[docs] Fix build-docs.sh
[llvm-project.git] / clang / lib / Sema / SemaDecl.cpp
blobdb0e2981aa8211c0d8a588bb593c3ddc54bcc5a7
1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for declarations.
11 //===----------------------------------------------------------------------===//
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/CommentDiagnostic.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/EvaluatedExprVisitor.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/NonTrivialTypeVisitor.h"
27 #include "clang/AST/Randstruct.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/PartialDiagnostic.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
34 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
35 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
36 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
37 #include "clang/Sema/CXXFieldCollector.h"
38 #include "clang/Sema/DeclSpec.h"
39 #include "clang/Sema/DelayedDiagnostic.h"
40 #include "clang/Sema/Initialization.h"
41 #include "clang/Sema/Lookup.h"
42 #include "clang/Sema/ParsedTemplate.h"
43 #include "clang/Sema/Scope.h"
44 #include "clang/Sema/ScopeInfo.h"
45 #include "clang/Sema/SemaInternal.h"
46 #include "clang/Sema/Template.h"
47 #include "llvm/ADT/SmallString.h"
48 #include "llvm/ADT/Triple.h"
49 #include <algorithm>
50 #include <cstring>
51 #include <functional>
52 #include <unordered_map>
54 using namespace clang;
55 using namespace sema;
57 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
58 if (OwnedType) {
59 Decl *Group[2] = { OwnedType, Ptr };
60 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
63 return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
66 namespace {
68 class TypeNameValidatorCCC final : public CorrectionCandidateCallback {
69 public:
70 TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
71 bool AllowTemplates = false,
72 bool AllowNonTemplates = true)
73 : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
74 AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
75 WantExpressionKeywords = false;
76 WantCXXNamedCasts = false;
77 WantRemainingKeywords = false;
80 bool ValidateCandidate(const TypoCorrection &candidate) override {
81 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
82 if (!AllowInvalidDecl && ND->isInvalidDecl())
83 return false;
85 if (getAsTypeTemplateDecl(ND))
86 return AllowTemplates;
88 bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
89 if (!IsType)
90 return false;
92 if (AllowNonTemplates)
93 return true;
95 // An injected-class-name of a class template (specialization) is valid
96 // as a template or as a non-template.
97 if (AllowTemplates) {
98 auto *RD = dyn_cast<CXXRecordDecl>(ND);
99 if (!RD || !RD->isInjectedClassName())
100 return false;
101 RD = cast<CXXRecordDecl>(RD->getDeclContext());
102 return RD->getDescribedClassTemplate() ||
103 isa<ClassTemplateSpecializationDecl>(RD);
106 return false;
109 return !WantClassName && candidate.isKeyword();
112 std::unique_ptr<CorrectionCandidateCallback> clone() override {
113 return std::make_unique<TypeNameValidatorCCC>(*this);
116 private:
117 bool AllowInvalidDecl;
118 bool WantClassName;
119 bool AllowTemplates;
120 bool AllowNonTemplates;
123 } // end anonymous namespace
125 /// Determine whether the token kind starts a simple-type-specifier.
126 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
127 switch (Kind) {
128 // FIXME: Take into account the current language when deciding whether a
129 // token kind is a valid type specifier
130 case tok::kw_short:
131 case tok::kw_long:
132 case tok::kw___int64:
133 case tok::kw___int128:
134 case tok::kw_signed:
135 case tok::kw_unsigned:
136 case tok::kw_void:
137 case tok::kw_char:
138 case tok::kw_int:
139 case tok::kw_half:
140 case tok::kw_float:
141 case tok::kw_double:
142 case tok::kw___bf16:
143 case tok::kw__Float16:
144 case tok::kw___float128:
145 case tok::kw___ibm128:
146 case tok::kw_wchar_t:
147 case tok::kw_bool:
148 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait:
149 #include "clang/Basic/TransformTypeTraits.def"
150 case tok::kw___auto_type:
151 return true;
153 case tok::annot_typename:
154 case tok::kw_char16_t:
155 case tok::kw_char32_t:
156 case tok::kw_typeof:
157 case tok::annot_decltype:
158 case tok::kw_decltype:
159 return getLangOpts().CPlusPlus;
161 case tok::kw_char8_t:
162 return getLangOpts().Char8;
164 default:
165 break;
168 return false;
171 namespace {
172 enum class UnqualifiedTypeNameLookupResult {
173 NotFound,
174 FoundNonType,
175 FoundType
177 } // end anonymous namespace
179 /// Tries to perform unqualified lookup of the type decls in bases for
180 /// dependent class.
181 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
182 /// type decl, \a FoundType if only type decls are found.
183 static UnqualifiedTypeNameLookupResult
184 lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
185 SourceLocation NameLoc,
186 const CXXRecordDecl *RD) {
187 if (!RD->hasDefinition())
188 return UnqualifiedTypeNameLookupResult::NotFound;
189 // Look for type decls in base classes.
190 UnqualifiedTypeNameLookupResult FoundTypeDecl =
191 UnqualifiedTypeNameLookupResult::NotFound;
192 for (const auto &Base : RD->bases()) {
193 const CXXRecordDecl *BaseRD = nullptr;
194 if (auto *BaseTT = Base.getType()->getAs<TagType>())
195 BaseRD = BaseTT->getAsCXXRecordDecl();
196 else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
197 // Look for type decls in dependent base classes that have known primary
198 // templates.
199 if (!TST || !TST->isDependentType())
200 continue;
201 auto *TD = TST->getTemplateName().getAsTemplateDecl();
202 if (!TD)
203 continue;
204 if (auto *BasePrimaryTemplate =
205 dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
206 if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
207 BaseRD = BasePrimaryTemplate;
208 else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
209 if (const ClassTemplatePartialSpecializationDecl *PS =
210 CTD->findPartialSpecialization(Base.getType()))
211 if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
212 BaseRD = PS;
216 if (BaseRD) {
217 for (NamedDecl *ND : BaseRD->lookup(&II)) {
218 if (!isa<TypeDecl>(ND))
219 return UnqualifiedTypeNameLookupResult::FoundNonType;
220 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
222 if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
223 switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
224 case UnqualifiedTypeNameLookupResult::FoundNonType:
225 return UnqualifiedTypeNameLookupResult::FoundNonType;
226 case UnqualifiedTypeNameLookupResult::FoundType:
227 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
228 break;
229 case UnqualifiedTypeNameLookupResult::NotFound:
230 break;
236 return FoundTypeDecl;
239 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
240 const IdentifierInfo &II,
241 SourceLocation NameLoc) {
242 // Lookup in the parent class template context, if any.
243 const CXXRecordDecl *RD = nullptr;
244 UnqualifiedTypeNameLookupResult FoundTypeDecl =
245 UnqualifiedTypeNameLookupResult::NotFound;
246 for (DeclContext *DC = S.CurContext;
247 DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
248 DC = DC->getParent()) {
249 // Look for type decls in dependent base classes that have known primary
250 // templates.
251 RD = dyn_cast<CXXRecordDecl>(DC);
252 if (RD && RD->getDescribedClassTemplate())
253 FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
255 if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
256 return nullptr;
258 // We found some types in dependent base classes. Recover as if the user
259 // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the
260 // lookup during template instantiation.
261 S.Diag(NameLoc, diag::ext_found_in_dependent_base) << &II;
263 ASTContext &Context = S.Context;
264 auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
265 cast<Type>(Context.getRecordType(RD)));
266 QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
268 CXXScopeSpec SS;
269 SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
271 TypeLocBuilder Builder;
272 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
273 DepTL.setNameLoc(NameLoc);
274 DepTL.setElaboratedKeywordLoc(SourceLocation());
275 DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
276 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
279 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
280 static ParsedType buildNamedType(Sema &S, const CXXScopeSpec *SS, QualType T,
281 SourceLocation NameLoc,
282 bool WantNontrivialTypeSourceInfo = true) {
283 switch (T->getTypeClass()) {
284 case Type::DeducedTemplateSpecialization:
285 case Type::Enum:
286 case Type::InjectedClassName:
287 case Type::Record:
288 case Type::Typedef:
289 case Type::UnresolvedUsing:
290 case Type::Using:
291 break;
292 // These can never be qualified so an ElaboratedType node
293 // would carry no additional meaning.
294 case Type::ObjCInterface:
295 case Type::ObjCTypeParam:
296 case Type::TemplateTypeParm:
297 return ParsedType::make(T);
298 default:
299 llvm_unreachable("Unexpected Type Class");
302 if (!SS || SS->isEmpty())
303 return ParsedType::make(
304 S.Context.getElaboratedType(ETK_None, nullptr, T, nullptr));
306 QualType ElTy = S.getElaboratedType(ETK_None, *SS, T);
307 if (!WantNontrivialTypeSourceInfo)
308 return ParsedType::make(ElTy);
310 TypeLocBuilder Builder;
311 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
312 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(ElTy);
313 ElabTL.setElaboratedKeywordLoc(SourceLocation());
314 ElabTL.setQualifierLoc(SS->getWithLocInContext(S.Context));
315 return S.CreateParsedType(ElTy, Builder.getTypeSourceInfo(S.Context, ElTy));
318 /// If the identifier refers to a type name within this scope,
319 /// return the declaration of that type.
321 /// This routine performs ordinary name lookup of the identifier II
322 /// within the given scope, with optional C++ scope specifier SS, to
323 /// determine whether the name refers to a type. If so, returns an
324 /// opaque pointer (actually a QualType) corresponding to that
325 /// type. Otherwise, returns NULL.
326 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
327 Scope *S, CXXScopeSpec *SS,
328 bool isClassName, bool HasTrailingDot,
329 ParsedType ObjectTypePtr,
330 bool IsCtorOrDtorName,
331 bool WantNontrivialTypeSourceInfo,
332 bool IsClassTemplateDeductionContext,
333 IdentifierInfo **CorrectedII) {
334 // FIXME: Consider allowing this outside C++1z mode as an extension.
335 bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
336 getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
337 !isClassName && !HasTrailingDot;
339 // Determine where we will perform name lookup.
340 DeclContext *LookupCtx = nullptr;
341 if (ObjectTypePtr) {
342 QualType ObjectType = ObjectTypePtr.get();
343 if (ObjectType->isRecordType())
344 LookupCtx = computeDeclContext(ObjectType);
345 } else if (SS && SS->isNotEmpty()) {
346 LookupCtx = computeDeclContext(*SS, false);
348 if (!LookupCtx) {
349 if (isDependentScopeSpecifier(*SS)) {
350 // C++ [temp.res]p3:
351 // A qualified-id that refers to a type and in which the
352 // nested-name-specifier depends on a template-parameter (14.6.2)
353 // shall be prefixed by the keyword typename to indicate that the
354 // qualified-id denotes a type, forming an
355 // elaborated-type-specifier (7.1.5.3).
357 // We therefore do not perform any name lookup if the result would
358 // refer to a member of an unknown specialization.
359 if (!isClassName && !IsCtorOrDtorName)
360 return nullptr;
362 // We know from the grammar that this name refers to a type,
363 // so build a dependent node to describe the type.
364 if (WantNontrivialTypeSourceInfo)
365 return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
367 NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
368 QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
369 II, NameLoc);
370 return ParsedType::make(T);
373 return nullptr;
376 if (!LookupCtx->isDependentContext() &&
377 RequireCompleteDeclContext(*SS, LookupCtx))
378 return nullptr;
381 // FIXME: LookupNestedNameSpecifierName isn't the right kind of
382 // lookup for class-names.
383 LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
384 LookupOrdinaryName;
385 LookupResult Result(*this, &II, NameLoc, Kind);
386 if (LookupCtx) {
387 // Perform "qualified" name lookup into the declaration context we
388 // computed, which is either the type of the base of a member access
389 // expression or the declaration context associated with a prior
390 // nested-name-specifier.
391 LookupQualifiedName(Result, LookupCtx);
393 if (ObjectTypePtr && Result.empty()) {
394 // C++ [basic.lookup.classref]p3:
395 // If the unqualified-id is ~type-name, the type-name is looked up
396 // in the context of the entire postfix-expression. If the type T of
397 // the object expression is of a class type C, the type-name is also
398 // looked up in the scope of class C. At least one of the lookups shall
399 // find a name that refers to (possibly cv-qualified) T.
400 LookupName(Result, S);
402 } else {
403 // Perform unqualified name lookup.
404 LookupName(Result, S);
406 // For unqualified lookup in a class template in MSVC mode, look into
407 // dependent base classes where the primary class template is known.
408 if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
409 if (ParsedType TypeInBase =
410 recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
411 return TypeInBase;
415 NamedDecl *IIDecl = nullptr;
416 UsingShadowDecl *FoundUsingShadow = nullptr;
417 switch (Result.getResultKind()) {
418 case LookupResult::NotFound:
419 case LookupResult::NotFoundInCurrentInstantiation:
420 if (CorrectedII) {
421 TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName,
422 AllowDeducedTemplate);
423 TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind,
424 S, SS, CCC, CTK_ErrorRecovery);
425 IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
426 TemplateTy Template;
427 bool MemberOfUnknownSpecialization;
428 UnqualifiedId TemplateName;
429 TemplateName.setIdentifier(NewII, NameLoc);
430 NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
431 CXXScopeSpec NewSS, *NewSSPtr = SS;
432 if (SS && NNS) {
433 NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
434 NewSSPtr = &NewSS;
436 if (Correction && (NNS || NewII != &II) &&
437 // Ignore a correction to a template type as the to-be-corrected
438 // identifier is not a template (typo correction for template names
439 // is handled elsewhere).
440 !(getLangOpts().CPlusPlus && NewSSPtr &&
441 isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
442 Template, MemberOfUnknownSpecialization))) {
443 ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
444 isClassName, HasTrailingDot, ObjectTypePtr,
445 IsCtorOrDtorName,
446 WantNontrivialTypeSourceInfo,
447 IsClassTemplateDeductionContext);
448 if (Ty) {
449 diagnoseTypo(Correction,
450 PDiag(diag::err_unknown_type_or_class_name_suggest)
451 << Result.getLookupName() << isClassName);
452 if (SS && NNS)
453 SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
454 *CorrectedII = NewII;
455 return Ty;
459 // If typo correction failed or was not performed, fall through
460 [[fallthrough]];
461 case LookupResult::FoundOverloaded:
462 case LookupResult::FoundUnresolvedValue:
463 Result.suppressDiagnostics();
464 return nullptr;
466 case LookupResult::Ambiguous:
467 // Recover from type-hiding ambiguities by hiding the type. We'll
468 // do the lookup again when looking for an object, and we can
469 // diagnose the error then. If we don't do this, then the error
470 // about hiding the type will be immediately followed by an error
471 // that only makes sense if the identifier was treated like a type.
472 if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
473 Result.suppressDiagnostics();
474 return nullptr;
477 // Look to see if we have a type anywhere in the list of results.
478 for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
479 Res != ResEnd; ++Res) {
480 NamedDecl *RealRes = (*Res)->getUnderlyingDecl();
481 if (isa<TypeDecl, ObjCInterfaceDecl, UnresolvedUsingIfExistsDecl>(
482 RealRes) ||
483 (AllowDeducedTemplate && getAsTypeTemplateDecl(RealRes))) {
484 if (!IIDecl ||
485 // Make the selection of the recovery decl deterministic.
486 RealRes->getLocation() < IIDecl->getLocation()) {
487 IIDecl = RealRes;
488 FoundUsingShadow = dyn_cast<UsingShadowDecl>(*Res);
493 if (!IIDecl) {
494 // None of the entities we found is a type, so there is no way
495 // to even assume that the result is a type. In this case, don't
496 // complain about the ambiguity. The parser will either try to
497 // perform this lookup again (e.g., as an object name), which
498 // will produce the ambiguity, or will complain that it expected
499 // a type name.
500 Result.suppressDiagnostics();
501 return nullptr;
504 // We found a type within the ambiguous lookup; diagnose the
505 // ambiguity and then return that type. This might be the right
506 // answer, or it might not be, but it suppresses any attempt to
507 // perform the name lookup again.
508 break;
510 case LookupResult::Found:
511 IIDecl = Result.getFoundDecl();
512 FoundUsingShadow = dyn_cast<UsingShadowDecl>(*Result.begin());
513 break;
516 assert(IIDecl && "Didn't find decl");
518 QualType T;
519 if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
520 // C++ [class.qual]p2: A lookup that would find the injected-class-name
521 // instead names the constructors of the class, except when naming a class.
522 // This is ill-formed when we're not actually forming a ctor or dtor name.
523 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
524 auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
525 if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
526 FoundRD->isInjectedClassName() &&
527 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
528 Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
529 << &II << /*Type*/1;
531 DiagnoseUseOfDecl(IIDecl, NameLoc);
533 T = Context.getTypeDeclType(TD);
534 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
535 } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
536 (void)DiagnoseUseOfDecl(IDecl, NameLoc);
537 if (!HasTrailingDot)
538 T = Context.getObjCInterfaceType(IDecl);
539 FoundUsingShadow = nullptr; // FIXME: Target must be a TypeDecl.
540 } else if (auto *UD = dyn_cast<UnresolvedUsingIfExistsDecl>(IIDecl)) {
541 (void)DiagnoseUseOfDecl(UD, NameLoc);
542 // Recover with 'int'
543 return ParsedType::make(Context.IntTy);
544 } else if (AllowDeducedTemplate) {
545 if (auto *TD = getAsTypeTemplateDecl(IIDecl)) {
546 assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD);
547 TemplateName Template =
548 FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD);
549 T = Context.getDeducedTemplateSpecializationType(Template, QualType(),
550 false);
551 // Don't wrap in a further UsingType.
552 FoundUsingShadow = nullptr;
556 if (T.isNull()) {
557 // If it's not plausibly a type, suppress diagnostics.
558 Result.suppressDiagnostics();
559 return nullptr;
562 if (FoundUsingShadow)
563 T = Context.getUsingType(FoundUsingShadow, T);
565 return buildNamedType(*this, SS, T, NameLoc, WantNontrivialTypeSourceInfo);
568 // Builds a fake NNS for the given decl context.
569 static NestedNameSpecifier *
570 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
571 for (;; DC = DC->getLookupParent()) {
572 DC = DC->getPrimaryContext();
573 auto *ND = dyn_cast<NamespaceDecl>(DC);
574 if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
575 return NestedNameSpecifier::Create(Context, nullptr, ND);
576 else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
577 return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
578 RD->getTypeForDecl());
579 else if (isa<TranslationUnitDecl>(DC))
580 return NestedNameSpecifier::GlobalSpecifier(Context);
582 llvm_unreachable("something isn't in TU scope?");
585 /// Find the parent class with dependent bases of the innermost enclosing method
586 /// context. Do not look for enclosing CXXRecordDecls directly, or we will end
587 /// up allowing unqualified dependent type names at class-level, which MSVC
588 /// correctly rejects.
589 static const CXXRecordDecl *
590 findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
591 for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
592 DC = DC->getPrimaryContext();
593 if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
594 if (MD->getParent()->hasAnyDependentBases())
595 return MD->getParent();
597 return nullptr;
600 ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
601 SourceLocation NameLoc,
602 bool IsTemplateTypeArg) {
603 assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode");
605 NestedNameSpecifier *NNS = nullptr;
606 if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
607 // If we weren't able to parse a default template argument, delay lookup
608 // until instantiation time by making a non-dependent DependentTypeName. We
609 // pretend we saw a NestedNameSpecifier referring to the current scope, and
610 // lookup is retried.
611 // FIXME: This hurts our diagnostic quality, since we get errors like "no
612 // type named 'Foo' in 'current_namespace'" when the user didn't write any
613 // name specifiers.
614 NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
615 Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
616 } else if (const CXXRecordDecl *RD =
617 findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
618 // Build a DependentNameType that will perform lookup into RD at
619 // instantiation time.
620 NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
621 RD->getTypeForDecl());
623 // Diagnose that this identifier was undeclared, and retry the lookup during
624 // template instantiation.
625 Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
626 << RD;
627 } else {
628 // This is not a situation that we should recover from.
629 return ParsedType();
632 QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
634 // Build type location information. We synthesized the qualifier, so we have
635 // to build a fake NestedNameSpecifierLoc.
636 NestedNameSpecifierLocBuilder NNSLocBuilder;
637 NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
638 NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
640 TypeLocBuilder Builder;
641 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
642 DepTL.setNameLoc(NameLoc);
643 DepTL.setElaboratedKeywordLoc(SourceLocation());
644 DepTL.setQualifierLoc(QualifierLoc);
645 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
648 /// isTagName() - This method is called *for error recovery purposes only*
649 /// to determine if the specified name is a valid tag name ("struct foo"). If
650 /// so, this returns the TST for the tag corresponding to it (TST_enum,
651 /// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose
652 /// cases in C where the user forgot to specify the tag.
653 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
654 // Do a tag name lookup in this scope.
655 LookupResult R(*this, &II, SourceLocation(), LookupTagName);
656 LookupName(R, S, false);
657 R.suppressDiagnostics();
658 if (R.getResultKind() == LookupResult::Found)
659 if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
660 switch (TD->getTagKind()) {
661 case TTK_Struct: return DeclSpec::TST_struct;
662 case TTK_Interface: return DeclSpec::TST_interface;
663 case TTK_Union: return DeclSpec::TST_union;
664 case TTK_Class: return DeclSpec::TST_class;
665 case TTK_Enum: return DeclSpec::TST_enum;
669 return DeclSpec::TST_unspecified;
672 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
673 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
674 /// then downgrade the missing typename error to a warning.
675 /// This is needed for MSVC compatibility; Example:
676 /// @code
677 /// template<class T> class A {
678 /// public:
679 /// typedef int TYPE;
680 /// };
681 /// template<class T> class B : public A<T> {
682 /// public:
683 /// A<T>::TYPE a; // no typename required because A<T> is a base class.
684 /// };
685 /// @endcode
686 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
687 if (CurContext->isRecord()) {
688 if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
689 return true;
691 const Type *Ty = SS->getScopeRep()->getAsType();
693 CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
694 for (const auto &Base : RD->bases())
695 if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
696 return true;
697 return S->isFunctionPrototypeScope();
699 return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
702 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
703 SourceLocation IILoc,
704 Scope *S,
705 CXXScopeSpec *SS,
706 ParsedType &SuggestedType,
707 bool IsTemplateName) {
708 // Don't report typename errors for editor placeholders.
709 if (II->isEditorPlaceholder())
710 return;
711 // We don't have anything to suggest (yet).
712 SuggestedType = nullptr;
714 // There may have been a typo in the name of the type. Look up typo
715 // results, in case we have something that we can suggest.
716 TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false,
717 /*AllowTemplates=*/IsTemplateName,
718 /*AllowNonTemplates=*/!IsTemplateName);
719 if (TypoCorrection Corrected =
720 CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
721 CCC, CTK_ErrorRecovery)) {
722 // FIXME: Support error recovery for the template-name case.
723 bool CanRecover = !IsTemplateName;
724 if (Corrected.isKeyword()) {
725 // We corrected to a keyword.
726 diagnoseTypo(Corrected,
727 PDiag(IsTemplateName ? diag::err_no_template_suggest
728 : diag::err_unknown_typename_suggest)
729 << II);
730 II = Corrected.getCorrectionAsIdentifierInfo();
731 } else {
732 // We found a similarly-named type or interface; suggest that.
733 if (!SS || !SS->isSet()) {
734 diagnoseTypo(Corrected,
735 PDiag(IsTemplateName ? diag::err_no_template_suggest
736 : diag::err_unknown_typename_suggest)
737 << II, CanRecover);
738 } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
739 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
740 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
741 II->getName().equals(CorrectedStr);
742 diagnoseTypo(Corrected,
743 PDiag(IsTemplateName
744 ? diag::err_no_member_template_suggest
745 : diag::err_unknown_nested_typename_suggest)
746 << II << DC << DroppedSpecifier << SS->getRange(),
747 CanRecover);
748 } else {
749 llvm_unreachable("could not have corrected a typo here");
752 if (!CanRecover)
753 return;
755 CXXScopeSpec tmpSS;
756 if (Corrected.getCorrectionSpecifier())
757 tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
758 SourceRange(IILoc));
759 // FIXME: Support class template argument deduction here.
760 SuggestedType =
761 getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
762 tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
763 /*IsCtorOrDtorName=*/false,
764 /*WantNontrivialTypeSourceInfo=*/true);
766 return;
769 if (getLangOpts().CPlusPlus && !IsTemplateName) {
770 // See if II is a class template that the user forgot to pass arguments to.
771 UnqualifiedId Name;
772 Name.setIdentifier(II, IILoc);
773 CXXScopeSpec EmptySS;
774 TemplateTy TemplateResult;
775 bool MemberOfUnknownSpecialization;
776 if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
777 Name, nullptr, true, TemplateResult,
778 MemberOfUnknownSpecialization) == TNK_Type_template) {
779 diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc);
780 return;
784 // FIXME: Should we move the logic that tries to recover from a missing tag
785 // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
787 if (!SS || (!SS->isSet() && !SS->isInvalid()))
788 Diag(IILoc, IsTemplateName ? diag::err_no_template
789 : diag::err_unknown_typename)
790 << II;
791 else if (DeclContext *DC = computeDeclContext(*SS, false))
792 Diag(IILoc, IsTemplateName ? diag::err_no_member_template
793 : diag::err_typename_nested_not_found)
794 << II << DC << SS->getRange();
795 else if (SS->isValid() && SS->getScopeRep()->containsErrors()) {
796 SuggestedType =
797 ActOnTypenameType(S, SourceLocation(), *SS, *II, IILoc).get();
798 } else if (isDependentScopeSpecifier(*SS)) {
799 unsigned DiagID = diag::err_typename_missing;
800 if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
801 DiagID = diag::ext_typename_missing;
803 Diag(SS->getRange().getBegin(), DiagID)
804 << SS->getScopeRep() << II->getName()
805 << SourceRange(SS->getRange().getBegin(), IILoc)
806 << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
807 SuggestedType = ActOnTypenameType(S, SourceLocation(),
808 *SS, *II, IILoc).get();
809 } else {
810 assert(SS && SS->isInvalid() &&
811 "Invalid scope specifier has already been diagnosed");
815 /// Determine whether the given result set contains either a type name
816 /// or
817 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
818 bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
819 NextToken.is(tok::less);
821 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
822 if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
823 return true;
825 if (CheckTemplate && isa<TemplateDecl>(*I))
826 return true;
829 return false;
832 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
833 Scope *S, CXXScopeSpec &SS,
834 IdentifierInfo *&Name,
835 SourceLocation NameLoc) {
836 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
837 SemaRef.LookupParsedName(R, S, &SS);
838 if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
839 StringRef FixItTagName;
840 switch (Tag->getTagKind()) {
841 case TTK_Class:
842 FixItTagName = "class ";
843 break;
845 case TTK_Enum:
846 FixItTagName = "enum ";
847 break;
849 case TTK_Struct:
850 FixItTagName = "struct ";
851 break;
853 case TTK_Interface:
854 FixItTagName = "__interface ";
855 break;
857 case TTK_Union:
858 FixItTagName = "union ";
859 break;
862 StringRef TagName = FixItTagName.drop_back();
863 SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
864 << Name << TagName << SemaRef.getLangOpts().CPlusPlus
865 << FixItHint::CreateInsertion(NameLoc, FixItTagName);
867 for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
868 I != IEnd; ++I)
869 SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
870 << Name << TagName;
872 // Replace lookup results with just the tag decl.
873 Result.clear(Sema::LookupTagName);
874 SemaRef.LookupParsedName(Result, S, &SS);
875 return true;
878 return false;
881 Sema::NameClassification Sema::ClassifyName(Scope *S, CXXScopeSpec &SS,
882 IdentifierInfo *&Name,
883 SourceLocation NameLoc,
884 const Token &NextToken,
885 CorrectionCandidateCallback *CCC) {
886 DeclarationNameInfo NameInfo(Name, NameLoc);
887 ObjCMethodDecl *CurMethod = getCurMethodDecl();
889 assert(NextToken.isNot(tok::coloncolon) &&
890 "parse nested name specifiers before calling ClassifyName");
891 if (getLangOpts().CPlusPlus && SS.isSet() &&
892 isCurrentClassName(*Name, S, &SS)) {
893 // Per [class.qual]p2, this names the constructors of SS, not the
894 // injected-class-name. We don't have a classification for that.
895 // There's not much point caching this result, since the parser
896 // will reject it later.
897 return NameClassification::Unknown();
900 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
901 LookupParsedName(Result, S, &SS, !CurMethod);
903 if (SS.isInvalid())
904 return NameClassification::Error();
906 // For unqualified lookup in a class template in MSVC mode, look into
907 // dependent base classes where the primary class template is known.
908 if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
909 if (ParsedType TypeInBase =
910 recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
911 return TypeInBase;
914 // Perform lookup for Objective-C instance variables (including automatically
915 // synthesized instance variables), if we're in an Objective-C method.
916 // FIXME: This lookup really, really needs to be folded in to the normal
917 // unqualified lookup mechanism.
918 if (SS.isEmpty() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
919 DeclResult Ivar = LookupIvarInObjCMethod(Result, S, Name);
920 if (Ivar.isInvalid())
921 return NameClassification::Error();
922 if (Ivar.isUsable())
923 return NameClassification::NonType(cast<NamedDecl>(Ivar.get()));
925 // We defer builtin creation until after ivar lookup inside ObjC methods.
926 if (Result.empty())
927 LookupBuiltin(Result);
930 bool SecondTry = false;
931 bool IsFilteredTemplateName = false;
933 Corrected:
934 switch (Result.getResultKind()) {
935 case LookupResult::NotFound:
936 // If an unqualified-id is followed by a '(', then we have a function
937 // call.
938 if (SS.isEmpty() && NextToken.is(tok::l_paren)) {
939 // In C++, this is an ADL-only call.
940 // FIXME: Reference?
941 if (getLangOpts().CPlusPlus)
942 return NameClassification::UndeclaredNonType();
944 // C90 6.3.2.2:
945 // If the expression that precedes the parenthesized argument list in a
946 // function call consists solely of an identifier, and if no
947 // declaration is visible for this identifier, the identifier is
948 // implicitly declared exactly as if, in the innermost block containing
949 // the function call, the declaration
951 // extern int identifier ();
953 // appeared.
955 // We also allow this in C99 as an extension. However, this is not
956 // allowed in all language modes as functions without prototypes may not
957 // be supported.
958 if (getLangOpts().implicitFunctionsAllowed()) {
959 if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S))
960 return NameClassification::NonType(D);
964 if (getLangOpts().CPlusPlus20 && SS.isEmpty() && NextToken.is(tok::less)) {
965 // In C++20 onwards, this could be an ADL-only call to a function
966 // template, and we're required to assume that this is a template name.
968 // FIXME: Find a way to still do typo correction in this case.
969 TemplateName Template =
970 Context.getAssumedTemplateName(NameInfo.getName());
971 return NameClassification::UndeclaredTemplate(Template);
974 // In C, we first see whether there is a tag type by the same name, in
975 // which case it's likely that the user just forgot to write "enum",
976 // "struct", or "union".
977 if (!getLangOpts().CPlusPlus && !SecondTry &&
978 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
979 break;
982 // Perform typo correction to determine if there is another name that is
983 // close to this name.
984 if (!SecondTry && CCC) {
985 SecondTry = true;
986 if (TypoCorrection Corrected =
987 CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S,
988 &SS, *CCC, CTK_ErrorRecovery)) {
989 unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
990 unsigned QualifiedDiag = diag::err_no_member_suggest;
992 NamedDecl *FirstDecl = Corrected.getFoundDecl();
993 NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
994 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
995 UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
996 UnqualifiedDiag = diag::err_no_template_suggest;
997 QualifiedDiag = diag::err_no_member_template_suggest;
998 } else if (UnderlyingFirstDecl &&
999 (isa<TypeDecl>(UnderlyingFirstDecl) ||
1000 isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
1001 isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
1002 UnqualifiedDiag = diag::err_unknown_typename_suggest;
1003 QualifiedDiag = diag::err_unknown_nested_typename_suggest;
1006 if (SS.isEmpty()) {
1007 diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
1008 } else {// FIXME: is this even reachable? Test it.
1009 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
1010 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
1011 Name->getName().equals(CorrectedStr);
1012 diagnoseTypo(Corrected, PDiag(QualifiedDiag)
1013 << Name << computeDeclContext(SS, false)
1014 << DroppedSpecifier << SS.getRange());
1017 // Update the name, so that the caller has the new name.
1018 Name = Corrected.getCorrectionAsIdentifierInfo();
1020 // Typo correction corrected to a keyword.
1021 if (Corrected.isKeyword())
1022 return Name;
1024 // Also update the LookupResult...
1025 // FIXME: This should probably go away at some point
1026 Result.clear();
1027 Result.setLookupName(Corrected.getCorrection());
1028 if (FirstDecl)
1029 Result.addDecl(FirstDecl);
1031 // If we found an Objective-C instance variable, let
1032 // LookupInObjCMethod build the appropriate expression to
1033 // reference the ivar.
1034 // FIXME: This is a gross hack.
1035 if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
1036 DeclResult R =
1037 LookupIvarInObjCMethod(Result, S, Ivar->getIdentifier());
1038 if (R.isInvalid())
1039 return NameClassification::Error();
1040 if (R.isUsable())
1041 return NameClassification::NonType(Ivar);
1044 goto Corrected;
1048 // We failed to correct; just fall through and let the parser deal with it.
1049 Result.suppressDiagnostics();
1050 return NameClassification::Unknown();
1052 case LookupResult::NotFoundInCurrentInstantiation: {
1053 // We performed name lookup into the current instantiation, and there were
1054 // dependent bases, so we treat this result the same way as any other
1055 // dependent nested-name-specifier.
1057 // C++ [temp.res]p2:
1058 // A name used in a template declaration or definition and that is
1059 // dependent on a template-parameter is assumed not to name a type
1060 // unless the applicable name lookup finds a type name or the name is
1061 // qualified by the keyword typename.
1063 // FIXME: If the next token is '<', we might want to ask the parser to
1064 // perform some heroics to see if we actually have a
1065 // template-argument-list, which would indicate a missing 'template'
1066 // keyword here.
1067 return NameClassification::DependentNonType();
1070 case LookupResult::Found:
1071 case LookupResult::FoundOverloaded:
1072 case LookupResult::FoundUnresolvedValue:
1073 break;
1075 case LookupResult::Ambiguous:
1076 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1077 hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true,
1078 /*AllowDependent=*/false)) {
1079 // C++ [temp.local]p3:
1080 // A lookup that finds an injected-class-name (10.2) can result in an
1081 // ambiguity in certain cases (for example, if it is found in more than
1082 // one base class). If all of the injected-class-names that are found
1083 // refer to specializations of the same class template, and if the name
1084 // is followed by a template-argument-list, the reference refers to the
1085 // class template itself and not a specialization thereof, and is not
1086 // ambiguous.
1088 // This filtering can make an ambiguous result into an unambiguous one,
1089 // so try again after filtering out template names.
1090 FilterAcceptableTemplateNames(Result);
1091 if (!Result.isAmbiguous()) {
1092 IsFilteredTemplateName = true;
1093 break;
1097 // Diagnose the ambiguity and return an error.
1098 return NameClassification::Error();
1101 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1102 (IsFilteredTemplateName ||
1103 hasAnyAcceptableTemplateNames(
1104 Result, /*AllowFunctionTemplates=*/true,
1105 /*AllowDependent=*/false,
1106 /*AllowNonTemplateFunctions*/ SS.isEmpty() &&
1107 getLangOpts().CPlusPlus20))) {
1108 // C++ [temp.names]p3:
1109 // After name lookup (3.4) finds that a name is a template-name or that
1110 // an operator-function-id or a literal- operator-id refers to a set of
1111 // overloaded functions any member of which is a function template if
1112 // this is followed by a <, the < is always taken as the delimiter of a
1113 // template-argument-list and never as the less-than operator.
1114 // C++2a [temp.names]p2:
1115 // A name is also considered to refer to a template if it is an
1116 // unqualified-id followed by a < and name lookup finds either one
1117 // or more functions or finds nothing.
1118 if (!IsFilteredTemplateName)
1119 FilterAcceptableTemplateNames(Result);
1121 bool IsFunctionTemplate;
1122 bool IsVarTemplate;
1123 TemplateName Template;
1124 if (Result.end() - Result.begin() > 1) {
1125 IsFunctionTemplate = true;
1126 Template = Context.getOverloadedTemplateName(Result.begin(),
1127 Result.end());
1128 } else if (!Result.empty()) {
1129 auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl(
1130 *Result.begin(), /*AllowFunctionTemplates=*/true,
1131 /*AllowDependent=*/false));
1132 IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
1133 IsVarTemplate = isa<VarTemplateDecl>(TD);
1135 UsingShadowDecl *FoundUsingShadow =
1136 dyn_cast<UsingShadowDecl>(*Result.begin());
1137 assert(!FoundUsingShadow ||
1138 TD == cast<TemplateDecl>(FoundUsingShadow->getTargetDecl()));
1139 Template =
1140 FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD);
1141 if (SS.isNotEmpty())
1142 Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
1143 /*TemplateKeyword=*/false,
1144 Template);
1145 } else {
1146 // All results were non-template functions. This is a function template
1147 // name.
1148 IsFunctionTemplate = true;
1149 Template = Context.getAssumedTemplateName(NameInfo.getName());
1152 if (IsFunctionTemplate) {
1153 // Function templates always go through overload resolution, at which
1154 // point we'll perform the various checks (e.g., accessibility) we need
1155 // to based on which function we selected.
1156 Result.suppressDiagnostics();
1158 return NameClassification::FunctionTemplate(Template);
1161 return IsVarTemplate ? NameClassification::VarTemplate(Template)
1162 : NameClassification::TypeTemplate(Template);
1165 auto BuildTypeFor = [&](TypeDecl *Type, NamedDecl *Found) {
1166 QualType T = Context.getTypeDeclType(Type);
1167 if (const auto *USD = dyn_cast<UsingShadowDecl>(Found))
1168 T = Context.getUsingType(USD, T);
1169 return buildNamedType(*this, &SS, T, NameLoc);
1172 NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
1173 if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
1174 DiagnoseUseOfDecl(Type, NameLoc);
1175 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
1176 return BuildTypeFor(Type, *Result.begin());
1179 ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
1180 if (!Class) {
1181 // FIXME: It's unfortunate that we don't have a Type node for handling this.
1182 if (ObjCCompatibleAliasDecl *Alias =
1183 dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
1184 Class = Alias->getClassInterface();
1187 if (Class) {
1188 DiagnoseUseOfDecl(Class, NameLoc);
1190 if (NextToken.is(tok::period)) {
1191 // Interface. <something> is parsed as a property reference expression.
1192 // Just return "unknown" as a fall-through for now.
1193 Result.suppressDiagnostics();
1194 return NameClassification::Unknown();
1197 QualType T = Context.getObjCInterfaceType(Class);
1198 return ParsedType::make(T);
1201 if (isa<ConceptDecl>(FirstDecl))
1202 return NameClassification::Concept(
1203 TemplateName(cast<TemplateDecl>(FirstDecl)));
1205 if (auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(FirstDecl)) {
1206 (void)DiagnoseUseOfDecl(EmptyD, NameLoc);
1207 return NameClassification::Error();
1210 // We can have a type template here if we're classifying a template argument.
1211 if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
1212 !isa<VarTemplateDecl>(FirstDecl))
1213 return NameClassification::TypeTemplate(
1214 TemplateName(cast<TemplateDecl>(FirstDecl)));
1216 // Check for a tag type hidden by a non-type decl in a few cases where it
1217 // seems likely a type is wanted instead of the non-type that was found.
1218 bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1219 if ((NextToken.is(tok::identifier) ||
1220 (NextIsOp &&
1221 FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1222 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1223 TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1224 DiagnoseUseOfDecl(Type, NameLoc);
1225 return BuildTypeFor(Type, *Result.begin());
1228 // If we already know which single declaration is referenced, just annotate
1229 // that declaration directly. Defer resolving even non-overloaded class
1230 // member accesses, as we need to defer certain access checks until we know
1231 // the context.
1232 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1233 if (Result.isSingleResult() && !ADL && !FirstDecl->isCXXClassMember())
1234 return NameClassification::NonType(Result.getRepresentativeDecl());
1236 // Otherwise, this is an overload set that we will need to resolve later.
1237 Result.suppressDiagnostics();
1238 return NameClassification::OverloadSet(UnresolvedLookupExpr::Create(
1239 Context, Result.getNamingClass(), SS.getWithLocInContext(Context),
1240 Result.getLookupNameInfo(), ADL, Result.isOverloadedResult(),
1241 Result.begin(), Result.end()));
1244 ExprResult
1245 Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name,
1246 SourceLocation NameLoc) {
1247 assert(getLangOpts().CPlusPlus && "ADL-only call in C?");
1248 CXXScopeSpec SS;
1249 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
1250 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
1253 ExprResult
1254 Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS,
1255 IdentifierInfo *Name,
1256 SourceLocation NameLoc,
1257 bool IsAddressOfOperand) {
1258 DeclarationNameInfo NameInfo(Name, NameLoc);
1259 return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
1260 NameInfo, IsAddressOfOperand,
1261 /*TemplateArgs=*/nullptr);
1264 ExprResult Sema::ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS,
1265 NamedDecl *Found,
1266 SourceLocation NameLoc,
1267 const Token &NextToken) {
1268 if (getCurMethodDecl() && SS.isEmpty())
1269 if (auto *Ivar = dyn_cast<ObjCIvarDecl>(Found->getUnderlyingDecl()))
1270 return BuildIvarRefExpr(S, NameLoc, Ivar);
1272 // Reconstruct the lookup result.
1273 LookupResult Result(*this, Found->getDeclName(), NameLoc, LookupOrdinaryName);
1274 Result.addDecl(Found);
1275 Result.resolveKind();
1277 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1278 return BuildDeclarationNameExpr(SS, Result, ADL);
1281 ExprResult Sema::ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *E) {
1282 // For an implicit class member access, transform the result into a member
1283 // access expression if necessary.
1284 auto *ULE = cast<UnresolvedLookupExpr>(E);
1285 if ((*ULE->decls_begin())->isCXXClassMember()) {
1286 CXXScopeSpec SS;
1287 SS.Adopt(ULE->getQualifierLoc());
1289 // Reconstruct the lookup result.
1290 LookupResult Result(*this, ULE->getName(), ULE->getNameLoc(),
1291 LookupOrdinaryName);
1292 Result.setNamingClass(ULE->getNamingClass());
1293 for (auto I = ULE->decls_begin(), E = ULE->decls_end(); I != E; ++I)
1294 Result.addDecl(*I, I.getAccess());
1295 Result.resolveKind();
1296 return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1297 nullptr, S);
1300 // Otherwise, this is already in the form we needed, and no further checks
1301 // are necessary.
1302 return ULE;
1305 Sema::TemplateNameKindForDiagnostics
1306 Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
1307 auto *TD = Name.getAsTemplateDecl();
1308 if (!TD)
1309 return TemplateNameKindForDiagnostics::DependentTemplate;
1310 if (isa<ClassTemplateDecl>(TD))
1311 return TemplateNameKindForDiagnostics::ClassTemplate;
1312 if (isa<FunctionTemplateDecl>(TD))
1313 return TemplateNameKindForDiagnostics::FunctionTemplate;
1314 if (isa<VarTemplateDecl>(TD))
1315 return TemplateNameKindForDiagnostics::VarTemplate;
1316 if (isa<TypeAliasTemplateDecl>(TD))
1317 return TemplateNameKindForDiagnostics::AliasTemplate;
1318 if (isa<TemplateTemplateParmDecl>(TD))
1319 return TemplateNameKindForDiagnostics::TemplateTemplateParam;
1320 if (isa<ConceptDecl>(TD))
1321 return TemplateNameKindForDiagnostics::Concept;
1322 return TemplateNameKindForDiagnostics::DependentTemplate;
1325 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1326 assert(DC->getLexicalParent() == CurContext &&
1327 "The next DeclContext should be lexically contained in the current one.");
1328 CurContext = DC;
1329 S->setEntity(DC);
1332 void Sema::PopDeclContext() {
1333 assert(CurContext && "DeclContext imbalance!");
1335 CurContext = CurContext->getLexicalParent();
1336 assert(CurContext && "Popped translation unit!");
1339 Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1340 Decl *D) {
1341 // Unlike PushDeclContext, the context to which we return is not necessarily
1342 // the containing DC of TD, because the new context will be some pre-existing
1343 // TagDecl definition instead of a fresh one.
1344 auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1345 CurContext = cast<TagDecl>(D)->getDefinition();
1346 assert(CurContext && "skipping definition of undefined tag");
1347 // Start lookups from the parent of the current context; we don't want to look
1348 // into the pre-existing complete definition.
1349 S->setEntity(CurContext->getLookupParent());
1350 return Result;
1353 void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1354 CurContext = static_cast<decltype(CurContext)>(Context);
1357 /// EnterDeclaratorContext - Used when we must lookup names in the context
1358 /// of a declarator's nested name specifier.
1360 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1361 // C++0x [basic.lookup.unqual]p13:
1362 // A name used in the definition of a static data member of class
1363 // X (after the qualified-id of the static member) is looked up as
1364 // if the name was used in a member function of X.
1365 // C++0x [basic.lookup.unqual]p14:
1366 // If a variable member of a namespace is defined outside of the
1367 // scope of its namespace then any name used in the definition of
1368 // the variable member (after the declarator-id) is looked up as
1369 // if the definition of the variable member occurred in its
1370 // namespace.
1371 // Both of these imply that we should push a scope whose context
1372 // is the semantic context of the declaration. We can't use
1373 // PushDeclContext here because that context is not necessarily
1374 // lexically contained in the current context. Fortunately,
1375 // the containing scope should have the appropriate information.
1377 assert(!S->getEntity() && "scope already has entity");
1379 #ifndef NDEBUG
1380 Scope *Ancestor = S->getParent();
1381 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1382 assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
1383 #endif
1385 CurContext = DC;
1386 S->setEntity(DC);
1388 if (S->getParent()->isTemplateParamScope()) {
1389 // Also set the corresponding entities for all immediately-enclosing
1390 // template parameter scopes.
1391 EnterTemplatedContext(S->getParent(), DC);
1395 void Sema::ExitDeclaratorContext(Scope *S) {
1396 assert(S->getEntity() == CurContext && "Context imbalance!");
1398 // Switch back to the lexical context. The safety of this is
1399 // enforced by an assert in EnterDeclaratorContext.
1400 Scope *Ancestor = S->getParent();
1401 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1402 CurContext = Ancestor->getEntity();
1404 // We don't need to do anything with the scope, which is going to
1405 // disappear.
1408 void Sema::EnterTemplatedContext(Scope *S, DeclContext *DC) {
1409 assert(S->isTemplateParamScope() &&
1410 "expected to be initializing a template parameter scope");
1412 // C++20 [temp.local]p7:
1413 // In the definition of a member of a class template that appears outside
1414 // of the class template definition, the name of a member of the class
1415 // template hides the name of a template-parameter of any enclosing class
1416 // templates (but not a template-parameter of the member if the member is a
1417 // class or function template).
1418 // C++20 [temp.local]p9:
1419 // In the definition of a class template or in the definition of a member
1420 // of such a template that appears outside of the template definition, for
1421 // each non-dependent base class (13.8.2.1), if the name of the base class
1422 // or the name of a member of the base class is the same as the name of a
1423 // template-parameter, the base class name or member name hides the
1424 // template-parameter name (6.4.10).
1426 // This means that a template parameter scope should be searched immediately
1427 // after searching the DeclContext for which it is a template parameter
1428 // scope. For example, for
1429 // template<typename T> template<typename U> template<typename V>
1430 // void N::A<T>::B<U>::f(...)
1431 // we search V then B<U> (and base classes) then U then A<T> (and base
1432 // classes) then T then N then ::.
1433 unsigned ScopeDepth = getTemplateDepth(S);
1434 for (; S && S->isTemplateParamScope(); S = S->getParent(), --ScopeDepth) {
1435 DeclContext *SearchDCAfterScope = DC;
1436 for (; DC; DC = DC->getLookupParent()) {
1437 if (const TemplateParameterList *TPL =
1438 cast<Decl>(DC)->getDescribedTemplateParams()) {
1439 unsigned DCDepth = TPL->getDepth() + 1;
1440 if (DCDepth > ScopeDepth)
1441 continue;
1442 if (ScopeDepth == DCDepth)
1443 SearchDCAfterScope = DC = DC->getLookupParent();
1444 break;
1447 S->setLookupEntity(SearchDCAfterScope);
1451 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1452 // We assume that the caller has already called
1453 // ActOnReenterTemplateScope so getTemplatedDecl() works.
1454 FunctionDecl *FD = D->getAsFunction();
1455 if (!FD)
1456 return;
1458 // Same implementation as PushDeclContext, but enters the context
1459 // from the lexical parent, rather than the top-level class.
1460 assert(CurContext == FD->getLexicalParent() &&
1461 "The next DeclContext should be lexically contained in the current one.");
1462 CurContext = FD;
1463 S->setEntity(CurContext);
1465 for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1466 ParmVarDecl *Param = FD->getParamDecl(P);
1467 // If the parameter has an identifier, then add it to the scope
1468 if (Param->getIdentifier()) {
1469 S->AddDecl(Param);
1470 IdResolver.AddDecl(Param);
1475 void Sema::ActOnExitFunctionContext() {
1476 // Same implementation as PopDeclContext, but returns to the lexical parent,
1477 // rather than the top-level class.
1478 assert(CurContext && "DeclContext imbalance!");
1479 CurContext = CurContext->getLexicalParent();
1480 assert(CurContext && "Popped translation unit!");
1483 /// Determine whether overloading is allowed for a new function
1484 /// declaration considering prior declarations of the same name.
1486 /// This routine determines whether overloading is possible, not
1487 /// whether a new declaration actually overloads a previous one.
1488 /// It will return true in C++ (where overloads are alway permitted)
1489 /// or, as a C extension, when either the new declaration or a
1490 /// previous one is declared with the 'overloadable' attribute.
1491 static bool AllowOverloadingOfFunction(const LookupResult &Previous,
1492 ASTContext &Context,
1493 const FunctionDecl *New) {
1494 if (Context.getLangOpts().CPlusPlus || New->hasAttr<OverloadableAttr>())
1495 return true;
1497 // Multiversion function declarations are not overloads in the
1498 // usual sense of that term, but lookup will report that an
1499 // overload set was found if more than one multiversion function
1500 // declaration is present for the same name. It is therefore
1501 // inadequate to assume that some prior declaration(s) had
1502 // the overloadable attribute; checking is required. Since one
1503 // declaration is permitted to omit the attribute, it is necessary
1504 // to check at least two; hence the 'any_of' check below. Note that
1505 // the overloadable attribute is implicitly added to declarations
1506 // that were required to have it but did not.
1507 if (Previous.getResultKind() == LookupResult::FoundOverloaded) {
1508 return llvm::any_of(Previous, [](const NamedDecl *ND) {
1509 return ND->hasAttr<OverloadableAttr>();
1511 } else if (Previous.getResultKind() == LookupResult::Found)
1512 return Previous.getFoundDecl()->hasAttr<OverloadableAttr>();
1514 return false;
1517 /// Add this decl to the scope shadowed decl chains.
1518 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1519 // Move up the scope chain until we find the nearest enclosing
1520 // non-transparent context. The declaration will be introduced into this
1521 // scope.
1522 while (S->getEntity() && S->getEntity()->isTransparentContext())
1523 S = S->getParent();
1525 // Add scoped declarations into their context, so that they can be
1526 // found later. Declarations without a context won't be inserted
1527 // into any context.
1528 if (AddToContext)
1529 CurContext->addDecl(D);
1531 // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1532 // are function-local declarations.
1533 if (getLangOpts().CPlusPlus && D->isOutOfLine() && !S->getFnParent())
1534 return;
1536 // Template instantiations should also not be pushed into scope.
1537 if (isa<FunctionDecl>(D) &&
1538 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1539 return;
1541 // If this replaces anything in the current scope,
1542 IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1543 IEnd = IdResolver.end();
1544 for (; I != IEnd; ++I) {
1545 if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1546 S->RemoveDecl(*I);
1547 IdResolver.RemoveDecl(*I);
1549 // Should only need to replace one decl.
1550 break;
1554 S->AddDecl(D);
1556 if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1557 // Implicitly-generated labels may end up getting generated in an order that
1558 // isn't strictly lexical, which breaks name lookup. Be careful to insert
1559 // the label at the appropriate place in the identifier chain.
1560 for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1561 DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1562 if (IDC == CurContext) {
1563 if (!S->isDeclScope(*I))
1564 continue;
1565 } else if (IDC->Encloses(CurContext))
1566 break;
1569 IdResolver.InsertDeclAfter(I, D);
1570 } else {
1571 IdResolver.AddDecl(D);
1573 warnOnReservedIdentifier(D);
1576 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1577 bool AllowInlineNamespace) {
1578 return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1581 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1582 DeclContext *TargetDC = DC->getPrimaryContext();
1583 do {
1584 if (DeclContext *ScopeDC = S->getEntity())
1585 if (ScopeDC->getPrimaryContext() == TargetDC)
1586 return S;
1587 } while ((S = S->getParent()));
1589 return nullptr;
1592 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1593 DeclContext*,
1594 ASTContext&);
1596 /// Filters out lookup results that don't fall within the given scope
1597 /// as determined by isDeclInScope.
1598 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1599 bool ConsiderLinkage,
1600 bool AllowInlineNamespace) {
1601 LookupResult::Filter F = R.makeFilter();
1602 while (F.hasNext()) {
1603 NamedDecl *D = F.next();
1605 if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1606 continue;
1608 if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1609 continue;
1611 F.erase();
1614 F.done();
1617 /// We've determined that \p New is a redeclaration of \p Old. Check that they
1618 /// have compatible owning modules.
1619 bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
1620 // [module.interface]p7:
1621 // A declaration is attached to a module as follows:
1622 // - If the declaration is a non-dependent friend declaration that nominates a
1623 // function with a declarator-id that is a qualified-id or template-id or that
1624 // nominates a class other than with an elaborated-type-specifier with neither
1625 // a nested-name-specifier nor a simple-template-id, it is attached to the
1626 // module to which the friend is attached ([basic.link]).
1627 if (New->getFriendObjectKind() &&
1628 Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
1629 New->setLocalOwningModule(Old->getOwningModule());
1630 makeMergedDefinitionVisible(New);
1631 return false;
1634 Module *NewM = New->getOwningModule();
1635 Module *OldM = Old->getOwningModule();
1637 if (NewM && NewM->isPrivateModule())
1638 NewM = NewM->Parent;
1639 if (OldM && OldM->isPrivateModule())
1640 OldM = OldM->Parent;
1642 if (NewM == OldM)
1643 return false;
1645 // Partitions are part of the module, but a partition could import another
1646 // module, so verify that the PMIs agree.
1647 if (NewM && OldM && (NewM->isModulePartition() || OldM->isModulePartition()))
1648 return NewM->getPrimaryModuleInterfaceName() ==
1649 OldM->getPrimaryModuleInterfaceName();
1651 bool NewIsModuleInterface = NewM && NewM->isModulePurview();
1652 bool OldIsModuleInterface = OldM && OldM->isModulePurview();
1653 if (NewIsModuleInterface || OldIsModuleInterface) {
1654 // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1655 // if a declaration of D [...] appears in the purview of a module, all
1656 // other such declarations shall appear in the purview of the same module
1657 Diag(New->getLocation(), diag::err_mismatched_owning_module)
1658 << New
1659 << NewIsModuleInterface
1660 << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
1661 << OldIsModuleInterface
1662 << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
1663 Diag(Old->getLocation(), diag::note_previous_declaration);
1664 New->setInvalidDecl();
1665 return true;
1668 return false;
1671 // [module.interface]p6:
1672 // A redeclaration of an entity X is implicitly exported if X was introduced by
1673 // an exported declaration; otherwise it shall not be exported.
1674 bool Sema::CheckRedeclarationExported(NamedDecl *New, NamedDecl *Old) {
1675 // [module.interface]p1:
1676 // An export-declaration shall inhabit a namespace scope.
1678 // So it is meaningless to talk about redeclaration which is not at namespace
1679 // scope.
1680 if (!New->getLexicalDeclContext()
1681 ->getNonTransparentContext()
1682 ->isFileContext() ||
1683 !Old->getLexicalDeclContext()
1684 ->getNonTransparentContext()
1685 ->isFileContext())
1686 return false;
1688 bool IsNewExported = New->isInExportDeclContext();
1689 bool IsOldExported = Old->isInExportDeclContext();
1691 // It should be irrevelant if both of them are not exported.
1692 if (!IsNewExported && !IsOldExported)
1693 return false;
1695 if (IsOldExported)
1696 return false;
1698 assert(IsNewExported);
1700 auto Lk = Old->getFormalLinkage();
1701 int S = 0;
1702 if (Lk == Linkage::InternalLinkage)
1703 S = 1;
1704 else if (Lk == Linkage::ModuleLinkage)
1705 S = 2;
1706 Diag(New->getLocation(), diag::err_redeclaration_non_exported) << New << S;
1707 Diag(Old->getLocation(), diag::note_previous_declaration);
1708 return true;
1711 // A wrapper function for checking the semantic restrictions of
1712 // a redeclaration within a module.
1713 bool Sema::CheckRedeclarationInModule(NamedDecl *New, NamedDecl *Old) {
1714 if (CheckRedeclarationModuleOwnership(New, Old))
1715 return true;
1717 if (CheckRedeclarationExported(New, Old))
1718 return true;
1720 return false;
1723 // Check the redefinition in C++20 Modules.
1725 // [basic.def.odr]p14:
1726 // For any definable item D with definitions in multiple translation units,
1727 // - if D is a non-inline non-templated function or variable, or
1728 // - if the definitions in different translation units do not satisfy the
1729 // following requirements,
1730 // the program is ill-formed; a diagnostic is required only if the definable
1731 // item is attached to a named module and a prior definition is reachable at
1732 // the point where a later definition occurs.
1733 // - Each such definition shall not be attached to a named module
1734 // ([module.unit]).
1735 // - Each such definition shall consist of the same sequence of tokens, ...
1736 // ...
1738 // Return true if the redefinition is not allowed. Return false otherwise.
1739 bool Sema::IsRedefinitionInModule(const NamedDecl *New,
1740 const NamedDecl *Old) const {
1741 assert(getASTContext().isSameEntity(New, Old) &&
1742 "New and Old are not the same definition, we should diagnostic it "
1743 "immediately instead of checking it.");
1744 assert(const_cast<Sema *>(this)->isReachable(New) &&
1745 const_cast<Sema *>(this)->isReachable(Old) &&
1746 "We shouldn't see unreachable definitions here.");
1748 Module *NewM = New->getOwningModule();
1749 Module *OldM = Old->getOwningModule();
1751 // We only checks for named modules here. The header like modules is skipped.
1752 // FIXME: This is not right if we import the header like modules in the module
1753 // purview.
1755 // For example, assuming "header.h" provides definition for `D`.
1756 // ```C++
1757 // //--- M.cppm
1758 // export module M;
1759 // import "header.h"; // or #include "header.h" but import it by clang modules
1760 // actually.
1762 // //--- Use.cpp
1763 // import M;
1764 // import "header.h"; // or uses clang modules.
1765 // ```
1767 // In this case, `D` has multiple definitions in multiple TU (M.cppm and
1768 // Use.cpp) and `D` is attached to a named module `M`. The compiler should
1769 // reject it. But the current implementation couldn't detect the case since we
1770 // don't record the information about the importee modules.
1772 // But this might not be painful in practice. Since the design of C++20 Named
1773 // Modules suggests us to use headers in global module fragment instead of
1774 // module purview.
1775 if (NewM && NewM->isHeaderLikeModule())
1776 NewM = nullptr;
1777 if (OldM && OldM->isHeaderLikeModule())
1778 OldM = nullptr;
1780 if (!NewM && !OldM)
1781 return true;
1783 // [basic.def.odr]p14.3
1784 // Each such definition shall not be attached to a named module
1785 // ([module.unit]).
1786 if ((NewM && NewM->isModulePurview()) || (OldM && OldM->isModulePurview()))
1787 return true;
1789 // Then New and Old lives in the same TU if their share one same module unit.
1790 if (NewM)
1791 NewM = NewM->getTopLevelModule();
1792 if (OldM)
1793 OldM = OldM->getTopLevelModule();
1794 return OldM == NewM;
1797 static bool isUsingDecl(NamedDecl *D) {
1798 return isa<UsingShadowDecl>(D) ||
1799 isa<UnresolvedUsingTypenameDecl>(D) ||
1800 isa<UnresolvedUsingValueDecl>(D);
1803 /// Removes using shadow declarations from the lookup results.
1804 static void RemoveUsingDecls(LookupResult &R) {
1805 LookupResult::Filter F = R.makeFilter();
1806 while (F.hasNext())
1807 if (isUsingDecl(F.next()))
1808 F.erase();
1810 F.done();
1813 /// Check for this common pattern:
1814 /// @code
1815 /// class S {
1816 /// S(const S&); // DO NOT IMPLEMENT
1817 /// void operator=(const S&); // DO NOT IMPLEMENT
1818 /// };
1819 /// @endcode
1820 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1821 // FIXME: Should check for private access too but access is set after we get
1822 // the decl here.
1823 if (D->doesThisDeclarationHaveABody())
1824 return false;
1826 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1827 return CD->isCopyConstructor();
1828 return D->isCopyAssignmentOperator();
1831 // We need this to handle
1833 // typedef struct {
1834 // void *foo() { return 0; }
1835 // } A;
1837 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1838 // for example. If 'A', foo will have external linkage. If we have '*A',
1839 // foo will have no linkage. Since we can't know until we get to the end
1840 // of the typedef, this function finds out if D might have non-external linkage.
1841 // Callers should verify at the end of the TU if it D has external linkage or
1842 // not.
1843 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1844 const DeclContext *DC = D->getDeclContext();
1845 while (!DC->isTranslationUnit()) {
1846 if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1847 if (!RD->hasNameForLinkage())
1848 return true;
1850 DC = DC->getParent();
1853 return !D->isExternallyVisible();
1856 // FIXME: This needs to be refactored; some other isInMainFile users want
1857 // these semantics.
1858 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1859 if (S.TUKind != TU_Complete || S.getLangOpts().IsHeaderFile)
1860 return false;
1861 return S.SourceMgr.isInMainFile(Loc);
1864 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1865 assert(D);
1867 if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1868 return false;
1870 // Ignore all entities declared within templates, and out-of-line definitions
1871 // of members of class templates.
1872 if (D->getDeclContext()->isDependentContext() ||
1873 D->getLexicalDeclContext()->isDependentContext())
1874 return false;
1876 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1877 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1878 return false;
1879 // A non-out-of-line declaration of a member specialization was implicitly
1880 // instantiated; it's the out-of-line declaration that we're interested in.
1881 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1882 FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
1883 return false;
1885 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1886 if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1887 return false;
1888 } else {
1889 // 'static inline' functions are defined in headers; don't warn.
1890 if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1891 return false;
1894 if (FD->doesThisDeclarationHaveABody() &&
1895 Context.DeclMustBeEmitted(FD))
1896 return false;
1897 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1898 // Constants and utility variables are defined in headers with internal
1899 // linkage; don't warn. (Unlike functions, there isn't a convenient marker
1900 // like "inline".)
1901 if (!isMainFileLoc(*this, VD->getLocation()))
1902 return false;
1904 if (Context.DeclMustBeEmitted(VD))
1905 return false;
1907 if (VD->isStaticDataMember() &&
1908 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1909 return false;
1910 if (VD->isStaticDataMember() &&
1911 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1912 VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
1913 return false;
1915 if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
1916 return false;
1917 } else {
1918 return false;
1921 // Only warn for unused decls internal to the translation unit.
1922 // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1923 // for inline functions defined in the main source file, for instance.
1924 return mightHaveNonExternalLinkage(D);
1927 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1928 if (!D)
1929 return;
1931 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1932 const FunctionDecl *First = FD->getFirstDecl();
1933 if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1934 return; // First should already be in the vector.
1937 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1938 const VarDecl *First = VD->getFirstDecl();
1939 if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1940 return; // First should already be in the vector.
1943 if (ShouldWarnIfUnusedFileScopedDecl(D))
1944 UnusedFileScopedDecls.push_back(D);
1947 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1948 if (D->isInvalidDecl())
1949 return false;
1951 if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
1952 // For a decomposition declaration, warn if none of the bindings are
1953 // referenced, instead of if the variable itself is referenced (which
1954 // it is, by the bindings' expressions).
1955 for (auto *BD : DD->bindings())
1956 if (BD->isReferenced())
1957 return false;
1958 } else if (!D->getDeclName()) {
1959 return false;
1960 } else if (D->isReferenced() || D->isUsed()) {
1961 return false;
1964 if (D->hasAttr<UnusedAttr>() || D->hasAttr<ObjCPreciseLifetimeAttr>())
1965 return false;
1967 if (isa<LabelDecl>(D))
1968 return true;
1970 // Except for labels, we only care about unused decls that are local to
1971 // functions.
1972 bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1973 if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1974 // For dependent types, the diagnostic is deferred.
1975 WithinFunction =
1976 WithinFunction || (R->isLocalClass() && !R->isDependentType());
1977 if (!WithinFunction)
1978 return false;
1980 if (isa<TypedefNameDecl>(D))
1981 return true;
1983 // White-list anything that isn't a local variable.
1984 if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1985 return false;
1987 // Types of valid local variables should be complete, so this should succeed.
1988 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1990 const Expr *Init = VD->getInit();
1991 if (const auto *Cleanups = dyn_cast_or_null<ExprWithCleanups>(Init))
1992 Init = Cleanups->getSubExpr();
1994 const auto *Ty = VD->getType().getTypePtr();
1996 // Only look at the outermost level of typedef.
1997 if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1998 // Allow anything marked with __attribute__((unused)).
1999 if (TT->getDecl()->hasAttr<UnusedAttr>())
2000 return false;
2003 // Warn for reference variables whose initializtion performs lifetime
2004 // extension.
2005 if (const auto *MTE = dyn_cast_or_null<MaterializeTemporaryExpr>(Init)) {
2006 if (MTE->getExtendingDecl()) {
2007 Ty = VD->getType().getNonReferenceType().getTypePtr();
2008 Init = MTE->getSubExpr()->IgnoreImplicitAsWritten();
2012 // If we failed to complete the type for some reason, or if the type is
2013 // dependent, don't diagnose the variable.
2014 if (Ty->isIncompleteType() || Ty->isDependentType())
2015 return false;
2017 // Look at the element type to ensure that the warning behaviour is
2018 // consistent for both scalars and arrays.
2019 Ty = Ty->getBaseElementTypeUnsafe();
2021 if (const TagType *TT = Ty->getAs<TagType>()) {
2022 const TagDecl *Tag = TT->getDecl();
2023 if (Tag->hasAttr<UnusedAttr>())
2024 return false;
2026 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
2027 if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
2028 return false;
2030 if (Init) {
2031 const CXXConstructExpr *Construct =
2032 dyn_cast<CXXConstructExpr>(Init);
2033 if (Construct && !Construct->isElidable()) {
2034 CXXConstructorDecl *CD = Construct->getConstructor();
2035 if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
2036 (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
2037 return false;
2040 // Suppress the warning if we don't know how this is constructed, and
2041 // it could possibly be non-trivial constructor.
2042 if (Init->isTypeDependent()) {
2043 for (const CXXConstructorDecl *Ctor : RD->ctors())
2044 if (!Ctor->isTrivial())
2045 return false;
2048 // Suppress the warning if the constructor is unresolved because
2049 // its arguments are dependent.
2050 if (isa<CXXUnresolvedConstructExpr>(Init))
2051 return false;
2056 // TODO: __attribute__((unused)) templates?
