
<StringRef
, StringRef
> Split
= Name
.split('.');
5660 std::string TmpName
= GetTemporaryPath(
5661 Split
.first
, types::getTypeTempSuffix(JA
.getType(), IsCLMode()));
5662 return C
.addTempFile(C
.getArgs().MakeArgString(TmpName
));
5666 // As an annoying special case, PCH generation doesn't strip the pathname.
5667 if (JA
.getType() == types::TY_PCH
&& !IsCLMode()) {
5668 llvm::sys::path::remove_filename(BasePath
);
5669 if (BasePath
.empty())
5670 BasePath
= NamedOutput
;
5672 llvm::sys::path::append(BasePath
, NamedOutput
);
5673 return C
.addResultFile(C
.getArgs().MakeArgString(BasePath
.c_str()), &JA
);
5675 return C
.addResultFile(NamedOutput
, &JA
);
5679 std::string
Driver::GetFilePath(StringRef Name
, const ToolChain
&TC
) const {
5680 // Search for Name in a list of paths.
5681 auto SearchPaths
= [&](const llvm::SmallVectorImpl
<std::string
> &P
)
5682 -> llvm::Optional
<std::string
> {
5683 // Respect a limited subset of the '-Bprefix' functionality in GCC by
5684 // attempting to use this prefix when looking for file paths.
5685 for (const auto &Dir
: P
) {
5688 SmallString
<128> P(Dir
[0] == '=' ? SysRoot
+ Dir
.substr(1) : Dir
);
5689 llvm::sys::path::append(P
, Name
);
5690 if (llvm::sys::fs::exists(Twine(P
)))
5691 return std::string(P
);
5696 if (auto P
= SearchPaths(PrefixDirs
))
5699 SmallString
<128> R(ResourceDir
);
5700 llvm::sys::path::append(R
, Name
);
5701 if (llvm::sys::fs::exists(Twine(R
)))
5702 return std::string(R
.str());
5704 SmallString
<128> P(TC
.getCompilerRTPath());
5705 llvm::sys::path::append(P
, Name
);
5706 if (llvm::sys::fs::exists(Twine(P
)))
5707 return std::string(P
.str());
5709 SmallString
<128> D(Dir
);
5710 llvm::sys::path::append(D
, "..", Name
);
5711 if (llvm::sys::fs::exists(Twine(D
)))
5712 return std::string(D
.str());
5714 if (auto P
= SearchPaths(TC
.getLibraryPaths()))
5717 if (auto P
= SearchPaths(TC
.getFilePaths()))
5720 return std::string(Name
);
5723 void Driver::generatePrefixedToolNames(
5724 StringRef Tool
, const ToolChain
&TC
,
5725 SmallVectorImpl
<std::string
> &Names
) const {
5726 // FIXME: Needs a better variable than TargetTriple
5727 Names
.emplace_back((TargetTriple
+ "-" + Tool
).str());
5728 Names
.emplace_back(Tool
);
5731 static bool ScanDirForExecutable(SmallString
<128> &Dir
, StringRef Name
) {
5732 llvm::sys::path::append(Dir
, Name
);
5733 if (llvm::sys::fs::can_execute(Twine(Dir
)))
5735 llvm::sys::path::remove_filename(Dir
);
5739 std::string
Driver::GetProgramPath(StringRef Name
, const ToolChain
&TC
) const {
5740 SmallVector
<std::string
, 2> TargetSpecificExecutables
;
5741 generatePrefixedToolNames(Name
, TC
, TargetSpecificExecutables
);
5743 // Respect a limited subset of the '-Bprefix' functionality in GCC by
5744 // attempting to use this prefix when looking for program paths.
