1 //===- DeltaTree.cpp - B-Tree for Rewrite Delta tracking ------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the DeltaTree and related classes.
11 //===----------------------------------------------------------------------===//
13 #include "clang/Rewrite/Core/DeltaTree.h"
14 #include "clang/Basic/LLVM.h"
15 #include "llvm/Support/Casting.h"
19 using namespace clang
;
21 /// The DeltaTree class is a multiway search tree (BTree) structure with some
22 /// fancy features. B-Trees are generally more memory and cache efficient
23 /// than binary trees, because they store multiple keys/values in each node.
25 /// DeltaTree implements a key/value mapping from FileIndex to Delta, allowing
26 /// fast lookup by FileIndex. However, an added (important) bonus is that it
27 /// can also efficiently tell us the full accumulated delta for a specific
28 /// file offset as well, without traversing the whole tree.
30 /// The nodes of the tree are made up of instances of two classes:
31 /// DeltaTreeNode and DeltaTreeInteriorNode. The later subclasses the
32 /// former and adds children pointers. Each node knows the full delta of all
33 /// entries (recursively) contained inside of it, which allows us to get the
34 /// full delta implied by a whole subtree in constant time.
38 /// SourceDelta - As code in the original input buffer is added and deleted,
39 /// SourceDelta records are used to keep track of how the input SourceLocation
40 /// object is mapped into the output buffer.
45 static SourceDelta
get(unsigned Loc
, int D
) {
53 /// DeltaTreeNode - The common part of all nodes.
58 DeltaTreeNode
*LHS
, *RHS
;
63 friend class DeltaTreeInteriorNode
;
65 /// WidthFactor - This controls the number of K/V slots held in the BTree:
66 /// how wide it is. Each level of the BTree is guaranteed to have at least
67 /// WidthFactor-1 K/V pairs (except the root) and may have at most
68 /// 2*WidthFactor-1 K/V pairs.
69 enum { WidthFactor
= 8 };
71 /// Values - This tracks the SourceDelta's currently in this node.
72 SourceDelta Values
[2*WidthFactor
-1];
74 /// NumValuesUsed - This tracks the number of values this node currently
76 unsigned char NumValuesUsed
= 0;
78 /// IsLeaf - This is true if this is a leaf of the btree. If false, this is
79 /// an interior node, and is actually an instance of DeltaTreeInteriorNode.
82 /// FullDelta - This is the full delta of all the values in this node and
83 /// all children nodes.
87 DeltaTreeNode(bool isLeaf
= true) : IsLeaf(isLeaf
) {}
89 bool isLeaf() const { return IsLeaf
; }
90 int getFullDelta() const { return FullDelta
; }
91 bool isFull() const { return NumValuesUsed
== 2*WidthFactor
-1; }
93 unsigned getNumValuesUsed() const { return NumValuesUsed
; }
95 const SourceDelta
&getValue(unsigned i
) const {
96 assert(i
< NumValuesUsed
&& "Invalid value #");
100 SourceDelta
&getValue(unsigned i
) {
101 assert(i
< NumValuesUsed
&& "Invalid value #");
105 /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into
106 /// this node. If insertion is easy, do it and return false. Otherwise,
107 /// split the node, populate InsertRes with info about the split, and return
109 bool DoInsertion(unsigned FileIndex
, int Delta
, InsertResult
*InsertRes
);
111 void DoSplit(InsertResult
&InsertRes
);
114 /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a
115 /// local walk over our contained deltas.
116 void RecomputeFullDeltaLocally();
121 /// DeltaTreeInteriorNode - When isLeaf = false, a node has child pointers.
122 /// This class tracks them.
123 class DeltaTreeInteriorNode
: public DeltaTreeNode
{
124 friend class DeltaTreeNode
;
126 DeltaTreeNode
*Children
[2*WidthFactor
];
128 ~DeltaTreeInteriorNode() {
129 for (unsigned i
= 0, e
= NumValuesUsed
+1; i
!= e
; ++i
)
130 Children
[i
]->Destroy();
134 DeltaTreeInteriorNode() : DeltaTreeNode(false /*nonleaf*/) {}
136 DeltaTreeInteriorNode(const InsertResult
&IR
)
137 : DeltaTreeNode(false /*nonleaf*/) {
138 Children
[0] = IR
.LHS
;
139 Children
[1] = IR
.RHS
;
140 Values
[0] = IR
.Split
;
141 FullDelta
= IR
.LHS
->getFullDelta()+IR
.RHS
->getFullDelta()+IR
.Split
.Delta
;
145 const DeltaTreeNode
*getChild(unsigned i
) const {
146 assert(i
< getNumValuesUsed()+1 && "Invalid child");
150 DeltaTreeNode
*getChild(unsigned i
) {
151 assert(i
< getNumValuesUsed()+1 && "Invalid child");
155 static bool classof(const DeltaTreeNode
*N
) { return !N
->isLeaf(); }
160 /// Destroy - A 'virtual' destructor.
