[docs] Fix build-docs.sh
[llvm-project.git] / clang / lib / Sema / AnalysisBasedWarnings.cpp
blob9780a0aba74987e19de6a34ffbf603c938e4b9f6
1 //=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines analysis_warnings::[Policy,Executor].
10 // Together they are used by Sema to issue warnings based on inexpensive
11 // static analysis algorithms in libAnalysis.
13 //===----------------------------------------------------------------------===//
15 #include "clang/Sema/AnalysisBasedWarnings.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/EvaluatedExprVisitor.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/ExprObjC.h"
21 #include "clang/AST/ParentMap.h"
22 #include "clang/AST/RecursiveASTVisitor.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/AST/StmtObjC.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
27 #include "clang/Analysis/Analyses/CalledOnceCheck.h"
28 #include "clang/Analysis/Analyses/Consumed.h"
29 #include "clang/Analysis/Analyses/ReachableCode.h"
30 #include "clang/Analysis/Analyses/ThreadSafety.h"
31 #include "clang/Analysis/Analyses/UninitializedValues.h"
32 #include "clang/Analysis/AnalysisDeclContext.h"
33 #include "clang/Analysis/CFG.h"
34 #include "clang/Analysis/CFGStmtMap.h"
35 #include "clang/Basic/SourceLocation.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Lex/Preprocessor.h"
38 #include "clang/Sema/ScopeInfo.h"
39 #include "clang/Sema/SemaInternal.h"
40 #include "llvm/ADT/ArrayRef.h"
41 #include "llvm/ADT/BitVector.h"
42 #include "llvm/ADT/MapVector.h"
43 #include "llvm/ADT/SmallString.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/StringRef.h"
46 #include "llvm/Support/Casting.h"
47 #include <algorithm>
48 #include <deque>
49 #include <iterator>
51 using namespace clang;
53 //===----------------------------------------------------------------------===//
54 // Unreachable code analysis.
55 //===----------------------------------------------------------------------===//
57 namespace {
58 class UnreachableCodeHandler : public reachable_code::Callback {
59 Sema &S;
60 SourceRange PreviousSilenceableCondVal;
62 public:
63 UnreachableCodeHandler(Sema &s) : S(s) {}
65 void HandleUnreachable(reachable_code::UnreachableKind UK,
66 SourceLocation L,
67 SourceRange SilenceableCondVal,
68 SourceRange R1,
69 SourceRange R2) override {
70 // Avoid reporting multiple unreachable code diagnostics that are
71 // triggered by the same conditional value.
72 if (PreviousSilenceableCondVal.isValid() &&
73 SilenceableCondVal.isValid() &&
74 PreviousSilenceableCondVal == SilenceableCondVal)
75 return;
76 PreviousSilenceableCondVal = SilenceableCondVal;
78 unsigned diag = diag::warn_unreachable;
79 switch (UK) {
80 case reachable_code::UK_Break:
81 diag = diag::warn_unreachable_break;
82 break;
83 case reachable_code::UK_Return:
84 diag = diag::warn_unreachable_return;
85 break;
86 case reachable_code::UK_Loop_Increment:
87 diag = diag::warn_unreachable_loop_increment;
88 break;
89 case reachable_code::UK_Other:
90 break;
93 S.Diag(L, diag) << R1 << R2;
95 SourceLocation Open = SilenceableCondVal.getBegin();
96 if (Open.isValid()) {
97 SourceLocation Close = SilenceableCondVal.getEnd();
98 Close = S.getLocForEndOfToken(Close);
99 if (Close.isValid()) {
100 S.Diag(Open, diag::note_unreachable_silence)
101 << FixItHint::CreateInsertion(Open, "/* DISABLES CODE */ (")
102 << FixItHint::CreateInsertion(Close, ")");
107 } // anonymous namespace
109 /// CheckUnreachable - Check for unreachable code.
110 static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) {
111 // As a heuristic prune all diagnostics not in the main file. Currently
112 // the majority of warnings in headers are false positives. These
113 // are largely caused by configuration state, e.g. preprocessor
114 // defined code, etc.
116 // Note that this is also a performance optimization. Analyzing
117 // headers many times can be expensive.
118 if (!S.getSourceManager().isInMainFile(AC.getDecl()->getBeginLoc()))
119 return;
121 UnreachableCodeHandler UC(S);
122 reachable_code::FindUnreachableCode(AC, S.getPreprocessor(), UC);
125 namespace {
126 /// Warn on logical operator errors in CFGBuilder
127 class LogicalErrorHandler : public CFGCallback {
128 Sema &S;
130 public:
131 LogicalErrorHandler(Sema &S) : S(S) {}
133 static bool HasMacroID(const Expr *E) {
134 if (E->getExprLoc().isMacroID())
135 return true;
137 // Recurse to children.
138 for (const Stmt *SubStmt : E->children())
139 if (const Expr *SubExpr = dyn_cast_or_null<Expr>(SubStmt))
140 if (HasMacroID(SubExpr))
141 return true;
143 return false;
146 void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) override {
147 if (HasMacroID(B))
148 return;
150 SourceRange DiagRange = B->getSourceRange();
151 S.Diag(B->getExprLoc(), diag::warn_tautological_overlap_comparison)
152 << DiagRange << isAlwaysTrue;
155 void compareBitwiseEquality(const BinaryOperator *B,
156 bool isAlwaysTrue) override {
157 if (HasMacroID(B))
158 return;
160 SourceRange DiagRange = B->getSourceRange();
161 S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_always)
162 << DiagRange << isAlwaysTrue;
165 void compareBitwiseOr(const BinaryOperator *B) override {
166 if (HasMacroID(B))
167 return;
169 SourceRange DiagRange = B->getSourceRange();
170 S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_or) << DiagRange;
173 static bool hasActiveDiagnostics(DiagnosticsEngine &Diags,
174 SourceLocation Loc) {
175 return !Diags.isIgnored(diag::warn_tautological_overlap_comparison, Loc) ||
176 !Diags.isIgnored(diag::warn_comparison_bitwise_or, Loc);
179 } // anonymous namespace
181 //===----------------------------------------------------------------------===//
182 // Check for infinite self-recursion in functions
183 //===----------------------------------------------------------------------===//
185 // Returns true if the function is called anywhere within the CFGBlock.
186 // For member functions, the additional condition of being call from the
187 // this pointer is required.
188 static bool hasRecursiveCallInPath(const FunctionDecl *FD, CFGBlock &Block) {
189 // Process all the Stmt's in this block to find any calls to FD.
190 for (const auto &B : Block) {
191 if (B.getKind() != CFGElement::Statement)
192 continue;
194 const CallExpr *CE = dyn_cast<CallExpr>(B.getAs<CFGStmt>()->getStmt());
195 if (!CE || !CE->getCalleeDecl() ||
196 CE->getCalleeDecl()->getCanonicalDecl() != FD)
197 continue;
199 // Skip function calls which are qualified with a templated class.
200 if (const DeclRefExpr *DRE =
201 dyn_cast<DeclRefExpr>(CE->getCallee()->IgnoreParenImpCasts())) {
202 if (NestedNameSpecifier *NNS = DRE->getQualifier()) {
203 if (NNS->getKind() == NestedNameSpecifier::TypeSpec &&
204 isa<TemplateSpecializationType>(NNS->getAsType())) {
205 continue;
210 const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE);
211 if (!MCE || isa<CXXThisExpr>(MCE->getImplicitObjectArgument()) ||
212 !MCE->getMethodDecl()->isVirtual())
213 return true;
215 return false;
218 // Returns true if every path from the entry block passes through a call to FD.
219 static bool checkForRecursiveFunctionCall(const FunctionDecl *FD, CFG *cfg) {
220 llvm::SmallPtrSet<CFGBlock *, 16> Visited;
221 llvm::SmallVector<CFGBlock *, 16> WorkList;
222 // Keep track of whether we found at least one recursive path.
223 bool foundRecursion = false;
225 const unsigned ExitID = cfg->getExit().getBlockID();
227 // Seed the work list with the entry block.
228 WorkList.push_back(&cfg->getEntry());
230 while (!WorkList.empty()) {
231 CFGBlock *Block = WorkList.pop_back_val();
233 for (auto I = Block->succ_begin(), E = Block->succ_end(); I != E; ++I) {
234 if (CFGBlock *SuccBlock = *I) {
235 if (!Visited.insert(SuccBlock).second)
236 continue;
238 // Found a path to the exit node without a recursive call.
239 if (ExitID == SuccBlock->getBlockID())
240 return false;
242 // If the successor block contains a recursive call, end analysis there.
243 if (hasRecursiveCallInPath(FD, *SuccBlock)) {
244 foundRecursion = true;
245 continue;
248 WorkList.push_back(SuccBlock);
252 return foundRecursion;
255 static void checkRecursiveFunction(Sema &S, const FunctionDecl *FD,
256 const Stmt *Body, AnalysisDeclContext &AC) {
257 FD = FD->getCanonicalDecl();
259 // Only run on non-templated functions and non-templated members of
260 // templated classes.
261 if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate &&
262 FD->getTemplatedKind() != FunctionDecl::TK_MemberSpecialization)
263 return;
265 CFG *cfg = AC.getCFG();
266 if (!cfg) return;
268 // If the exit block is unreachable, skip processing the function.
269 if (cfg->getExit().pred_empty())
270 return;
272 // Emit diagnostic if a recursive function call is detected for all paths.
273 if (checkForRecursiveFunctionCall(FD, cfg))
274 S.Diag(Body->getBeginLoc(), diag::warn_infinite_recursive_function);
277 //===----------------------------------------------------------------------===//
278 // Check for throw in a non-throwing function.
279 //===----------------------------------------------------------------------===//
281 /// Determine whether an exception thrown by E, unwinding from ThrowBlock,
282 /// can reach ExitBlock.
283 static bool throwEscapes(Sema &S, const CXXThrowExpr *E, CFGBlock &ThrowBlock,
284 CFG *Body) {
285 SmallVector<CFGBlock *, 16> Stack;
286 llvm::BitVector Queued(Body->getNumBlockIDs());
288 Stack.push_back(&ThrowBlock);
289 Queued[ThrowBlock.getBlockID()] = true;
291 while (!Stack.empty()) {
292 CFGBlock &UnwindBlock = *Stack.back();
293 Stack.pop_back();
295 for (auto &Succ : UnwindBlock.succs()) {
296 if (!Succ.isReachable() || Queued[Succ->getBlockID()])
297 continue;
299 if (Succ->getBlockID() == Body->getExit().getBlockID())
300 return true;
302 if (auto *Catch =
303 dyn_cast_or_null<CXXCatchStmt>(Succ->getLabel())) {
304 QualType Caught = Catch->getCaughtType();
305 if (Caught.isNull() || // catch (...) catches everything
306 !E->getSubExpr() || // throw; is considered cuaght by any handler
307 S.handlerCanCatch(Caught, E->getSubExpr()->getType()))
308 // Exception doesn't escape via this path.