5745 for (const auto &PrefixDir
: PrefixDirs
) {
5746 if (llvm::sys::fs::is_directory(PrefixDir
)) {
5747 SmallString
<128> P(PrefixDir
);
5748 if (ScanDirForExecutable(P
, Name
))
5749 return std::string(P
.str());
5751 SmallString
<128> P((PrefixDir
+ Name
).str());
5752 if (llvm::sys::fs::can_execute(Twine(P
)))
5753 return std::string(P
.str());
5757 const ToolChain::path_list
&List
= TC
.getProgramPaths();
5758 for (const auto &TargetSpecificExecutable
: TargetSpecificExecutables
) {
5759 // For each possible name of the tool look for it in
5760 // program paths first, then the path.
5761 // Higher priority names will be first, meaning that
5762 // a higher priority name in the path will be found
5763 // instead of a lower priority name in the program path.
5764 // E.g. <triple>-gcc on the path will be found instead
5765 // of gcc in the program path
5766 for (const auto &Path
: List
) {
5767 SmallString
<128> P(Path
);
5768 if (ScanDirForExecutable(P
, TargetSpecificExecutable
))
5769 return std::string(P
.str());
5772 // Fall back to the path
5773 if (llvm::ErrorOr
<std::string
> P
=
5774 llvm::sys::findProgramByName(TargetSpecificExecutable
))
5778 return std::string(Name
);
5781 std::string
Driver::GetTemporaryPath(StringRef Prefix
, StringRef Suffix
) const {
5782 SmallString
<128> Path
;
5783 std::error_code EC
= llvm::sys::fs::createTemporaryFile(Prefix
, Suffix
, Path
);
5785 Diag(clang::diag::err_unable_to_make_temp
) << EC
.message();
5789 return std::string(Path
.str());
5792 std::string
Driver::GetTemporaryDirectory(StringRef Prefix
) const {
5793 SmallString
<128> Path
;
5794 std::error_code EC
= llvm::sys::fs::createUniqueDirectory(Prefix
, Path
);
5796 Diag(clang::diag::err_unable_to_make_temp
) << EC
.message();
5800 return std::string(Path
.str());
5803 std::string
Driver::GetClPchPath(Compilation
&C
, StringRef BaseName
) const {
5804 SmallString
<128> Output
;
5805 if (Arg
*FpArg
= C
.getArgs().getLastArg(options::OPT__SLASH_Fp
)) {
5806 // FIXME: If anybody needs it, implement this obscure rule:
5807 // "If you specify a directory without a file name, the default file name
5808 // is VCx0.pch., where x is the major version of Visual C++ in use."
5809 Output
= FpArg
->getValue();
5811 // "If you do not specify an extension as part of the path name, an
5812 // extension of .pch is assumed. "
5813 if (!llvm::sys::path::has_extension(Output
))
5816 if (Arg
*YcArg
= C
.getArgs().getLastArg(options::OPT__SLASH_Yc
))
5817 Output
= YcArg
->getValue();
5820 llvm::sys::path::replace_extension(Output
, ".pch");
5822 return std::string(Output
.str());
5825 const ToolChain
&Driver::getToolChain(const ArgList
&Args
,
5826 const llvm::Triple
&Target
) const {
5828 auto &TC
= ToolChains
[Target
.str()];
5830 switch (Target
.getOS()) {
5831 case llvm::Triple::AIX
:
5832 TC
= std::make_unique
<toolchains::AIX
>(*this, Target
, Args
);
5834 case llvm::Triple::Haiku
:
5835 TC
= std::make_unique
<toolchains::Haiku
>(*this, Target
, Args
);
5837 case llvm::Triple::Ananas
:
5838 TC
= std::make_unique
<toolchains::Ananas
>(*this, Target
, Args
);
5840 case llvm::Triple::CloudABI
:
5841 TC
= std::make_unique
<toolchains::CloudABI