2059 return true;
2062 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
2063 FixItHint &Hint) {
2064 if (isa<LabelDecl>(D)) {
2065 SourceLocation AfterColon = Lexer::findLocationAfterToken(
2066 D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(),
2067 true);
2068 if (AfterColon.isInvalid())
2069 return;
2070 Hint = FixItHint::CreateRemoval(
2071 CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon));
2075 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
2076 if (D->getTypeForDecl()->isDependentType())
2077 return;
2079 for (auto *TmpD : D->decls()) {
2080 if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
2081 DiagnoseUnusedDecl(T);
2082 else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
2083 DiagnoseUnusedNestedTypedefs(R);
2087 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
2088 /// unless they are marked attr(unused).
2089 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
2090 if (!ShouldDiagnoseUnusedDecl(D))
2091 return;
2093 if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
2094 // typedefs can be referenced later on, so the diagnostics are emitted
2095 // at end-of-translation-unit.
2096 UnusedLocalTypedefNameCandidates.insert(TD);
2097 return;
2100 FixItHint Hint;
2101 GenerateFixForUnusedDecl(D, Context, Hint);
2103 unsigned DiagID;
2104 if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
2105 DiagID = diag::warn_unused_exception_param;
2106 else if (isa<LabelDecl>(D))
2107 DiagID = diag::warn_unused_label;
2108 else
2109 DiagID = diag::warn_unused_variable;
2111 Diag(D->getLocation(), DiagID) << D << Hint;
2114 void Sema::DiagnoseUnusedButSetDecl(const VarDecl *VD) {
2115 // If it's not referenced, it can't be set. If it has the Cleanup attribute,
2116 // it's not really unused.
2117 if (!VD->isReferenced() || !VD->getDeclName() || VD->hasAttr<UnusedAttr>() ||
2118 VD->hasAttr<CleanupAttr>())
2119 return;
2121 const auto *Ty = VD->getType().getTypePtr()->getBaseElementTypeUnsafe();
2123 if (Ty->isReferenceType() || Ty->isDependentType())
2124 return;
2126 if (const TagType *TT = Ty->getAs<TagType>()) {
2127 const TagDecl *Tag = TT->getDecl();
2128 if (Tag->hasAttr<UnusedAttr>())
2129 return;
2130 // In C++, don't warn for record types that don't have WarnUnusedAttr, to
2131 // mimic gcc's behavior.
2132 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
2133 if (!RD->hasAttr<WarnUnusedAttr>())
2134 return;
2138 // Don't warn about __block Objective-C pointer variables, as they might
2139 // be assigned in the block but not used elsewhere for the purpose of lifetime
2140 // extension.
2141 if (VD->hasAttr<BlocksAttr>() && Ty->isObjCObjectPointerType())
2142 return;
2144 // Don't warn about Objective-C pointer variables with precise lifetime
2145 // semantics; they can be used to ensure ARC releases the object at a known
2146 // time, which may mean assignment but no other references.
2147 if (VD->hasAttr<ObjCPreciseLifetimeAttr>() && Ty->isObjCObjectPointerType())
2148 return;
2150 auto iter = RefsMinusAssignments.find(VD);
2151 if (iter == RefsMinusAssignments.end())
2152 return;
2154 assert(iter->getSecond() >= 0 &&
2155 "Found a negative number of references to a VarDecl");
2156 if (iter->getSecond() != 0)
2157 return;
2158 unsigned DiagID = isa<ParmVarDecl>(VD) ? diag::warn_unused_but_set_parameter
2159 : diag::warn_unused_but_set_variable;
2160 Diag(VD->getLocation(), DiagID) << VD;
2163 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
2164 // Verify that we have no forward references left. If so, there was a goto
2165 // or address of a label taken, but no definition of it. Label fwd
2166 // definitions are indicated with a null substmt which is also not a resolved
2167 // MS inline assembly label name.
2168 bool Diagnose = false;
2169 if (L->isMSAsmLabel())
2170 Diagnose = !L->isResolvedMSAsmLabel();
2171 else
2172 Diagnose = L->getStmt() == nullptr;
2173 if (Diagnose)
2174 S.Diag(L->getLocation(), diag::err_undeclared_label_use) << L;
2177 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
2178 S->applyNRVO();
2180 if (S->decl_empty()) return;
2181 assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
2182 "Scope shouldn't contain decls!");
2184 for (auto *TmpD : S->decls()) {
2185 assert(TmpD && "This decl didn't get pushed??");
2187 assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
2188 NamedDecl *D = cast<NamedDecl>(TmpD);
2190 // Diagnose unused variables in this scope.
2191 if (!S->hasUnrecoverableErrorOccurred()) {
2192 DiagnoseUnusedDecl(D);
2193 if (const auto *RD = dyn_cast<RecordDecl>(D))
2194 DiagnoseUnusedNestedTypedefs(RD);
2195 if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
2196 DiagnoseUnusedButSetDecl(VD);
2197 RefsMinusAssignments.erase(VD);
2201 if (!D->getDeclName()) continue;
2203 // If this was a forward reference to a label, verify it was defined.
2204 if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
2205 CheckPoppedLabel(LD, *this);
2207 // Remove this name from our lexical scope, and warn on it if we haven't
2208 // already.
2209 IdResolver.RemoveDecl(D);
2210 auto ShadowI = ShadowingDecls.find(D);
2211 if (ShadowI != ShadowingDecls.end()) {
2212 if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
2213 Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field)
2214 << D << FD << FD->getParent();
2215 Diag(FD->getLocation(), diag::note_previous_declaration);
2217 ShadowingDecls.erase(ShadowI);
2222 /// Look for an Objective-C class in the translation unit.
2224 /// \param Id The name of the Objective-C class we're looking for. If
2225 /// typo-correction fixes this name, the Id will be updated
2226 /// to the fixed name.
2228 /// \param IdLoc The location of the name in the translation unit.
2230 /// \param DoTypoCorrection If true, this routine will attempt typo correction
2231 /// if there is no class with the given name.
2233 /// \returns The declaration of the named Objective-C class, or NULL if the
2234 /// class could not be found.
2235 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
2236 SourceLocation IdLoc,
2237 bool DoTypoCorrection) {
2238 // The third "scope" argument is 0 since we aren't enabling lazy built-in
2239 // creation from this context.
2240 NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
2242 if (!IDecl && DoTypoCorrection) {
2243 // Perform typo correction at the given location, but only if we
2244 // find an Objective-C class name.
2245 DeclFilterCCC<ObjCInterfaceDecl> CCC{};
2246 if (TypoCorrection C =
2247 CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
2248 TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
2249 diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
2250 IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
2251 Id = IDecl->getIdentifier();
2254 ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
2255 // This routine must always return a class definition, if any.
2256 if (Def && Def->getDefinition())
2257 Def = Def->getDefinition();
2258 return Def;
2261 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
2262 /// from S, where a non-field would be declared. This routine copes
2263 /// with the difference between C and C++ scoping rules in structs and
2264 /// unions. For example, the following code is well-formed in C but
2265 /// ill-formed in C++:
2266 /// @code
2267 /// struct S6 {
2268 /// enum { BAR } e;
2269 /// };
2271 /// void test_S6() {
2272 /// struct S6 a;
2273 /// a.e = BAR;
2274 /// }
2275 /// @endcode
2276 /// For the declaration of BAR, this routine will return a different
2277 /// scope. The scope S will be the scope of the unnamed enumeration
2278 /// within S6. In C++, this routine will return the scope associated
2279 /// with S6, because the enumeration's scope is a transparent
2280 /// context but structures can contain non-field names. In C, this
2281 /// routine will return the translation unit scope, since the
2282 /// enumeration's scope is a transparent context and structures cannot
2283 /// contain non-field names.
2284 Scope *Sema::getNonFieldDeclScope(Scope *S) {
2285 while (((S->getFlags() & Scope::DeclScope) == 0) ||
2286 (S->getEntity() && S->getEntity()->isTransparentContext()) ||
2287 (S->isClassScope() && !getLangOpts().CPlusPlus))
2288 S = S->getParent();
2289 return S;
2292 static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID,
2293 ASTContext::GetBuiltinTypeError Error) {
2294 switch (Error) {
2295 case ASTContext::GE_None:
2296 return "";
2297 case ASTContext::GE_Missing_type:
2298 return BuiltinInfo.getHeaderName(ID);
2299 case ASTContext::GE_Missing_stdio:
2300 return "stdio.h";
2301 case ASTContext::GE_Missing_setjmp:
2302 return "setjmp.h";
2303 case ASTContext::GE_Missing_ucontext:
2304 return "ucontext.h";
2306 llvm_unreachable("unhandled error kind");
2309 FunctionDecl *Sema::CreateBuiltin(IdentifierInfo *II, QualType Type,
2310 unsigned ID, SourceLocation Loc) {
2311 DeclContext *Parent = Context.getTranslationUnitDecl();
2313 if (getLangOpts().CPlusPlus) {
2314 LinkageSpecDecl *CLinkageDecl = LinkageSpecDecl::Create(
2315 Context, Parent, Loc, Loc, LinkageSpecDecl::lang_c, false);
2316 CLinkageDecl->setImplicit();
2317 Parent->addDecl(CLinkageDecl);
2318 Parent = CLinkageDecl;
2321 FunctionDecl *New = FunctionDecl::Create(Context, Parent, Loc, Loc, II, Type,
2322 /*TInfo=*/nullptr, SC_Extern,
2323 getCurFPFeatures().isFPConstrained(),
2324 false, Type->isFunctionProtoType());
2325 New->setImplicit();
2326 New->addAttr(BuiltinAttr::CreateImplicit(Context, ID));
2328 // Create Decl objects for each parameter, adding them to the
2329 // FunctionDecl.
2330 if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(Type)) {
2331 SmallVector<ParmVarDecl *, 16> Params;
2332 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2333 ParmVarDecl *parm = ParmVarDecl::Create(
2334 Context, New, SourceLocation(), SourceLocation(), nullptr,
2335 FT->getParamType(i), /*TInfo=*/nullptr, SC_None, nullptr);
2336 parm->setScopeInfo(0, i);
2337 Params.push_back(parm);
2339 New->setParams(Params);
2342 AddKnownFunctionAttributes(New);
2343 return New;
2346 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
2347 /// file scope. lazily create a decl for it. ForRedeclaration is true
2348 /// if we're creating this built-in in anticipation of redeclaring the
2349 /// built-in.
2350 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
2351 Scope *S, bool ForRedeclaration,
2352 SourceLocation Loc) {
2353 LookupNecessaryTypesForBuiltin(S, ID);
2355 ASTContext::GetBuiltinTypeError Error;
2356 QualType R = Context.GetBuiltinType(ID, Error);
2357 if (Error) {
2358 if (!ForRedeclaration)
2359 return nullptr;
2361 // If we have a builtin without an associated type we should not emit a
2362 // warning when we were not able to find a type for it.
2363 if (Error == ASTContext::GE_Missing_type ||
2364 Context.BuiltinInfo.allowTypeMismatch(ID))
2365 return nullptr;
2367 // If we could not find a type for setjmp it is because the jmp_buf type was
2368 // not defined prior to the setjmp declaration.
2369 if (Error == ASTContext::GE_Missing_setjmp) {
2370 Diag(Loc, diag::warn_implicit_decl_no_jmp_buf)
2371 << Context.BuiltinInfo.getName(ID);
2372 return nullptr;
2375 // Generally, we emit a warning that the declaration requires the
2376 // appropriate header.
2377 Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
2378 << getHeaderName(Context.BuiltinInfo, ID, Error)
2379 << Context.BuiltinInfo.getName(ID);
2380 return nullptr;
2383 if (!ForRedeclaration &&
2384 (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
2385 Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
2386 Diag(Loc, LangOpts.C99 ? diag::ext_implicit_lib_function_decl_c99
2387 : diag::ext_implicit_lib_function_decl)
2388 << Context.BuiltinInfo.getName(ID) << R;
2389 if (const char *Header = Context.BuiltinInfo.getHeaderName(ID))
2390 Diag(Loc, diag::note_include_header_or_declare)
2391 << Header << Context.BuiltinInfo.getName(ID);
2394 if (R.isNull())
2395 return nullptr;
2397 FunctionDecl *New = CreateBuiltin(II, R, ID, Loc);
2398 RegisterLocallyScopedExternCDecl(New, S);
2400 // TUScope is the translation-unit scope to insert this function into.
2401 // FIXME: This is hideous. We need to teach PushOnScopeChains to
2402 // relate Scopes to DeclContexts, and probably eliminate CurContext
2403 // entirely, but we're not there yet.
2404 DeclContext *SavedContext = CurContext;
2405 CurContext = New->getDeclContext();
2406 PushOnScopeChains(New, TUScope);
2407 CurContext = SavedContext;
2408 return New;
2411 /// Typedef declarations don't have linkage, but they still denote the same
2412 /// entity if their types are the same.
2413 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2414 /// isSameEntity.
2415 static void filterNonConflictingPreviousTypedefDecls(Sema &S,
2416 TypedefNameDecl *Decl,
2417 LookupResult &Previous) {
2418 // This is only interesting when modules are enabled.
2419 if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
2420 return;
2422 // Empty sets are uninteresting.
2423 if (Previous.empty())
2424 return;
2426 LookupResult::Filter Filter = Previous.makeFilter();
2427 while (Filter.hasNext()) {
2428 NamedDecl *Old = Filter.next();
2430 // Non-hidden declarations are never ignored.
2431 if (S.isVisible(Old))
2432 continue;
2434 // Declarations of the same entity are not ignored, even if they have
2435 // different linkages.
2436 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2437 if (S.Context.hasSameType(OldTD->getUnderlyingType(),
2438 Decl->getUnderlyingType()))
2439 continue;
2441 // If both declarations give a tag declaration a typedef name for linkage
2442 // purposes, then they declare the same entity.
2443 if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2444 Decl->getAnonDeclWithTypedefName())
2445 continue;
2448 Filter.erase();
2451 Filter.done();
2454 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
2455 QualType OldType;
2456 if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
2457 OldType = OldTypedef->getUnderlyingType();
2458 else
2459 OldType = Context.getTypeDeclType(Old);
2460 QualType NewType = New->getUnderlyingType();
2462 if (NewType->isVariablyModifiedType()) {
2463 // Must not redefine a typedef with a variably-modified type.
2464 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2465 Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
2466 << Kind << NewType;
2467 if (Old->getLocation().isValid())
2468 notePreviousDefinition(Old, New->getLocation());
2469 New->setInvalidDecl();
2470 return true;
2473 if (OldType != NewType &&
2474 !OldType->isDependentType() &&
2475 !NewType->isDependentType() &&
2476 !Context.hasSameType(OldType, NewType)) {
2477 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2478 Diag(New->getLocation(), diag::err_redefinition_different_typedef)
2479 << Kind << NewType << OldType;
2480 if (Old->getLocation().isValid())
2481 notePreviousDefinition(Old, New->getLocation());
2482 New->setInvalidDecl();
2483 return true;
2485 return false;
2488 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2489 /// same name and scope as a previous declaration 'Old'. Figure out
2490 /// how to resolve this situation, merging decls or emitting
2491 /// diagnostics as appropriate. If there was an error, set New to be invalid.
2493 void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
2494 LookupResult &OldDecls) {
2495 // If the new decl is known invalid already, don't bother doing any
2496 // merging checks.
2497 if (New->isInvalidDecl()) return;
2499 // Allow multiple definitions for ObjC built-in typedefs.
2500 // FIXME: Verify the underlying types are equivalent!
2501 if (getLangOpts().ObjC) {
2502 const IdentifierInfo *TypeID = New->getIdentifier();
2503 switch (TypeID->getLength()) {
2504 default: break;
2505 case 2:
2507 if (!TypeID->isStr("id"))
2508 break;
2509 QualType T = New->getUnderlyingType();
2510 if (!T->isPointerType())
2511 break;
2512 if (!T->isVoidPointerType()) {
2513 QualType PT = T->castAs<PointerType>()->getPointeeType();
2514 if (!PT->isStructureType())
2515 break;
2517 Context.setObjCIdRedefinitionType(T);
2518 // Install the built-in type for 'id', ignoring the current definition.
2519 New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
2520 return;
2522 case 5:
2523 if (!TypeID->isStr("Class"))
2524 break;
2525 Context.setObjCClassRedefinitionType(New->getUnderlyingType());
2526 // Install the built-in type for 'Class', ignoring the current definition.
2527 New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
2528 return;
2529 case 3:
2530 if (!TypeID->isStr("SEL"))
2531 break;
2532 Context.setObjCSelRedefinitionType(New->getUnderlyingType());
2533 // Install the built-in type for 'SEL', ignoring the current definition.
2534 New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
2535 return;
2537 // Fall through - the typedef name was not a builtin type.
2540 // Verify the old decl was also a type.
2541 TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
2542 if (!Old) {
2543 Diag(New->getLocation(), diag::err_redefinition_different_kind)
2544 << New->getDeclName();
2546 NamedDecl *OldD = OldDecls.getRepresentativeDecl();
2547 if (OldD->getLocation().isValid())
2548 notePreviousDefinition(OldD, New->getLocation());
2550 return New->setInvalidDecl();
2553 // If the old declaration is invalid, just give up here.
2554 if (Old->isInvalidDecl())
2555 return New->setInvalidDecl();
2557 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2558 auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2559 auto *NewTag = New->getAnonDeclWithTypedefName();
2560 NamedDecl *Hidden = nullptr;
2561 if (OldTag && NewTag &&
2562 OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
2563 !hasVisibleDefinition(OldTag, &Hidden)) {
2564 // There is a definition of this tag, but it is not visible. Use it
2565 // instead of our tag.
2566 New->setTypeForDecl(OldTD->getTypeForDecl());
2567 if (OldTD->isModed())
2568 New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
2569 OldTD->getUnderlyingType());
2570 else
2571 New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
2573 // Make the old tag definition visible.
2574 makeMergedDefinitionVisible(Hidden);
2576 // If this was an unscoped enumeration, yank all of its enumerators
2577 // out of the scope.
2578 if (isa<EnumDecl>(NewTag)) {
2579 Scope *EnumScope = getNonFieldDeclScope(S);
2580 for (auto *D : NewTag->decls()) {
2581 auto *ED = cast<EnumConstantDecl>(D);
2582 assert(EnumScope->isDeclScope(ED));
2583 EnumScope->RemoveDecl(ED);
2584 IdResolver.RemoveDecl(ED);
2585 ED->getLexicalDeclContext()->removeDecl(ED);
2591 // If the typedef types are not identical, reject them in all languages and
2592 // with any extensions enabled.
2593 if (isIncompatibleTypedef(Old, New))
2594 return;
2596 // The types match. Link up the redeclaration chain and merge attributes if
2597 // the old declaration was a typedef.
2598 if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
2599 New->setPreviousDecl(Typedef);
2600 mergeDeclAttributes(New, Old);
2603 if (getLangOpts().MicrosoftExt)
2604 return;
2606 if (getLangOpts().CPlusPlus) {
2607 // C++ [dcl.typedef]p2:
2608 // In a given non-class scope, a typedef specifier can be used to
2609 // redefine the name of any type declared in that scope to refer
2610 // to the type to which it already refers.
2611 if (!isa<CXXRecordDecl>(CurContext))
2612 return;
2614 // C++0x [dcl.typedef]p4:
2615 // In a given class scope, a typedef specifier can be used to redefine
2616 // any class-name declared in that scope that is not also a typedef-name
2617 // to refer to the type to which it already refers.
2619 // This wording came in via DR424, which was a correction to the
2620 // wording in DR56, which accidentally banned code like:
2622 // struct S {
2623 // typedef struct A { } A;
2624 // };
2626 // in the C++03 standard. We implement the C++0x semantics, which
2627 // allow the above but disallow
2629 // struct S {
2630 // typedef int I;
2631 // typedef int I;
2632 // };
2634 // since that was the intent of DR56.
2635 if (!isa<TypedefNameDecl>(Old))
2636 return;
2638 Diag(New->getLocation(), diag::err_redefinition)
2639 << New->getDeclName();
2640 notePreviousDefinition(Old, New->getLocation());
2641 return New->setInvalidDecl();
2644 // Modules always permit redefinition of typedefs, as does C11.
2645 if (getLangOpts().Modules || getLangOpts().C11)
2646 return;
2648 // If we have a redefinition of a typedef in C, emit a warning. This warning
2649 // is normally mapped to an error, but can be controlled with
2650 // -Wtypedef-redefinition. If either the original or the redefinition is
2651 // in a system header, don't emit this for compatibility with GCC.
2652 if (getDiagnostics().getSuppressSystemWarnings() &&
2653 // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2654 (Old->isImplicit() ||
2655 Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2656 Context.getSourceManager().isInSystemHeader(New->getLocation())))
2657 return;
2659 Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2660 << New->getDeclName();
2661 notePreviousDefinition(Old, New->getLocation());
2664 /// DeclhasAttr - returns true if decl Declaration already has the target
2665 /// attribute.
2666 static bool DeclHasAttr(const Decl *D, const Attr *A) {
2667 const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2668 const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2669 for (const auto *i : D->attrs())
2670 if (i->getKind() == A->getKind()) {
2671 if (Ann) {
2672 if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2673 return true;
2674 continue;
2676 // FIXME: Don't hardcode this check
2677 if (OA && isa<OwnershipAttr>(i))
2678 return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2679 return true;
2682 return false;
2685 static bool isAttributeTargetADefinition(Decl *D) {
2686 if (VarDecl *VD = dyn_cast<VarDecl>(D))
2687 return VD->isThisDeclarationADefinition();
2688 if (TagDecl *TD = dyn_cast<TagDecl>(D))
2689 return TD->isCompleteDefinition() || TD->isBeingDefined();
2690 return true;
2693 /// Merge alignment attributes from \p Old to \p New, taking into account the
2694 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2696 /// \return \c true if any attributes were added to \p New.
2697 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2698 // Look for alignas attributes on Old, and pick out whichever attribute
2699 // specifies the strictest alignment requirement.
2700 AlignedAttr *OldAlignasAttr = nullptr;
2701 AlignedAttr *OldStrictestAlignAttr = nullptr;
2702 unsigned OldAlign = 0;
2703 for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2704 // FIXME: We have no way of representing inherited dependent alignments
2705 // in a case like:
2706 // template<int A, int B> struct alignas(A) X;
2707 // template<int A, int B> struct alignas(B) X {};
2708 // For now, we just ignore any alignas attributes which are not on the
2709 // definition in such a case.
2710 if (I->isAlignmentDependent())
2711 return false;
2713 if (I->isAlignas())
2714 OldAlignasAttr = I;
2716 unsigned Align = I->getAlignment(S.Context);
2717 if (Align > OldAlign) {
2718 OldAlign = Align;
2719 OldStrictestAlignAttr = I;
2723 // Look for alignas attributes on New.
2724 AlignedAttr *NewAlignasAttr = nullptr;
2725 unsigned NewAlign = 0;
2726 for (auto *I : New->specific_attrs<AlignedAttr>()) {
2727 if (I->isAlignmentDependent())
2728 return false;
2730 if (I->isAlignas())
2731 NewAlignasAttr = I;
2733 unsigned Align = I->getAlignment(S.Context);
2734 if (Align > NewAlign)
2735 NewAlign = Align;
2738 if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2739 // Both declarations have 'alignas' attributes. We require them to match.
2740 // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2741 // fall short. (If two declarations both have alignas, they must both match
2742 // every definition, and so must match each other if there is a definition.)
2744 // If either declaration only contains 'alignas(0)' specifiers, then it
2745 // specifies the natural alignment for the type.
2746 if (OldAlign == 0 || NewAlign == 0) {
2747 QualType Ty;
2748 if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2749 Ty = VD->getType();
2750 else
2751 Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2753 if (OldAlign == 0)
2754 OldAlign = S.Context.getTypeAlign(Ty);
2755 if (NewAlign == 0)
2756 NewAlign = S.Context.getTypeAlign(Ty);
2759 if (OldAlign != NewAlign) {
2760 S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2761 << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2762 << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2763 S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2767 if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2768 // C++11 [dcl.align]p6:
2769 // if any declaration of an entity has an alignment-specifier,
2770 // every defining declaration of that entity shall specify an
2771 // equivalent alignment.
2772 // C11 6.7.5/7:
2773 // If the definition of an object does not have an alignment
2774 // specifier, any other declaration of that object shall also
2775 // have no alignment specifier.
2776 S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2777 << OldAlignasAttr;
2778 S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2779 << OldAlignasAttr;
2782 bool AnyAdded = false;
2784 // Ensure we have an attribute representing the strictest alignment.
2785 if (OldAlign > NewAlign) {
2786 AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2787 Clone->setInherited(true);
2788 New->addAttr(Clone);
2789 AnyAdded = true;
2792 // Ensure we have an alignas attribute if the old declaration had one.
2793 if (OldAlignasAttr && !NewAlignasAttr &&
2794 !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2795 AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2796 Clone->setInherited(true);
2797 New->addAttr(Clone);
2798 AnyAdded = true;
2801 return AnyAdded;
2804 #define WANT_DECL_MERGE_LOGIC
2805 #include "clang/Sema/AttrParsedAttrImpl.inc"
2806 #undef WANT_DECL_MERGE_LOGIC
2808 static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2809 const InheritableAttr *Attr,
2810 Sema::AvailabilityMergeKind AMK) {
2811 // Diagnose any mutual exclusions between the attribute that we want to add
2812 // and attributes that already exist on the declaration.
2813 if (!DiagnoseMutualExclusions(S, D, Attr))
2814 return false;
2816 // This function copies an attribute Attr from a previous declaration to the
2817 // new declaration D if the new declaration doesn't itself have that attribute
2818 // yet or if that attribute allows duplicates.
2819 // If you're adding a new attribute that requires logic different from
2820 // "use explicit attribute on decl if present, else use attribute from
2821 // previous decl", for example if the attribute needs to be consistent
2822 // between redeclarations, you need to call a custom merge function here.
2823 InheritableAttr *NewAttr = nullptr;
2824 if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2825 NewAttr = S.mergeAvailabilityAttr(
2826 D, *AA, AA->getPlatform(), AA->isImplicit(), AA->getIntroduced(),
2827 AA->getDeprecated(), AA->getObsoleted(), AA->getUnavailable(),
2828 AA->getMessage(), AA->getStrict(), AA->getReplacement(), AMK,
2829 AA->getPriority());
2830 else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2831 NewAttr = S.mergeVisibilityAttr(D, *VA, VA->getVisibility());
2832 else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2833 NewAttr = S.mergeTypeVisibilityAttr(D, *VA, VA->getVisibility());
2834 else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2835 NewAttr = S.mergeDLLImportAttr(D, *ImportA);
2836 else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2837 NewAttr = S.mergeDLLExportAttr(D, *ExportA);
2838 else if (const auto *EA = dyn_cast<ErrorAttr>(Attr))
2839 NewAttr = S.mergeErrorAttr(D, *EA, EA->getUserDiagnostic());
2840 else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2841 NewAttr = S.mergeFormatAttr(D, *FA, FA->getType(), FA->getFormatIdx(),
2842 FA->getFirstArg());
2843 else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2844 NewAttr = S.mergeSectionAttr(D, *SA, SA->getName());
2845 else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr))
2846 NewAttr = S.mergeCodeSegAttr(D, *CSA, CSA->getName());
2847 else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2848 NewAttr = S.mergeMSInheritanceAttr(D, *IA, IA->getBestCase(),
2849 IA->getInheritanceModel());
2850 else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2851 NewAttr = S.mergeAlwaysInlineAttr(D, *AA,
2852 &S.Context.Idents.get(AA->getSpelling()));
2853 else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
2854 (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
2855 isa<CUDAGlobalAttr>(Attr))) {
2856 // CUDA target attributes are part of function signature for
2857 // overloading purposes and must not be merged.
2858 return false;
2859 } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2860 NewAttr = S.mergeMinSizeAttr(D, *MA);
2861 else if (const auto *SNA = dyn_cast<SwiftNameAttr>(Attr))
2862 NewAttr = S.mergeSwiftNameAttr(D, *SNA, SNA->getName());
2863 else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2864 NewAttr = S.mergeOptimizeNoneAttr(D, *OA);
2865 else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2866 NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA);
2867 else if (isa<AlignedAttr>(Attr))
2868 // AlignedAttrs are handled separately, because we need to handle all
2869 // such attributes on a declaration at the same time.
2870 NewAttr = nullptr;
2871 else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2872 (AMK == Sema::AMK_Override ||
2873 AMK == Sema::AMK_ProtocolImplementation ||
2874 AMK == Sema::AMK_OptionalProtocolImplementation))
2875 NewAttr = nullptr;
2876 else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
2877 NewAttr = S.mergeUuidAttr(D, *UA, UA->getGuid(), UA->getGuidDecl());
2878 else if (const auto *IMA = dyn_cast<WebAssemblyImportModuleAttr>(Attr))
2879 NewAttr = S.mergeImportModuleAttr(D, *IMA);
2880 else if (const auto *INA = dyn_cast<WebAssemblyImportNameAttr>(Attr))
2881 NewAttr = S.mergeImportNameAttr(D, *INA);
2882 else if (const auto *TCBA = dyn_cast<EnforceTCBAttr>(Attr))
2883 NewAttr = S.mergeEnforceTCBAttr(D, *TCBA);
2884 else if (const auto *TCBLA = dyn_cast<EnforceTCBLeafAttr>(Attr))
2885 NewAttr = S.mergeEnforceTCBLeafAttr(D, *TCBLA);
2886 else if (const auto *BTFA = dyn_cast<BTFDeclTagAttr>(Attr))
2887 NewAttr = S.mergeBTFDeclTagAttr(D, *BTFA);
2888 else if (const auto *NT = dyn_cast<HLSLNumThreadsAttr>(Attr))
2889 NewAttr =
2890 S.mergeHLSLNumThreadsAttr(D, *NT, NT->getX(), NT->getY(), NT->getZ());
2891 else if (const auto *SA = dyn_cast<HLSLShaderAttr>(Attr))
2892 NewAttr = S.mergeHLSLShaderAttr(D, *SA, SA->getType());
2893 else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
2894 NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2896 if (NewAttr) {
2897 NewAttr->setInherited(true);
2898 D->addAttr(NewAttr);
2899 if (isa<MSInheritanceAttr>(NewAttr))
2900 S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
2901 return true;
2904 return false;
2907 static const NamedDecl *getDefinition(const Decl *D) {
2908 if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2909 return TD->getDefinition();
2910 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2911 const VarDecl *Def = VD->getDefinition();
2912 if (Def)
2913 return Def;
2914 return VD->getActingDefinition();
2916 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2917 const FunctionDecl *Def = nullptr;
2918 if (FD->isDefined(Def, true))
2919 return Def;
2921 return nullptr;
2924 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2925 for (const auto *Attribute : D->attrs())
2926 if (Attribute->getKind() == Kind)
2927 return true;
2928 return false;
2931 /// checkNewAttributesAfterDef - If we already have a definition, check that
2932 /// there are no new attributes in this declaration.
2933 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2934 if (!New->hasAttrs())
2935 return;
2937 const NamedDecl *Def = getDefinition(Old);
2938 if (!Def || Def == New)
2939 return;
2941 AttrVec &NewAttributes = New->getAttrs();
2942 for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2943 const Attr *NewAttribute = NewAttributes[I];
2945 if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
2946 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
2947 Sema::SkipBodyInfo SkipBody;
2948 S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
2950 // If we're skipping this definition, drop the "alias" attribute.
2951 if (SkipBody.ShouldSkip) {
2952 NewAttributes.erase(NewAttributes.begin() + I);
2953 --E;
2954 continue;
2956 } else {
2957 VarDecl *VD = cast<VarDecl>(New);
2958 unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2959 VarDecl::TentativeDefinition
2960 ? diag::err_alias_after_tentative
2961 : diag::err_redefinition;
2962 S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2963 if (Diag == diag::err_redefinition)
2964 S.notePreviousDefinition(Def, VD->getLocation());
2965 else
2966 S.Diag(Def->getLocation(), diag::note_previous_definition);
2967 VD->setInvalidDecl();
2969 ++I;
2970 continue;
2973 if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2974 // Tentative definitions are only interesting for the alias check above.
2975 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2976 ++I;
2977 continue;
2981 if (hasAttribute(Def, NewAttribute->getKind())) {
2982 ++I;
2983 continue; // regular attr merging will take care of validating this.
2986 if (isa<C11NoReturnAttr>(NewAttribute)) {
2987 // C's _Noreturn is allowed to be added to a function after it is defined.
2988 ++I;
2989 continue;
2990 } else if (isa<UuidAttr>(NewAttribute)) {
2991 // msvc will allow a subsequent definition to add an uuid to a class
2992 ++I;
2993 continue;
2994 } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2995 if (AA->isAlignas()) {
2996 // C++11 [dcl.align]p6:
2997 // if any declaration of an entity has an alignment-specifier,
2998 // every defining declaration of that entity shall specify an
2999 // equivalent alignment.
3000 // C11 6.7.5/7:
3001 // If the definition of an object does not have an alignment
3002 // specifier, any other declaration of that object shall also
3003 // have no alignment specifier.
3004 S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
3005 << AA;
3006 S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
3007 << AA;
3008 NewAttributes.erase(NewAttributes.begin() + I);
3009 --E;
3010 continue;
3012 } else if (isa<LoaderUninitializedAttr>(NewAttribute)) {
3013 // If there is a C definition followed by a redeclaration with this
3014 // attribute then there are two different definitions. In C++, prefer the
3015 // standard diagnostics.
3016 if (!S.getLangOpts().CPlusPlus) {
3017 S.Diag(NewAttribute->getLocation(),
3018 diag::err_loader_uninitialized_redeclaration);
3019 S.Diag(Def->getLocation(), diag::note_previous_definition);
3020 NewAttributes.erase(NewAttributes.begin() + I);
3021 --E;
3022 continue;
3024 } else if (isa<SelectAnyAttr>(NewAttribute) &&
3025 cast<VarDecl>(New)->isInline() &&
3026 !cast<VarDecl>(New)->isInlineSpecified()) {
3027 // Don't warn about applying selectany to implicitly inline variables.
3028 // Older compilers and language modes would require the use of selectany
3029 // to make such variables inline, and it would have no effect if we
3030 // honored it.
3031 ++I;
3032 continue;
3033 } else if (isa<OMPDeclareVariantAttr>(NewAttribute)) {
3034 // We allow to add OMP[Begin]DeclareVariantAttr to be added to
3035 // declarations after definitions.
3036 ++I;
3037 continue;
3040 S.Diag(NewAttribute->getLocation(),
3041 diag::warn_attribute_precede_definition);
3042 S.Diag(Def->getLocation(), diag::note_previous_definition);
3043 NewAttributes.erase(NewAttributes.begin() + I);
3044 --E;
3048 static void diagnoseMissingConstinit(Sema &S, const VarDecl *InitDecl,
3049 const ConstInitAttr *CIAttr,
3050 bool AttrBeforeInit) {
3051 SourceLocation InsertLoc = InitDecl->getInnerLocStart();
3053 // Figure out a good way to write this specifier on the old declaration.
3054 // FIXME: We should just use the spelling of CIAttr, but we don't preserve
3055 // enough of the attribute list spelling information to extract that without
3056 // heroics.
3057 std::string SuitableSpelling;
3058 if (S.getLangOpts().CPlusPlus20)
3059 SuitableSpelling = std::string(
3060 S.PP.getLastMacroWithSpelling(InsertLoc, {tok::kw_constinit}));
3061 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
3062 SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
3063 InsertLoc, {tok::l_square, tok::l_square,
3064 S.PP.getIdentifierInfo("clang"), tok::coloncolon,
3065 S.PP.getIdentifierInfo("require_constant_initialization"),
3066 tok::r_square, tok::r_square}));
3067 if (SuitableSpelling.empty())
3068 SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
3069 InsertLoc, {tok::kw___attribute, tok::l_paren, tok::r_paren,
3070 S.PP.getIdentifierInfo("require_constant_initialization"),
3071 tok::r_paren, tok::r_paren}));
3072 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus20)
3073 SuitableSpelling = "constinit";
3074 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
3075 SuitableSpelling = "[[clang::require_constant_initialization]]";
3076 if (SuitableSpelling.empty())
3077 SuitableSpelling = "__attribute__((require_constant_initialization))";
3078 SuitableSpelling += " ";
3080 if (AttrBeforeInit) {
3081 // extern constinit int a;
3082 // int a = 0; // error (missing 'constinit'), accepted as extension
3083 assert(CIAttr->isConstinit() && "should not diagnose this for attribute");
3084 S.Diag(InitDecl->getLocation(), diag::ext_constinit_missing)
3085 << InitDecl << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
3086 S.Diag(CIAttr->getLocation(), diag::note_constinit_specified_here);
3087 } else {
3088 // int a = 0;
3089 // constinit extern int a; // error (missing 'constinit')
3090 S.Diag(CIAttr->getLocation(),
3091 CIAttr->isConstinit() ? diag::err_constinit_added_too_late
3092 : diag::warn_require_const_init_added_too_late)
3093 << FixItHint::CreateRemoval(SourceRange(CIAttr->getLocation()));
3094 S.Diag(InitDecl->getLocation(), diag::note_constinit_missing_here)
3095 << CIAttr->isConstinit()
3096 << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
3100 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
3101 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
3102 AvailabilityMergeKind AMK) {
3103 if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
3104 UsedAttr *NewAttr = OldAttr->clone(Context);
3105 NewAttr->setInherited(true);
3106 New->addAttr(NewAttr);
3108 if (RetainAttr *OldAttr = Old->getMostRecentDecl()->getAttr<RetainAttr>()) {
3109 RetainAttr *NewAttr = OldAttr->clone(Context);
3110 NewAttr->setInherited(true);
3111 New->addAttr(NewAttr);
3114 if (!Old->hasAttrs() && !New->hasAttrs())
3115 return;
3117 // [dcl.constinit]p1:
3118 // If the [constinit] specifier is applied to any declaration of a
3119 // variable, it shall be applied to the initializing declaration.
3120 const auto *OldConstInit = Old->getAttr<ConstInitAttr>();
3121 const auto *NewConstInit = New->getAttr<ConstInitAttr>();
3122 if (bool(OldConstInit) != bool(NewConstInit)) {
3123 const auto *OldVD = cast<VarDecl>(Old);
3124 auto *NewVD = cast<VarDecl>(New);
3126 // Find the initializing declaration. Note that we might not have linked
3127 // the new declaration into the redeclaration chain yet.
3128 const VarDecl *InitDecl = OldVD->getInitializingDeclaration();
3129 if (!InitDecl &&
3130 (NewVD->hasInit() || NewVD->isThisDeclarationADefinition()))
3131 InitDecl = NewVD;
3133 if (InitDecl == NewVD) {
3134 // This is the initializing declaration. If it would inherit 'constinit',
3135 // that's ill-formed. (Note that we do not apply this to the attribute
3136 // form).
3137 if (OldConstInit && OldConstInit->isConstinit())
3138 diagnoseMissingConstinit(*this, NewVD, OldConstInit,
3139 /*AttrBeforeInit=*/true);
3140 } else if (NewConstInit) {
3141 // This is the first time we've been told that this declaration should
3142 // have a constant initializer. If we already saw the initializing
3143 // declaration, this is too late.
3144 if (InitDecl && InitDecl != NewVD) {
3145 diagnoseMissingConstinit(*this, InitDecl, NewConstInit,
3146 /*AttrBeforeInit=*/false);
3147 NewVD->dropAttr<ConstInitAttr>();
3152 // Attributes declared post-definition are currently ignored.
3153 checkNewAttributesAfterDef(*this, New, Old);
3155 if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
3156 if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
3157 if (!OldA->isEquivalent(NewA)) {
3158 // This redeclaration changes __asm__ label.
3159 Diag(New->getLocation(), diag::err_different_asm_label);
3160 Diag(OldA->getLocation(), diag::note_previous_declaration);
3162 } else if (Old->isUsed()) {
3163 // This redeclaration adds an __asm__ label to a declaration that has
3164 // already been ODR-used.
3165 Diag(New->getLocation(), diag::err_late_asm_label_name)
3166 << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
3170 // Re-declaration cannot add abi_tag's.
3171 if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
3172 if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
3173 for (const auto &NewTag : NewAbiTagAttr->tags()) {
3174 if (!llvm::is_contained(OldAbiTagAttr->tags(), NewTag)) {
3175 Diag(NewAbiTagAttr->getLocation(),
3176 diag::err_new_abi_tag_on_redeclaration)
3177 << NewTag;
3178 Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
3181 } else {
3182 Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
3183 Diag(Old->getLocation(), diag::note_previous_declaration);
3187 // This redeclaration adds a section attribute.
3188 if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
3189 if (auto *VD = dyn_cast<VarDecl>(New)) {
3190 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
3191 Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
3192 Diag(Old->getLocation(), diag::note_previous_declaration);
3197 // Redeclaration adds code-seg attribute.
3198 const auto *NewCSA = New->getAttr<CodeSegAttr>();
3199 if (NewCSA && !Old->hasAttr<CodeSegAttr>() &&
3200 !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) {
3201 Diag(New->getLocation(), diag::warn_mismatched_section)
3202 << 0 /*codeseg*/;
3203 Diag(Old->getLocation(), diag::note_previous_declaration);
3206 if (!Old->hasAttrs())
3207 return;
3209 bool foundAny = New->hasAttrs();
3211 // Ensure that any moving of objects within the allocated map is done before
3212 // we process them.
3213 if (!foundAny) New->setAttrs(AttrVec());
3215 for (auto *I : Old->specific_attrs<InheritableAttr>()) {
3216 // Ignore deprecated/unavailable/availability attributes if requested.
3217 AvailabilityMergeKind LocalAMK = AMK_None;
3218 if (isa<DeprecatedAttr>(I) ||
3219 isa<UnavailableAttr>(I) ||
3220 isa<AvailabilityAttr>(I)) {
3221 switch (AMK) {
3222 case AMK_None:
3223 continue;
3225 case AMK_Redeclaration:
3226 case AMK_Override:
3227 case AMK_ProtocolImplementation:
3228 case AMK_OptionalProtocolImplementation:
3229 LocalAMK = AMK;
3230 break;
3234 // Already handled.
3235 if (isa<UsedAttr>(I) || isa<RetainAttr>(I))
3236 continue;
3238 if (mergeDeclAttribute(*this, New, I, LocalAMK))
3239 foundAny = true;
3242 if (mergeAlignedAttrs(*this, New, Old))
3243 foundAny = true;
3245 if (!foundAny) New->dropAttrs();
3248 /// mergeParamDeclAttributes - Copy attributes from the old parameter
3249 /// to the new one.
3250 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
3251 const ParmVarDecl *oldDecl,
3252 Sema &S) {
3253 // C++11 [dcl.attr.depend]p2:
3254 // The first declaration of a function shall specify the
3255 // carries_dependency attribute for its declarator-id if any declaration
3256 // of the function specifies the carries_dependency attribute.
3257 const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
3258 if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
3259 S.Diag(CDA->getLocation(),
3260 diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
3261 // Find the first declaration of the parameter.
3262 // FIXME: Should we build redeclaration chains for function parameters?
3263 const FunctionDecl *FirstFD =
3264 cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
3265 const ParmVarDecl *FirstVD =
3266 FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
3267 S.Diag(FirstVD->getLocation(),
3268 diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
3271 if (!oldDecl->hasAttrs())
3272 return;
3274 bool foundAny = newDecl->hasAttrs();
3276 // Ensure that any moving of objects within the allocated map is
3277 // done before we process them.
3278 if (!foundAny) newDecl->setAttrs(AttrVec());
3280 for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
3281 if (!DeclHasAttr(newDecl, I)) {
3282 InheritableAttr *newAttr =
3283 cast<InheritableParamAttr>(I->clone(S.Context));
3284 newAttr->setInherited(true);
3285 newDecl->addAttr(newAttr);
3286 foundAny = true;
3290 if (!foundAny) newDecl->dropAttrs();
3293 static bool EquivalentArrayTypes(QualType Old, QualType New,
3294 const ASTContext &Ctx) {
3296 auto NoSizeInfo = [&Ctx](QualType Ty) {
3297 if (Ty->isIncompleteArrayType() || Ty->isPointerType())
3298 return true;
3299 if (const auto *VAT = Ctx.getAsVariableArrayType(Ty))
3300 return VAT->getSizeModifier() == ArrayType::ArraySizeModifier::Star;
3301 return false;
3304 // `type[]` is equivalent to `type *` and `type[*]`.
3305 if (NoSizeInfo(Old) && NoSizeInfo(New))
3306 return true;
3308 // Don't try to compare VLA sizes, unless one of them has the star modifier.
3309 if (Old->isVariableArrayType() && New->isVariableArrayType()) {
3310 const auto *OldVAT = Ctx.getAsVariableArrayType(Old);
3311 const auto *NewVAT = Ctx.getAsVariableArrayType(New);
3312 if ((OldVAT->getSizeModifier() == ArrayType::ArraySizeModifier::Star) ^
3313 (NewVAT->getSizeModifier() == ArrayType::ArraySizeModifier::Star))
3314 return false;
3315 return true;
3318 // Only compare size, ignore Size modifiers and CVR.
3319 if (Old->isConstantArrayType() && New->isConstantArrayType()) {
3320 return Ctx.getAsConstantArrayType(Old)->getSize() ==
3321 Ctx.getAsConstantArrayType(New)->getSize();
3324 // Don't try to compare dependent sized array
3325 if (Old->isDependentSizedArrayType() && New->isDependentSizedArrayType()) {
3326 return true;
3329 return Old == New;
3332 static void mergeParamDeclTypes(ParmVarDecl *NewParam,
3333 const ParmVarDecl *OldParam,
3334 Sema &S) {
3335 if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
3336 if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
3337 if (*Oldnullability != *Newnullability) {
3338 S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
3339 << DiagNullabilityKind(
3340 *Newnullability,
3341 ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3342 != 0))
3343 << DiagNullabilityKind(
3344 *Oldnullability,
3345 ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3346 != 0));
3347 S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
3349 } else {
3350 QualType NewT = NewParam->getType();
3351 NewT = S.Context.getAttributedType(
3352 AttributedType::getNullabilityAttrKind(*Oldnullability),
3353 NewT, NewT);
3354 NewParam->setType(NewT);
3357 const auto *OldParamDT = dyn_cast<DecayedType>(OldParam->getType());
3358 const auto *NewParamDT = dyn_cast<DecayedType>(NewParam->getType());
3359 if (OldParamDT && NewParamDT &&
3360 OldParamDT->getPointeeType() == NewParamDT->getPointeeType()) {
3361 QualType OldParamOT = OldParamDT->getOriginalType();
3362 QualType NewParamOT = NewParamDT->getOriginalType();
3363 if (!EquivalentArrayTypes(OldParamOT, NewParamOT, S.getASTContext())) {
3364 S.Diag(NewParam->getLocation(), diag::warn_inconsistent_array_form)
3365 << NewParam << NewParamOT;
3366 S.Diag(OldParam->getLocation(), diag::note_previous_declaration_as)
3367 << OldParamOT;
3372 namespace {
3374 /// Used in MergeFunctionDecl to keep track of function parameters in
3375 /// C.
3376 struct GNUCompatibleParamWarning {
3377 ParmVarDecl *OldParm;
3378 ParmVarDecl *NewParm;
3379 QualType PromotedType;
3382 } // end anonymous namespace
3384 // Determine whether the previous declaration was a definition, implicit
3385 // declaration, or a declaration.
3386 template <typename T>
3387 static std::pair<diag::kind, SourceLocation>
3388 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
3389 diag::kind PrevDiag;
3390 SourceLocation OldLocation = Old->getLocation();
3391 if (Old->isThisDeclarationADefinition())
3392 PrevDiag = diag::note_previous_definition;
3393 else if (Old->isImplicit()) {
3394 PrevDiag = diag::note_previous_implicit_declaration;
3395 if (const auto *FD = dyn_cast<FunctionDecl>(Old)) {
3396 if (FD->getBuiltinID())
3397 PrevDiag = diag::note_previous_builtin_declaration;
3399 if (OldLocation.isInvalid())
3400 OldLocation = New->getLocation();
3401 } else
3402 PrevDiag = diag::note_previous_declaration;
3403 return std::make_pair(PrevDiag, OldLocation);
3406 /// canRedefineFunction - checks if a function can be redefined. Currently,
3407 /// only extern inline functions can be redefined, and even then only in
3408 /// GNU89 mode.
3409 static bool canRedefineFunction(const FunctionDecl *FD,
3410 const LangOptions& LangOpts) {
3411 return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
3412 !LangOpts.CPlusPlus &&
3413 FD->isInlineSpecified() &&
3414 FD->getStorageClass() == SC_Extern);
3417 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
3418 const AttributedType *AT = T->getAs<AttributedType>();
3419 while (AT && !AT->isCallingConv())
3420 AT = AT->getModifiedType()->getAs<AttributedType>();
3421 return AT;
3424 template <typename T>
3425 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
3426 const DeclContext *DC = Old->getDeclContext();
3427 if (DC->isRecord())
3428 return false;
3430 LanguageLinkage OldLinkage = Old->getLanguageLinkage();
3431 if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
3432 return true;
3433 if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
3434 return true;
3435 return false;
3438 template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
3439 static bool isExternC(VarTemplateDecl *) { return false; }
3440 static bool isExternC(FunctionTemplateDecl *) { return false; }
3442 /// Check whether a redeclaration of an entity introduced by a
3443 /// using-declaration is valid, given that we know it's not an overload
3444 /// (nor a hidden tag declaration).
3445 template<typename ExpectedDecl>
3446 static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
3447 ExpectedDecl *New) {
3448 // C++11 [basic.scope.declarative]p4:
3449 // Given a set of declarations in a single declarative region, each of
3450 // which specifies the same unqualified name,
3451 // -- they shall all refer to the same entity, or all refer to functions
3452 // and function templates; or
3453 // -- exactly one declaration shall declare a class name or enumeration
3454 // name that is not a typedef name and the other declarations shall all
3455 // refer to the same variable or enumerator, or all refer to functions
3456 // and function templates; in this case the class name or enumeration
3457 // name is hidden (3.3.10).
3459 // C++11 [namespace.udecl]p14:
3460 // If a function declaration in namespace scope or block scope has the
3461 // same name and the same parameter-type-list as a function introduced
3462 // by a using-declaration, and the declarations do not declare the same
3463 // function, the program is ill-formed.
3465 auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
3466 if (Old &&
3467 !Old->getDeclContext()->getRedeclContext()->Equals(
3468 New->getDeclContext()->getRedeclContext()) &&
3469 !(isExternC(Old) && isExternC(New)))
3470 Old = nullptr;
3472 if (!Old) {
3473 S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
3474 S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
3475 S.Diag(OldS->getIntroducer()->getLocation(), diag::note_using_decl) << 0;
3476 return true;
3478 return false;
3481 static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
3482 const FunctionDecl *B) {
3483 assert(A->getNumParams() == B->getNumParams());
3485 auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
3486 const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
3487 const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
3488 if (AttrA == AttrB)
3489 return true;
3490 return AttrA && AttrB && AttrA->getType() == AttrB->getType() &&
3491 AttrA->isDynamic() == AttrB->isDynamic();
3494 return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
3497 /// If necessary, adjust the semantic declaration context for a qualified
3498 /// declaration to name the correct inline namespace within the qualifier.
3499 static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
3500 DeclaratorDecl *OldD) {
3501 // The only case where we need to update the DeclContext is when
3502 // redeclaration lookup for a qualified name finds a declaration
3503 // in an inline namespace within the context named by the qualifier:
3505 // inline namespace N { int f(); }
3506 // int ::f(); // Sema DC needs adjusting from :: to N::.
3508 // For unqualified declarations, the semantic context *can* change
3509 // along the redeclaration chain (for local extern declarations,
3510 // extern "C" declarations, and friend declarations in particular).
3511 if (!NewD->getQualifier())
3512 return;
3514 // NewD is probably already in the right context.
3515 auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
3516 auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
3517 if (NamedDC->Equals(SemaDC))
3518 return;
3520 assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||
3521 NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&
3522 "unexpected context for redeclaration");
3524 auto *LexDC = NewD->getLexicalDeclContext();
3525 auto FixSemaDC = [=](NamedDecl *D) {
3526 if (!D)
3527 return;
3528 D->setDeclContext(SemaDC);
3529 D->setLexicalDeclContext(LexDC);
3532 FixSemaDC(NewD);
3533 if (auto *FD = dyn_cast<FunctionDecl>(NewD))
3534 FixSemaDC(FD->getDescribedFunctionTemplate());
3535 else if (auto *VD = dyn_cast<VarDecl>(NewD))
3536 FixSemaDC(VD->getDescribedVarTemplate());
3539 /// MergeFunctionDecl - We just parsed a function 'New' from
3540 /// declarator D which has the same name and scope as a previous
3541 /// declaration 'Old'. Figure out how to resolve this situation,
3542 /// merging decls or emitting diagnostics as appropriate.
3544 /// In C++, New and Old must be declarations that are not
3545 /// overloaded. Use IsOverload to determine whether New and Old are
3546 /// overloaded, and to select the Old declaration that New should be
3547 /// merged with.
3549 /// Returns true if there was an error, false otherwise.
3550 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD, Scope *S,
3551 bool MergeTypeWithOld, bool NewDeclIsDefn) {
3552 // Verify the old decl was also a function.
3553 FunctionDecl *Old = OldD->getAsFunction();
3554 if (!Old) {
3555 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
3556 if (New->getFriendObjectKind()) {
3557 Diag(New->getLocation(), diag::err_using_decl_friend);
3558 Diag(Shadow->getTargetDecl()->getLocation(),
3559 diag::note_using_decl_target);
3560 Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl)
3561 << 0;
3562 return true;
3565 // Check whether the two declarations might declare the same function or
3566 // function template.
3567 if (FunctionTemplateDecl *NewTemplate =
3568 New->getDescribedFunctionTemplate()) {
3569 if (checkUsingShadowRedecl<FunctionTemplateDecl>(*this, Shadow,
3570 NewTemplate))
3571 return true;
3572 OldD = Old = cast<FunctionTemplateDecl>(Shadow->getTargetDecl())
3573 ->getAsFunction();
3574 } else {
3575 if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
3576 return true;
3577 OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
3579 } else {
3580 Diag(New->getLocation(), diag::err_redefinition_different_kind)
3581 << New->getDeclName();
3582 notePreviousDefinition(OldD, New->getLocation());
3583 return true;
3587 // If the old declaration was found in an inline namespace and the new
3588 // declaration was qualified, update the DeclContext to match.
3589 adjustDeclContextForDeclaratorDecl(New, Old);
3591 // If the old declaration is invalid, just give up here.
3592 if (Old->isInvalidDecl())
3593 return true;
3595 // Disallow redeclaration of some builtins.
3596 if (!getASTContext().canBuiltinBeRedeclared(Old)) {
3597 Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName();
3598 Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
3599 << Old << Old->getType();
3600 return true;
3603 diag::kind PrevDiag;
3604 SourceLocation OldLocation;
3605 std::tie(PrevDiag, OldLocation) =
3606 getNoteDiagForInvalidRedeclaration(Old, New);
3608 // Don't complain about this if we're in GNU89 mode and the old function
3609 // is an extern inline function.
3610 // Don't complain about specializations. They are not supposed to have
3611 // storage classes.
3612 if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
3613 New->getStorageClass() == SC_Static &&
3614 Old->hasExternalFormalLinkage() &&
3615 !New->getTemplateSpecializationInfo() &&
3616 !canRedefineFunction(Old, getLangOpts())) {
3617 if (getLangOpts().MicrosoftExt) {
3618 Diag(New->getLocation(), diag::ext_static_non_static) << New;
3619 Diag(OldLocation, PrevDiag);
3620 } else {
3621 Diag(New->getLocation(), diag::err_static_non_static) << New;
3622 Diag(OldLocation, PrevDiag);
3623 return true;
3627 if (const auto *ILA = New->getAttr<InternalLinkageAttr>())
3628 if (!Old->hasAttr<InternalLinkageAttr>()) {
3629 Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl)
3630 << ILA;
3631 Diag(Old->getLocation(), diag::note_previous_declaration);
3632 New->dropAttr<InternalLinkageAttr>();
3635 if (auto *EA = New->getAttr<ErrorAttr>()) {
3636 if (!Old->hasAttr<ErrorAttr>()) {
3637 Diag(EA->getLocation(), diag::err_attribute_missing_on_first_decl) << EA;
3638 Diag(Old->getLocation(), diag::note_previous_declaration);
3639 New->dropAttr<ErrorAttr>();
3643 if (CheckRedeclarationInModule(New, Old))
3644 return true;
3646 if (!getLangOpts().CPlusPlus) {
3647 bool OldOvl = Old->hasAttr<OverloadableAttr>();
3648 if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
3649 Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
3650 << New << OldOvl;
3652 // Try our best to find a decl that actually has the overloadable
3653 // attribute for the note. In most cases (e.g. programs with only one
3654 // broken declaration/definition), this won't matter.
3656 // FIXME: We could do this if we juggled some extra state in
3657 // OverloadableAttr, rather than just removing it.
3658 const Decl *DiagOld = Old;
3659 if (OldOvl) {
3660 auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
3661 const auto *A = D->getAttr<OverloadableAttr>();
3662 return A && !A->isImplicit();
3664 // If we've implicitly added *all* of the overloadable attrs to this
3665 // chain, emitting a "previous redecl" note is pointless.
3666 DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
3669 if (DiagOld)
3670 Diag(DiagOld->getLocation(),
3671 diag::note_attribute_overloadable_prev_overload)
3672 << OldOvl;
3674 if (OldOvl)
3675 New->addAttr(OverloadableAttr::CreateImplicit(Context));
3676 else
3677 New->dropAttr<OverloadableAttr>();
3681 // If a function is first declared with a calling convention, but is later
3682 // declared or defined without one, all following decls assume the calling
3683 // convention of the first.
3685 // It's OK if a function is first declared without a calling convention,
3686 // but is later declared or defined with the default calling convention.
3688 // To test if either decl has an explicit calling convention, we look for
3689 // AttributedType sugar nodes on the type as written. If they are missing or
3690 // were canonicalized away, we assume the calling convention was implicit.
3692 // Note also that we DO NOT return at this point, because we still have
3693 // other tests to run.
3694 QualType OldQType = Context.getCanonicalType(Old->getType());
3695 QualType NewQType = Context.getCanonicalType(New->getType());
3696 const FunctionType *OldType = cast<FunctionType>(OldQType);
3697 const FunctionType *NewType = cast<FunctionType>(NewQType);
3698 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
3699 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
3700 bool RequiresAdjustment = false;
3702 if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
3703 FunctionDecl *First = Old->getFirstDecl();
3704 const FunctionType *FT =
3705 First->getType().getCanonicalType()->castAs<FunctionType>();
3706 FunctionType::ExtInfo FI = FT->getExtInfo();
3707 bool NewCCExplicit = getCallingConvAttributedType(New->getType());
3708 if (!NewCCExplicit) {
3709 // Inherit the CC from the previous declaration if it was specified
3710 // there but not here.
3711 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3712 RequiresAdjustment = true;
3713 } else if (Old->getBuiltinID()) {
3714 // Builtin attribute isn't propagated to the new one yet at this point,
3715 // so we check if the old one is a builtin.
3717 // Calling Conventions on a Builtin aren't really useful and setting a
3718 // default calling convention and cdecl'ing some builtin redeclarations is
3719 // common, so warn and ignore the calling convention on the redeclaration.
3720 Diag(New->getLocation(), diag::warn_cconv_unsupported)
3721 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3722 << (int)CallingConventionIgnoredReason::BuiltinFunction;
3723 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3724 RequiresAdjustment = true;
3725 } else {
3726 // Calling conventions aren't compatible, so complain.
3727 bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
3728 Diag(New->getLocation(), diag::err_cconv_change)
3729 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3730 << !FirstCCExplicit
3731 << (!FirstCCExplicit ? "" :
3732 FunctionType::getNameForCallConv(FI.getCC()));
3734 // Put the note on the first decl, since it is the one that matters.
3735 Diag(First->getLocation(), diag::note_previous_declaration);
3736 return true;
3740 // FIXME: diagnose the other way around?
3741 if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
3742 NewTypeInfo = NewTypeInfo.withNoReturn(true);
3743 RequiresAdjustment = true;
3746 // Merge regparm attribute.
3747 if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
3748 OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
3749 if (NewTypeInfo.getHasRegParm()) {
3750 Diag(New->getLocation(), diag::err_regparm_mismatch)
3751 << NewType->getRegParmType()
3752 << OldType->getRegParmType();
3753 Diag(OldLocation, diag::note_previous_declaration);
3754 return true;
3757 NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
3758 RequiresAdjustment = true;
3761 // Merge ns_returns_retained attribute.
3762 if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
3763 if (NewTypeInfo.getProducesResult()) {
3764 Diag(New->getLocation(), diag::err_function_attribute_mismatch)
3765 << "'ns_returns_retained'";
3766 Diag(OldLocation, diag::note_previous_declaration);
3767 return true;
3770 NewTypeInfo = NewTypeInfo.withProducesResult(true);
3771 RequiresAdjustment = true;
3774 if (OldTypeInfo.getNoCallerSavedRegs() !=
3775 NewTypeInfo.getNoCallerSavedRegs()) {
3776 if (NewTypeInfo.getNoCallerSavedRegs()) {
3777 AnyX86NoCallerSavedRegistersAttr *Attr =
3778 New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
3779 Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
3780 Diag(OldLocation, diag::note_previous_declaration);
3781 return true;
3784 NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
3785 RequiresAdjustment = true;
3788 if (RequiresAdjustment) {
3789 const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
3790 AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
3791 New->setType(QualType(AdjustedType, 0));
3792 NewQType = Context.getCanonicalType(New->getType());
3795 // If this redeclaration makes the function inline, we may need to add it to
3796 // UndefinedButUsed.
3797 if (!Old->isInlined() && New->isInlined() &&
3798 !New->hasAttr<GNUInlineAttr>() &&
3799 !getLangOpts().GNUInline &&
3800 Old->isUsed(false) &&
3801 !Old->isDefined() && !New->isThisDeclarationADefinition())
3802 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3803 SourceLocation()));
3805 // If this redeclaration makes it newly gnu_inline, we don't want to warn
3806 // about it.
3807 if (New->hasAttr<GNUInlineAttr>() &&
3808 Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
3809 UndefinedButUsed.erase(Old->getCanonicalDecl());
3812 // If pass_object_size params don't match up perfectly, this isn't a valid
3813 // redeclaration.
3814 if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
3815 !hasIdenticalPassObjectSizeAttrs(Old, New)) {
3816 Diag(New->getLocation(), diag::err_different_pass_object_size_params)
3817 << New->getDeclName();
3818 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3819 return true;
3822 if (getLangOpts().CPlusPlus) {
3823 // C++1z [over.load]p2
3824 // Certain function declarations cannot be overloaded:
3825 // -- Function declarations that differ only in the return type,
3826 // the exception specification, or both cannot be overloaded.
3828 // Check the exception specifications match. This may recompute the type of
3829 // both Old and New if it resolved exception specifications, so grab the
3830 // types again after this. Because this updates the type, we do this before
3831 // any of the other checks below, which may update the "de facto" NewQType
3832 // but do not necessarily update the type of New.
3833 if (CheckEquivalentExceptionSpec(Old, New))
3834 return true;
3835 OldQType = Context.getCanonicalType(Old->getType());
3836 NewQType = Context.getCanonicalType(New->getType());
3838 // Go back to the type source info to compare the declared return types,
3839 // per C++1y [dcl.type.auto]p13:
3840 // Redeclarations or specializations of a function or function template
3841 // with a declared return type that uses a placeholder type shall also
3842 // use that placeholder, not a deduced type.
3843 QualType OldDeclaredReturnType = Old->getDeclaredReturnType();
3844 QualType NewDeclaredReturnType = New->getDeclaredReturnType();
3845 if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
3846 canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType,
3847 OldDeclaredReturnType)) {
3848 QualType ResQT;
3849 if (NewDeclaredReturnType->isObjCObjectPointerType() &&
3850 OldDeclaredReturnType->isObjCObjectPointerType())
3851 // FIXME: This does the wrong thing for a deduced return type.
3852 ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
3853 if (ResQT.isNull()) {
3854 if (New->isCXXClassMember() && New->isOutOfLine())
3855 Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
3856 << New << New->getReturnTypeSourceRange();
3857 else
3858 Diag(New->getLocation(), diag::err_ovl_diff_return_type)
3859 << New->getReturnTypeSourceRange();
3860 Diag(OldLocation, PrevDiag) << Old << Old->getType()
3861 << Old->getReturnTypeSourceRange();
3862 return true;
3864 else
3865 NewQType = ResQT;
3868 QualType OldReturnType = OldType->getReturnType();
3869 QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
3870 if (OldReturnType != NewReturnType) {
3871 // If this function has a deduced return type and has already been
3872 // defined, copy the deduced value from the old declaration.
3873 AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
3874 if (OldAT && OldAT->isDeduced()) {
3875 QualType DT = OldAT->getDeducedType();
3876 if (DT.isNull()) {
3877 New->setType(SubstAutoTypeDependent(New->getType()));
3878 NewQType = Context.getCanonicalType(SubstAutoTypeDependent(NewQType));
3879 } else {
3880 New->setType(SubstAutoType(New->getType(), DT));
3881 NewQType = Context.getCanonicalType(SubstAutoType(NewQType, DT));
3886 const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
3887 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
3888 if (OldMethod && NewMethod) {
3889 // Preserve triviality.
3890 NewMethod->setTrivial(OldMethod->isTrivial());
3892 // MSVC allows explicit template specialization at class scope:
3893 // 2 CXXMethodDecls referring to the same function will be injected.
3894 // We don't want a redeclaration error.
3895 bool IsClassScopeExplicitSpecialization =
3896 OldMethod->isFunctionTemplateSpecialization() &&
3897 NewMethod->isFunctionTemplateSpecialization();
3898 bool isFriend = NewMethod->getFriendObjectKind();
3900 if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
3901 !IsClassScopeExplicitSpecialization) {
3902 // -- Member function declarations with the same name and the
3903 // same parameter types cannot be overloaded if any of them
3904 // is a static member function declaration.
3905 if (OldMethod->isStatic() != NewMethod->isStatic()) {
3906 Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
3907 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3908 return true;
3911 // C++ [class.mem]p1:
3912 // [...] A member shall not be declared twice in the
3913 // member-specification, except that a nested class or member
3914 // class template can be declared and then later defined.
3915 if (!inTemplateInstantiation()) {
3916 unsigned NewDiag;
3917 if (isa<CXXConstructorDecl>(OldMethod))
3918 NewDiag = diag::err_constructor_redeclared;
3919 else if (isa<CXXDestructorDecl>(NewMethod))
3920 NewDiag = diag::err_destructor_redeclared;
3921 else if (isa<CXXConversionDecl>(NewMethod))
3922 NewDiag = diag::err_conv_function_redeclared;
3923 else
3924 NewDiag = diag::err_member_redeclared;
3926 Diag(New->getLocation(), NewDiag);
3927 } else {
3928 Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
3929 << New << New->getType();
3931 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3932 return true;
3934 // Complain if this is an explicit declaration of a special
3935 // member that was initially declared implicitly.
3937 // As an exception, it's okay to befriend such methods in order
3938 // to permit the implicit constructor/destructor/operator calls.
3939 } else if (OldMethod->isImplicit()) {
3940 if (isFriend) {
3941 NewMethod->setImplicit();
3942 } else {
3943 Diag(NewMethod->getLocation(),
3944 diag::err_definition_of_implicitly_declared_member)
3945 << New << getSpecialMember(OldMethod);
3946 return true;
3948 } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
3949 Diag(NewMethod->getLocation(),
3950 diag::err_definition_of_explicitly_defaulted_member)
3951 << getSpecialMember(OldMethod);
3952 return true;
3956 // C++11 [dcl.attr.noreturn]p1:
3957 // The first declaration of a function shall specify the noreturn
3958 // attribute if any declaration of that function specifies the noreturn
3959 // attribute.