309 break;
310 } else {
311 Stack.push_back(Succ);
312 Queued[Succ->getBlockID()] = true;
317 return false;
320 static void visitReachableThrows(
321 CFG *BodyCFG,
322 llvm::function_ref<void(const CXXThrowExpr *, CFGBlock &)> Visit) {
323 llvm::BitVector Reachable(BodyCFG->getNumBlockIDs());
324 clang::reachable_code::ScanReachableFromBlock(&BodyCFG->getEntry(), Reachable);
325 for (CFGBlock *B : *BodyCFG) {
326 if (!Reachable[B->getBlockID()])
327 continue;
328 for (CFGElement &E : *B) {
329 Optional<CFGStmt> S = E.getAs<CFGStmt>();
330 if (!S)
331 continue;
332 if (auto *Throw = dyn_cast<CXXThrowExpr>(S->getStmt()))
333 Visit(Throw, *B);
338 static void EmitDiagForCXXThrowInNonThrowingFunc(Sema &S, SourceLocation OpLoc,
339 const FunctionDecl *FD) {
340 if (!S.getSourceManager().isInSystemHeader(OpLoc) &&
341 FD->getTypeSourceInfo()) {
342 S.Diag(OpLoc, diag::warn_throw_in_noexcept_func) << FD;
343 if (S.getLangOpts().CPlusPlus11 &&
344 (isa<CXXDestructorDecl>(FD) ||
345 FD->getDeclName().getCXXOverloadedOperator() == OO_Delete ||
346 FD->getDeclName().getCXXOverloadedOperator() == OO_Array_Delete)) {
347 if (const auto *Ty = FD->getTypeSourceInfo()->getType()->
348 getAs<FunctionProtoType>())
349 S.Diag(FD->getLocation(), diag::note_throw_in_dtor)
350 << !isa<CXXDestructorDecl>(FD) << !Ty->hasExceptionSpec()
351 << FD->getExceptionSpecSourceRange();
352 } else
353 S.Diag(FD->getLocation(), diag::note_throw_in_function)
354 << FD->getExceptionSpecSourceRange();
358 static void checkThrowInNonThrowingFunc(Sema &S, const FunctionDecl *FD,
359 AnalysisDeclContext &AC) {
360 CFG *BodyCFG = AC.getCFG();
361 if (!BodyCFG)
362 return;
363 if (BodyCFG->getExit().pred_empty())
364 return;
365 visitReachableThrows(BodyCFG, [&](const CXXThrowExpr *Throw, CFGBlock &Block) {
366 if (throwEscapes(S, Throw, Block, BodyCFG))
367 EmitDiagForCXXThrowInNonThrowingFunc(S, Throw->getThrowLoc(), FD);
371 static bool isNoexcept(const FunctionDecl *FD) {
372 const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
373 if (FPT->isNothrow() || FD->hasAttr<NoThrowAttr>())
374 return true;
375 return false;
378 //===----------------------------------------------------------------------===//
379 // Check for missing return value.
380 //===----------------------------------------------------------------------===//
382 enum ControlFlowKind {
383 UnknownFallThrough,
384 NeverFallThrough,
385 MaybeFallThrough,
386 AlwaysFallThrough,
387 NeverFallThroughOrReturn
390 /// CheckFallThrough - Check that we don't fall off the end of a
391 /// Statement that should return a value.
393 /// \returns AlwaysFallThrough iff we always fall off the end of the statement,
394 /// MaybeFallThrough iff we might or might not fall off the end,
395 /// NeverFallThroughOrReturn iff we never fall off the end of the statement or
396 /// return. We assume NeverFallThrough iff we never fall off the end of the
397 /// statement but we may return. We assume that functions not marked noreturn
398 /// will return.
399 static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
400 CFG *cfg = AC.getCFG();
401 if (!cfg) return UnknownFallThrough;
403 // The CFG leaves in dead things, and we don't want the dead code paths to
404 // confuse us, so we mark all live things first.
405 llvm::BitVector live(cfg->getNumBlockIDs());
406 unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
407 live);
409 bool AddEHEdges = AC.getAddEHEdges();
410 if (!AddEHEdges && count != cfg->getNumBlockIDs())
411 // When there are things remaining dead, and we didn't add EH edges
412 // from CallExprs to the catch clauses, we have to go back and
413 // mark them as live.
414 for (const auto *B : *cfg) {
415 if (!live[B->getBlockID()]) {
416 if (B->pred_begin() == B->pred_end()) {
417 const Stmt *Term = B->getTerminatorStmt();
418 if (Term && isa<CXXTryStmt>(Term))
419 // When not adding EH edges from calls, catch clauses
420 // can otherwise seem dead. Avoid noting them as dead.
421 count += reachable_code::ScanReachableFromBlock(B, live);
422 continue;
427 // Now we know what is live, we check the live precessors of the exit block
428 // and look for fall through paths, being careful to ignore normal returns,
429 // and exceptional paths.
430 bool HasLiveReturn = false;
431 bool HasFakeEdge = false;
432 bool HasPlainEdge = false;
433 bool HasAbnormalEdge = false;
435 // Ignore default cases that aren't likely to be reachable because all
436 // enums in a switch(X) have explicit case statements.
437 CFGBlock::FilterOptions FO;
438 FO.IgnoreDefaultsWithCoveredEnums = 1;
440 for (CFGBlock::filtered_pred_iterator I =
441 cfg->getExit().filtered_pred_start_end(FO);
442 I.hasMore(); ++I) {
443 const CFGBlock &B = **I;
444 if (!live[B.getBlockID()])
445 continue;
447 // Skip blocks which contain an element marked as no-return. They don't
448 // represent actually viable edges into the exit block, so mark them as
449 // abnormal.
450 if (B.hasNoReturnElement()) {
451 HasAbnormalEdge = true;
452 continue;
455 // Destructors can appear after the 'return' in the CFG. This is
456 // normal. We need to look pass the destructors for the return
457 // statement (if it exists).
458 CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
460 for ( ; ri != re ; ++ri)
461 if (ri->getAs<CFGStmt>())
462 break;
464 // No more CFGElements in the block?
465 if (ri == re) {
466 const Stmt *Term = B.getTerminatorStmt();
467 if (Term && (isa<CXXTryStmt>(Term) || isa<ObjCAtTryStmt>(Term))) {
468 HasAbnormalEdge = true;
469 continue;
471 // A labeled empty statement, or the entry block...
472 HasPlainEdge = true;
473 continue;
476 CFGStmt CS = ri->castAs<CFGStmt>();
477 const Stmt *S = CS.getStmt();
478 if (isa<ReturnStmt>(S) || isa<CoreturnStmt>(S)) {
479 HasLiveReturn = true;
480 continue;
482 if (isa<ObjCAtThrowStmt>(S)) {
483 HasFakeEdge = true;
484 continue;
486 if (isa<CXXThrowExpr>(S)) {
487 HasFakeEdge = true;
488 continue;
490 if (isa<MSAsmStmt>(S)) {
491 // TODO: Verify this is correct.
492 HasFakeEdge = true;
493 HasLiveReturn = true;
494 continue;
496 if (isa<CXXTryStmt>(S)) {
497 HasAbnormalEdge = true;
498 continue;
500 if (!llvm::is_contained(B.succs(), &cfg->getExit())) {
501 HasAbnormalEdge = true;
502 continue;
505 HasPlainEdge = true;
507 if (!HasPlainEdge) {
508 if (HasLiveReturn)
509 return NeverFallThrough;
510 return NeverFallThroughOrReturn;
512 if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
513 return MaybeFallThrough;
514 // This says AlwaysFallThrough for calls to functions that are not marked
515 // noreturn, that don't return. If people would like this warning to be more
516 // accurate, such functions should be marked as noreturn.
517 return AlwaysFallThrough;
520 namespace {
522 struct CheckFallThroughDiagnostics {
523 unsigned diag_MaybeFallThrough_HasNoReturn;
524 unsigned diag_MaybeFallThrough_ReturnsNonVoid;
525 unsigned diag_AlwaysFallThrough_HasNoReturn;
526 unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
527 unsigned diag_NeverFallThroughOrReturn;
528 enum { Function, Block, Lambda, Coroutine } funMode;
529 SourceLocation FuncLoc;
531 static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
532 CheckFallThroughDiagnostics D;
533 D.FuncLoc = Func->getLocation();
534 D.diag_MaybeFallThrough_HasNoReturn =
535 diag::warn_falloff_noreturn_function;
536 D.diag_MaybeFallThrough_ReturnsNonVoid =
537 diag::warn_maybe_falloff_nonvoid_function;
538 D.diag_AlwaysFallThrough_HasNoReturn =
539 diag::warn_falloff_noreturn_function;
540 D.diag_AlwaysFallThrough_ReturnsNonVoid =
541 diag::warn_falloff_nonvoid_function;
543 // Don't suggest that virtual functions be marked "noreturn", since they
544 // might be overridden by non-noreturn functions.
545 bool isVirtualMethod = false;
546 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
547 isVirtualMethod = Method->isVirtual();
549 // Don't suggest that template instantiations be marked "noreturn"
550 bool isTemplateInstantiation = false;
551 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func))
552 isTemplateInstantiation = Function->isTemplateInstantiation();
554 if (!isVirtualMethod && !isTemplateInstantiation)
555 D.diag_NeverFallThroughOrReturn =
556 diag::warn_suggest_noreturn_function;
557 else
558 D.diag_NeverFallThroughOrReturn = 0;
560 D.funMode = Function;
561 return D;
564 static CheckFallThroughDiagnostics MakeForCoroutine(const Decl *Func) {
565 CheckFallThroughDiagnostics D;
566 D.FuncLoc = Func->getLocation();
567 D.diag_MaybeFallThrough_HasNoReturn = 0;
568 D.diag_MaybeFallThrough_ReturnsNonVoid =
569 diag::warn_maybe_falloff_nonvoid_coroutine;
570 D.diag_AlwaysFallThrough_HasNoReturn = 0;
571 D.diag_AlwaysFallThrough_ReturnsNonVoid =
572 diag::warn_falloff_nonvoid_coroutine;
573 D.funMode = Coroutine;
574 return D;
577 static CheckFallThroughDiagnostics MakeForBlock() {
578 CheckFallThroughDiagnostics D;
579 D.diag_MaybeFallThrough_HasNoReturn =
580 diag::err_noreturn_block_has_return_expr;
581 D.diag_MaybeFallThrough_ReturnsNonVoid =
582 diag::err_maybe_falloff_nonvoid_block;
583 D.diag_AlwaysFallThrough_HasNoReturn =
584 diag::err_noreturn_block_has_return_expr;
585 D.diag_AlwaysFallThrough_ReturnsNonVoid =
586 diag::err_falloff_nonvoid_block;
587 D.diag_NeverFallThroughOrReturn = 0;
588 D.funMode = Block;
589 return D;
592 static CheckFallThroughDiagnostics MakeForLambda() {
593 CheckFallThroughDiagnostics D;
594 D.diag_MaybeFallThrough_HasNoReturn =
595 diag::err_noreturn_lambda_has_return_expr;
596 D.diag_MaybeFallThrough_ReturnsNonVoid =
597 diag::warn_maybe_falloff_nonvoid_lambda;
598 D.diag_AlwaysFallThrough_HasNoReturn =
599 diag::err_noreturn_lambda_has_return_expr;
600 D.diag_AlwaysFallThrough_ReturnsNonVoid =
601 diag::warn_falloff_nonvoid_lambda;
602 D.diag_NeverFallThroughOrReturn = 0;
603 D.funMode = Lambda;
604 return D;
607 bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid,
608 bool HasNoReturn) const {
609 if (funMode == Function) {
610 return (ReturnsVoid ||
611 D.isIgnored(diag::warn_maybe_falloff_nonvoid_function,
612 FuncLoc)) &&
613 (!HasNoReturn ||
614 D.isIgnored(diag::warn_noreturn_function_has_return_expr,
615 FuncLoc)) &&
616 (!ReturnsVoid ||
617 D.isIgnored(diag::warn_suggest_noreturn_block, FuncLoc));
619 if (funMode == Coroutine) {
620 return (ReturnsVoid ||
621 D.isIgnored(diag::warn_maybe_falloff_nonvoid_function, FuncLoc) ||
622 D.isIgnored(diag::warn_maybe_falloff_nonvoid_coroutine,
623 FuncLoc)) &&
624 (!HasNoReturn);
626 // For blocks / lambdas.
627 return ReturnsVoid && !HasNoReturn;
631 } // anonymous namespace
633 /// CheckFallThroughForBody - Check that we don't fall off the end of a
634 /// function that should return a value. Check that we don't fall off the end
635 /// of a noreturn function. We assume that functions and blocks not marked
636 /// noreturn will return.