>(*this, Target
, Args
);
5843 case llvm::Triple::Darwin
:
5844 case llvm::Triple::MacOSX
:
5845 case llvm::Triple::IOS
:
5846 case llvm::Triple::TvOS
:
5847 case llvm::Triple::WatchOS
:
5848 case llvm::Triple::DriverKit
:
5849 TC
= std::make_unique
<toolchains::DarwinClang
>(*this, Target
, Args
);
5851 case llvm::Triple::DragonFly
:
5852 TC
= std::make_unique
<toolchains::DragonFly
>(*this, Target
, Args
);
5854 case llvm::Triple::OpenBSD
:
5855 TC
= std::make_unique
<toolchains::OpenBSD
>(*this, Target
, Args
);
5857 case llvm::Triple::NetBSD
:
5858 TC
= std::make_unique
<toolchains::NetBSD
>(*this, Target
, Args
);
5860 case llvm::Triple::FreeBSD
:
5862 TC
= std::make_unique
<toolchains::PPCFreeBSDToolChain
>(*this, Target
,
5865 TC
= std::make_unique
<toolchains::FreeBSD
>(*this, Target
, Args
);
5867 case llvm::Triple::Minix
:
5868 TC
= std::make_unique
<toolchains::Minix
>(*this, Target
, Args
);
5870 case llvm::Triple::Linux
:
5871 case llvm::Triple::ELFIAMCU
:
5872 if (Target
.getArch() == llvm::Triple::hexagon
)
5873 TC
= std::make_unique
<toolchains::HexagonToolChain
>(*this, Target
,
5875 else if ((Target
.getVendor() == llvm::Triple::MipsTechnologies
) &&
5876 !Target
.hasEnvironment())
5877 TC
= std::make_unique
<toolchains::MipsLLVMToolChain
>(*this, Target
,
5879 else if (Target
.isPPC())
5880 TC
= std::make_unique
<toolchains::PPCLinuxToolChain
>(*this, Target
,
5882 else if (Target
.getArch() == llvm::Triple::ve
)
5883 TC
= std::make_unique
<toolchains::VEToolChain
>(*this, Target
, Args
);
5886 TC
= std::make_unique
<toolchains::Linux
>(*this, Target
, Args
);
5888 case llvm::Triple::NaCl
:
5889 TC
= std::make_unique
<toolchains::NaClToolChain
>(*this, Target
, Args
);
5891 case llvm::Triple::Fuchsia
:
5892 TC
= std::make_unique
<toolchains::Fuchsia
>(*this, Target
, Args
);
5894 case llvm::Triple::Solaris
:
5895 TC
= std::make_unique
<toolchains::Solaris
>(*this, Target
, Args
);
5897 case llvm::Triple::AMDHSA
:
5898 TC
= std::make_unique
<toolchains::ROCMToolChain
>(*this, Target
, Args
);
5900 case llvm::Triple::AMDPAL
:
5901 case llvm::Triple::Mesa3D
:
5902 TC
= std::make_unique
<toolchains::AMDGPUToolChain
>(*this, Target
, Args
);
5904 case llvm::Triple::Win32
:
5905 switch (Target
.getEnvironment()) {
5907 if (Target
.isOSBinFormatELF())
5908 TC
= std::make_unique
<toolchains::Generic_ELF
>(*this, Target
, Args
);
5909 else if (Target
.isOSBinFormatMachO())
5910 TC
= std::make_unique
<toolchains::MachO
>(*this, Target
, Args
);
5912 TC
= std::make_unique
<toolchains::Generic_GCC
>(*this, Target
, Args
);
5914 case llvm::Triple::GNU
:
5915 TC
= std::make_unique
<toolchains::MinGW
>(*this, Target
, Args
);
5917 case llvm::Triple::Itanium
:
5918 TC
= std::make_unique
<toolchains::CrossWindowsToolChain
>(*this, Target
,
5921 case llvm::Triple::MSVC
:
5922 case llvm::Triple::UnknownEnvironment
:
5923 if (Args
.getLastArgValue(options::OPT_fuse_ld_EQ
)
5924 .startswith_insensitive("bfd"))
5925 TC
= std::make_unique
<toolchains::CrossWindowsToolChain
>(
5926 *this, Target
, Args
);
5929 std::make_unique
<toolchains::MSVCToolChain
>(*this, Target
, Args
);
5933 case llvm::Triple::PS4
:
5934 TC