3960 if (const auto *NRA = New->getAttr<CXX11NoReturnAttr>())
3961 if (!Old->hasAttr<CXX11NoReturnAttr>()) {
3962 Diag(NRA->getLocation(), diag::err_attribute_missing_on_first_decl)
3963 << NRA;
3964 Diag(Old->getLocation(), diag::note_previous_declaration);
3967 // C++11 [dcl.attr.depend]p2:
3968 // The first declaration of a function shall specify the
3969 // carries_dependency attribute for its declarator-id if any declaration
3970 // of the function specifies the carries_dependency attribute.
3971 const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
3972 if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
3973 Diag(CDA->getLocation(),
3974 diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
3975 Diag(Old->getFirstDecl()->getLocation(),
3976 diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
3979 // (C++98 8.3.5p3):
3980 // All declarations for a function shall agree exactly in both the
3981 // return type and the parameter-type-list.
3982 // We also want to respect all the extended bits except noreturn.
3984 // noreturn should now match unless the old type info didn't have it.
3985 QualType OldQTypeForComparison = OldQType;
3986 if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
3987 auto *OldType = OldQType->castAs<FunctionProtoType>();
3988 const FunctionType *OldTypeForComparison
3989 = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
3990 OldQTypeForComparison = QualType(OldTypeForComparison, 0);
3991 assert(OldQTypeForComparison.isCanonical());
3994 if (haveIncompatibleLanguageLinkages(Old, New)) {
3995 // As a special case, retain the language linkage from previous
3996 // declarations of a friend function as an extension.
3998 // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
3999 // and is useful because there's otherwise no way to specify language
4000 // linkage within class scope.
4002 // Check cautiously as the friend object kind isn't yet complete.
4003 if (New->getFriendObjectKind() != Decl::FOK_None) {
4004 Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
4005 Diag(OldLocation, PrevDiag);
4006 } else {
4007 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
4008 Diag(OldLocation, PrevDiag);
4009 return true;
4013 // If the function types are compatible, merge the declarations. Ignore the
4014 // exception specifier because it was already checked above in
4015 // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics
4016 // about incompatible types under -fms-compatibility.
4017 if (Context.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison,
4018 NewQType))
4019 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
4021 // If the types are imprecise (due to dependent constructs in friends or
4022 // local extern declarations), it's OK if they differ. We'll check again
4023 // during instantiation.
4024 if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType))
4025 return false;
4027 // Fall through for conflicting redeclarations and redefinitions.
4030 // C: Function types need to be compatible, not identical. This handles
4031 // duplicate function decls like "void f(int); void f(enum X);" properly.
4032 if (!getLangOpts().CPlusPlus) {
4033 // C99 6.7.5.3p15: ...If one type has a parameter type list and the other
4034 // type is specified by a function definition that contains a (possibly
4035 // empty) identifier list, both shall agree in the number of parameters
4036 // and the type of each parameter shall be compatible with the type that
4037 // results from the application of default argument promotions to the
4038 // type of the corresponding identifier. ...
4039 // This cannot be handled by ASTContext::typesAreCompatible() because that
4040 // doesn't know whether the function type is for a definition or not when
4041 // eventually calling ASTContext::mergeFunctionTypes(). The only situation
4042 // we need to cover here is that the number of arguments agree as the
4043 // default argument promotion rules were already checked by
4044 // ASTContext::typesAreCompatible().
4045 if (Old->hasPrototype() && !New->hasWrittenPrototype() && NewDeclIsDefn &&
4046 Old->getNumParams() != New->getNumParams() && !Old->isImplicit()) {
4047 if (Old->hasInheritedPrototype())
4048 Old = Old->getCanonicalDecl();
4049 Diag(New->getLocation(), diag::err_conflicting_types) << New;
4050 Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
4051 return true;
4054 // If we are merging two functions where only one of them has a prototype,
4055 // we may have enough information to decide to issue a diagnostic that the
4056 // function without a protoype will change behavior in C2x. This handles
4057 // cases like:
4058 // void i(); void i(int j);
4059 // void i(int j); void i();
4060 // void i(); void i(int j) {}
4061 // See ActOnFinishFunctionBody() for other cases of the behavior change
4062 // diagnostic. See GetFullTypeForDeclarator() for handling of a function
4063 // type without a prototype.
4064 if (New->hasWrittenPrototype() != Old->hasWrittenPrototype() &&
4065 !New->isImplicit() && !Old->isImplicit()) {
4066 const FunctionDecl *WithProto, *WithoutProto;
4067 if (New->hasWrittenPrototype()) {
4068 WithProto = New;
4069 WithoutProto = Old;
4070 } else {
4071 WithProto = Old;
4072 WithoutProto = New;
4075 if (WithProto->getNumParams() != 0) {
4076 if (WithoutProto->getBuiltinID() == 0 && !WithoutProto->isImplicit()) {
4077 // The one without the prototype will be changing behavior in C2x, so
4078 // warn about that one so long as it's a user-visible declaration.
4079 bool IsWithoutProtoADef = false, IsWithProtoADef = false;
4080 if (WithoutProto == New)
4081 IsWithoutProtoADef = NewDeclIsDefn;
4082 else
4083 IsWithProtoADef = NewDeclIsDefn;
4084 Diag(WithoutProto->getLocation(),
4085 diag::warn_non_prototype_changes_behavior)
4086 << IsWithoutProtoADef << (WithoutProto->getNumParams() ? 0 : 1)
4087 << (WithoutProto == Old) << IsWithProtoADef;
4089 // The reason the one without the prototype will be changing behavior
4090 // is because of the one with the prototype, so note that so long as
4091 // it's a user-visible declaration. There is one exception to this:
4092 // when the new declaration is a definition without a prototype, the
4093 // old declaration with a prototype is not the cause of the issue,
4094 // and that does not need to be noted because the one with a
4095 // prototype will not change behavior in C2x.
4096 if (WithProto->getBuiltinID() == 0 && !WithProto->isImplicit() &&
4097 !IsWithoutProtoADef)
4098 Diag(WithProto->getLocation(), diag::note_conflicting_prototype);
4103 if (Context.typesAreCompatible(OldQType, NewQType)) {
4104 const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
4105 const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
4106 const FunctionProtoType *OldProto = nullptr;
4107 if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
4108 (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
4109 // The old declaration provided a function prototype, but the
4110 // new declaration does not. Merge in the prototype.
4111 assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
4112 NewQType = Context.getFunctionType(NewFuncType->getReturnType(),
4113 OldProto->getParamTypes(),
4114 OldProto->getExtProtoInfo());
4115 New->setType(NewQType);
4116 New->setHasInheritedPrototype();
4118 // Synthesize parameters with the same types.
4119 SmallVector<ParmVarDecl *, 16> Params;
4120 for (const auto &ParamType : OldProto->param_types()) {
4121 ParmVarDecl *Param = ParmVarDecl::Create(
4122 Context, New, SourceLocation(), SourceLocation(), nullptr,
4123 ParamType, /*TInfo=*/nullptr, SC_None, nullptr);
4124 Param->setScopeInfo(0, Params.size());
4125 Param->setImplicit();
4126 Params.push_back(Param);
4129 New->setParams(Params);
4132 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
4136 // Check if the function types are compatible when pointer size address
4137 // spaces are ignored.
4138 if (Context.hasSameFunctionTypeIgnoringPtrSizes(OldQType, NewQType))
4139 return false;
4141 // GNU C permits a K&R definition to follow a prototype declaration
4142 // if the declared types of the parameters in the K&R definition
4143 // match the types in the prototype declaration, even when the
4144 // promoted types of the parameters from the K&R definition differ
4145 // from the types in the prototype. GCC then keeps the types from
4146 // the prototype.
4148 // If a variadic prototype is followed by a non-variadic K&R definition,
4149 // the K&R definition becomes variadic. This is sort of an edge case, but
4150 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
4151 // C99 6.9.1p8.
4152 if (!getLangOpts().CPlusPlus &&
4153 Old->hasPrototype() && !New->hasPrototype() &&
4154 New->getType()->getAs<FunctionProtoType>() &&
4155 Old->getNumParams() == New->getNumParams()) {
4156 SmallVector<QualType, 16> ArgTypes;
4157 SmallVector<GNUCompatibleParamWarning, 16> Warnings;
4158 const FunctionProtoType *OldProto
4159 = Old->getType()->getAs<FunctionProtoType>();
4160 const FunctionProtoType *NewProto
4161 = New->getType()->getAs<FunctionProtoType>();
4163 // Determine whether this is the GNU C extension.
4164 QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
4165 NewProto->getReturnType());
4166 bool LooseCompatible = !MergedReturn.isNull();
4167 for (unsigned Idx = 0, End = Old->getNumParams();
4168 LooseCompatible && Idx != End; ++Idx) {
4169 ParmVarDecl *OldParm = Old->getParamDecl(Idx);
4170 ParmVarDecl *NewParm = New->getParamDecl(Idx);
4171 if (Context.typesAreCompatible(OldParm->getType(),
4172 NewProto->getParamType(Idx))) {
4173 ArgTypes.push_back(NewParm->getType());
4174 } else if (Context.typesAreCompatible(OldParm->getType(),
4175 NewParm->getType(),
4176 /*CompareUnqualified=*/true)) {
4177 GNUCompatibleParamWarning Warn = { OldParm, NewParm,
4178 NewProto->getParamType(Idx) };
4179 Warnings.push_back(Warn);
4180 ArgTypes.push_back(NewParm->getType());
4181 } else
4182 LooseCompatible = false;
4185 if (LooseCompatible) {
4186 for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
4187 Diag(Warnings[Warn].NewParm->getLocation(),
4188 diag::ext_param_promoted_not_compatible_with_prototype)
4189 << Warnings[Warn].PromotedType
4190 << Warnings[Warn].OldParm->getType();
4191 if (Warnings[Warn].OldParm->getLocation().isValid())
4192 Diag(Warnings[Warn].OldParm->getLocation(),
4193 diag::note_previous_declaration);
4196 if (MergeTypeWithOld)
4197 New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
4198 OldProto->getExtProtoInfo()));
4199 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
4202 // Fall through to diagnose conflicting types.
4205 // A function that has already been declared has been redeclared or
4206 // defined with a different type; show an appropriate diagnostic.
4208 // If the previous declaration was an implicitly-generated builtin
4209 // declaration, then at the very least we should use a specialized note.
4210 unsigned BuiltinID;
4211 if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
4212 // If it's actually a library-defined builtin function like 'malloc'
4213 // or 'printf', just warn about the incompatible redeclaration.
4214 if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4215 Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
4216 Diag(OldLocation, diag::note_previous_builtin_declaration)
4217 << Old << Old->getType();
4218 return false;
4221 PrevDiag = diag::note_previous_builtin_declaration;
4224 Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
4225 Diag(OldLocation, PrevDiag) << Old << Old->getType();
4226 return true;
4229 /// Completes the merge of two function declarations that are
4230 /// known to be compatible.
4232 /// This routine handles the merging of attributes and other
4233 /// properties of function declarations from the old declaration to
4234 /// the new declaration, once we know that New is in fact a
4235 /// redeclaration of Old.
4237 /// \returns false
4238 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
4239 Scope *S, bool MergeTypeWithOld) {
4240 // Merge the attributes
4241 mergeDeclAttributes(New, Old);
4243 // Merge "pure" flag.
4244 if (Old->isPure())
4245 New->setPure();
4247 // Merge "used" flag.
4248 if (Old->getMostRecentDecl()->isUsed(false))
4249 New->setIsUsed();
4251 // Merge attributes from the parameters. These can mismatch with K&R
4252 // declarations.
4253 if (New->getNumParams() == Old->getNumParams())
4254 for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
4255 ParmVarDecl *NewParam = New->getParamDecl(i);
4256 ParmVarDecl *OldParam = Old->getParamDecl(i);
4257 mergeParamDeclAttributes(NewParam, OldParam, *this);
4258 mergeParamDeclTypes(NewParam, OldParam, *this);
4261 if (getLangOpts().CPlusPlus)
4262 return MergeCXXFunctionDecl(New, Old, S);
4264 // Merge the function types so the we get the composite types for the return
4265 // and argument types. Per C11 6.2.7/4, only update the type if the old decl
4266 // was visible.
4267 QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
4268 if (!Merged.isNull() && MergeTypeWithOld)
4269 New->setType(Merged);
4271 return false;
4274 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
4275 ObjCMethodDecl *oldMethod) {
4276 // Merge the attributes, including deprecated/unavailable
4277 AvailabilityMergeKind MergeKind =
4278 isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
4279 ? (oldMethod->isOptional() ? AMK_OptionalProtocolImplementation
4280 : AMK_ProtocolImplementation)
4281 : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
4282 : AMK_Override;
4284 mergeDeclAttributes(newMethod, oldMethod, MergeKind);
4286 // Merge attributes from the parameters.
4287 ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
4288 oe = oldMethod->param_end();
4289 for (ObjCMethodDecl::param_iterator
4290 ni = newMethod->param_begin(), ne = newMethod->param_end();
4291 ni != ne && oi != oe; ++ni, ++oi)
4292 mergeParamDeclAttributes(*ni, *oi, *this);
4294 CheckObjCMethodOverride(newMethod, oldMethod);
4297 static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
4298 assert(!S.Context.hasSameType(New->getType(), Old->getType()));
4300 S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
4301 ? diag::err_redefinition_different_type
4302 : diag::err_redeclaration_different_type)
4303 << New->getDeclName() << New->getType() << Old->getType();
4305 diag::kind PrevDiag;
4306 SourceLocation OldLocation;
4307 std::tie(PrevDiag, OldLocation)
4308 = getNoteDiagForInvalidRedeclaration(Old, New);
4309 S.Diag(OldLocation, PrevDiag);
4310 New->setInvalidDecl();
4313 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
4314 /// scope as a previous declaration 'Old'. Figure out how to merge their types,
4315 /// emitting diagnostics as appropriate.
4317 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
4318 /// to here in AddInitializerToDecl. We can't check them before the initializer
4319 /// is attached.
4320 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
4321 bool MergeTypeWithOld) {
4322 if (New->isInvalidDecl() || Old->isInvalidDecl())
4323 return;
4325 QualType MergedT;
4326 if (getLangOpts().CPlusPlus) {
4327 if (New->getType()->isUndeducedType()) {
4328 // We don't know what the new type is until the initializer is attached.
4329 return;
4330 } else if (Context.hasSameType(New->getType(), Old->getType())) {
4331 // These could still be something that needs exception specs checked.
4332 return MergeVarDeclExceptionSpecs(New, Old);
4334 // C++ [basic.link]p10:
4335 // [...] the types specified by all declarations referring to a given
4336 // object or function shall be identical, except that declarations for an
4337 // array object can specify array types that differ by the presence or
4338 // absence of a major array bound (8.3.4).
4339 else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
4340 const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
4341 const ArrayType *NewArray = Context.getAsArrayType(New->getType());
4343 // We are merging a variable declaration New into Old. If it has an array
4344 // bound, and that bound differs from Old's bound, we should diagnose the
4345 // mismatch.
4346 if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
4347 for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
4348 PrevVD = PrevVD->getPreviousDecl()) {
4349 QualType PrevVDTy = PrevVD->getType();
4350 if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
4351 continue;
4353 if (!Context.hasSameType(New->getType(), PrevVDTy))
4354 return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
4358 if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
4359 if (Context.hasSameType(OldArray->getElementType(),
4360 NewArray->getElementType()))
4361 MergedT = New->getType();
4363 // FIXME: Check visibility. New is hidden but has a complete type. If New
4364 // has no array bound, it should not inherit one from Old, if Old is not
4365 // visible.
4366 else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
4367 if (Context.hasSameType(OldArray->getElementType(),
4368 NewArray->getElementType()))
4369 MergedT = Old->getType();
4372 else if (New->getType()->isObjCObjectPointerType() &&
4373 Old->getType()->isObjCObjectPointerType()) {
4374 MergedT = Context.mergeObjCGCQualifiers(New->getType(),
4375 Old->getType());
4377 } else {
4378 // C 6.2.7p2:
4379 // All declarations that refer to the same object or function shall have
4380 // compatible type.
4381 MergedT = Context.mergeTypes(New->getType(), Old->getType());
4383 if (MergedT.isNull()) {
4384 // It's OK if we couldn't merge types if either type is dependent, for a
4385 // block-scope variable. In other cases (static data members of class
4386 // templates, variable templates, ...), we require the types to be
4387 // equivalent.
4388 // FIXME: The C++ standard doesn't say anything about this.
4389 if ((New->getType()->isDependentType() ||
4390 Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
4391 // If the old type was dependent, we can't merge with it, so the new type
4392 // becomes dependent for now. We'll reproduce the original type when we
4393 // instantiate the TypeSourceInfo for the variable.
4394 if (!New->getType()->isDependentType() && MergeTypeWithOld)
4395 New->setType(Context.DependentTy);
4396 return;
4398 return diagnoseVarDeclTypeMismatch(*this, New, Old);
4401 // Don't actually update the type on the new declaration if the old
4402 // declaration was an extern declaration in a different scope.
4403 if (MergeTypeWithOld)
4404 New->setType(MergedT);
4407 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
4408 LookupResult &Previous) {
4409 // C11 6.2.7p4:
4410 // For an identifier with internal or external linkage declared
4411 // in a scope in which a prior declaration of that identifier is
4412 // visible, if the prior declaration specifies internal or
4413 // external linkage, the type of the identifier at the later
4414 // declaration becomes the composite type.
4416 // If the variable isn't visible, we do not merge with its type.
4417 if (Previous.isShadowed())
4418 return false;
4420 if (S.getLangOpts().CPlusPlus) {
4421 // C++11 [dcl.array]p3:
4422 // If there is a preceding declaration of the entity in the same
4423 // scope in which the bound was specified, an omitted array bound
4424 // is taken to be the same as in that earlier declaration.
4425 return NewVD->isPreviousDeclInSameBlockScope() ||
4426 (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
4427 !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
4428 } else {
4429 // If the old declaration was function-local, don't merge with its
4430 // type unless we're in the same function.
4431 return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
4432 OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
4436 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
4437 /// and scope as a previous declaration 'Old'. Figure out how to resolve this
4438 /// situation, merging decls or emitting diagnostics as appropriate.
4440 /// Tentative definition rules (C99 6.9.2p2) are checked by
4441 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
4442 /// definitions here, since the initializer hasn't been attached.
4444 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
4445 // If the new decl is already invalid, don't do any other checking.
4446 if (New->isInvalidDecl())
4447 return;
4449 if (!shouldLinkPossiblyHiddenDecl(Previous, New))
4450 return;
4452 VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
4454 // Verify the old decl was also a variable or variable template.
4455 VarDecl *Old = nullptr;
4456 VarTemplateDecl *OldTemplate = nullptr;
4457 if (Previous.isSingleResult()) {
4458 if (NewTemplate) {
4459 OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
4460 Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
4462 if (auto *Shadow =
4463 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4464 if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
4465 return New->setInvalidDecl();
4466 } else {
4467 Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
4469 if (auto *Shadow =
4470 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4471 if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
4472 return New->setInvalidDecl();
4475 if (!Old) {
4476 Diag(New->getLocation(), diag::err_redefinition_different_kind)
4477 << New->getDeclName();
4478 notePreviousDefinition(Previous.getRepresentativeDecl(),
4479 New->getLocation());
4480 return New->setInvalidDecl();
4483 // If the old declaration was found in an inline namespace and the new
4484 // declaration was qualified, update the DeclContext to match.
4485 adjustDeclContextForDeclaratorDecl(New, Old);
4487 // Ensure the template parameters are compatible.
4488 if (NewTemplate &&
4489 !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
4490 OldTemplate->getTemplateParameters(),
4491 /*Complain=*/true, TPL_TemplateMatch))
4492 return New->setInvalidDecl();
4494 // C++ [class.mem]p1:
4495 // A member shall not be declared twice in the member-specification [...]
4497 // Here, we need only consider static data members.
4498 if (Old->isStaticDataMember() && !New->isOutOfLine()) {
4499 Diag(New->getLocation(), diag::err_duplicate_member)
4500 << New->getIdentifier();
4501 Diag(Old->getLocation(), diag::note_previous_declaration);
4502 New->setInvalidDecl();
4505 mergeDeclAttributes(New, Old);
4506 // Warn if an already-declared variable is made a weak_import in a subsequent
4507 // declaration
4508 if (New->hasAttr<WeakImportAttr>() &&
4509 Old->getStorageClass() == SC_None &&
4510 !Old->hasAttr<WeakImportAttr>()) {
4511 Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
4512 Diag(Old->getLocation(), diag::note_previous_declaration);
4513 // Remove weak_import attribute on new declaration.
4514 New->dropAttr<WeakImportAttr>();
4517 if (const auto *ILA = New->getAttr<InternalLinkageAttr>())
4518 if (!Old->hasAttr<InternalLinkageAttr>()) {
4519 Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl)
4520 << ILA;
4521 Diag(Old->getLocation(), diag::note_previous_declaration);
4522 New->dropAttr<InternalLinkageAttr>();
4525 // Merge the types.
4526 VarDecl *MostRecent = Old->getMostRecentDecl();
4527 if (MostRecent != Old) {
4528 MergeVarDeclTypes(New, MostRecent,
4529 mergeTypeWithPrevious(*this, New, MostRecent, Previous));
4530 if (New->isInvalidDecl())
4531 return;
4534 MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
4535 if (New->isInvalidDecl())
4536 return;
4538 diag::kind PrevDiag;
4539 SourceLocation OldLocation;
4540 std::tie(PrevDiag, OldLocation) =
4541 getNoteDiagForInvalidRedeclaration(Old, New);
4543 // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
4544 if (New->getStorageClass() == SC_Static &&
4545 !New->isStaticDataMember() &&
4546 Old->hasExternalFormalLinkage()) {
4547 if (getLangOpts().MicrosoftExt) {
4548 Diag(New->getLocation(), diag::ext_static_non_static)
4549 << New->getDeclName();
4550 Diag(OldLocation, PrevDiag);
4551 } else {
4552 Diag(New->getLocation(), diag::err_static_non_static)
4553 << New->getDeclName();
4554 Diag(OldLocation, PrevDiag);
4555 return New->setInvalidDecl();
4558 // C99 6.2.2p4:
4559 // For an identifier declared with the storage-class specifier
4560 // extern in a scope in which a prior declaration of that
4561 // identifier is visible,23) if the prior declaration specifies
4562 // internal or external linkage, the linkage of the identifier at
4563 // the later declaration is the same as the linkage specified at
4564 // the prior declaration. If no prior declaration is visible, or
4565 // if the prior declaration specifies no linkage, then the
4566 // identifier has external linkage.
4567 if (New->hasExternalStorage() && Old->hasLinkage())
4568 /* Okay */;
4569 else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
4570 !New->isStaticDataMember() &&
4571 Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
4572 Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
4573 Diag(OldLocation, PrevDiag);
4574 return New->setInvalidDecl();
4577 // Check if extern is followed by non-extern and vice-versa.
4578 if (New->hasExternalStorage() &&
4579 !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
4580 Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
4581 Diag(OldLocation, PrevDiag);
4582 return New->setInvalidDecl();
4584 if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
4585 !New->hasExternalStorage()) {
4586 Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
4587 Diag(OldLocation, PrevDiag);
4588 return New->setInvalidDecl();
4591 if (CheckRedeclarationInModule(New, Old))
4592 return;
4594 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
4596 // FIXME: The test for external storage here seems wrong? We still
4597 // need to check for mismatches.
4598 if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
4599 // Don't complain about out-of-line definitions of static members.
4600 !(Old->getLexicalDeclContext()->isRecord() &&
4601 !New->getLexicalDeclContext()->isRecord())) {
4602 Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
4603 Diag(OldLocation, PrevDiag);
4604 return New->setInvalidDecl();
4607 if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
4608 if (VarDecl *Def = Old->getDefinition()) {
4609 // C++1z [dcl.fcn.spec]p4:
4610 // If the definition of a variable appears in a translation unit before
4611 // its first declaration as inline, the program is ill-formed.
4612 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
4613 Diag(Def->getLocation(), diag::note_previous_definition);
4617 // If this redeclaration makes the variable inline, we may need to add it to
4618 // UndefinedButUsed.
4619 if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
4620 !Old->getDefinition() && !New->isThisDeclarationADefinition())
4621 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
4622 SourceLocation()));
4624 if (New->getTLSKind() != Old->getTLSKind()) {
4625 if (!Old->getTLSKind()) {
4626 Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
4627 Diag(OldLocation, PrevDiag);
4628 } else if (!New->getTLSKind()) {
4629 Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
4630 Diag(OldLocation, PrevDiag);
4631 } else {
4632 // Do not allow redeclaration to change the variable between requiring
4633 // static and dynamic initialization.
4634 // FIXME: GCC allows this, but uses the TLS keyword on the first
4635 // declaration to determine the kind. Do we need to be compatible here?
4636 Diag(New->getLocation(), diag::err_thread_thread_different_kind)
4637 << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
4638 Diag(OldLocation, PrevDiag);
4642 // C++ doesn't have tentative definitions, so go right ahead and check here.
4643 if (getLangOpts().CPlusPlus) {
4644 if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
4645 Old->getCanonicalDecl()->isConstexpr()) {
4646 // This definition won't be a definition any more once it's been merged.
4647 Diag(New->getLocation(),
4648 diag::warn_deprecated_redundant_constexpr_static_def);
4649 } else if (New->isThisDeclarationADefinition() == VarDecl::Definition) {
4650 VarDecl *Def = Old->getDefinition();
4651 if (Def && checkVarDeclRedefinition(Def, New))
4652 return;
4656 if (haveIncompatibleLanguageLinkages(Old, New)) {
4657 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
4658 Diag(OldLocation, PrevDiag);
4659 New->setInvalidDecl();
4660 return;
4663 // Merge "used" flag.
4664 if (Old->getMostRecentDecl()->isUsed(false))
4665 New->setIsUsed();
4667 // Keep a chain of previous declarations.
4668 New->setPreviousDecl(Old);
4669 if (NewTemplate)
4670 NewTemplate->setPreviousDecl(OldTemplate);
4672 // Inherit access appropriately.
4673 New->setAccess(Old->getAccess());
4674 if (NewTemplate)
4675 NewTemplate->setAccess(New->getAccess());
4677 if (Old->isInline())
4678 New->setImplicitlyInline();
4681 void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
4682 SourceManager &SrcMgr = getSourceManager();
4683 auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
4684 auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
4685 auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
4686 auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first);
4687 auto &HSI = PP.getHeaderSearchInfo();
4688 StringRef HdrFilename =
4689 SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
4691 auto noteFromModuleOrInclude = [&](Module *Mod,
4692 SourceLocation IncLoc) -> bool {
4693 // Redefinition errors with modules are common with non modular mapped
4694 // headers, example: a non-modular header H in module A that also gets
4695 // included directly in a TU. Pointing twice to the same header/definition
4696 // is confusing, try to get better diagnostics when modules is on.
4697 if (IncLoc.isValid()) {
4698 if (Mod) {
4699 Diag(IncLoc, diag::note_redefinition_modules_same_file)
4700 << HdrFilename.str() << Mod->getFullModuleName();
4701 if (!Mod->DefinitionLoc.isInvalid())
4702 Diag(Mod->DefinitionLoc, diag::note_defined_here)
4703 << Mod->getFullModuleName();
4704 } else {
4705 Diag(IncLoc, diag::note_redefinition_include_same_file)
4706 << HdrFilename.str();
4708 return true;
4711 return false;
4714 // Is it the same file and same offset? Provide more information on why
4715 // this leads to a redefinition error.
4716 if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
4717 SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
4718 SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
4719 bool EmittedDiag =
4720 noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
4721 EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
4723 // If the header has no guards, emit a note suggesting one.
4724 if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld))
4725 Diag(Old->getLocation(), diag::note_use_ifdef_guards);
4727 if (EmittedDiag)
4728 return;
4731 // Redefinition coming from different files or couldn't do better above.
4732 if (Old->getLocation().isValid())
4733 Diag(Old->getLocation(), diag::note_previous_definition);
4736 /// We've just determined that \p Old and \p New both appear to be definitions
4737 /// of the same variable. Either diagnose or fix the problem.
4738 bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
4739 if (!hasVisibleDefinition(Old) &&
4740 (New->getFormalLinkage() == InternalLinkage ||
4741 New->isInline() ||
4742 isa<VarTemplateSpecializationDecl>(New) ||
4743 New->getDescribedVarTemplate() ||
4744 New->getNumTemplateParameterLists() ||
4745 New->getDeclContext()->isDependentContext())) {
4746 // The previous definition is hidden, and multiple definitions are
4747 // permitted (in separate TUs). Demote this to a declaration.
4748 New->demoteThisDefinitionToDeclaration();
4750 // Make the canonical definition visible.
4751 if (auto *OldTD = Old->getDescribedVarTemplate())
4752 makeMergedDefinitionVisible(OldTD);
4753 makeMergedDefinitionVisible(Old);
4754 return false;
4755 } else {
4756 Diag(New->getLocation(), diag::err_redefinition) << New;
4757 notePreviousDefinition(Old, New->getLocation());
4758 New->setInvalidDecl();
4759 return true;
4763 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4764 /// no declarator (e.g. "struct foo;") is parsed.
4765 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
4766 DeclSpec &DS,
4767 const ParsedAttributesView &DeclAttrs,
4768 RecordDecl *&AnonRecord) {
4769 return ParsedFreeStandingDeclSpec(
4770 S, AS, DS, DeclAttrs, MultiTemplateParamsArg(), false, AnonRecord);
4773 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4774 // disambiguate entities defined in different scopes.
4775 // While the VS2015 ABI fixes potential miscompiles, it is also breaks
4776 // compatibility.
4777 // We will pick our mangling number depending on which version of MSVC is being
4778 // targeted.
4779 static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
4780 return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
4781 ? S->getMSCurManglingNumber()
4782 : S->getMSLastManglingNumber();
4785 void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
4786 if (!Context.getLangOpts().CPlusPlus)
4787 return;
4789 if (isa<CXXRecordDecl>(Tag->getParent())) {
4790 // If this tag is the direct child of a class, number it if
4791 // it is anonymous.
4792 if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
4793 return;
4794 MangleNumberingContext &MCtx =
4795 Context.getManglingNumberContext(Tag->getParent());
4796 Context.setManglingNumber(
4797 Tag, MCtx.getManglingNumber(
4798 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4799 return;
4802 // If this tag isn't a direct child of a class, number it if it is local.
4803 MangleNumberingContext *MCtx;
4804 Decl *ManglingContextDecl;
4805 std::tie(MCtx, ManglingContextDecl) =
4806 getCurrentMangleNumberContext(Tag->getDeclContext());
4807 if (MCtx) {
4808 Context.setManglingNumber(
4809 Tag, MCtx->getManglingNumber(
4810 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4814 namespace {
4815 struct NonCLikeKind {
4816 enum {
4817 None,
4818 BaseClass,
4819 DefaultMemberInit,
4820 Lambda,
4821 Friend,
4822 OtherMember,
4823 Invalid,
4824 } Kind = None;
4825 SourceRange Range;
4827 explicit operator bool() { return Kind != None; }
4831 /// Determine whether a class is C-like, according to the rules of C++
4832 /// [dcl.typedef] for anonymous classes with typedef names for linkage.
4833 static NonCLikeKind getNonCLikeKindForAnonymousStruct(const CXXRecordDecl *RD) {
4834 if (RD->isInvalidDecl())
4835 return {NonCLikeKind::Invalid, {}};
4837 // C++ [dcl.typedef]p9: [P1766R1]
4838 // An unnamed class with a typedef name for linkage purposes shall not
4840 // -- have any base classes
4841 if (RD->getNumBases())
4842 return {NonCLikeKind::BaseClass,
4843 SourceRange(RD->bases_begin()->getBeginLoc(),
4844 RD->bases_end()[-1].getEndLoc())};
4845 bool Invalid = false;
4846 for (Decl *D : RD->decls()) {
4847 // Don't complain about things we already diagnosed.
4848 if (D->isInvalidDecl()) {
4849 Invalid = true;
4850 continue;
4853 // -- have any [...] default member initializers
4854 if (auto *FD = dyn_cast<FieldDecl>(D)) {
4855 if (FD->hasInClassInitializer()) {
4856 auto *Init = FD->getInClassInitializer();
4857 return {NonCLikeKind::DefaultMemberInit,
4858 Init ? Init->getSourceRange() : D->getSourceRange()};
4860 continue;
4863 // FIXME: We don't allow friend declarations. This violates the wording of
4864 // P1766, but not the intent.
4865 if (isa<FriendDecl>(D))
4866 return {NonCLikeKind::Friend, D->getSourceRange()};
4868 // -- declare any members other than non-static data members, member
4869 // enumerations, or member classes,
4870 if (isa<StaticAssertDecl>(D) || isa<IndirectFieldDecl>(D) ||
4871 isa<EnumDecl>(D))
4872 continue;
4873 auto *MemberRD = dyn_cast<CXXRecordDecl>(D);
4874 if (!MemberRD) {
4875 if (D->isImplicit())
4876 continue;
4877 return {NonCLikeKind::OtherMember, D->getSourceRange()};
4880 // -- contain a lambda-expression,
4881 if (MemberRD->isLambda())
4882 return {NonCLikeKind::Lambda, MemberRD->getSourceRange()};
4884 // and all member classes shall also satisfy these requirements
4885 // (recursively).
4886 if (MemberRD->isThisDeclarationADefinition()) {
4887 if (auto Kind = getNonCLikeKindForAnonymousStruct(MemberRD))
4888 return Kind;
4892 return {Invalid ? NonCLikeKind::Invalid : NonCLikeKind::None, {}};
4895 void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
4896 TypedefNameDecl *NewTD) {
4897 if (TagFromDeclSpec->isInvalidDecl())
4898 return;
4900 // Do nothing if the tag already has a name for linkage purposes.
4901 if (TagFromDeclSpec->hasNameForLinkage())
4902 return;
4904 // A well-formed anonymous tag must always be a TUK_Definition.
4905 assert(TagFromDeclSpec->isThisDeclarationADefinition());
4907 // The type must match the tag exactly; no qualifiers allowed.
4908 if (!Context.hasSameType(NewTD->getUnderlyingType(),
4909 Context.getTagDeclType(TagFromDeclSpec))) {
4910 if (getLangOpts().CPlusPlus)
4911 Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
4912 return;
4915 // C++ [dcl.typedef]p9: [P1766R1, applied as DR]
4916 // An unnamed class with a typedef name for linkage purposes shall [be
4917 // C-like].
4919 // FIXME: Also diagnose if we've already computed the linkage. That ideally
4920 // shouldn't happen, but there are constructs that the language rule doesn't
4921 // disallow for which we can't reasonably avoid computing linkage early.
4922 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TagFromDeclSpec);
4923 NonCLikeKind NonCLike = RD ? getNonCLikeKindForAnonymousStruct(RD)
4924 : NonCLikeKind();
4925 bool ChangesLinkage = TagFromDeclSpec->hasLinkageBeenComputed();
4926 if (NonCLike || ChangesLinkage) {
4927 if (NonCLike.Kind == NonCLikeKind::Invalid)
4928 return;
4930 unsigned DiagID = diag::ext_non_c_like_anon_struct_in_typedef;
4931 if (ChangesLinkage) {
4932 // If the linkage changes, we can't accept this as an extension.
4933 if (NonCLike.Kind == NonCLikeKind::None)
4934 DiagID = diag::err_typedef_changes_linkage;
4935 else
4936 DiagID = diag::err_non_c_like_anon_struct_in_typedef;
4939 SourceLocation FixitLoc =
4940 getLocForEndOfToken(TagFromDeclSpec->getInnerLocStart());
4941 llvm::SmallString<40> TextToInsert;
4942 TextToInsert += ' ';
4943 TextToInsert += NewTD->getIdentifier()->getName();
4945 Diag(FixitLoc, DiagID)
4946 << isa<TypeAliasDecl>(NewTD)
4947 << FixItHint::CreateInsertion(FixitLoc, TextToInsert);
4948 if (NonCLike.Kind != NonCLikeKind::None) {
4949 Diag(NonCLike.Range.getBegin(), diag::note_non_c_like_anon_struct)
4950 << NonCLike.Kind - 1 << NonCLike.Range;
4952 Diag(NewTD->getLocation(), diag::note_typedef_for_linkage_here)
4953 << NewTD << isa<TypeAliasDecl>(NewTD);
4955 if (ChangesLinkage)
4956 return;
4959 // Otherwise, set this as the anon-decl typedef for the tag.
4960 TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
4963 static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
4964 switch (T) {
4965 case DeclSpec::TST_class:
4966 return 0;
4967 case DeclSpec::TST_struct:
4968 return 1;
4969 case DeclSpec::TST_interface:
4970 return 2;
4971 case DeclSpec::TST_union:
4972 return 3;
4973 case DeclSpec::TST_enum:
4974 return 4;
4975 default:
4976 llvm_unreachable("unexpected type specifier");
4980 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4981 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
4982 /// parameters to cope with template friend declarations.
4983 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
4984 DeclSpec &DS,
4985 const ParsedAttributesView &DeclAttrs,
4986 MultiTemplateParamsArg TemplateParams,
4987 bool IsExplicitInstantiation,
4988 RecordDecl *&AnonRecord) {
4989 Decl *TagD = nullptr;
4990 TagDecl *Tag = nullptr;
4991 if (DS.getTypeSpecType() == DeclSpec::TST_class ||
4992 DS.getTypeSpecType() == DeclSpec::TST_struct ||
4993 DS.getTypeSpecType() == DeclSpec::TST_interface ||
4994 DS.getTypeSpecType() == DeclSpec::TST_union ||
4995 DS.getTypeSpecType() == DeclSpec::TST_enum) {
4996 TagD = DS.getRepAsDecl();
4998 if (!TagD) // We probably had an error
4999 return nullptr;
5001 // Note that the above type specs guarantee that the
5002 // type rep is a Decl, whereas in many of the others
5003 // it's a Type.
5004 if (isa<TagDecl>(TagD))
5005 Tag = cast<TagDecl>(TagD);
5006 else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
5007 Tag = CTD->getTemplatedDecl();
5010 if (Tag) {
5011 handleTagNumbering(Tag, S);
5012 Tag->setFreeStanding();
5013 if (Tag->isInvalidDecl())
5014 return Tag;
5017 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
5018 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
5019 // or incomplete types shall not be restrict-qualified."
5020 if (TypeQuals & DeclSpec::TQ_restrict)
5021 Diag(DS.getRestrictSpecLoc(),
5022 diag::err_typecheck_invalid_restrict_not_pointer_noarg)
5023 << DS.getSourceRange();
5026 if (DS.isInlineSpecified())
5027 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
5028 << getLangOpts().CPlusPlus17;
5030 if (DS.hasConstexprSpecifier()) {
5031 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
5032 // and definitions of functions and variables.
5033 // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to
5034 // the declaration of a function or function template
5035 if (Tag)
5036 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
5037 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType())
5038 << static_cast<int>(DS.getConstexprSpecifier());
5039 else
5040 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind)
5041 << static_cast<int>(DS.getConstexprSpecifier());
5042 // Don't emit warnings after this error.
5043 return TagD;
5046 DiagnoseFunctionSpecifiers(DS);
5048 if (DS.isFriendSpecified()) {
5049 // If we're dealing with a decl but not a TagDecl, assume that
5050 // whatever routines created it handled the friendship aspect.
5051 if (TagD && !Tag)
5052 return nullptr;
5053 return ActOnFriendTypeDecl(S, DS, TemplateParams);
5056 const CXXScopeSpec &SS = DS.getTypeSpecScope();
5057 bool IsExplicitSpecialization =
5058 !TemplateParams.empty() && TemplateParams.back()->size() == 0;
5059 if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
5060 !IsExplicitInstantiation && !IsExplicitSpecialization &&
5061 !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
5062 // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
5063 // nested-name-specifier unless it is an explicit instantiation
5064 // or an explicit specialization.
5066 // FIXME: We allow class template partial specializations here too, per the
5067 // obvious intent of DR1819.
5069 // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
5070 Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
5071 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
5072 return nullptr;
5075 // Track whether this decl-specifier declares anything.
5076 bool DeclaresAnything = true;
5078 // Handle anonymous struct definitions.
5079 if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
5080 if (!Record->getDeclName() && Record->isCompleteDefinition() &&
5081 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
5082 if (getLangOpts().CPlusPlus ||
5083 Record->getDeclContext()->isRecord()) {
5084 // If CurContext is a DeclContext that can contain statements,
5085 // RecursiveASTVisitor won't visit the decls that
5086 // BuildAnonymousStructOrUnion() will put into CurContext.
5087 // Also store them here so that they can be part of the
5088 // DeclStmt that gets created in this case.
5089 // FIXME: Also return the IndirectFieldDecls created by
5090 // BuildAnonymousStructOr union, for the same reason?
5091 if (CurContext->isFunctionOrMethod())
5092 AnonRecord = Record;
5093 return BuildAnonymousStructOrUnion(S, DS, AS, Record,
5094 Context.getPrintingPolicy());
5097 DeclaresAnything = false;
5101 // C11 6.7.2.1p2:
5102 // A struct-declaration that does not declare an anonymous structure or
5103 // anonymous union shall contain a struct-declarator-list.
5105 // This rule also existed in C89 and C99; the grammar for struct-declaration
5106 // did not permit a struct-declaration without a struct-declarator-list.
5107 if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
5108 DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
5109 // Check for Microsoft C extension: anonymous struct/union member.
5110 // Handle 2 kinds of anonymous struct/union:
5111 // struct STRUCT;
5112 // union UNION;
5113 // and
5114 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct.
5115 // UNION_TYPE; <- where UNION_TYPE is a typedef union.
5116 if ((Tag && Tag->getDeclName()) ||
5117 DS.getTypeSpecType() == DeclSpec::TST_typename) {
5118 RecordDecl *Record = nullptr;
5119 if (Tag)
5120 Record = dyn_cast<RecordDecl>(Tag);
5121 else if (const RecordType *RT =
5122 DS.getRepAsType().get()->getAsStructureType())
5123 Record = RT->getDecl();
5124 else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
5125 Record = UT->getDecl();
5127 if (Record && getLangOpts().MicrosoftExt) {
5128 Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record)
5129 << Record->isUnion() << DS.getSourceRange();
5130 return BuildMicrosoftCAnonymousStruct(S, DS, Record);
5133 DeclaresAnything = false;
5137 // Skip all the checks below if we have a type error.
5138 if (DS.getTypeSpecType() == DeclSpec::TST_error ||
5139 (TagD && TagD->isInvalidDecl()))
5140 return TagD;
5142 if (getLangOpts().CPlusPlus &&
5143 DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
5144 if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
5145 if (Enum->enumerator_begin() == Enum->enumerator_end() &&
5146 !Enum->getIdentifier() && !Enum->isInvalidDecl())
5147 DeclaresAnything = false;
5149 if (!DS.isMissingDeclaratorOk()) {
5150 // Customize diagnostic for a typedef missing a name.
5151 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
5152 Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name)
5153 << DS.getSourceRange();
5154 else
5155 DeclaresAnything = false;
5158 if (DS.isModulePrivateSpecified() &&
5159 Tag && Tag->getDeclContext()->isFunctionOrMethod())
5160 Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
5161 << Tag->getTagKind()
5162 << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
5164 ActOnDocumentableDecl(TagD);
5166 // C 6.7/2:
5167 // A declaration [...] shall declare at least a declarator [...], a tag,
5168 // or the members of an enumeration.
5169 // C++ [dcl.dcl]p3:
5170 // [If there are no declarators], and except for the declaration of an
5171 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
5172 // names into the program, or shall redeclare a name introduced by a
5173 // previous declaration.
5174 if (!DeclaresAnything) {
5175 // In C, we allow this as a (popular) extension / bug. Don't bother
5176 // producing further diagnostics for redundant qualifiers after this.
5177 Diag(DS.getBeginLoc(), (IsExplicitInstantiation || !TemplateParams.empty())
5178 ? diag::err_no_declarators
5179 : diag::ext_no_declarators)
5180 << DS.getSourceRange();
5181 return TagD;
5184 // C++ [dcl.stc]p1:
5185 // If a storage-class-specifier appears in a decl-specifier-seq, [...] the
5186 // init-declarator-list of the declaration shall not be empty.
5187 // C++ [dcl.fct.spec]p1:
5188 // If a cv-qualifier appears in a decl-specifier-seq, the
5189 // init-declarator-list of the declaration shall not be empty.
5191 // Spurious qualifiers here appear to be valid in C.
5192 unsigned DiagID = diag::warn_standalone_specifier;
5193 if (getLangOpts().CPlusPlus)
5194 DiagID = diag::ext_standalone_specifier;
5196 // Note that a linkage-specification sets a storage class, but
5197 // 'extern "C" struct foo;' is actually valid and not theoretically
5198 // useless.
5199 if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
5200 if (SCS == DeclSpec::SCS_mutable)
5201 // Since mutable is not a viable storage class specifier in C, there is
5202 // no reason to treat it as an extension. Instead, diagnose as an error.
5203 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
5204 else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
5205 Diag(DS.getStorageClassSpecLoc(), DiagID)
5206 << DeclSpec::getSpecifierName(SCS);
5209 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
5210 Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
5211 << DeclSpec::getSpecifierName(TSCS);
5212 if (DS.getTypeQualifiers()) {
5213 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
5214 Diag(DS.getConstSpecLoc(), DiagID) << "const";
5215 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
5216 Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
5217 // Restrict is covered above.
5218 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
5219 Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
5220 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
5221 Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
5224 // Warn about ignored type attributes, for example:
5225 // __attribute__((aligned)) struct A;
5226 // Attributes should be placed after tag to apply to type declaration.
5227 if (!DS.getAttributes().empty() || !DeclAttrs.empty()) {
5228 DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
5229 if (TypeSpecType == DeclSpec::TST_class ||
5230 TypeSpecType == DeclSpec::TST_struct ||
5231 TypeSpecType == DeclSpec::TST_interface ||
5232 TypeSpecType == DeclSpec::TST_union ||
5233 TypeSpecType == DeclSpec::TST_enum) {
5234 for (const ParsedAttr &AL : DS.getAttributes())
5235 Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored)
5236 << AL << GetDiagnosticTypeSpecifierID(TypeSpecType);
5237 for (const ParsedAttr &AL : DeclAttrs)
5238 Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored)
5239 << AL << GetDiagnosticTypeSpecifierID(TypeSpecType);
5243 return TagD;
5246 /// We are trying to inject an anonymous member into the given scope;
5247 /// check if there's an existing declaration that can't be overloaded.
5249 /// \return true if this is a forbidden redeclaration
5250 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
5251 Scope *S,
5252 DeclContext *Owner,
5253 DeclarationName Name,
5254 SourceLocation NameLoc,
5255 bool IsUnion) {
5256 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
5257 Sema::ForVisibleRedeclaration);
5258 if (!SemaRef.LookupName(R, S)) return false;
5260 // Pick a representative declaration.
5261 NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
5262 assert(PrevDecl && "Expected a non-null Decl");
5264 if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
5265 return false;
5267 SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
5268 << IsUnion << Name;
5269 SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5271 return true;
5274 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
5275 /// anonymous struct or union AnonRecord into the owning context Owner
5276 /// and scope S. This routine will be invoked just after we realize
5277 /// that an unnamed union or struct is actually an anonymous union or
5278 /// struct, e.g.,
5280 /// @code
5281 /// union {
5282 /// int i;
5283 /// float f;
5284 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
5285 /// // f into the surrounding scope.x
5286 /// @endcode
5288 /// This routine is recursive, injecting the names of nested anonymous
5289 /// structs/unions into the owning context and scope as well.
5290 static bool
5291 InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
5292 RecordDecl *AnonRecord, AccessSpecifier AS,
5293 SmallVectorImpl<NamedDecl *> &Chaining) {
5294 bool Invalid = false;
5296 // Look every FieldDecl and IndirectFieldDecl with a name.
5297 for (auto *D : AnonRecord->decls()) {
5298 if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
5299 cast<NamedDecl>(D)->getDeclName()) {
5300 ValueDecl *VD = cast<ValueDecl>(D);
5301 if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
5302 VD->getLocation(),
5303 AnonRecord->isUnion())) {
5304 // C++ [class.union]p2:
5305 // The names of the members of an anonymous union shall be
5306 // distinct from the names of any other entity in the
5307 // scope in which the anonymous union is declared.
5308 Invalid = true;
5309 } else {
5310 // C++ [class.union]p2:
5311 // For the purpose of name lookup, after the anonymous union
5312 // definition, the members of the anonymous union are
5313 // considered to have been defined in the scope in which the
5314 // anonymous union is declared.
5315 unsigned OldChainingSize = Chaining.size();
5316 if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
5317 Chaining.append(IF->chain_begin(), IF->chain_end());
5318 else
5319 Chaining.push_back(VD);
5321 assert(Chaining.size() >= 2);
5322 NamedDecl **NamedChain =
5323 new (SemaRef.Context)NamedDecl*[Chaining.size()];
5324 for (unsigned i = 0; i < Chaining.size(); i++)
5325 NamedChain[i] = Chaining[i];
5327 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
5328 SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
5329 VD->getType(), {NamedChain, Chaining.size()});
5331 for (const auto *Attr : VD->attrs())
5332 IndirectField->addAttr(Attr->clone(SemaRef.Context));
5334 IndirectField->setAccess(AS);
5335 IndirectField->setImplicit();
5336 SemaRef.PushOnScopeChains(IndirectField, S);
5338 // That includes picking up the appropriate access specifier.
5339 if (AS != AS_none) IndirectField->setAccess(AS);
5341 Chaining.resize(OldChainingSize);
5346 return Invalid;
5349 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
5350 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
5351 /// illegal input values are mapped to SC_None.
5352 static StorageClass
5353 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
5354 DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
5355 assert(StorageClassSpec != DeclSpec::SCS_typedef &&
5356 "Parser allowed 'typedef' as storage class VarDecl.");
5357 switch (StorageClassSpec) {
5358 case DeclSpec::SCS_unspecified: return SC_None;
5359 case DeclSpec::SCS_extern:
5360 if (DS.isExternInLinkageSpec())
5361 return SC_None;
5362 return SC_Extern;
5363 case DeclSpec::SCS_static: return SC_Static;
5364 case DeclSpec::SCS_auto: return SC_Auto;
5365 case DeclSpec::SCS_register: return SC_Register;
5366 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5367 // Illegal SCSs map to None: error reporting is up to the caller.
5368 case DeclSpec::SCS_mutable: // Fall through.
5369 case DeclSpec::SCS_typedef: return SC_None;
5371 llvm_unreachable("unknown storage class specifier");
5374 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
5375 assert(Record->hasInClassInitializer());
5377 for (const auto *I : Record->decls()) {
5378 const auto *FD = dyn_cast<FieldDecl>(I);
5379 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
5380 FD = IFD->getAnonField();
5381 if (FD && FD->hasInClassInitializer())
5382 return FD->getLocation();
5385 llvm_unreachable("couldn't find in-class initializer");
5388 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
5389 SourceLocation DefaultInitLoc) {
5390 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
5391 return;
5393 S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
5394 S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
5397 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
5398 CXXRecordDecl *AnonUnion) {
5399 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
5400 return;
5402 checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
5405 /// BuildAnonymousStructOrUnion - Handle the declaration of an
5406 /// anonymous structure or union. Anonymous unions are a C++ feature
5407 /// (C++ [class.union]) and a C11 feature; anonymous structures
5408 /// are a C11 feature and GNU C++ extension.
5409 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
5410 AccessSpecifier AS,
5411 RecordDecl *Record,
5412 const PrintingPolicy &Policy) {
5413 DeclContext *Owner = Record->getDeclContext();
5415 // Diagnose whether this anonymous struct/union is an extension.
5416 if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
5417 Diag(Record->getLocation(), diag::ext_anonymous_union);
5418 else if (!Record->isUnion() && getLangOpts().CPlusPlus)
5419 Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
5420 else if (!Record->isUnion() && !getLangOpts().C11)
5421 Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
5423 // C and C++ require different kinds of checks for anonymous
5424 // structs/unions.
5425 bool Invalid = false;
5426 if (getLangOpts().CPlusPlus) {
5427 const char *PrevSpec = nullptr;
5428 if (Record->isUnion()) {
5429 // C++ [class.union]p6:
5430 // C++17 [class.union.anon]p2:
5431 // Anonymous unions declared in a named namespace or in the
5432 // global namespace shall be declared static.
5433 unsigned DiagID;
5434 DeclContext *OwnerScope = Owner->getRedeclContext();
5435 if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
5436 (OwnerScope->isTranslationUnit() ||
5437 (OwnerScope->isNamespace() &&
5438 !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) {
5439 Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
5440 << FixItHint::CreateInsertion(Record->getLocation(), "static ");
5442 // Recover by adding 'static'.
5443 DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
5444 PrevSpec, DiagID, Policy);
5446 // C++ [class.union]p6:
5447 // A storage class is not allowed in a declaration of an
5448 // anonymous union in a class scope.
5449 else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
5450 isa<RecordDecl>(Owner)) {
5451 Diag(DS.getStorageClassSpecLoc(),
5452 diag::err_anonymous_union_with_storage_spec)
5453 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5455 // Recover by removing the storage specifier.
5456 DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
5457 SourceLocation(),
5458 PrevSpec, DiagID, Context.getPrintingPolicy());
5462 // Ignore const/volatile/restrict qualifiers.
5463 if (DS.getTypeQualifiers()) {
5464 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
5465 Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
5466 << Record->isUnion() << "const"
5467 << FixItHint::CreateRemoval(DS.getConstSpecLoc());
5468 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
5469 Diag(DS.getVolatileSpecLoc(),
5470 diag::ext_anonymous_struct_union_qualified)
5471 << Record->isUnion() << "volatile"
5472 << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
5473 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
5474 Diag(DS.getRestrictSpecLoc(),
5475 diag::ext_anonymous_struct_union_qualified)
5476 << Record->isUnion() << "restrict"
5477 << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
5478 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
5479 Diag(DS.getAtomicSpecLoc(),
5480 diag::ext_anonymous_struct_union_qualified)
5481 << Record->isUnion() << "_Atomic"
5482 << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
5483 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
5484 Diag(DS.getUnalignedSpecLoc(),
5485 diag::ext_anonymous_struct_union_qualified)
5486 << Record->isUnion() << "__unaligned"
5487 << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
5489 DS.ClearTypeQualifiers();
5492 // C++ [class.union]p2:
5493 // The member-specification of an anonymous union shall only
5494 // define non-static data members. [Note: nested types and
5495 // functions cannot be declared within an anonymous union. ]
5496 for (auto *Mem : Record->decls()) {
5497 // Ignore invalid declarations; we already diagnosed them.
5498 if (Mem->isInvalidDecl())
5499 continue;
5501 if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
5502 // C++ [class.union]p3:
5503 // An anonymous union shall not have private or protected
5504 // members (clause 11).
5505 assert(FD->getAccess() != AS_none);
5506 if (FD->getAccess() != AS_public) {
5507 Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
5508 << Record->isUnion() << (FD->getAccess() == AS_protected);
5509 Invalid = true;
5512 // C++ [class.union]p1
5513 // An object of a class with a non-trivial constructor, a non-trivial
5514 // copy constructor, a non-trivial destructor, or a non-trivial copy
5515 // assignment operator cannot be a member of a union, nor can an
5516 // array of such objects.
5517 if (CheckNontrivialField(FD))
5518 Invalid = true;
5519 } else if (Mem->isImplicit()) {
5520 // Any implicit members are fine.
5521 } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
5522 // This is a type that showed up in an
5523 // elaborated-type-specifier inside the anonymous struct or
5524 // union, but which actually declares a type outside of the
5525 // anonymous struct or union. It's okay.
5526 } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
5527 if (!MemRecord->isAnonymousStructOrUnion() &&
5528 MemRecord->getDeclName()) {
5529 // Visual C++ allows type definition in anonymous struct or union.
5530 if (getLangOpts().MicrosoftExt)
5531 Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
5532 << Record->isUnion();
5533 else {
5534 // This is a nested type declaration.
5535 Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
5536 << Record->isUnion();
5537 Invalid = true;
5539 } else {
5540 // This is an anonymous type definition within another anonymous type.
5541 // This is a popular extension, provided by Plan9, MSVC and GCC, but
5542 // not part of standard C++.
5543 Diag(MemRecord->getLocation(),
5544 diag::ext_anonymous_record_with_anonymous_type)
5545 << Record->isUnion();
5547 } else if (isa<AccessSpecDecl>(Mem)) {
5548 // Any access specifier is fine.
5549 } else if (isa<StaticAssertDecl>(Mem)) {
5550 // In C++1z, static_assert declarations are also fine.
5551 } else {
5552 // We have something that isn't a non-static data
5553 // member. Complain about it.
5554 unsigned DK = diag::err_anonymous_record_bad_member;
5555 if (isa<TypeDecl>(Mem))
5556 DK = diag::err_anonymous_record_with_type;
5557 else if (isa<FunctionDecl>(Mem))
5558 DK = diag::err_anonymous_record_with_function;
5559 else if (isa<VarDecl>(Mem))
5560 DK = diag::err_anonymous_record_with_static;
5562 // Visual C++ allows type definition in anonymous struct or union.
5563 if (getLangOpts().MicrosoftExt &&
5564 DK == diag::err_anonymous_record_with_type)
5565 Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
5566 << Record->isUnion();
5567 else {
5568 Diag(Mem->getLocation(), DK) << Record->isUnion();
5569 Invalid = true;
5574 // C++11 [class.union]p8 (DR1460):
5575 // At most one variant member of a union may have a
5576 // brace-or-equal-initializer.
5577 if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
5578 Owner->isRecord())
5579 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
5580 cast<CXXRecordDecl>(Record));
5583 if (!Record->isUnion() && !Owner->isRecord()) {
5584 Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
5585 << getLangOpts().CPlusPlus;
5586 Invalid = true;
5589 // C++ [dcl.dcl]p3:
5590 // [If there are no declarators], and except for the declaration of an
5591 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
5592 // names into the program
5593 // C++ [class.mem]p2:
5594 // each such member-declaration shall either declare at least one member
5595 // name of the class or declare at least one unnamed bit-field
5597 // For C this is an error even for a named struct, and is diagnosed elsewhere.
5598 if (getLangOpts().CPlusPlus && Record->field_empty())
5599 Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
5601 // Mock up a declarator.
5602 Declarator Dc(DS, ParsedAttributesView::none(), DeclaratorContext::Member);
5603 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
5604 assert(TInfo && "couldn't build declarator info for anonymous struct/union");
5606 // Create a declaration for this anonymous struct/union.
5607 NamedDecl *Anon = nullptr;
5608 if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
5609 Anon = FieldDecl::Create(
5610 Context, OwningClass, DS.getBeginLoc(), Record->getLocation(),
5611 /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo,
5612 /*BitWidth=*/nullptr, /*Mutable=*/false,
5613 /*InitStyle=*/ICIS_NoInit);
5614 Anon->setAccess(AS);
5615 ProcessDeclAttributes(S, Anon, Dc);
5617 if (getLangOpts().CPlusPlus)
5618 FieldCollector->Add(cast<FieldDecl>(Anon));
5619 } else {
5620 DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
5621 StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
5622 if (SCSpec == DeclSpec::SCS_mutable) {
5623 // mutable can only appear on non-static class members, so it's always
5624 // an error here
5625 Diag(Record->getLocation(), diag::err_mutable_nonmember);
5626 Invalid = true;
5627 SC = SC_None;
5630 assert(DS.getAttributes().empty() && "No attribute expected");
5631 Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(),
5632 Record->getLocation(), /*IdentifierInfo=*/nullptr,
5633 Context.getTypeDeclType(Record), TInfo, SC);
5635 // Default-initialize the implicit variable. This initialization will be
5636 // trivial in almost all cases, except if a union member has an in-class
5637 // initializer:
5638 // union { int n = 0; };
5639 ActOnUninitializedDecl(Anon);
5641 Anon->setImplicit();
5643 // Mark this as an anonymous struct/union type.
5644 Record->setAnonymousStructOrUnion(true);
5646 // Add the anonymous struct/union object to the current
5647 // context. We'll be referencing this object when we refer to one of
5648 // its members.
5649 Owner->addDecl(Anon);
5651 // Inject the members of the anonymous struct/union into the owning
5652 // context and into the identifier resolver chain for name lookup
5653 // purposes.
5654 SmallVector<NamedDecl*, 2> Chain;
5655 Chain.push_back(Anon);
5657 if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain))
5658 Invalid = true;
5660 if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
5661 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
5662 MangleNumberingContext *MCtx;
5663 Decl *ManglingContextDecl;
5664 std::tie(MCtx, ManglingContextDecl) =
5665 getCurrentMangleNumberContext(NewVD->getDeclContext());
5666 if (MCtx) {
5667 Context.setManglingNumber(
5668 NewVD, MCtx->getManglingNumber(
5669 NewVD, getMSManglingNumber(getLangOpts(), S)));
5670 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
5675 if (Invalid)
5676 Anon->setInvalidDecl();
5678 return Anon;
5681 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
5682 /// Microsoft C anonymous structure.
5683 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
5684 /// Example:
5686 /// struct A { int a; };
5687 /// struct B { struct A; int b; };
5689 /// void foo() {
5690 /// B var;
5691 /// var.a = 3;
5692 /// }
5694 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
5695 RecordDecl *Record) {
5696 assert(Record && "expected a record!");
5698 // Mock up a declarator.
5699 Declarator Dc(DS, ParsedAttributesView::none(), DeclaratorContext::TypeName);
5700 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
5701 assert(TInfo && "couldn't build declarator info for anonymous struct");
5703 auto *ParentDecl = cast<RecordDecl>(CurContext);
5704 QualType RecTy = Context.getTypeDeclType(Record);
5706 // Create a declaration for this anonymous struct.
5707 NamedDecl *Anon =
5708 FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(),
5709 /*IdentifierInfo=*/nullptr, RecTy, TInfo,
5710 /*BitWidth=*/nullptr, /*Mutable=*/false,
5711 /*InitStyle=*/ICIS_NoInit);
5712 Anon->setImplicit();
5714 // Add the anonymous struct object to the current context.
5715 CurContext->addDecl(Anon);
5717 // Inject the members of the anonymous struct into the current
5718 // context and into the identifier resolver chain for name lookup
5719 // purposes.
5720 SmallVector<NamedDecl*, 2> Chain;
5721 Chain.push_back(Anon);
5723 RecordDecl *RecordDef = Record->getDefinition();
5724 if (RequireCompleteSizedType(Anon->getLocation(), RecTy,
5725 diag::err_field_incomplete_or_sizeless) ||
5726 InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
5727 AS_none, Chain)) {
5728 Anon->setInvalidDecl();
5729 ParentDecl->setInvalidDecl();
5732 return Anon;
5735 /// GetNameForDeclarator - Determine the full declaration name for the
5736 /// given Declarator.
5737 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
5738 return GetNameFromUnqualifiedId(D.getName());
5741 /// Retrieves the declaration name from a parsed unqualified-id.
5742 DeclarationNameInfo
5743 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
5744 DeclarationNameInfo NameInfo;
5745 NameInfo.setLoc(Name.StartLocation);
5747 switch (Name.getKind()) {
5749 case UnqualifiedIdKind::IK_ImplicitSelfParam:
5750 case UnqualifiedIdKind::IK_Identifier:
5751 NameInfo.setName(Name.Identifier);
5752 return NameInfo;
5754 case UnqualifiedIdKind::IK_DeductionGuideName: {
5755 // C++ [temp.deduct.guide]p3:
5756 // The simple-template-id shall name a class template specialization.
5757 // The template-name shall be the same identifier as the template-name
5758 // of the simple-template-id.
5759 // These together intend to imply that the template-name shall name a
5760 // class template.
5761 // FIXME: template<typename T> struct X {};
5762 // template<typename T> using Y = X<T>;
5763 // Y(int) -> Y<int>;
5764 // satisfies these rules but does not name a class template.
5765 TemplateName TN = Name.TemplateName.get().get();
5766 auto *Template = TN.getAsTemplateDecl();
5767 if (!Template || !isa<ClassTemplateDecl>(Template)) {
5768 Diag(Name.StartLocation,
5769 diag::err_deduction_guide_name_not_class_template)
5770 << (int)getTemplateNameKindForDiagnostics(TN) << TN;
5771 if (Template)
5772 Diag(Template->getLocation(), diag::note_template_decl_here);
5773 return DeclarationNameInfo();
5776 NameInfo.setName(
5777 Context.DeclarationNames.getCXXDeductionGuideName(Template));
5778 return NameInfo;
5781 case UnqualifiedIdKind::IK_OperatorFunctionId:
5782 NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
5783 Name.OperatorFunctionId.Operator));
5784 NameInfo.setCXXOperatorNameRange(SourceRange(
5785 Name.OperatorFunctionId.SymbolLocations[0], Name.EndLocation));
5786 return NameInfo;
5788 case UnqualifiedIdKind::IK_LiteralOperatorId:
5789 NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
5790 Name.Identifier));
5791 NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
5792 return NameInfo;
5794 case UnqualifiedIdKind::IK_ConversionFunctionId: {
5795 TypeSourceInfo *TInfo;
5796 QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
5797 if (Ty.isNull())
5798 return DeclarationNameInfo();
5799 NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
5800 Context.getCanonicalType(Ty)));
5801 NameInfo.setNamedTypeInfo(TInfo);
5802 return NameInfo;
5805 case UnqualifiedIdKind::IK_ConstructorName: {
5806 TypeSourceInfo *TInfo;
5807 QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
5808 if (Ty.isNull())
5809 return DeclarationNameInfo();
5810 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5811 Context.getCanonicalType(Ty)));
5812 NameInfo.setNamedTypeInfo(TInfo);
5813 return NameInfo;
5816 case UnqualifiedIdKind::IK_ConstructorTemplateId: {
5817 // In well-formed code, we can only have a constructor
5818 // template-id that refers to the current context, so go there
5819 // to find the actual type being constructed.
5820 CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
5821 if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
5822 return DeclarationNameInfo();
5824 // Determine the type of the class being constructed.
5825 QualType CurClassType = Context.getTypeDeclType(CurClass);
5827 // FIXME: Check two things: that the template-id names the same type as
5828 // CurClassType, and that the template-id does not occur when the name
5829 // was qualified.
5831 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5832 Context.getCanonicalType(CurClassType)));
5833 // FIXME: should we retrieve TypeSourceInfo?
5834 NameInfo.setNamedTypeInfo(nullptr);
5835 return NameInfo;
5838 case UnqualifiedIdKind::IK_DestructorName: {
5839 TypeSourceInfo *TInfo;
5840 QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
5841 if (Ty.isNull())
5842 return DeclarationNameInfo();
5843 NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
5844 Context.getCanonicalType(Ty)));
5845 NameInfo.setNamedTypeInfo(TInfo);
5846 return NameInfo;
5849 case UnqualifiedIdKind::IK_TemplateId: {
5850 TemplateName TName = Name.TemplateId->Template.get();
5851 SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
5852 return Context.getNameForTemplate(TName, TNameLoc);
5855 } // switch (Name.getKind())
5857 llvm_unreachable("Unknown name kind");
5860 static QualType getCoreType(QualType Ty) {
5861 do {
5862 if (Ty->isPointerType() || Ty->isReferenceType())
5863 Ty = Ty->getPointeeType();
5864 else if (Ty->isArrayType())
5865 Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
5866 else
5867 return Ty.withoutLocalFastQualifiers();
5868 } while (true);
5871 /// hasSimilarParameters - Determine whether the C++ functions Declaration
5872 /// and Definition have "nearly" matching parameters. This heuristic is
5873 /// used to improve diagnostics in the case where an out-of-line function
5874 /// definition doesn't match any declaration within the class or namespace.
5875 /// Also sets Params to the list of indices to the parameters that differ
5876 /// between the declaration and the definition. If hasSimilarParameters
5877 /// returns true and Params is empty, then all of the parameters match.