637 static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
638 QualType BlockType,
639 const CheckFallThroughDiagnostics &CD,
640 AnalysisDeclContext &AC,
641 sema::FunctionScopeInfo *FSI) {
643 bool ReturnsVoid = false;
644 bool HasNoReturn = false;
645 bool IsCoroutine = FSI->isCoroutine();
647 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
648 if (const auto *CBody = dyn_cast<CoroutineBodyStmt>(Body))
649 ReturnsVoid = CBody->getFallthroughHandler() != nullptr;
650 else
651 ReturnsVoid = FD->getReturnType()->isVoidType();
652 HasNoReturn = FD->isNoReturn();
654 else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
655 ReturnsVoid = MD->getReturnType()->isVoidType();
656 HasNoReturn = MD->hasAttr<NoReturnAttr>();
658 else if (isa<BlockDecl>(D)) {
659 if (const FunctionType *FT =
660 BlockType->getPointeeType()->getAs<FunctionType>()) {
661 if (FT->getReturnType()->isVoidType())
662 ReturnsVoid = true;
663 if (FT->getNoReturnAttr())
664 HasNoReturn = true;
668 DiagnosticsEngine &Diags = S.getDiagnostics();
670 // Short circuit for compilation speed.
671 if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
672 return;
673 SourceLocation LBrace = Body->getBeginLoc(), RBrace = Body->getEndLoc();
674 auto EmitDiag = [&](SourceLocation Loc, unsigned DiagID) {
675 if (IsCoroutine)
676 S.Diag(Loc, DiagID) << FSI->CoroutinePromise->getType();
677 else
678 S.Diag(Loc, DiagID);
681 // cpu_dispatch functions permit empty function bodies for ICC compatibility.
682 if (D->getAsFunction() && D->getAsFunction()->isCPUDispatchMultiVersion())
683 return;
685 // Either in a function body compound statement, or a function-try-block.
686 switch (CheckFallThrough(AC)) {
687 case UnknownFallThrough:
688 break;
690 case MaybeFallThrough:
691 if (HasNoReturn)
692 EmitDiag(RBrace, CD.diag_MaybeFallThrough_HasNoReturn);
693 else if (!ReturnsVoid)
694 EmitDiag(RBrace, CD.diag_MaybeFallThrough_ReturnsNonVoid);
695 break;
696 case AlwaysFallThrough:
697 if (HasNoReturn)
698 EmitDiag(RBrace, CD.diag_AlwaysFallThrough_HasNoReturn);
699 else if (!ReturnsVoid)
700 EmitDiag(RBrace, CD.diag_AlwaysFallThrough_ReturnsNonVoid);
701 break;
702 case NeverFallThroughOrReturn:
703 if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
704 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
705 S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 0 << FD;
706 } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
707 S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 1 << MD;
708 } else {
709 S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn);
712 break;
713 case NeverFallThrough:
714 break;
718 //===----------------------------------------------------------------------===//
719 // -Wuninitialized
720 //===----------------------------------------------------------------------===//
722 namespace {
723 /// ContainsReference - A visitor class to search for references to
724 /// a particular declaration (the needle) within any evaluated component of an
725 /// expression (recursively).
726 class ContainsReference : public ConstEvaluatedExprVisitor<ContainsReference> {
727 bool FoundReference;
728 const DeclRefExpr *Needle;
730 public:
731 typedef ConstEvaluatedExprVisitor<ContainsReference> Inherited;
733 ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
734 : Inherited(Context), FoundReference(false), Needle(Needle) {}
736 void VisitExpr(const Expr *E) {
737 // Stop evaluating if we already have a reference.
738 if (FoundReference)
739 return;
741 Inherited::VisitExpr(E);
744 void VisitDeclRefExpr(const DeclRefExpr *E) {
745 if (E == Needle)
746 FoundReference = true;
747 else
748 Inherited::VisitDeclRefExpr(E);
751 bool doesContainReference() const { return FoundReference; }
753 } // anonymous namespace
755 static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
756 QualType VariableTy = VD->getType().getCanonicalType();
757 if (VariableTy->isBlockPointerType() &&
758 !VD->hasAttr<BlocksAttr>()) {
759 S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization)
760 << VD->getDeclName()
761 << FixItHint::CreateInsertion(VD->getLocation(), "__block ");
762 return true;
765 // Don't issue a fixit if there is already an initializer.
766 if (VD->getInit())
767 return false;
769 // Don't suggest a fixit inside macros.
770 if (VD->getEndLoc().isMacroID())
771 return false;
773 SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
775 // Suggest possible initialization (if any).
776 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
777 if (Init.empty())
778 return false;
780 S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
781 << FixItHint::CreateInsertion(Loc, Init);
782 return true;
785 /// Create a fixit to remove an if-like statement, on the assumption that its
786 /// condition is CondVal.
787 static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then,
788 const Stmt *Else, bool CondVal,
789 FixItHint &Fixit1, FixItHint &Fixit2) {
790 if (CondVal) {
791 // If condition is always true, remove all but the 'then'.
792 Fixit1 = FixItHint::CreateRemoval(
793 CharSourceRange::getCharRange(If->getBeginLoc(), Then->getBeginLoc()));
794 if (Else) {
795 SourceLocation ElseKwLoc = S.getLocForEndOfToken(Then->getEndLoc());
796 Fixit2 =
797 FixItHint::CreateRemoval(SourceRange(ElseKwLoc, Else->getEndLoc()));
799 } else {
800 // If condition is always false, remove all but the 'else'.
801 if (Else)
802 Fixit1 = FixItHint::CreateRemoval(CharSourceRange::getCharRange(
803 If->getBeginLoc(), Else->getBeginLoc()));
804 else
805 Fixit1 = FixItHint::CreateRemoval(If->getSourceRange());
809 /// DiagUninitUse -- Helper function to produce a diagnostic for an
810 /// uninitialized use of a variable.
811 static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use,
812 bool IsCapturedByBlock) {
813 bool Diagnosed = false;
815 switch (Use.getKind()) {
816 case UninitUse::Always:
817 S.Diag(Use.getUser()->getBeginLoc(), diag::warn_uninit_var)
818 << VD->getDeclName() << IsCapturedByBlock
819 << Use.getUser()->getSourceRange();
820 return;
822 case UninitUse::AfterDecl:
823 case UninitUse::AfterCall:
824 S.Diag(VD->getLocation(), diag::warn_sometimes_uninit_var)
825 << VD->getDeclName() << IsCapturedByBlock
826 << (Use.getKind() == UninitUse::AfterDecl ? 4 : 5)
827 << const_cast<DeclContext*>(VD->getLexicalDeclContext())
828 << VD->getSourceRange();
829 S.Diag(Use.getUser()->getBeginLoc(), diag::note_uninit_var_use)
830 << IsCapturedByBlock << Use.getUser()->getSourceRange();
831 return;
833 case UninitUse::Maybe:
834 case UninitUse::Sometimes:
835 // Carry on to report sometimes-uninitialized branches, if possible,
836 // or a 'may be used uninitialized' diagnostic otherwise.
837 break;
840 // Diagnose each branch which leads to a sometimes-uninitialized use.
841 for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end();
842 I != E; ++I) {
843 assert(Use.getKind() == UninitUse::Sometimes);
845 const Expr *User = Use.getUser();
846 const Stmt *Term = I->Terminator;
848 // Information used when building the diagnostic.
849 unsigned DiagKind;
850 StringRef Str;
851 SourceRange Range;
853 // FixIts to suppress the diagnostic by removing the dead condition.
854 // For all binary terminators, branch 0 is taken if the condition is true,
855 // and branch 1 is taken if the condition is false.
856 int RemoveDiagKind = -1;
857 const char *FixitStr =
858 S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false")
859 : (I->Output ? "1" : "0");
860 FixItHint Fixit1, Fixit2;
862 switch (Term ? Term->getStmtClass() : Stmt::DeclStmtClass) {
863 default:
864 // Don't know how to report this. Just fall back to 'may be used
865 // uninitialized'. FIXME: Can this happen?
866 continue;
868 // "condition is true / condition is false".
869 case Stmt::IfStmtClass: {
870 const IfStmt *IS = cast<IfStmt>(Term);
871 DiagKind = 0;
872 Str = "if";
873 Range = IS->getCond()->getSourceRange();
874 RemoveDiagKind = 0;
875 CreateIfFixit(S, IS, IS->getThen(), IS->getElse(),
876 I->Output, Fixit1, Fixit2);
877 break;
879 case Stmt::ConditionalOperatorClass: {
880 const ConditionalOperator *CO = cast<ConditionalOperator>(Term);
881 DiagKind = 0;
882 Str = "?:";
883 Range = CO->getCond()->getSourceRange();
884 RemoveDiagKind = 0;
885 CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(),
886 I->Output, Fixit1, Fixit2);
887 break;
889 case Stmt::BinaryOperatorClass: {
890 const BinaryOperator *BO = cast<BinaryOperator>(Term);
891 if (!BO->isLogicalOp())
892 continue;
893 DiagKind = 0;
894 Str = BO->getOpcodeStr();
895 Range = BO->getLHS()->getSourceRange();
896 RemoveDiagKind = 0;
897 if ((BO->getOpcode() == BO_LAnd && I->Output) ||
898 (BO->getOpcode() == BO_LOr && !I->Output))
899 // true && y -> y, false || y -> y.
900 Fixit1 = FixItHint::CreateRemoval(
901 SourceRange(BO->getBeginLoc(), BO->getOperatorLoc()));
902 else
903 // false && y -> false, true || y -> true.
904 Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr);
905 break;
908 // "loop is entered / loop is exited".
909 case Stmt::WhileStmtClass:
910 DiagKind = 1;
911 Str = "while";
912 Range = cast<WhileStmt>(Term)->getCond()->getSourceRange();
913 RemoveDiagKind = 1;
914 Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
915 break;
916 case Stmt::ForStmtClass:
917 DiagKind = 1;
918 Str = "for";
919 Range = cast<ForStmt>(Term)->getCond()->getSourceRange();
920 RemoveDiagKind = 1;
921 if (I->Output)
922 Fixit1 = FixItHint::CreateRemoval(Range);
923 else
924 Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
925 break;
926 case Stmt::CXXForRangeStmtClass:
927 if (I->Output == 1) {
928 // The use occurs if a range-based for loop's body never executes.
929 // That may be impossible, and there's no syntactic fix for this,
930 // so treat it as a 'may be uninitialized' case.
931 continue;
933 DiagKind = 1;
934 Str = "for";
935 Range = cast<CXXForRangeStmt>(Term)->getRangeInit()->getSourceRange();
936 break;
938 // "condition is true / loop is exited".
939 case Stmt::DoStmtClass:
940 DiagKind = 2;
941 Str = "do";
942 Range = cast<DoStmt>(Term)->getCond()->getSourceRange();
943 RemoveDiagKind = 1;
944 Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
945 break;
947 // "switch case is taken".
948 case Stmt::CaseStmtClass:
949 DiagKind = 3;
950 Str = "case";
951 Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange();
952 break;
953 case Stmt::DefaultStmtClass:
954 DiagKind = 3;
955 Str = "default";
956 Range = cast<DefaultStmt>(Term)->getDefaultLoc();
957 break;
960 S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var)
961 << VD->getDeclName() << IsCapturedByBlock << DiagKind
962 << Str << I->Output << Range;
963 S.Diag(User->getBeginLoc(), diag::note_uninit_var_use)
964 << IsCapturedByBlock << User->getSourceRange();
965 if (RemoveDiagKind != -1)
966 S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond)
967 << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2;
969 Diagnosed = true;
972 if (!Diagnosed)
973 S.Diag(Use.getUser()->getBeginLoc(), diag::warn_maybe_uninit_var)
974 << VD->getDeclName() << IsCapturedByBlock
975 << Use.getUser()->getSourceRange();
978 /// Diagnose uninitialized const reference usages.