161 void DeltaTreeNode::Destroy() {
165 delete cast
<DeltaTreeInteriorNode
>(this);
168 /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a
169 /// local walk over our contained deltas.
170 void DeltaTreeNode::RecomputeFullDeltaLocally() {
171 int NewFullDelta
= 0;
172 for (unsigned i
= 0, e
= getNumValuesUsed(); i
!= e
; ++i
)
173 NewFullDelta
+= Values
[i
].Delta
;
174 if (auto *IN
= dyn_cast
<DeltaTreeInteriorNode
>(this))
175 for (unsigned i
= 0, e
= getNumValuesUsed()+1; i
!= e
; ++i
)
176 NewFullDelta
+= IN
->getChild(i
)->getFullDelta();
177 FullDelta
= NewFullDelta
;
180 /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into
181 /// this node. If insertion is easy, do it and return false. Otherwise,
182 /// split the node, populate InsertRes with info about the split, and return
184 bool DeltaTreeNode::DoInsertion(unsigned FileIndex
, int Delta
,
185 InsertResult
*InsertRes
) {
186 // Maintain full delta for this node.
189 // Find the insertion point, the first delta whose index is >= FileIndex.
190 unsigned i
= 0, e
= getNumValuesUsed();
191 while (i
!= e
&& FileIndex
> getValue(i
).FileLoc
)
194 // If we found an a record for exactly this file index, just merge this
195 // value into the pre-existing record and finish early.
196 if (i
!= e
&& getValue(i
).FileLoc
== FileIndex
) {
197 // NOTE: Delta could drop to zero here. This means that the delta entry is
198 // useless and could be removed. Supporting erases is more complex than
199 // leaving an entry with Delta=0, so we just leave an entry with Delta=0 in
201 Values
[i
].Delta
+= Delta
;
205 // Otherwise, we found an insertion point, and we know that the value at the
206 // specified index is > FileIndex. Handle the leaf case first.
209 // For an insertion into a non-full leaf node, just insert the value in
210 // its sorted position. This requires moving later values over.
212 memmove(&Values
[i
+1], &Values
[i
], sizeof(Values
[0])*(e
-i
));
213 Values
[i
] = SourceDelta::get(FileIndex
, Delta
);
218 // Otherwise, if this is leaf is full, split the node at its median, insert
219 // the value into one of the children, and return the result.
220 assert(InsertRes
&& "No result location specified");
223 if (InsertRes
->Split
.FileLoc
> FileIndex
)
224 InsertRes
->LHS
->DoInsertion(FileIndex
, Delta
, nullptr /*can't fail*/);
226 InsertRes
->RHS
->DoInsertion(FileIndex
, Delta
, nullptr /*can't fail*/);
230 // Otherwise, this is an interior node. Send the request down the tree.
231 auto *IN
= cast
<DeltaTreeInteriorNode
>(this);
232 if (!IN
->Children
[i
]->DoInsertion(FileIndex
, Delta
, InsertRes
))
233 return false; // If there was space in the child, just return.
235 // Okay, this split the subtree, producing a new value and two children to
236 // insert here. If this node is non-full, we can just insert it directly.
238 // Now that we have two nodes and a new element, insert the perclated value
239 // into ourself by moving all the later values/children down, then inserting
242 memmove(&IN
->Children
[i
+2], &IN
->Children
[i
+1],
243 (e
-i
)*sizeof(IN
->Children
[0]));
244 IN
->Children
[i
] = InsertRes
->LHS
;
245 IN
->Children
[i
+1] = InsertRes
->RHS
;
248 memmove(&Values
[i
+1], &Values
[i
], (e
-i
)*sizeof(Values
[0]));
249 Values
[i
] = InsertRes
->Split
;
254 // Finally, if this interior node was full and a node is percolated up, split
255 // ourself and return that up the chain. Start by saving all our info to
256 // avoid having the split clobber it.