5878 static bool hasSimilarParameters(ASTContext &Context,
5879 FunctionDecl *Declaration,
5880 FunctionDecl *Definition,
5881 SmallVectorImpl<unsigned> &Params) {
5882 Params.clear();
5883 if (Declaration->param_size() != Definition->param_size())
5884 return false;
5885 for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
5886 QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
5887 QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
5889 // The parameter types are identical
5890 if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy))
5891 continue;
5893 QualType DeclParamBaseTy = getCoreType(DeclParamTy);
5894 QualType DefParamBaseTy = getCoreType(DefParamTy);
5895 const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
5896 const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
5898 if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
5899 (DeclTyName && DeclTyName == DefTyName))
5900 Params.push_back(Idx);
5901 else // The two parameters aren't even close
5902 return false;
5905 return true;
5908 /// RebuildDeclaratorInCurrentInstantiation - Checks whether the given
5909 /// declarator needs to be rebuilt in the current instantiation.
5910 /// Any bits of declarator which appear before the name are valid for
5911 /// consideration here. That's specifically the type in the decl spec
5912 /// and the base type in any member-pointer chunks.
5913 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
5914 DeclarationName Name) {
5915 // The types we specifically need to rebuild are:
5916 // - typenames, typeofs, and decltypes
5917 // - types which will become injected class names
5918 // Of course, we also need to rebuild any type referencing such a
5919 // type. It's safest to just say "dependent", but we call out a
5920 // few cases here.
5922 DeclSpec &DS = D.getMutableDeclSpec();
5923 switch (DS.getTypeSpecType()) {
5924 case DeclSpec::TST_typename:
5925 case DeclSpec::TST_typeofType:
5926 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case DeclSpec::TST_##Trait:
5927 #include "clang/Basic/TransformTypeTraits.def"
5928 case DeclSpec::TST_atomic: {
5929 // Grab the type from the parser.
5930 TypeSourceInfo *TSI = nullptr;
5931 QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
5932 if (T.isNull() || !T->isInstantiationDependentType()) break;
5934 // Make sure there's a type source info. This isn't really much
5935 // of a waste; most dependent types should have type source info
5936 // attached already.
5937 if (!TSI)
5938 TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
5940 // Rebuild the type in the current instantiation.
5941 TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
5942 if (!TSI) return true;
5944 // Store the new type back in the decl spec.
5945 ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
5946 DS.UpdateTypeRep(LocType);
5947 break;
5950 case DeclSpec::TST_decltype:
5951 case DeclSpec::TST_typeofExpr: {
5952 Expr *E = DS.getRepAsExpr();
5953 ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
5954 if (Result.isInvalid()) return true;
5955 DS.UpdateExprRep(Result.get());
5956 break;
5959 default:
5960 // Nothing to do for these decl specs.
5961 break;
5964 // It doesn't matter what order we do this in.
5965 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
5966 DeclaratorChunk &Chunk = D.getTypeObject(I);
5968 // The only type information in the declarator which can come
5969 // before the declaration name is the base type of a member
5970 // pointer.
5971 if (Chunk.Kind != DeclaratorChunk::MemberPointer)
5972 continue;
5974 // Rebuild the scope specifier in-place.
5975 CXXScopeSpec &SS = Chunk.Mem.Scope();
5976 if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
5977 return true;
5980 return false;
5983 /// Returns true if the declaration is declared in a system header or from a
5984 /// system macro.
5985 static bool isFromSystemHeader(SourceManager &SM, const Decl *D) {
5986 return SM.isInSystemHeader(D->getLocation()) ||
5987 SM.isInSystemMacro(D->getLocation());
5990 void Sema::warnOnReservedIdentifier(const NamedDecl *D) {
5991 // Avoid warning twice on the same identifier, and don't warn on redeclaration
5992 // of system decl.
5993 if (D->getPreviousDecl() || D->isImplicit())
5994 return;
5995 ReservedIdentifierStatus Status = D->isReserved(getLangOpts());
5996 if (Status != ReservedIdentifierStatus::NotReserved &&
5997 !isFromSystemHeader(Context.getSourceManager(), D)) {
5998 Diag(D->getLocation(), diag::warn_reserved_extern_symbol)
5999 << D << static_cast<int>(Status);
6003 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
6004 D.setFunctionDefinitionKind(FunctionDefinitionKind::Declaration);
6006 // Check if we are in an `omp begin/end declare variant` scope. Handle this
6007 // declaration only if the `bind_to_declaration` extension is set.
6008 SmallVector<FunctionDecl *, 4> Bases;
6009 if (LangOpts.OpenMP && isInOpenMPDeclareVariantScope())
6010 if (getOMPTraitInfoForSurroundingScope()->isExtensionActive(llvm::omp::TraitProperty::
6011 implementation_extension_bind_to_declaration))
6012 ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
6013 S, D, MultiTemplateParamsArg(), Bases);
6015 Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
6017 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
6018 Dcl && Dcl->getDeclContext()->isFileContext())
6019 Dcl->setTopLevelDeclInObjCContainer();
6021 if (!Bases.empty())
6022 ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl, Bases);
6024 return Dcl;
6027 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
6028 /// If T is the name of a class, then each of the following shall have a
6029 /// name different from T:
6030 /// - every static data member of class T;
6031 /// - every member function of class T
6032 /// - every member of class T that is itself a type;
6033 /// \returns true if the declaration name violates these rules.
6034 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
6035 DeclarationNameInfo NameInfo) {
6036 DeclarationName Name = NameInfo.getName();
6038 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
6039 while (Record && Record->isAnonymousStructOrUnion())
6040 Record = dyn_cast<CXXRecordDecl>(Record->getParent());
6041 if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
6042 Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
6043 return true;
6046 return false;
6049 /// Diagnose a declaration whose declarator-id has the given
6050 /// nested-name-specifier.
6052 /// \param SS The nested-name-specifier of the declarator-id.
6054 /// \param DC The declaration context to which the nested-name-specifier
6055 /// resolves.
6057 /// \param Name The name of the entity being declared.
6059 /// \param Loc The location of the name of the entity being declared.
6061 /// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
6062 /// we're declaring an explicit / partial specialization / instantiation.
6064 /// \returns true if we cannot safely recover from this error, false otherwise.
6065 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
6066 DeclarationName Name,
6067 SourceLocation Loc, bool IsTemplateId) {
6068 DeclContext *Cur = CurContext;
6069 while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
6070 Cur = Cur->getParent();
6072 // If the user provided a superfluous scope specifier that refers back to the
6073 // class in which the entity is already declared, diagnose and ignore it.
6075 // class X {
6076 // void X::f();
6077 // };
6079 // Note, it was once ill-formed to give redundant qualification in all
6080 // contexts, but that rule was removed by DR482.
6081 if (Cur->Equals(DC)) {
6082 if (Cur->isRecord()) {
6083 Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
6084 : diag::err_member_extra_qualification)
6085 << Name << FixItHint::CreateRemoval(SS.getRange());
6086 SS.clear();
6087 } else {
6088 Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
6090 return false;
6093 // Check whether the qualifying scope encloses the scope of the original
6094 // declaration. For a template-id, we perform the checks in
6095 // CheckTemplateSpecializationScope.
6096 if (!Cur->Encloses(DC) && !IsTemplateId) {
6097 if (Cur->isRecord())
6098 Diag(Loc, diag::err_member_qualification)
6099 << Name << SS.getRange();
6100 else if (isa<TranslationUnitDecl>(DC))
6101 Diag(Loc, diag::err_invalid_declarator_global_scope)
6102 << Name << SS.getRange();
6103 else if (isa<FunctionDecl>(Cur))
6104 Diag(Loc, diag::err_invalid_declarator_in_function)
6105 << Name << SS.getRange();
6106 else if (isa<BlockDecl>(Cur))
6107 Diag(Loc, diag::err_invalid_declarator_in_block)
6108 << Name << SS.getRange();
6109 else if (isa<ExportDecl>(Cur)) {
6110 if (!isa<NamespaceDecl>(DC))
6111 Diag(Loc, diag::err_export_non_namespace_scope_name)
6112 << Name << SS.getRange();
6113 else
6114 // The cases that DC is not NamespaceDecl should be handled in
6115 // CheckRedeclarationExported.
6116 return false;
6117 } else
6118 Diag(Loc, diag::err_invalid_declarator_scope)
6119 << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
6121 return true;
6124 if (Cur->isRecord()) {
6125 // Cannot qualify members within a class.
6126 Diag(Loc, diag::err_member_qualification)
6127 << Name << SS.getRange();
6128 SS.clear();
6130 // C++ constructors and destructors with incorrect scopes can break
6131 // our AST invariants by having the wrong underlying types. If
6132 // that's the case, then drop this declaration entirely.
6133 if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
6134 Name.getNameKind() == DeclarationName::CXXDestructorName) &&
6135 !Context.hasSameType(Name.getCXXNameType(),
6136 Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
6137 return true;
6139 return false;
6142 // C++11 [dcl.meaning]p1:
6143 // [...] "The nested-name-specifier of the qualified declarator-id shall
6144 // not begin with a decltype-specifer"
6145 NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
6146 while (SpecLoc.getPrefix())
6147 SpecLoc = SpecLoc.getPrefix();
6148 if (isa_and_nonnull<DecltypeType>(
6149 SpecLoc.getNestedNameSpecifier()->getAsType()))
6150 Diag(Loc, diag::err_decltype_in_declarator)
6151 << SpecLoc.getTypeLoc().getSourceRange();
6153 return false;
6156 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
6157 MultiTemplateParamsArg TemplateParamLists) {
6158 // TODO: consider using NameInfo for diagnostic.
6159 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6160 DeclarationName Name = NameInfo.getName();
6162 // All of these full declarators require an identifier. If it doesn't have
6163 // one, the ParsedFreeStandingDeclSpec action should be used.
6164 if (D.isDecompositionDeclarator()) {
6165 return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
6166 } else if (!Name) {
6167 if (!D.isInvalidType()) // Reject this if we think it is valid.
6168 Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident)
6169 << D.getDeclSpec().getSourceRange() << D.getSourceRange();
6170 return nullptr;
6171 } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
6172 return nullptr;
6174 // The scope passed in may not be a decl scope. Zip up the scope tree until
6175 // we find one that is.
6176 while ((S->getFlags() & Scope::DeclScope) == 0 ||
6177 (S->getFlags() & Scope::TemplateParamScope) != 0)
6178 S = S->getParent();
6180 DeclContext *DC = CurContext;
6181 if (D.getCXXScopeSpec().isInvalid())
6182 D.setInvalidType();
6183 else if (D.getCXXScopeSpec().isSet()) {
6184 if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
6185 UPPC_DeclarationQualifier))
6186 return nullptr;
6188 bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
6189 DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
6190 if (!DC || isa<EnumDecl>(DC)) {
6191 // If we could not compute the declaration context, it's because the
6192 // declaration context is dependent but does not refer to a class,
6193 // class template, or class template partial specialization. Complain
6194 // and return early, to avoid the coming semantic disaster.
6195 Diag(D.getIdentifierLoc(),
6196 diag::err_template_qualified_declarator_no_match)
6197 << D.getCXXScopeSpec().getScopeRep()
6198 << D.getCXXScopeSpec().getRange();
6199 return nullptr;
6201 bool IsDependentContext = DC->isDependentContext();
6203 if (!IsDependentContext &&
6204 RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
6205 return nullptr;
6207 // If a class is incomplete, do not parse entities inside it.
6208 if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
6209 Diag(D.getIdentifierLoc(),
6210 diag::err_member_def_undefined_record)
6211 << Name << DC << D.getCXXScopeSpec().getRange();
6212 return nullptr;
6214 if (!D.getDeclSpec().isFriendSpecified()) {
6215 if (diagnoseQualifiedDeclaration(
6216 D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(),
6217 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) {
6218 if (DC->isRecord())
6219 return nullptr;
6221 D.setInvalidType();
6225 // Check whether we need to rebuild the type of the given
6226 // declaration in the current instantiation.
6227 if (EnteringContext && IsDependentContext &&
6228 TemplateParamLists.size() != 0) {
6229 ContextRAII SavedContext(*this, DC);
6230 if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
6231 D.setInvalidType();
6235 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6236 QualType R = TInfo->getType();
6238 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6239 UPPC_DeclarationType))
6240 D.setInvalidType();
6242 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
6243 forRedeclarationInCurContext());
6245 // See if this is a redefinition of a variable in the same scope.
6246 if (!D.getCXXScopeSpec().isSet()) {
6247 bool IsLinkageLookup = false;
6248 bool CreateBuiltins = false;
6250 // If the declaration we're planning to build will be a function
6251 // or object with linkage, then look for another declaration with
6252 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
6254 // If the declaration we're planning to build will be declared with
6255 // external linkage in the translation unit, create any builtin with
6256 // the same name.
6257 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
6258 /* Do nothing*/;
6259 else if (CurContext->isFunctionOrMethod() &&
6260 (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
6261 R->isFunctionType())) {
6262 IsLinkageLookup = true;
6263 CreateBuiltins =
6264 CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
6265 } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
6266 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
6267 CreateBuiltins = true;
6269 if (IsLinkageLookup) {
6270 Previous.clear(LookupRedeclarationWithLinkage);
6271 Previous.setRedeclarationKind(ForExternalRedeclaration);
6274 LookupName(Previous, S, CreateBuiltins);
6275 } else { // Something like "int foo::x;"
6276 LookupQualifiedName(Previous, DC);
6278 // C++ [dcl.meaning]p1:
6279 // When the declarator-id is qualified, the declaration shall refer to a
6280 // previously declared member of the class or namespace to which the
6281 // qualifier refers (or, in the case of a namespace, of an element of the
6282 // inline namespace set of that namespace (7.3.1)) or to a specialization
6283 // thereof; [...]
6285 // Note that we already checked the context above, and that we do not have
6286 // enough information to make sure that Previous contains the declaration
6287 // we want to match. For example, given:
6289 // class X {
6290 // void f();
6291 // void f(float);
6292 // };
6294 // void X::f(int) { } // ill-formed
6296 // In this case, Previous will point to the overload set
6297 // containing the two f's declared in X, but neither of them
6298 // matches.
6300 // C++ [dcl.meaning]p1:
6301 // [...] the member shall not merely have been introduced by a
6302 // using-declaration in the scope of the class or namespace nominated by
6303 // the nested-name-specifier of the declarator-id.
6304 RemoveUsingDecls(Previous);
6307 if (Previous.isSingleResult() &&
6308 Previous.getFoundDecl()->isTemplateParameter()) {
6309 // Maybe we will complain about the shadowed template parameter.
6310 if (!D.isInvalidType())
6311 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
6312 Previous.getFoundDecl());
6314 // Just pretend that we didn't see the previous declaration.
6315 Previous.clear();
6318 if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
6319 // Forget that the previous declaration is the injected-class-name.
6320 Previous.clear();
6322 // In C++, the previous declaration we find might be a tag type
6323 // (class or enum). In this case, the new declaration will hide the
6324 // tag type. Note that this applies to functions, function templates, and
6325 // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
6326 if (Previous.isSingleTagDecl() &&
6327 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6328 (TemplateParamLists.size() == 0 || R->isFunctionType()))
6329 Previous.clear();
6331 // Check that there are no default arguments other than in the parameters
6332 // of a function declaration (C++ only).
6333 if (getLangOpts().CPlusPlus)
6334 CheckExtraCXXDefaultArguments(D);
6336 NamedDecl *New;
6338 bool AddToScope = true;
6339 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
6340 if (TemplateParamLists.size()) {
6341 Diag(D.getIdentifierLoc(), diag::err_template_typedef);
6342 return nullptr;
6345 New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
6346 } else if (R->isFunctionType()) {
6347 New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
6348 TemplateParamLists,
6349 AddToScope);
6350 } else {
6351 New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
6352 AddToScope);
6355 if (!New)
6356 return nullptr;
6358 // If this has an identifier and is not a function template specialization,
6359 // add it to the scope stack.
6360 if (New->getDeclName() && AddToScope)
6361 PushOnScopeChains(New, S);
6363 if (isInOpenMPDeclareTargetContext())
6364 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
6366 return New;
6369 /// Helper method to turn variable array types into constant array
6370 /// types in certain situations which would otherwise be errors (for
6371 /// GCC compatibility).
6372 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
6373 ASTContext &Context,
6374 bool &SizeIsNegative,
6375 llvm::APSInt &Oversized) {
6376 // This method tries to turn a variable array into a constant
6377 // array even when the size isn't an ICE. This is necessary
6378 // for compatibility with code that depends on gcc's buggy
6379 // constant expression folding, like struct {char x[(int)(char*)2];}
6380 SizeIsNegative = false;
6381 Oversized = 0;
6383 if (T->isDependentType())
6384 return QualType();
6386 QualifierCollector Qs;
6387 const Type *Ty = Qs.strip(T);
6389 if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
6390 QualType Pointee = PTy->getPointeeType();
6391 QualType FixedType =
6392 TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
6393 Oversized);
6394 if (FixedType.isNull()) return FixedType;
6395 FixedType = Context.getPointerType(FixedType);
6396 return Qs.apply(Context, FixedType);
6398 if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
6399 QualType Inner = PTy->getInnerType();
6400 QualType FixedType =
6401 TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
6402 Oversized);
6403 if (FixedType.isNull()) return FixedType;
6404 FixedType = Context.getParenType(FixedType);
6405 return Qs.apply(Context, FixedType);
6408 const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
6409 if (!VLATy)
6410 return QualType();
6412 QualType ElemTy = VLATy->getElementType();
6413 if (ElemTy->isVariablyModifiedType()) {
6414 ElemTy = TryToFixInvalidVariablyModifiedType(ElemTy, Context,
6415 SizeIsNegative, Oversized);
6416 if (ElemTy.isNull())
6417 return QualType();
6420 Expr::EvalResult Result;
6421 if (!VLATy->getSizeExpr() ||
6422 !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context))
6423 return QualType();
6425 llvm::APSInt Res = Result.Val.getInt();
6427 // Check whether the array size is negative.
6428 if (Res.isSigned() && Res.isNegative()) {
6429 SizeIsNegative = true;
6430 return QualType();
6433 // Check whether the array is too large to be addressed.
6434 unsigned ActiveSizeBits =
6435 (!ElemTy->isDependentType() && !ElemTy->isVariablyModifiedType() &&
6436 !ElemTy->isIncompleteType() && !ElemTy->isUndeducedType())
6437 ? ConstantArrayType::getNumAddressingBits(Context, ElemTy, Res)
6438 : Res.getActiveBits();
6439 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
6440 Oversized = Res;
6441 return QualType();
6444 QualType FoldedArrayType = Context.getConstantArrayType(
6445 ElemTy, Res, VLATy->getSizeExpr(), ArrayType::Normal, 0);
6446 return Qs.apply(Context, FoldedArrayType);
6449 static void
6450 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
6451 SrcTL = SrcTL.getUnqualifiedLoc();
6452 DstTL = DstTL.getUnqualifiedLoc();
6453 if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
6454 PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
6455 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
6456 DstPTL.getPointeeLoc());
6457 DstPTL.setStarLoc(SrcPTL.getStarLoc());
6458 return;
6460 if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
6461 ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
6462 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
6463 DstPTL.getInnerLoc());
6464 DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
6465 DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
6466 return;
6468 ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
6469 ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
6470 TypeLoc SrcElemTL = SrcATL.getElementLoc();
6471 TypeLoc DstElemTL = DstATL.getElementLoc();
6472 if (VariableArrayTypeLoc SrcElemATL =
6473 SrcElemTL.getAs<VariableArrayTypeLoc>()) {
6474 ConstantArrayTypeLoc DstElemATL = DstElemTL.castAs<ConstantArrayTypeLoc>();
6475 FixInvalidVariablyModifiedTypeLoc(SrcElemATL, DstElemATL);
6476 } else {
6477 DstElemTL.initializeFullCopy(SrcElemTL);
6479 DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
6480 DstATL.setSizeExpr(SrcATL.getSizeExpr());
6481 DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
6484 /// Helper method to turn variable array types into constant array
6485 /// types in certain situations which would otherwise be errors (for
6486 /// GCC compatibility).
6487 static TypeSourceInfo*
6488 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
6489 ASTContext &Context,
6490 bool &SizeIsNegative,
6491 llvm::APSInt &Oversized) {
6492 QualType FixedTy
6493 = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
6494 SizeIsNegative, Oversized);
6495 if (FixedTy.isNull())
6496 return nullptr;
6497 TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
6498 FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
6499 FixedTInfo->getTypeLoc());
6500 return FixedTInfo;
6503 /// Attempt to fold a variable-sized type to a constant-sized type, returning
6504 /// true if we were successful.
6505 bool Sema::tryToFixVariablyModifiedVarType(TypeSourceInfo *&TInfo,
6506 QualType &T, SourceLocation Loc,
6507 unsigned FailedFoldDiagID) {
6508 bool SizeIsNegative;
6509 llvm::APSInt Oversized;
6510 TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
6511 TInfo, Context, SizeIsNegative, Oversized);
6512 if (FixedTInfo) {
6513 Diag(Loc, diag::ext_vla_folded_to_constant);
6514 TInfo = FixedTInfo;
6515 T = FixedTInfo->getType();
6516 return true;
6519 if (SizeIsNegative)
6520 Diag(Loc, diag::err_typecheck_negative_array_size);
6521 else if (Oversized.getBoolValue())
6522 Diag(Loc, diag::err_array_too_large) << toString(Oversized, 10);
6523 else if (FailedFoldDiagID)
6524 Diag(Loc, FailedFoldDiagID);
6525 return false;
6528 /// Register the given locally-scoped extern "C" declaration so
6529 /// that it can be found later for redeclarations. We include any extern "C"
6530 /// declaration that is not visible in the translation unit here, not just
6531 /// function-scope declarations.
6532 void
6533 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
6534 if (!getLangOpts().CPlusPlus &&
6535 ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
6536 // Don't need to track declarations in the TU in C.
6537 return;
6539 // Note that we have a locally-scoped external with this name.
6540 Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
6543 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
6544 // FIXME: We can have multiple results via __attribute__((overloadable)).
6545 auto Result = Context.getExternCContextDecl()->lookup(Name);
6546 return Result.empty() ? nullptr : *Result.begin();
6549 /// Diagnose function specifiers on a declaration of an identifier that
6550 /// does not identify a function.
6551 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
6552 // FIXME: We should probably indicate the identifier in question to avoid
6553 // confusion for constructs like "virtual int a(), b;"
6554 if (DS.isVirtualSpecified())
6555 Diag(DS.getVirtualSpecLoc(),
6556 diag::err_virtual_non_function);
6558 if (DS.hasExplicitSpecifier())
6559 Diag(DS.getExplicitSpecLoc(),
6560 diag::err_explicit_non_function);
6562 if (DS.isNoreturnSpecified())
6563 Diag(DS.getNoreturnSpecLoc(),
6564 diag::err_noreturn_non_function);
6567 NamedDecl*
6568 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
6569 TypeSourceInfo *TInfo, LookupResult &Previous) {
6570 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
6571 if (D.getCXXScopeSpec().isSet()) {
6572 Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
6573 << D.getCXXScopeSpec().getRange();
6574 D.setInvalidType();
6575 // Pretend we didn't see the scope specifier.
6576 DC = CurContext;
6577 Previous.clear();
6580 DiagnoseFunctionSpecifiers(D.getDeclSpec());
6582 if (D.getDeclSpec().isInlineSpecified())
6583 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
6584 << getLangOpts().CPlusPlus17;
6585 if (D.getDeclSpec().hasConstexprSpecifier())
6586 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6587 << 1 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
6589 if (D.getName().getKind() != UnqualifiedIdKind::IK_Identifier) {
6590 if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName)
6591 Diag(D.getName().StartLocation,
6592 diag::err_deduction_guide_invalid_specifier)
6593 << "typedef";
6594 else
6595 Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
6596 << D.getName().getSourceRange();
6597 return nullptr;
6600 TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
6601 if (!NewTD) return nullptr;
6603 // Handle attributes prior to checking for duplicates in MergeVarDecl
6604 ProcessDeclAttributes(S, NewTD, D);
6606 CheckTypedefForVariablyModifiedType(S, NewTD);
6608 bool Redeclaration = D.isRedeclaration();
6609 NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
6610 D.setRedeclaration(Redeclaration);
6611 return ND;
6614 void
6615 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
6616 // C99 6.7.7p2: If a typedef name specifies a variably modified type
6617 // then it shall have block scope.
6618 // Note that variably modified types must be fixed before merging the decl so
6619 // that redeclarations will match.
6620 TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
6621 QualType T = TInfo->getType();
6622 if (T->isVariablyModifiedType()) {
6623 setFunctionHasBranchProtectedScope();
6625 if (S->getFnParent() == nullptr) {
6626 bool SizeIsNegative;
6627 llvm::APSInt Oversized;
6628 TypeSourceInfo *FixedTInfo =
6629 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
6630 SizeIsNegative,
6631 Oversized);
6632 if (FixedTInfo) {
6633 Diag(NewTD->getLocation(), diag::ext_vla_folded_to_constant);
6634 NewTD->setTypeSourceInfo(FixedTInfo);
6635 } else {
6636 if (SizeIsNegative)
6637 Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
6638 else if (T->isVariableArrayType())
6639 Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
6640 else if (Oversized.getBoolValue())
6641 Diag(NewTD->getLocation(), diag::err_array_too_large)
6642 << toString(Oversized, 10);
6643 else
6644 Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
6645 NewTD->setInvalidDecl();
6651 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
6652 /// declares a typedef-name, either using the 'typedef' type specifier or via
6653 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
6654 NamedDecl*
6655 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
6656 LookupResult &Previous, bool &Redeclaration) {
6658 // Find the shadowed declaration before filtering for scope.
6659 NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);
6661 // Merge the decl with the existing one if appropriate. If the decl is
6662 // in an outer scope, it isn't the same thing.
6663 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
6664 /*AllowInlineNamespace*/false);
6665 filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
6666 if (!Previous.empty()) {
6667 Redeclaration = true;
6668 MergeTypedefNameDecl(S, NewTD, Previous);
6669 } else {
6670 inferGslPointerAttribute(NewTD);
6673 if (ShadowedDecl && !Redeclaration)
6674 CheckShadow(NewTD, ShadowedDecl, Previous);
6676 // If this is the C FILE type, notify the AST context.
6677 if (IdentifierInfo *II = NewTD->getIdentifier())
6678 if (!NewTD->isInvalidDecl() &&
6679 NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6680 if (II->isStr("FILE"))
6681 Context.setFILEDecl(NewTD);
6682 else if (II->isStr("jmp_buf"))
6683 Context.setjmp_bufDecl(NewTD);
6684 else if (II->isStr("sigjmp_buf"))
6685 Context.setsigjmp_bufDecl(NewTD);
6686 else if (II->isStr("ucontext_t"))
6687 Context.setucontext_tDecl(NewTD);
6690 return NewTD;
6693 /// Determines whether the given declaration is an out-of-scope
6694 /// previous declaration.
6696 /// This routine should be invoked when name lookup has found a
6697 /// previous declaration (PrevDecl) that is not in the scope where a
6698 /// new declaration by the same name is being introduced. If the new
6699 /// declaration occurs in a local scope, previous declarations with
6700 /// linkage may still be considered previous declarations (C99
6701 /// 6.2.2p4-5, C++ [basic.link]p6).
6703 /// \param PrevDecl the previous declaration found by name
6704 /// lookup
6706 /// \param DC the context in which the new declaration is being
6707 /// declared.
6709 /// \returns true if PrevDecl is an out-of-scope previous declaration
6710 /// for a new delcaration with the same name.
6711 static bool
6712 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
6713 ASTContext &Context) {
6714 if (!PrevDecl)
6715 return false;
6717 if (!PrevDecl->hasLinkage())
6718 return false;
6720 if (Context.getLangOpts().CPlusPlus) {
6721 // C++ [basic.link]p6:
6722 // If there is a visible declaration of an entity with linkage
6723 // having the same name and type, ignoring entities declared
6724 // outside the innermost enclosing namespace scope, the block
6725 // scope declaration declares that same entity and receives the
6726 // linkage of the previous declaration.
6727 DeclContext *OuterContext = DC->getRedeclContext();
6728 if (!OuterContext->isFunctionOrMethod())
6729 // This rule only applies to block-scope declarations.
6730 return false;
6732 DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
6733 if (PrevOuterContext->isRecord())
6734 // We found a member function: ignore it.
6735 return false;
6737 // Find the innermost enclosing namespace for the new and
6738 // previous declarations.
6739 OuterContext = OuterContext->getEnclosingNamespaceContext();
6740 PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
6742 // The previous declaration is in a different namespace, so it
6743 // isn't the same function.
6744 if (!OuterContext->Equals(PrevOuterContext))
6745 return false;
6748 return true;
6751 static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) {
6752 CXXScopeSpec &SS = D.getCXXScopeSpec();
6753 if (!SS.isSet()) return;
6754 DD->setQualifierInfo(SS.getWithLocInContext(S.Context));
6757 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
6758 QualType type = decl->getType();
6759 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
6760 if (lifetime == Qualifiers::OCL_Autoreleasing) {
6761 // Various kinds of declaration aren't allowed to be __autoreleasing.
6762 unsigned kind = -1U;
6763 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
6764 if (var->hasAttr<BlocksAttr>())
6765 kind = 0; // __block
6766 else if (!var->hasLocalStorage())
6767 kind = 1; // global
6768 } else if (isa<ObjCIvarDecl>(decl)) {
6769 kind = 3; // ivar
6770 } else if (isa<FieldDecl>(decl)) {
6771 kind = 2; // field
6774 if (kind != -1U) {
6775 Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
6776 << kind;
6778 } else if (lifetime == Qualifiers::OCL_None) {
6779 // Try to infer lifetime.
6780 if (!type->isObjCLifetimeType())
6781 return false;
6783 lifetime = type->getObjCARCImplicitLifetime();
6784 type = Context.getLifetimeQualifiedType(type, lifetime);
6785 decl->setType(type);
6788 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
6789 // Thread-local variables cannot have lifetime.
6790 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
6791 var->getTLSKind()) {
6792 Diag(var->getLocation(), diag::err_arc_thread_ownership)
6793 << var->getType();
6794 return true;
6798 return false;
6801 void Sema::deduceOpenCLAddressSpace(ValueDecl *Decl) {
6802 if (Decl->getType().hasAddressSpace())
6803 return;
6804 if (Decl->getType()->isDependentType())
6805 return;
6806 if (VarDecl *Var = dyn_cast<VarDecl>(Decl)) {
6807 QualType Type = Var->getType();
6808 if (Type->isSamplerT() || Type->isVoidType())
6809 return;
6810 LangAS ImplAS = LangAS::opencl_private;
6811 // OpenCL C v3.0 s6.7.8 - For OpenCL C 2.0 or with the
6812 // __opencl_c_program_scope_global_variables feature, the address space
6813 // for a variable at program scope or a static or extern variable inside
6814 // a function are inferred to be __global.
6815 if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()) &&
6816 Var->hasGlobalStorage())
6817 ImplAS = LangAS::opencl_global;
6818 // If the original type from a decayed type is an array type and that array
6819 // type has no address space yet, deduce it now.
6820 if (auto DT = dyn_cast<DecayedType>(Type)) {
6821 auto OrigTy = DT->getOriginalType();
6822 if (!OrigTy.hasAddressSpace() && OrigTy->isArrayType()) {
6823 // Add the address space to the original array type and then propagate
6824 // that to the element type through `getAsArrayType`.
6825 OrigTy = Context.getAddrSpaceQualType(OrigTy, ImplAS);
6826 OrigTy = QualType(Context.getAsArrayType(OrigTy), 0);
6827 // Re-generate the decayed type.
6828 Type = Context.getDecayedType(OrigTy);
6831 Type = Context.getAddrSpaceQualType(Type, ImplAS);
6832 // Apply any qualifiers (including address space) from the array type to
6833 // the element type. This implements C99 6.7.3p8: "If the specification of
6834 // an array type includes any type qualifiers, the element type is so
6835 // qualified, not the array type."
6836 if (Type->isArrayType())
6837 Type = QualType(Context.getAsArrayType(Type), 0);
6838 Decl->setType(Type);
6842 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
6843 // Ensure that an auto decl is deduced otherwise the checks below might cache
6844 // the wrong linkage.
6845 assert(S.ParsingInitForAutoVars.count(&ND) == 0);
6847 // 'weak' only applies to declarations with external linkage.
6848 if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
6849 if (!ND.isExternallyVisible()) {
6850 S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
6851 ND.dropAttr<WeakAttr>();
6854 if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
6855 if (ND.isExternallyVisible()) {
6856 S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
6857 ND.dropAttr<WeakRefAttr>();
6858 ND.dropAttr<AliasAttr>();
6862 if (auto *VD = dyn_cast<VarDecl>(&ND)) {
6863 if (VD->hasInit()) {
6864 if (const auto *Attr = VD->getAttr<AliasAttr>()) {
6865 assert(VD->isThisDeclarationADefinition() &&
6866 !VD->isExternallyVisible() && "Broken AliasAttr handled late!");
6867 S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
6868 VD->dropAttr<AliasAttr>();
6873 // 'selectany' only applies to externally visible variable declarations.
6874 // It does not apply to functions.
6875 if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
6876 if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
6877 S.Diag(Attr->getLocation(),
6878 diag::err_attribute_selectany_non_extern_data);
6879 ND.dropAttr<SelectAnyAttr>();
6883 if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
6884 auto *VD = dyn_cast<VarDecl>(&ND);
6885 bool IsAnonymousNS = false;
6886 bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
6887 if (VD) {
6888 const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext());
6889 while (NS && !IsAnonymousNS) {
6890 IsAnonymousNS = NS->isAnonymousNamespace();
6891 NS = dyn_cast<NamespaceDecl>(NS->getParent());
6894 // dll attributes require external linkage. Static locals may have external
6895 // linkage but still cannot be explicitly imported or exported.
6896 // In Microsoft mode, a variable defined in anonymous namespace must have
6897 // external linkage in order to be exported.
6898 bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft;
6899 if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) ||
6900 (!AnonNSInMicrosoftMode &&
6901 (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) {
6902 S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
6903 << &ND << Attr;
6904 ND.setInvalidDecl();
6908 // Check the attributes on the function type, if any.
6909 if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) {
6910 // Don't declare this variable in the second operand of the for-statement;
6911 // GCC miscompiles that by ending its lifetime before evaluating the
6912 // third operand. See gcc.gnu.org/PR86769.
6913 AttributedTypeLoc ATL;
6914 for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc();
6915 (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6916 TL = ATL.getModifiedLoc()) {
6917 // The [[lifetimebound]] attribute can be applied to the implicit object
6918 // parameter of a non-static member function (other than a ctor or dtor)
6919 // by applying it to the function type.
6920 if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) {
6921 const auto *MD = dyn_cast<CXXMethodDecl>(FD);
6922 if (!MD || MD->isStatic()) {
6923 S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param)
6924 << !MD << A->getRange();
6925 } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) {
6926 S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor)
6927 << isa<CXXDestructorDecl>(MD) << A->getRange();
6934 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
6935 NamedDecl *NewDecl,
6936 bool IsSpecialization,
6937 bool IsDefinition) {
6938 if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
6939 return;
6941 bool IsTemplate = false;
6942 if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
6943 OldDecl = OldTD->getTemplatedDecl();
6944 IsTemplate = true;
6945 if (!IsSpecialization)
6946 IsDefinition = false;
6948 if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
6949 NewDecl = NewTD->getTemplatedDecl();
6950 IsTemplate = true;
6953 if (!OldDecl || !NewDecl)
6954 return;
6956 const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
6957 const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
6958 const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
6959 const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
6961 // dllimport and dllexport are inheritable attributes so we have to exclude
6962 // inherited attribute instances.
6963 bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
6964 (NewExportAttr && !NewExportAttr->isInherited());
6966 // A redeclaration is not allowed to add a dllimport or dllexport attribute,
6967 // the only exception being explicit specializations.
6968 // Implicitly generated declarations are also excluded for now because there
6969 // is no other way to switch these to use dllimport or dllexport.
6970 bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
6972 if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
6973 // Allow with a warning for free functions and global variables.
6974 bool JustWarn = false;
6975 if (!OldDecl->isCXXClassMember()) {
6976 auto *VD = dyn_cast<VarDecl>(OldDecl);
6977 if (VD && !VD->getDescribedVarTemplate())
6978 JustWarn = true;
6979 auto *FD = dyn_cast<FunctionDecl>(OldDecl);
6980 if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
6981 JustWarn = true;
6984 // We cannot change a declaration that's been used because IR has already
6985 // been emitted. Dllimported functions will still work though (modulo
6986 // address equality) as they can use the thunk.
6987 if (OldDecl->isUsed())
6988 if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
6989 JustWarn = false;
6991 unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
6992 : diag::err_attribute_dll_redeclaration;
6993 S.Diag(NewDecl->getLocation(), DiagID)
6994 << NewDecl
6995 << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
6996 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6997 if (!JustWarn) {
6998 NewDecl->setInvalidDecl();
6999 return;
7003 // A redeclaration is not allowed to drop a dllimport attribute, the only
7004 // exceptions being inline function definitions (except for function
7005 // templates), local extern declarations, qualified friend declarations or
7006 // special MSVC extension: in the last case, the declaration is treated as if
7007 // it were marked dllexport.
7008 bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
7009 bool IsMicrosoftABI = S.Context.getTargetInfo().shouldDLLImportComdatSymbols();
7010 if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {
7011 // Ignore static data because out-of-line definitions are diagnosed
7012 // separately.
7013 IsStaticDataMember = VD->isStaticDataMember();
7014 IsDefinition = VD->isThisDeclarationADefinition(S.Context) !=
7015 VarDecl::DeclarationOnly;
7016 } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
7017 IsInline = FD->isInlined();
7018 IsQualifiedFriend = FD->getQualifier() &&
7019 FD->getFriendObjectKind() == Decl::FOK_Declared;
7022 if (OldImportAttr && !HasNewAttr &&
7023 (!IsInline || (IsMicrosoftABI && IsTemplate)) && !IsStaticDataMember &&
7024 !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
7025 if (IsMicrosoftABI && IsDefinition) {
7026 S.Diag(NewDecl->getLocation(),
7027 diag::warn_redeclaration_without_import_attribute)
7028 << NewDecl;
7029 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
7030 NewDecl->dropAttr<DLLImportAttr>();
7031 NewDecl->addAttr(
7032 DLLExportAttr::CreateImplicit(S.Context, NewImportAttr->getRange()));
7033 } else {
7034 S.Diag(NewDecl->getLocation(),
7035 diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7036 << NewDecl << OldImportAttr;
7037 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
7038 S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
7039 OldDecl->dropAttr<DLLImportAttr>();
7040 NewDecl->dropAttr<DLLImportAttr>();
7042 } else if (IsInline && OldImportAttr && !IsMicrosoftABI) {
7043 // In MinGW, seeing a function declared inline drops the dllimport
7044 // attribute.
7045 OldDecl->dropAttr<DLLImportAttr>();
7046 NewDecl->dropAttr<DLLImportAttr>();
7047 S.Diag(NewDecl->getLocation(),
7048 diag::warn_dllimport_dropped_from_inline_function)
7049 << NewDecl << OldImportAttr;
7052 // A specialization of a class template member function is processed here
7053 // since it's a redeclaration. If the parent class is dllexport, the
7054 // specialization inherits that attribute. This doesn't happen automatically
7055 // since the parent class isn't instantiated until later.
7056 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) {
7057 if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization &&
7058 !NewImportAttr && !NewExportAttr) {
7059 if (const DLLExportAttr *ParentExportAttr =
7060 MD->getParent()->getAttr<DLLExportAttr>()) {
7061 DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context);
7062 NewAttr->setInherited(true);
7063 NewDecl->addAttr(NewAttr);
7069 /// Given that we are within the definition of the given function,
7070 /// will that definition behave like C99's 'inline', where the
7071 /// definition is discarded except for optimization purposes?
7072 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
7073 // Try to avoid calling GetGVALinkageForFunction.
7075 // All cases of this require the 'inline' keyword.
7076 if (!FD->isInlined()) return false;
7078 // This is only possible in C++ with the gnu_inline attribute.
7079 if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
7080 return false;
7082 // Okay, go ahead and call the relatively-more-expensive function.
7083 return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
7086 /// Determine whether a variable is extern "C" prior to attaching
7087 /// an initializer. We can't just call isExternC() here, because that
7088 /// will also compute and cache whether the declaration is externally
7089 /// visible, which might change when we attach the initializer.
7091 /// This can only be used if the declaration is known to not be a
7092 /// redeclaration of an internal linkage declaration.
7094 /// For instance:
7096 /// auto x = []{};
7098 /// Attaching the initializer here makes this declaration not externally
7099 /// visible, because its type has internal linkage.
7101 /// FIXME: This is a hack.
7102 template<typename T>
7103 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
7104 if (S.getLangOpts().CPlusPlus) {
7105 // In C++, the overloadable attribute negates the effects of extern "C".
7106 if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
7107 return false;
7109 // So do CUDA's host/device attributes.
7110 if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() ||
7111 D->template hasAttr<CUDAHostAttr>()))
7112 return false;
7114 return D->isExternC();
7117 static bool shouldConsiderLinkage(const VarDecl *VD) {
7118 const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
7119 if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) ||
7120 isa<OMPDeclareMapperDecl>(DC))
7121 return VD->hasExternalStorage();
7122 if (DC->isFileContext())
7123 return true;
7124 if (DC->isRecord())
7125 return false;
7126 if (isa<RequiresExprBodyDecl>(DC))
7127 return false;
7128 llvm_unreachable("Unexpected context");
7131 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
7132 const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
7133 if (DC->isFileContext() || DC->isFunctionOrMethod() ||
7134 isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC))
7135 return true;
7136 if (DC->isRecord())
7137 return false;
7138 llvm_unreachable("Unexpected context");
7141 static bool hasParsedAttr(Scope *S, const Declarator &PD,
7142 ParsedAttr::Kind Kind) {
7143 // Check decl attributes on the DeclSpec.
7144 if (PD.getDeclSpec().getAttributes().hasAttribute(Kind))
7145 return true;
7147 // Walk the declarator structure, checking decl attributes that were in a type
7148 // position to the decl itself.
7149 for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
7150 if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind))
7151 return true;
7154 // Finally, check attributes on the decl itself.
7155 return PD.getAttributes().hasAttribute(Kind) ||
7156 PD.getDeclarationAttributes().hasAttribute(Kind);
7159 /// Adjust the \c DeclContext for a function or variable that might be a
7160 /// function-local external declaration.
7161 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
7162 if (!DC->isFunctionOrMethod())
7163 return false;
7165 // If this is a local extern function or variable declared within a function
7166 // template, don't add it into the enclosing namespace scope until it is
7167 // instantiated; it might have a dependent type right now.
7168 if (DC->isDependentContext())
7169 return true;
7171 // C++11 [basic.link]p7:
7172 // When a block scope declaration of an entity with linkage is not found to
7173 // refer to some other declaration, then that entity is a member of the
7174 // innermost enclosing namespace.
7176 // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
7177 // semantically-enclosing namespace, not a lexically-enclosing one.
7178 while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
7179 DC = DC->getParent();
7180 return true;
7183 /// Returns true if given declaration has external C language linkage.
7184 static bool isDeclExternC(const Decl *D) {
7185 if (const auto *FD = dyn_cast<FunctionDecl>(D))
7186 return FD->isExternC();
7187 if (const auto *VD = dyn_cast<VarDecl>(D))
7188 return VD->isExternC();
7190 llvm_unreachable("Unknown type of decl!");
7193 /// Returns true if there hasn't been any invalid type diagnosed.
7194 static bool diagnoseOpenCLTypes(Sema &Se, VarDecl *NewVD) {
7195 DeclContext *DC = NewVD->getDeclContext();
7196 QualType R = NewVD->getType();
7198 // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
7199 // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
7200 // argument.
7201 if (R->isImageType() || R->isPipeType()) {
7202 Se.Diag(NewVD->getLocation(),
7203 diag::err_opencl_type_can_only_be_used_as_function_parameter)
7204 << R;
7205 NewVD->setInvalidDecl();
7206 return false;
7209 // OpenCL v1.2 s6.9.r:
7210 // The event type cannot be used to declare a program scope variable.
7211 // OpenCL v2.0 s6.9.q:
7212 // The clk_event_t and reserve_id_t types cannot be declared in program
7213 // scope.
7214 if (NewVD->hasGlobalStorage() && !NewVD->isStaticLocal()) {
7215 if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) {
7216 Se.Diag(NewVD->getLocation(),
7217 diag::err_invalid_type_for_program_scope_var)
7218 << R;
7219 NewVD->setInvalidDecl();
7220 return false;
7224 // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
7225 if (!Se.getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
7226 Se.getLangOpts())) {
7227 QualType NR = R.getCanonicalType();
7228 while (NR->isPointerType() || NR->isMemberFunctionPointerType() ||
7229 NR->isReferenceType()) {
7230 if (NR->isFunctionPointerType() || NR->isMemberFunctionPointerType() ||
7231 NR->isFunctionReferenceType()) {
7232 Se.Diag(NewVD->getLocation(), diag::err_opencl_function_pointer)
7233 << NR->isReferenceType();
7234 NewVD->setInvalidDecl();
7235 return false;
7237 NR = NR->getPointeeType();
7241 if (!Se.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
7242 Se.getLangOpts())) {
7243 // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
7244 // half array type (unless the cl_khr_fp16 extension is enabled).
7245 if (Se.Context.getBaseElementType(R)->isHalfType()) {
7246 Se.Diag(NewVD->getLocation(), diag::err_opencl_half_declaration) << R;
7247 NewVD->setInvalidDecl();
7248 return false;
7252 // OpenCL v1.2 s6.9.r:
7253 // The event type cannot be used with the __local, __constant and __global
7254 // address space qualifiers.
7255 if (R->isEventT()) {
7256 if (R.getAddressSpace() != LangAS::opencl_private) {
7257 Se.Diag(NewVD->getBeginLoc(), diag::err_event_t_addr_space_qual);
7258 NewVD->setInvalidDecl();
7259 return false;
7263 if (R->isSamplerT()) {
7264 // OpenCL v1.2 s6.9.b p4:
7265 // The sampler type cannot be used with the __local and __global address
7266 // space qualifiers.
7267 if (R.getAddressSpace() == LangAS::opencl_local ||
7268 R.getAddressSpace() == LangAS::opencl_global) {
7269 Se.Diag(NewVD->getLocation(), diag::err_wrong_sampler_addressspace);
7270 NewVD->setInvalidDecl();
7273 // OpenCL v1.2 s6.12.14.1:
7274 // A global sampler must be declared with either the constant address
7275 // space qualifier or with the const qualifier.
7276 if (DC->isTranslationUnit() &&
7277 !(R.getAddressSpace() == LangAS::opencl_constant ||
7278 R.isConstQualified())) {
7279 Se.Diag(NewVD->getLocation(), diag::err_opencl_nonconst_global_sampler);
7280 NewVD->setInvalidDecl();
7282 if (NewVD->isInvalidDecl())
7283 return false;
7286 return true;
7289 template <typename AttrTy>
7290 static void copyAttrFromTypedefToDecl(Sema &S, Decl *D, const TypedefType *TT) {
7291 const TypedefNameDecl *TND = TT->getDecl();
7292 if (const auto *Attribute = TND->getAttr<AttrTy>()) {
7293 AttrTy *Clone = Attribute->clone(S.Context);
7294 Clone->setInherited(true);
7295 D->addAttr(Clone);
7299 NamedDecl *Sema::ActOnVariableDeclarator(
7300 Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
7301 LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
7302 bool &AddToScope, ArrayRef<BindingDecl *> Bindings) {
7303 QualType R = TInfo->getType();
7304 DeclarationName Name = GetNameForDeclarator(D).getName();
7306 IdentifierInfo *II = Name.getAsIdentifierInfo();
7308 if (D.isDecompositionDeclarator()) {
7309 // Take the name of the first declarator as our name for diagnostic
7310 // purposes.
7311 auto &Decomp = D.getDecompositionDeclarator();
7312 if (!Decomp.bindings().empty()) {
7313 II = Decomp.bindings()[0].Name;
7314 Name = II;
7316 } else if (!II) {
7317 Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name;
7318 return nullptr;
7322 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
7323 StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
7325 // dllimport globals without explicit storage class are treated as extern. We
7326 // have to change the storage class this early to get the right DeclContext.
7327 if (SC == SC_None && !DC->isRecord() &&
7328 hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) &&
7329 !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport))
7330 SC = SC_Extern;
7332 DeclContext *OriginalDC = DC;
7333 bool IsLocalExternDecl = SC == SC_Extern &&
7334 adjustContextForLocalExternDecl(DC);
7336 if (SCSpec == DeclSpec::SCS_mutable) {
7337 // mutable can only appear on non-static class members, so it's always
7338 // an error here
7339 Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
7340 D.setInvalidType();
7341 SC = SC_None;
7344 if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
7345 !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
7346 D.getDeclSpec().getStorageClassSpecLoc())) {
7347 // In C++11, the 'register' storage class specifier is deprecated.
7348 // Suppress the warning in system macros, it's used in macros in some
7349 // popular C system headers, such as in glibc's htonl() macro.
7350 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7351 getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
7352 : diag::warn_deprecated_register)
7353 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7356 DiagnoseFunctionSpecifiers(D.getDeclSpec());
7358 if (!DC->isRecord() && S->getFnParent() == nullptr) {
7359 // C99 6.9p2: The storage-class specifiers auto and register shall not
7360 // appear in the declaration specifiers in an external declaration.
7361 // Global Register+Asm is a GNU extension we support.
7362 if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
7363 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
7364 D.setInvalidType();
7368 // If this variable has a VLA type and an initializer, try to
7369 // fold to a constant-sized type. This is otherwise invalid.
7370 if (D.hasInitializer() && R->isVariableArrayType())
7371 tryToFixVariablyModifiedVarType(TInfo, R, D.getIdentifierLoc(),
7372 /*DiagID=*/0);
7374 bool IsMemberSpecialization = false;
7375 bool IsVariableTemplateSpecialization = false;
7376 bool IsPartialSpecialization = false;
7377 bool IsVariableTemplate = false;
7378 VarDecl *NewVD = nullptr;
7379 VarTemplateDecl *NewTemplate = nullptr;
7380 TemplateParameterList *TemplateParams = nullptr;
7381 if (!getLangOpts().CPlusPlus) {
7382 NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(),
7383 II, R, TInfo, SC);
7385 if (R->getContainedDeducedType())
7386 ParsingInitForAutoVars.insert(NewVD);
7388 if (D.isInvalidType())
7389 NewVD->setInvalidDecl();
7391 if (NewVD->getType().hasNonTrivialToPrimitiveDestructCUnion() &&
7392 NewVD->hasLocalStorage())
7393 checkNonTrivialCUnion(NewVD->getType(), NewVD->getLocation(),
7394 NTCUC_AutoVar, NTCUK_Destruct);
7395 } else {
7396 bool Invalid = false;
7398 if (DC->isRecord() && !CurContext->isRecord()) {
7399 // This is an out-of-line definition of a static data member.
7400 switch (SC) {
7401 case SC_None:
7402 break;
7403 case SC_Static:
7404 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7405 diag::err_static_out_of_line)
7406 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7407 break;
7408 case SC_Auto:
7409 case SC_Register:
7410 case SC_Extern:
7411 // [dcl.stc] p2: The auto or register specifiers shall be applied only
7412 // to names of variables declared in a block or to function parameters.
7413 // [dcl.stc] p6: The extern specifier cannot be used in the declaration
7414 // of class members
7416 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7417 diag::err_storage_class_for_static_member)
7418 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7419 break;
7420 case SC_PrivateExtern:
7421 llvm_unreachable("C storage class in c++!");
7425 if (SC == SC_Static && CurContext->isRecord()) {
7426 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
7427 // Walk up the enclosing DeclContexts to check for any that are
7428 // incompatible with static data members.
7429 const DeclContext *FunctionOrMethod = nullptr;
7430 const CXXRecordDecl *AnonStruct = nullptr;
7431 for (DeclContext *Ctxt = DC; Ctxt; Ctxt = Ctxt->getParent()) {
7432 if (Ctxt->isFunctionOrMethod()) {
7433 FunctionOrMethod = Ctxt;
7434 break;
7436 const CXXRecordDecl *ParentDecl = dyn_cast<CXXRecordDecl>(Ctxt);
7437 if (ParentDecl && !ParentDecl->getDeclName()) {
7438 AnonStruct = ParentDecl;
7439 break;
7442 if (FunctionOrMethod) {
7443 // C++ [class.static.data]p5: A local class shall not have static data
7444 // members.
7445 Diag(D.getIdentifierLoc(),
7446 diag::err_static_data_member_not_allowed_in_local_class)
7447 << Name << RD->getDeclName() << RD->getTagKind();
7448 } else if (AnonStruct) {
7449 // C++ [class.static.data]p4: Unnamed classes and classes contained
7450 // directly or indirectly within unnamed classes shall not contain
7451 // static data members.
7452 Diag(D.getIdentifierLoc(),
7453 diag::err_static_data_member_not_allowed_in_anon_struct)
7454 << Name << AnonStruct->getTagKind();
7455 Invalid = true;
7456 } else if (RD->isUnion()) {
7457 // C++98 [class.union]p1: If a union contains a static data member,
7458 // the program is ill-formed. C++11 drops this restriction.
7459 Diag(D.getIdentifierLoc(),
7460 getLangOpts().CPlusPlus11
7461 ? diag::warn_cxx98_compat_static_data_member_in_union
7462 : diag::ext_static_data_member_in_union) << Name;
7467 // Match up the template parameter lists with the scope specifier, then
7468 // determine whether we have a template or a template specialization.
7469 bool InvalidScope = false;
7470 TemplateParams = MatchTemplateParametersToScopeSpecifier(
7471 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
7472 D.getCXXScopeSpec(),
7473 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
7474 ? D.getName().TemplateId
7475 : nullptr,
7476 TemplateParamLists,
7477 /*never a friend*/ false, IsMemberSpecialization, InvalidScope);
7478 Invalid |= InvalidScope;
7480 if (TemplateParams) {
7481 if (!TemplateParams->size() &&
7482 D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
7483 // There is an extraneous 'template<>' for this variable. Complain
7484 // about it, but allow the declaration of the variable.
7485 Diag(TemplateParams->getTemplateLoc(),
7486 diag::err_template_variable_noparams)
7487 << II
7488 << SourceRange(TemplateParams->getTemplateLoc(),
7489 TemplateParams->getRAngleLoc());
7490 TemplateParams = nullptr;
7491 } else {
7492 // Check that we can declare a template here.
7493 if (CheckTemplateDeclScope(S, TemplateParams))
7494 return nullptr;
7496 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
7497 // This is an explicit specialization or a partial specialization.
7498 IsVariableTemplateSpecialization = true;
7499 IsPartialSpecialization = TemplateParams->size() > 0;
7500 } else { // if (TemplateParams->size() > 0)
7501 // This is a template declaration.
7502 IsVariableTemplate = true;
7504 // Only C++1y supports variable templates (N3651).
7505 Diag(D.getIdentifierLoc(),
7506 getLangOpts().CPlusPlus14
7507 ? diag::warn_cxx11_compat_variable_template
7508 : diag::ext_variable_template);
7511 } else {
7512 // Check that we can declare a member specialization here.
7513 if (!TemplateParamLists.empty() && IsMemberSpecialization &&
7514 CheckTemplateDeclScope(S, TemplateParamLists.back()))
7515 return nullptr;
7516 assert((Invalid ||
7517 D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) &&
7518 "should have a 'template<>' for this decl");
7521 if (IsVariableTemplateSpecialization) {
7522 SourceLocation TemplateKWLoc =
7523 TemplateParamLists.size() > 0
7524 ? TemplateParamLists[0]->getTemplateLoc()
7525 : SourceLocation();
7526 DeclResult Res = ActOnVarTemplateSpecialization(
7527 S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
7528 IsPartialSpecialization);
7529 if (Res.isInvalid())
7530 return nullptr;
7531 NewVD = cast<VarDecl>(Res.get());
7532 AddToScope = false;
7533 } else if (D.isDecompositionDeclarator()) {
7534 NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(),
7535 D.getIdentifierLoc(), R, TInfo, SC,
7536 Bindings);
7537 } else
7538 NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(),
7539 D.getIdentifierLoc(), II, R, TInfo, SC);
7541 // If this is supposed to be a variable template, create it as such.
7542 if (IsVariableTemplate) {
7543 NewTemplate =
7544 VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
7545 TemplateParams, NewVD);
7546 NewVD->setDescribedVarTemplate(NewTemplate);
7549 // If this decl has an auto type in need of deduction, make a note of the
7550 // Decl so we can diagnose uses of it in its own initializer.
7551 if (R->getContainedDeducedType())
7552 ParsingInitForAutoVars.insert(NewVD);
7554 if (D.isInvalidType() || Invalid) {
7555 NewVD->setInvalidDecl();
7556 if (NewTemplate)
7557 NewTemplate->setInvalidDecl();
7560 SetNestedNameSpecifier(*this, NewVD, D);
7562 // If we have any template parameter lists that don't directly belong to
7563 // the variable (matching the scope specifier), store them.
7564 unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
7565 if (TemplateParamLists.size() > VDTemplateParamLists)
7566 NewVD->setTemplateParameterListsInfo(
7567 Context, TemplateParamLists.drop_back(VDTemplateParamLists));
7570 if (D.getDeclSpec().isInlineSpecified()) {
7571 if (!getLangOpts().CPlusPlus) {
7572 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
7573 << 0;
7574 } else if (CurContext->isFunctionOrMethod()) {
7575 // 'inline' is not allowed on block scope variable declaration.
7576 Diag(D.getDeclSpec().getInlineSpecLoc(),
7577 diag::err_inline_declaration_block_scope) << Name
7578 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7579 } else {
7580 Diag(D.getDeclSpec().getInlineSpecLoc(),
7581 getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable
7582 : diag::ext_inline_variable);
7583 NewVD->setInlineSpecified();
7587 // Set the lexical context. If the declarator has a C++ scope specifier, the
7588 // lexical context will be different from the semantic context.
7589 NewVD->setLexicalDeclContext(CurContext);
7590 if (NewTemplate)
7591 NewTemplate->setLexicalDeclContext(CurContext);
7593 if (IsLocalExternDecl) {
7594 if (D.isDecompositionDeclarator())
7595 for (auto *B : Bindings)
7596 B->setLocalExternDecl();
7597 else
7598 NewVD->setLocalExternDecl();
7601 bool EmitTLSUnsupportedError = false;
7602 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
7603 // C++11 [dcl.stc]p4:
7604 // When thread_local is applied to a variable of block scope the
7605 // storage-class-specifier static is implied if it does not appear
7606 // explicitly.
7607 // Core issue: 'static' is not implied if the variable is declared
7608 // 'extern'.
7609 if (NewVD->hasLocalStorage() &&
7610 (SCSpec != DeclSpec::SCS_unspecified ||
7611 TSCS != DeclSpec::TSCS_thread_local ||
7612 !DC->isFunctionOrMethod()))
7613 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7614 diag::err_thread_non_global)
7615 << DeclSpec::getSpecifierName(TSCS);
7616 else if (!Context.getTargetInfo().isTLSSupported()) {
7617 if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice ||
7618 getLangOpts().SYCLIsDevice) {
7619 // Postpone error emission until we've collected attributes required to
7620 // figure out whether it's a host or device variable and whether the
7621 // error should be ignored.
7622 EmitTLSUnsupportedError = true;
7623 // We still need to mark the variable as TLS so it shows up in AST with
7624 // proper storage class for other tools to use even if we're not going
7625 // to emit any code for it.
7626 NewVD->setTSCSpec(TSCS);
7627 } else
7628 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7629 diag::err_thread_unsupported);
7630 } else
7631 NewVD->setTSCSpec(TSCS);
7634 switch (D.getDeclSpec().getConstexprSpecifier()) {
7635 case ConstexprSpecKind::Unspecified:
7636 break;
7638 case ConstexprSpecKind::Consteval:
7639 Diag(D.getDeclSpec().getConstexprSpecLoc(),
7640 diag::err_constexpr_wrong_decl_kind)
7641 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
7642 [[fallthrough]];
7644 case ConstexprSpecKind::Constexpr:
7645 NewVD->setConstexpr(true);
7646 // C++1z [dcl.spec.constexpr]p1:
7647 // A static data member declared with the constexpr specifier is
7648 // implicitly an inline variable.
7649 if (NewVD->isStaticDataMember() &&
7650 (getLangOpts().CPlusPlus17 ||
7651 Context.getTargetInfo().getCXXABI().isMicrosoft()))
7652 NewVD->setImplicitlyInline();
7653 break;
7655 case ConstexprSpecKind::Constinit:
7656 if (!NewVD->hasGlobalStorage())
7657 Diag(D.getDeclSpec().getConstexprSpecLoc(),
7658 diag::err_constinit_local_variable);
7659 else
7660 NewVD->addAttr(ConstInitAttr::Create(
7661 Context, D.getDeclSpec().getConstexprSpecLoc(),
7662 AttributeCommonInfo::AS_Keyword, ConstInitAttr::Keyword_constinit));
7663 break;
7666 // C99 6.7.4p3
7667 // An inline definition of a function with external linkage shall
7668 // not contain a definition of a modifiable object with static or
7669 // thread storage duration...
7670 // We only apply this when the function is required to be defined
7671 // elsewhere, i.e. when the function is not 'extern inline'. Note
7672 // that a local variable with thread storage duration still has to
7673 // be marked 'static'. Also note that it's possible to get these
7674 // semantics in C++ using __attribute__((gnu_inline)).
7675 if (SC == SC_Static && S->getFnParent() != nullptr &&
7676 !NewVD->getType().isConstQualified()) {
7677 FunctionDecl *CurFD = getCurFunctionDecl();
7678 if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
7679 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7680 diag::warn_static_local_in_extern_inline);
7681 MaybeSuggestAddingStaticToDecl(CurFD);
7685 if (D.getDeclSpec().isModulePrivateSpecified()) {
7686 if (IsVariableTemplateSpecialization)
7687 Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7688 << (IsPartialSpecialization ? 1 : 0)
7689 << FixItHint::CreateRemoval(
7690 D.getDeclSpec().getModulePrivateSpecLoc());
7691 else if (IsMemberSpecialization)
7692 Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7693 << 2
7694 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7695 else if (NewVD->hasLocalStorage())
7696 Diag(NewVD->getLocation(), diag::err_module_private_local)
7697 << 0 << NewVD
7698 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7699 << FixItHint::CreateRemoval(
7700 D.getDeclSpec().getModulePrivateSpecLoc());
7701 else {
7702 NewVD->setModulePrivate();
7703 if (NewTemplate)
7704 NewTemplate->setModulePrivate();
7705 for (auto *B : Bindings)
7706 B->setModulePrivate();
7710 if (getLangOpts().OpenCL) {
7711 deduceOpenCLAddressSpace(NewVD);
7713 DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec();
7714 if (TSC != TSCS_unspecified) {
7715 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7716 diag::err_opencl_unknown_type_specifier)
7717 << getLangOpts().getOpenCLVersionString()
7718 << DeclSpec::getSpecifierName(TSC) << 1;
7719 NewVD->setInvalidDecl();
7723 // Handle attributes prior to checking for duplicates in MergeVarDecl
7724 ProcessDeclAttributes(S, NewVD, D);
7726 // FIXME: This is probably the wrong location to be doing this and we should
7727 // probably be doing this for more attributes (especially for function
7728 // pointer attributes such as format, warn_unused_result, etc.). Ideally
7729 // the code to copy attributes would be generated by TableGen.
7730 if (R->isFunctionPointerType())
7731 if (const auto *TT = R->getAs<TypedefType>())
7732 copyAttrFromTypedefToDecl<AllocSizeAttr>(*this, NewVD, TT);
7734 if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice ||
7735 getLangOpts().SYCLIsDevice) {
7736 if (EmitTLSUnsupportedError &&
7737 ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) ||
7738 (getLangOpts().OpenMPIsDevice &&
7739 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(NewVD))))
7740 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7741 diag::err_thread_unsupported);
7743 if (EmitTLSUnsupportedError &&
7744 (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)))
7745 targetDiag(D.getIdentifierLoc(), diag::err_thread_unsupported);
7746 // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
7747 // storage [duration]."
7748 if (SC == SC_None && S->getFnParent() != nullptr &&
7749 (NewVD->hasAttr<CUDASharedAttr>() ||
7750 NewVD->hasAttr<CUDAConstantAttr>())) {
7751 NewVD->setStorageClass(SC_Static);
7755 // Ensure that dllimport globals without explicit storage class are treated as
7756 // extern. The storage class is set above using parsed attributes. Now we can
7757 // check the VarDecl itself.
7758 assert(!NewVD->hasAttr<DLLImportAttr>() ||
7759 NewVD->getAttr<DLLImportAttr>()->isInherited() ||
7760 NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
7762 // In auto-retain/release, infer strong retension for variables of
7763 // retainable type.
7764 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
7765 NewVD->setInvalidDecl();
7767 // Handle GNU asm-label extension (encoded as an attribute).
7768 if (Expr *E = (Expr*)D.getAsmLabel()) {
7769 // The parser guarantees this is a string.
7770 StringLiteral *SE = cast<StringLiteral>(E);
7771 StringRef Label = SE->getString();
7772 if (S->getFnParent() != nullptr) {
7773 switch (SC) {
7774 case SC_None:
7775 case SC_Auto:
7776 Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
7777 break;
7778 case SC_Register:
7779 // Local Named register
7780 if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
7781 DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
7782 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
7783 break;
7784 case SC_Static:
7785 case SC_Extern:
7786 case SC_PrivateExtern:
7787 break;
7789 } else if (SC == SC_Register) {
7790 // Global Named register
7791 if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
7792 const auto &TI = Context.getTargetInfo();
7793 bool HasSizeMismatch;
7795 if (!TI.isValidGCCRegisterName(Label))
7796 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
7797 else if (!TI.validateGlobalRegisterVariable(Label,
7798 Context.getTypeSize(R),
7799 HasSizeMismatch))
7800 Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
7801 else if (HasSizeMismatch)
7802 Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
7805 if (!R->isIntegralType(Context) && !R->isPointerType()) {
7806 Diag(D.getBeginLoc(), diag::err_asm_bad_register_type);
7807 NewVD->setInvalidDecl(true);
7811 NewVD->addAttr(AsmLabelAttr::Create(Context, Label,
7812 /*IsLiteralLabel=*/true,
7813 SE->getStrTokenLoc(0)));
7814 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
7815 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
7816 ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
7817 if (I != ExtnameUndeclaredIdentifiers.end()) {
7818 if (isDeclExternC(NewVD)) {
7819 NewVD->addAttr(I->second);
7820 ExtnameUndeclaredIdentifiers.erase(I);
7821 } else
7822 Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
7823 << /*Variable*/1 << NewVD;
7827 // Find the shadowed declaration before filtering for scope.
7828 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
7829 ? getShadowedDeclaration(NewVD, Previous)
7830 : nullptr;
7832 // Don't consider existing declarations that are in a different
7833 // scope and are out-of-semantic-context declarations (if the new
7834 // declaration has linkage).
7835 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
7836 D.getCXXScopeSpec().isNotEmpty() ||
7837 IsMemberSpecialization ||
7838 IsVariableTemplateSpecialization);
7840 // Check whether the previous declaration is in the same block scope. This
7841 // affects whether we merge types with it, per C++11 [dcl.array]p3.
7842 if (getLangOpts().CPlusPlus &&
7843 NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
7844 NewVD->setPreviousDeclInSameBlockScope(
7845 Previous.isSingleResult() && !Previous.isShadowed() &&
7846 isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
7848 if (!getLangOpts().CPlusPlus) {
7849 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
7850 } else {
7851 // If this is an explicit specialization of a static data member, check it.
7852 if (IsMemberSpecialization && !NewVD->isInvalidDecl() &&
7853 CheckMemberSpecialization(NewVD, Previous))
7854 NewVD->setInvalidDecl();
7856 // Merge the decl with the existing one if appropriate.