979 static bool DiagnoseUninitializedConstRefUse(Sema &S, const VarDecl *VD,
980 const UninitUse &Use) {
981 S.Diag(Use.getUser()->getBeginLoc(), diag::warn_uninit_const_reference)
982 << VD->getDeclName() << Use.getUser()->getSourceRange();
983 return true;
986 /// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
987 /// uninitialized variable. This manages the different forms of diagnostic
988 /// emitted for particular types of uses. Returns true if the use was diagnosed
989 /// as a warning. If a particular use is one we omit warnings for, returns
990 /// false.
991 static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
992 const UninitUse &Use,
993 bool alwaysReportSelfInit = false) {
994 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) {
995 // Inspect the initializer of the variable declaration which is
996 // being referenced prior to its initialization. We emit
997 // specialized diagnostics for self-initialization, and we
998 // specifically avoid warning about self references which take the
999 // form of:
1001 // int x = x;
1003 // This is used to indicate to GCC that 'x' is intentionally left
1004 // uninitialized. Proven code paths which access 'x' in
1005 // an uninitialized state after this will still warn.
1006 if (const Expr *Initializer = VD->getInit()) {
1007 if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
1008 return false;
1010 ContainsReference CR(S.Context, DRE);
1011 CR.Visit(Initializer);
1012 if (CR.doesContainReference()) {
1013 S.Diag(DRE->getBeginLoc(), diag::warn_uninit_self_reference_in_init)
1014 << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
1015 return true;
1019 DiagUninitUse(S, VD, Use, false);
1020 } else {
1021 const BlockExpr *BE = cast<BlockExpr>(Use.getUser());
1022 if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>())
1023 S.Diag(BE->getBeginLoc(),
1024 diag::warn_uninit_byref_blockvar_captured_by_block)
1025 << VD->getDeclName()
1026 << VD->getType().getQualifiers().hasObjCLifetime();
1027 else
1028 DiagUninitUse(S, VD, Use, true);
1031 // Report where the variable was declared when the use wasn't within
1032 // the initializer of that declaration & we didn't already suggest
1033 // an initialization fixit.
1034 if (!SuggestInitializationFixit(S, VD))
1035 S.Diag(VD->getBeginLoc(), diag::note_var_declared_here)
1036 << VD->getDeclName();
1038 return true;
1041 namespace {
1042 class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> {
1043 public:
1044 FallthroughMapper(Sema &S)
1045 : FoundSwitchStatements(false),
1046 S(S) {
1049 bool foundSwitchStatements() const { return FoundSwitchStatements; }
1051 void markFallthroughVisited(const AttributedStmt *Stmt) {
1052 bool Found = FallthroughStmts.erase(Stmt);
1053 assert(Found);
1054 (void)Found;
1057 typedef llvm::SmallPtrSet<const AttributedStmt*, 8> AttrStmts;
1059 const AttrStmts &getFallthroughStmts() const {
1060 return FallthroughStmts;
1063 void fillReachableBlocks(CFG *Cfg) {
1064 assert(ReachableBlocks.empty() && "ReachableBlocks already filled");
1065 std::deque<const CFGBlock *> BlockQueue;
1067 ReachableBlocks.insert(&Cfg->getEntry());
1068 BlockQueue.push_back(&Cfg->getEntry());
1069 // Mark all case blocks reachable to avoid problems with switching on
1070 // constants, covered enums, etc.
1071 // These blocks can contain fall-through annotations, and we don't want to
1072 // issue a warn_fallthrough_attr_unreachable for them.
1073 for (const auto *B : *Cfg) {
1074 const Stmt *L = B->getLabel();
1075 if (L && isa<SwitchCase>(L) && ReachableBlocks.insert(B).second)
1076 BlockQueue.push_back(B);
1079 while (!BlockQueue.empty()) {
1080 const CFGBlock *P = BlockQueue.front();
1081 BlockQueue.pop_front();
1082 for (const CFGBlock *B : P->succs()) {
1083 if (B && ReachableBlocks.insert(B).second)
1084 BlockQueue.push_back(B);
1089 bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt,
1090 bool IsTemplateInstantiation) {
1091 assert(!ReachableBlocks.empty() && "ReachableBlocks empty");
1093 int UnannotatedCnt = 0;
1094 AnnotatedCnt = 0;
1096 std::deque<const CFGBlock*> BlockQueue(B.pred_begin(), B.pred_end());
1097 while (!BlockQueue.empty()) {
1098 const CFGBlock *P = BlockQueue.front();
1099 BlockQueue.pop_front();
1100 if (!P) continue;
1102 const Stmt *Term = P->getTerminatorStmt();
1103 if (Term && isa<SwitchStmt>(Term))
1104 continue; // Switch statement, good.
1106 const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel());
1107 if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end())
1108 continue; // Previous case label has no statements, good.
1110 const LabelStmt *L = dyn_cast_or_null<LabelStmt>(P->getLabel());
1111 if (L && L->getSubStmt() == B.getLabel() && P->begin() == P->end())
1112 continue; // Case label is preceded with a normal label, good.
1114 if (!ReachableBlocks.count(P)) {
1115 for (const CFGElement &Elem : llvm::reverse(*P)) {
1116 if (Optional<CFGStmt> CS = Elem.getAs<CFGStmt>()) {
1117 if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) {
1118 // Don't issue a warning for an unreachable fallthrough
1119 // attribute in template instantiations as it may not be
1120 // unreachable in all instantiations of the template.
1121 if (!IsTemplateInstantiation)
1122 S.Diag(AS->getBeginLoc(),
1123 diag::warn_unreachable_fallthrough_attr);
1124 markFallthroughVisited(AS);
1125 ++AnnotatedCnt;
1126 break;
1128 // Don't care about other unreachable statements.
1131 // If there are no unreachable statements, this may be a special
1132 // case in CFG:
1133 // case X: {
1134 // A a; // A has a destructor.
1135 // break;
1136 // }
1137 // // <<<< This place is represented by a 'hanging' CFG block.
1138 // case Y:
1139 continue;
1142 const Stmt *LastStmt = getLastStmt(*P);
1143 if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) {
1144 markFallthroughVisited(AS);
1145 ++AnnotatedCnt;
1146 continue; // Fallthrough annotation, good.
1149 if (!LastStmt) { // This block contains no executable statements.
1150 // Traverse its predecessors.
1151 std::copy(P->pred_begin(), P->pred_end(),
1152 std::back_inserter(BlockQueue));
1153 continue;
1156 ++UnannotatedCnt;
1158 return !!UnannotatedCnt;
1161 // RecursiveASTVisitor setup.
1162 bool shouldWalkTypesOfTypeLocs() const { return false; }
1164 bool VisitAttributedStmt(AttributedStmt *S) {
1165 if (asFallThroughAttr(S))
1166 FallthroughStmts.insert(S);
1167 return true;
1170 bool VisitSwitchStmt(SwitchStmt *S) {
1171 FoundSwitchStatements = true;
1172 return true;
1175 // We don't want to traverse local type declarations. We analyze their
1176 // methods separately.
1177 bool TraverseDecl(Decl *D) { return true; }
1179 // We analyze lambda bodies separately. Skip them here.
1180 bool TraverseLambdaExpr(LambdaExpr *LE) {
1181 // Traverse the captures, but not the body.
1182 for (const auto C : zip(LE->captures(), LE->capture_inits()))
1183 TraverseLambdaCapture(LE, &std::get<0>(C), std::get<1>(C));
1184 return true;
1187 private:
1189 static const AttributedStmt *asFallThroughAttr(const Stmt *S) {
1190 if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) {
1191 if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs()))
1192 return AS;
1194 return nullptr;
1197 static const Stmt *getLastStmt(const CFGBlock &B) {
1198 if (const Stmt *Term = B.getTerminatorStmt())
1199 return Term;
1200 for (const CFGElement &Elem : llvm::reverse(B))
1201 if (Optional<CFGStmt> CS = Elem.getAs<CFGStmt>())
1202 return CS->getStmt();
1203 // Workaround to detect a statement thrown out by CFGBuilder:
1204 // case X: {} case Y:
1205 // case X: ; case Y:
1206 if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel()))
1207 if (!isa<SwitchCase>(SW->getSubStmt()))
1208 return SW->getSubStmt();
1210 return nullptr;
1213 bool FoundSwitchStatements;
1214 AttrStmts FallthroughStmts;
1215 Sema &S;
1216 llvm::SmallPtrSet<const CFGBlock *, 16> ReachableBlocks;
1218 } // anonymous namespace
1220 static StringRef getFallthroughAttrSpelling(Preprocessor &PP,
1221 SourceLocation Loc) {
1222 TokenValue FallthroughTokens[] = {
1223 tok::l_square, tok::l_square,
1224 PP.getIdentifierInfo("fallthrough"),
1225 tok::r_square, tok::r_square
1228 TokenValue ClangFallthroughTokens[] = {
1229 tok::l_square, tok::l_square, PP.getIdentifierInfo("clang"),
1230 tok::coloncolon, PP.getIdentifierInfo("fallthrough"),
1231 tok::r_square, tok::r_square
1234 bool PreferClangAttr = !PP.getLangOpts().CPlusPlus17 && !PP.getLangOpts().C2x;
1236 StringRef MacroName;
1237 if (PreferClangAttr)
1238 MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens);
1239 if (MacroName.empty())
1240 MacroName = PP.getLastMacroWithSpelling(Loc, FallthroughTokens);
1241 if (MacroName.empty() && !PreferClangAttr)
1242 MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens);
1243 if (MacroName.empty()) {
1244 if (!PreferClangAttr)
1245 MacroName = "[[fallthrough]]";
1246 else if (PP.getLangOpts().CPlusPlus)
1247 MacroName = "[[clang::fallthrough]]";
1248 else
1249 MacroName = "__attribute__((fallthrough))";
1251 return MacroName;
1254 static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC,
1255 bool PerFunction) {
1256 FallthroughMapper FM(S);
1257 FM.TraverseStmt(AC.getBody());
1259 if (!FM.foundSwitchStatements())
1260 return;
1262 if (PerFunction && FM.getFallthroughStmts().empty())
1263 return;
1265 CFG *Cfg = AC.getCFG();
1267 if (!Cfg)
1268 return;
1270 FM.fillReachableBlocks(Cfg);
1272 for (const CFGBlock *B : llvm::reverse(*Cfg)) {
1273 const Stmt *Label = B->getLabel();
1275 if (!isa_and_nonnull<SwitchCase>(Label))
1276 continue;
1278 int AnnotatedCnt;
1280 bool IsTemplateInstantiation = false;
1281 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(AC.getDecl()))
1282 IsTemplateInstantiation = Function->isTemplateInstantiation();
1283 if (!FM.checkFallThroughIntoBlock(*B, AnnotatedCnt,
1284 IsTemplateInstantiation))
1285 continue;
1287 S.Diag(Label->getBeginLoc(),
1288 PerFunction ? diag::warn_unannotated_fallthrough_per_function
1289 : diag::warn_unannotated_fallthrough);
1291 if (!AnnotatedCnt) {
1292 SourceLocation L = Label->getBeginLoc();
1293 if (L.isMacroID())
1294 continue;
1296 const Stmt *Term = B->getTerminatorStmt();
1297 // Skip empty cases.