= std::make_unique
<toolchains::PS4CPU
>(*this, Target
, Args
);
5936 case llvm::Triple::PS5
:
5937 TC
= std::make_unique
<toolchains::PS5CPU
>(*this, Target
, Args
);
5939 case llvm::Triple::Contiki
:
5940 TC
= std::make_unique
<toolchains::Contiki
>(*this, Target
, Args
);
5942 case llvm::Triple::Hurd
:
5943 TC
= std::make_unique
<toolchains::Hurd
>(*this, Target
, Args
);
5945 case llvm::Triple::ZOS
:
5946 TC
= std::make_unique
<toolchains::ZOS
>(*this, Target
, Args
);
5948 case llvm::Triple::ShaderModel
:
5949 TC
= std::make_unique
<toolchains::HLSLToolChain
>(*this, Target
, Args
);
5952 // Of these targets, Hexagon is the only one that might have
5953 // an OS of Linux, in which case it got handled above already.
5954 switch (Target
.getArch()) {
5955 case llvm::Triple::tce
:
5956 TC
= std::make_unique
<toolchains::TCEToolChain
>(*this, Target
, Args
);
5958 case llvm::Triple::tcele
:
5959 TC
= std::make_unique
<toolchains::TCELEToolChain
>(*this, Target
, Args
);
5961 case llvm::Triple::hexagon
:
5962 TC
= std::make_unique
<toolchains::HexagonToolChain
>(*this, Target
,
5965 case llvm::Triple::lanai
:
5966 TC
= std::make_unique
<toolchains::LanaiToolChain
>(*this, Target
, Args
);
5968 case llvm::Triple::xcore
:
5969 TC
= std::make_unique
<toolchains::XCoreToolChain
>(*this, Target
, Args
);
5971 case llvm::Triple::wasm32
:
5972 case llvm::Triple::wasm64
:
5973 TC
= std::make_unique
<toolchains::WebAssembly
>(*this, Target
, Args
);
5975 case llvm::Triple::avr
:
5976 TC
= std::make_unique
<toolchains::AVRToolChain
>(*this, Target
, Args
);
5978 case llvm::Triple::msp430
:
5980 std::make_unique
<toolchains::MSP430ToolChain
>(*this, Target
, Args
);
5982 case llvm::Triple::riscv32
:
5983 case llvm::Triple::riscv64
:
5984 if (toolchains::RISCVToolChain::hasGCCToolchain(*this, Args
))
5986 std::make_unique
<toolchains::RISCVToolChain
>(*this, Target
, Args
);
5988 TC
= std::make_unique
<toolchains::BareMetal
>(*this, Target
, Args
);
5990 case llvm::Triple::ve
:
5991 TC
= std::make_unique
<toolchains::VEToolChain
>(*this, Target
, Args
);
5993 case llvm::Triple::spirv32
:
5994 case llvm::Triple::spirv64
:
5995 TC
= std::make_unique
<toolchains::SPIRVToolChain
>(*this, Target
, Args
);
5997 case llvm::Triple::csky
:
5998 TC
= std::make_unique
<toolchains::CSKYToolChain
>(*this, Target
, Args
);
6001 if (Target
.getVendor() == llvm::Triple::Myriad
)
6002 TC
= std::make_unique
<toolchains::MyriadToolChain
>(*this, Target
,
6004 else if (toolchains::BareMetal::handlesTarget(Target
))
6005 TC
= std::make_unique
<toolchains::BareMetal
>(*this, Target
, Args
);
6006 else if (Target
.isOSBinFormatELF())
6007 TC
= std::make_unique
<toolchains::Generic_ELF
>(*this, Target
, Args
);
6008 else if (Target
.isOSBinFormatMachO())
6009 TC
= std::make_unique
<toolchains::MachO
>(*this, Target
, Args
);
6011 TC
= std::make_unique
<toolchains::Generic_GCC
>(*this, Target
, Args
);
6016 // Intentionally omitted from the switch above: llvm::Triple::CUDA. CUDA
6017 // compiles always need two toolchains, the CUDA toolchain and the host
6018 // toolchain. So the only valid way to create a CUDA toolchain is via
6019 // CreateOffloadingDeviceToolChains.