257 IN
->Children
[i
] = InsertRes
->LHS
;
258 DeltaTreeNode
*SubRHS
= InsertRes
->RHS
;
259 SourceDelta SubSplit
= InsertRes
->Split
;
264 // Figure out where to insert SubRHS/NewSplit.
265 DeltaTreeInteriorNode
*InsertSide
;
266 if (SubSplit
.FileLoc
< InsertRes
->Split
.FileLoc
)
267 InsertSide
= cast
<DeltaTreeInteriorNode
>(InsertRes
->LHS
);
269 InsertSide
= cast
<DeltaTreeInteriorNode
>(InsertRes
->RHS
);
271 // We now have a non-empty interior node 'InsertSide' to insert
272 // SubRHS/SubSplit into. Find out where to insert SubSplit.
274 // Find the insertion point, the first delta whose index is >SubSplit.FileLoc.
275 i
= 0; e
= InsertSide
->getNumValuesUsed();
276 while (i
!= e
&& SubSplit
.FileLoc
> InsertSide
->getValue(i
).FileLoc
)
279 // Now we know that i is the place to insert the split value into. Insert it
280 // and the child right after it.
282 memmove(&InsertSide
->Children
[i
+2], &InsertSide
->Children
[i
+1],
283 (e
-i
)*sizeof(IN
->Children
[0]));
284 InsertSide
->Children
[i
+1] = SubRHS
;
287 memmove(&InsertSide
->Values
[i
+1], &InsertSide
->Values
[i
],
288 (e
-i
)*sizeof(Values
[0]));
289 InsertSide
->Values
[i
] = SubSplit
;
290 ++InsertSide
->NumValuesUsed
;
291 InsertSide
->FullDelta
+= SubSplit
.Delta
+ SubRHS
->getFullDelta();
295 /// DoSplit - Split the currently full node (which has 2*WidthFactor-1 values)
296 /// into two subtrees each with "WidthFactor-1" values and a pivot value.
297 /// Return the pieces in InsertRes.
298 void DeltaTreeNode::DoSplit(InsertResult
&InsertRes
) {
299 assert(isFull() && "Why split a non-full node?");
301 // Since this node is full, it contains 2*WidthFactor-1 values. We move
302 // the first 'WidthFactor-1' values to the LHS child (which we leave in this
303 // node), propagate one value up, and move the last 'WidthFactor-1' values
304 // into the RHS child.
306 // Create the new child node.
307 DeltaTreeNode
*NewNode
;
308 if (auto *IN
= dyn_cast
<DeltaTreeInteriorNode
>(this)) {
309 // If this is an interior node, also move over 'WidthFactor' children
310 // into the new node.
311 DeltaTreeInteriorNode
*New
= new DeltaTreeInteriorNode();
312 memcpy(&New
->Children
[0], &IN
->Children
[WidthFactor
],
313 WidthFactor
*sizeof(IN
->Children
[0]));
316 // Just create the new leaf node.
317 NewNode
= new DeltaTreeNode();
320 // Move over the last 'WidthFactor-1' values from here to NewNode.
321 memcpy(&NewNode
->Values
[0], &Values
[WidthFactor
],
322 (WidthFactor
-1)*sizeof(Values
[0]));
324 // Decrease the number of values in the two nodes.
325 NewNode
->NumValuesUsed
= NumValuesUsed
= WidthFactor
-1;
327 // Recompute the two nodes' full delta.
328 NewNode
->RecomputeFullDeltaLocally();
329 RecomputeFullDeltaLocally();
331 InsertRes
.LHS
= this;
332 InsertRes
.RHS
= NewNode
;
333 InsertRes
.Split
= Values
[WidthFactor
-1];
336 //===----------------------------------------------------------------------===//
337 // DeltaTree Implementation
338 //===----------------------------------------------------------------------===//
340 //#define VERIFY_TREE
343 /// VerifyTree - Walk the btree performing assertions on various properties to
344 /// verify consistency. This is useful for debugging new changes to the tree.
345 static void VerifyTree(const DeltaTreeNode
*N
) {
346 const auto *IN
= dyn_cast
<DeltaTreeInteriorNode
>(N
);
348 // Verify leaves, just ensure that FullDelta matches up and the elements
349 // are in proper order.