1298 while (B->empty() && !Term && B->succ_size() == 1) {
1299 B = *B->succ_begin();
1300 Term = B->getTerminatorStmt();
1302 if (!(B->empty() && Term && isa<BreakStmt>(Term))) {
1303 Preprocessor &PP = S.getPreprocessor();
1304 StringRef AnnotationSpelling = getFallthroughAttrSpelling(PP, L);
1305 SmallString<64> TextToInsert(AnnotationSpelling);
1306 TextToInsert += "; ";
1307 S.Diag(L, diag::note_insert_fallthrough_fixit)
1308 << AnnotationSpelling
1309 << FixItHint::CreateInsertion(L, TextToInsert);
1311 S.Diag(L, diag::note_insert_break_fixit)
1312 << FixItHint::CreateInsertion(L, "break; ");
1316 for (const auto *F : FM.getFallthroughStmts())
1317 S.Diag(F->getBeginLoc(), diag::err_fallthrough_attr_invalid_placement);
1320 static bool isInLoop(const ASTContext &Ctx, const ParentMap &PM,
1321 const Stmt *S) {
1322 assert(S);
1324 do {
1325 switch (S->getStmtClass()) {
1326 case Stmt::ForStmtClass:
1327 case Stmt::WhileStmtClass:
1328 case Stmt::CXXForRangeStmtClass:
1329 case Stmt::ObjCForCollectionStmtClass:
1330 return true;
1331 case Stmt::DoStmtClass: {
1332 Expr::EvalResult Result;
1333 if (!cast<DoStmt>(S)->getCond()->EvaluateAsInt(Result, Ctx))
1334 return true;
1335 return Result.Val.getInt().getBoolValue();
1337 default:
1338 break;
1340 } while ((S = PM.getParent(S)));
1342 return false;
1345 static void diagnoseRepeatedUseOfWeak(Sema &S,
1346 const sema::FunctionScopeInfo *CurFn,
1347 const Decl *D,
1348 const ParentMap &PM) {
1349 typedef sema::FunctionScopeInfo::WeakObjectProfileTy WeakObjectProfileTy;
1350 typedef sema::FunctionScopeInfo::WeakObjectUseMap WeakObjectUseMap;
1351 typedef sema::FunctionScopeInfo::WeakUseVector WeakUseVector;
1352 typedef std::pair<const Stmt *, WeakObjectUseMap::const_iterator>
1353 StmtUsesPair;
1355 ASTContext &Ctx = S.getASTContext();
1357 const WeakObjectUseMap &WeakMap = CurFn->getWeakObjectUses();
1359 // Extract all weak objects that are referenced more than once.
1360 SmallVector<StmtUsesPair, 8> UsesByStmt;
1361 for (WeakObjectUseMap::const_iterator I = WeakMap.begin(), E = WeakMap.end();
1362 I != E; ++I) {
1363 const WeakUseVector &Uses = I->second;
1365 // Find the first read of the weak object.
1366 WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end();
1367 for ( ; UI != UE; ++UI) {
1368 if (UI->isUnsafe())
1369 break;
1372 // If there were only writes to this object, don't warn.
1373 if (UI == UE)
1374 continue;
1376 // If there was only one read, followed by any number of writes, and the
1377 // read is not within a loop, don't warn. Additionally, don't warn in a
1378 // loop if the base object is a local variable -- local variables are often
1379 // changed in loops.
1380 if (UI == Uses.begin()) {
1381 WeakUseVector::const_iterator UI2 = UI;
1382 for (++UI2; UI2 != UE; ++UI2)
1383 if (UI2->isUnsafe())
1384 break;
1386 if (UI2 == UE) {
1387 if (!isInLoop(Ctx, PM, UI->getUseExpr()))
1388 continue;
1390 const WeakObjectProfileTy &Profile = I->first;
1391 if (!Profile.isExactProfile())
1392 continue;
1394 const NamedDecl *Base = Profile.getBase();
1395 if (!Base)
1396 Base = Profile.getProperty();
1397 assert(Base && "A profile always has a base or property.");
1399 if (const VarDecl *BaseVar = dyn_cast<VarDecl>(Base))
1400 if (BaseVar->hasLocalStorage() && !isa<ParmVarDecl>(Base))
1401 continue;
1405 UsesByStmt.push_back(StmtUsesPair(UI->getUseExpr(), I));
1408 if (UsesByStmt.empty())
1409 return;
1411 // Sort by first use so that we emit the warnings in a deterministic order.
1412 SourceManager &SM = S.getSourceManager();
1413 llvm::sort(UsesByStmt,
1414 [&SM](const StmtUsesPair &LHS, const StmtUsesPair &RHS) {
1415 return SM.isBeforeInTranslationUnit(LHS.first->getBeginLoc(),
1416 RHS.first->getBeginLoc());
1419 // Classify the current code body for better warning text.
1420 // This enum should stay in sync with the cases in
1421 // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1422 // FIXME: Should we use a common classification enum and the same set of
1423 // possibilities all throughout Sema?
1424 enum {
1425 Function,
1426 Method,
1427 Block,
1428 Lambda
1429 } FunctionKind;
1431 if (isa<sema::BlockScopeInfo>(CurFn))
1432 FunctionKind = Block;
1433 else if (isa<sema::LambdaScopeInfo>(CurFn))
1434 FunctionKind = Lambda;
1435 else if (isa<ObjCMethodDecl>(D))
1436 FunctionKind = Method;
1437 else
1438 FunctionKind = Function;
1440 // Iterate through the sorted problems and emit warnings for each.
1441 for (const auto &P : UsesByStmt) {
1442 const Stmt *FirstRead = P.first;
1443 const WeakObjectProfileTy &Key = P.second->first;
1444 const WeakUseVector &Uses = P.second->second;
1446 // For complicated expressions like 'a.b.c' and 'x.b.c', WeakObjectProfileTy
1447 // may not contain enough information to determine that these are different
1448 // properties. We can only be 100% sure of a repeated use in certain cases,
1449 // and we adjust the diagnostic kind accordingly so that the less certain
1450 // case can be turned off if it is too noisy.
1451 unsigned DiagKind;
1452 if (Key.isExactProfile())
1453 DiagKind = diag::warn_arc_repeated_use_of_weak;
1454 else
1455 DiagKind = diag::warn_arc_possible_repeated_use_of_weak;
1457 // Classify the weak object being accessed for better warning text.
1458 // This enum should stay in sync with the cases in
1459 // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1460 enum {
1461 Variable,
1462 Property,
1463 ImplicitProperty,
1464 Ivar
1465 } ObjectKind;
1467 const NamedDecl *KeyProp = Key.getProperty();
1468 if (isa<VarDecl>(KeyProp))
1469 ObjectKind = Variable;
1470 else if (isa<ObjCPropertyDecl>(KeyProp))
1471 ObjectKind = Property;
1472 else if (isa<ObjCMethodDecl>(KeyProp))
1473 ObjectKind = ImplicitProperty;
1474 else if (isa<ObjCIvarDecl>(KeyProp))
1475 ObjectKind = Ivar;
1476 else
1477 llvm_unreachable("Unexpected weak object kind!");
1479 // Do not warn about IBOutlet weak property receivers being set to null
1480 // since they are typically only used from the main thread.
1481 if (const ObjCPropertyDecl *Prop = dyn_cast<ObjCPropertyDecl>(KeyProp))
1482 if (Prop->hasAttr<IBOutletAttr>())
1483 continue;
1485 // Show the first time the object was read.
1486 S.Diag(FirstRead->getBeginLoc(), DiagKind)
1487 << int(ObjectKind) << KeyProp << int(FunctionKind)
1488 << FirstRead->getSourceRange();
1490 // Print all the other accesses as notes.
1491 for (const auto &Use : Uses) {
1492 if (Use.getUseExpr() == FirstRead)
1493 continue;
1494 S.Diag(Use.getUseExpr()->getBeginLoc(),
1495 diag::note_arc_weak_also_accessed_here)
1496 << Use.getUseExpr()->getSourceRange();
1501 namespace clang {
1502 namespace {
1503 typedef SmallVector<PartialDiagnosticAt, 1> OptionalNotes;
1504 typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag;
1505 typedef std::list<DelayedDiag> DiagList;
1507 struct SortDiagBySourceLocation {
1508 SourceManager &SM;
1509 SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {}
1511 bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
1512 // Although this call will be slow, this is only called when outputting
1513 // multiple warnings.
1514 return SM.isBeforeInTranslationUnit(left.first.first, right.first.first);
1517 } // anonymous namespace
1518 } // namespace clang
1520 namespace {
1521 class UninitValsDiagReporter : public UninitVariablesHandler {
1522 Sema &S;
1523 typedef SmallVector<UninitUse, 2> UsesVec;
1524 typedef llvm::PointerIntPair<UsesVec *, 1, bool> MappedType;
1525 // Prefer using MapVector to DenseMap, so that iteration order will be
1526 // the same as insertion order. This is needed to obtain a deterministic
1527 // order of diagnostics when calling flushDiagnostics().
1528 typedef llvm::MapVector<const VarDecl *, MappedType> UsesMap;
1529 UsesMap uses;
1530 UsesMap constRefUses;
1532 public:
1533 UninitValsDiagReporter(Sema &S) : S(S) {}
1534 ~UninitValsDiagReporter() override { flushDiagnostics(); }
1536 MappedType &getUses(UsesMap &um, const VarDecl *vd) {
1537 MappedType &V = um[vd];
1538 if (!V.getPointer())
1539 V.setPointer(new UsesVec());
1540 return V;
1543 void handleUseOfUninitVariable(const VarDecl *vd,
1544 const UninitUse &use) override {
1545 getUses(uses, vd).getPointer()->push_back(use);
1548 void handleConstRefUseOfUninitVariable(const VarDecl *vd,
1549 const UninitUse &use) override {
1550 getUses(constRefUses, vd).getPointer()->push_back(use);
1553 void handleSelfInit(const VarDecl *vd) override {
1554 getUses(uses, vd).setInt(true);
1555 getUses(constRefUses, vd).setInt(true);
1558 void flushDiagnostics() {
1559 for (const auto &P : uses) {
1560 const VarDecl *vd = P.first;
1561 const MappedType &V = P.second;
1563 UsesVec *vec = V.getPointer();
1564 bool hasSelfInit = V.getInt();
1566 // Specially handle the case where we have uses of an uninitialized
1567 // variable, but the root cause is an idiomatic self-init. We want
1568 // to report the diagnostic at the self-init since that is the root cause.
1569 if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
1570 DiagnoseUninitializedUse(S, vd,
1571 UninitUse(vd->getInit()->IgnoreParenCasts(),
1572 /* isAlwaysUninit */ true),
1573 /* alwaysReportSelfInit */ true);
1574 else {
1575 // Sort the uses by their SourceLocations. While not strictly
1576 // guaranteed to produce them in line/column order, this will provide
1577 // a stable ordering.
1578 llvm::sort(*vec, [](const UninitUse &a, const UninitUse &b) {
1579 // Prefer a more confident report over a less confident one.
1580 if (a.getKind() != b.getKind())
1581 return a.getKind() > b.getKind();
1582 return a.getUser()->getBeginLoc() < b.getUser()->getBeginLoc();
1585 for (const auto &U : *vec) {
1586 // If we have self-init, downgrade all uses to 'may be uninitialized'.
1587 UninitUse Use = hasSelfInit ? UninitUse(U.getUser(), false) : U;
1589 if (DiagnoseUninitializedUse(S, vd, Use))
1590 // Skip further diagnostics for this variable. We try to warn only
1591 // on the first point at which a variable is used uninitialized.
1592 break;
1596 // Release the uses vector.
1597 delete vec;
1600 uses.clear();
1602 // Flush all const reference uses diags.
1603 for (const auto &P : constRefUses) {
1604 const VarDecl *vd = P.first;
1605 const MappedType &V = P.second;
1607 UsesVec *vec = V.getPointer();
1608 bool hasSelfInit = V.getInt();
1610 if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
1611 DiagnoseUninitializedUse(S, vd,
1612 UninitUse(vd->getInit()->IgnoreParenCasts(),
1613 /* isAlwaysUninit */ true),
1614 /* alwaysReportSelfInit */ true);
1615 else {
1616 for (const auto &U : *vec) {
1617 if (DiagnoseUninitializedConstRefUse(S, vd, U))
1618 break;
1622 // Release the uses vector.