6024 const ToolChain
&Driver::getOffloadingDeviceToolChain(
6025 const ArgList
&Args
, const llvm::Triple
&Target
, const ToolChain
&HostTC
,
6026 const Action::OffloadKind
&TargetDeviceOffloadKind
) const {
6027 // Use device / host triples as the key into the ToolChains map because the
6028 // device ToolChain we create depends on both.
6029 auto &TC
= ToolChains
[Target
.str() + "/" + HostTC
.getTriple().str()];
6031 // Categorized by offload kind > arch rather than OS > arch like
6032 // the normal getToolChain call, as it seems a reasonable way to categorize
6034 switch (TargetDeviceOffloadKind
) {
6035 case Action::OFK_HIP
: {
6036 if (Target
.getArch() == llvm::Triple::amdgcn
&&
6037 Target
.getVendor() == llvm::Triple::AMD
&&
6038 Target
.getOS() == llvm::Triple::AMDHSA
)
6039 TC
= std::make_unique
<toolchains::HIPAMDToolChain
>(*this, Target
,
6041 else if (Target
.getArch() == llvm::Triple::spirv64
&&
6042 Target
.getVendor() == llvm::Triple::UnknownVendor
&&
6043 Target
.getOS() == llvm::Triple::UnknownOS
)
6044 TC
= std::make_unique
<toolchains::HIPSPVToolChain
>(*this, Target
,
6056 bool Driver::ShouldUseClangCompiler(const JobAction
&JA
) const {
6057 // Say "no" if there is not exactly one input of a type clang understands.
6058 if (JA
.size() != 1 ||
6059 !types::isAcceptedByClang((*JA
.input_begin())->getType()))
6062 // And say "no" if this is not a kind of action clang understands.
6063 if (!isa
<PreprocessJobAction
>(JA
) && !isa
<PrecompileJobAction
>(JA
) &&
6064 !isa
<CompileJobAction
>(JA
) && !isa
<BackendJobAction
>(JA
) &&
6065 !isa
<ExtractAPIJobAction
>(JA
))
6071 bool Driver::ShouldUseFlangCompiler(const JobAction
&JA
) const {
6072 // Say "no" if there is not exactly one input of a type flang understands.
6073 if (JA
.size() != 1 ||
6074 !types::isAcceptedByFlang((*JA
.input_begin())->getType()))
6077 // And say "no" if this is not a kind of action flang understands.
6078 if (!isa
<PreprocessJobAction
>(JA
) && !isa
<CompileJobAction
>(JA
) &&
6079 !isa
<BackendJobAction
>(JA
))
6085 bool Driver::ShouldEmitStaticLibrary(const ArgList
&Args
) const {
6086 // Only emit static library if the flag is set explicitly.
6087 if (Args
.hasArg(options::OPT_emit_static_lib
))
6092 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
6093 /// grouped values as integers. Numbers which are not provided are set to 0.
6095 /// \return True if the entire string was parsed (9.2), or all groups were
6096 /// parsed (10.3.5extrastuff).