351 for (unsigned i
= 0, e
= N
->getNumValuesUsed(); i
!= e
; ++i
) {
353 assert(N
->getValue(i
-1).FileLoc
< N
->getValue(i
).FileLoc
);
354 FullDelta
+= N
->getValue(i
).Delta
;
356 assert(FullDelta
== N
->getFullDelta());
360 // Verify interior nodes: Ensure that FullDelta matches up and the
361 // elements are in proper order and the children are in proper order.
363 for (unsigned i
= 0, e
= IN
->getNumValuesUsed(); i
!= e
; ++i
) {
364 const SourceDelta
&IVal
= N
->getValue(i
);
365 const DeltaTreeNode
*IChild
= IN
->getChild(i
);
367 assert(IN
->getValue(i
-1).FileLoc
< IVal
.FileLoc
);
368 FullDelta
+= IVal
.Delta
;
369 FullDelta
+= IChild
->getFullDelta();
371 // The largest value in child #i should be smaller than FileLoc.
372 assert(IChild
->getValue(IChild
->getNumValuesUsed()-1).FileLoc
<
375 // The smallest value in child #i+1 should be larger than FileLoc.
376 assert(IN
->getChild(i
+1)->getValue(0).FileLoc
> IVal
.FileLoc
);
380 FullDelta
+= IN
->getChild(IN
->getNumValuesUsed())->getFullDelta();
382 assert(FullDelta
== N
->getFullDelta());
384 #endif // VERIFY_TREE
386 static DeltaTreeNode
*getRoot(void *Root
) {
387 return (DeltaTreeNode
*)Root
;
390 DeltaTree::DeltaTree() {
391 Root
= new DeltaTreeNode();
394 DeltaTree::DeltaTree(const DeltaTree
&RHS
) {
395 // Currently we only support copying when the RHS is empty.
396 assert(getRoot(RHS
.Root
)->getNumValuesUsed() == 0 &&
397 "Can only copy empty tree");
398 Root
= new DeltaTreeNode();
401 DeltaTree::~DeltaTree() {
402 getRoot(Root
)->Destroy();
405 /// getDeltaAt - Return the accumulated delta at the specified file offset.
406 /// This includes all insertions or delections that occurred *before* the
407 /// specified file index.
408 int DeltaTree::getDeltaAt(unsigned FileIndex
) const {
409 const DeltaTreeNode
*Node
= getRoot(Root
);
413 // Walk down the tree.
415 // For all nodes, include any local deltas before the specified file
416 // index by summing them up directly. Keep track of how many were
418 unsigned NumValsGreater
= 0;
419 for (unsigned e
= Node
->getNumValuesUsed(); NumValsGreater
!= e
;
421 const SourceDelta
&Val
= Node
->getValue(NumValsGreater
);
423 if (Val
.FileLoc
>= FileIndex
)
428 // If we have an interior node, include information about children and
429 // recurse. Otherwise, if we have a leaf, we're done.
430 const auto *IN
= dyn_cast
<DeltaTreeInteriorNode
>(Node
);
431 if (!IN
) return Result
;
433 // Include any children to the left of the values we skipped, all of
434 // their deltas should be included as well.
435 for (unsigned i
= 0; i
!= NumValsGreater
; ++i
)
436 Result
+= IN
->getChild(i
)->getFullDelta();
438 // If we found exactly the value we were looking for, break off the
439 // search early. There is no need to search the RHS of the value for
441 if (NumValsGreater
!= Node
->getNumValuesUsed() &&
442 Node
->getValue(NumValsGreater
).FileLoc
== FileIndex
)
443 return Result
+IN
->getChild(NumValsGreater
)->getFullDelta();
445 // Otherwise, traverse down the tree. The selected subtree may be
446 // partially included in the range.
447 Node
= IN
->getChild(NumValsGreater
);
452 /// AddDelta - When a change is made that shifts around the text buffer,
453 /// this method is used to record that info. It inserts a delta of 'Delta'
454 /// into the current DeltaTree at offset FileIndex.
455 void DeltaTree::AddDelta(unsigned FileIndex
, int Delta
) {
456 assert(Delta
&& "Adding a noop?");
457 DeltaTreeNode
*MyRoot
= getRoot(Root
);
459 DeltaTreeNode::InsertResult InsertRes
;
460 if (MyRoot
->DoInsertion(FileIndex
, Delta
, &InsertRes
)) {
461 Root
= new DeltaTreeInteriorNode(InsertRes
);