1623 delete vec;
1626 constRefUses.clear();
1629 private:
1630 static bool hasAlwaysUninitializedUse(const UsesVec* vec) {
1631 return llvm::any_of(*vec, [](const UninitUse &U) {
1632 return U.getKind() == UninitUse::Always ||
1633 U.getKind() == UninitUse::AfterCall ||
1634 U.getKind() == UninitUse::AfterDecl;
1639 /// Inter-procedural data for the called-once checker.
1640 class CalledOnceInterProceduralData {
1641 public:
1642 // Add the delayed warning for the given block.
1643 void addDelayedWarning(const BlockDecl *Block,
1644 PartialDiagnosticAt &&Warning) {
1645 DelayedBlockWarnings[Block].emplace_back(std::move(Warning));
1647 // Report all of the warnings we've gathered for the given block.
1648 void flushWarnings(const BlockDecl *Block, Sema &S) {
1649 for (const PartialDiagnosticAt &Delayed : DelayedBlockWarnings[Block])
1650 S.Diag(Delayed.first, Delayed.second);
1652 discardWarnings(Block);
1654 // Discard all of the warnings we've gathered for the given block.
1655 void discardWarnings(const BlockDecl *Block) {
1656 DelayedBlockWarnings.erase(Block);
1659 private:
1660 using DelayedDiagnostics = SmallVector<PartialDiagnosticAt, 2>;
1661 llvm::DenseMap<const BlockDecl *, DelayedDiagnostics> DelayedBlockWarnings;
1664 class CalledOnceCheckReporter : public CalledOnceCheckHandler {
1665 public:
1666 CalledOnceCheckReporter(Sema &S, CalledOnceInterProceduralData &Data)
1667 : S(S), Data(Data) {}
1668 void handleDoubleCall(const ParmVarDecl *Parameter, const Expr *Call,
1669 const Expr *PrevCall, bool IsCompletionHandler,
1670 bool Poised) override {
1671 auto DiagToReport = IsCompletionHandler
1672 ? diag::warn_completion_handler_called_twice
1673 : diag::warn_called_once_gets_called_twice;
1674 S.Diag(Call->getBeginLoc(), DiagToReport) << Parameter;
1675 S.Diag(PrevCall->getBeginLoc(), diag::note_called_once_gets_called_twice)
1676 << Poised;
1679 void handleNeverCalled(const ParmVarDecl *Parameter,
1680 bool IsCompletionHandler) override {
1681 auto DiagToReport = IsCompletionHandler
1682 ? diag::warn_completion_handler_never_called
1683 : diag::warn_called_once_never_called;
1684 S.Diag(Parameter->getBeginLoc(), DiagToReport)
1685 << Parameter << /* Captured */ false;
1688 void handleNeverCalled(const ParmVarDecl *Parameter, const Decl *Function,
1689 const Stmt *Where, NeverCalledReason Reason,
1690 bool IsCalledDirectly,
1691 bool IsCompletionHandler) override {
1692 auto DiagToReport = IsCompletionHandler
1693 ? diag::warn_completion_handler_never_called_when
1694 : diag::warn_called_once_never_called_when;
1695 PartialDiagnosticAt Warning(Where->getBeginLoc(), S.PDiag(DiagToReport)
1696 << Parameter
1697 << IsCalledDirectly
1698 << (unsigned)Reason);
1700 if (const auto *Block = dyn_cast<BlockDecl>(Function)) {
1701 // We shouldn't report these warnings on blocks immediately
1702 Data.addDelayedWarning(Block, std::move(Warning));
1703 } else {
1704 S.Diag(Warning.first, Warning.second);
1708 void handleCapturedNeverCalled(const ParmVarDecl *Parameter,
1709 const Decl *Where,
1710 bool IsCompletionHandler) override {
1711 auto DiagToReport = IsCompletionHandler
1712 ? diag::warn_completion_handler_never_called
1713 : diag::warn_called_once_never_called;
1714 S.Diag(Where->getBeginLoc(), DiagToReport)
1715 << Parameter << /* Captured */ true;
1718 void
1719 handleBlockThatIsGuaranteedToBeCalledOnce(const BlockDecl *Block) override {
1720 Data.flushWarnings(Block, S);
1723 void handleBlockWithNoGuarantees(const BlockDecl *Block) override {
1724 Data.discardWarnings(Block);
1727 private:
1728 Sema &S;
1729 CalledOnceInterProceduralData &Data;
1732 constexpr unsigned CalledOnceWarnings[] = {
1733 diag::warn_called_once_never_called,
1734 diag::warn_called_once_never_called_when,
1735 diag::warn_called_once_gets_called_twice};
1737 constexpr unsigned CompletionHandlerWarnings[]{
1738 diag::warn_completion_handler_never_called,
1739 diag::warn_completion_handler_never_called_when,
1740 diag::warn_completion_handler_called_twice};
1742 bool shouldAnalyzeCalledOnceImpl(llvm::ArrayRef<unsigned> DiagIDs,
1743 const DiagnosticsEngine &Diags,
1744 SourceLocation At) {
1745 return llvm::any_of(DiagIDs, [&Diags, At](unsigned DiagID) {
1746 return !Diags.isIgnored(DiagID, At);
1750 bool shouldAnalyzeCalledOnceConventions(const DiagnosticsEngine &Diags,
1751 SourceLocation At) {
1752 return shouldAnalyzeCalledOnceImpl(CompletionHandlerWarnings, Diags, At);
1755 bool shouldAnalyzeCalledOnceParameters(const DiagnosticsEngine &Diags,
1756 SourceLocation At) {
1757 return shouldAnalyzeCalledOnceImpl(CalledOnceWarnings, Diags, At) ||
1758 shouldAnalyzeCalledOnceConventions(Diags, At);
1760 } // anonymous namespace
1762 //===----------------------------------------------------------------------===//
1763 // -Wthread-safety
1764 //===----------------------------------------------------------------------===//
1765 namespace clang {
1766 namespace threadSafety {
1767 namespace {
1768 class ThreadSafetyReporter : public clang::threadSafety::ThreadSafetyHandler {
1769 Sema &S;
1770 DiagList Warnings;
1771 SourceLocation FunLocation, FunEndLocation;
1773 const FunctionDecl *CurrentFunction;
1774 bool Verbose;
1776 OptionalNotes getNotes() const {
1777 if (Verbose && CurrentFunction) {
1778 PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(),
1779 S.PDiag(diag::note_thread_warning_in_fun)
1780 << CurrentFunction);
1781 return OptionalNotes(1, FNote);
1783 return OptionalNotes();
1786 OptionalNotes getNotes(const PartialDiagnosticAt &Note) const {
1787 OptionalNotes ONS(1, Note);
1788 if (Verbose && CurrentFunction) {
1789 PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(),
1790 S.PDiag(diag::note_thread_warning_in_fun)
1791 << CurrentFunction);
1792 ONS.push_back(std::move(FNote));
1794 return ONS;
1797 OptionalNotes getNotes(const PartialDiagnosticAt &Note1,
1798 const PartialDiagnosticAt &Note2) const {
1799 OptionalNotes ONS;
1800 ONS.push_back(Note1);
1801 ONS.push_back(Note2);
1802 if (Verbose && CurrentFunction) {
1803 PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(),
1804 S.PDiag(diag::note_thread_warning_in_fun)
1805 << CurrentFunction);
1806 ONS.push_back(std::move(FNote));
1808 return ONS;
1811 OptionalNotes makeLockedHereNote(SourceLocation LocLocked, StringRef Kind) {
1812 return LocLocked.isValid()
1813 ? getNotes(PartialDiagnosticAt(
1814 LocLocked, S.PDiag(diag::note_locked_here) << Kind))
1815 : getNotes();
1818 OptionalNotes makeUnlockedHereNote(SourceLocation LocUnlocked,
1819 StringRef Kind) {
1820 return LocUnlocked.isValid()
1821 ? getNotes(PartialDiagnosticAt(
1822 LocUnlocked, S.PDiag(diag::note_unlocked_here) << Kind))
1823 : getNotes();
1826 public:
1827 ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL)
1828 : S(S), FunLocation(FL), FunEndLocation(FEL),
1829 CurrentFunction(nullptr), Verbose(false) {}
1831 void setVerbose(bool b) { Verbose = b; }
1833 /// Emit all buffered diagnostics in order of sourcelocation.
1834 /// We need to output diagnostics produced while iterating through
1835 /// the lockset in deterministic order, so this function orders diagnostics
1836 /// and outputs them.
1837 void emitDiagnostics() {
1838 Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
1839 for (const auto &Diag : Warnings) {
1840 S.Diag(Diag.first.first, Diag.first.second);
1841 for (const auto &Note : Diag.second)
1842 S.Diag(Note.first, Note.second);
1846 void handleInvalidLockExp(SourceLocation Loc) override {
1847 PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_cannot_resolve_lock)
1848 << Loc);
1849 Warnings.emplace_back(std::move(Warning), getNotes());
1852 void handleUnmatchedUnlock(StringRef Kind, Name LockName, SourceLocation Loc,
1853 SourceLocation LocPreviousUnlock) override {
1854 if (Loc.isInvalid())
1855 Loc = FunLocation;
1856 PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_unlock_but_no_lock)
1857 << Kind << LockName);
1858 Warnings.emplace_back(std::move(Warning),
1859 makeUnlockedHereNote(LocPreviousUnlock, Kind));
1862 void handleIncorrectUnlockKind(StringRef Kind, Name LockName,
1863 LockKind Expected, LockKind Received,
1864 SourceLocation LocLocked,
1865 SourceLocation LocUnlock) override {
1866 if (LocUnlock.isInvalid())
1867 LocUnlock = FunLocation;
1868 PartialDiagnosticAt Warning(
1869 LocUnlock, S.PDiag(diag::warn_unlock_kind_mismatch)
1870 << Kind << LockName << Received << Expected);
1871 Warnings.emplace_back(std::move(Warning),
1872 makeLockedHereNote(LocLocked, Kind));
1875 void handleDoubleLock(StringRef Kind, Name LockName, SourceLocation LocLocked,
1876 SourceLocation LocDoubleLock) override {
1877 if (LocDoubleLock.isInvalid())
1878 LocDoubleLock = FunLocation;
1879 PartialDiagnosticAt Warning(LocDoubleLock, S.PDiag(diag::warn_double_lock)
1880 << Kind << LockName);
1881 Warnings.emplace_back(std::move(Warning),
1882 makeLockedHereNote(LocLocked, Kind));
1885 void handleMutexHeldEndOfScope(StringRef Kind, Name LockName,
1886 SourceLocation LocLocked,
1887 SourceLocation LocEndOfScope,
1888 LockErrorKind LEK) override {
1889 unsigned DiagID = 0;
1890 switch (LEK) {
1891 case LEK_LockedSomePredecessors:
1892 DiagID = diag::warn_lock_some_predecessors;
1893 break;
1894 case LEK_LockedSomeLoopIterations:
1895 DiagID = diag::warn_expecting_lock_held_on_loop;
1896 break;
1897 case LEK_LockedAtEndOfFunction:
1898 DiagID = diag::warn_no_unlock;
1899 break;
1900 case LEK_NotLockedAtEndOfFunction:
1901 DiagID = diag::warn_expecting_locked;
1902 break;
1904 if (LocEndOfScope.isInvalid())
1905 LocEndOfScope = FunEndLocation;
1907 PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << Kind
1908 << LockName);
1909 Warnings.emplace_back(std::move(Warning),
1910 makeLockedHereNote(LocLocked, Kind));
1913 void handleExclusiveAndShared(StringRef Kind, Name LockName,
1914 SourceLocation Loc1,
1915 SourceLocation Loc2) override {
1916 PartialDiagnosticAt Warning(Loc1,
1917 S.PDiag(diag::warn_lock_exclusive_and_shared)
1918 << Kind << LockName);
1919 PartialDiagnosticAt Note(Loc2, S.PDiag(diag::note_lock_exclusive_and_shared)
1920 << Kind << LockName);
1921 Warnings.emplace_back(std::move(Warning), getNotes(Note));
1924 void handleNoMutexHeld(const NamedDecl *D, ProtectedOperationKind POK,
1925 AccessKind AK, SourceLocation Loc) override {
1926 assert((POK == POK_VarAccess || POK == POK_VarDereference) &&
1927 "Only works for variables");
1928 unsigned DiagID = POK == POK_VarAccess?