6097 bool Driver::GetReleaseVersion(StringRef Str
, unsigned &Major
, unsigned &Minor
,
6098 unsigned &Micro
, bool &HadExtra
) {
6101 Major
= Minor
= Micro
= 0;
6105 if (Str
.consumeInteger(10, Major
))
6112 Str
= Str
.drop_front(1);
6114 if (Str
.consumeInteger(10, Minor
))
6120 Str
= Str
.drop_front(1);
6122 if (Str
.consumeInteger(10, Micro
))
6129 /// Parse digits from a string \p Str and fulfill \p Digits with
6130 /// the parsed numbers. This method assumes that the max number of
6131 /// digits to look for is equal to Digits.size().
6133 /// \return True if the entire string was parsed and there are
6134 /// no extra characters remaining at the end.
6135 bool Driver::GetReleaseVersion(StringRef Str
,
6136 MutableArrayRef
<unsigned> Digits
) {
6140 unsigned CurDigit
= 0;
6141 while (CurDigit
< Digits
.size()) {
6143 if (Str
.consumeInteger(10, Digit
))
6145 Digits
[CurDigit
] = Digit
;
6150 Str
= Str
.drop_front(1);
6154 // More digits than requested, bail out...
6158 std::pair
<unsigned, unsigned>
6159 Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode
) const {
6160 unsigned IncludedFlagsBitmask
= 0;
6161 unsigned ExcludedFlagsBitmask
= options::NoDriverOption
;
6163 if (IsClCompatMode
) {
6164 // Include CL and Core options.
6165 IncludedFlagsBitmask
|= options::CLOption
;
6166 IncludedFlagsBitmask
|= options::CLDXCOption
;
6167 IncludedFlagsBitmask
|= options::CoreOption
;
6169 ExcludedFlagsBitmask
|= options::CLOption
;
6172 // Include DXC and Core options.
6173 IncludedFlagsBitmask
|= options::DXCOption
;
6174 IncludedFlagsBitmask
|= options::CLDXCOption
;
6175 IncludedFlagsBitmask
|= options::CoreOption
;
6177 ExcludedFlagsBitmask
|= options::DXCOption
;
6179 if (!IsClCompatMode
&& !IsDXCMode())
6180 ExcludedFlagsBitmask
|= options::CLDXCOption
;
6182 return std::make_pair(IncludedFlagsBitmask
, ExcludedFlagsBitmask
);
6185 bool clang::driver::isOptimizationLevelFast(const ArgList
&Args
) {
6186 return Args
.hasFlag(options::OPT_Ofast
, options::OPT_O_Group
, false);
6189 bool clang::driver::willEmitRemarks(const ArgList
&Args
) {
6190 // -fsave-optimization-record enables it.
6191 if (Args
.hasFlag(options::OPT_fsave_optimization_record
,
6192 options::OPT_fno_save_optimization_record
, false))
6195 // -fsave-optimization-record=<format> enables it as well.
6196 if (Args
.hasFlag(options::OPT_fsave_optimization_record_EQ
,
6197 options::OPT_fno_save_optimization_record
, false))
6200 // -foptimization-record-file alone enables it too.
6201 if (Args
.hasFlag(options::OPT_foptimization_record_file_EQ
,
6202 options::OPT_fno_save_optimization_record
, false))
6205 // -foptimization-record-passes alone enables it too.
6206 if (Args
.hasFlag(options::OPT_foptimization_record_passes_EQ
,
6207 options::OPT_fno_save_optimization_record
, false))
6212 llvm::StringRef
clang::driver::getDriverMode(StringRef ProgName
,
6213 ArrayRef
<const char *> Args
) {
6214 static const std::string OptName
=
6215 getDriverOptTable().getOption(options::OPT_driver_mode
).getPrefixedName();
6216 llvm::StringRef Opt
;
6217 for (StringRef Arg
: Args
) {
6218 if (!Arg
.startswith(OptName
))
6223 Opt
= ToolChain::getTargetAndModeFromProgramName(ProgName
).DriverMode
;
6224 return Opt
.consume_front(OptName
) ? Opt
: "";
6227 bool driver::IsClangCL(StringRef DriverMode
) { return DriverMode
.equals("cl"); }