7857 if (!Previous.empty()) {
7858 if (Previous.isSingleResult() &&
7859 isa<FieldDecl>(Previous.getFoundDecl()) &&
7860 D.getCXXScopeSpec().isSet()) {
7861 // The user tried to define a non-static data member
7862 // out-of-line (C++ [dcl.meaning]p1).
7863 Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
7864 << D.getCXXScopeSpec().getRange();
7865 Previous.clear();
7866 NewVD->setInvalidDecl();
7868 } else if (D.getCXXScopeSpec().isSet()) {
7869 // No previous declaration in the qualifying scope.
7870 Diag(D.getIdentifierLoc(), diag::err_no_member)
7871 << Name << computeDeclContext(D.getCXXScopeSpec(), true)
7872 << D.getCXXScopeSpec().getRange();
7873 NewVD->setInvalidDecl();
7876 if (!IsVariableTemplateSpecialization)
7877 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
7879 if (NewTemplate) {
7880 VarTemplateDecl *PrevVarTemplate =
7881 NewVD->getPreviousDecl()
7882 ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
7883 : nullptr;
7885 // Check the template parameter list of this declaration, possibly
7886 // merging in the template parameter list from the previous variable
7887 // template declaration.
7888 if (CheckTemplateParameterList(
7889 TemplateParams,
7890 PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
7891 : nullptr,
7892 (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
7893 DC->isDependentContext())
7894 ? TPC_ClassTemplateMember
7895 : TPC_VarTemplate))
7896 NewVD->setInvalidDecl();
7898 // If we are providing an explicit specialization of a static variable
7899 // template, make a note of that.
7900 if (PrevVarTemplate &&
7901 PrevVarTemplate->getInstantiatedFromMemberTemplate())
7902 PrevVarTemplate->setMemberSpecialization();
7906 // Diagnose shadowed variables iff this isn't a redeclaration.
7907 if (ShadowedDecl && !D.isRedeclaration())
7908 CheckShadow(NewVD, ShadowedDecl, Previous);
7910 ProcessPragmaWeak(S, NewVD);
7912 // If this is the first declaration of an extern C variable, update
7913 // the map of such variables.
7914 if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
7915 isIncompleteDeclExternC(*this, NewVD))
7916 RegisterLocallyScopedExternCDecl(NewVD, S);
7918 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
7919 MangleNumberingContext *MCtx;
7920 Decl *ManglingContextDecl;
7921 std::tie(MCtx, ManglingContextDecl) =
7922 getCurrentMangleNumberContext(NewVD->getDeclContext());
7923 if (MCtx) {
7924 Context.setManglingNumber(
7925 NewVD, MCtx->getManglingNumber(
7926 NewVD, getMSManglingNumber(getLangOpts(), S)));
7927 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
7931 // Special handling of variable named 'main'.
7932 if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") &&
7933 NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7934 !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
7936 // C++ [basic.start.main]p3
7937 // A program that declares a variable main at global scope is ill-formed.
7938 if (getLangOpts().CPlusPlus)
7939 Diag(D.getBeginLoc(), diag::err_main_global_variable);
7941 // In C, and external-linkage variable named main results in undefined
7942 // behavior.
7943 else if (NewVD->hasExternalFormalLinkage())
7944 Diag(D.getBeginLoc(), diag::warn_main_redefined);
7947 if (D.isRedeclaration() && !Previous.empty()) {
7948 NamedDecl *Prev = Previous.getRepresentativeDecl();
7949 checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization,
7950 D.isFunctionDefinition());
7953 if (NewTemplate) {
7954 if (NewVD->isInvalidDecl())
7955 NewTemplate->setInvalidDecl();
7956 ActOnDocumentableDecl(NewTemplate);
7957 return NewTemplate;
7960 if (IsMemberSpecialization && !NewVD->isInvalidDecl())
7961 CompleteMemberSpecialization(NewVD, Previous);
7963 return NewVD;
7966 /// Enum describing the %select options in diag::warn_decl_shadow.
7967 enum ShadowedDeclKind {
7968 SDK_Local,
7969 SDK_Global,
7970 SDK_StaticMember,
7971 SDK_Field,
7972 SDK_Typedef,
7973 SDK_Using,
7974 SDK_StructuredBinding
7977 /// Determine what kind of declaration we're shadowing.
7978 static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl,
7979 const DeclContext *OldDC) {
7980 if (isa<TypeAliasDecl>(ShadowedDecl))
7981 return SDK_Using;
7982 else if (isa<TypedefDecl>(ShadowedDecl))
7983 return SDK_Typedef;
7984 else if (isa<BindingDecl>(ShadowedDecl))
7985 return SDK_StructuredBinding;
7986 else if (isa<RecordDecl>(OldDC))
7987 return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember;
7989 return OldDC->isFileContext() ? SDK_Global : SDK_Local;
7992 /// Return the location of the capture if the given lambda captures the given
7993 /// variable \p VD, or an invalid source location otherwise.
7994 static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI,
7995 const VarDecl *VD) {
7996 for (const Capture &Capture : LSI->Captures) {
7997 if (Capture.isVariableCapture() && Capture.getVariable() == VD)
7998 return Capture.getLocation();
8000 return SourceLocation();
8003 static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags,
8004 const LookupResult &R) {
8005 // Only diagnose if we're shadowing an unambiguous field or variable.
8006 if (R.getResultKind() != LookupResult::Found)
8007 return false;
8009 // Return false if warning is ignored.
8010 return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc());
8013 /// Return the declaration shadowed by the given variable \p D, or null
8014 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
8015 NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D,
8016 const LookupResult &R) {
8017 if (!shouldWarnIfShadowedDecl(Diags, R))
8018 return nullptr;
8020 // Don't diagnose declarations at file scope.
8021 if (D->hasGlobalStorage())
8022 return nullptr;
8024 NamedDecl *ShadowedDecl = R.getFoundDecl();
8025 return isa<VarDecl, FieldDecl, BindingDecl>(ShadowedDecl) ? ShadowedDecl
8026 : nullptr;
8029 /// Return the declaration shadowed by the given typedef \p D, or null
8030 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
8031 NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D,
8032 const LookupResult &R) {
8033 // Don't warn if typedef declaration is part of a class
8034 if (D->getDeclContext()->isRecord())
8035 return nullptr;
8037 if (!shouldWarnIfShadowedDecl(Diags, R))
8038 return nullptr;
8040 NamedDecl *ShadowedDecl = R.getFoundDecl();
8041 return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr;
8044 /// Return the declaration shadowed by the given variable \p D, or null
8045 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
8046 NamedDecl *Sema::getShadowedDeclaration(const BindingDecl *D,
8047 const LookupResult &R) {
8048 if (!shouldWarnIfShadowedDecl(Diags, R))
8049 return nullptr;
8051 NamedDecl *ShadowedDecl = R.getFoundDecl();
8052 return isa<VarDecl, FieldDecl, BindingDecl>(ShadowedDecl) ? ShadowedDecl
8053 : nullptr;
8056 /// Diagnose variable or built-in function shadowing. Implements
8057 /// -Wshadow.
8059 /// This method is called whenever a VarDecl is added to a "useful"
8060 /// scope.
8062 /// \param ShadowedDecl the declaration that is shadowed by the given variable
8063 /// \param R the lookup of the name
8065 void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
8066 const LookupResult &R) {
8067 DeclContext *NewDC = D->getDeclContext();
8069 if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) {
8070 // Fields are not shadowed by variables in C++ static methods.
8071 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
8072 if (MD->isStatic())
8073 return;
8075 // Fields shadowed by constructor parameters are a special case. Usually
8076 // the constructor initializes the field with the parameter.
8077 if (isa<CXXConstructorDecl>(NewDC))
8078 if (const auto PVD = dyn_cast<ParmVarDecl>(D)) {
8079 // Remember that this was shadowed so we can either warn about its
8080 // modification or its existence depending on warning settings.
8081 ShadowingDecls.insert({PVD->getCanonicalDecl(), FD});
8082 return;
8086 if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
8087 if (shadowedVar->isExternC()) {
8088 // For shadowing external vars, make sure that we point to the global
8089 // declaration, not a locally scoped extern declaration.
8090 for (auto *I : shadowedVar->redecls())
8091 if (I->isFileVarDecl()) {
8092 ShadowedDecl = I;
8093 break;
8097 DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext();
8099 unsigned WarningDiag = diag::warn_decl_shadow;
8100 SourceLocation CaptureLoc;
8101 if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC &&
8102 isa<CXXMethodDecl>(NewDC)) {
8103 if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) {
8104 if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) {
8105 if (RD->getLambdaCaptureDefault() == LCD_None) {
8106 // Try to avoid warnings for lambdas with an explicit capture list.
8107 const auto *LSI = cast<LambdaScopeInfo>(getCurFunction());
8108 // Warn only when the lambda captures the shadowed decl explicitly.
8109 CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl));
8110 if (CaptureLoc.isInvalid())
8111 WarningDiag = diag::warn_decl_shadow_uncaptured_local;
8112 } else {
8113 // Remember that this was shadowed so we can avoid the warning if the
8114 // shadowed decl isn't captured and the warning settings allow it.
8115 cast<LambdaScopeInfo>(getCurFunction())
8116 ->ShadowingDecls.push_back(
8117 {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)});
8118 return;
8122 if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) {
8123 // A variable can't shadow a local variable in an enclosing scope, if
8124 // they are separated by a non-capturing declaration context.
8125 for (DeclContext *ParentDC = NewDC;
8126 ParentDC && !ParentDC->Equals(OldDC);
8127 ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) {
8128 // Only block literals, captured statements, and lambda expressions
8129 // can capture; other scopes don't.
8130 if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) &&
8131 !isLambdaCallOperator(ParentDC)) {
8132 return;
8139 // Only warn about certain kinds of shadowing for class members.
8140 if (NewDC && NewDC->isRecord()) {
8141 // In particular, don't warn about shadowing non-class members.
8142 if (!OldDC->isRecord())
8143 return;
8145 // TODO: should we warn about static data members shadowing
8146 // static data members from base classes?
8148 // TODO: don't diagnose for inaccessible shadowed members.
8149 // This is hard to do perfectly because we might friend the
8150 // shadowing context, but that's just a false negative.
8154 DeclarationName Name = R.getLookupName();
8156 // Emit warning and note.
8157 ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC);
8158 Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC;
8159 if (!CaptureLoc.isInvalid())
8160 Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
8161 << Name << /*explicitly*/ 1;
8162 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
8165 /// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
8166 /// when these variables are captured by the lambda.
8167 void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) {
8168 for (const auto &Shadow : LSI->ShadowingDecls) {
8169 const VarDecl *ShadowedDecl = Shadow.ShadowedDecl;
8170 // Try to avoid the warning when the shadowed decl isn't captured.
8171 SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl);
8172 const DeclContext *OldDC = ShadowedDecl->getDeclContext();
8173 Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid()
8174 ? diag::warn_decl_shadow_uncaptured_local
8175 : diag::warn_decl_shadow)
8176 << Shadow.VD->getDeclName()
8177 << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
8178 if (!CaptureLoc.isInvalid())
8179 Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
8180 << Shadow.VD->getDeclName() << /*explicitly*/ 0;
8181 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
8185 /// Check -Wshadow without the advantage of a previous lookup.
8186 void Sema::CheckShadow(Scope *S, VarDecl *D) {
8187 if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
8188 return;
8190 LookupResult R(*this, D->getDeclName(), D->getLocation(),
8191 Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
8192 LookupName(R, S);
8193 if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R))
8194 CheckShadow(D, ShadowedDecl, R);
8197 /// Check if 'E', which is an expression that is about to be modified, refers
8198 /// to a constructor parameter that shadows a field.
8199 void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) {
8200 // Quickly ignore expressions that can't be shadowing ctor parameters.
8201 if (!getLangOpts().CPlusPlus || ShadowingDecls.empty())
8202 return;
8203 E = E->IgnoreParenImpCasts();
8204 auto *DRE = dyn_cast<DeclRefExpr>(E);
8205 if (!DRE)
8206 return;
8207 const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
8208 auto I = ShadowingDecls.find(D);
8209 if (I == ShadowingDecls.end())
8210 return;
8211 const NamedDecl *ShadowedDecl = I->second;
8212 const DeclContext *OldDC = ShadowedDecl->getDeclContext();
8213 Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC;
8214 Diag(D->getLocation(), diag::note_var_declared_here) << D;
8215 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
8217 // Avoid issuing multiple warnings about the same decl.
8218 ShadowingDecls.erase(I);
8221 /// Check for conflict between this global or extern "C" declaration and
8222 /// previous global or extern "C" declarations. This is only used in C++.
8223 template<typename T>
8224 static bool checkGlobalOrExternCConflict(
8225 Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
8226 assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
8227 NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
8229 if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
8230 // The common case: this global doesn't conflict with any extern "C"
8231 // declaration.
8232 return false;
8235 if (Prev) {
8236 if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
8237 // Both the old and new declarations have C language linkage. This is a
8238 // redeclaration.
8239 Previous.clear();
8240 Previous.addDecl(Prev);
8241 return true;
8244 // This is a global, non-extern "C" declaration, and there is a previous
8245 // non-global extern "C" declaration. Diagnose if this is a variable
8246 // declaration.
8247 if (!isa<VarDecl>(ND))
8248 return false;
8249 } else {
8250 // The declaration is extern "C". Check for any declaration in the
8251 // translation unit which might conflict.
8252 if (IsGlobal) {
8253 // We have already performed the lookup into the translation unit.
8254 IsGlobal = false;
8255 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8256 I != E; ++I) {
8257 if (isa<VarDecl>(*I)) {
8258 Prev = *I;
8259 break;
8262 } else {
8263 DeclContext::lookup_result R =
8264 S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
8265 for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
8266 I != E; ++I) {
8267 if (isa<VarDecl>(*I)) {
8268 Prev = *I;
8269 break;
8271 // FIXME: If we have any other entity with this name in global scope,
8272 // the declaration is ill-formed, but that is a defect: it breaks the
8273 // 'stat' hack, for instance. Only variables can have mangled name
8274 // clashes with extern "C" declarations, so only they deserve a
8275 // diagnostic.
8279 if (!Prev)
8280 return false;
8283 // Use the first declaration's location to ensure we point at something which
8284 // is lexically inside an extern "C" linkage-spec.
8285 assert(Prev && "should have found a previous declaration to diagnose");
8286 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
8287 Prev = FD->getFirstDecl();
8288 else
8289 Prev = cast<VarDecl>(Prev)->getFirstDecl();
8291 S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
8292 << IsGlobal << ND;
8293 S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
8294 << IsGlobal;
8295 return false;
8298 /// Apply special rules for handling extern "C" declarations. Returns \c true
8299 /// if we have found that this is a redeclaration of some prior entity.
8301 /// Per C++ [dcl.link]p6:
8302 /// Two declarations [for a function or variable] with C language linkage
8303 /// with the same name that appear in different scopes refer to the same
8304 /// [entity]. An entity with C language linkage shall not be declared with
8305 /// the same name as an entity in global scope.
8306 template<typename T>
8307 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
8308 LookupResult &Previous) {
8309 if (!S.getLangOpts().CPlusPlus) {
8310 // In C, when declaring a global variable, look for a corresponding 'extern'
8311 // variable declared in function scope. We don't need this in C++, because
8312 // we find local extern decls in the surrounding file-scope DeclContext.
8313 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
8314 if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
8315 Previous.clear();
8316 Previous.addDecl(Prev);
8317 return true;
8320 return false;
8323 // A declaration in the translation unit can conflict with an extern "C"
8324 // declaration.
8325 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
8326 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
8328 // An extern "C" declaration can conflict with a declaration in the
8329 // translation unit or can be a redeclaration of an extern "C" declaration
8330 // in another scope.
8331 if (isIncompleteDeclExternC(S,ND))
8332 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
8334 // Neither global nor extern "C": nothing to do.
8335 return false;
8338 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
8339 // If the decl is already known invalid, don't check it.
8340 if (NewVD->isInvalidDecl())
8341 return;
8343 QualType T = NewVD->getType();
8345 // Defer checking an 'auto' type until its initializer is attached.
8346 if (T->isUndeducedType())
8347 return;
8349 if (NewVD->hasAttrs())
8350 CheckAlignasUnderalignment(NewVD);
8352 if (T->isObjCObjectType()) {
8353 Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
8354 << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
8355 T = Context.getObjCObjectPointerType(T);
8356 NewVD->setType(T);
8359 // Emit an error if an address space was applied to decl with local storage.
8360 // This includes arrays of objects with address space qualifiers, but not
8361 // automatic variables that point to other address spaces.
8362 // ISO/IEC TR 18037 S5.1.2
8363 if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() &&
8364 T.getAddressSpace() != LangAS::Default) {
8365 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0;
8366 NewVD->setInvalidDecl();
8367 return;
8370 // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
8371 // scope.
8372 if (getLangOpts().OpenCLVersion == 120 &&
8373 !getOpenCLOptions().isAvailableOption("cl_clang_storage_class_specifiers",
8374 getLangOpts()) &&
8375 NewVD->isStaticLocal()) {
8376 Diag(NewVD->getLocation(), diag::err_static_function_scope);
8377 NewVD->setInvalidDecl();
8378 return;
8381 if (getLangOpts().OpenCL) {
8382 if (!diagnoseOpenCLTypes(*this, NewVD))
8383 return;
8385 // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
8386 if (NewVD->hasAttr<BlocksAttr>()) {
8387 Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type);
8388 return;
8391 if (T->isBlockPointerType()) {
8392 // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
8393 // can't use 'extern' storage class.
8394 if (!T.isConstQualified()) {
8395 Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration)
8396 << 0 /*const*/;
8397 NewVD->setInvalidDecl();
8398 return;
8400 if (NewVD->hasExternalStorage()) {
8401 Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration);
8402 NewVD->setInvalidDecl();
8403 return;
8407 // FIXME: Adding local AS in C++ for OpenCL might make sense.
8408 if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() ||
8409 NewVD->hasExternalStorage()) {
8410 if (!T->isSamplerT() && !T->isDependentType() &&
8411 !(T.getAddressSpace() == LangAS::opencl_constant ||
8412 (T.getAddressSpace() == LangAS::opencl_global &&
8413 getOpenCLOptions().areProgramScopeVariablesSupported(
8414 getLangOpts())))) {
8415 int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1;
8416 if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()))
8417 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
8418 << Scope << "global or constant";
8419 else
8420 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
8421 << Scope << "constant";
8422 NewVD->setInvalidDecl();
8423 return;
8425 } else {
8426 if (T.getAddressSpace() == LangAS::opencl_global) {
8427 Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
8428 << 1 /*is any function*/ << "global";
8429 NewVD->setInvalidDecl();
8430 return;
8432 if (T.getAddressSpace() == LangAS::opencl_constant ||
8433 T.getAddressSpace() == LangAS::opencl_local) {
8434 FunctionDecl *FD = getCurFunctionDecl();
8435 // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
8436 // in functions.
8437 if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
8438 if (T.getAddressSpace() == LangAS::opencl_constant)
8439 Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
8440 << 0 /*non-kernel only*/ << "constant";
8441 else
8442 Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
8443 << 0 /*non-kernel only*/ << "local";
8444 NewVD->setInvalidDecl();
8445 return;
8447 // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
8448 // in the outermost scope of a kernel function.
8449 if (FD && FD->hasAttr<OpenCLKernelAttr>()) {
8450 if (!getCurScope()->isFunctionScope()) {
8451 if (T.getAddressSpace() == LangAS::opencl_constant)
8452 Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
8453 << "constant";
8454 else
8455 Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
8456 << "local";
8457 NewVD->setInvalidDecl();
8458 return;
8461 } else if (T.getAddressSpace() != LangAS::opencl_private &&
8462 // If we are parsing a template we didn't deduce an addr
8463 // space yet.
8464 T.getAddressSpace() != LangAS::Default) {
8465 // Do not allow other address spaces on automatic variable.
8466 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1;
8467 NewVD->setInvalidDecl();
8468 return;
8473 if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
8474 && !NewVD->hasAttr<BlocksAttr>()) {
8475 if (getLangOpts().getGC() != LangOptions::NonGC)
8476 Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
8477 else {
8478 assert(!getLangOpts().ObjCAutoRefCount);
8479 Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
8483 bool isVM = T->isVariablyModifiedType();
8484 if (isVM || NewVD->hasAttr<CleanupAttr>() ||
8485 NewVD->hasAttr<BlocksAttr>())
8486 setFunctionHasBranchProtectedScope();
8488 if ((isVM && NewVD->hasLinkage()) ||
8489 (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
8490 bool SizeIsNegative;
8491 llvm::APSInt Oversized;
8492 TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
8493 NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized);
8494 QualType FixedT;
8495 if (FixedTInfo && T == NewVD->getTypeSourceInfo()->getType())
8496 FixedT = FixedTInfo->getType();
8497 else if (FixedTInfo) {
8498 // Type and type-as-written are canonically different. We need to fix up
8499 // both types separately.
8500 FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
8501 Oversized);
8503 if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) {
8504 const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
8505 // FIXME: This won't give the correct result for
8506 // int a[10][n];
8507 SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
8509 if (NewVD->isFileVarDecl())
8510 Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
8511 << SizeRange;
8512 else if (NewVD->isStaticLocal())
8513 Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
8514 << SizeRange;
8515 else
8516 Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
8517 << SizeRange;
8518 NewVD->setInvalidDecl();
8519 return;
8522 if (!FixedTInfo) {
8523 if (NewVD->isFileVarDecl())
8524 Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
8525 else
8526 Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
8527 NewVD->setInvalidDecl();
8528 return;
8531 Diag(NewVD->getLocation(), diag::ext_vla_folded_to_constant);
8532 NewVD->setType(FixedT);
8533 NewVD->setTypeSourceInfo(FixedTInfo);
8536 if (T->isVoidType()) {
8537 // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
8538 // of objects and functions.
8539 if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
8540 Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
8541 << T;
8542 NewVD->setInvalidDecl();
8543 return;
8547 if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
8548 Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
8549 NewVD->setInvalidDecl();
8550 return;
8553 if (!NewVD->hasLocalStorage() && T->isSizelessType()) {
8554 Diag(NewVD->getLocation(), diag::err_sizeless_nonlocal) << T;
8555 NewVD->setInvalidDecl();
8556 return;
8559 if (isVM && NewVD->hasAttr<BlocksAttr>()) {
8560 Diag(NewVD->getLocation(), diag::err_block_on_vm);
8561 NewVD->setInvalidDecl();
8562 return;
8565 if (NewVD->isConstexpr() && !T->isDependentType() &&
8566 RequireLiteralType(NewVD->getLocation(), T,
8567 diag::err_constexpr_var_non_literal)) {
8568 NewVD->setInvalidDecl();
8569 return;
8572 // PPC MMA non-pointer types are not allowed as non-local variable types.
8573 if (Context.getTargetInfo().getTriple().isPPC64() &&
8574 !NewVD->isLocalVarDecl() &&
8575 CheckPPCMMAType(T, NewVD->getLocation())) {
8576 NewVD->setInvalidDecl();
8577 return;
8581 /// Perform semantic checking on a newly-created variable
8582 /// declaration.
8584 /// This routine performs all of the type-checking required for a
8585 /// variable declaration once it has been built. It is used both to
8586 /// check variables after they have been parsed and their declarators
8587 /// have been translated into a declaration, and to check variables
8588 /// that have been instantiated from a template.
8590 /// Sets NewVD->isInvalidDecl() if an error was encountered.
8592 /// Returns true if the variable declaration is a redeclaration.
8593 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
8594 CheckVariableDeclarationType(NewVD);
8596 // If the decl is already known invalid, don't check it.
8597 if (NewVD->isInvalidDecl())
8598 return false;
8600 // If we did not find anything by this name, look for a non-visible
8601 // extern "C" declaration with the same name.
8602 if (Previous.empty() &&
8603 checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
8604 Previous.setShadowed();
8606 if (!Previous.empty()) {
8607 MergeVarDecl(NewVD, Previous);
8608 return true;
8610 return false;
8613 /// AddOverriddenMethods - See if a method overrides any in the base classes,
8614 /// and if so, check that it's a valid override and remember it.
8615 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
8616 llvm::SmallPtrSet<const CXXMethodDecl*, 4> Overridden;
8618 // Look for methods in base classes that this method might override.
8619 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
8620 /*DetectVirtual=*/false);
8621 auto VisitBase = [&] (const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
8622 CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl();
8623 DeclarationName Name = MD->getDeclName();
8625 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8626 // We really want to find the base class destructor here.
8627 QualType T = Context.getTypeDeclType(BaseRecord);
8628 CanQualType CT = Context.getCanonicalType(T);
8629 Name = Context.DeclarationNames.getCXXDestructorName(CT);
8632 for (NamedDecl *BaseND : BaseRecord->lookup(Name)) {
8633 CXXMethodDecl *BaseMD =
8634 dyn_cast<CXXMethodDecl>(BaseND->getCanonicalDecl());
8635 if (!BaseMD || !BaseMD->isVirtual() ||
8636 IsOverload(MD, BaseMD, /*UseMemberUsingDeclRules=*/false,
8637 /*ConsiderCudaAttrs=*/true,
8638 // C++2a [class.virtual]p2 does not consider requires
8639 // clauses when overriding.
8640 /*ConsiderRequiresClauses=*/false))
8641 continue;
8643 if (Overridden.insert(BaseMD).second) {
8644 MD->addOverriddenMethod(BaseMD);
8645 CheckOverridingFunctionReturnType(MD, BaseMD);
8646 CheckOverridingFunctionAttributes(MD, BaseMD);
8647 CheckOverridingFunctionExceptionSpec(MD, BaseMD);
8648 CheckIfOverriddenFunctionIsMarkedFinal(MD, BaseMD);
8651 // A method can only override one function from each base class. We
8652 // don't track indirectly overridden methods from bases of bases.
8653 return true;
8656 return false;
8659 DC->lookupInBases(VisitBase, Paths);
8660 return !Overridden.empty();
8663 namespace {
8664 // Struct for holding all of the extra arguments needed by
8665 // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
8666 struct ActOnFDArgs {
8667 Scope *S;
8668 Declarator &D;
8669 MultiTemplateParamsArg TemplateParamLists;
8670 bool AddToScope;
8672 } // end anonymous namespace
8674 namespace {
8676 // Callback to only accept typo corrections that have a non-zero edit distance.
8677 // Also only accept corrections that have the same parent decl.
8678 class DifferentNameValidatorCCC final : public CorrectionCandidateCallback {
8679 public:
8680 DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
8681 CXXRecordDecl *Parent)
8682 : Context(Context), OriginalFD(TypoFD),
8683 ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
8685 bool ValidateCandidate(const TypoCorrection &candidate) override {
8686 if (candidate.getEditDistance() == 0)
8687 return false;
8689 SmallVector<unsigned, 1> MismatchedParams;
8690 for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
8691 CDeclEnd = candidate.end();
8692 CDecl != CDeclEnd; ++CDecl) {
8693 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
8695 if (FD && !FD->hasBody() &&
8696 hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
8697 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
8698 CXXRecordDecl *Parent = MD->getParent();
8699 if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
8700 return true;
8701 } else if (!ExpectedParent) {
8702 return true;
8707 return false;
8710 std::unique_ptr<CorrectionCandidateCallback> clone() override {
8711 return std::make_unique<DifferentNameValidatorCCC>(*this);
8714 private:
8715 ASTContext &Context;
8716 FunctionDecl *OriginalFD;
8717 CXXRecordDecl *ExpectedParent;
8720 } // end anonymous namespace
8722 void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) {
8723 TypoCorrectedFunctionDefinitions.insert(F);
8726 /// Generate diagnostics for an invalid function redeclaration.
8728 /// This routine handles generating the diagnostic messages for an invalid
8729 /// function redeclaration, including finding possible similar declarations
8730 /// or performing typo correction if there are no previous declarations with
8731 /// the same name.
8733 /// Returns a NamedDecl iff typo correction was performed and substituting in
8734 /// the new declaration name does not cause new errors.
8735 static NamedDecl *DiagnoseInvalidRedeclaration(
8736 Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
8737 ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
8738 DeclarationName Name = NewFD->getDeclName();
8739 DeclContext *NewDC = NewFD->getDeclContext();
8740 SmallVector<unsigned, 1> MismatchedParams;
8741 SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
8742 TypoCorrection Correction;
8743 bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
8744 unsigned DiagMsg =
8745 IsLocalFriend ? diag::err_no_matching_local_friend :
8746 NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match :
8747 diag::err_member_decl_does_not_match;
8748 LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
8749 IsLocalFriend ? Sema::LookupLocalFriendName
8750 : Sema::LookupOrdinaryName,
8751 Sema::ForVisibleRedeclaration);
8753 NewFD->setInvalidDecl();
8754 if (IsLocalFriend)
8755 SemaRef.LookupName(Prev, S);
8756 else
8757 SemaRef.LookupQualifiedName(Prev, NewDC);
8758 assert(!Prev.isAmbiguous() &&
8759 "Cannot have an ambiguity in previous-declaration lookup");
8760 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
8761 DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD,
8762 MD ? MD->getParent() : nullptr);
8763 if (!Prev.empty()) {
8764 for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
8765 Func != FuncEnd; ++Func) {
8766 FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
8767 if (FD &&
8768 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
8769 // Add 1 to the index so that 0 can mean the mismatch didn't
8770 // involve a parameter
8771 unsigned ParamNum =
8772 MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
8773 NearMatches.push_back(std::make_pair(FD, ParamNum));
8776 // If the qualified name lookup yielded nothing, try typo correction
8777 } else if ((Correction = SemaRef.CorrectTypo(
8778 Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
8779 &ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery,
8780 IsLocalFriend ? nullptr : NewDC))) {
8781 // Set up everything for the call to ActOnFunctionDeclarator
8782 ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
8783 ExtraArgs.D.getIdentifierLoc());
8784 Previous.clear();
8785 Previous.setLookupName(Correction.getCorrection());
8786 for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
8787 CDeclEnd = Correction.end();
8788 CDecl != CDeclEnd; ++CDecl) {
8789 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
8790 if (FD && !FD->hasBody() &&
8791 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
8792 Previous.addDecl(FD);
8795 bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
8797 NamedDecl *Result;
8798 // Retry building the function declaration with the new previous
8799 // declarations, and with errors suppressed.
8801 // Trap errors.
8802 Sema::SFINAETrap Trap(SemaRef);
8804 // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
8805 // pieces need to verify the typo-corrected C++ declaration and hopefully
8806 // eliminate the need for the parameter pack ExtraArgs.
8807 Result = SemaRef.ActOnFunctionDeclarator(
8808 ExtraArgs.S, ExtraArgs.D,
8809 Correction.getCorrectionDecl()->getDeclContext(),
8810 NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
8811 ExtraArgs.AddToScope);
8813 if (Trap.hasErrorOccurred())
8814 Result = nullptr;
8817 if (Result) {
8818 // Determine which correction we picked.
8819 Decl *Canonical = Result->getCanonicalDecl();
8820 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8821 I != E; ++I)
8822 if ((*I)->getCanonicalDecl() == Canonical)
8823 Correction.setCorrectionDecl(*I);
8825 // Let Sema know about the correction.
8826 SemaRef.MarkTypoCorrectedFunctionDefinition(Result);
8827 SemaRef.diagnoseTypo(
8828 Correction,
8829 SemaRef.PDiag(IsLocalFriend
8830 ? diag::err_no_matching_local_friend_suggest
8831 : diag::err_member_decl_does_not_match_suggest)
8832 << Name << NewDC << IsDefinition);
8833 return Result;
8836 // Pretend the typo correction never occurred
8837 ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
8838 ExtraArgs.D.getIdentifierLoc());
8839 ExtraArgs.D.setRedeclaration(wasRedeclaration);
8840 Previous.clear();
8841 Previous.setLookupName(Name);
8844 SemaRef.Diag(NewFD->getLocation(), DiagMsg)
8845 << Name << NewDC << IsDefinition << NewFD->getLocation();
8847 bool NewFDisConst = false;
8848 if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
8849 NewFDisConst = NewMD->isConst();
8851 for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
8852 NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
8853 NearMatch != NearMatchEnd; ++NearMatch) {
8854 FunctionDecl *FD = NearMatch->first;
8855 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
8856 bool FDisConst = MD && MD->isConst();
8857 bool IsMember = MD || !IsLocalFriend;
8859 // FIXME: These notes are poorly worded for the local friend case.
8860 if (unsigned Idx = NearMatch->second) {
8861 ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
8862 SourceLocation Loc = FDParam->getTypeSpecStartLoc();
8863 if (Loc.isInvalid()) Loc = FD->getLocation();
8864 SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
8865 : diag::note_local_decl_close_param_match)
8866 << Idx << FDParam->getType()
8867 << NewFD->getParamDecl(Idx - 1)->getType();
8868 } else if (FDisConst != NewFDisConst) {
8869 SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
8870 << NewFDisConst << FD->getSourceRange().getEnd()
8871 << (NewFDisConst
8872 ? FixItHint::CreateRemoval(ExtraArgs.D.getFunctionTypeInfo()
8873 .getConstQualifierLoc())
8874 : FixItHint::CreateInsertion(ExtraArgs.D.getFunctionTypeInfo()
8875 .getRParenLoc()
8876 .getLocWithOffset(1),
8877 " const"));
8878 } else
8879 SemaRef.Diag(FD->getLocation(),
8880 IsMember ? diag::note_member_def_close_match
8881 : diag::note_local_decl_close_match);
8883 return nullptr;
8886 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
8887 switch (D.getDeclSpec().getStorageClassSpec()) {
8888 default: llvm_unreachable("Unknown storage class!");
8889 case DeclSpec::SCS_auto:
8890 case DeclSpec::SCS_register:
8891 case DeclSpec::SCS_mutable:
8892 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8893 diag::err_typecheck_sclass_func);
8894 D.getMutableDeclSpec().ClearStorageClassSpecs();
8895 D.setInvalidType();
8896 break;
8897 case DeclSpec::SCS_unspecified: break;
8898 case DeclSpec::SCS_extern:
8899 if (D.getDeclSpec().isExternInLinkageSpec())
8900 return SC_None;
8901 return SC_Extern;
8902 case DeclSpec::SCS_static: {
8903 if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
8904 // C99 6.7.1p5:
8905 // The declaration of an identifier for a function that has
8906 // block scope shall have no explicit storage-class specifier
8907 // other than extern
8908 // See also (C++ [dcl.stc]p4).
8909 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8910 diag::err_static_block_func);
8911 break;
8912 } else
8913 return SC_Static;
8915 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
8918 // No explicit storage class has already been returned
8919 return SC_None;
8922 static FunctionDecl *CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
8923 DeclContext *DC, QualType &R,
8924 TypeSourceInfo *TInfo,
8925 StorageClass SC,
8926 bool &IsVirtualOkay) {
8927 DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
8928 DeclarationName Name = NameInfo.getName();
8930 FunctionDecl *NewFD = nullptr;
8931 bool isInline = D.getDeclSpec().isInlineSpecified();
8933 if (!SemaRef.getLangOpts().CPlusPlus) {
8934 // Determine whether the function was written with a prototype. This is
8935 // true when:
8936 // - there is a prototype in the declarator, or
8937 // - the type R of the function is some kind of typedef or other non-
8938 // attributed reference to a type name (which eventually refers to a
8939 // function type). Note, we can't always look at the adjusted type to
8940 // check this case because attributes may cause a non-function
8941 // declarator to still have a function type. e.g.,
8942 // typedef void func(int a);
8943 // __attribute__((noreturn)) func other_func; // This has a prototype
8944 bool HasPrototype =
8945 (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
8946 (D.getDeclSpec().isTypeRep() &&
8947 D.getDeclSpec().getRepAsType().get()->isFunctionProtoType()) ||
8948 (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType());
8949 assert(
8950 (HasPrototype || !SemaRef.getLangOpts().requiresStrictPrototypes()) &&
8951 "Strict prototypes are required");
8953 NewFD = FunctionDecl::Create(
8954 SemaRef.Context, DC, D.getBeginLoc(), NameInfo, R, TInfo, SC,
8955 SemaRef.getCurFPFeatures().isFPConstrained(), isInline, HasPrototype,
8956 ConstexprSpecKind::Unspecified,
8957 /*TrailingRequiresClause=*/nullptr);
8958 if (D.isInvalidType())
8959 NewFD->setInvalidDecl();
8961 return NewFD;
8964 ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier();
8966 ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
8967 if (ConstexprKind == ConstexprSpecKind::Constinit) {
8968 SemaRef.Diag(D.getDeclSpec().getConstexprSpecLoc(),
8969 diag::err_constexpr_wrong_decl_kind)
8970 << static_cast<int>(ConstexprKind);
8971 ConstexprKind = ConstexprSpecKind::Unspecified;
8972 D.getMutableDeclSpec().ClearConstexprSpec();
8974 Expr *TrailingRequiresClause = D.getTrailingRequiresClause();
8976 // Check that the return type is not an abstract class type.
8977 // For record types, this is done by the AbstractClassUsageDiagnoser once
8978 // the class has been completely parsed.
8979 if (!DC->isRecord() &&
8980 SemaRef.RequireNonAbstractType(
8981 D.getIdentifierLoc(), R->castAs<FunctionType>()->getReturnType(),
8982 diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
8983 D.setInvalidType();
8985 if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
8986 // This is a C++ constructor declaration.
8987 assert(DC->isRecord() &&
8988 "Constructors can only be declared in a member context");
8990 R = SemaRef.CheckConstructorDeclarator(D, R, SC);
8991 return CXXConstructorDecl::Create(
8992 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8993 TInfo, ExplicitSpecifier, SemaRef.getCurFPFeatures().isFPConstrained(),
8994 isInline, /*isImplicitlyDeclared=*/false, ConstexprKind,
8995 InheritedConstructor(), TrailingRequiresClause);
8997 } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8998 // This is a C++ destructor declaration.
8999 if (DC->isRecord()) {
9000 R = SemaRef.CheckDestructorDeclarator(D, R, SC);
9001 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
9002 CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
9003 SemaRef.Context, Record, D.getBeginLoc(), NameInfo, R, TInfo,
9004 SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
9005 /*isImplicitlyDeclared=*/false, ConstexprKind,
9006 TrailingRequiresClause);
9007 // User defined destructors start as not selected if the class definition is still
9008 // not done.
9009 if (Record->isBeingDefined())
9010 NewDD->setIneligibleOrNotSelected(true);
9012 // If the destructor needs an implicit exception specification, set it
9013 // now. FIXME: It'd be nice to be able to create the right type to start
9014 // with, but the type needs to reference the destructor declaration.
9015 if (SemaRef.getLangOpts().CPlusPlus11)
9016 SemaRef.AdjustDestructorExceptionSpec(NewDD);
9018 IsVirtualOkay = true;
9019 return NewDD;
9021 } else {
9022 SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
9023 D.setInvalidType();
9025 // Create a FunctionDecl to satisfy the function definition parsing
9026 // code path.
9027 return FunctionDecl::Create(
9028 SemaRef.Context, DC, D.getBeginLoc(), D.getIdentifierLoc(), Name, R,
9029 TInfo, SC, SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
9030 /*hasPrototype=*/true, ConstexprKind, TrailingRequiresClause);
9033 } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
9034 if (!DC->isRecord()) {
9035 SemaRef.Diag(D.getIdentifierLoc(),
9036 diag::err_conv_function_not_member);
9037 return nullptr;
9040 SemaRef.CheckConversionDeclarator(D, R, SC);
9041 if (D.isInvalidType())
9042 return nullptr;
9044 IsVirtualOkay = true;
9045 return CXXConversionDecl::Create(
9046 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
9047 TInfo, SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
9048 ExplicitSpecifier, ConstexprKind, SourceLocation(),
9049 TrailingRequiresClause);
9051 } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
9052 if (TrailingRequiresClause)
9053 SemaRef.Diag(TrailingRequiresClause->getBeginLoc(),
9054 diag::err_trailing_requires_clause_on_deduction_guide)
9055 << TrailingRequiresClause->getSourceRange();
9056 SemaRef.CheckDeductionGuideDeclarator(D, R, SC);
9058 return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
9059 ExplicitSpecifier, NameInfo, R, TInfo,
9060 D.getEndLoc());
9061 } else if (DC->isRecord()) {
9062 // If the name of the function is the same as the name of the record,
9063 // then this must be an invalid constructor that has a return type.
9064 // (The parser checks for a return type and makes the declarator a
9065 // constructor if it has no return type).
9066 if (Name.getAsIdentifierInfo() &&
9067 Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
9068 SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
9069 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
9070 << SourceRange(D.getIdentifierLoc());
9071 return nullptr;
9074 // This is a C++ method declaration.
9075 CXXMethodDecl *Ret = CXXMethodDecl::Create(
9076 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
9077 TInfo, SC, SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
9078 ConstexprKind, SourceLocation(), TrailingRequiresClause);
9079 IsVirtualOkay = !Ret->isStatic();
9080 return Ret;
9081 } else {
9082 bool isFriend =
9083 SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
9084 if (!isFriend && SemaRef.CurContext->isRecord())
9085 return nullptr;
9087 // Determine whether the function was written with a
9088 // prototype. This true when:
9089 // - we're in C++ (where every function has a prototype),
9090 return FunctionDecl::Create(
9091 SemaRef.Context, DC, D.getBeginLoc(), NameInfo, R, TInfo, SC,
9092 SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
9093 true /*HasPrototype*/, ConstexprKind, TrailingRequiresClause);
9097 enum OpenCLParamType {
9098 ValidKernelParam,
9099 PtrPtrKernelParam,
9100 PtrKernelParam,
9101 InvalidAddrSpacePtrKernelParam,
9102 InvalidKernelParam,
9103 RecordKernelParam
9106 static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) {
9107 // Size dependent types are just typedefs to normal integer types
9108 // (e.g. unsigned long), so we cannot distinguish them from other typedefs to
9109 // integers other than by their names.
9110 StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"};
9112 // Remove typedefs one by one until we reach a typedef
9113 // for a size dependent type.
9114 QualType DesugaredTy = Ty;
9115 do {
9116 ArrayRef<StringRef> Names(SizeTypeNames);
9117 auto Match = llvm::find(Names, DesugaredTy.getUnqualifiedType().getAsString());
9118 if (Names.end() != Match)
9119 return true;
9121 Ty = DesugaredTy;
9122 DesugaredTy = Ty.getSingleStepDesugaredType(C);
9123 } while (DesugaredTy != Ty);
9125 return false;
9128 static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) {
9129 if (PT->isDependentType())
9130 return InvalidKernelParam;
9132 if (PT->isPointerType() || PT->isReferenceType()) {
9133 QualType PointeeType = PT->getPointeeType();
9134 if (PointeeType.getAddressSpace() == LangAS::opencl_generic ||
9135 PointeeType.getAddressSpace() == LangAS::opencl_private ||
9136 PointeeType.getAddressSpace() == LangAS::Default)
9137 return InvalidAddrSpacePtrKernelParam;
9139 if (PointeeType->isPointerType()) {
9140 // This is a pointer to pointer parameter.
9141 // Recursively check inner type.
9142 OpenCLParamType ParamKind = getOpenCLKernelParameterType(S, PointeeType);
9143 if (ParamKind == InvalidAddrSpacePtrKernelParam ||
9144 ParamKind == InvalidKernelParam)
9145 return ParamKind;
9147 return PtrPtrKernelParam;
9150 // C++ for OpenCL v1.0 s2.4:
9151 // Moreover the types used in parameters of the kernel functions must be:
9152 // Standard layout types for pointer parameters. The same applies to
9153 // reference if an implementation supports them in kernel parameters.
9154 if (S.getLangOpts().OpenCLCPlusPlus &&
9155 !S.getOpenCLOptions().isAvailableOption(
9156 "__cl_clang_non_portable_kernel_param_types", S.getLangOpts()) &&
9157 !PointeeType->isAtomicType() && !PointeeType->isVoidType() &&
9158 !PointeeType->isStandardLayoutType())
9159 return InvalidKernelParam;
9161 return PtrKernelParam;
9164 // OpenCL v1.2 s6.9.k:
9165 // Arguments to kernel functions in a program cannot be declared with the
9166 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
9167 // uintptr_t or a struct and/or union that contain fields declared to be one
9168 // of these built-in scalar types.
9169 if (isOpenCLSizeDependentType(S.getASTContext(), PT))
9170 return InvalidKernelParam;
9172 if (PT->isImageType())
9173 return PtrKernelParam;
9175 if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT())
9176 return InvalidKernelParam;
9178 // OpenCL extension spec v1.2 s9.5:
9179 // This extension adds support for half scalar and vector types as built-in
9180 // types that can be used for arithmetic operations, conversions etc.
9181 if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16", S.getLangOpts()) &&
9182 PT->isHalfType())
9183 return InvalidKernelParam;
9185 // Look into an array argument to check if it has a forbidden type.
9186 if (PT->isArrayType()) {
9187 const Type *UnderlyingTy = PT->getPointeeOrArrayElementType();
9188 // Call ourself to check an underlying type of an array. Since the
9189 // getPointeeOrArrayElementType returns an innermost type which is not an
9190 // array, this recursive call only happens once.
9191 return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0));
9194 // C++ for OpenCL v1.0 s2.4:
9195 // Moreover the types used in parameters of the kernel functions must be:
9196 // Trivial and standard-layout types C++17 [basic.types] (plain old data
9197 // types) for parameters passed by value;
9198 if (S.getLangOpts().OpenCLCPlusPlus &&
9199 !S.getOpenCLOptions().isAvailableOption(
9200 "__cl_clang_non_portable_kernel_param_types", S.getLangOpts()) &&
9201 !PT->isOpenCLSpecificType() && !PT.isPODType(S.Context))
9202 return InvalidKernelParam;
9204 if (PT->isRecordType())
9205 return RecordKernelParam;
9207 return ValidKernelParam;
9210 static void checkIsValidOpenCLKernelParameter(
9211 Sema &S,
9212 Declarator &D,
9213 ParmVarDecl *Param,
9214 llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
9215 QualType PT = Param->getType();
9217 // Cache the valid types we encounter to avoid rechecking structs that are
9218 // used again
9219 if (ValidTypes.count(PT.getTypePtr()))
9220 return;
9222 switch (getOpenCLKernelParameterType(S, PT)) {
9223 case PtrPtrKernelParam:
9224 // OpenCL v3.0 s6.11.a:
9225 // A kernel function argument cannot be declared as a pointer to a pointer
9226 // type. [...] This restriction only applies to OpenCL C 1.2 or below.
9227 if (S.getLangOpts().getOpenCLCompatibleVersion() <= 120) {
9228 S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
9229 D.setInvalidType();
9230 return;
9233 ValidTypes.insert(PT.getTypePtr());
9234 return;
9236 case InvalidAddrSpacePtrKernelParam:
9237 // OpenCL v1.0 s6.5:
9238 // __kernel function arguments declared to be a pointer of a type can point
9239 // to one of the following address spaces only : __global, __local or
9240 // __constant.
9241 S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space);
9242 D.setInvalidType();
9243 return;
9245 // OpenCL v1.2 s6.9.k:
9246 // Arguments to kernel functions in a program cannot be declared with the
9247 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
9248 // uintptr_t or a struct and/or union that contain fields declared to be
9249 // one of these built-in scalar types.
9251 case InvalidKernelParam:
9252 // OpenCL v1.2 s6.8 n:
9253 // A kernel function argument cannot be declared
9254 // of event_t type.
9255 // Do not diagnose half type since it is diagnosed as invalid argument
9256 // type for any function elsewhere.
9257 if (!PT->isHalfType()) {
9258 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
9260 // Explain what typedefs are involved.
9261 const TypedefType *Typedef = nullptr;
9262 while ((Typedef = PT->getAs<TypedefType>())) {
9263 SourceLocation Loc = Typedef->getDecl()->getLocation();
9264 // SourceLocation may be invalid for a built-in type.
9265 if (Loc.isValid())
9266 S.Diag(Loc, diag::note_entity_declared_at) << PT;
9267 PT = Typedef->desugar();
9271 D.setInvalidType();
9272 return;
9274 case PtrKernelParam:
9275 case ValidKernelParam:
9276 ValidTypes.insert(PT.getTypePtr());
9277 return;
9279 case RecordKernelParam:
9280 break;
9283 // Track nested structs we will inspect
9284 SmallVector<const Decl *, 4> VisitStack;
9286 // Track where we are in the nested structs. Items will migrate from
9287 // VisitStack to HistoryStack as we do the DFS for bad field.
9288 SmallVector<const FieldDecl *, 4> HistoryStack;
9289 HistoryStack.push_back(nullptr);
9291 // At this point we already handled everything except of a RecordType or
9292 // an ArrayType of a RecordType.
9293 assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type.");
9294 const RecordType *RecTy =
9295 PT->getPointeeOrArrayElementType()->getAs<RecordType>();
9296 const RecordDecl *OrigRecDecl = RecTy->getDecl();
9298 VisitStack.push_back(RecTy->getDecl());
9299 assert(VisitStack.back() && "First decl null?");
9301 do {
9302 const Decl *Next = VisitStack.pop_back_val();
9303 if (!Next) {
9304 assert(!HistoryStack.empty());
9305 // Found a marker, we have gone up a level
9306 if (const FieldDecl *Hist = HistoryStack.pop_back_val())
9307 ValidTypes.insert(Hist->getType().getTypePtr());
9309 continue;
9312 // Adds everything except the original parameter declaration (which is not a
9313 // field itself) to the history stack.
9314 const RecordDecl *RD;
9315 if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
9316 HistoryStack.push_back(Field);
9318 QualType FieldTy = Field->getType();
9319 // Other field types (known to be valid or invalid) are handled while we
9320 // walk around RecordDecl::fields().
9321 assert((FieldTy->isArrayType() || FieldTy->isRecordType()) &&
9322 "Unexpected type.");
9323 const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType();
9325 RD = FieldRecTy->castAs<RecordType>()->getDecl();
9326 } else {
9327 RD = cast<RecordDecl>(Next);
9330 // Add a null marker so we know when we've gone back up a level
9331 VisitStack.push_back(nullptr);
9333 for (const auto *FD : RD->fields()) {
9334 QualType QT = FD->getType();
9336 if (ValidTypes.count(QT.getTypePtr()))
9337 continue;
9339 OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT);
9340 if (ParamType == ValidKernelParam)
9341 continue;
9343 if (ParamType == RecordKernelParam) {
9344 VisitStack.push_back(FD);
9345 continue;
9348 // OpenCL v1.2 s6.9.p:
9349 // Arguments to kernel functions that are declared to be a struct or union
9350 // do not allow OpenCL objects to be passed as elements of the struct or
9351 // union.
9352 if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
9353 ParamType == InvalidAddrSpacePtrKernelParam) {
9354 S.Diag(Param->getLocation(),
9355 diag::err_record_with_pointers_kernel_param)
9356 << PT->isUnionType()
9357 << PT;
9358 } else {
9359 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
9362 S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type)
9363 << OrigRecDecl->getDeclName();
9365 // We have an error, now let's go back up through history and show where
9366 // the offending field came from
9367 for (ArrayRef<const FieldDecl *>::const_iterator
9368 I = HistoryStack.begin() + 1,
9369 E = HistoryStack.end();
9370 I != E; ++I) {
9371 const FieldDecl *OuterField = *I;
9372 S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
9373 << OuterField->getType();
9376 S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
9377 << QT->isPointerType()
9378 << QT;
9379 D.setInvalidType();
9380 return;
9382 } while (!VisitStack.empty());
9385 /// Find the DeclContext in which a tag is implicitly declared if we see an
9386 /// elaborated type specifier in the specified context, and lookup finds
9387 /// nothing.
9388 static DeclContext *getTagInjectionContext(DeclContext *DC) {
9389 while (!DC->isFileContext() && !DC->isFunctionOrMethod())
9390 DC = DC->getParent();
9391 return DC;
9394 /// Find the Scope in which a tag is implicitly declared if we see an
9395 /// elaborated type specifier in the specified context, and lookup finds
9396 /// nothing.
9397 static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) {
9398 while (S->isClassScope() ||
9399 (LangOpts.CPlusPlus &&
9400 S->isFunctionPrototypeScope()) ||
9401 ((S->getFlags() & Scope::DeclScope) == 0) ||
9402 (S->getEntity() && S->getEntity()->isTransparentContext()))
9403 S = S->getParent();
9404 return S;
9407 /// Determine whether a declaration matches a known function in namespace std.
9408 static bool isStdBuiltin(ASTContext &Ctx, FunctionDecl *FD,
9409 unsigned BuiltinID) {
9410 switch (BuiltinID) {
9411 case Builtin::BI__GetExceptionInfo:
9412 // No type checking whatsoever.
9413 return Ctx.getTargetInfo().getCXXABI().isMicrosoft();
9415 case Builtin::BIaddressof:
9416 case Builtin::BI__addressof:
9417 case Builtin::BIforward:
9418 case Builtin::BImove:
9419 case Builtin::BImove_if_noexcept:
9420 case Builtin::BIas_const: {
9421 // Ensure that we don't treat the algorithm
9422 // OutputIt std::move(InputIt, InputIt, OutputIt)
9423 // as the builtin std::move.
9424 const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
9425 return FPT->getNumParams() == 1 && !FPT->isVariadic();
9428 default:
9429 return false;
9433 NamedDecl*
9434 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
9435 TypeSourceInfo *TInfo, LookupResult &Previous,
9436 MultiTemplateParamsArg TemplateParamListsRef,
9437 bool &AddToScope) {
9438 QualType R = TInfo->getType();
9440 assert(R->isFunctionType());
9441 if (R.getCanonicalType()->castAs<FunctionType>()->getCmseNSCallAttr())
9442 Diag(D.getIdentifierLoc(), diag::err_function_decl_cmse_ns_call);
9444 SmallVector<TemplateParameterList *, 4> TemplateParamLists;
9445 llvm::append_range(TemplateParamLists, TemplateParamListsRef);
9446 if (TemplateParameterList *Invented = D.getInventedTemplateParameterList()) {
9447 if (!TemplateParamLists.empty() &&
9448 Invented->getDepth() == TemplateParamLists.back()->getDepth())
9449 TemplateParamLists.back() = Invented;
9450 else
9451 TemplateParamLists.push_back(Invented);
9454 // TODO: consider using NameInfo for diagnostic.
9455 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
9456 DeclarationName Name = NameInfo.getName();
9457 StorageClass SC = getFunctionStorageClass(*this, D);
9459 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
9460 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
9461 diag::err_invalid_thread)
9462 << DeclSpec::getSpecifierName(TSCS);
9464 if (D.isFirstDeclarationOfMember())
9465 adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(),
9466 D.getIdentifierLoc());
9468 bool isFriend = false;
9469 FunctionTemplateDecl *FunctionTemplate = nullptr;
9470 bool isMemberSpecialization = false;
9471 bool isFunctionTemplateSpecialization = false;
9473 bool isDependentClassScopeExplicitSpecialization = false;
9474 bool HasExplicitTemplateArgs = false;
9475 TemplateArgumentListInfo TemplateArgs;
9477 bool isVirtualOkay = false;
9479 DeclContext *OriginalDC = DC;
9480 bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
9482 FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
9483 isVirtualOkay);
9484 if (!NewFD) return nullptr;
9486 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
9487 NewFD->setTopLevelDeclInObjCContainer();
9489 // Set the lexical context. If this is a function-scope declaration, or has a
9490 // C++ scope specifier, or is the object of a friend declaration, the lexical
9491 // context will be different from the semantic context.
9492 NewFD->setLexicalDeclContext(CurContext);
9494 if (IsLocalExternDecl)
9495 NewFD->setLocalExternDecl();
9497 if (getLangOpts().CPlusPlus) {
9498 // The rules for implicit inlines changed in C++20 for methods and friends
9499 // with an in-class definition (when such a definition is not attached to
9500 // the global module). User-specified 'inline' overrides this (set when
9501 // the function decl is created above).
9502 // FIXME: We need a better way to separate C++ standard and clang modules.
9503 bool ImplicitInlineCXX20 = !getLangOpts().CPlusPlusModules ||
9504 !NewFD->getOwningModule() ||
9505 NewFD->getOwningModule()->isGlobalModule() ||
9506 NewFD->getOwningModule()->isHeaderLikeModule();
9507 bool isInline = D.getDeclSpec().isInlineSpecified();
9508 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
9509 bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier();
9510 isFriend = D.getDeclSpec().isFriendSpecified();
9511 if (isFriend && !isInline && D.isFunctionDefinition()) {
9512 // Pre-C++20 [class.friend]p5
9513 // A function can be defined in a friend declaration of a
9514 // class . . . . Such a function is implicitly inline.
9515 // Post C++20 [class.friend]p7
9516 // Such a function is implicitly an inline function if it is attached
9517 // to the global module.
9518 NewFD->setImplicitlyInline(ImplicitInlineCXX20);
9521 // If this is a method defined in an __interface, and is not a constructor
9522 // or an overloaded operator, then set the pure flag (isVirtual will already
9523 // return true).
9524 if (const CXXRecordDecl *Parent =
9525 dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
9526 if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
9527 NewFD->setPure(true);
9529 // C++ [class.union]p2
9530 // A union can have member functions, but not virtual functions.
9531 if (isVirtual && Parent->isUnion()) {
9532 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
9533 NewFD->setInvalidDecl();
9535 if ((Parent->isClass() || Parent->isStruct()) &&
9536 Parent->hasAttr<SYCLSpecialClassAttr>() &&
9537 NewFD->getKind() == Decl::Kind::CXXMethod && NewFD->getIdentifier() &&
9538 NewFD->getName() == "__init" && D.isFunctionDefinition()) {
9539 if (auto *Def = Parent->getDefinition())
9540 Def->setInitMethod(true);
9544 SetNestedNameSpecifier(*this, NewFD, D);
9545 isMemberSpecialization = false;
9546 isFunctionTemplateSpecialization = false;
9547 if (D.isInvalidType())
9548 NewFD->setInvalidDecl();
9550 // Match up the template parameter lists with the scope specifier, then
9551 // determine whether we have a template or a template specialization.
9552 bool Invalid = false;
9553 TemplateParameterList *TemplateParams =
9554 MatchTemplateParametersToScopeSpecifier(
9555 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
9556 D.getCXXScopeSpec(),
9557 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
9558 ? D.getName().TemplateId
9559 : nullptr,
9560 TemplateParamLists, isFriend, isMemberSpecialization,
9561 Invalid);
9562 if (TemplateParams) {
9563 // Check that we can declare a template here.
9564 if (CheckTemplateDeclScope(S, TemplateParams))
9565 NewFD->setInvalidDecl();
9567 if (TemplateParams->size() > 0) {
9568 // This is a function template
9570 // A destructor cannot be a template.
9571 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
9572 Diag(NewFD->getLocation(), diag::err_destructor_template);
9573 NewFD->setInvalidDecl();
9576 // If we're adding a template to a dependent context, we may need to
9577 // rebuilding some of the types used within the template parameter list,
9578 // now that we know what the current instantiation is.
9579 if (DC->isDependentContext()) {
9580 ContextRAII SavedContext(*this, DC);
9581 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
9582 Invalid = true;
9585 FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
9586 NewFD->getLocation(),
9587 Name, TemplateParams,
9588 NewFD);
9589 FunctionTemplate->setLexicalDeclContext(CurContext);
9590 NewFD->setDescribedFunctionTemplate(FunctionTemplate);
9592 // For source fidelity, store the other template param lists.
9593 if (TemplateParamLists.size() > 1) {
9594 NewFD->setTemplateParameterListsInfo(Context,
9595 ArrayRef<TemplateParameterList *>(TemplateParamLists)
9596 .drop_back(1));
9598 } else {
9599 // This is a function template specialization.
9600 isFunctionTemplateSpecialization = true;
9601 // For source fidelity, store all the template param lists.
9602 if (TemplateParamLists.size() > 0)
9603 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
9605 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
9606 if (isFriend) {
9607 // We want to remove the "template<>", found here.
9608 SourceRange RemoveRange = TemplateParams->getSourceRange();
9610 // If we remove the template<> and the name is not a
9611 // template-id, we're actually silently creating a problem:
9612 // the friend declaration will refer to an untemplated decl,
9613 // and clearly the user wants a template specialization. So
9614 // we need to insert '<>' after the name.
9615 SourceLocation InsertLoc;
9616 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
9617 InsertLoc = D.getName().getSourceRange().getEnd();
9618 InsertLoc = getLocForEndOfToken(InsertLoc);
9621 Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
9622 << Name << RemoveRange
9623 << FixItHint::CreateRemoval(RemoveRange)
9624 << FixItHint::CreateInsertion(InsertLoc, "<>");
9625 Invalid = true;
9628 } else {
9629 // Check that we can declare a template here.
9630 if (!TemplateParamLists.empty() && isMemberSpecialization &&
9631 CheckTemplateDeclScope(S, TemplateParamLists.back()))
9632 NewFD->setInvalidDecl();
9634 // All template param lists were matched against the scope specifier:
9635 // this is NOT (an explicit specialization of) a template.
9636 if (TemplateParamLists.size() > 0)
9637 // For source fidelity, store all the template param lists.
9638 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
9641 if (Invalid) {
9642 NewFD->setInvalidDecl();
9643 if (FunctionTemplate)
9644 FunctionTemplate->setInvalidDecl();
9647 // C++ [dcl.fct.spec]p5:
9648 // The virtual specifier shall only be used in declarations of
9649 // nonstatic class member functions that appear within a
9650 // member-specification of a class declaration; see 10.3.
9652 if (isVirtual && !NewFD->isInvalidDecl()) {
9653 if (!isVirtualOkay) {
9654 Diag(D.getDeclSpec().getVirtualSpecLoc(),
9655 diag::err_virtual_non_function);
9656 } else if (!CurContext->isRecord()) {
9657 // 'virtual' was specified outside of the class.
9658 Diag(D.getDeclSpec().getVirtualSpecLoc(),
9659 diag::err_virtual_out_of_class)
9660 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
9661 } else if (NewFD->getDescribedFunctionTemplate()) {
9662 // C++ [temp.mem]p3:
9663 // A member function template shall not be virtual.
9664 Diag(D.getDeclSpec().getVirtualSpecLoc(),
9665 diag::err_virtual_member_function_template)
9666 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
9667 } else {
9668 // Okay: Add virtual to the method.
9669 NewFD->setVirtualAsWritten(true);
9672 if (getLangOpts().CPlusPlus14 &&
9673 NewFD->getReturnType()->isUndeducedType())
9674 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
9677 if (getLangOpts().CPlusPlus14 &&
9678 (NewFD->isDependentContext() ||
9679 (isFriend && CurContext->isDependentContext())) &&
9680 NewFD->getReturnType()->isUndeducedType()) {
9681 // If the function template is referenced directly (for instance, as a
9682 // member of the current instantiation), pretend it has a dependent type.
9683 // This is not really justified by the standard, but is the only sane
9684 // thing to do.
9685 // FIXME: For a friend function, we have not marked the function as being
9686 // a friend yet, so 'isDependentContext' on the FD doesn't work.
9687 const FunctionProtoType *FPT =
9688 NewFD->getType()->castAs<FunctionProtoType>();
9689 QualType Result = SubstAutoTypeDependent(FPT->getReturnType());
9690 NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
9691 FPT->getExtProtoInfo()));
9694 // C++ [dcl.fct.spec]p3:
9695 // The inline specifier shall not appear on a block scope function
9696 // declaration.
9697 if (isInline && !NewFD->isInvalidDecl()) {
9698 if (CurContext->isFunctionOrMethod()) {
9699 // 'inline' is not allowed on block scope function declaration.
9700 Diag(D.getDeclSpec().getInlineSpecLoc(),
9701 diag::err_inline_declaration_block_scope) << Name
9702 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
9706 // C++ [dcl.fct.spec]p6:
9707 // The explicit specifier shall be used only in the declaration of a
9708 // constructor or conversion function within its class definition;
9709 // see 12.3.1 and 12.3.2.
9710 if (hasExplicit && !NewFD->isInvalidDecl() &&
9711 !isa<CXXDeductionGuideDecl>(NewFD)) {
9712 if (!CurContext->isRecord()) {
9713 // 'explicit' was specified outside of the class.
9714 Diag(D.getDeclSpec().getExplicitSpecLoc(),
9715 diag::err_explicit_out_of_class)
9716 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
9717 } else if (!isa<CXXConstructorDecl>(NewFD) &&
9718 !isa<CXXConversionDecl>(NewFD)) {
9719 // 'explicit' was specified on a function that wasn't a constructor
9720 // or conversion function.
9721 Diag(D.getDeclSpec().getExplicitSpecLoc(),
9722 diag::err_explicit_non_ctor_or_conv_function)
9723 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
9727 ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
9728 if (ConstexprKind != ConstexprSpecKind::Unspecified) {
9729 // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
9730 // are implicitly inline.
9731 NewFD->setImplicitlyInline();
9733 // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
9734 // be either constructors or to return a literal type. Therefore,
9735 // destructors cannot be declared constexpr.
9736 if (isa<CXXDestructorDecl>(NewFD) &&
9737 (!getLangOpts().CPlusPlus20 ||
9738 ConstexprKind == ConstexprSpecKind::Consteval)) {
9739 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor)
9740 << static_cast<int>(ConstexprKind);
9741 NewFD->setConstexprKind(getLangOpts().CPlusPlus20
9742 ? ConstexprSpecKind::Unspecified
9743 : ConstexprSpecKind::Constexpr);
9745 // C++20 [dcl.constexpr]p2: An allocation function, or a
9746 // deallocation function shall not be declared with the consteval
9747 // specifier.
9748 if (ConstexprKind == ConstexprSpecKind::Consteval &&
9749 (NewFD->getOverloadedOperator() == OO_New ||
9750 NewFD->getOverloadedOperator() == OO_Array_New ||
9751 NewFD->getOverloadedOperator() == OO_Delete ||
9752 NewFD->getOverloadedOperator() == OO_Array_Delete)) {
9753 Diag(D.getDeclSpec().getConstexprSpecLoc(),
9754 diag::err_invalid_consteval_decl_kind)
9755 << NewFD;
9756 NewFD->setConstexprKind(ConstexprSpecKind::Constexpr);
9760 // If __module_private__ was specified, mark the function accordingly.
9761 if (D.getDeclSpec().isModulePrivateSpecified()) {
9762 if (isFunctionTemplateSpecialization) {
9763 SourceLocation ModulePrivateLoc
9764 = D.getDeclSpec().getModulePrivateSpecLoc();
9765 Diag(ModulePrivateLoc, diag::err_module_private_specialization)
9766 << 0
9767 << FixItHint::CreateRemoval(ModulePrivateLoc);
9768 } else {
9769 NewFD->setModulePrivate();
9770 if (FunctionTemplate)
9771 FunctionTemplate->setModulePrivate();
9775 if (isFriend) {
9776 if (FunctionTemplate) {
9777 FunctionTemplate->setObjectOfFriendDecl();
9778 FunctionTemplate->setAccess(AS_public);
9780 NewFD->setObjectOfFriendDecl();
9781 NewFD->setAccess(AS_public);
9784 // If a function is defined as defaulted or deleted, mark it as such now.
9785 // We'll do the relevant checks on defaulted / deleted functions later.
9786 switch (D.getFunctionDefinitionKind()) {
9787 case FunctionDefinitionKind::Declaration:
9788 case FunctionDefinitionKind::Definition:
9789 break;
9791 case FunctionDefinitionKind::Defaulted:
9792 NewFD->setDefaulted();
9793 break;
9795 case FunctionDefinitionKind::Deleted:
9796 NewFD->setDeletedAsWritten();
9797 break;
9800 if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
9801 D.isFunctionDefinition() && !isInline) {
9802 // Pre C++20 [class.mfct]p2:
9803 // A member function may be defined (8.4) in its class definition, in
9804 // which case it is an inline member function (7.1.2)
9805 // Post C++20 [class.mfct]p1:
9806 // If a member function is attached to the global module and is defined
9807 // in its class definition, it is inline.
9808 NewFD->setImplicitlyInline(ImplicitInlineCXX20);
9811 if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
9812 !CurContext->isRecord()) {
9813 // C++ [class.static]p1:
9814 // A data or function member of a class may be declared static
9815 // in a class definition, in which case it is a static member of
9816 // the class.