1929 diag::warn_variable_requires_any_lock:
1930 diag::warn_var_deref_requires_any_lock;
1931 PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
1932 << D << getLockKindFromAccessKind(AK));
1933 Warnings.emplace_back(std::move(Warning), getNotes());
1936 void handleMutexNotHeld(StringRef Kind, const NamedDecl *D,
1937 ProtectedOperationKind POK, Name LockName,
1938 LockKind LK, SourceLocation Loc,
1939 Name *PossibleMatch) override {
1940 unsigned DiagID = 0;
1941 if (PossibleMatch) {
1942 switch (POK) {
1943 case POK_VarAccess:
1944 DiagID = diag::warn_variable_requires_lock_precise;
1945 break;
1946 case POK_VarDereference:
1947 DiagID = diag::warn_var_deref_requires_lock_precise;
1948 break;
1949 case POK_FunctionCall:
1950 DiagID = diag::warn_fun_requires_lock_precise;
1951 break;
1952 case POK_PassByRef:
1953 DiagID = diag::warn_guarded_pass_by_reference;
1954 break;
1955 case POK_PtPassByRef:
1956 DiagID = diag::warn_pt_guarded_pass_by_reference;
1957 break;
1959 PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
1960 << D
1961 << LockName << LK);
1962 PartialDiagnosticAt Note(Loc, S.PDiag(diag::note_found_mutex_near_match)
1963 << *PossibleMatch);
1964 if (Verbose && POK == POK_VarAccess) {
1965 PartialDiagnosticAt VNote(D->getLocation(),
1966 S.PDiag(diag::note_guarded_by_declared_here)
1967 << D->getDeclName());
1968 Warnings.emplace_back(std::move(Warning), getNotes(Note, VNote));
1969 } else
1970 Warnings.emplace_back(std::move(Warning), getNotes(Note));
1971 } else {
1972 switch (POK) {
1973 case POK_VarAccess:
1974 DiagID = diag::warn_variable_requires_lock;
1975 break;
1976 case POK_VarDereference:
1977 DiagID = diag::warn_var_deref_requires_lock;
1978 break;
1979 case POK_FunctionCall:
1980 DiagID = diag::warn_fun_requires_lock;
1981 break;
1982 case POK_PassByRef:
1983 DiagID = diag::warn_guarded_pass_by_reference;
1984 break;
1985 case POK_PtPassByRef:
1986 DiagID = diag::warn_pt_guarded_pass_by_reference;
1987 break;
1989 PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
1990 << D
1991 << LockName << LK);
1992 if (Verbose && POK == POK_VarAccess) {
1993 PartialDiagnosticAt Note(D->getLocation(),
1994 S.PDiag(diag::note_guarded_by_declared_here));
1995 Warnings.emplace_back(std::move(Warning), getNotes(Note));
1996 } else
1997 Warnings.emplace_back(std::move(Warning), getNotes());
2001 void handleNegativeNotHeld(StringRef Kind, Name LockName, Name Neg,
2002 SourceLocation Loc) override {
2003 PartialDiagnosticAt Warning(Loc,
2004 S.PDiag(diag::warn_acquire_requires_negative_cap)
2005 << Kind << LockName << Neg);
2006 Warnings.emplace_back(std::move(Warning), getNotes());
2009 void handleNegativeNotHeld(const NamedDecl *D, Name LockName,
2010 SourceLocation Loc) override {
2011 PartialDiagnosticAt Warning(
2012 Loc, S.PDiag(diag::warn_fun_requires_negative_cap) << D << LockName);
2013 Warnings.emplace_back(std::move(Warning), getNotes());
2016 void handleFunExcludesLock(StringRef Kind, Name FunName, Name LockName,
2017 SourceLocation Loc) override {
2018 PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_fun_excludes_mutex)
2019 << Kind << FunName << LockName);
2020 Warnings.emplace_back(std::move(Warning), getNotes());
2023 void handleLockAcquiredBefore(StringRef Kind, Name L1Name, Name L2Name,
2024 SourceLocation Loc) override {
2025 PartialDiagnosticAt Warning(Loc,
2026 S.PDiag(diag::warn_acquired_before) << Kind << L1Name << L2Name);
2027 Warnings.emplace_back(std::move(Warning), getNotes());
2030 void handleBeforeAfterCycle(Name L1Name, SourceLocation Loc) override {
2031 PartialDiagnosticAt Warning(Loc,
2032 S.PDiag(diag::warn_acquired_before_after_cycle) << L1Name);
2033 Warnings.emplace_back(std::move(Warning), getNotes());
2036 void enterFunction(const FunctionDecl* FD) override {
2037 CurrentFunction = FD;
2040 void leaveFunction(const FunctionDecl* FD) override {
2041 CurrentFunction = nullptr;
2044 } // anonymous namespace
2045 } // namespace threadSafety
2046 } // namespace clang
2048 //===----------------------------------------------------------------------===//
2049 // -Wconsumed
2050 //===----------------------------------------------------------------------===//
2052 namespace clang {
2053 namespace consumed {
2054 namespace {
2055 class ConsumedWarningsHandler : public ConsumedWarningsHandlerBase {
2057 Sema &S;
2058 DiagList Warnings;
2060 public:
2062 ConsumedWarningsHandler(Sema &S) : S(S) {}
2064 void emitDiagnostics() override {
2065 Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
2066 for (const auto &Diag : Warnings) {
2067 S.Diag(Diag.first.first, Diag.first.second);
2068 for (const auto &Note : Diag.second)
2069 S.Diag(Note.first, Note.second);
2073 void warnLoopStateMismatch(SourceLocation Loc,
2074 StringRef VariableName) override {
2075 PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_loop_state_mismatch) <<
2076 VariableName);
2078 Warnings.emplace_back(std::move(Warning), OptionalNotes());
2081 void warnParamReturnTypestateMismatch(SourceLocation Loc,
2082 StringRef VariableName,
2083 StringRef ExpectedState,
2084 StringRef ObservedState) override {
2086 PartialDiagnosticAt Warning(Loc, S.PDiag(
2087 diag::warn_param_return_typestate_mismatch) << VariableName <<
2088 ExpectedState << ObservedState);
2090 Warnings.emplace_back(std::move(Warning), OptionalNotes());
2093 void warnParamTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
2094 StringRef ObservedState) override {
2096 PartialDiagnosticAt Warning(Loc, S.PDiag(
2097 diag::warn_param_typestate_mismatch) << ExpectedState << ObservedState);
2099 Warnings.emplace_back(std::move(Warning), OptionalNotes());
2102 void warnReturnTypestateForUnconsumableType(SourceLocation Loc,
2103 StringRef TypeName) override {
2104 PartialDiagnosticAt Warning(Loc, S.PDiag(
2105 diag::warn_return_typestate_for_unconsumable_type) << TypeName);
2107 Warnings.emplace_back(std::move(Warning), OptionalNotes());
2110 void warnReturnTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
2111 StringRef ObservedState) override {
2113 PartialDiagnosticAt Warning(Loc, S.PDiag(
2114 diag::warn_return_typestate_mismatch) << ExpectedState << ObservedState);
2116 Warnings.emplace_back(std::move(Warning), OptionalNotes());
2119 void warnUseOfTempInInvalidState(StringRef MethodName, StringRef State,
2120 SourceLocation Loc) override {
2122 PartialDiagnosticAt Warning(Loc, S.PDiag(
2123 diag::warn_use_of_temp_in_invalid_state) << MethodName << State);
2125 Warnings.emplace_back(std::move(Warning), OptionalNotes());
2128 void warnUseInInvalidState(StringRef MethodName, StringRef VariableName,
2129 StringRef State, SourceLocation Loc) override {
2131 PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_use_in_invalid_state) <<
2132 MethodName << VariableName << State);
2134 Warnings.emplace_back(std::move(Warning), OptionalNotes());
2137 } // anonymous namespace
2138 } // namespace consumed
2139 } // namespace clang
2141 //===----------------------------------------------------------------------===//
2142 // AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
2143 // warnings on a function, method, or block.
2144 //===----------------------------------------------------------------------===//
2146 sema::AnalysisBasedWarnings::Policy::Policy() {
2147 enableCheckFallThrough = 1;
2148 enableCheckUnreachable = 0;
2149 enableThreadSafetyAnalysis = 0;
2150 enableConsumedAnalysis = 0;
2153 /// InterProceduralData aims to be a storage of whatever data should be passed
2154 /// between analyses of different functions.
2156 /// At the moment, its primary goal is to make the information gathered during
2157 /// the analysis of the blocks available during the analysis of the enclosing
2158 /// function. This is important due to the fact that blocks are analyzed before
2159 /// the enclosed function is even parsed fully, so it is not viable to access
2160 /// anything in the outer scope while analyzing the block. On the other hand,
2161 /// re-building CFG for blocks and re-analyzing them when we do have all the
2162 /// information (i.e. during the analysis of the enclosing function) seems to be
2163 /// ill-designed.
2164 class sema::AnalysisBasedWarnings::InterProceduralData {
2165 public:
2166 // It is important to analyze blocks within functions because it's a very
2167 // common pattern to capture completion handler parameters by blocks.
2168 CalledOnceInterProceduralData CalledOnceData;
2171 static unsigned isEnabled(DiagnosticsEngine &D, unsigned diag) {
2172 return (unsigned)!D.isIgnored(diag, SourceLocation());
2175 sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
2176 : S(s), IPData(std::make_unique<InterProceduralData>()),
2177 NumFunctionsAnalyzed(0), NumFunctionsWithBadCFGs(0), NumCFGBlocks(0),
2178 MaxCFGBlocksPerFunction(0), NumUninitAnalysisFunctions(0),
2179 NumUninitAnalysisVariables(0), MaxUninitAnalysisVariablesPerFunction(0),
2180 NumUninitAnalysisBlockVisits(0),
2181 MaxUninitAnalysisBlockVisitsPerFunction(0) {
2183 using namespace diag;
2184 DiagnosticsEngine &D = S.getDiagnostics();
2186 DefaultPolicy.enableCheckUnreachable =
2187 isEnabled(D, warn_unreachable) || isEnabled(D, warn_unreachable_break) ||
2188 isEnabled(D, warn_unreachable_return) ||
2189 isEnabled(D, warn_unreachable_loop_increment);
2191 DefaultPolicy.enableThreadSafetyAnalysis = isEnabled(D, warn_double_lock);
2193 DefaultPolicy.enableConsumedAnalysis =
2194 isEnabled(D, warn_use_in_invalid_state);
2197 // We need this here for unique_ptr with forward declared class.
2198 sema::AnalysisBasedWarnings::~AnalysisBasedWarnings() = default;
2200 static void flushDiagnostics(Sema &S, const sema::FunctionScopeInfo *fscope) {
2201 for (const auto &D : fscope->PossiblyUnreachableDiags)
2202 S.Diag(D.Loc, D.PD);
2205 void clang::sema::AnalysisBasedWarnings::IssueWarnings(
2206 sema::AnalysisBasedWarnings::Policy P, sema::FunctionScopeInfo *fscope,
2207 const Decl *D, QualType BlockType) {
2209 // We avoid doing analysis-based warnings when there are errors for
2210 // two reasons:
2211 // (1) The CFGs often can't be constructed (if the body is invalid), so
2212 // don't bother trying.