9818 // Complain about the 'static' specifier if it's on an out-of-line
9819 // member function definition.
9821 // MSVC permits the use of a 'static' storage specifier on an out-of-line
9822 // member function template declaration and class member template
9823 // declaration (MSVC versions before 2015), warn about this.
9824 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
9825 ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
9826 cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) ||
9827 (getLangOpts().MSVCCompat && NewFD->getDescribedFunctionTemplate()))
9828 ? diag::ext_static_out_of_line : diag::err_static_out_of_line)
9829 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
9832 // C++11 [except.spec]p15:
9833 // A deallocation function with no exception-specification is treated
9834 // as if it were specified with noexcept(true).
9835 const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
9836 if ((Name.getCXXOverloadedOperator() == OO_Delete ||
9837 Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
9838 getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
9839 NewFD->setType(Context.getFunctionType(
9840 FPT->getReturnType(), FPT->getParamTypes(),
9841 FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
9843 // C++20 [dcl.inline]/7
9844 // If an inline function or variable that is attached to a named module
9845 // is declared in a definition domain, it shall be defined in that
9846 // domain.
9847 // So, if the current declaration does not have a definition, we must
9848 // check at the end of the TU (or when the PMF starts) to see that we
9849 // have a definition at that point.
9850 if (isInline && !D.isFunctionDefinition() && getLangOpts().CPlusPlus20 &&
9851 NewFD->hasOwningModule() &&
9852 NewFD->getOwningModule()->isModulePurview()) {
9853 PendingInlineFuncDecls.insert(NewFD);
9857 // Filter out previous declarations that don't match the scope.
9858 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
9859 D.getCXXScopeSpec().isNotEmpty() ||
9860 isMemberSpecialization ||
9861 isFunctionTemplateSpecialization);
9863 // Handle GNU asm-label extension (encoded as an attribute).
9864 if (Expr *E = (Expr*) D.getAsmLabel()) {
9865 // The parser guarantees this is a string.
9866 StringLiteral *SE = cast<StringLiteral>(E);
9867 NewFD->addAttr(AsmLabelAttr::Create(Context, SE->getString(),
9868 /*IsLiteralLabel=*/true,
9869 SE->getStrTokenLoc(0)));
9870 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
9871 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
9872 ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
9873 if (I != ExtnameUndeclaredIdentifiers.end()) {
9874 if (isDeclExternC(NewFD)) {
9875 NewFD->addAttr(I->second);
9876 ExtnameUndeclaredIdentifiers.erase(I);
9877 } else
9878 Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
9879 << /*Variable*/0 << NewFD;
9883 // Copy the parameter declarations from the declarator D to the function
9884 // declaration NewFD, if they are available. First scavenge them into Params.
9885 SmallVector<ParmVarDecl*, 16> Params;
9886 unsigned FTIIdx;
9887 if (D.isFunctionDeclarator(FTIIdx)) {
9888 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun;
9890 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
9891 // function that takes no arguments, not a function that takes a
9892 // single void argument.
9893 // We let through "const void" here because Sema::GetTypeForDeclarator
9894 // already checks for that case.
9895 if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
9896 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
9897 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
9898 assert(Param->getDeclContext() != NewFD && "Was set before ?");
9899 Param->setDeclContext(NewFD);
9900 Params.push_back(Param);
9902 if (Param->isInvalidDecl())
9903 NewFD->setInvalidDecl();
9907 if (!getLangOpts().CPlusPlus) {
9908 // In C, find all the tag declarations from the prototype and move them
9909 // into the function DeclContext. Remove them from the surrounding tag
9910 // injection context of the function, which is typically but not always
9911 // the TU.
9912 DeclContext *PrototypeTagContext =
9913 getTagInjectionContext(NewFD->getLexicalDeclContext());
9914 for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) {
9915 auto *TD = dyn_cast<TagDecl>(NonParmDecl);
9917 // We don't want to reparent enumerators. Look at their parent enum
9918 // instead.
9919 if (!TD) {
9920 if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl))
9921 TD = cast<EnumDecl>(ECD->getDeclContext());
9923 if (!TD)
9924 continue;
9925 DeclContext *TagDC = TD->getLexicalDeclContext();
9926 if (!TagDC->containsDecl(TD))
9927 continue;
9928 TagDC->removeDecl(TD);
9929 TD->setDeclContext(NewFD);
9930 NewFD->addDecl(TD);
9932 // Preserve the lexical DeclContext if it is not the surrounding tag
9933 // injection context of the FD. In this example, the semantic context of
9934 // E will be f and the lexical context will be S, while both the
9935 // semantic and lexical contexts of S will be f:
9936 // void f(struct S { enum E { a } f; } s);
9937 if (TagDC != PrototypeTagContext)
9938 TD->setLexicalDeclContext(TagDC);
9941 } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
9942 // When we're declaring a function with a typedef, typeof, etc as in the
9943 // following example, we'll need to synthesize (unnamed)
9944 // parameters for use in the declaration.
9946 // @code
9947 // typedef void fn(int);
9948 // fn f;
9949 // @endcode
9951 // Synthesize a parameter for each argument type.
9952 for (const auto &AI : FT->param_types()) {
9953 ParmVarDecl *Param =
9954 BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
9955 Param->setScopeInfo(0, Params.size());
9956 Params.push_back(Param);
9958 } else {
9959 assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
9960 "Should not need args for typedef of non-prototype fn");
9963 // Finally, we know we have the right number of parameters, install them.
9964 NewFD->setParams(Params);
9966 if (D.getDeclSpec().isNoreturnSpecified())
9967 NewFD->addAttr(C11NoReturnAttr::Create(Context,
9968 D.getDeclSpec().getNoreturnSpecLoc(),
9969 AttributeCommonInfo::AS_Keyword));
9971 // Functions returning a variably modified type violate C99 6.7.5.2p2
9972 // because all functions have linkage.
9973 if (!NewFD->isInvalidDecl() &&
9974 NewFD->getReturnType()->isVariablyModifiedType()) {
9975 Diag(NewFD->getLocation(), diag::err_vm_func_decl);
9976 NewFD->setInvalidDecl();
9979 // Apply an implicit SectionAttr if '#pragma clang section text' is active
9980 if (PragmaClangTextSection.Valid && D.isFunctionDefinition() &&
9981 !NewFD->hasAttr<SectionAttr>())
9982 NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(
9983 Context, PragmaClangTextSection.SectionName,
9984 PragmaClangTextSection.PragmaLocation, AttributeCommonInfo::AS_Pragma));
9986 // Apply an implicit SectionAttr if #pragma code_seg is active.
9987 if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
9988 !NewFD->hasAttr<SectionAttr>()) {
9989 NewFD->addAttr(SectionAttr::CreateImplicit(
9990 Context, CodeSegStack.CurrentValue->getString(),
9991 CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma,
9992 SectionAttr::Declspec_allocate));
9993 if (UnifySection(CodeSegStack.CurrentValue->getString(),
9994 ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
9995 ASTContext::PSF_Read,
9996 NewFD))
9997 NewFD->dropAttr<SectionAttr>();
10000 // Apply an implicit CodeSegAttr from class declspec or
10001 // apply an implicit SectionAttr from #pragma code_seg if active.
10002 if (!NewFD->hasAttr<CodeSegAttr>()) {
10003 if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD,
10004 D.isFunctionDefinition())) {
10005 NewFD->addAttr(SAttr);
10009 // Handle attributes.
10010 ProcessDeclAttributes(S, NewFD, D);
10012 if (getLangOpts().OpenCL) {
10013 // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
10014 // type declaration will generate a compilation error.
10015 LangAS AddressSpace = NewFD->getReturnType().getAddressSpace();
10016 if (AddressSpace != LangAS::Default) {
10017 Diag(NewFD->getLocation(),
10018 diag::err_opencl_return_value_with_address_space);
10019 NewFD->setInvalidDecl();
10023 if (getLangOpts().HLSL) {
10024 auto &TargetInfo = getASTContext().getTargetInfo();
10025 // Skip operator overload which not identifier.
10026 // Also make sure NewFD is in translation-unit scope.
10027 if (!NewFD->isInvalidDecl() && Name.isIdentifier() &&
10028 NewFD->getName() == TargetInfo.getTargetOpts().HLSLEntry &&
10029 S->getDepth() == 0) {
10030 CheckHLSLEntryPoint(NewFD);
10031 if (!NewFD->isInvalidDecl()) {
10032 auto TripleShaderType = TargetInfo.getTriple().getEnvironment();
10033 AttributeCommonInfo AL(NewFD->getBeginLoc());
10034 HLSLShaderAttr::ShaderType ShaderType = (HLSLShaderAttr::ShaderType)(
10035 TripleShaderType - (uint32_t)llvm::Triple::Pixel);
10036 // To share code with HLSLShaderAttr, add HLSLShaderAttr to entry
10037 // function.
10038 if (HLSLShaderAttr *Attr = mergeHLSLShaderAttr(NewFD, AL, ShaderType))
10039 NewFD->addAttr(Attr);
10044 if (!getLangOpts().CPlusPlus) {
10045 // Perform semantic checking on the function declaration.
10046 if (!NewFD->isInvalidDecl() && NewFD->isMain())
10047 CheckMain(NewFD, D.getDeclSpec());
10049 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
10050 CheckMSVCRTEntryPoint(NewFD);
10052 if (!NewFD->isInvalidDecl())
10053 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
10054 isMemberSpecialization,
10055 D.isFunctionDefinition()));
10056 else if (!Previous.empty())
10057 // Recover gracefully from an invalid redeclaration.
10058 D.setRedeclaration(true);
10059 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
10060 Previous.getResultKind() != LookupResult::FoundOverloaded) &&
10061 "previous declaration set still overloaded");
10063 // Diagnose no-prototype function declarations with calling conventions that
10064 // don't support variadic calls. Only do this in C and do it after merging
10065 // possibly prototyped redeclarations.
10066 const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
10067 if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
10068 CallingConv CC = FT->getExtInfo().getCC();
10069 if (!supportsVariadicCall(CC)) {
10070 // Windows system headers sometimes accidentally use stdcall without
10071 // (void) parameters, so we relax this to a warning.
10072 int DiagID =
10073 CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
10074 Diag(NewFD->getLocation(), DiagID)
10075 << FunctionType::getNameForCallConv(CC);
10079 if (NewFD->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() ||
10080 NewFD->getReturnType().hasNonTrivialToPrimitiveCopyCUnion())
10081 checkNonTrivialCUnion(NewFD->getReturnType(),
10082 NewFD->getReturnTypeSourceRange().getBegin(),
10083 NTCUC_FunctionReturn, NTCUK_Destruct|NTCUK_Copy);
10084 } else {
10085 // C++11 [replacement.functions]p3:
10086 // The program's definitions shall not be specified as inline.
10088 // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
10090 // Suppress the diagnostic if the function is __attribute__((used)), since
10091 // that forces an external definition to be emitted.
10092 if (D.getDeclSpec().isInlineSpecified() &&
10093 NewFD->isReplaceableGlobalAllocationFunction() &&
10094 !NewFD->hasAttr<UsedAttr>())
10095 Diag(D.getDeclSpec().getInlineSpecLoc(),
10096 diag::ext_operator_new_delete_declared_inline)
10097 << NewFD->getDeclName();
10099 // If the declarator is a template-id, translate the parser's template
10100 // argument list into our AST format.
10101 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
10102 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
10103 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
10104 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
10105 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
10106 TemplateId->NumArgs);
10107 translateTemplateArguments(TemplateArgsPtr,
10108 TemplateArgs);
10110 HasExplicitTemplateArgs = true;
10112 if (NewFD->isInvalidDecl()) {
10113 HasExplicitTemplateArgs = false;
10114 } else if (FunctionTemplate) {
10115 // Function template with explicit template arguments.
10116 Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
10117 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
10119 HasExplicitTemplateArgs = false;
10120 } else {
10121 assert((isFunctionTemplateSpecialization ||
10122 D.getDeclSpec().isFriendSpecified()) &&
10123 "should have a 'template<>' for this decl");
10124 // "friend void foo<>(int);" is an implicit specialization decl.
10125 isFunctionTemplateSpecialization = true;
10127 } else if (isFriend && isFunctionTemplateSpecialization) {
10128 // This combination is only possible in a recovery case; the user
10129 // wrote something like:
10130 // template <> friend void foo(int);
10131 // which we're recovering from as if the user had written:
10132 // friend void foo<>(int);
10133 // Go ahead and fake up a template id.
10134 HasExplicitTemplateArgs = true;
10135 TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
10136 TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
10139 // We do not add HD attributes to specializations here because
10140 // they may have different constexpr-ness compared to their
10141 // templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
10142 // may end up with different effective targets. Instead, a
10143 // specialization inherits its target attributes from its template
10144 // in the CheckFunctionTemplateSpecialization() call below.
10145 if (getLangOpts().CUDA && !isFunctionTemplateSpecialization)
10146 maybeAddCUDAHostDeviceAttrs(NewFD, Previous);
10148 // If it's a friend (and only if it's a friend), it's possible
10149 // that either the specialized function type or the specialized
10150 // template is dependent, and therefore matching will fail. In
10151 // this case, don't check the specialization yet.
10152 if (isFunctionTemplateSpecialization && isFriend &&
10153 (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
10154 TemplateSpecializationType::anyInstantiationDependentTemplateArguments(
10155 TemplateArgs.arguments()))) {
10156 assert(HasExplicitTemplateArgs &&
10157 "friend function specialization without template args");
10158 if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
10159 Previous))
10160 NewFD->setInvalidDecl();
10161 } else if (isFunctionTemplateSpecialization) {
10162 if (CurContext->isDependentContext() && CurContext->isRecord()
10163 && !isFriend) {
10164 isDependentClassScopeExplicitSpecialization = true;
10165 } else if (!NewFD->isInvalidDecl() &&
10166 CheckFunctionTemplateSpecialization(
10167 NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr),
10168 Previous))
10169 NewFD->setInvalidDecl();
10171 // C++ [dcl.stc]p1:
10172 // A storage-class-specifier shall not be specified in an explicit
10173 // specialization (14.7.3)
10174 FunctionTemplateSpecializationInfo *Info =
10175 NewFD->getTemplateSpecializationInfo();
10176 if (Info && SC != SC_None) {
10177 if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
10178 Diag(NewFD->getLocation(),
10179 diag::err_explicit_specialization_inconsistent_storage_class)
10180 << SC
10181 << FixItHint::CreateRemoval(
10182 D.getDeclSpec().getStorageClassSpecLoc());
10184 else
10185 Diag(NewFD->getLocation(),
10186 diag::ext_explicit_specialization_storage_class)
10187 << FixItHint::CreateRemoval(
10188 D.getDeclSpec().getStorageClassSpecLoc());
10190 } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) {
10191 if (CheckMemberSpecialization(NewFD, Previous))
10192 NewFD->setInvalidDecl();
10195 // Perform semantic checking on the function declaration.
10196 if (!isDependentClassScopeExplicitSpecialization) {
10197 if (!NewFD->isInvalidDecl() && NewFD->isMain())
10198 CheckMain(NewFD, D.getDeclSpec());
10200 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
10201 CheckMSVCRTEntryPoint(NewFD);
10203 if (!NewFD->isInvalidDecl())
10204 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
10205 isMemberSpecialization,
10206 D.isFunctionDefinition()));
10207 else if (!Previous.empty())
10208 // Recover gracefully from an invalid redeclaration.
10209 D.setRedeclaration(true);
10212 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
10213 Previous.getResultKind() != LookupResult::FoundOverloaded) &&
10214 "previous declaration set still overloaded");
10216 NamedDecl *PrincipalDecl = (FunctionTemplate
10217 ? cast<NamedDecl>(FunctionTemplate)
10218 : NewFD);
10220 if (isFriend && NewFD->getPreviousDecl()) {
10221 AccessSpecifier Access = AS_public;
10222 if (!NewFD->isInvalidDecl())
10223 Access = NewFD->getPreviousDecl()->getAccess();
10225 NewFD->setAccess(Access);
10226 if (FunctionTemplate) FunctionTemplate->setAccess(Access);
10229 if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
10230 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
10231 PrincipalDecl->setNonMemberOperator();
10233 // If we have a function template, check the template parameter
10234 // list. This will check and merge default template arguments.
10235 if (FunctionTemplate) {
10236 FunctionTemplateDecl *PrevTemplate =
10237 FunctionTemplate->getPreviousDecl();
10238 CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
10239 PrevTemplate ? PrevTemplate->getTemplateParameters()
10240 : nullptr,
10241 D.getDeclSpec().isFriendSpecified()
10242 ? (D.isFunctionDefinition()
10243 ? TPC_FriendFunctionTemplateDefinition
10244 : TPC_FriendFunctionTemplate)
10245 : (D.getCXXScopeSpec().isSet() &&
10246 DC && DC->isRecord() &&
10247 DC->isDependentContext())
10248 ? TPC_ClassTemplateMember
10249 : TPC_FunctionTemplate);
10252 if (NewFD->isInvalidDecl()) {
10253 // Ignore all the rest of this.
10254 } else if (!D.isRedeclaration()) {
10255 struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
10256 AddToScope };
10257 // Fake up an access specifier if it's supposed to be a class member.
10258 if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
10259 NewFD->setAccess(AS_public);
10261 // Qualified decls generally require a previous declaration.
10262 if (D.getCXXScopeSpec().isSet()) {
10263 // ...with the major exception of templated-scope or
10264 // dependent-scope friend declarations.
10266 // TODO: we currently also suppress this check in dependent
10267 // contexts because (1) the parameter depth will be off when
10268 // matching friend templates and (2) we might actually be
10269 // selecting a friend based on a dependent factor. But there
10270 // are situations where these conditions don't apply and we
10271 // can actually do this check immediately.
10273 // Unless the scope is dependent, it's always an error if qualified
10274 // redeclaration lookup found nothing at all. Diagnose that now;
10275 // nothing will diagnose that error later.
10276 if (isFriend &&
10277 (D.getCXXScopeSpec().getScopeRep()->isDependent() ||
10278 (!Previous.empty() && CurContext->isDependentContext()))) {
10279 // ignore these
10280 } else if (NewFD->isCPUDispatchMultiVersion() ||
10281 NewFD->isCPUSpecificMultiVersion()) {
10282 // ignore this, we allow the redeclaration behavior here to create new
10283 // versions of the function.
10284 } else {
10285 // The user tried to provide an out-of-line definition for a
10286 // function that is a member of a class or namespace, but there
10287 // was no such member function declared (C++ [class.mfct]p2,
10288 // C++ [namespace.memdef]p2). For example:
10290 // class X {
10291 // void f() const;
10292 // };
10294 // void X::f() { } // ill-formed
10296 // Complain about this problem, and attempt to suggest close
10297 // matches (e.g., those that differ only in cv-qualifiers and
10298 // whether the parameter types are references).
10300 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
10301 *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
10302 AddToScope = ExtraArgs.AddToScope;
10303 return Result;
10307 // Unqualified local friend declarations are required to resolve
10308 // to something.
10309 } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
10310 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
10311 *this, Previous, NewFD, ExtraArgs, true, S)) {
10312 AddToScope = ExtraArgs.AddToScope;
10313 return Result;
10316 } else if (!D.isFunctionDefinition() &&
10317 isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
10318 !isFriend && !isFunctionTemplateSpecialization &&
10319 !isMemberSpecialization) {
10320 // An out-of-line member function declaration must also be a
10321 // definition (C++ [class.mfct]p2).
10322 // Note that this is not the case for explicit specializations of
10323 // function templates or member functions of class templates, per
10324 // C++ [temp.expl.spec]p2. We also allow these declarations as an
10325 // extension for compatibility with old SWIG code which likes to
10326 // generate them.
10327 Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
10328 << D.getCXXScopeSpec().getRange();
10332 // If this is the first declaration of a library builtin function, add
10333 // attributes as appropriate.
10334 if (!D.isRedeclaration()) {
10335 if (IdentifierInfo *II = Previous.getLookupName().getAsIdentifierInfo()) {
10336 if (unsigned BuiltinID = II->getBuiltinID()) {
10337 bool InStdNamespace = Context.BuiltinInfo.isInStdNamespace(BuiltinID);
10338 if (!InStdNamespace &&
10339 NewFD->getDeclContext()->getRedeclContext()->isFileContext()) {
10340 if (NewFD->getLanguageLinkage() == CLanguageLinkage) {
10341 // Validate the type matches unless this builtin is specified as
10342 // matching regardless of its declared type.
10343 if (Context.BuiltinInfo.allowTypeMismatch(BuiltinID)) {
10344 NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
10345 } else {
10346 ASTContext::GetBuiltinTypeError Error;
10347 LookupNecessaryTypesForBuiltin(S, BuiltinID);
10348 QualType BuiltinType = Context.GetBuiltinType(BuiltinID, Error);
10350 if (!Error && !BuiltinType.isNull() &&
10351 Context.hasSameFunctionTypeIgnoringExceptionSpec(
10352 NewFD->getType(), BuiltinType))
10353 NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
10356 } else if (InStdNamespace && NewFD->isInStdNamespace() &&
10357 isStdBuiltin(Context, NewFD, BuiltinID)) {
10358 NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
10364 ProcessPragmaWeak(S, NewFD);
10365 checkAttributesAfterMerging(*this, *NewFD);
10367 AddKnownFunctionAttributes(NewFD);
10369 if (NewFD->hasAttr<OverloadableAttr>() &&
10370 !NewFD->getType()->getAs<FunctionProtoType>()) {
10371 Diag(NewFD->getLocation(),
10372 diag::err_attribute_overloadable_no_prototype)
10373 << NewFD;
10374 NewFD->dropAttr<OverloadableAttr>();
10377 // If there's a #pragma GCC visibility in scope, and this isn't a class
10378 // member, set the visibility of this function.
10379 if (!DC->isRecord() && NewFD->isExternallyVisible())
10380 AddPushedVisibilityAttribute(NewFD);
10382 // If there's a #pragma clang arc_cf_code_audited in scope, consider
10383 // marking the function.
10384 AddCFAuditedAttribute(NewFD);
10386 // If this is a function definition, check if we have to apply any
10387 // attributes (i.e. optnone and no_builtin) due to a pragma.
10388 if (D.isFunctionDefinition()) {
10389 AddRangeBasedOptnone(NewFD);
10390 AddImplicitMSFunctionNoBuiltinAttr(NewFD);
10391 AddSectionMSAllocText(NewFD);
10392 ModifyFnAttributesMSPragmaOptimize(NewFD);
10395 // If this is the first declaration of an extern C variable, update
10396 // the map of such variables.
10397 if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
10398 isIncompleteDeclExternC(*this, NewFD))
10399 RegisterLocallyScopedExternCDecl(NewFD, S);
10401 // Set this FunctionDecl's range up to the right paren.
10402 NewFD->setRangeEnd(D.getSourceRange().getEnd());
10404 if (D.isRedeclaration() && !Previous.empty()) {
10405 NamedDecl *Prev = Previous.getRepresentativeDecl();
10406 checkDLLAttributeRedeclaration(*this, Prev, NewFD,
10407 isMemberSpecialization ||
10408 isFunctionTemplateSpecialization,
10409 D.isFunctionDefinition());
10412 if (getLangOpts().CUDA) {
10413 IdentifierInfo *II = NewFD->getIdentifier();
10414 if (II && II->isStr(getCudaConfigureFuncName()) &&
10415 !NewFD->isInvalidDecl() &&
10416 NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
10417 if (!R->castAs<FunctionType>()->getReturnType()->isScalarType())
10418 Diag(NewFD->getLocation(), diag::err_config_scalar_return)
10419 << getCudaConfigureFuncName();
10420 Context.setcudaConfigureCallDecl(NewFD);
10423 // Variadic functions, other than a *declaration* of printf, are not allowed
10424 // in device-side CUDA code, unless someone passed
10425 // -fcuda-allow-variadic-functions.
10426 if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() &&
10427 (NewFD->hasAttr<CUDADeviceAttr>() ||
10428 NewFD->hasAttr<CUDAGlobalAttr>()) &&
10429 !(II && II->isStr("printf") && NewFD->isExternC() &&
10430 !D.isFunctionDefinition())) {
10431 Diag(NewFD->getLocation(), diag::err_variadic_device_fn);
10435 MarkUnusedFileScopedDecl(NewFD);
10439 if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) {
10440 // OpenCL v1.2 s6.8 static is invalid for kernel functions.
10441 if (SC == SC_Static) {
10442 Diag(D.getIdentifierLoc(), diag::err_static_kernel);
10443 D.setInvalidType();
10446 // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
10447 if (!NewFD->getReturnType()->isVoidType()) {
10448 SourceRange RTRange = NewFD->getReturnTypeSourceRange();
10449 Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
10450 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
10451 : FixItHint());
10452 D.setInvalidType();
10455 llvm::SmallPtrSet<const Type *, 16> ValidTypes;
10456 for (auto *Param : NewFD->parameters())
10457 checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
10459 if (getLangOpts().OpenCLCPlusPlus) {
10460 if (DC->isRecord()) {
10461 Diag(D.getIdentifierLoc(), diag::err_method_kernel);
10462 D.setInvalidType();
10464 if (FunctionTemplate) {
10465 Diag(D.getIdentifierLoc(), diag::err_template_kernel);
10466 D.setInvalidType();
10471 if (getLangOpts().CPlusPlus) {
10472 if (FunctionTemplate) {
10473 if (NewFD->isInvalidDecl())
10474 FunctionTemplate->setInvalidDecl();
10475 return FunctionTemplate;
10478 if (isMemberSpecialization && !NewFD->isInvalidDecl())
10479 CompleteMemberSpecialization(NewFD, Previous);
10482 for (const ParmVarDecl *Param : NewFD->parameters()) {
10483 QualType PT = Param->getType();
10485 // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
10486 // types.
10487 if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
10488 if(const PipeType *PipeTy = PT->getAs<PipeType>()) {
10489 QualType ElemTy = PipeTy->getElementType();
10490 if (ElemTy->isReferenceType() || ElemTy->isPointerType()) {
10491 Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type );
10492 D.setInvalidType();
10498 // Here we have an function template explicit specialization at class scope.
10499 // The actual specialization will be postponed to template instatiation
10500 // time via the ClassScopeFunctionSpecializationDecl node.
10501 if (isDependentClassScopeExplicitSpecialization) {
10502 ClassScopeFunctionSpecializationDecl *NewSpec =
10503 ClassScopeFunctionSpecializationDecl::Create(
10504 Context, CurContext, NewFD->getLocation(),
10505 cast<CXXMethodDecl>(NewFD),
10506 HasExplicitTemplateArgs, TemplateArgs);
10507 CurContext->addDecl(NewSpec);
10508 AddToScope = false;
10511 // Diagnose availability attributes. Availability cannot be used on functions
10512 // that are run during load/unload.
10513 if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) {
10514 if (NewFD->hasAttr<ConstructorAttr>()) {
10515 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
10516 << 1;
10517 NewFD->dropAttr<AvailabilityAttr>();
10519 if (NewFD->hasAttr<DestructorAttr>()) {
10520 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
10521 << 2;
10522 NewFD->dropAttr<AvailabilityAttr>();
10526 // Diagnose no_builtin attribute on function declaration that are not a
10527 // definition.
10528 // FIXME: We should really be doing this in
10529 // SemaDeclAttr.cpp::handleNoBuiltinAttr, unfortunately we only have access to
10530 // the FunctionDecl and at this point of the code
10531 // FunctionDecl::isThisDeclarationADefinition() which always returns `false`
10532 // because Sema::ActOnStartOfFunctionDef has not been called yet.
10533 if (const auto *NBA = NewFD->getAttr<NoBuiltinAttr>())
10534 switch (D.getFunctionDefinitionKind()) {
10535 case FunctionDefinitionKind::Defaulted:
10536 case FunctionDefinitionKind::Deleted:
10537 Diag(NBA->getLocation(),
10538 diag::err_attribute_no_builtin_on_defaulted_deleted_function)
10539 << NBA->getSpelling();
10540 break;
10541 case FunctionDefinitionKind::Declaration:
10542 Diag(NBA->getLocation(), diag::err_attribute_no_builtin_on_non_definition)
10543 << NBA->getSpelling();
10544 break;
10545 case FunctionDefinitionKind::Definition:
10546 break;
10549 return NewFD;
10552 /// Return a CodeSegAttr from a containing class. The Microsoft docs say
10553 /// when __declspec(code_seg) "is applied to a class, all member functions of
10554 /// the class and nested classes -- this includes compiler-generated special
10555 /// member functions -- are put in the specified segment."
10556 /// The actual behavior is a little more complicated. The Microsoft compiler
10557 /// won't check outer classes if there is an active value from #pragma code_seg.
10558 /// The CodeSeg is always applied from the direct parent but only from outer
10559 /// classes when the #pragma code_seg stack is empty. See:
10560 /// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer
10561 /// available since MS has removed the page.
10562 static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) {
10563 const auto *Method = dyn_cast<CXXMethodDecl>(FD);
10564 if (!Method)
10565 return nullptr;
10566 const CXXRecordDecl *Parent = Method->getParent();
10567 if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
10568 Attr *NewAttr = SAttr->clone(S.getASTContext());
10569 NewAttr->setImplicit(true);
10570 return NewAttr;
10573 // The Microsoft compiler won't check outer classes for the CodeSeg
10574 // when the #pragma code_seg stack is active.
10575 if (S.CodeSegStack.CurrentValue)
10576 return nullptr;
10578 while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) {
10579 if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
10580 Attr *NewAttr = SAttr->clone(S.getASTContext());
10581 NewAttr->setImplicit(true);
10582 return NewAttr;
10585 return nullptr;
10588 /// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a
10589 /// containing class. Otherwise it will return implicit SectionAttr if the
10590 /// function is a definition and there is an active value on CodeSegStack
10591 /// (from the current #pragma code-seg value).
10593 /// \param FD Function being declared.
10594 /// \param IsDefinition Whether it is a definition or just a declaration.
10595 /// \returns A CodeSegAttr or SectionAttr to apply to the function or
10596 /// nullptr if no attribute should be added.
10597 Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
10598 bool IsDefinition) {
10599 if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD))
10600 return A;
10601 if (!FD->hasAttr<SectionAttr>() && IsDefinition &&
10602 CodeSegStack.CurrentValue)
10603 return SectionAttr::CreateImplicit(
10604 getASTContext(), CodeSegStack.CurrentValue->getString(),
10605 CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma,
10606 SectionAttr::Declspec_allocate);
10607 return nullptr;
10610 /// Determines if we can perform a correct type check for \p D as a
10611 /// redeclaration of \p PrevDecl. If not, we can generally still perform a
10612 /// best-effort check.
10614 /// \param NewD The new declaration.
10615 /// \param OldD The old declaration.
10616 /// \param NewT The portion of the type of the new declaration to check.
10617 /// \param OldT The portion of the type of the old declaration to check.
10618 bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
10619 QualType NewT, QualType OldT) {
10620 if (!NewD->getLexicalDeclContext()->isDependentContext())
10621 return true;
10623 // For dependently-typed local extern declarations and friends, we can't
10624 // perform a correct type check in general until instantiation:
10626 // int f();
10627 // template<typename T> void g() { T f(); }
10629 // (valid if g() is only instantiated with T = int).
10630 if (NewT->isDependentType() &&
10631 (NewD->isLocalExternDecl() || NewD->getFriendObjectKind()))
10632 return false;
10634 // Similarly, if the previous declaration was a dependent local extern
10635 // declaration, we don't really know its type yet.
10636 if (OldT->isDependentType() && OldD->isLocalExternDecl())
10637 return false;
10639 return true;
10642 /// Checks if the new declaration declared in dependent context must be
10643 /// put in the same redeclaration chain as the specified declaration.
10645 /// \param D Declaration that is checked.
10646 /// \param PrevDecl Previous declaration found with proper lookup method for the
10647 /// same declaration name.
10648 /// \returns True if D must be added to the redeclaration chain which PrevDecl
10649 /// belongs to.
10651 bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) {
10652 if (!D->getLexicalDeclContext()->isDependentContext())
10653 return true;
10655 // Don't chain dependent friend function definitions until instantiation, to
10656 // permit cases like
10658 // void func();
10659 // template<typename T> class C1 { friend void func() {} };
10660 // template<typename T> class C2 { friend void func() {} };
10662 // ... which is valid if only one of C1 and C2 is ever instantiated.
10664 // FIXME: This need only apply to function definitions. For now, we proxy
10665 // this by checking for a file-scope function. We do not want this to apply
10666 // to friend declarations nominating member functions, because that gets in
10667 // the way of access checks.
10668 if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext())
10669 return false;
10671 auto *VD = dyn_cast<ValueDecl>(D);
10672 auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl);
10673 return !VD || !PrevVD ||
10674 canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(),
10675 PrevVD->getType());
10678 /// Check the target attribute of the function for MultiVersion
10679 /// validity.
10681 /// Returns true if there was an error, false otherwise.
10682 static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) {
10683 const auto *TA = FD->getAttr<TargetAttr>();
10684 assert(TA && "MultiVersion Candidate requires a target attribute");
10685 ParsedTargetAttr ParseInfo = TA->parse();
10686 const TargetInfo &TargetInfo = S.Context.getTargetInfo();
10687 enum ErrType { Feature = 0, Architecture = 1 };
10689 if (!ParseInfo.Architecture.empty() &&
10690 !TargetInfo.validateCpuIs(ParseInfo.Architecture)) {
10691 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
10692 << Architecture << ParseInfo.Architecture;
10693 return true;
10696 for (const auto &Feat : ParseInfo.Features) {
10697 auto BareFeat = StringRef{Feat}.substr(1);
10698 if (Feat[0] == '-') {
10699 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
10700 << Feature << ("no-" + BareFeat).str();
10701 return true;
10704 if (!TargetInfo.validateCpuSupports(BareFeat) ||
10705 !TargetInfo.isValidFeatureName(BareFeat)) {
10706 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
10707 << Feature << BareFeat;
10708 return true;
10711 return false;
10714 // Provide a white-list of attributes that are allowed to be combined with
10715 // multiversion functions.
10716 static bool AttrCompatibleWithMultiVersion(attr::Kind Kind,
10717 MultiVersionKind MVKind) {
10718 // Note: this list/diagnosis must match the list in
10719 // checkMultiversionAttributesAllSame.
10720 switch (Kind) {
10721 default:
10722 return false;
10723 case attr::Used:
10724 return MVKind == MultiVersionKind::Target;
10725 case attr::NonNull:
10726 case attr::NoThrow:
10727 return true;
10731 static bool checkNonMultiVersionCompatAttributes(Sema &S,
10732 const FunctionDecl *FD,
10733 const FunctionDecl *CausedFD,
10734 MultiVersionKind MVKind) {
10735 const auto Diagnose = [FD, CausedFD, MVKind](Sema &S, const Attr *A) {
10736 S.Diag(FD->getLocation(), diag::err_multiversion_disallowed_other_attr)
10737 << static_cast<unsigned>(MVKind) << A;
10738 if (CausedFD)
10739 S.Diag(CausedFD->getLocation(), diag::note_multiversioning_caused_here);
10740 return true;
10743 for (const Attr *A : FD->attrs()) {
10744 switch (A->getKind()) {
10745 case attr::CPUDispatch:
10746 case attr::CPUSpecific:
10747 if (MVKind != MultiVersionKind::CPUDispatch &&
10748 MVKind != MultiVersionKind::CPUSpecific)
10749 return Diagnose(S, A);
10750 break;
10751 case attr::Target:
10752 if (MVKind != MultiVersionKind::Target)
10753 return Diagnose(S, A);
10754 break;
10755 case attr::TargetClones:
10756 if (MVKind != MultiVersionKind::TargetClones)
10757 return Diagnose(S, A);
10758 break;
10759 default:
10760 if (!AttrCompatibleWithMultiVersion(A->getKind(), MVKind))
10761 return Diagnose(S, A);
10762 break;
10765 return false;
10768 bool Sema::areMultiversionVariantFunctionsCompatible(
10769 const FunctionDecl *OldFD, const FunctionDecl *NewFD,
10770 const PartialDiagnostic &NoProtoDiagID,
10771 const PartialDiagnosticAt &NoteCausedDiagIDAt,
10772 const PartialDiagnosticAt &NoSupportDiagIDAt,
10773 const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported,
10774 bool ConstexprSupported, bool CLinkageMayDiffer) {
10775 enum DoesntSupport {
10776 FuncTemplates = 0,
10777 VirtFuncs = 1,
10778 DeducedReturn = 2,
10779 Constructors = 3,
10780 Destructors = 4,
10781 DeletedFuncs = 5,
10782 DefaultedFuncs = 6,
10783 ConstexprFuncs = 7,
10784 ConstevalFuncs = 8,
10785 Lambda = 9,
10787 enum Different {
10788 CallingConv = 0,
10789 ReturnType = 1,
10790 ConstexprSpec = 2,
10791 InlineSpec = 3,
10792 Linkage = 4,
10793 LanguageLinkage = 5,
10796 if (NoProtoDiagID.getDiagID() != 0 && OldFD &&
10797 !OldFD->getType()->getAs<FunctionProtoType>()) {
10798 Diag(OldFD->getLocation(), NoProtoDiagID);
10799 Diag(NoteCausedDiagIDAt.first, NoteCausedDiagIDAt.second);
10800 return true;
10803 if (NoProtoDiagID.getDiagID() != 0 &&
10804 !NewFD->getType()->getAs<FunctionProtoType>())
10805 return Diag(NewFD->getLocation(), NoProtoDiagID);
10807 if (!TemplatesSupported &&
10808 NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
10809 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10810 << FuncTemplates;
10812 if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) {
10813 if (NewCXXFD->isVirtual())
10814 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10815 << VirtFuncs;
10817 if (isa<CXXConstructorDecl>(NewCXXFD))
10818 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10819 << Constructors;
10821 if (isa<CXXDestructorDecl>(NewCXXFD))
10822 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10823 << Destructors;
10826 if (NewFD->isDeleted())
10827 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10828 << DeletedFuncs;
10830 if (NewFD->isDefaulted())
10831 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10832 << DefaultedFuncs;
10834 if (!ConstexprSupported && NewFD->isConstexpr())
10835 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10836 << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs);
10838 QualType NewQType = Context.getCanonicalType(NewFD->getType());
10839 const auto *NewType = cast<FunctionType>(NewQType);
10840 QualType NewReturnType = NewType->getReturnType();
10842 if (NewReturnType->isUndeducedType())
10843 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10844 << DeducedReturn;
10846 // Ensure the return type is identical.
10847 if (OldFD) {
10848 QualType OldQType = Context.getCanonicalType(OldFD->getType());
10849 const auto *OldType = cast<FunctionType>(OldQType);
10850 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
10851 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
10853 if (OldTypeInfo.getCC() != NewTypeInfo.getCC())
10854 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << CallingConv;
10856 QualType OldReturnType = OldType->getReturnType();
10858 if (OldReturnType != NewReturnType)
10859 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ReturnType;
10861 if (OldFD->getConstexprKind() != NewFD->getConstexprKind())
10862 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ConstexprSpec;
10864 if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified())
10865 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << InlineSpec;
10867 if (OldFD->getFormalLinkage() != NewFD->getFormalLinkage())
10868 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << Linkage;
10870 if (!CLinkageMayDiffer && OldFD->isExternC() != NewFD->isExternC())
10871 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << LanguageLinkage;
10873 if (CheckEquivalentExceptionSpec(
10874 OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(),
10875 NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation()))
10876 return true;
10878 return false;
10881 static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD,
10882 const FunctionDecl *NewFD,
10883 bool CausesMV,
10884 MultiVersionKind MVKind) {
10885 if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
10886 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
10887 if (OldFD)
10888 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10889 return true;
10892 bool IsCPUSpecificCPUDispatchMVKind =
10893 MVKind == MultiVersionKind::CPUDispatch ||
10894 MVKind == MultiVersionKind::CPUSpecific;
10896 if (CausesMV && OldFD &&
10897 checkNonMultiVersionCompatAttributes(S, OldFD, NewFD, MVKind))
10898 return true;
10900 if (checkNonMultiVersionCompatAttributes(S, NewFD, nullptr, MVKind))
10901 return true;
10903 // Only allow transition to MultiVersion if it hasn't been used.
10904 if (OldFD && CausesMV && OldFD->isUsed(false))
10905 return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
10907 return S.areMultiversionVariantFunctionsCompatible(
10908 OldFD, NewFD, S.PDiag(diag::err_multiversion_noproto),
10909 PartialDiagnosticAt(NewFD->getLocation(),
10910 S.PDiag(diag::note_multiversioning_caused_here)),
10911 PartialDiagnosticAt(NewFD->getLocation(),
10912 S.PDiag(diag::err_multiversion_doesnt_support)
10913 << static_cast<unsigned>(MVKind)),
10914 PartialDiagnosticAt(NewFD->getLocation(),
10915 S.PDiag(diag::err_multiversion_diff)),
10916 /*TemplatesSupported=*/false,
10917 /*ConstexprSupported=*/!IsCPUSpecificCPUDispatchMVKind,
10918 /*CLinkageMayDiffer=*/false);
10921 /// Check the validity of a multiversion function declaration that is the
10922 /// first of its kind. Also sets the multiversion'ness' of the function itself.
10924 /// This sets NewFD->isInvalidDecl() to true if there was an error.
10926 /// Returns true if there was an error, false otherwise.
10927 static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD,
10928 MultiVersionKind MVKind,
10929 const TargetAttr *TA) {
10930 assert(MVKind != MultiVersionKind::None &&
10931 "Function lacks multiversion attribute");
10933 // Target only causes MV if it is default, otherwise this is a normal
10934 // function.
10935 if (MVKind == MultiVersionKind::Target && !TA->isDefaultVersion())
10936 return false;
10938 if (MVKind == MultiVersionKind::Target && CheckMultiVersionValue(S, FD)) {
10939 FD->setInvalidDecl();
10940 return true;
10943 if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVKind)) {
10944 FD->setInvalidDecl();
10945 return true;
10948 FD->setIsMultiVersion();
10949 return false;
10952 static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) {
10953 for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) {
10954 if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None)
10955 return true;
10958 return false;
10961 static bool CheckTargetCausesMultiVersioning(
10962 Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, const TargetAttr *NewTA,
10963 bool &Redeclaration, NamedDecl *&OldDecl, LookupResult &Previous) {
10964 const auto *OldTA = OldFD->getAttr<TargetAttr>();
10965 ParsedTargetAttr NewParsed = NewTA->parse();
10966 // Sort order doesn't matter, it just needs to be consistent.
10967 llvm::sort(NewParsed.Features);
10969 // If the old decl is NOT MultiVersioned yet, and we don't cause that
10970 // to change, this is a simple redeclaration.
10971 if (!NewTA->isDefaultVersion() &&
10972 (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr()))
10973 return false;
10975 // Otherwise, this decl causes MultiVersioning.
10976 if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true,
10977 MultiVersionKind::Target)) {
10978 NewFD->setInvalidDecl();
10979 return true;
10982 if (CheckMultiVersionValue(S, NewFD)) {
10983 NewFD->setInvalidDecl();
10984 return true;
10987 // If this is 'default', permit the forward declaration.
10988 if (!OldFD->isMultiVersion() && !OldTA && NewTA->isDefaultVersion()) {
10989 Redeclaration = true;
10990 OldDecl = OldFD;
10991 OldFD->setIsMultiVersion();
10992 NewFD->setIsMultiVersion();
10993 return false;
10996 if (CheckMultiVersionValue(S, OldFD)) {
10997 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
10998 NewFD->setInvalidDecl();
10999 return true;
11002 ParsedTargetAttr OldParsed = OldTA->parse(std::less<std::string>());
11004 if (OldParsed == NewParsed) {
11005 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
11006 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
11007 NewFD->setInvalidDecl();
11008 return true;
11011 for (const auto *FD : OldFD->redecls()) {
11012 const auto *CurTA = FD->getAttr<TargetAttr>();
11013 // We allow forward declarations before ANY multiversioning attributes, but
11014 // nothing after the fact.
11015 if (PreviousDeclsHaveMultiVersionAttribute(FD) &&
11016 (!CurTA || CurTA->isInherited())) {
11017 S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl)
11018 << 0;
11019 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
11020 NewFD->setInvalidDecl();
11021 return true;
11025 OldFD->setIsMultiVersion();
11026 NewFD->setIsMultiVersion();
11027 Redeclaration = false;
11028 OldDecl = nullptr;
11029 Previous.clear();
11030 return false;
11033 static bool MultiVersionTypesCompatible(MultiVersionKind Old,
11034 MultiVersionKind New) {
11035 if (Old == New || Old == MultiVersionKind::None ||
11036 New == MultiVersionKind::None)
11037 return true;
11039 return (Old == MultiVersionKind::CPUDispatch &&
11040 New == MultiVersionKind::CPUSpecific) ||
11041 (Old == MultiVersionKind::CPUSpecific &&
11042 New == MultiVersionKind::CPUDispatch);
11045 /// Check the validity of a new function declaration being added to an existing
11046 /// multiversioned declaration collection.
11047 static bool CheckMultiVersionAdditionalDecl(
11048 Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD,
11049 MultiVersionKind NewMVKind, const TargetAttr *NewTA,
11050 const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec,
11051 const TargetClonesAttr *NewClones, bool &Redeclaration, NamedDecl *&OldDecl,
11052 LookupResult &Previous) {
11054 MultiVersionKind OldMVKind = OldFD->getMultiVersionKind();
11055 // Disallow mixing of multiversioning types.
11056 if (!MultiVersionTypesCompatible(OldMVKind, NewMVKind)) {
11057 S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
11058 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
11059 NewFD->setInvalidDecl();
11060 return true;
11063 ParsedTargetAttr NewParsed;
11064 if (NewTA) {
11065 NewParsed = NewTA->parse();
11066 llvm::sort(NewParsed.Features);
11069 bool UseMemberUsingDeclRules =
11070 S.CurContext->isRecord() && !NewFD->getFriendObjectKind();
11072 bool MayNeedOverloadableChecks =
11073 AllowOverloadingOfFunction(Previous, S.Context, NewFD);
11075 // Next, check ALL non-invalid non-overloads to see if this is a redeclaration
11076 // of a previous member of the MultiVersion set.
11077 for (NamedDecl *ND : Previous) {
11078 FunctionDecl *CurFD = ND->getAsFunction();
11079 if (!CurFD || CurFD->isInvalidDecl())
11080 continue;
11081 if (MayNeedOverloadableChecks &&
11082 S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules))
11083 continue;
11085 switch (NewMVKind) {
11086 case MultiVersionKind::None:
11087 assert(OldMVKind == MultiVersionKind::TargetClones &&
11088 "Only target_clones can be omitted in subsequent declarations");
11089 break;
11090 case MultiVersionKind::Target: {
11091 const auto *CurTA = CurFD->getAttr<TargetAttr>();
11092 if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) {
11093 NewFD->setIsMultiVersion();
11094 Redeclaration = true;
11095 OldDecl = ND;
11096 return false;
11099 ParsedTargetAttr CurParsed = CurTA->parse(std::less<std::string>());
11100 if (CurParsed == NewParsed) {
11101 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
11102 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11103 NewFD->setInvalidDecl();
11104 return true;
11106 break;
11108 case MultiVersionKind::TargetClones: {
11109 const auto *CurClones = CurFD->getAttr<TargetClonesAttr>();
11110 Redeclaration = true;
11111 OldDecl = CurFD;
11112 NewFD->setIsMultiVersion();
11114 if (CurClones && NewClones &&
11115 (CurClones->featuresStrs_size() != NewClones->featuresStrs_size() ||
11116 !std::equal(CurClones->featuresStrs_begin(),
11117 CurClones->featuresStrs_end(),
11118 NewClones->featuresStrs_begin()))) {
11119 S.Diag(NewFD->getLocation(), diag::err_target_clone_doesnt_match);
11120 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11121 NewFD->setInvalidDecl();
11122 return true;
11125 return false;
11127 case MultiVersionKind::CPUSpecific:
11128 case MultiVersionKind::CPUDispatch: {
11129 const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>();
11130 const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>();
11131 // Handle CPUDispatch/CPUSpecific versions.
11132 // Only 1 CPUDispatch function is allowed, this will make it go through
11133 // the redeclaration errors.
11134 if (NewMVKind == MultiVersionKind::CPUDispatch &&
11135 CurFD->hasAttr<CPUDispatchAttr>()) {
11136 if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() &&
11137 std::equal(
11138 CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(),
11139 NewCPUDisp->cpus_begin(),
11140 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
11141 return Cur->getName() == New->getName();
11142 })) {
11143 NewFD->setIsMultiVersion();
11144 Redeclaration = true;
11145 OldDecl = ND;
11146 return false;
11149 // If the declarations don't match, this is an error condition.
11150 S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch);
11151 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11152 NewFD->setInvalidDecl();
11153 return true;
11155 if (NewMVKind == MultiVersionKind::CPUSpecific && CurCPUSpec) {
11156 if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() &&
11157 std::equal(
11158 CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(),
11159 NewCPUSpec->cpus_begin(),
11160 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
11161 return Cur->getName() == New->getName();
11162 })) {
11163 NewFD->setIsMultiVersion();
11164 Redeclaration = true;
11165 OldDecl = ND;
11166 return false;
11169 // Only 1 version of CPUSpecific is allowed for each CPU.
11170 for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) {
11171 for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) {
11172 if (CurII == NewII) {
11173 S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs)
11174 << NewII;
11175 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11176 NewFD->setInvalidDecl();
11177 return true;
11182 break;
11187 // Else, this is simply a non-redecl case. Checking the 'value' is only
11188 // necessary in the Target case, since The CPUSpecific/Dispatch cases are
11189 // handled in the attribute adding step.
11190 if (NewMVKind == MultiVersionKind::Target &&
11191 CheckMultiVersionValue(S, NewFD)) {
11192 NewFD->setInvalidDecl();
11193 return true;
11196 if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD,
11197 !OldFD->isMultiVersion(), NewMVKind)) {
11198 NewFD->setInvalidDecl();
11199 return true;
11202 // Permit forward declarations in the case where these two are compatible.
11203 if (!OldFD->isMultiVersion()) {
11204 OldFD->setIsMultiVersion();
11205 NewFD->setIsMultiVersion();
11206 Redeclaration = true;
11207 OldDecl = OldFD;
11208 return false;
11211 NewFD->setIsMultiVersion();
11212 Redeclaration = false;
11213 OldDecl = nullptr;
11214 Previous.clear();
11215 return false;
11218 /// Check the validity of a mulitversion function declaration.
11219 /// Also sets the multiversion'ness' of the function itself.
11221 /// This sets NewFD->isInvalidDecl() to true if there was an error.
11223 /// Returns true if there was an error, false otherwise.
11224 static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD,
11225 bool &Redeclaration, NamedDecl *&OldDecl,
11226 LookupResult &Previous) {
11227 const auto *NewTA = NewFD->getAttr<TargetAttr>();
11228 const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>();
11229 const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>();
11230 const auto *NewClones = NewFD->getAttr<TargetClonesAttr>();
11231 MultiVersionKind MVKind = NewFD->getMultiVersionKind();
11233 // Main isn't allowed to become a multiversion function, however it IS
11234 // permitted to have 'main' be marked with the 'target' optimization hint.
11235 if (NewFD->isMain()) {
11236 if (MVKind != MultiVersionKind::None &&
11237 !(MVKind == MultiVersionKind::Target && !NewTA->isDefaultVersion())) {
11238 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main);
11239 NewFD->setInvalidDecl();
11240 return true;
11242 return false;
11245 if (!OldDecl || !OldDecl->getAsFunction() ||
11246 OldDecl->getDeclContext()->getRedeclContext() !=
11247 NewFD->getDeclContext()->getRedeclContext()) {
11248 // If there's no previous declaration, AND this isn't attempting to cause
11249 // multiversioning, this isn't an error condition.
11250 if (MVKind == MultiVersionKind::None)
11251 return false;
11252 return CheckMultiVersionFirstFunction(S, NewFD, MVKind, NewTA);
11255 FunctionDecl *OldFD = OldDecl->getAsFunction();
11257 if (!OldFD->isMultiVersion() && MVKind == MultiVersionKind::None)
11258 return false;
11260 // Multiversioned redeclarations aren't allowed to omit the attribute, except
11261 // for target_clones.
11262 if (OldFD->isMultiVersion() && MVKind == MultiVersionKind::None &&
11263 OldFD->getMultiVersionKind() != MultiVersionKind::TargetClones) {
11264 S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl)
11265 << (OldFD->getMultiVersionKind() != MultiVersionKind::Target);
11266 NewFD->setInvalidDecl();
11267 return true;
11270 if (!OldFD->isMultiVersion()) {
11271 switch (MVKind) {
11272 case MultiVersionKind::Target:
11273 return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, NewTA,
11274 Redeclaration, OldDecl, Previous);
11275 case MultiVersionKind::TargetClones:
11276 if (OldFD->isUsed(false)) {
11277 NewFD->setInvalidDecl();
11278 return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
11280 OldFD->setIsMultiVersion();
11281 break;
11282 case MultiVersionKind::CPUDispatch:
11283 case MultiVersionKind::CPUSpecific:
11284 case MultiVersionKind::None:
11285 break;
11289 // At this point, we have a multiversion function decl (in OldFD) AND an
11290 // appropriate attribute in the current function decl. Resolve that these are
11291 // still compatible with previous declarations.
11292 return CheckMultiVersionAdditionalDecl(S, OldFD, NewFD, MVKind, NewTA,
11293 NewCPUDisp, NewCPUSpec, NewClones,
11294 Redeclaration, OldDecl, Previous);
11297 /// Perform semantic checking of a new function declaration.
11299 /// Performs semantic analysis of the new function declaration
11300 /// NewFD. This routine performs all semantic checking that does not
11301 /// require the actual declarator involved in the declaration, and is
11302 /// used both for the declaration of functions as they are parsed
11303 /// (called via ActOnDeclarator) and for the declaration of functions
11304 /// that have been instantiated via C++ template instantiation (called
11305 /// via InstantiateDecl).
11307 /// \param IsMemberSpecialization whether this new function declaration is
11308 /// a member specialization (that replaces any definition provided by the
11309 /// previous declaration).
11311 /// This sets NewFD->isInvalidDecl() to true if there was an error.
11313 /// \returns true if the function declaration is a redeclaration.
11314 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
11315 LookupResult &Previous,
11316 bool IsMemberSpecialization,
11317 bool DeclIsDefn) {
11318 assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
11319 "Variably modified return types are not handled here");
11321 // Determine whether the type of this function should be merged with
11322 // a previous visible declaration. This never happens for functions in C++,
11323 // and always happens in C if the previous declaration was visible.
11324 bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
11325 !Previous.isShadowed();
11327 bool Redeclaration = false;
11328 NamedDecl *OldDecl = nullptr;
11329 bool MayNeedOverloadableChecks = false;
11331 // Merge or overload the declaration with an existing declaration of
11332 // the same name, if appropriate.
11333 if (!Previous.empty()) {
11334 // Determine whether NewFD is an overload of PrevDecl or
11335 // a declaration that requires merging. If it's an overload,
11336 // there's no more work to do here; we'll just add the new
11337 // function to the scope.
11338 if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) {
11339 NamedDecl *Candidate = Previous.getRepresentativeDecl();
11340 if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
11341 Redeclaration = true;
11342 OldDecl = Candidate;
11344 } else {
11345 MayNeedOverloadableChecks = true;
11346 switch (CheckOverload(S, NewFD, Previous, OldDecl,
11347 /*NewIsUsingDecl*/ false)) {
11348 case Ovl_Match:
11349 Redeclaration = true;
11350 break;
11352 case Ovl_NonFunction:
11353 Redeclaration = true;
11354 break;
11356 case Ovl_Overload:
11357 Redeclaration = false;
11358 break;
11363 // Check for a previous extern "C" declaration with this name.
11364 if (!Redeclaration &&
11365 checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
11366 if (!Previous.empty()) {
11367 // This is an extern "C" declaration with the same name as a previous
11368 // declaration, and thus redeclares that entity...
11369 Redeclaration = true;
11370 OldDecl = Previous.getFoundDecl();
11371 MergeTypeWithPrevious = false;
11373 // ... except in the presence of __attribute__((overloadable)).
11374 if (OldDecl->hasAttr<OverloadableAttr>() ||
11375 NewFD->hasAttr<OverloadableAttr>()) {
11376 if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
11377 MayNeedOverloadableChecks = true;
11378 Redeclaration = false;
11379 OldDecl = nullptr;
11385 if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl, Previous))
11386 return Redeclaration;
11388 // PPC MMA non-pointer types are not allowed as function return types.
11389 if (Context.getTargetInfo().getTriple().isPPC64() &&
11390 CheckPPCMMAType(NewFD->getReturnType(), NewFD->getLocation())) {
11391 NewFD->setInvalidDecl();
11394 // C++11 [dcl.constexpr]p8:
11395 // A constexpr specifier for a non-static member function that is not
11396 // a constructor declares that member function to be const.
11398 // This needs to be delayed until we know whether this is an out-of-line
11399 // definition of a static member function.
11401 // This rule is not present in C++1y, so we produce a backwards
11402 // compatibility warning whenever it happens in C++11.
11403 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
11404 if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
11405 !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
11406 !isa<CXXDestructorDecl>(MD) && !MD->getMethodQualifiers().hasConst()) {
11407 CXXMethodDecl *OldMD = nullptr;
11408 if (OldDecl)
11409 OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
11410 if (!OldMD || !OldMD->isStatic()) {
11411 const FunctionProtoType *FPT =
11412 MD->getType()->castAs<FunctionProtoType>();
11413 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
11414 EPI.TypeQuals.addConst();
11415 MD->setType(Context.getFunctionType(FPT->getReturnType(),
11416 FPT->getParamTypes(), EPI));
11418 // Warn that we did this, if we're not performing template instantiation.
11419 // In that case, we'll have warned already when the template was defined.
11420 if (!inTemplateInstantiation()) {
11421 SourceLocation AddConstLoc;
11422 if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
11423 .IgnoreParens().getAs<FunctionTypeLoc>())
11424 AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
11426 Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
11427 << FixItHint::CreateInsertion(AddConstLoc, " const");
11432 if (Redeclaration) {
11433 // NewFD and OldDecl represent declarations that need to be
11434 // merged.
11435 if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious,
11436 DeclIsDefn)) {
11437 NewFD->setInvalidDecl();
11438 return Redeclaration;
11441 Previous.clear();
11442 Previous.addDecl(OldDecl);
11444 if (FunctionTemplateDecl *OldTemplateDecl =
11445 dyn_cast<FunctionTemplateDecl>(OldDecl)) {
11446 auto *OldFD = OldTemplateDecl->getTemplatedDecl();
11447 FunctionTemplateDecl *NewTemplateDecl
11448 = NewFD->getDescribedFunctionTemplate();
11449 assert(NewTemplateDecl && "Template/non-template mismatch");
11451 // The call to MergeFunctionDecl above may have created some state in
11452 // NewTemplateDecl that needs to be merged with OldTemplateDecl before we
11453 // can add it as a redeclaration.
11454 NewTemplateDecl->mergePrevDecl(OldTemplateDecl);
11456 NewFD->setPreviousDeclaration(OldFD);
11457 if (NewFD->isCXXClassMember()) {
11458 NewFD->setAccess(OldTemplateDecl->getAccess());
11459 NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
11462 // If this is an explicit specialization of a member that is a function
11463 // template, mark it as a member specialization.
11464 if (IsMemberSpecialization &&
11465 NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
11466 NewTemplateDecl->setMemberSpecialization();
11467 assert(OldTemplateDecl->isMemberSpecialization());
11468 // Explicit specializations of a member template do not inherit deleted
11469 // status from the parent member template that they are specializing.
11470 if (OldFD->isDeleted()) {
11471 // FIXME: This assert will not hold in the presence of modules.
11472 assert(OldFD->getCanonicalDecl() == OldFD);
11473 // FIXME: We need an update record for this AST mutation.
11474 OldFD->setDeletedAsWritten(false);
11478 } else {
11479 if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) {
11480 auto *OldFD = cast<FunctionDecl>(OldDecl);
11481 // This needs to happen first so that 'inline' propagates.
11482 NewFD->setPreviousDeclaration(OldFD);
11483 if (NewFD->isCXXClassMember())
11484 NewFD->setAccess(OldFD->getAccess());
11487 } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks &&
11488 !NewFD->getAttr<OverloadableAttr>()) {
11489 assert((Previous.empty() ||
11490 llvm::any_of(Previous,
11491 [](const NamedDecl *ND) {
11492 return ND->hasAttr<OverloadableAttr>();
11493 })) &&
11494 "Non-redecls shouldn't happen without overloadable present");
11496 auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) {
11497 const auto *FD = dyn_cast<FunctionDecl>(ND);
11498 return FD && !FD->hasAttr<OverloadableAttr>();
11501 if (OtherUnmarkedIter != Previous.end()) {
11502 Diag(NewFD->getLocation(),
11503 diag::err_attribute_overloadable_multiple_unmarked_overloads);
11504 Diag((*OtherUnmarkedIter)->getLocation(),
11505 diag::note_attribute_overloadable_prev_overload)
11506 << false;
11508 NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
11512 if (LangOpts.OpenMP)
11513 ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(NewFD);
11515 // Semantic checking for this function declaration (in isolation).
11517 if (getLangOpts().CPlusPlus) {
11518 // C++-specific checks.
11519 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
11520 CheckConstructor(Constructor);
11521 } else if (CXXDestructorDecl *Destructor =
11522 dyn_cast<CXXDestructorDecl>(NewFD)) {
11523 // We check here for invalid destructor names.
11524 // If we have a friend destructor declaration that is dependent, we can't
11525 // diagnose right away because cases like this are still valid:
11526 // template <class T> struct A { friend T::X::~Y(); };
11527 // struct B { struct Y { ~Y(); }; using X = Y; };
11528 // template struct A<B>;
11529 if (NewFD->getFriendObjectKind() == Decl::FriendObjectKind::FOK_None ||
11530 !Destructor->getThisType()->isDependentType()) {
11531 CXXRecordDecl *Record = Destructor->getParent();
11532 QualType ClassType = Context.getTypeDeclType(Record);
11534 DeclarationName Name = Context.DeclarationNames.getCXXDestructorName(
11535 Context.getCanonicalType(ClassType));
11536 if (NewFD->getDeclName() != Name) {
11537 Diag(NewFD->getLocation(), diag::err_destructor_name);
11538 NewFD->setInvalidDecl();
11539 return Redeclaration;
11542 } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) {
11543 if (auto *TD = Guide->getDescribedFunctionTemplate())
11544 CheckDeductionGuideTemplate(TD);
11546 // A deduction guide is not on the list of entities that can be
11547 // explicitly specialized.
11548 if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
11549 Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized)
11550 << /*explicit specialization*/ 1;
11553 // Find any virtual functions that this function overrides.
11554 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
11555 if (!Method->isFunctionTemplateSpecialization() &&
11556 !Method->getDescribedFunctionTemplate() &&
11557 Method->isCanonicalDecl()) {
11558 AddOverriddenMethods(Method->getParent(), Method);
11560 if (Method->isVirtual() && NewFD->getTrailingRequiresClause())
11561 // C++2a [class.virtual]p6
11562 // A virtual method shall not have a requires-clause.
11563 Diag(NewFD->getTrailingRequiresClause()->getBeginLoc(),
11564 diag::err_constrained_virtual_method);
11566 if (Method->isStatic())
11567 checkThisInStaticMemberFunctionType(Method);
11570 // C++20: dcl.decl.general p4:
11571 // The optional requires-clause ([temp.pre]) in an init-declarator or
11572 // member-declarator shall be present only if the declarator declares a
11573 // templated function ([dcl.fct]).
11574 if (Expr *TRC = NewFD->getTrailingRequiresClause()) {
11575 if (!NewFD->isTemplated() && !NewFD->isTemplateInstantiation())
11576 Diag(TRC->getBeginLoc(), diag::err_constrained_non_templated_function);
11579 if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD))
11580 ActOnConversionDeclarator(Conversion);
11582 // Extra checking for C++ overloaded operators (C++ [over.oper]).
11583 if (NewFD->isOverloadedOperator() &&
11584 CheckOverloadedOperatorDeclaration(NewFD)) {
11585 NewFD->setInvalidDecl();
11586 return Redeclaration;
11589 // Extra checking for C++0x literal operators (C++0x [over.literal]).
11590 if (NewFD->getLiteralIdentifier() &&
11591 CheckLiteralOperatorDeclaration(NewFD)) {
11592 NewFD->setInvalidDecl();
11593 return Redeclaration;
11596 // In C++, check default arguments now that we have merged decls. Unless
11597 // the lexical context is the class, because in this case this is done
11598 // during delayed parsing anyway.
11599 if (!CurContext->isRecord())
11600 CheckCXXDefaultArguments(NewFD);
11602 // If this function is declared as being extern "C", then check to see if
11603 // the function returns a UDT (class, struct, or union type) that is not C
11604 // compatible, and if it does, warn the user.
11605 // But, issue any diagnostic on the first declaration only.
11606 if (Previous.empty() && NewFD->isExternC()) {
11607 QualType R = NewFD->getReturnType();
11608 if (R->isIncompleteType() && !R->isVoidType())
11609 Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
11610 << NewFD << R;
11611 else if (!R.isPODType(Context) && !R->isVoidType() &&
11612 !R->isObjCObjectPointerType())
11613 Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
11616 // C++1z [dcl.fct]p6:
11617 // [...] whether the function has a non-throwing exception-specification
11618 // [is] part of the function type
11620 // This results in an ABI break between C++14 and C++17 for functions whose
11621 // declared type includes an exception-specification in a parameter or
11622 // return type. (Exception specifications on the function itself are OK in
11623 // most cases, and exception specifications are not permitted in most other
11624 // contexts where they could make it into a mangling.)
11625 if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) {
11626 auto HasNoexcept = [&](QualType T) -> bool {
11627 // Strip off declarator chunks that could be between us and a function
11628 // type. We don't need to look far, exception specifications are very
11629 // restricted prior to C++17.
11630 if (auto *RT = T->getAs<ReferenceType>())
11631 T = RT->getPointeeType();
11632 else if (T->isAnyPointerType())
11633 T = T->getPointeeType();
11634 else if (auto *MPT = T->getAs<MemberPointerType>())
11635 T = MPT->getPointeeType();
11636 if (auto *FPT = T->getAs<FunctionProtoType>())
11637 if (FPT->isNothrow())
11638 return true;
11639 return false;
11642 auto *FPT = NewFD->getType()->castAs<FunctionProtoType>();
11643 bool AnyNoexcept = HasNoexcept(FPT->getReturnType());
11644 for (QualType T : FPT->param_types())
11645 AnyNoexcept |= HasNoexcept(T);
11646 if (AnyNoexcept)
11647 Diag(NewFD->getLocation(),
11648 diag::warn_cxx17_compat_exception_spec_in_signature)
11649 << NewFD;
11652 if (!Redeclaration && LangOpts.CUDA)
11653 checkCUDATargetOverload(NewFD, Previous);
11655 return Redeclaration;
11658 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
11659 // C++11 [basic.start.main]p3:
11660 // A program that [...] declares main to be inline, static or
11661 // constexpr is ill-formed.
11662 // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall
11663 // appear in a declaration of main.
11664 // static main is not an error under C99, but we should warn about it.
11665 // We accept _Noreturn main as an extension.
11666 if (FD->getStorageClass() == SC_Static)
11667 Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
11668 ? diag::err_static_main : diag::warn_static_main)
11669 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
11670 if (FD->isInlineSpecified())
11671 Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
11672 << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
11673 if (DS.isNoreturnSpecified()) {
11674 SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
11675 SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
11676 Diag(NoreturnLoc, diag::ext_noreturn_main);
11677 Diag(NoreturnLoc, diag::note_main_remove_noreturn)
11678 << FixItHint::CreateRemoval(NoreturnRange);
11680 if (FD->isConstexpr()) {
11681 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
11682 << FD->isConsteval()
11683 << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
11684 FD->setConstexprKind(ConstexprSpecKind::Unspecified);
11687 if (getLangOpts().OpenCL) {
11688 Diag(FD->getLocation(), diag::err_opencl_no_main)
11689 << FD->hasAttr<OpenCLKernelAttr>();
11690 FD->setInvalidDecl();
11691 return;
11694 // Functions named main in hlsl are default entries, but don't have specific
11695 // signatures they are required to conform to.
11696 if (getLangOpts().HLSL)
11697 return;
11699 QualType T = FD->getType();
11700 assert(T->isFunctionType() && "function decl is not of function type");
11701 const FunctionType* FT = T->castAs<FunctionType>();
11703 // Set default calling convention for main()
11704 if (FT->getCallConv() != CC_C) {
11705 FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C));
11706 FD->setType(QualType(FT, 0));
11707 T = Context.getCanonicalType(FD->getType());
11710 if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
11711 // In C with GNU extensions we allow main() to have non-integer return
11712 // type, but we should warn about the extension, and we disable the
11713 // implicit-return-zero rule.
11715 // GCC in C mode accepts qualified 'int'.
11716 if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
11717 FD->setHasImplicitReturnZero(true);
11718 else {
11719 Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
11720 SourceRange RTRange = FD->getReturnTypeSourceRange();
11721 if (RTRange.isValid())
11722 Diag(RTRange.getBegin(), diag::note_main_change_return_type)
11723 << FixItHint::CreateReplacement(RTRange, "int");
11725 } else {
11726 // In C and C++, main magically returns 0 if you fall off the end;
11727 // set the flag which tells us that.
11728 // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
11730 // All the standards say that main() should return 'int'.
11731 if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
11732 FD->setHasImplicitReturnZero(true);
11733 else {
11734 // Otherwise, this is just a flat-out error.
11735 SourceRange RTRange = FD->getReturnTypeSourceRange();
11736 Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
11737 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
11738 : FixItHint());
11739 FD->setInvalidDecl(true);
11743 // Treat protoless main() as nullary.
11744 if (isa<FunctionNoProtoType>(FT)) return;
11746 const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
11747 unsigned nparams = FTP->getNumParams();
11748 assert(FD->getNumParams() == nparams);
11750 bool HasExtraParameters = (nparams > 3);
11752 if (FTP->isVariadic()) {
11753 Diag(FD->getLocation(), diag::ext_variadic_main);
11754 // FIXME: if we had information about the location of the ellipsis, we
11755 // could add a FixIt hint to remove it as a parameter.
11758 // Darwin passes an undocumented fourth argument of type char**. If
11759 // other platforms start sprouting these, the logic below will start
11760 // getting shifty.
11761 if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
11762 HasExtraParameters = false;
11764 if (HasExtraParameters) {
11765 Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
11766 FD->setInvalidDecl(true);
11767 nparams = 3;
11770 // FIXME: a lot of the following diagnostics would be improved
11771 // if we had some location information about types.
11773 QualType CharPP =
11774 Context.getPointerType(Context.getPointerType(Context.CharTy));
11775 QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
11777 for (unsigned i = 0; i < nparams; ++i) {
11778 QualType AT = FTP->getParamType(i);
11780 bool mismatch = true;
11782 if (Context.hasSameUnqualifiedType(AT, Expected[i]))
11783 mismatch = false;
11784 else if (Expected[i] == CharPP) {
11785 // As an extension, the following forms are okay:
11786 // char const **
11787 // char const * const *
11788 // char * const *
11790 QualifierCollector qs;
11791 const PointerType* PT;
11792 if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
11793 (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
11794 Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
11795 Context.CharTy)) {
11796 qs.removeConst();
11797 mismatch = !qs.empty();
11801 if (mismatch) {
11802 Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
11803 // TODO: suggest replacing given type with expected type
11804 FD->setInvalidDecl(true);
11808 if (nparams == 1 && !FD->isInvalidDecl()) {
11809 Diag(FD->getLocation(), diag::warn_main_one_arg);
11812 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
11813 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
11814 FD->setInvalidDecl();
11818 static bool isDefaultStdCall(FunctionDecl *FD, Sema &S) {
11820 // Default calling convention for main and wmain is __cdecl
11821 if (FD->getName() == "main" || FD->getName() == "wmain")
11822 return false;
11824 // Default calling convention for MinGW is __cdecl
11825 const llvm::Triple &T = S.Context.getTargetInfo().getTriple();
11826 if (T.isWindowsGNUEnvironment())
11827 return false;
11829 // Default calling convention for WinMain, wWinMain and DllMain
11830 // is __stdcall on 32 bit Windows
11831 if (T.isOSWindows() && T.getArch() == llvm::Triple::x86)
11832 return true;
11834 return false;
11837 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
11838 QualType T = FD->getType();
11839 assert(T->isFunctionType() && "function decl is not of function type");
11840 const FunctionType *FT = T->castAs<FunctionType>();
11842 // Set an implicit return of 'zero' if the function can return some integral,
11843 // enumeration, pointer or nullptr type.
11844 if (FT->getReturnType()->isIntegralOrEnumerationType() ||
11845 FT->getReturnType()->isAnyPointerType() ||
11846 FT->getReturnType()->isNullPtrType())
11847 // DllMain is exempt because a return value of zero means it failed.
11848 if (FD->getName() != "DllMain")
11849 FD->setHasImplicitReturnZero(true);
11851 // Explicity specified calling conventions are applied to MSVC entry points
11852 if (!hasExplicitCallingConv(T)) {
11853 if (isDefaultStdCall(FD, *this)) {
11854 if (FT->getCallConv() != CC_X86StdCall) {
11855 FT = Context.adjustFunctionType(
11856 FT, FT->getExtInfo().withCallingConv(CC_X86StdCall));
11857 FD->setType(QualType(FT, 0));
11859 } else if (FT->getCallConv() != CC_C) {
11860 FT = Context.adjustFunctionType(FT,
11861 FT->getExtInfo().withCallingConv(CC_C));
11862 FD->setType(QualType(FT, 0));
11866 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
11867 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
11868 FD->setInvalidDecl();
11872 void Sema::CheckHLSLEntryPoint(FunctionDecl *FD) {
11873 auto &TargetInfo = getASTContext().getTargetInfo();
11874 auto const Triple = TargetInfo.getTriple();
11875 switch (Triple.getEnvironment()) {
11876 default:
11877 // FIXME: check all shader profiles.
11878 break;
11879 case llvm::Triple::EnvironmentType::Compute:
11880 if (!FD->hasAttr<HLSLNumThreadsAttr>()) {
11881 Diag(FD->getLocation(), diag::err_hlsl_missing_numthreads)
11882 << Triple.getEnvironmentName();
11883 FD->setInvalidDecl();
11885 break;
11888 for (const auto *Param : FD->parameters()) {
11889 if (!Param->hasAttr<HLSLAnnotationAttr>()) {
11890 // FIXME: Handle struct parameters where annotations are on struct fields.
11891 Diag(FD->getLocation(), diag::err_hlsl_missing_semantic_annotation);
11892 Diag(Param->getLocation(), diag::note_previous_decl) << Param;
11893 FD->setInvalidDecl();
11896 // FIXME: Verify return type semantic annotation.
11899 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
11900 // FIXME: Need strict checking. In C89, we need to check for
11901 // any assignment, increment, decrement, function-calls, or
11902 // commas outside of a sizeof. In C99, it's the same list,
11903 // except that the aforementioned are allowed in unevaluated
11904 // expressions. Everything else falls under the
11905 // "may accept other forms of constant expressions" exception.
11907 // Regular C++ code will not end up here (exceptions: language extensions,
11908 // OpenCL C++ etc), so the constant expression rules there don't matter.
11909 if (Init->isValueDependent()) {
11910 assert(Init->containsErrors() &&
11911 "Dependent code should only occur in error-recovery path.");
11912 return true;
11914 const Expr *Culprit;
11915 if (Init->isConstantInitializer(Context, false, &Culprit))
11916 return false;
11917 Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
11918 << Culprit->getSourceRange();
11919 return true;
11922 namespace {
11923 // Visits an initialization expression to see if OrigDecl is evaluated in
11924 // its own initialization and throws a warning if it does.
11925 class SelfReferenceChecker
11926 : public EvaluatedExprVisitor<SelfReferenceChecker> {
11927 Sema &S;
11928 Decl *OrigDecl;
11929 bool isRecordType;
11930 bool isPODType;
11931 bool isReferenceType;
11933 bool isInitList;
11934 llvm::SmallVector<unsigned, 4> InitFieldIndex;
11936 public:
11937 typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
11939 SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
11940 S(S), OrigDecl(OrigDecl) {
11941 isPODType = false;
11942 isRecordType = false;
11943 isReferenceType = false;
11944 isInitList = false;
11945 if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
11946 isPODType = VD->getType().isPODType(S.Context);
11947 isRecordType = VD->getType()->isRecordType();
11948 isReferenceType = VD->getType()->isReferenceType();
11952 // For most expressions, just call the visitor. For initializer lists,
11953 // track the index of the field being initialized since fields are
11954 // initialized in order allowing use of previously initialized fields.
11955 void CheckExpr(Expr *E) {
11956 InitListExpr *InitList = dyn_cast<InitListExpr>(E);
11957 if (!InitList) {
11958 Visit(E);
11959 return;
11962 // Track and increment the index here.
11963 isInitList = true;
11964 InitFieldIndex.push_back(0);
11965 for (auto *Child : InitList->children()) {
11966 CheckExpr(cast<Expr>(Child));
11967 ++InitFieldIndex.back();
11969 InitFieldIndex.pop_back();
11972 // Returns true if MemberExpr is checked and no further checking is needed.
11973 // Returns false if additional checking is required.
11974 bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
11975 llvm::SmallVector<FieldDecl*, 4> Fields;
11976 Expr *Base = E;
11977 bool ReferenceField = false;
11979 // Get the field members used.
11980 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
11981 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
11982 if (!FD)
11983 return false;
11984 Fields.push_back(FD);
11985 if (FD->getType()->isReferenceType())
11986 ReferenceField = true;
11987 Base = ME->getBase()->IgnoreParenImpCasts();
11990 // Keep checking only if the base Decl is the same.
11991 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
11992 if (!DRE || DRE->getDecl() != OrigDecl)
11993 return false;
11995 // A reference field can be bound to an unininitialized field.
11996 if (CheckReference && !ReferenceField)
11997 return true;
11999 // Convert FieldDecls to their index number.
12000 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
12001 for (const FieldDecl *I : llvm::reverse(Fields))
12002 UsedFieldIndex.push_back(I->getFieldIndex());
12004 // See if a warning is needed by checking the first difference in index
12005 // numbers. If field being used has index less than the field being
12006 // initialized, then the use is safe.
12007 for (auto UsedIter = UsedFieldIndex.begin(),
12008 UsedEnd = UsedFieldIndex.end(),
12009 OrigIter = InitFieldIndex.begin(),
12010 OrigEnd = InitFieldIndex.end();
12011 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
12012 if (*UsedIter < *OrigIter)
12013 return true;
12014 if (*UsedIter > *OrigIter)
12015 break;
12018 // TODO: Add a different warning which will print the field names.
12019 HandleDeclRefExpr(DRE);
12020 return true;
12023 // For most expressions, the cast is directly above the DeclRefExpr.
12024 // For conditional operators, the cast can be outside the conditional
12025 // operator if both expressions are DeclRefExpr's.
12026 void HandleValue(Expr *E) {
12027 E = E->IgnoreParens();
12028 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
12029 HandleDeclRefExpr(DRE);
12030 return;
12033 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
12034 Visit(CO->getCond());
12035 HandleValue(CO->getTrueExpr());
12036 HandleValue(CO->getFalseExpr());
12037 return;
12040 if (BinaryConditionalOperator *BCO =
12041 dyn_cast<BinaryConditionalOperator>(E)) {
12042 Visit(BCO->getCond());
12043 HandleValue(BCO->getFalseExpr());
12044 return;
12047 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
12048 HandleValue(OVE->getSourceExpr());
12049 return;
12052 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
12053 if (BO->getOpcode() == BO_Comma) {
12054 Visit(BO->getLHS());
12055 HandleValue(BO->getRHS());
12056 return;
12060 if (isa<MemberExpr>(E)) {
12061 if (isInitList) {
12062 if (CheckInitListMemberExpr(cast<MemberExpr>(E),
12063 false /*CheckReference*/))
12064 return;
12067 Expr *Base = E->IgnoreParenImpCasts();
12068 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
12069 // Check for static member variables and don't warn on them.
12070 if (!isa<FieldDecl>(ME->getMemberDecl()))
12071 return;
12072 Base = ME->getBase()->IgnoreParenImpCasts();
12074 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
12075 HandleDeclRefExpr(DRE);
12076 return;
12079 Visit(E);
12082 // Reference types not handled in HandleValue are handled here since all
12083 // uses of references are bad, not just r-value uses.
12084 void VisitDeclRefExpr(DeclRefExpr *E) {
12085 if (isReferenceType)
12086 HandleDeclRefExpr(E);
12089 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
12090 if (E->getCastKind() == CK_LValueToRValue) {
12091 HandleValue(E->getSubExpr());
12092 return;
12095 Inherited::VisitImplicitCastExpr(E);
12098 void VisitMemberExpr(MemberExpr *E) {
12099 if (isInitList) {
12100 if (CheckInitListMemberExpr(E, true /*CheckReference*/))
12101 return;
12104 // Don't warn on arrays since they can be treated as pointers.
12105 if (E->getType()->canDecayToPointerType()) return;
12107 // Warn when a non-static method call is followed by non-static member
12108 // field accesses, which is followed by a DeclRefExpr.
12109 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
12110 bool Warn = (MD && !MD->isStatic());
12111 Expr *Base = E->getBase()->IgnoreParenImpCasts();
12112 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
12113 if (!isa<FieldDecl>(ME->getMemberDecl()))
12114 Warn = false;
12115 Base = ME->getBase()->IgnoreParenImpCasts();
12118 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
12119 if (Warn)
12120 HandleDeclRefExpr(DRE);
12121 return;
12124 // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
12125 // Visit that expression.
12126 Visit(Base);
12129 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
12130 Expr *Callee = E->getCallee();
12132 if (isa<UnresolvedLookupExpr>(Callee))
12133 return Inherited::VisitCXXOperatorCallExpr(E);
12135 Visit(Callee);
12136 for (auto Arg: E->arguments())
12137 HandleValue(Arg->IgnoreParenImpCasts());
12140 void VisitUnaryOperator(UnaryOperator *E) {
12141 // For POD record types, addresses of its own members are well-defined.
12142 if (E->getOpcode() == UO_AddrOf && isRecordType &&
12143 isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
12144 if (!isPODType)
12145 HandleValue(E->getSubExpr());
12146 return;
12149 if (E->isIncrementDecrementOp()) {
12150 HandleValue(E->getSubExpr());
12151 return;
12154 Inherited::VisitUnaryOperator(E);
12157 void VisitObjCMessageExpr(ObjCMessageExpr *E) {}
12159 void VisitCXXConstructExpr(CXXConstructExpr *E) {
12160 if (E->getConstructor()->isCopyConstructor()) {
12161 Expr *ArgExpr = E->getArg(0);
12162 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
12163 if (ILE->getNumInits() == 1)
12164 ArgExpr = ILE->getInit(0);
12165 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
12166 if (ICE->getCastKind() == CK_NoOp)
12167 ArgExpr = ICE->getSubExpr();
12168 HandleValue(ArgExpr);
12169 return;
12171 Inherited::VisitCXXConstructExpr(E);
12174 void VisitCallExpr(CallExpr *E) {
12175 // Treat std::move as a use.
12176 if (E->isCallToStdMove()) {
12177 HandleValue(E->getArg(0));
12178 return;
12181 Inherited::VisitCallExpr(E);
12184 void VisitBinaryOperator(BinaryOperator *E) {
12185 if (E->isCompoundAssignmentOp()) {
12186 HandleValue(E->getLHS());
12187 Visit(E->getRHS());
12188 return;
12191 Inherited::VisitBinaryOperator(E);
12194 // A custom visitor for BinaryConditionalOperator is needed because the
12195 // regular visitor would check the condition and true expression separately
12196 // but both point to the same place giving duplicate diagnostics.
12197 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
12198 Visit(E->getCond());
12199 Visit(E->getFalseExpr());
12202 void HandleDeclRefExpr(DeclRefExpr *DRE) {
12203 Decl* ReferenceDecl = DRE->getDecl();
12204 if (OrigDecl != ReferenceDecl) return;
12205 unsigned diag;
12206 if (isReferenceType) {
12207 diag = diag::warn_uninit_self_reference_in_reference_init;
12208 } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
12209 diag = diag::warn_static_self_reference_in_init;
12210 } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
12211 isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
12212 DRE->getDecl()->getType()->isRecordType()) {
12213 diag = diag::warn_uninit_self_reference_in_init;
12214 } else {
12215 // Local variables will be handled by the CFG analysis.
12216 return;
12219 S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE,
12220 S.PDiag(diag)
12221 << DRE->getDecl() << OrigDecl->getLocation()
12222 << DRE->getSourceRange());
12226 /// CheckSelfReference - Warns if OrigDecl is used in expression E.
12227 static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
12228 bool DirectInit) {
12229 // Parameters arguments are occassionially constructed with itself,
12230 // for instance, in recursive functions. Skip them.
12231 if (isa<ParmVarDecl>(OrigDecl))
12232 return;
12234 E = E->IgnoreParens();
12236 // Skip checking T a = a where T is not a record or reference type.
12237 // Doing so is a way to silence uninitialized warnings.
12238 if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
12239 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
12240 if (ICE->getCastKind() == CK_LValueToRValue)
12241 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
12242 if (DRE->getDecl() == OrigDecl)
12243 return;
12245 SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
12247 } // end anonymous namespace
12249 namespace {
12250 // Simple wrapper to add the name of a variable or (if no variable is
12251 // available) a DeclarationName into a diagnostic.
12252 struct VarDeclOrName {
12253 VarDecl *VDecl;
12254 DeclarationName Name;
12256 friend const Sema::SemaDiagnosticBuilder &
12257 operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) {
12258 return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name;
12261 } // end anonymous namespace
12263 QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
12264 DeclarationName Name, QualType Type,
12265 TypeSourceInfo *TSI,
12266 SourceRange Range, bool DirectInit,
12267 Expr *Init) {
12268 bool IsInitCapture = !VDecl;
12269 assert((!VDecl || !VDecl->isInitCapture()) &&
12270 "init captures are expected to be deduced prior to initialization");
12272 VarDeclOrName VN{VDecl, Name};
12274 DeducedType *Deduced = Type->getContainedDeducedType();
12275 assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type");
12277 // C++11 [dcl.spec.auto]p3
12278 if (!Init) {
12279 assert(VDecl && "no init for init capture deduction?");
12281 // Except for class argument deduction, and then for an initializing
12282 // declaration only, i.e. no static at class scope or extern.
12283 if (!isa<DeducedTemplateSpecializationType>(Deduced) ||
12284 VDecl->hasExternalStorage() ||
12285 VDecl->isStaticDataMember()) {
12286 Diag(VDecl->getLocation(), diag::err_auto_var_requires_init)
12287 << VDecl->getDeclName() << Type;
12288 return QualType();
12292 ArrayRef<Expr*> DeduceInits;
12293 if (Init)
12294 DeduceInits = Init;
12296 if (DirectInit) {
12297 if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init))
12298 DeduceInits = PL->exprs();
12301 if (isa<DeducedTemplateSpecializationType>(Deduced)) {
12302 assert(VDecl && "non-auto type for init capture deduction?");
12303 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
12304 InitializationKind Kind = InitializationKind::CreateForInit(
12305 VDecl->getLocation(), DirectInit, Init);
12306 // FIXME: Initialization should not be taking a mutable list of inits.
12307 SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end());
12308 return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind,
12309 InitsCopy);
12312 if (DirectInit) {
12313 if (auto *IL = dyn_cast<InitListExpr>(Init))
12314 DeduceInits = IL->inits();
12317 // Deduction only works if we have exactly one source expression.
12318 if (DeduceInits.empty()) {
12319 // It isn't possible to write this directly, but it is possible to
12320 // end up in this situation with "auto x(some_pack...);"
12321 Diag(Init->getBeginLoc(), IsInitCapture
12322 ? diag::err_init_capture_no_expression
12323 : diag::err_auto_var_init_no_expression)
12324 << VN << Type << Range;
12325 return QualType();
12328 if (DeduceInits.size() > 1) {
12329 Diag(DeduceInits[1]->getBeginLoc(),
12330 IsInitCapture ? diag::err_init_capture_multiple_expressions
12331 : diag::err_auto_var_init_multiple_expressions)
12332 << VN << Type << Range;
12333 return QualType();
12336 Expr *DeduceInit = DeduceInits[0];
12337 if (DirectInit && isa<InitListExpr>(DeduceInit)) {
12338 Diag(Init->getBeginLoc(), IsInitCapture
12339 ? diag::err_init_capture_paren_braces
12340 : diag::err_auto_var_init_paren_braces)
12341 << isa<InitListExpr>(Init) << VN << Type << Range;
12342 return QualType();
12345 // Expressions default to 'id' when we're in a debugger.
12346 bool DefaultedAnyToId = false;
12347 if (getLangOpts().DebuggerCastResultToId &&
12348 Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
12349 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
12350 if (Result.isInvalid()) {
12351 return QualType();
12353 Init = Result.get();
12354 DefaultedAnyToId = true;
12357 // C++ [dcl.decomp]p1:
12358 // If the assignment-expression [...] has array type A and no ref-qualifier
12359 // is present, e has type cv A
12360 if (VDecl && isa<DecompositionDecl>(VDecl) &&
12361 Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) &&
12362 DeduceInit->getType()->isConstantArrayType())
12363 return Context.getQualifiedType(DeduceInit->getType(),
12364 Type.getQualifiers());
12366 QualType DeducedType;
12367 TemplateDeductionInfo Info(DeduceInit->getExprLoc());
12368 TemplateDeductionResult Result =
12369 DeduceAutoType(TSI->getTypeLoc(), DeduceInit, DeducedType, Info);
12370 if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed) {
12371 if (!IsInitCapture)
12372 DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
12373 else if (isa<InitListExpr>(Init))
12374 Diag(Range.getBegin(),
12375 diag::err_init_capture_deduction_failure_from_init_list)
12376 << VN
12377 << (DeduceInit->getType().isNull() ? TSI->getType()
12378 : DeduceInit->getType())
12379 << DeduceInit->getSourceRange();
12380 else
12381 Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
12382 << VN << TSI->getType()
12383 << (DeduceInit->getType().isNull() ? TSI->getType()
12384 : DeduceInit->getType())
12385 << DeduceInit->getSourceRange();
12388 // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
12389 // 'id' instead of a specific object type prevents most of our usual
12390 // checks.
12391 // We only want to warn outside of template instantiations, though:
12392 // inside a template, the 'id' could have come from a parameter.
12393 if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture &&
12394 !DeducedType.isNull() && DeducedType->isObjCIdType()) {
12395 SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
12396 Diag(Loc, diag::warn_auto_var_is_id) << VN << Range;
12399 return DeducedType;
12402 bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
12403 Expr *Init) {
12404 assert(!Init || !Init->containsErrors());
12405 QualType DeducedType = deduceVarTypeFromInitializer(
12406 VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(),
12407 VDecl->getSourceRange(), DirectInit, Init);
12408 if (DeducedType.isNull()) {
12409 VDecl->setInvalidDecl();
12410 return true;
12413 VDecl->setType(DeducedType);
12414 assert(VDecl->isLinkageValid());
12416 // In ARC, infer lifetime.
12417 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
12418 VDecl->setInvalidDecl();
12420 if (getLangOpts().OpenCL)
12421 deduceOpenCLAddressSpace(VDecl);
12423 // If this is a redeclaration, check that the type we just deduced matches
12424 // the previously declared type.
12425 if (VarDecl *Old = VDecl->getPreviousDecl()) {
12426 // We never need to merge the type, because we cannot form an incomplete
12427 // array of auto, nor deduce such a type.
12428 MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
12431 // Check the deduced type is valid for a variable declaration.
12432 CheckVariableDeclarationType(VDecl);
12433 return VDecl->isInvalidDecl();
12436 void Sema::checkNonTrivialCUnionInInitializer(const Expr *Init,
12437 SourceLocation Loc) {
12438 if (auto *EWC = dyn_cast<ExprWithCleanups>(Init))
12439 Init = EWC->getSubExpr();
12441 if (auto *CE = dyn_cast<ConstantExpr>(Init))
12442 Init = CE->getSubExpr();
12444 QualType InitType = Init->getType();
12445 assert((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
12446 InitType.hasNonTrivialToPrimitiveCopyCUnion()) &&
12447 "shouldn't be called if type doesn't have a non-trivial C struct");
12448 if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
12449 for (auto *I : ILE->inits()) {
12450 if (!I->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() &&
12451 !I->getType().hasNonTrivialToPrimitiveCopyCUnion())
12452 continue;
12453 SourceLocation SL = I->getExprLoc();
12454 checkNonTrivialCUnionInInitializer(I, SL.isValid() ? SL : Loc);
12456 return;
12459 if (isa<ImplicitValueInitExpr>(Init)) {
12460 if (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
12461 checkNonTrivialCUnion(InitType, Loc, NTCUC_DefaultInitializedObject,
12462 NTCUK_Init);
12463 } else {
12464 // Assume all other explicit initializers involving copying some existing
12465 // object.
12466 // TODO: ignore any explicit initializers where we can guarantee
12467 // copy-elision.
12468 if (InitType.hasNonTrivialToPrimitiveCopyCUnion())
12469 checkNonTrivialCUnion(InitType, Loc, NTCUC_CopyInit, NTCUK_Copy);
12473 namespace {
12475 bool shouldIgnoreForRecordTriviality(const FieldDecl *FD) {
12476 // Ignore unavailable fields. A field can be marked as unavailable explicitly
12477 // in the source code or implicitly by the compiler if it is in a union
12478 // defined in a system header and has non-trivial ObjC ownership
12479 // qualifications. We don't want those fields to participate in determining
12480 // whether the containing union is non-trivial.
12481 return FD->hasAttr<UnavailableAttr>();
12484 struct DiagNonTrivalCUnionDefaultInitializeVisitor
12485 : DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
12486 void> {
12487 using Super =
12488 DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
12489 void>;
12491 DiagNonTrivalCUnionDefaultInitializeVisitor(
12492 QualType OrigTy, SourceLocation OrigLoc,
12493 Sema::NonTrivialCUnionContext UseContext, Sema &S)
12494 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
12496 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType QT,
12497 const FieldDecl *FD, bool InNonTrivialUnion) {
12498 if (const auto *AT = S.Context.getAsArrayType(QT))
12499 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
12500 InNonTrivialUnion);
12501 return Super::visitWithKind(PDIK, QT, FD, InNonTrivialUnion);
12504 void visitARCStrong(QualType QT, const FieldDecl *FD,
12505 bool InNonTrivialUnion) {
12506 if (InNonTrivialUnion)
12507 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
12508 << 1 << 0 << QT << FD->getName();
12511 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
12512 if (InNonTrivialUnion)
12513 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
12514 << 1 << 0 << QT << FD->getName();
12517 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
12518 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
12519 if (RD->isUnion()) {
12520 if (OrigLoc.isValid()) {
12521 bool IsUnion = false;
12522 if (auto *OrigRD = OrigTy->getAsRecordDecl())
12523 IsUnion = OrigRD->isUnion();
12524 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
12525 << 0 << OrigTy << IsUnion << UseContext;
12526 // Reset OrigLoc so that this diagnostic is emitted only once.
12527 OrigLoc = SourceLocation();
12529 InNonTrivialUnion = true;
12532 if (InNonTrivialUnion)
12533 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
12534 << 0 << 0 << QT.getUnqualifiedType() << "";
12536 for (const FieldDecl *FD : RD->fields())
12537 if (!shouldIgnoreForRecordTriviality(FD))
12538 asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
12541 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
12543 // The non-trivial C union type or the struct/union type that contains a
12544 // non-trivial C union.
12545 QualType OrigTy;
12546 SourceLocation OrigLoc;
12547 Sema::NonTrivialCUnionContext UseContext;
12548 Sema &S;
12551 struct DiagNonTrivalCUnionDestructedTypeVisitor
12552 : DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void> {
12553 using Super =
12554 DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void>;
12556 DiagNonTrivalCUnionDestructedTypeVisitor(
12557 QualType OrigTy, SourceLocation OrigLoc,
12558 Sema::NonTrivialCUnionContext UseContext, Sema &S)
12559 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
12561 void visitWithKind(QualType::DestructionKind DK, QualType QT,
12562 const FieldDecl *FD, bool InNonTrivialUnion) {
12563 if (const auto *AT = S.Context.getAsArrayType(QT))
12564 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
12565 InNonTrivialUnion);
12566 return Super::visitWithKind(DK, QT, FD, InNonTrivialUnion);
12569 void visitARCStrong(QualType QT, const FieldDecl *FD,
12570 bool InNonTrivialUnion) {
12571 if (InNonTrivialUnion)
12572 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
12573 << 1 << 1 << QT << FD->getName();
12576 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
12577 if (InNonTrivialUnion)
12578 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
12579 << 1 << 1 << QT << FD->getName();
12582 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
12583 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
12584 if (RD->isUnion()) {
12585 if (OrigLoc.isValid()) {
12586 bool IsUnion = false;
12587 if (auto *OrigRD = OrigTy->getAsRecordDecl())
12588 IsUnion = OrigRD->isUnion();
12589 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
12590 << 1 << OrigTy << IsUnion << UseContext;
12591 // Reset OrigLoc so that this diagnostic is emitted only once.
12592 OrigLoc = SourceLocation();
12594 InNonTrivialUnion = true;
12597 if (InNonTrivialUnion)
12598 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
12599 << 0 << 1 << QT.getUnqualifiedType() << "";
12601 for (const FieldDecl *FD : RD->fields())
12602 if (!shouldIgnoreForRecordTriviality(FD))
12603 asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
12606 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
12607 void visitCXXDestructor(QualType QT, const FieldDecl *FD,
12608 bool InNonTrivialUnion) {}
12610 // The non-trivial C union type or the struct/union type that contains a
12611 // non-trivial C union.
12612 QualType OrigTy;
12613 SourceLocation OrigLoc;
12614 Sema::NonTrivialCUnionContext UseContext;
12615 Sema &S;
12618 struct DiagNonTrivalCUnionCopyVisitor
12619 : CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void> {
12620 using Super = CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void>;
12622 DiagNonTrivalCUnionCopyVisitor(QualType OrigTy, SourceLocation OrigLoc,
12623 Sema::NonTrivialCUnionContext UseContext,
12624 Sema &S)
12625 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
12627 void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT,
12628 const FieldDecl *FD, bool InNonTrivialUnion) {
12629 if (const auto *AT = S.Context.getAsArrayType(QT))
12630 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
12631 InNonTrivialUnion);
12632 return Super::visitWithKind(PCK, QT, FD, InNonTrivialUnion);
12635 void visitARCStrong(QualType QT, const FieldDecl *FD,
12636 bool InNonTrivialUnion) {
12637 if (InNonTrivialUnion)
12638 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
12639 << 1 << 2 << QT << FD->getName();
12642 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
12643 if (InNonTrivialUnion)
12644 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
12645 << 1 << 2 << QT << FD->getName();
12648 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
12649 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
12650 if (RD->isUnion()) {
12651 if (OrigLoc.isValid()) {
12652 bool IsUnion = false;
12653 if (auto *OrigRD = OrigTy->getAsRecordDecl())
12654 IsUnion = OrigRD->isUnion();
12655 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
12656 << 2 << OrigTy << IsUnion << UseContext;
12657 // Reset OrigLoc so that this diagnostic is emitted only once.
12658 OrigLoc = SourceLocation();
12660 InNonTrivialUnion = true;
12663 if (InNonTrivialUnion)
12664 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
12665 << 0 << 2 << QT.getUnqualifiedType() << "";
12667 for (const FieldDecl *FD : RD->fields())
12668 if (!shouldIgnoreForRecordTriviality(FD))
12669 asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
12672 void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT,
12673 const FieldDecl *FD, bool InNonTrivialUnion) {}
12674 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
12675 void visitVolatileTrivial(QualType QT, const FieldDecl *FD,
12676 bool InNonTrivialUnion) {}
12678 // The non-trivial C union type or the struct/union type that contains a
12679 // non-trivial C union.
12680 QualType OrigTy;
12681 SourceLocation OrigLoc;
12682 Sema::NonTrivialCUnionContext UseContext;
12683 Sema &S;
12686 } // namespace
12688 void Sema::checkNonTrivialCUnion(QualType QT, SourceLocation Loc,
12689 NonTrivialCUnionContext UseContext,
12690 unsigned NonTrivialKind) {
12691 assert((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
12692 QT.hasNonTrivialToPrimitiveDestructCUnion() ||
12693 QT.hasNonTrivialToPrimitiveCopyCUnion()) &&
12694 "shouldn't be called if type doesn't have a non-trivial C union");
12696 if ((NonTrivialKind & NTCUK_Init) &&
12697 QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
12698 DiagNonTrivalCUnionDefaultInitializeVisitor(QT, Loc, UseContext, *this)
12699 .visit(QT, nullptr, false);
12700 if ((NonTrivialKind & NTCUK_Destruct) &&
12701 QT.hasNonTrivialToPrimitiveDestructCUnion())
12702 DiagNonTrivalCUnionDestructedTypeVisitor(QT, Loc, UseContext, *this)
12703 .visit(QT, nullptr, false);
12704 if ((NonTrivialKind & NTCUK_Copy) && QT.hasNonTrivialToPrimitiveCopyCUnion())
12705 DiagNonTrivalCUnionCopyVisitor(QT, Loc, UseContext, *this)
12706 .visit(QT, nullptr, false);
12709 /// AddInitializerToDecl - Adds the initializer Init to the
12710 /// declaration dcl. If DirectInit is true, this is C++ direct
12711 /// initialization rather than copy initialization.
12712 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
12713 // If there is no declaration, there was an error parsing it. Just ignore
12714 // the initializer.
12715 if (!RealDecl || RealDecl->isInvalidDecl()) {
12716 CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
12717 return;
12720 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
12721 // Pure-specifiers are handled in ActOnPureSpecifier.
12722 Diag(Method->getLocation(), diag::err_member_function_initialization)
12723 << Method->getDeclName() << Init->getSourceRange();
12724 Method->setInvalidDecl();
12725 return;
12728 VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
12729 if (!VDecl) {
12730 assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
12731 Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
12732 RealDecl->setInvalidDecl();
12733 return;
12736 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
12737 if (VDecl->getType()->isUndeducedType()) {
12738 // Attempt typo correction early so that the type of the init expression can
12739 // be deduced based on the chosen correction if the original init contains a
12740 // TypoExpr.
12741 ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
12742 if (!Res.isUsable()) {
12743 // There are unresolved typos in Init, just drop them.
12744 // FIXME: improve the recovery strategy to preserve the Init.
12745 RealDecl->setInvalidDecl();
12746 return;
12748 if (Res.get()->containsErrors()) {
12749 // Invalidate the decl as we don't know the type for recovery-expr yet.
12750 RealDecl->setInvalidDecl();
12751 VDecl->setInit(Res.get());
12752 return;
12754 Init = Res.get();
12756 if (DeduceVariableDeclarationType(VDecl, DirectInit, Init))
12757 return;
12760 // dllimport cannot be used on variable definitions.
12761 if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
12762 Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
12763 VDecl->setInvalidDecl();
12764 return;
12767 // C99 6.7.8p5. If the declaration of an identifier has block scope, and
12768 // the identifier has external or internal linkage, the declaration shall
12769 // have no initializer for the identifier.
12770 // C++14 [dcl.init]p5 is the same restriction for C++.
12771 if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
12772 Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
12773 VDecl->setInvalidDecl();
12774 return;
12777 if (!VDecl->getType()->isDependentType()) {
12778 // A definition must end up with a complete type, which means it must be
12779 // complete with the restriction that an array type might be completed by
12780 // the initializer; note that later code assumes this restriction.
12781 QualType BaseDeclType = VDecl->getType();
12782 if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
12783 BaseDeclType = Array->getElementType();
12784 if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
12785 diag::err_typecheck_decl_incomplete_type)) {
12786 RealDecl->setInvalidDecl();
12787 return;
12790 // The variable can not have an abstract class type.
12791 if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
12792 diag::err_abstract_type_in_decl,
12793 AbstractVariableType))
12794 VDecl->setInvalidDecl();
12797 // If adding the initializer will turn this declaration into a definition,
12798 // and we already have a definition for this variable, diagnose or otherwise
12799 // handle the situation.
12800 if (VarDecl *Def = VDecl->getDefinition())
12801 if (Def != VDecl &&
12802 (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) &&
12803 !VDecl->isThisDeclarationADemotedDefinition() &&
12804 checkVarDeclRedefinition(Def, VDecl))
12805 return;
12807 if (getLangOpts().CPlusPlus) {
12808 // C++ [class.static.data]p4
12809 // If a static data member is of const integral or const
12810 // enumeration type, its declaration in the class definition can
12811 // specify a constant-initializer which shall be an integral
12812 // constant expression (5.19). In that case, the member can appear
12813 // in integral constant expressions. The member shall still be
12814 // defined in a namespace scope if it is used in the program and the
12815 // namespace scope definition shall not contain an initializer.
12817 // We already performed a redefinition check above, but for static
12818 // data members we also need to check whether there was an in-class
12819 // declaration with an initializer.
12820 if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
12821 Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
12822 << VDecl->getDeclName();
12823 Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
12824 diag::note_previous_initializer)
12825 << 0;
12826 return;
12829 if (VDecl->hasLocalStorage())
12830 setFunctionHasBranchProtectedScope();
12832 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
12833 VDecl->setInvalidDecl();
12834 return;
12838 // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
12839 // a kernel function cannot be initialized."
12840 if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
12841 Diag(VDecl->getLocation(), diag::err_local_cant_init);
12842 VDecl->setInvalidDecl();
12843 return;
12846 // The LoaderUninitialized attribute acts as a definition (of undef).
12847 if (VDecl->hasAttr<LoaderUninitializedAttr>()) {
12848 Diag(VDecl->getLocation(), diag::err_loader_uninitialized_cant_init);
12849 VDecl->setInvalidDecl();
12850 return;
12853 // Get the decls type and save a reference for later, since
12854 // CheckInitializerTypes may change it.
12855 QualType DclT = VDecl->getType(), SavT = DclT;
12857 // Expressions default to 'id' when we're in a debugger
12858 // and we are assigning it to a variable of Objective-C pointer type.
12859 if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
12860 Init->getType() == Context.UnknownAnyTy) {
12861 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
12862 if (Result.isInvalid()) {
12863 VDecl->setInvalidDecl();
12864 return;
12866 Init = Result.get();
12869 // Perform the initialization.
12870 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
12871 if (!VDecl->isInvalidDecl()) {
12872 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
12873 InitializationKind Kind = InitializationKind::CreateForInit(
12874 VDecl->getLocation(), DirectInit, Init);
12876 MultiExprArg Args = Init;
12877 if (CXXDirectInit)
12878 Args = MultiExprArg(CXXDirectInit->getExprs(),
12879 CXXDirectInit->getNumExprs());
12881 // Try to correct any TypoExprs in the initialization arguments.
12882 for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
12883 ExprResult Res = CorrectDelayedTyposInExpr(
12884 Args[Idx], VDecl, /*RecoverUncorrectedTypos=*/true,
12885 [this, Entity, Kind](Expr *E) {
12886 InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
12887 return Init.Failed() ? ExprError() : E;
12889 if (Res.isInvalid()) {
12890 VDecl->setInvalidDecl();
12891 } else if (Res.get() != Args[Idx]) {
12892 Args[Idx] = Res.get();
12895 if (VDecl->isInvalidDecl())
12896 return;
12898 InitializationSequence InitSeq(*this, Entity, Kind, Args,
12899 /*TopLevelOfInitList=*/false,
12900 /*TreatUnavailableAsInvalid=*/false);
12901 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
12902 if (Result.isInvalid()) {
12903 // If the provided initializer fails to initialize the var decl,
12904 // we attach a recovery expr for better recovery.
12905 auto RecoveryExpr =
12906 CreateRecoveryExpr(Init->getBeginLoc(), Init->getEndLoc(), Args);
12907 if (RecoveryExpr.get())
12908 VDecl->setInit(RecoveryExpr.get());
12909 return;
12912 Init = Result.getAs<Expr>();
12915 // Check for self-references within variable initializers.
12916 // Variables declared within a function/method body (except for references)
12917 // are handled by a dataflow analysis.
12918 // This is undefined behavior in C++, but valid in C.
12919 if (getLangOpts().CPlusPlus)
12920 if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
12921 VDecl->getType()->isReferenceType())
12922 CheckSelfReference(*this, RealDecl, Init, DirectInit);
12924 // If the type changed, it means we had an incomplete type that was
12925 // completed by the initializer. For example:
12926 // int ary[] = { 1, 3, 5 };
12927 // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
12928 if (!VDecl->isInvalidDecl() && (DclT != SavT))
12929 VDecl->setType(DclT);
12931 if (!VDecl->isInvalidDecl()) {
12932 checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
12934 if (VDecl->hasAttr<BlocksAttr>())
12935 checkRetainCycles(VDecl, Init);
12937 // It is safe to assign a weak reference into a strong variable.
12938 // Although this code can still have problems:
12939 // id x = self.weakProp;
12940 // id y = self.weakProp;
12941 // we do not warn to warn spuriously when 'x' and 'y' are on separate
12942 // paths through the function. This should be revisited if
12943 // -Wrepeated-use-of-weak is made flow-sensitive.
12944 if (FunctionScopeInfo *FSI = getCurFunction())
12945 if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
12946 VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) &&
12947 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
12948 Init->getBeginLoc()))
12949 FSI->markSafeWeakUse(Init);
12952 // The initialization is usually a full-expression.
12954 // FIXME: If this is a braced initialization of an aggregate, it is not
12955 // an expression, and each individual field initializer is a separate
12956 // full-expression. For instance, in:
12958 // struct Temp { ~Temp(); };
12959 // struct S { S(Temp); };
12960 // struct T { S a, b; } t = { Temp(), Temp() }
12962 // we should destroy the first Temp before constructing the second.
12963 ExprResult Result =
12964 ActOnFinishFullExpr(Init, VDecl->getLocation(),
12965 /*DiscardedValue*/ false, VDecl->isConstexpr());
12966 if (Result.isInvalid()) {
12967 VDecl->setInvalidDecl();
12968 return;
12970 Init = Result.get();
12972 // Attach the initializer to the decl.
12973 VDecl->setInit(Init);
12975 if (VDecl->isLocalVarDecl()) {
12976 // Don't check the initializer if the declaration is malformed.
12977 if (VDecl->isInvalidDecl()) {
12978 // do nothing
12980 // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
12981 // This is true even in C++ for OpenCL.
12982 } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) {
12983 CheckForConstantInitializer(Init, DclT);
12985 // Otherwise, C++ does not restrict the initializer.
12986 } else if (getLangOpts().CPlusPlus) {
12987 // do nothing
12989 // C99 6.7.8p4: All the expressions in an initializer for an object that has
12990 // static storage duration shall be constant expressions or string literals.
12991 } else if (VDecl->getStorageClass() == SC_Static) {
12992 CheckForConstantInitializer(Init, DclT);
12994 // C89 is stricter than C99 for aggregate initializers.
12995 // C89 6.5.7p3: All the expressions [...] in an initializer list
12996 // for an object that has aggregate or union type shall be
12997 // constant expressions.
12998 } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
12999 isa<InitListExpr>(Init)) {
13000 const Expr *Culprit;
13001 if (!Init->isConstantInitializer(Context, false, &Culprit)) {
13002 Diag(Culprit->getExprLoc(),
13003 diag::ext_aggregate_init_not_constant)
13004 << Culprit->getSourceRange();
13008 if (auto *E = dyn_cast<ExprWithCleanups>(Init))
13009 if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens()))
13010 if (VDecl->hasLocalStorage())
13011 BE->getBlockDecl()->setCanAvoidCopyToHeap();
13012 } else if (VDecl->isStaticDataMember() && !VDecl->isInline() &&
13013 VDecl->getLexicalDeclContext()->isRecord()) {
13014 // This is an in-class initialization for a static data member, e.g.,
13016 // struct S {
13017 // static const int value = 17;
13018 // };
13020 // C++ [class.mem]p4:
13021 // A member-declarator can contain a constant-initializer only
13022 // if it declares a static member (9.4) of const integral or
13023 // const enumeration type, see 9.4.2.
13025 // C++11 [class.static.data]p3:
13026 // If a non-volatile non-inline const static data member is of integral
13027 // or enumeration type, its declaration in the class definition can
13028 // specify a brace-or-equal-initializer in which every initializer-clause
13029 // that is an assignment-expression is a constant expression. A static
13030 // data member of literal type can be declared in the class definition
13031 // with the constexpr specifier; if so, its declaration shall specify a
13032 // brace-or-equal-initializer in which every initializer-clause that is
13033 // an assignment-expression is a constant expression.
13035 // Do nothing on dependent types.
13036 if (DclT->isDependentType()) {
13038 // Allow any 'static constexpr' members, whether or not they are of literal
13039 // type. We separately check that every constexpr variable is of literal
13040 // type.
13041 } else if (VDecl->isConstexpr()) {
13043 // Require constness.
13044 } else if (!DclT.isConstQualified()) {
13045 Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
13046 << Init->getSourceRange();
13047 VDecl->setInvalidDecl();
13049 // We allow integer constant expressions in all cases.
13050 } else if (DclT->isIntegralOrEnumerationType()) {
13051 // Check whether the expression is a constant expression.
13052 SourceLocation Loc;
13053 if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
13054 // In C++11, a non-constexpr const static data member with an
13055 // in-class initializer cannot be volatile.
13056 Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
13057 else if (Init->isValueDependent())
13058 ; // Nothing to check.
13059 else if (Init->isIntegerConstantExpr(Context, &Loc))
13060 ; // Ok, it's an ICE!
13061 else if (Init->getType()->isScopedEnumeralType() &&
13062 Init->isCXX11ConstantExpr(Context))
13063 ; // Ok, it is a scoped-enum constant expression.
13064 else if (Init->isEvaluatable(Context)) {
13065 // If we can constant fold the initializer through heroics, accept it,
13066 // but report this as a use of an extension for -pedantic.
13067 Diag(Loc, diag::ext_in_class_initializer_non_constant)
13068 << Init->getSourceRange();
13069 } else {
13070 // Otherwise, this is some crazy unknown case. Report the issue at the
13071 // location provided by the isIntegerConstantExpr failed check.
13072 Diag(Loc, diag::err_in_class_initializer_non_constant)
13073 << Init->getSourceRange();
13074 VDecl->setInvalidDecl();
13077 // We allow foldable floating-point constants as an extension.
13078 } else if (DclT->isFloatingType()) { // also permits complex, which is ok
13079 // In C++98, this is a GNU extension. In C++11, it is not, but we support
13080 // it anyway and provide a fixit to add the 'constexpr'.
13081 if (getLangOpts().CPlusPlus11) {
13082 Diag(VDecl->getLocation(),
13083 diag::ext_in_class_initializer_float_type_cxx11)
13084 << DclT << Init->getSourceRange();
13085 Diag(VDecl->getBeginLoc(),
13086 diag::note_in_class_initializer_float_type_cxx11)
13087 << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
13088 } else {
13089 Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
13090 << DclT << Init->getSourceRange();
13092 if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
13093 Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
13094 << Init->getSourceRange();
13095 VDecl->setInvalidDecl();
13099 // Suggest adding 'constexpr' in C++11 for literal types.
13100 } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
13101 Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
13102 << DclT << Init->getSourceRange()
13103 << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
13104 VDecl->setConstexpr(true);
13106 } else {
13107 Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
13108 << DclT << Init->getSourceRange();
13109 VDecl->setInvalidDecl();
13111 } else if (VDecl->isFileVarDecl()) {
13112 // In C, extern is typically used to avoid tentative definitions when
13113 // declaring variables in headers, but adding an intializer makes it a
13114 // definition. This is somewhat confusing, so GCC and Clang both warn on it.
13115 // In C++, extern is often used to give implictly static const variables
13116 // external linkage, so don't warn in that case. If selectany is present,
13117 // this might be header code intended for C and C++ inclusion, so apply the
13118 // C++ rules.
13119 if (VDecl->getStorageClass() == SC_Extern &&
13120 ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) ||
13121 !Context.getBaseElementType(VDecl->getType()).isConstQualified()) &&
13122 !(getLangOpts().CPlusPlus && VDecl->isExternC()) &&
13123 !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
13124 Diag(VDecl->getLocation(), diag::warn_extern_init);
13126 // In Microsoft C++ mode, a const variable defined in namespace scope has
13127 // external linkage by default if the variable is declared with
13128 // __declspec(dllexport).
13129 if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
13130 getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() &&
13131 VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition())
13132 VDecl->setStorageClass(SC_Extern);
13134 // C99 6.7.8p4. All file scoped initializers need to be constant.
13135 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
13136 CheckForConstantInitializer(Init, DclT);
13139 QualType InitType = Init->getType();
13140 if (!InitType.isNull() &&
13141 (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
13142 InitType.hasNonTrivialToPrimitiveCopyCUnion()))
13143 checkNonTrivialCUnionInInitializer(Init, Init->getExprLoc());
13145 // We will represent direct-initialization similarly to copy-initialization:
13146 // int x(1); -as-> int x = 1;
13147 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
13149 // Clients that want to distinguish between the two forms, can check for
13150 // direct initializer using VarDecl::getInitStyle().
13151 // A major benefit is that clients that don't particularly care about which
13152 // exactly form was it (like the CodeGen) can handle both cases without
13153 // special case code.
13155 // C++ 8.5p11:
13156 // The form of initialization (using parentheses or '=') is generally
13157 // insignificant, but does matter when the entity being initialized has a
13158 // class type.
13159 if (CXXDirectInit) {
13160 assert(DirectInit && "Call-style initializer must be direct init.");
13161 VDecl->setInitStyle(VarDecl::CallInit);
13162 } else if (DirectInit) {
13163 // This must be list-initialization. No other way is direct-initialization.
13164 VDecl->setInitStyle(VarDecl::ListInit);
13167 if (LangOpts.OpenMP &&
13168 (LangOpts.OpenMPIsDevice || !LangOpts.OMPTargetTriples.empty()) &&
13169 VDecl->isFileVarDecl())
13170 DeclsToCheckForDeferredDiags.insert(VDecl);
13171 CheckCompleteVariableDeclaration(VDecl);
13174 /// ActOnInitializerError - Given that there was an error parsing an
13175 /// initializer for the given declaration, try to at least re-establish
13176 /// invariants such as whether a variable's type is either dependent or
13177 /// complete.
13178 void Sema::ActOnInitializerError(Decl *D) {
13179 // Our main concern here is re-establishing invariants like "a
13180 // variable's type is either dependent or complete".
13181 if (!D || D->isInvalidDecl()) return;
13183 VarDecl *VD = dyn_cast<VarDecl>(D);
13184 if (!VD) return;
13186 // Bindings are not usable if we can't make sense of the initializer.
13187 if (auto *DD = dyn_cast<DecompositionDecl>(D))
13188 for (auto *BD : DD->bindings())
13189 BD->setInvalidDecl();
13191 // Auto types are meaningless if we can't make sense of the initializer.
13192 if (VD->getType()->isUndeducedType()) {
13193 D->setInvalidDecl();
13194 return;
13197 QualType Ty = VD->getType();
13198 if (Ty->isDependentType()) return;
13200 // Require a complete type.
13201 if (RequireCompleteType(VD->getLocation(),
13202 Context.getBaseElementType(Ty),
13203 diag::err_typecheck_decl_incomplete_type)) {
13204 VD->setInvalidDecl();
13205 return;
13208 // Require a non-abstract type.
13209 if (RequireNonAbstractType(VD->getLocation(), Ty,
13210 diag::err_abstract_type_in_decl,
13211 AbstractVariableType)) {
13212 VD->setInvalidDecl();
13213 return;
13216 // Don't bother complaining about constructors or destructors,
13217 // though.
13220 void Sema::ActOnUninitializedDecl(Decl *RealDecl) {
13221 // If there is no declaration, there was an error parsing it. Just ignore it.
13222 if (!RealDecl)
13223 return;
13225 if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
13226 QualType Type = Var->getType();
13228 // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
13229 if (isa<DecompositionDecl>(RealDecl)) {
13230 Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var;
13231 Var->setInvalidDecl();
13232 return;
13235 if (Type->isUndeducedType() &&
13236 DeduceVariableDeclarationType(Var, false, nullptr))
13237 return;
13239 // C++11 [class.static.data]p3: A static data member can be declared with
13240 // the constexpr specifier; if so, its declaration shall specify
13241 // a brace-or-equal-initializer.
13242 // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
13243 // the definition of a variable [...] or the declaration of a static data
13244 // member.
13245 if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() &&
13246 !Var->isThisDeclarationADemotedDefinition()) {
13247 if (Var->isStaticDataMember()) {
13248 // C++1z removes the relevant rule; the in-class declaration is always
13249 // a definition there.
13250 if (!getLangOpts().CPlusPlus17 &&
13251 !Context.getTargetInfo().getCXXABI().isMicrosoft()) {
13252 Diag(Var->getLocation(),
13253 diag::err_constexpr_static_mem_var_requires_init)
13254 << Var;
13255 Var->setInvalidDecl();
13256 return;
13258 } else {
13259 Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
13260 Var->setInvalidDecl();
13261 return;
13265 // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
13266 // be initialized.
13267 if (!Var->isInvalidDecl() &&
13268 Var->getType().getAddressSpace() == LangAS::opencl_constant &&
13269 Var->getStorageClass() != SC_Extern && !Var->getInit()) {
13270 bool HasConstExprDefaultConstructor = false;
13271 if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) {
13272 for (auto *Ctor : RD->ctors()) {
13273 if (Ctor->isConstexpr() && Ctor->getNumParams() == 0 &&
13274 Ctor->getMethodQualifiers().getAddressSpace() ==
13275 LangAS::opencl_constant) {
13276 HasConstExprDefaultConstructor = true;
13280 if (!HasConstExprDefaultConstructor) {
13281 Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
13282 Var->setInvalidDecl();
13283 return;
13287 if (!Var->isInvalidDecl() && RealDecl->hasAttr<LoaderUninitializedAttr>()) {
13288 if (Var->getStorageClass() == SC_Extern) {
13289 Diag(Var->getLocation(), diag::err_loader_uninitialized_extern_decl)
13290 << Var;
13291 Var->setInvalidDecl();
13292 return;
13294 if (RequireCompleteType(Var->getLocation(), Var->getType(),
13295 diag::err_typecheck_decl_incomplete_type)) {
13296 Var->setInvalidDecl();
13297 return;
13299 if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) {
13300 if (!RD->hasTrivialDefaultConstructor()) {
13301 Diag(Var->getLocation(), diag::err_loader_uninitialized_trivial_ctor);
13302 Var->setInvalidDecl();
13303 return;
13306 // The declaration is unitialized, no need for further checks.
13307 return;
13310 VarDecl::DefinitionKind DefKind = Var->isThisDeclarationADefinition();
13311 if (!Var->isInvalidDecl() && DefKind != VarDecl::DeclarationOnly &&
13312 Var->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion())
13313 checkNonTrivialCUnion(Var->getType(), Var->getLocation(),
13314 NTCUC_DefaultInitializedObject, NTCUK_Init);
13317 switch (DefKind) {
13318 case VarDecl::Definition:
13319 if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
13320 break;
13322 // We have an out-of-line definition of a static data member
13323 // that has an in-class initializer, so we type-check this like
13324 // a declaration.
13326 [[fallthrough]];
13328 case VarDecl::DeclarationOnly:
13329 // It's only a declaration.
13331 // Block scope. C99 6.7p7: If an identifier for an object is
13332 // declared with no linkage (C99 6.2.2p6), the type for the
13333 // object shall be complete.
13334 if (!Type->isDependentType() && Var->isLocalVarDecl() &&
13335 !Var->hasLinkage() && !Var->isInvalidDecl() &&
13336 RequireCompleteType(Var->getLocation(), Type,
13337 diag::err_typecheck_decl_incomplete_type))
13338 Var->setInvalidDecl();
13340 // Make sure that the type is not abstract.
13341 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
13342 RequireNonAbstractType(Var->getLocation(), Type,
13343 diag::err_abstract_type_in_decl,
13344 AbstractVariableType))
13345 Var->setInvalidDecl();
13346 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
13347 Var->getStorageClass() == SC_PrivateExtern) {
13348 Diag(Var->getLocation(), diag::warn_private_extern);
13349 Diag(Var->getLocation(), diag::note_private_extern);
13352 if (Context.getTargetInfo().allowDebugInfoForExternalRef() &&
13353 !Var->isInvalidDecl() && !getLangOpts().CPlusPlus)
13354 ExternalDeclarations.push_back(Var);
13356 return;
13358 case VarDecl::TentativeDefinition:
13359 // File scope. C99 6.9.2p2: A declaration of an identifier for an
13360 // object that has file scope without an initializer, and without a
13361 // storage-class specifier or with the storage-class specifier "static",
13362 // constitutes a tentative definition. Note: A tentative definition with
13363 // external linkage is valid (C99 6.2.2p5).
13364 if (!Var->isInvalidDecl()) {
13365 if (const IncompleteArrayType *ArrayT
13366 = Context.getAsIncompleteArrayType(Type)) {
13367 if (RequireCompleteSizedType(
13368 Var->getLocation(), ArrayT->getElementType(),
13369 diag::err_array_incomplete_or_sizeless_type))
13370 Var->setInvalidDecl();
13371 } else if (Var->getStorageClass() == SC_Static) {
13372 // C99 6.9.2p3: If the declaration of an identifier for an object is
13373 // a tentative definition and has internal linkage (C99 6.2.2p3), the
13374 // declared type shall not be an incomplete type.
13375 // NOTE: code such as the following
13376 // static struct s;
13377 // struct s { int a; };
13378 // is accepted by gcc. Hence here we issue a warning instead of
13379 // an error and we do not invalidate the static declaration.
13380 // NOTE: to avoid multiple warnings, only check the first declaration.
13381 if (Var->isFirstDecl())
13382 RequireCompleteType(Var->getLocation(), Type,
13383 diag::ext_typecheck_decl_incomplete_type);
13387 // Record the tentative definition; we're done.
13388 if (!Var->isInvalidDecl())
13389 TentativeDefinitions.push_back(Var);
13390 return;
13393 // Provide a specific diagnostic for uninitialized variable
13394 // definitions with incomplete array type.
13395 if (Type->isIncompleteArrayType()) {
13396 if (Var->isConstexpr())
13397 Diag(Var->getLocation(), diag::err_constexpr_var_requires_const_init)
13398 << Var;
13399 else
13400 Diag(Var->getLocation(),
13401 diag::err_typecheck_incomplete_array_needs_initializer);
13402 Var->setInvalidDecl();
13403 return;
13406 // Provide a specific diagnostic for uninitialized variable
13407 // definitions with reference type.
13408 if (Type->isReferenceType()) {
13409 Diag(Var->getLocation(), diag::err_reference_var_requires_init)
13410 << Var << SourceRange(Var->getLocation(), Var->getLocation());
13411 return;
13414 // Do not attempt to type-check the default initializer for a
13415 // variable with dependent type.
13416 if (Type->isDependentType())
13417 return;
13419 if (Var->isInvalidDecl())
13420 return;
13422 if (!Var->hasAttr<AliasAttr>()) {
13423 if (RequireCompleteType(Var->getLocation(),
13424 Context.getBaseElementType(Type),
13425 diag::err_typecheck_decl_incomplete_type)) {
13426 Var->setInvalidDecl();
13427 return;
13429 } else {
13430 return;
13433 // The variable can not have an abstract class type.
13434 if (RequireNonAbstractType(Var->getLocation(), Type,
13435 diag::err_abstract_type_in_decl,
13436 AbstractVariableType)) {
13437 Var->setInvalidDecl();
13438 return;
13441 // Check for jumps past the implicit initializer. C++0x
13442 // clarifies that this applies to a "variable with automatic
13443 // storage duration", not a "local variable".
13444 // C++11 [stmt.dcl]p3
13445 // A program that jumps from a point where a variable with automatic
13446 // storage duration is not in scope to a point where it is in scope is
13447 // ill-formed unless the variable has scalar type, class type with a
13448 // trivial default constructor and a trivial destructor, a cv-qualified
13449 // version of one of these types, or an array of one of the preceding
13450 // types and is declared without an initializer.
13451 if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
13452 if (const RecordType *Record
13453 = Context.getBaseElementType(Type)->getAs<RecordType>()) {
13454 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
13455 // Mark the function (if we're in one) for further checking even if the
13456 // looser rules of C++11 do not require such checks, so that we can
13457 // diagnose incompatibilities with C++98.
13458 if (!CXXRecord->isPOD())
13459 setFunctionHasBranchProtectedScope();
13462 // In OpenCL, we can't initialize objects in the __local address space,
13463 // even implicitly, so don't synthesize an implicit initializer.
13464 if (getLangOpts().OpenCL &&
13465 Var->getType().getAddressSpace() == LangAS::opencl_local)
13466 return;
13467 // C++03 [dcl.init]p9:
13468 // If no initializer is specified for an object, and the
13469 // object is of (possibly cv-qualified) non-POD class type (or
13470 // array thereof), the object shall be default-initialized; if
13471 // the object is of const-qualified type, the underlying class
13472 // type shall have a user-declared default
13473 // constructor. Otherwise, if no initializer is specified for
13474 // a non- static object, the object and its subobjects, if
13475 // any, have an indeterminate initial value); if the object
13476 // or any of its subobjects are of const-qualified type, the
13477 // program is ill-formed.
13478 // C++0x [dcl.init]p11:
13479 // If no initializer is specified for an object, the object is
13480 // default-initialized; [...].
13481 InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
13482 InitializationKind Kind
13483 = InitializationKind::CreateDefault(Var->getLocation());
13485 InitializationSequence InitSeq(*this, Entity, Kind, None);
13486 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
13488 if (Init.get()) {
13489 Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
13490 // This is important for template substitution.
13491 Var->setInitStyle(VarDecl::CallInit);
13492 } else if (Init.isInvalid()) {
13493 // If default-init fails, attach a recovery-expr initializer to track
13494 // that initialization was attempted and failed.
13495 auto RecoveryExpr =
13496 CreateRecoveryExpr(Var->getLocation(), Var->getLocation(), {});
13497 if (RecoveryExpr.get())
13498 Var->setInit(RecoveryExpr.get());
13501 CheckCompleteVariableDeclaration(Var);
13505 void Sema::ActOnCXXForRangeDecl(Decl *D) {
13506 // If there is no declaration, there was an error parsing it. Ignore it.
13507 if (!D)
13508 return;
13510 VarDecl *VD = dyn_cast<VarDecl>(D);
13511 if (!VD) {
13512 Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
13513 D->setInvalidDecl();
13514 return;
13517 VD->setCXXForRangeDecl(true);
13519 // for-range-declaration cannot be given a storage class specifier.
13520 int Error = -1;
13521 switch (VD->getStorageClass()) {
13522 case SC_None:
13523 break;
13524 case SC_Extern:
13525 Error = 0;
13526 break;
13527 case SC_Static:
13528 Error = 1;
13529 break;
13530 case SC_PrivateExtern:
13531 Error = 2;
13532 break;
13533 case SC_Auto:
13534 Error = 3;
13535 break;
13536 case SC_Register:
13537 Error = 4;
13538 break;
13541 // for-range-declaration cannot be given a storage class specifier con't.
13542 switch (VD->getTSCSpec()) {
13543 case TSCS_thread_local:
13544 Error = 6;
13545 break;
13546 case TSCS___thread:
13547 case TSCS__Thread_local:
13548 case TSCS_unspecified:
13549 break;
13552 if (Error != -1) {
13553 Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
13554 << VD << Error;
13555 D->setInvalidDecl();
13559 StmtResult Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
13560 IdentifierInfo *Ident,
13561 ParsedAttributes &Attrs) {
13562 // C++1y [stmt.iter]p1:
13563 // A range-based for statement of the form
13564 // for ( for-range-identifier : for-range-initializer ) statement
13565 // is equivalent to
13566 // for ( auto&& for-range-identifier : for-range-initializer ) statement
13567 DeclSpec DS(Attrs.getPool().getFactory());
13569 const char *PrevSpec;
13570 unsigned DiagID;
13571 DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
13572 getPrintingPolicy());
13574 Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::ForInit);
13575 D.SetIdentifier(Ident, IdentLoc);
13576 D.takeAttributes(Attrs);
13578 D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false),
13579 IdentLoc);
13580 Decl *Var = ActOnDeclarator(S, D);
13581 cast<VarDecl>(Var)->setCXXForRangeDecl(true);
13582 FinalizeDeclaration(Var);
13583 return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
13584 Attrs.Range.getEnd().isValid() ? Attrs.Range.getEnd()
13585 : IdentLoc);
13588 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
13589 if (var->isInvalidDecl()) return;
13591 MaybeAddCUDAConstantAttr(var);
13593 if (getLangOpts().OpenCL) {
13594 // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
13595 // initialiser
13596 if (var->getTypeSourceInfo()->getType()->isBlockPointerType() &&
13597 !var->hasInit()) {
13598 Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration)
13599 << 1 /*Init*/;
13600 var->setInvalidDecl();
13601 return;
13605 // In Objective-C, don't allow jumps past the implicit initialization of a
13606 // local retaining variable.
13607 if (getLangOpts().ObjC &&
13608 var->hasLocalStorage()) {
13609 switch (var->getType().getObjCLifetime()) {
13610 case Qualifiers::OCL_None:
13611 case Qualifiers::OCL_ExplicitNone:
13612 case Qualifiers::OCL_Autoreleasing:
13613 break;
13615 case Qualifiers::OCL_Weak:
13616 case Qualifiers::OCL_Strong:
13617 setFunctionHasBranchProtectedScope();
13618 break;
13622 if (var->hasLocalStorage() &&
13623 var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
13624 setFunctionHasBranchProtectedScope();
13626 // Warn about externally-visible variables being defined without a
13627 // prior declaration. We only want to do this for global
13628 // declarations, but we also specifically need to avoid doing it for
13629 // class members because the linkage of an anonymous class can
13630 // change if it's later given a typedef name.
13631 if (var->isThisDeclarationADefinition() &&
13632 var->getDeclContext()->getRedeclContext()->isFileContext() &&
13633 var->isExternallyVisible() && var->hasLinkage() &&
13634 !var->isInline() && !var->getDescribedVarTemplate() &&
13635 !isa<VarTemplatePartialSpecializationDecl>(var) &&
13636 !isTemplateInstantiation(var->getTemplateSpecializationKind()) &&
13637 !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
13638 var->getLocation())) {
13639 // Find a previous declaration that's not a definition.
13640 VarDecl *prev = var->getPreviousDecl();
13641 while (prev && prev->isThisDeclarationADefinition())
13642 prev = prev->getPreviousDecl();
13644 if (!prev) {
13645 Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
13646 Diag(var->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
13647 << /* variable */ 0;
13651 // Cache the result of checking for constant initialization.
13652 Optional<bool> CacheHasConstInit;
13653 const Expr *CacheCulprit = nullptr;
13654 auto checkConstInit = [&]() mutable {
13655 if (!CacheHasConstInit)
13656 CacheHasConstInit = var->getInit()->isConstantInitializer(
13657 Context, var->getType()->isReferenceType(), &CacheCulprit);
13658 return *CacheHasConstInit;
13661 if (var->getTLSKind() == VarDecl::TLS_Static) {
13662 if (var->getType().isDestructedType()) {
13663 // GNU C++98 edits for __thread, [basic.start.term]p3:
13664 // The type of an object with thread storage duration shall not
13665 // have a non-trivial destructor.