2213 // (2) The code already has problems; running the analysis just takes more
2214 // time.
2215 DiagnosticsEngine &Diags = S.getDiagnostics();
2217 // Do not do any analysis if we are going to just ignore them.
2218 if (Diags.getIgnoreAllWarnings() ||
2219 (Diags.getSuppressSystemWarnings() &&
2220 S.SourceMgr.isInSystemHeader(D->getLocation())))
2221 return;
2223 // For code in dependent contexts, we'll do this at instantiation time.
2224 if (cast<DeclContext>(D)->isDependentContext())
2225 return;
2227 if (S.hasUncompilableErrorOccurred()) {
2228 // Flush out any possibly unreachable diagnostics.
2229 flushDiagnostics(S, fscope);
2230 return;
2233 const Stmt *Body = D->getBody();
2234 assert(Body);
2236 // Construct the analysis context with the specified CFG build options.
2237 AnalysisDeclContext AC(/* AnalysisDeclContextManager */ nullptr, D);
2239 // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
2240 // explosion for destructors that can result and the compile time hit.
2241 AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
2242 AC.getCFGBuildOptions().AddEHEdges = false;
2243 AC.getCFGBuildOptions().AddInitializers = true;
2244 AC.getCFGBuildOptions().AddImplicitDtors = true;
2245 AC.getCFGBuildOptions().AddTemporaryDtors = true;
2246 AC.getCFGBuildOptions().AddCXXNewAllocator = false;
2247 AC.getCFGBuildOptions().AddCXXDefaultInitExprInCtors = true;
2249 // Force that certain expressions appear as CFGElements in the CFG. This
2250 // is used to speed up various analyses.
2251 // FIXME: This isn't the right factoring. This is here for initial
2252 // prototyping, but we need a way for analyses to say what expressions they
2253 // expect to always be CFGElements and then fill in the BuildOptions
2254 // appropriately. This is essentially a layering violation.
2255 if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis ||
2256 P.enableConsumedAnalysis) {
2257 // Unreachable code analysis and thread safety require a linearized CFG.
2258 AC.getCFGBuildOptions().setAllAlwaysAdd();
2260 else {
2261 AC.getCFGBuildOptions()
2262 .setAlwaysAdd(Stmt::BinaryOperatorClass)
2263 .setAlwaysAdd(Stmt::CompoundAssignOperatorClass)
2264 .setAlwaysAdd(Stmt::BlockExprClass)
2265 .setAlwaysAdd(Stmt::CStyleCastExprClass)
2266 .setAlwaysAdd(Stmt::DeclRefExprClass)
2267 .setAlwaysAdd(Stmt::ImplicitCastExprClass)
2268 .setAlwaysAdd(Stmt::UnaryOperatorClass);
2271 // Install the logical handler.
2272 llvm::Optional<LogicalErrorHandler> LEH;
2273 if (LogicalErrorHandler::hasActiveDiagnostics(Diags, D->getBeginLoc())) {
2274 LEH.emplace(S);
2275 AC.getCFGBuildOptions().Observer = &*LEH;
2278 // Emit delayed diagnostics.
2279 if (!fscope->PossiblyUnreachableDiags.empty()) {
2280 bool analyzed = false;
2282 // Register the expressions with the CFGBuilder.
2283 for (const auto &D : fscope->PossiblyUnreachableDiags) {
2284 for (const Stmt *S : D.Stmts)
2285 AC.registerForcedBlockExpression(S);
2288 if (AC.getCFG()) {
2289 analyzed = true;
2290 for (const auto &D : fscope->PossiblyUnreachableDiags) {
2291 bool AllReachable = true;
2292 for (const Stmt *S : D.Stmts) {
2293 const CFGBlock *block = AC.getBlockForRegisteredExpression(S);
2294 CFGReverseBlockReachabilityAnalysis *cra =
2295 AC.getCFGReachablityAnalysis();
2296 // FIXME: We should be able to assert that block is non-null, but
2297 // the CFG analysis can skip potentially-evaluated expressions in
2298 // edge cases; see test/Sema/vla-2.c.
2299 if (block && cra) {
2300 // Can this block be reached from the entrance?
2301 if (!cra->isReachable(&AC.getCFG()->getEntry(), block)) {
2302 AllReachable = false;
2303 break;
2306 // If we cannot map to a basic block, assume the statement is
2307 // reachable.
2310 if (AllReachable)
2311 S.Diag(D.Loc, D.PD);
2315 if (!analyzed)
2316 flushDiagnostics(S, fscope);
2319 // Warning: check missing 'return'
2320 if (P.enableCheckFallThrough) {
2321 const CheckFallThroughDiagnostics &CD =
2322 (isa<BlockDecl>(D)
2323 ? CheckFallThroughDiagnostics::MakeForBlock()
2324 : (isa<CXXMethodDecl>(D) &&
2325 cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call &&
2326 cast<CXXMethodDecl>(D)->getParent()->isLambda())
2327 ? CheckFallThroughDiagnostics::MakeForLambda()
2328 : (fscope->isCoroutine()
2329 ? CheckFallThroughDiagnostics::MakeForCoroutine(D)
2330 : CheckFallThroughDiagnostics::MakeForFunction(D)));
2331 CheckFallThroughForBody(S, D, Body, BlockType, CD, AC, fscope);
2334 // Warning: check for unreachable code
2335 if (P.enableCheckUnreachable) {
2336 // Only check for unreachable code on non-template instantiations.
2337 // Different template instantiations can effectively change the control-flow
2338 // and it is very difficult to prove that a snippet of code in a template
2339 // is unreachable for all instantiations.
2340 bool isTemplateInstantiation = false;
2341 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
2342 isTemplateInstantiation = Function->isTemplateInstantiation();
2343 if (!isTemplateInstantiation)
2344 CheckUnreachable(S, AC);
2347 // Check for thread safety violations
2348 if (P.enableThreadSafetyAnalysis) {
2349 SourceLocation FL = AC.getDecl()->getLocation();
2350 SourceLocation FEL = AC.getDecl()->getEndLoc();
2351 threadSafety::ThreadSafetyReporter Reporter(S, FL, FEL);
2352 if (!Diags.isIgnored(diag::warn_thread_safety_beta, D->getBeginLoc()))
2353 Reporter.setIssueBetaWarnings(true);
2354 if (!Diags.isIgnored(diag::warn_thread_safety_verbose, D->getBeginLoc()))
2355 Reporter.setVerbose(true);
2357 threadSafety::runThreadSafetyAnalysis(AC, Reporter,
2358 &S.ThreadSafetyDeclCache);
2359 Reporter.emitDiagnostics();
2362 // Check for violations of consumed properties.
2363 if (P.enableConsumedAnalysis) {
2364 consumed::ConsumedWarningsHandler WarningHandler(S);
2365 consumed::ConsumedAnalyzer Analyzer(WarningHandler);
2366 Analyzer.run(AC);
2369 if (!Diags.isIgnored(diag::warn_uninit_var, D->getBeginLoc()) ||
2370 !Diags.isIgnored(diag::warn_sometimes_uninit_var, D->getBeginLoc()) ||
2371 !Diags.isIgnored(diag::warn_maybe_uninit_var, D->getBeginLoc()) ||
2372 !Diags.isIgnored(diag::warn_uninit_const_reference, D->getBeginLoc())) {
2373 if (CFG *cfg = AC.getCFG()) {
2374 UninitValsDiagReporter reporter(S);
2375 UninitVariablesAnalysisStats stats;
2376 std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
2377 runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
2378 reporter, stats);
2380 if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
2381 ++NumUninitAnalysisFunctions;
2382 NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
2383 NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
2384 MaxUninitAnalysisVariablesPerFunction =
2385 std::max(MaxUninitAnalysisVariablesPerFunction,
2386 stats.NumVariablesAnalyzed);
2387 MaxUninitAnalysisBlockVisitsPerFunction =
2388 std::max(MaxUninitAnalysisBlockVisitsPerFunction,
2389 stats.NumBlockVisits);
2394 // Check for violations of "called once" parameter properties.
2395 if (S.getLangOpts().ObjC && !S.getLangOpts().CPlusPlus &&
2396 shouldAnalyzeCalledOnceParameters(Diags, D->getBeginLoc())) {
2397 if (AC.getCFG()) {
2398 CalledOnceCheckReporter Reporter(S, IPData->CalledOnceData);
2399 checkCalledOnceParameters(
2400 AC, Reporter,
2401 shouldAnalyzeCalledOnceConventions(Diags, D->getBeginLoc()));
2405 bool FallThroughDiagFull =
2406 !Diags.isIgnored(diag::warn_unannotated_fallthrough, D->getBeginLoc());
2407 bool FallThroughDiagPerFunction = !Diags.isIgnored(
2408 diag::warn_unannotated_fallthrough_per_function, D->getBeginLoc());
2409 if (FallThroughDiagFull || FallThroughDiagPerFunction ||
2410 fscope->HasFallthroughStmt) {
2411 DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull);
2414 if (S.getLangOpts().ObjCWeak &&
2415 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, D->getBeginLoc()))
2416 diagnoseRepeatedUseOfWeak(S, fscope, D, AC.getParentMap());
2419 // Check for infinite self-recursion in functions
2420 if (!Diags.isIgnored(diag::warn_infinite_recursive_function,
2421 D->getBeginLoc())) {
2422 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2423 checkRecursiveFunction(S, FD, Body, AC);
2427 // Check for throw out of non-throwing function.
2428 if (!Diags.isIgnored(diag::warn_throw_in_noexcept_func, D->getBeginLoc()))
2429 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
2430 if (S.getLangOpts().CPlusPlus && isNoexcept(FD))
2431 checkThrowInNonThrowingFunc(S, FD, AC);
2433 // If none of the previous checks caused a CFG build, trigger one here
2434 // for the logical error handler.
2435 if (LogicalErrorHandler::hasActiveDiagnostics(Diags, D->getBeginLoc())) {
2436 AC.getCFG();
2439 // Collect statistics about the CFG if it was built.
2440 if (S.CollectStats && AC.isCFGBuilt()) {
2441 ++NumFunctionsAnalyzed;
2442 if (CFG *cfg = AC.getCFG()) {
2443 // If we successfully built a CFG for this context, record some more
2444 // detail information about it.
2445 NumCFGBlocks += cfg->getNumBlockIDs();
2446 MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
2447 cfg->getNumBlockIDs());
2448 } else {
2449 ++NumFunctionsWithBadCFGs;
2454 void clang::sema::AnalysisBasedWarnings::PrintStats() const {
2455 llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
2457 unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
2458 unsigned AvgCFGBlocksPerFunction =
2459 !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
2460 llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
2461 << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
2462 << " " << NumCFGBlocks << " CFG blocks built.\n"
2463 << " " << AvgCFGBlocksPerFunction
2464 << " average CFG blocks per function.\n"
2465 << " " << MaxCFGBlocksPerFunction
2466 << " max CFG blocks per function.\n";
2468 unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
2469 : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
2470 unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
2471 : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
2472 llvm::errs() << NumUninitAnalysisFunctions
2473 << " functions analyzed for uninitialiazed variables\n"
2474 << " " << NumUninitAnalysisVariables << " variables analyzed.\n"
2475 << " " << AvgUninitVariablesPerFunction
2476 << " average variables per function.\n"
2477 << " " << MaxUninitAnalysisVariablesPerFunction
2478 << " max variables per function.\n"
2479 << " " << NumUninitAnalysisBlockVisits << " block visits.\n"
2480 << " " << AvgUninitBlockVisitsPerFunction
2481 << " average block visits per function.\n"
2482 << " " << MaxUninitAnalysisBlockVisitsPerFunction
2483 << " max block visits per function.\n";