13666 Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
13667 if (getLangOpts().CPlusPlus11)
13668 Diag(var->getLocation(), diag::note_use_thread_local);
13669 } else if (getLangOpts().CPlusPlus && var->hasInit()) {
13670 if (!checkConstInit()) {
13671 // GNU C++98 edits for __thread, [basic.start.init]p4:
13672 // An object of thread storage duration shall not require dynamic
13673 // initialization.
13674 // FIXME: Need strict checking here.
13675 Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init)
13676 << CacheCulprit->getSourceRange();
13677 if (getLangOpts().CPlusPlus11)
13678 Diag(var->getLocation(), diag::note_use_thread_local);
13684 if (!var->getType()->isStructureType() && var->hasInit() &&
13685 isa<InitListExpr>(var->getInit())) {
13686 const auto *ILE = cast<InitListExpr>(var->getInit());
13687 unsigned NumInits = ILE->getNumInits();
13688 if (NumInits > 2)
13689 for (unsigned I = 0; I < NumInits; ++I) {
13690 const auto *Init = ILE->getInit(I);
13691 if (!Init)
13692 break;
13693 const auto *SL = dyn_cast<StringLiteral>(Init->IgnoreImpCasts());
13694 if (!SL)
13695 break;
13697 unsigned NumConcat = SL->getNumConcatenated();
13698 // Diagnose missing comma in string array initialization.
13699 // Do not warn when all the elements in the initializer are concatenated
13700 // together. Do not warn for macros too.
13701 if (NumConcat == 2 && !SL->getBeginLoc().isMacroID()) {
13702 bool OnlyOneMissingComma = true;
13703 for (unsigned J = I + 1; J < NumInits; ++J) {
13704 const auto *Init = ILE->getInit(J);
13705 if (!Init)
13706 break;
13707 const auto *SLJ = dyn_cast<StringLiteral>(Init->IgnoreImpCasts());
13708 if (!SLJ || SLJ->getNumConcatenated() > 1) {
13709 OnlyOneMissingComma = false;
13710 break;
13714 if (OnlyOneMissingComma) {
13715 SmallVector<FixItHint, 1> Hints;
13716 for (unsigned i = 0; i < NumConcat - 1; ++i)
13717 Hints.push_back(FixItHint::CreateInsertion(
13718 PP.getLocForEndOfToken(SL->getStrTokenLoc(i)), ","));
13720 Diag(SL->getStrTokenLoc(1),
13721 diag::warn_concatenated_literal_array_init)
13722 << Hints;
13723 Diag(SL->getBeginLoc(),
13724 diag::note_concatenated_string_literal_silence);
13726 // In any case, stop now.
13727 break;
13733 QualType type = var->getType();
13735 if (var->hasAttr<BlocksAttr>())
13736 getCurFunction()->addByrefBlockVar(var);
13738 Expr *Init = var->getInit();
13739 bool GlobalStorage = var->hasGlobalStorage();
13740 bool IsGlobal = GlobalStorage && !var->isStaticLocal();
13741 QualType baseType = Context.getBaseElementType(type);
13742 bool HasConstInit = true;
13744 // Check whether the initializer is sufficiently constant.
13745 if (getLangOpts().CPlusPlus && !type->isDependentType() && Init &&
13746 !Init->isValueDependent() &&
13747 (GlobalStorage || var->isConstexpr() ||
13748 var->mightBeUsableInConstantExpressions(Context))) {
13749 // If this variable might have a constant initializer or might be usable in
13750 // constant expressions, check whether or not it actually is now. We can't
13751 // do this lazily, because the result might depend on things that change
13752 // later, such as which constexpr functions happen to be defined.
13753 SmallVector<PartialDiagnosticAt, 8> Notes;
13754 if (!getLangOpts().CPlusPlus11) {
13755 // Prior to C++11, in contexts where a constant initializer is required,
13756 // the set of valid constant initializers is described by syntactic rules
13757 // in [expr.const]p2-6.
13758 // FIXME: Stricter checking for these rules would be useful for constinit /
13759 // -Wglobal-constructors.
13760 HasConstInit = checkConstInit();
13762 // Compute and cache the constant value, and remember that we have a
13763 // constant initializer.
13764 if (HasConstInit) {
13765 (void)var->checkForConstantInitialization(Notes);
13766 Notes.clear();
13767 } else if (CacheCulprit) {
13768 Notes.emplace_back(CacheCulprit->getExprLoc(),
13769 PDiag(diag::note_invalid_subexpr_in_const_expr));
13770 Notes.back().second << CacheCulprit->getSourceRange();
13772 } else {
13773 // Evaluate the initializer to see if it's a constant initializer.
13774 HasConstInit = var->checkForConstantInitialization(Notes);
13777 if (HasConstInit) {
13778 // FIXME: Consider replacing the initializer with a ConstantExpr.
13779 } else if (var->isConstexpr()) {
13780 SourceLocation DiagLoc = var->getLocation();
13781 // If the note doesn't add any useful information other than a source
13782 // location, fold it into the primary diagnostic.
13783 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
13784 diag::note_invalid_subexpr_in_const_expr) {
13785 DiagLoc = Notes[0].first;
13786 Notes.clear();
13788 Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
13789 << var << Init->getSourceRange();
13790 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
13791 Diag(Notes[I].first, Notes[I].second);
13792 } else if (GlobalStorage && var->hasAttr<ConstInitAttr>()) {
13793 auto *Attr = var->getAttr<ConstInitAttr>();
13794 Diag(var->getLocation(), diag::err_require_constant_init_failed)
13795 << Init->getSourceRange();
13796 Diag(Attr->getLocation(), diag::note_declared_required_constant_init_here)
13797 << Attr->getRange() << Attr->isConstinit();
13798 for (auto &it : Notes)
13799 Diag(it.first, it.second);
13800 } else if (IsGlobal &&
13801 !getDiagnostics().isIgnored(diag::warn_global_constructor,
13802 var->getLocation())) {
13803 // Warn about globals which don't have a constant initializer. Don't
13804 // warn about globals with a non-trivial destructor because we already
13805 // warned about them.
13806 CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
13807 if (!(RD && !RD->hasTrivialDestructor())) {
13808 // checkConstInit() here permits trivial default initialization even in
13809 // C++11 onwards, where such an initializer is not a constant initializer
13810 // but nonetheless doesn't require a global constructor.
13811 if (!checkConstInit())
13812 Diag(var->getLocation(), diag::warn_global_constructor)
13813 << Init->getSourceRange();
13818 // Apply section attributes and pragmas to global variables.
13819 if (GlobalStorage && var->isThisDeclarationADefinition() &&
13820 !inTemplateInstantiation()) {
13821 PragmaStack<StringLiteral *> *Stack = nullptr;
13822 int SectionFlags = ASTContext::PSF_Read;
13823 if (var->getType().isConstQualified()) {
13824 if (HasConstInit)
13825 Stack = &ConstSegStack;
13826 else {
13827 Stack = &BSSSegStack;
13828 SectionFlags |= ASTContext::PSF_Write;
13830 } else if (var->hasInit() && HasConstInit) {
13831 Stack = &DataSegStack;
13832 SectionFlags |= ASTContext::PSF_Write;
13833 } else {
13834 Stack = &BSSSegStack;
13835 SectionFlags |= ASTContext::PSF_Write;
13837 if (const SectionAttr *SA = var->getAttr<SectionAttr>()) {
13838 if (SA->getSyntax() == AttributeCommonInfo::AS_Declspec)
13839 SectionFlags |= ASTContext::PSF_Implicit;
13840 UnifySection(SA->getName(), SectionFlags, var);
13841 } else if (Stack->CurrentValue) {
13842 SectionFlags |= ASTContext::PSF_Implicit;
13843 auto SectionName = Stack->CurrentValue->getString();
13844 var->addAttr(SectionAttr::CreateImplicit(
13845 Context, SectionName, Stack->CurrentPragmaLocation,
13846 AttributeCommonInfo::AS_Pragma, SectionAttr::Declspec_allocate));
13847 if (UnifySection(SectionName, SectionFlags, var))
13848 var->dropAttr<SectionAttr>();
13851 // Apply the init_seg attribute if this has an initializer. If the
13852 // initializer turns out to not be dynamic, we'll end up ignoring this
13853 // attribute.
13854 if (CurInitSeg && var->getInit())
13855 var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
13856 CurInitSegLoc,
13857 AttributeCommonInfo::AS_Pragma));
13860 // All the following checks are C++ only.
13861 if (!getLangOpts().CPlusPlus) {
13862 // If this variable must be emitted, add it as an initializer for the
13863 // current module.
13864 if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
13865 Context.addModuleInitializer(ModuleScopes.back().Module, var);
13866 return;
13869 // Require the destructor.
13870 if (!type->isDependentType())
13871 if (const RecordType *recordType = baseType->getAs<RecordType>())
13872 FinalizeVarWithDestructor(var, recordType);
13874 // If this variable must be emitted, add it as an initializer for the current
13875 // module.
13876 if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
13877 Context.addModuleInitializer(ModuleScopes.back().Module, var);
13879 // Build the bindings if this is a structured binding declaration.
13880 if (auto *DD = dyn_cast<DecompositionDecl>(var))
13881 CheckCompleteDecompositionDeclaration(DD);
13884 /// Check if VD needs to be dllexport/dllimport due to being in a
13885 /// dllexport/import function.
13886 void Sema::CheckStaticLocalForDllExport(VarDecl *VD) {
13887 assert(VD->isStaticLocal());
13889 auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
13891 // Find outermost function when VD is in lambda function.
13892 while (FD && !getDLLAttr(FD) &&
13893 !FD->hasAttr<DLLExportStaticLocalAttr>() &&
13894 !FD->hasAttr<DLLImportStaticLocalAttr>()) {
13895 FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod());
13898 if (!FD)
13899 return;
13901 // Static locals inherit dll attributes from their function.
13902 if (Attr *A = getDLLAttr(FD)) {
13903 auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
13904 NewAttr->setInherited(true);
13905 VD->addAttr(NewAttr);
13906 } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) {
13907 auto *NewAttr = DLLExportAttr::CreateImplicit(getASTContext(), *A);
13908 NewAttr->setInherited(true);
13909 VD->addAttr(NewAttr);
13911 // Export this function to enforce exporting this static variable even
13912 // if it is not used in this compilation unit.
13913 if (!FD->hasAttr<DLLExportAttr>())
13914 FD->addAttr(NewAttr);
13916 } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) {
13917 auto *NewAttr = DLLImportAttr::CreateImplicit(getASTContext(), *A);
13918 NewAttr->setInherited(true);
13919 VD->addAttr(NewAttr);
13923 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
13924 /// any semantic actions necessary after any initializer has been attached.
13925 void Sema::FinalizeDeclaration(Decl *ThisDecl) {
13926 // Note that we are no longer parsing the initializer for this declaration.
13927 ParsingInitForAutoVars.erase(ThisDecl);
13929 VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
13930 if (!VD)
13931 return;
13933 // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
13934 if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() &&
13935 !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) {
13936 if (PragmaClangBSSSection.Valid)
13937 VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(
13938 Context, PragmaClangBSSSection.SectionName,
13939 PragmaClangBSSSection.PragmaLocation,
13940 AttributeCommonInfo::AS_Pragma));
13941 if (PragmaClangDataSection.Valid)
13942 VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(
13943 Context, PragmaClangDataSection.SectionName,
13944 PragmaClangDataSection.PragmaLocation,
13945 AttributeCommonInfo::AS_Pragma));
13946 if (PragmaClangRodataSection.Valid)
13947 VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(
13948 Context, PragmaClangRodataSection.SectionName,
13949 PragmaClangRodataSection.PragmaLocation,
13950 AttributeCommonInfo::AS_Pragma));
13951 if (PragmaClangRelroSection.Valid)
13952 VD->addAttr(PragmaClangRelroSectionAttr::CreateImplicit(
13953 Context, PragmaClangRelroSection.SectionName,
13954 PragmaClangRelroSection.PragmaLocation,
13955 AttributeCommonInfo::AS_Pragma));
13958 if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) {
13959 for (auto *BD : DD->bindings()) {
13960 FinalizeDeclaration(BD);
13964 checkAttributesAfterMerging(*this, *VD);
13966 // Perform TLS alignment check here after attributes attached to the variable
13967 // which may affect the alignment have been processed. Only perform the check
13968 // if the target has a maximum TLS alignment (zero means no constraints).
13969 if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
13970 // Protect the check so that it's not performed on dependent types and
13971 // dependent alignments (we can't determine the alignment in that case).
13972 if (VD->getTLSKind() && !VD->hasDependentAlignment()) {
13973 CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
13974 if (Context.getDeclAlign(VD) > MaxAlignChars) {
13975 Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
13976 << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
13977 << (unsigned)MaxAlignChars.getQuantity();
13982 if (VD->isStaticLocal())
13983 CheckStaticLocalForDllExport(VD);
13985 // Perform check for initializers of device-side global variables.
13986 // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
13987 // 7.5). We must also apply the same checks to all __shared__
13988 // variables whether they are local or not. CUDA also allows
13989 // constant initializers for __constant__ and __device__ variables.
13990 if (getLangOpts().CUDA)
13991 checkAllowedCUDAInitializer(VD);
13993 // Grab the dllimport or dllexport attribute off of the VarDecl.
13994 const InheritableAttr *DLLAttr = getDLLAttr(VD);
13996 // Imported static data members cannot be defined out-of-line.
13997 if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
13998 if (VD->isStaticDataMember() && VD->isOutOfLine() &&
13999 VD->isThisDeclarationADefinition()) {
14000 // We allow definitions of dllimport class template static data members
14001 // with a warning.
14002 CXXRecordDecl *Context =
14003 cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
14004 bool IsClassTemplateMember =
14005 isa<ClassTemplatePartialSpecializationDecl>(Context) ||
14006 Context->getDescribedClassTemplate();
14008 Diag(VD->getLocation(),
14009 IsClassTemplateMember
14010 ? diag::warn_attribute_dllimport_static_field_definition
14011 : diag::err_attribute_dllimport_static_field_definition);
14012 Diag(IA->getLocation(), diag::note_attribute);
14013 if (!IsClassTemplateMember)
14014 VD->setInvalidDecl();
14018 // dllimport/dllexport variables cannot be thread local, their TLS index
14019 // isn't exported with the variable.
14020 if (DLLAttr && VD->getTLSKind()) {
14021 auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
14022 if (F && getDLLAttr(F)) {
14023 assert(VD->isStaticLocal());
14024 // But if this is a static local in a dlimport/dllexport function, the
14025 // function will never be inlined, which means the var would never be
14026 // imported, so having it marked import/export is safe.
14027 } else {
14028 Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
14029 << DLLAttr;
14030 VD->setInvalidDecl();
14034 if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
14035 if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
14036 Diag(Attr->getLocation(), diag::warn_attribute_ignored_on_non_definition)
14037 << Attr;
14038 VD->dropAttr<UsedAttr>();
14041 if (RetainAttr *Attr = VD->getAttr<RetainAttr>()) {
14042 if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
14043 Diag(Attr->getLocation(), diag::warn_attribute_ignored_on_non_definition)
14044 << Attr;
14045 VD->dropAttr<RetainAttr>();
14049 const DeclContext *DC = VD->getDeclContext();
14050 // If there's a #pragma GCC visibility in scope, and this isn't a class
14051 // member, set the visibility of this variable.
14052 if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
14053 AddPushedVisibilityAttribute(VD);
14055 // FIXME: Warn on unused var template partial specializations.
14056 if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD))
14057 MarkUnusedFileScopedDecl(VD);
14059 // Now we have parsed the initializer and can update the table of magic
14060 // tag values.
14061 if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
14062 !VD->getType()->isIntegralOrEnumerationType())
14063 return;
14065 for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
14066 const Expr *MagicValueExpr = VD->getInit();
14067 if (!MagicValueExpr) {
14068 continue;
14070 Optional<llvm::APSInt> MagicValueInt;
14071 if (!(MagicValueInt = MagicValueExpr->getIntegerConstantExpr(Context))) {
14072 Diag(I->getRange().getBegin(),
14073 diag::err_type_tag_for_datatype_not_ice)
14074 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
14075 continue;
14077 if (MagicValueInt->getActiveBits() > 64) {
14078 Diag(I->getRange().getBegin(),
14079 diag::err_type_tag_for_datatype_too_large)
14080 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
14081 continue;
14083 uint64_t MagicValue = MagicValueInt->getZExtValue();
14084 RegisterTypeTagForDatatype(I->getArgumentKind(),
14085 MagicValue,
14086 I->getMatchingCType(),
14087 I->getLayoutCompatible(),
14088 I->getMustBeNull());
14092 static bool hasDeducedAuto(DeclaratorDecl *DD) {
14093 auto *VD = dyn_cast<VarDecl>(DD);
14094 return VD && !VD->getType()->hasAutoForTrailingReturnType();
14097 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
14098 ArrayRef<Decl *> Group) {
14099 SmallVector<Decl*, 8> Decls;
14101 if (DS.isTypeSpecOwned())
14102 Decls.push_back(DS.getRepAsDecl());
14104 DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
14105 DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr;
14106 bool DiagnosedMultipleDecomps = false;
14107 DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr;
14108 bool DiagnosedNonDeducedAuto = false;
14110 for (unsigned i = 0, e = Group.size(); i != e; ++i) {
14111 if (Decl *D = Group[i]) {
14112 // For declarators, there are some additional syntactic-ish checks we need
14113 // to perform.
14114 if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
14115 if (!FirstDeclaratorInGroup)
14116 FirstDeclaratorInGroup = DD;
14117 if (!FirstDecompDeclaratorInGroup)
14118 FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D);
14119 if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() &&
14120 !hasDeducedAuto(DD))
14121 FirstNonDeducedAutoInGroup = DD;
14123 if (FirstDeclaratorInGroup != DD) {
14124 // A decomposition declaration cannot be combined with any other
14125 // declaration in the same group.
14126 if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) {
14127 Diag(FirstDecompDeclaratorInGroup->getLocation(),
14128 diag::err_decomp_decl_not_alone)
14129 << FirstDeclaratorInGroup->getSourceRange()
14130 << DD->getSourceRange();
14131 DiagnosedMultipleDecomps = true;
14134 // A declarator that uses 'auto' in any way other than to declare a
14135 // variable with a deduced type cannot be combined with any other
14136 // declarator in the same group.
14137 if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) {
14138 Diag(FirstNonDeducedAutoInGroup->getLocation(),
14139 diag::err_auto_non_deduced_not_alone)
14140 << FirstNonDeducedAutoInGroup->getType()
14141 ->hasAutoForTrailingReturnType()
14142 << FirstDeclaratorInGroup->getSourceRange()
14143 << DD->getSourceRange();
14144 DiagnosedNonDeducedAuto = true;
14149 Decls.push_back(D);
14153 if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
14154 if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
14155 handleTagNumbering(Tag, S);
14156 if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
14157 getLangOpts().CPlusPlus)
14158 Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
14162 return BuildDeclaratorGroup(Decls);
14165 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
14166 /// group, performing any necessary semantic checking.
14167 Sema::DeclGroupPtrTy
14168 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) {
14169 // C++14 [dcl.spec.auto]p7: (DR1347)
14170 // If the type that replaces the placeholder type is not the same in each
14171 // deduction, the program is ill-formed.
14172 if (Group.size() > 1) {
14173 QualType Deduced;
14174 VarDecl *DeducedDecl = nullptr;
14175 for (unsigned i = 0, e = Group.size(); i != e; ++i) {
14176 VarDecl *D = dyn_cast<VarDecl>(Group[i]);
14177 if (!D || D->isInvalidDecl())
14178 break;
14179 DeducedType *DT = D->getType()->getContainedDeducedType();
14180 if (!DT || DT->getDeducedType().isNull())
14181 continue;
14182 if (Deduced.isNull()) {
14183 Deduced = DT->getDeducedType();
14184 DeducedDecl = D;
14185 } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) {
14186 auto *AT = dyn_cast<AutoType>(DT);
14187 auto Dia = Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
14188 diag::err_auto_different_deductions)
14189 << (AT ? (unsigned)AT->getKeyword() : 3) << Deduced
14190 << DeducedDecl->getDeclName() << DT->getDeducedType()
14191 << D->getDeclName();
14192 if (DeducedDecl->hasInit())
14193 Dia << DeducedDecl->getInit()->getSourceRange();
14194 if (D->getInit())
14195 Dia << D->getInit()->getSourceRange();
14196 D->setInvalidDecl();
14197 break;
14202 ActOnDocumentableDecls(Group);
14204 return DeclGroupPtrTy::make(
14205 DeclGroupRef::Create(Context, Group.data(), Group.size()));
14208 void Sema::ActOnDocumentableDecl(Decl *D) {
14209 ActOnDocumentableDecls(D);
14212 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
14213 // Don't parse the comment if Doxygen diagnostics are ignored.
14214 if (Group.empty() || !Group[0])
14215 return;
14217 if (Diags.isIgnored(diag::warn_doc_param_not_found,
14218 Group[0]->getLocation()) &&
14219 Diags.isIgnored(diag::warn_unknown_comment_command_name,
14220 Group[0]->getLocation()))
14221 return;
14223 if (Group.size() >= 2) {
14224 // This is a decl group. Normally it will contain only declarations
14225 // produced from declarator list. But in case we have any definitions or
14226 // additional declaration references:
14227 // 'typedef struct S {} S;'
14228 // 'typedef struct S *S;'
14229 // 'struct S *pS;'
14230 // FinalizeDeclaratorGroup adds these as separate declarations.
14231 Decl *MaybeTagDecl = Group[0];
14232 if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
14233 Group = Group.slice(1);
14237 // FIMXE: We assume every Decl in the group is in the same file.
14238 // This is false when preprocessor constructs the group from decls in
14239 // different files (e. g. macros or #include).
14240 Context.attachCommentsToJustParsedDecls(Group, &getPreprocessor());
14243 /// Common checks for a parameter-declaration that should apply to both function
14244 /// parameters and non-type template parameters.
14245 void Sema::CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D) {
14246 // Check that there are no default arguments inside the type of this
14247 // parameter.
14248 if (getLangOpts().CPlusPlus)
14249 CheckExtraCXXDefaultArguments(D);
14251 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
14252 if (D.getCXXScopeSpec().isSet()) {
14253 Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
14254 << D.getCXXScopeSpec().getRange();
14257 // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a
14258 // simple identifier except [...irrelevant cases...].
14259 switch (D.getName().getKind()) {
14260 case UnqualifiedIdKind::IK_Identifier:
14261 break;
14263 case UnqualifiedIdKind::IK_OperatorFunctionId:
14264 case UnqualifiedIdKind::IK_ConversionFunctionId:
14265 case UnqualifiedIdKind::IK_LiteralOperatorId:
14266 case UnqualifiedIdKind::IK_ConstructorName:
14267 case UnqualifiedIdKind::IK_DestructorName:
14268 case UnqualifiedIdKind::IK_ImplicitSelfParam:
14269 case UnqualifiedIdKind::IK_DeductionGuideName:
14270 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
14271 << GetNameForDeclarator(D).getName();
14272 break;
14274 case UnqualifiedIdKind::IK_TemplateId:
14275 case UnqualifiedIdKind::IK_ConstructorTemplateId:
14276 // GetNameForDeclarator would not produce a useful name in this case.
14277 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name_template_id);
14278 break;
14282 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
14283 /// to introduce parameters into function prototype scope.
14284 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
14285 const DeclSpec &DS = D.getDeclSpec();
14287 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
14289 // C++03 [dcl.stc]p2 also permits 'auto'.
14290 StorageClass SC = SC_None;
14291 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
14292 SC = SC_Register;
14293 // In C++11, the 'register' storage class specifier is deprecated.
14294 // In C++17, it is not allowed, but we tolerate it as an extension.
14295 if (getLangOpts().CPlusPlus11) {
14296 Diag(DS.getStorageClassSpecLoc(),
14297 getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
14298 : diag::warn_deprecated_register)
14299 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
14301 } else if (getLangOpts().CPlusPlus &&
14302 DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
14303 SC = SC_Auto;
14304 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
14305 Diag(DS.getStorageClassSpecLoc(),
14306 diag::err_invalid_storage_class_in_func_decl);
14307 D.getMutableDeclSpec().ClearStorageClassSpecs();
14310 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
14311 Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
14312 << DeclSpec::getSpecifierName(TSCS);
14313 if (DS.isInlineSpecified())
14314 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
14315 << getLangOpts().CPlusPlus17;
14316 if (DS.hasConstexprSpecifier())
14317 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
14318 << 0 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
14320 DiagnoseFunctionSpecifiers(DS);
14322 CheckFunctionOrTemplateParamDeclarator(S, D);
14324 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
14325 QualType parmDeclType = TInfo->getType();
14327 // Check for redeclaration of parameters, e.g. int foo(int x, int x);
14328 IdentifierInfo *II = D.getIdentifier();
14329 if (II) {
14330 LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
14331 ForVisibleRedeclaration);
14332 LookupName(R, S);
14333 if (R.isSingleResult()) {
14334 NamedDecl *PrevDecl = R.getFoundDecl();
14335 if (PrevDecl->isTemplateParameter()) {
14336 // Maybe we will complain about the shadowed template parameter.
14337 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
14338 // Just pretend that we didn't see the previous declaration.
14339 PrevDecl = nullptr;
14340 } else if (S->isDeclScope(PrevDecl)) {
14341 Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
14342 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
14344 // Recover by removing the name
14345 II = nullptr;
14346 D.SetIdentifier(nullptr, D.getIdentifierLoc());
14347 D.setInvalidType(true);
14352 // Temporarily put parameter variables in the translation unit, not
14353 // the enclosing context. This prevents them from accidentally
14354 // looking like class members in C++.
14355 ParmVarDecl *New =
14356 CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(),
14357 D.getIdentifierLoc(), II, parmDeclType, TInfo, SC);
14359 if (D.isInvalidType())
14360 New->setInvalidDecl();
14362 assert(S->isFunctionPrototypeScope());
14363 assert(S->getFunctionPrototypeDepth() >= 1);
14364 New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
14365 S->getNextFunctionPrototypeIndex());
14367 // Add the parameter declaration into this scope.
14368 S->AddDecl(New);
14369 if (II)
14370 IdResolver.AddDecl(New);
14372 ProcessDeclAttributes(S, New, D);
14374 if (D.getDeclSpec().isModulePrivateSpecified())
14375 Diag(New->getLocation(), diag::err_module_private_local)
14376 << 1 << New << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
14377 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
14379 if (New->hasAttr<BlocksAttr>()) {
14380 Diag(New->getLocation(), diag::err_block_on_nonlocal);
14383 if (getLangOpts().OpenCL)
14384 deduceOpenCLAddressSpace(New);
14386 return New;
14389 /// Synthesizes a variable for a parameter arising from a
14390 /// typedef.
14391 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
14392 SourceLocation Loc,
14393 QualType T) {
14394 /* FIXME: setting StartLoc == Loc.
14395 Would it be worth to modify callers so as to provide proper source
14396 location for the unnamed parameters, embedding the parameter's type? */
14397 ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
14398 T, Context.getTrivialTypeSourceInfo(T, Loc),
14399 SC_None, nullptr);
14400 Param->setImplicit();
14401 return Param;
14404 void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) {
14405 // Don't diagnose unused-parameter errors in template instantiations; we
14406 // will already have done so in the template itself.
14407 if (inTemplateInstantiation())
14408 return;
14410 for (const ParmVarDecl *Parameter : Parameters) {
14411 if (!Parameter->isReferenced() && Parameter->getDeclName() &&
14412 !Parameter->hasAttr<UnusedAttr>()) {
14413 Diag(Parameter->getLocation(), diag::warn_unused_parameter)
14414 << Parameter->getDeclName();
14419 void Sema::DiagnoseSizeOfParametersAndReturnValue(
14420 ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) {
14421 if (LangOpts.NumLargeByValueCopy == 0) // No check.
14422 return;
14424 // Warn if the return value is pass-by-value and larger than the specified
14425 // threshold.
14426 if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
14427 unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
14428 if (Size > LangOpts.NumLargeByValueCopy)
14429 Diag(D->getLocation(), diag::warn_return_value_size) << D << Size;
14432 // Warn if any parameter is pass-by-value and larger than the specified
14433 // threshold.
14434 for (const ParmVarDecl *Parameter : Parameters) {
14435 QualType T = Parameter->getType();
14436 if (T->isDependentType() || !T.isPODType(Context))
14437 continue;
14438 unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
14439 if (Size > LangOpts.NumLargeByValueCopy)
14440 Diag(Parameter->getLocation(), diag::warn_parameter_size)
14441 << Parameter << Size;
14445 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
14446 SourceLocation NameLoc, IdentifierInfo *Name,
14447 QualType T, TypeSourceInfo *TSInfo,
14448 StorageClass SC) {
14449 // In ARC, infer a lifetime qualifier for appropriate parameter types.
14450 if (getLangOpts().ObjCAutoRefCount &&
14451 T.getObjCLifetime() == Qualifiers::OCL_None &&
14452 T->isObjCLifetimeType()) {
14454 Qualifiers::ObjCLifetime lifetime;
14456 // Special cases for arrays:
14457 // - if it's const, use __unsafe_unretained
14458 // - otherwise, it's an error
14459 if (T->isArrayType()) {
14460 if (!T.isConstQualified()) {
14461 if (DelayedDiagnostics.shouldDelayDiagnostics())
14462 DelayedDiagnostics.add(
14463 sema::DelayedDiagnostic::makeForbiddenType(
14464 NameLoc, diag::err_arc_array_param_no_ownership, T, false));
14465 else
14466 Diag(NameLoc, diag::err_arc_array_param_no_ownership)
14467 << TSInfo->getTypeLoc().getSourceRange();
14469 lifetime = Qualifiers::OCL_ExplicitNone;
14470 } else {
14471 lifetime = T->getObjCARCImplicitLifetime();
14473 T = Context.getLifetimeQualifiedType(T, lifetime);
14476 ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
14477 Context.getAdjustedParameterType(T),
14478 TSInfo, SC, nullptr);
14480 // Make a note if we created a new pack in the scope of a lambda, so that
14481 // we know that references to that pack must also be expanded within the
14482 // lambda scope.
14483 if (New->isParameterPack())
14484 if (auto *LSI = getEnclosingLambda())
14485 LSI->LocalPacks.push_back(New);
14487 if (New->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
14488 New->getType().hasNonTrivialToPrimitiveCopyCUnion())
14489 checkNonTrivialCUnion(New->getType(), New->getLocation(),
14490 NTCUC_FunctionParam, NTCUK_Destruct|NTCUK_Copy);
14492 // Parameters can not be abstract class types.
14493 // For record types, this is done by the AbstractClassUsageDiagnoser once
14494 // the class has been completely parsed.
14495 if (!CurContext->isRecord() &&
14496 RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
14497 AbstractParamType))
14498 New->setInvalidDecl();
14500 // Parameter declarators cannot be interface types. All ObjC objects are
14501 // passed by reference.
14502 if (T->isObjCObjectType()) {
14503 SourceLocation TypeEndLoc =
14504 getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc());
14505 Diag(NameLoc,
14506 diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
14507 << FixItHint::CreateInsertion(TypeEndLoc, "*");
14508 T = Context.getObjCObjectPointerType(T);
14509 New->setType(T);
14512 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
14513 // duration shall not be qualified by an address-space qualifier."
14514 // Since all parameters have automatic store duration, they can not have
14515 // an address space.
14516 if (T.getAddressSpace() != LangAS::Default &&
14517 // OpenCL allows function arguments declared to be an array of a type
14518 // to be qualified with an address space.
14519 !(getLangOpts().OpenCL &&
14520 (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) {
14521 Diag(NameLoc, diag::err_arg_with_address_space);
14522 New->setInvalidDecl();
14525 // PPC MMA non-pointer types are not allowed as function argument types.
14526 if (Context.getTargetInfo().getTriple().isPPC64() &&
14527 CheckPPCMMAType(New->getOriginalType(), New->getLocation())) {
14528 New->setInvalidDecl();
14531 return New;
14534 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
14535 SourceLocation LocAfterDecls) {
14536 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
14538 // C99 6.9.1p6 "If a declarator includes an identifier list, each declaration
14539 // in the declaration list shall have at least one declarator, those
14540 // declarators shall only declare identifiers from the identifier list, and
14541 // every identifier in the identifier list shall be declared.
14543 // C89 3.7.1p5 "If a declarator includes an identifier list, only the
14544 // identifiers it names shall be declared in the declaration list."
14546 // This is why we only diagnose in C99 and later. Note, the other conditions
14547 // listed are checked elsewhere.
14548 if (!FTI.hasPrototype) {
14549 for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
14550 --i;
14551 if (FTI.Params[i].Param == nullptr) {
14552 if (getLangOpts().C99) {
14553 SmallString<256> Code;
14554 llvm::raw_svector_ostream(Code)
14555 << " int " << FTI.Params[i].Ident->getName() << ";\n";
14556 Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
14557 << FTI.Params[i].Ident
14558 << FixItHint::CreateInsertion(LocAfterDecls, Code);
14561 // Implicitly declare the argument as type 'int' for lack of a better
14562 // type.
14563 AttributeFactory attrs;
14564 DeclSpec DS(attrs);
14565 const char* PrevSpec; // unused
14566 unsigned DiagID; // unused
14567 DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
14568 DiagID, Context.getPrintingPolicy());
14569 // Use the identifier location for the type source range.
14570 DS.SetRangeStart(FTI.Params[i].IdentLoc);
14571 DS.SetRangeEnd(FTI.Params[i].IdentLoc);
14572 Declarator ParamD(DS, ParsedAttributesView::none(),
14573 DeclaratorContext::KNRTypeList);
14574 ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
14575 FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
14581 Decl *
14582 Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
14583 MultiTemplateParamsArg TemplateParameterLists,
14584 SkipBodyInfo *SkipBody, FnBodyKind BodyKind) {
14585 assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
14586 assert(D.isFunctionDeclarator() && "Not a function declarator!");
14587 Scope *ParentScope = FnBodyScope->getParent();
14589 // Check if we are in an `omp begin/end declare variant` scope. If we are, and
14590 // we define a non-templated function definition, we will create a declaration
14591 // instead (=BaseFD), and emit the definition with a mangled name afterwards.
14592 // The base function declaration will have the equivalent of an `omp declare
14593 // variant` annotation which specifies the mangled definition as a
14594 // specialization function under the OpenMP context defined as part of the
14595 // `omp begin declare variant`.
14596 SmallVector<FunctionDecl *, 4> Bases;
14597 if (LangOpts.OpenMP && isInOpenMPDeclareVariantScope())
14598 ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
14599 ParentScope, D, TemplateParameterLists, Bases);
14601 D.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
14602 Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
14603 Decl *Dcl = ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody, BodyKind);
14605 if (!Bases.empty())
14606 ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl, Bases);
14608 return Dcl;
14611 void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) {
14612 Consumer.HandleInlineFunctionDefinition(D);
14615 static bool
14616 ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
14617 const FunctionDecl *&PossiblePrototype) {
14618 // Don't warn about invalid declarations.
14619 if (FD->isInvalidDecl())
14620 return false;
14622 // Or declarations that aren't global.
14623 if (!FD->isGlobal())
14624 return false;
14626 // Don't warn about C++ member functions.
14627 if (isa<CXXMethodDecl>(FD))
14628 return false;
14630 // Don't warn about 'main'.
14631 if (isa<TranslationUnitDecl>(FD->getDeclContext()->getRedeclContext()))
14632 if (IdentifierInfo *II = FD->getIdentifier())
14633 if (II->isStr("main") || II->isStr("efi_main"))
14634 return false;
14636 // Don't warn about inline functions.
14637 if (FD->isInlined())
14638 return false;
14640 // Don't warn about function templates.
14641 if (FD->getDescribedFunctionTemplate())
14642 return false;
14644 // Don't warn about function template specializations.
14645 if (FD->isFunctionTemplateSpecialization())
14646 return false;
14648 // Don't warn for OpenCL kernels.
14649 if (FD->hasAttr<OpenCLKernelAttr>())
14650 return false;
14652 // Don't warn on explicitly deleted functions.
14653 if (FD->isDeleted())
14654 return false;
14656 // Don't warn on implicitly local functions (such as having local-typed
14657 // parameters).
14658 if (!FD->isExternallyVisible())
14659 return false;
14661 for (const FunctionDecl *Prev = FD->getPreviousDecl();
14662 Prev; Prev = Prev->getPreviousDecl()) {
14663 // Ignore any declarations that occur in function or method
14664 // scope, because they aren't visible from the header.
14665 if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
14666 continue;
14668 PossiblePrototype = Prev;
14669 return Prev->getType()->isFunctionNoProtoType();
14672 return true;
14675 void
14676 Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
14677 const FunctionDecl *EffectiveDefinition,
14678 SkipBodyInfo *SkipBody) {
14679 const FunctionDecl *Definition = EffectiveDefinition;
14680 if (!Definition &&
14681 !FD->isDefined(Definition, /*CheckForPendingFriendDefinition*/ true))
14682 return;
14684 if (Definition->getFriendObjectKind() != Decl::FOK_None) {
14685 if (FunctionDecl *OrigDef = Definition->getInstantiatedFromMemberFunction()) {
14686 if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) {
14687 // A merged copy of the same function, instantiated as a member of
14688 // the same class, is OK.
14689 if (declaresSameEntity(OrigFD, OrigDef) &&
14690 declaresSameEntity(cast<Decl>(Definition->getLexicalDeclContext()),
14691 cast<Decl>(FD->getLexicalDeclContext())))
14692 return;
14697 if (canRedefineFunction(Definition, getLangOpts()))
14698 return;
14700 // Don't emit an error when this is redefinition of a typo-corrected
14701 // definition.
14702 if (TypoCorrectedFunctionDefinitions.count(Definition))
14703 return;
14705 // If we don't have a visible definition of the function, and it's inline or
14706 // a template, skip the new definition.
14707 if (SkipBody && !hasVisibleDefinition(Definition) &&
14708 (Definition->getFormalLinkage() == InternalLinkage ||
14709 Definition->isInlined() ||
14710 Definition->getDescribedFunctionTemplate() ||
14711 Definition->getNumTemplateParameterLists())) {
14712 SkipBody->ShouldSkip = true;
14713 SkipBody->Previous = const_cast<FunctionDecl*>(Definition);
14714 if (auto *TD = Definition->getDescribedFunctionTemplate())
14715 makeMergedDefinitionVisible(TD);
14716 makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition));
14717 return;
14720 if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
14721 Definition->getStorageClass() == SC_Extern)
14722 Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
14723 << FD << getLangOpts().CPlusPlus;
14724 else
14725 Diag(FD->getLocation(), diag::err_redefinition) << FD;
14727 Diag(Definition->getLocation(), diag::note_previous_definition);
14728 FD->setInvalidDecl();
14731 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
14732 Sema &S) {
14733 CXXRecordDecl *const LambdaClass = CallOperator->getParent();
14735 LambdaScopeInfo *LSI = S.PushLambdaScope();
14736 LSI->CallOperator = CallOperator;
14737 LSI->Lambda = LambdaClass;
14738 LSI->ReturnType = CallOperator->getReturnType();
14739 const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
14741 if (LCD == LCD_None)
14742 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
14743 else if (LCD == LCD_ByCopy)
14744 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
14745 else if (LCD == LCD_ByRef)
14746 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
14747 DeclarationNameInfo DNI = CallOperator->getNameInfo();
14749 LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
14750 LSI->Mutable = !CallOperator->isConst();
14752 // Add the captures to the LSI so they can be noted as already
14753 // captured within tryCaptureVar.
14754 auto I = LambdaClass->field_begin();
14755 for (const auto &C : LambdaClass->captures()) {
14756 if (C.capturesVariable()) {
14757 ValueDecl *VD = C.getCapturedVar();
14758 if (VD->isInitCapture())
14759 S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
14760 const bool ByRef = C.getCaptureKind() == LCK_ByRef;
14761 LSI->addCapture(VD, /*IsBlock*/false, ByRef,
14762 /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
14763 /*EllipsisLoc*/C.isPackExpansion()
14764 ? C.getEllipsisLoc() : SourceLocation(),
14765 I->getType(), /*Invalid*/false);
14767 } else if (C.capturesThis()) {
14768 LSI->addThisCapture(/*Nested*/ false, C.getLocation(), I->getType(),
14769 C.getCaptureKind() == LCK_StarThis);
14770 } else {
14771 LSI->addVLATypeCapture(C.getLocation(), I->getCapturedVLAType(),
14772 I->getType());
14774 ++I;
14778 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
14779 SkipBodyInfo *SkipBody,
14780 FnBodyKind BodyKind) {
14781 if (!D) {
14782 // Parsing the function declaration failed in some way. Push on a fake scope
14783 // anyway so we can try to parse the function body.
14784 PushFunctionScope();
14785 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
14786 return D;
14789 FunctionDecl *FD = nullptr;
14791 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
14792 FD = FunTmpl->getTemplatedDecl();
14793 else
14794 FD = cast<FunctionDecl>(D);
14796 // Do not push if it is a lambda because one is already pushed when building
14797 // the lambda in ActOnStartOfLambdaDefinition().
14798 if (!isLambdaCallOperator(FD))
14799 // [expr.const]/p14.1
14800 // An expression or conversion is in an immediate function context if it is
14801 // potentially evaluated and either: its innermost enclosing non-block scope
14802 // is a function parameter scope of an immediate function.
14803 PushExpressionEvaluationContext(
14804 FD->isConsteval() ? ExpressionEvaluationContext::ImmediateFunctionContext
14805 : ExprEvalContexts.back().Context);
14807 // Check for defining attributes before the check for redefinition.
14808 if (const auto *Attr = FD->getAttr<AliasAttr>()) {
14809 Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0;
14810 FD->dropAttr<AliasAttr>();
14811 FD->setInvalidDecl();
14813 if (const auto *Attr = FD->getAttr<IFuncAttr>()) {
14814 Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1;
14815 FD->dropAttr<IFuncAttr>();
14816 FD->setInvalidDecl();
14819 if (auto *Ctor = dyn_cast<CXXConstructorDecl>(FD)) {
14820 if (Ctor->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
14821 Ctor->isDefaultConstructor() &&
14822 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
14823 // If this is an MS ABI dllexport default constructor, instantiate any
14824 // default arguments.
14825 InstantiateDefaultCtorDefaultArgs(Ctor);
14829 // See if this is a redefinition. If 'will have body' (or similar) is already
14830 // set, then these checks were already performed when it was set.
14831 if (!FD->willHaveBody() && !FD->isLateTemplateParsed() &&
14832 !FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
14833 CheckForFunctionRedefinition(FD, nullptr, SkipBody);
14835 // If we're skipping the body, we're done. Don't enter the scope.
14836 if (SkipBody && SkipBody->ShouldSkip)
14837 return D;
14840 // Mark this function as "will have a body eventually". This lets users to
14841 // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
14842 // this function.
14843 FD->setWillHaveBody();
14845 // If we are instantiating a generic lambda call operator, push
14846 // a LambdaScopeInfo onto the function stack. But use the information
14847 // that's already been calculated (ActOnLambdaExpr) to prime the current
14848 // LambdaScopeInfo.
14849 // When the template operator is being specialized, the LambdaScopeInfo,
14850 // has to be properly restored so that tryCaptureVariable doesn't try
14851 // and capture any new variables. In addition when calculating potential
14852 // captures during transformation of nested lambdas, it is necessary to
14853 // have the LSI properly restored.
14854 if (isGenericLambdaCallOperatorSpecialization(FD)) {
14855 assert(inTemplateInstantiation() &&
14856 "There should be an active template instantiation on the stack "
14857 "when instantiating a generic lambda!");
14858 RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
14859 } else {
14860 // Enter a new function scope
14861 PushFunctionScope();
14864 // Builtin functions cannot be defined.
14865 if (unsigned BuiltinID = FD->getBuiltinID()) {
14866 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
14867 !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
14868 Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
14869 FD->setInvalidDecl();
14873 // The return type of a function definition must be complete (C99 6.9.1p3),
14874 // unless the function is deleted (C++ specifc, C++ [dcl.fct.def.general]p2)
14875 QualType ResultType = FD->getReturnType();
14876 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
14877 !FD->isInvalidDecl() && BodyKind != FnBodyKind::Delete &&
14878 RequireCompleteType(FD->getLocation(), ResultType,
14879 diag::err_func_def_incomplete_result))
14880 FD->setInvalidDecl();
14882 if (FnBodyScope)
14883 PushDeclContext(FnBodyScope, FD);
14885 // Check the validity of our function parameters
14886 if (BodyKind != FnBodyKind::Delete)
14887 CheckParmsForFunctionDef(FD->parameters(),
14888 /*CheckParameterNames=*/true);
14890 // Add non-parameter declarations already in the function to the current
14891 // scope.
14892 if (FnBodyScope) {
14893 for (Decl *NPD : FD->decls()) {
14894 auto *NonParmDecl = dyn_cast<NamedDecl>(NPD);
14895 if (!NonParmDecl)
14896 continue;
14897 assert(!isa<ParmVarDecl>(NonParmDecl) &&
14898 "parameters should not be in newly created FD yet");
14900 // If the decl has a name, make it accessible in the current scope.
14901 if (NonParmDecl->getDeclName())
14902 PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false);
14904 // Similarly, dive into enums and fish their constants out, making them
14905 // accessible in this scope.
14906 if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) {
14907 for (auto *EI : ED->enumerators())
14908 PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
14913 // Introduce our parameters into the function scope
14914 for (auto *Param : FD->parameters()) {
14915 Param->setOwningFunction(FD);
14917 // If this has an identifier, add it to the scope stack.
14918 if (Param->getIdentifier() && FnBodyScope) {
14919 CheckShadow(FnBodyScope, Param);
14921 PushOnScopeChains(Param, FnBodyScope);
14925 // Ensure that the function's exception specification is instantiated.
14926 if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
14927 ResolveExceptionSpec(D->getLocation(), FPT);
14929 // dllimport cannot be applied to non-inline function definitions.
14930 if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
14931 !FD->isTemplateInstantiation()) {
14932 assert(!FD->hasAttr<DLLExportAttr>());
14933 Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
14934 FD->setInvalidDecl();
14935 return D;
14937 // We want to attach documentation to original Decl (which might be
14938 // a function template).
14939 ActOnDocumentableDecl(D);
14940 if (getCurLexicalContext()->isObjCContainer() &&
14941 getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
14942 getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
14943 Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
14945 return D;
14948 /// Given the set of return statements within a function body,
14949 /// compute the variables that are subject to the named return value
14950 /// optimization.
14952 /// Each of the variables that is subject to the named return value
14953 /// optimization will be marked as NRVO variables in the AST, and any
14954 /// return statement that has a marked NRVO variable as its NRVO candidate can
14955 /// use the named return value optimization.
14957 /// This function applies a very simplistic algorithm for NRVO: if every return
14958 /// statement in the scope of a variable has the same NRVO candidate, that
14959 /// candidate is an NRVO variable.
14960 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
14961 ReturnStmt **Returns = Scope->Returns.data();
14963 for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
14964 if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
14965 if (!NRVOCandidate->isNRVOVariable())
14966 Returns[I]->setNRVOCandidate(nullptr);
14971 bool Sema::canDelayFunctionBody(const Declarator &D) {
14972 // We can't delay parsing the body of a constexpr function template (yet).
14973 if (D.getDeclSpec().hasConstexprSpecifier())
14974 return false;
14976 // We can't delay parsing the body of a function template with a deduced
14977 // return type (yet).
14978 if (D.getDeclSpec().hasAutoTypeSpec()) {
14979 // If the placeholder introduces a non-deduced trailing return type,
14980 // we can still delay parsing it.
14981 if (D.getNumTypeObjects()) {
14982 const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
14983 if (Outer.Kind == DeclaratorChunk::Function &&
14984 Outer.Fun.hasTrailingReturnType()) {
14985 QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
14986 return Ty.isNull() || !Ty->isUndeducedType();
14989 return false;
14992 return true;
14995 bool Sema::canSkipFunctionBody(Decl *D) {
14996 // We cannot skip the body of a function (or function template) which is
14997 // constexpr, since we may need to evaluate its body in order to parse the
14998 // rest of the file.
14999 // We cannot skip the body of a function with an undeduced return type,
15000 // because any callers of that function need to know the type.
15001 if (const FunctionDecl *FD = D->getAsFunction()) {
15002 if (FD->isConstexpr())
15003 return false;
15004 // We can't simply call Type::isUndeducedType here, because inside template
15005 // auto can be deduced to a dependent type, which is not considered
15006 // "undeduced".
15007 if (FD->getReturnType()->getContainedDeducedType())
15008 return false;
15010 return Consumer.shouldSkipFunctionBody(D);
15013 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
15014 if (!Decl)
15015 return nullptr;
15016 if (FunctionDecl *FD = Decl->getAsFunction())
15017 FD->setHasSkippedBody();
15018 else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
15019 MD->setHasSkippedBody();
15020 return Decl;
15023 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
15024 return ActOnFinishFunctionBody(D, BodyArg, false);
15027 /// RAII object that pops an ExpressionEvaluationContext when exiting a function
15028 /// body.
15029 class ExitFunctionBodyRAII {
15030 public:
15031 ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {}
15032 ~ExitFunctionBodyRAII() {
15033 if (!IsLambda)
15034 S.PopExpressionEvaluationContext();
15037 private:
15038 Sema &S;
15039 bool IsLambda = false;
15042 static void diagnoseImplicitlyRetainedSelf(Sema &S) {
15043 llvm::DenseMap<const BlockDecl *, bool> EscapeInfo;
15045 auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) {
15046 if (EscapeInfo.count(BD))
15047 return EscapeInfo[BD];
15049 bool R = false;
15050 const BlockDecl *CurBD = BD;
15052 do {
15053 R = !CurBD->doesNotEscape();
15054 if (R)
15055 break;
15056 CurBD = CurBD->getParent()->getInnermostBlockDecl();
15057 } while (CurBD);
15059 return EscapeInfo[BD] = R;
15062 // If the location where 'self' is implicitly retained is inside a escaping
15063 // block, emit a diagnostic.
15064 for (const std::pair<SourceLocation, const BlockDecl *> &P :
15065 S.ImplicitlyRetainedSelfLocs)
15066 if (IsOrNestedInEscapingBlock(P.second))
15067 S.Diag(P.first, diag::warn_implicitly_retains_self)
15068 << FixItHint::CreateInsertion(P.first, "self->");
15071 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
15072 bool IsInstantiation) {
15073 FunctionScopeInfo *FSI = getCurFunction();
15074 FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
15076 if (FSI->UsesFPIntrin && FD && !FD->hasAttr<StrictFPAttr>())
15077 FD->addAttr(StrictFPAttr::CreateImplicit(Context));
15079 sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
15080 sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
15082 if (getLangOpts().Coroutines && FSI->isCoroutine())
15083 CheckCompletedCoroutineBody(FD, Body);
15086 // Do not call PopExpressionEvaluationContext() if it is a lambda because
15087 // one is already popped when finishing the lambda in BuildLambdaExpr().
15088 // This is meant to pop the context added in ActOnStartOfFunctionDef().
15089 ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD));
15091 if (FD) {
15092 FD->setBody(Body);
15093 FD->setWillHaveBody(false);
15095 if (getLangOpts().CPlusPlus14) {
15096 if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() &&
15097 FD->getReturnType()->isUndeducedType()) {
15098 // For a function with a deduced result type to return void,
15099 // the result type as written must be 'auto' or 'decltype(auto)',
15100 // possibly cv-qualified or constrained, but not ref-qualified.
15101 if (!FD->getReturnType()->getAs<AutoType>()) {
15102 Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
15103 << FD->getReturnType();
15104 FD->setInvalidDecl();
15105 } else {
15106 // Falling off the end of the function is the same as 'return;'.
15107 Expr *Dummy = nullptr;
15108 if (DeduceFunctionTypeFromReturnExpr(
15109 FD, dcl->getLocation(), Dummy,
15110 FD->getReturnType()->getAs<AutoType>()))
15111 FD->setInvalidDecl();
15114 } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
15115 // In C++11, we don't use 'auto' deduction rules for lambda call
15116 // operators because we don't support return type deduction.
15117 auto *LSI = getCurLambda();
15118 if (LSI->HasImplicitReturnType) {
15119 deduceClosureReturnType(*LSI);
15121 // C++11 [expr.prim.lambda]p4:
15122 // [...] if there are no return statements in the compound-statement
15123 // [the deduced type is] the type void
15124 QualType RetType =
15125 LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
15127 // Update the return type to the deduced type.
15128 const auto *Proto = FD->getType()->castAs<FunctionProtoType>();
15129 FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
15130 Proto->getExtProtoInfo()));
15134 // If the function implicitly returns zero (like 'main') or is naked,
15135 // don't complain about missing return statements.
15136 if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
15137 WP.disableCheckFallThrough();
15139 // MSVC permits the use of pure specifier (=0) on function definition,
15140 // defined at class scope, warn about this non-standard construct.
15141 if (getLangOpts().MicrosoftExt && FD->isPure() && !FD->isOutOfLine())
15142 Diag(FD->getLocation(), diag::ext_pure_function_definition);
15144 if (!FD->isInvalidDecl()) {
15145 // Don't diagnose unused parameters of defaulted, deleted or naked
15146 // functions.
15147 if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody() &&
15148 !FD->hasAttr<NakedAttr>())
15149 DiagnoseUnusedParameters(FD->parameters());
15150 DiagnoseSizeOfParametersAndReturnValue(FD->parameters(),
15151 FD->getReturnType(), FD);
15153 // If this is a structor, we need a vtable.
15154 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
15155 MarkVTableUsed(FD->getLocation(), Constructor->getParent());
15156 else if (CXXDestructorDecl *Destructor =
15157 dyn_cast<CXXDestructorDecl>(FD))
15158 MarkVTableUsed(FD->getLocation(), Destructor->getParent());
15160 // Try to apply the named return value optimization. We have to check
15161 // if we can do this here because lambdas keep return statements around
15162 // to deduce an implicit return type.
15163 if (FD->getReturnType()->isRecordType() &&
15164 (!getLangOpts().CPlusPlus || !FD->isDependentContext()))
15165 computeNRVO(Body, FSI);
15168 // GNU warning -Wmissing-prototypes:
15169 // Warn if a global function is defined without a previous
15170 // prototype declaration. This warning is issued even if the
15171 // definition itself provides a prototype. The aim is to detect
15172 // global functions that fail to be declared in header files.
15173 const FunctionDecl *PossiblePrototype = nullptr;
15174 if (ShouldWarnAboutMissingPrototype(FD, PossiblePrototype)) {
15175 Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
15177 if (PossiblePrototype) {
15178 // We found a declaration that is not a prototype,
15179 // but that could be a zero-parameter prototype
15180 if (TypeSourceInfo *TI = PossiblePrototype->getTypeSourceInfo()) {
15181 TypeLoc TL = TI->getTypeLoc();
15182 if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
15183 Diag(PossiblePrototype->getLocation(),
15184 diag::note_declaration_not_a_prototype)
15185 << (FD->getNumParams() != 0)
15186 << (FD->getNumParams() == 0 ? FixItHint::CreateInsertion(
15187 FTL.getRParenLoc(), "void")
15188 : FixItHint{});
15190 } else {
15191 // Returns true if the token beginning at this Loc is `const`.
15192 auto isLocAtConst = [&](SourceLocation Loc, const SourceManager &SM,
15193 const LangOptions &LangOpts) {
15194 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
15195 if (LocInfo.first.isInvalid())
15196 return false;
15198 bool Invalid = false;
15199 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
15200 if (Invalid)
15201 return false;
15203 if (LocInfo.second > Buffer.size())
15204 return false;
15206 const char *LexStart = Buffer.data() + LocInfo.second;
15207 StringRef StartTok(LexStart, Buffer.size() - LocInfo.second);
15209 return StartTok.consume_front("const") &&
15210 (StartTok.empty() || isWhitespace(StartTok[0]) ||
15211 StartTok.startswith("/*") || StartTok.startswith("//"));
15214 auto findBeginLoc = [&]() {
15215 // If the return type has `const` qualifier, we want to insert
15216 // `static` before `const` (and not before the typename).
15217 if ((FD->getReturnType()->isAnyPointerType() &&
15218 FD->getReturnType()->getPointeeType().isConstQualified()) ||
15219 FD->getReturnType().isConstQualified()) {
15220 // But only do this if we can determine where the `const` is.
15222 if (isLocAtConst(FD->getBeginLoc(), getSourceManager(),
15223 getLangOpts()))
15225 return FD->getBeginLoc();
15227 return FD->getTypeSpecStartLoc();
15229 Diag(FD->getTypeSpecStartLoc(),
15230 diag::note_static_for_internal_linkage)
15231 << /* function */ 1
15232 << (FD->getStorageClass() == SC_None
15233 ? FixItHint::CreateInsertion(findBeginLoc(), "static ")
15234 : FixItHint{});
15238 // If the function being defined does not have a prototype, then we may
15239 // need to diagnose it as changing behavior in C2x because we now know
15240 // whether the function accepts arguments or not. This only handles the
15241 // case where the definition has no prototype but does have parameters
15242 // and either there is no previous potential prototype, or the previous
15243 // potential prototype also has no actual prototype. This handles cases
15244 // like:
15245 // void f(); void f(a) int a; {}
15246 // void g(a) int a; {}
15247 // See MergeFunctionDecl() for other cases of the behavior change
15248 // diagnostic. See GetFullTypeForDeclarator() for handling of a function
15249 // type without a prototype.
15250 if (!FD->hasWrittenPrototype() && FD->getNumParams() != 0 &&
15251 (!PossiblePrototype || (!PossiblePrototype->hasWrittenPrototype() &&
15252 !PossiblePrototype->isImplicit()))) {
15253 // The function definition has parameters, so this will change behavior
15254 // in C2x. If there is a possible prototype, it comes before the
15255 // function definition.
15256 // FIXME: The declaration may have already been diagnosed as being
15257 // deprecated in GetFullTypeForDeclarator() if it had no arguments, but
15258 // there's no way to test for the "changes behavior" condition in
15259 // SemaType.cpp when forming the declaration's function type. So, we do
15260 // this awkward dance instead.
15262 // If we have a possible prototype and it declares a function with a
15263 // prototype, we don't want to diagnose it; if we have a possible
15264 // prototype and it has no prototype, it may have already been
15265 // diagnosed in SemaType.cpp as deprecated depending on whether
15266 // -Wstrict-prototypes is enabled. If we already warned about it being
15267 // deprecated, add a note that it also changes behavior. If we didn't
15268 // warn about it being deprecated (because the diagnostic is not
15269 // enabled), warn now that it is deprecated and changes behavior.
15271 // This K&R C function definition definitely changes behavior in C2x,
15272 // so diagnose it.
15273 Diag(FD->getLocation(), diag::warn_non_prototype_changes_behavior)
15274 << /*definition*/ 1 << /* not supported in C2x */ 0;
15276 // If we have a possible prototype for the function which is a user-
15277 // visible declaration, we already tested that it has no prototype.
15278 // This will change behavior in C2x. This gets a warning rather than a
15279 // note because it's the same behavior-changing problem as with the
15280 // definition.
15281 if (PossiblePrototype)
15282 Diag(PossiblePrototype->getLocation(),
15283 diag::warn_non_prototype_changes_behavior)
15284 << /*declaration*/ 0 << /* conflicting */ 1 << /*subsequent*/ 1
15285 << /*definition*/ 1;
15288 // Warn on CPUDispatch with an actual body.
15289 if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body)
15290 if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body))
15291 if (!CmpndBody->body_empty())
15292 Diag(CmpndBody->body_front()->getBeginLoc(),
15293 diag::warn_dispatch_body_ignored);
15295 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
15296 const CXXMethodDecl *KeyFunction;
15297 if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
15298 MD->isVirtual() &&
15299 (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
15300 MD == KeyFunction->getCanonicalDecl()) {
15301 // Update the key-function state if necessary for this ABI.
15302 if (FD->isInlined() &&
15303 !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
15304 Context.setNonKeyFunction(MD);
15306 // If the newly-chosen key function is already defined, then we
15307 // need to mark the vtable as used retroactively.
15308 KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
15309 const FunctionDecl *Definition;
15310 if (KeyFunction && KeyFunction->isDefined(Definition))
15311 MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
15312 } else {
15313 // We just defined they key function; mark the vtable as used.
15314 MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
15319 assert(
15320 (FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
15321 "Function parsing confused");
15322 } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
15323 assert(MD == getCurMethodDecl() && "Method parsing confused");
15324 MD->setBody(Body);
15325 if (!MD->isInvalidDecl()) {
15326 DiagnoseSizeOfParametersAndReturnValue(MD->parameters(),
15327 MD->getReturnType(), MD);
15329 if (Body)
15330 computeNRVO(Body, FSI);
15332 if (FSI->ObjCShouldCallSuper) {
15333 Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call)
15334 << MD->getSelector().getAsString();
15335 FSI->ObjCShouldCallSuper = false;
15337 if (FSI->ObjCWarnForNoDesignatedInitChain) {
15338 const ObjCMethodDecl *InitMethod = nullptr;
15339 bool isDesignated =
15340 MD->isDesignatedInitializerForTheInterface(&InitMethod);
15341 assert(isDesignated && InitMethod);
15342 (void)isDesignated;
15344 auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
15345 auto IFace = MD->getClassInterface();
15346 if (!IFace)
15347 return false;
15348 auto SuperD = IFace->getSuperClass();
15349 if (!SuperD)
15350 return false;
15351 return SuperD->getIdentifier() ==
15352 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
15354 // Don't issue this warning for unavailable inits or direct subclasses
15355 // of NSObject.
15356 if (!MD->isUnavailable() && !superIsNSObject(MD)) {
15357 Diag(MD->getLocation(),
15358 diag::warn_objc_designated_init_missing_super_call);
15359 Diag(InitMethod->getLocation(),
15360 diag::note_objc_designated_init_marked_here);
15362 FSI->ObjCWarnForNoDesignatedInitChain = false;
15364 if (FSI->ObjCWarnForNoInitDelegation) {
15365 // Don't issue this warning for unavaialable inits.
15366 if (!MD->isUnavailable())
15367 Diag(MD->getLocation(),
15368 diag::warn_objc_secondary_init_missing_init_call);
15369 FSI->ObjCWarnForNoInitDelegation = false;
15372 diagnoseImplicitlyRetainedSelf(*this);
15373 } else {
15374 // Parsing the function declaration failed in some way. Pop the fake scope
15375 // we pushed on.
15376 PopFunctionScopeInfo(ActivePolicy, dcl);
15377 return nullptr;
15380 if (Body && FSI->HasPotentialAvailabilityViolations)
15381 DiagnoseUnguardedAvailabilityViolations(dcl);
15383 assert(!FSI->ObjCShouldCallSuper &&
15384 "This should only be set for ObjC methods, which should have been "
15385 "handled in the block above.");
15387 // Verify and clean out per-function state.
15388 if (Body && (!FD || !FD->isDefaulted())) {
15389 // C++ constructors that have function-try-blocks can't have return
15390 // statements in the handlers of that block. (C++ [except.handle]p14)
15391 // Verify this.
15392 if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
15393 DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
15395 // Verify that gotos and switch cases don't jump into scopes illegally.
15396 if (FSI->NeedsScopeChecking() && !PP.isCodeCompletionEnabled())
15397 DiagnoseInvalidJumps(Body);
15399 if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
15400 if (!Destructor->getParent()->isDependentType())
15401 CheckDestructor(Destructor);
15403 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
15404 Destructor->getParent());
15407 // If any errors have occurred, clear out any temporaries that may have
15408 // been leftover. This ensures that these temporaries won't be picked up
15409 // for deletion in some later function.
15410 if (hasUncompilableErrorOccurred() ||
15411 getDiagnostics().getSuppressAllDiagnostics()) {
15412 DiscardCleanupsInEvaluationContext();
15414 if (!hasUncompilableErrorOccurred() && !isa<FunctionTemplateDecl>(dcl)) {
15415 // Since the body is valid, issue any analysis-based warnings that are
15416 // enabled.
15417 ActivePolicy = &WP;
15420 if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
15421 !CheckConstexprFunctionDefinition(FD, CheckConstexprKind::Diagnose))
15422 FD->setInvalidDecl();
15424 if (FD && FD->hasAttr<NakedAttr>()) {
15425 for (const Stmt *S : Body->children()) {
15426 // Allow local register variables without initializer as they don't
15427 // require prologue.
15428 bool RegisterVariables = false;
15429 if (auto *DS = dyn_cast<DeclStmt>(S)) {
15430 for (const auto *Decl : DS->decls()) {
15431 if (const auto *Var = dyn_cast<VarDecl>(Decl)) {
15432 RegisterVariables =
15433 Var->hasAttr<AsmLabelAttr>() && !Var->hasInit();
15434 if (!RegisterVariables)
15435 break;
15439 if (RegisterVariables)
15440 continue;
15441 if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
15442 Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function);
15443 Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
15444 FD->setInvalidDecl();
15445 break;
15450 assert(ExprCleanupObjects.size() ==
15451 ExprEvalContexts.back().NumCleanupObjects &&
15452 "Leftover temporaries in function");
15453 assert(!Cleanup.exprNeedsCleanups() &&
15454 "Unaccounted cleanups in function");
15455 assert(MaybeODRUseExprs.empty() &&
15456 "Leftover expressions for odr-use checking");
15458 } // Pops the ExitFunctionBodyRAII scope, which needs to happen before we pop
15459 // the declaration context below. Otherwise, we're unable to transform
15460 // 'this' expressions when transforming immediate context functions.
15462 if (!IsInstantiation)
15463 PopDeclContext();
15465 PopFunctionScopeInfo(ActivePolicy, dcl);
15466 // If any errors have occurred, clear out any temporaries that may have
15467 // been leftover. This ensures that these temporaries won't be picked up for
15468 // deletion in some later function.
15469 if (hasUncompilableErrorOccurred()) {
15470 DiscardCleanupsInEvaluationContext();
15473 if (FD && ((LangOpts.OpenMP && (LangOpts.OpenMPIsDevice ||
15474 !LangOpts.OMPTargetTriples.empty())) ||
15475 LangOpts.CUDA || LangOpts.SYCLIsDevice)) {
15476 auto ES = getEmissionStatus(FD);
15477 if (ES == Sema::FunctionEmissionStatus::Emitted ||
15478 ES == Sema::FunctionEmissionStatus::Unknown)
15479 DeclsToCheckForDeferredDiags.insert(FD);
15482 if (FD && !FD->isDeleted())
15483 checkTypeSupport(FD->getType(), FD->getLocation(), FD);
15485 return dcl;
15488 /// When we finish delayed parsing of an attribute, we must attach it to the
15489 /// relevant Decl.
15490 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
15491 ParsedAttributes &Attrs) {
15492 // Always attach attributes to the underlying decl.
15493 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
15494 D = TD->getTemplatedDecl();
15495 ProcessDeclAttributeList(S, D, Attrs);
15497 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
15498 if (Method->isStatic())
15499 checkThisInStaticMemberFunctionAttributes(Method);
15502 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
15503 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
15504 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
15505 IdentifierInfo &II, Scope *S) {
15506 // It is not valid to implicitly define a function in C2x.
15507 assert(LangOpts.implicitFunctionsAllowed() &&
15508 "Implicit function declarations aren't allowed in this language mode");
15510 // Find the scope in which the identifier is injected and the corresponding
15511 // DeclContext.
15512 // FIXME: C89 does not say what happens if there is no enclosing block scope.
15513 // In that case, we inject the declaration into the translation unit scope
15514 // instead.
15515 Scope *BlockScope = S;
15516 while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent())
15517 BlockScope = BlockScope->getParent();
15519 Scope *ContextScope = BlockScope;
15520 while (!ContextScope->getEntity())
15521 ContextScope = ContextScope->getParent();
15522 ContextRAII SavedContext(*this, ContextScope->getEntity());
15524 // Before we produce a declaration for an implicitly defined
15525 // function, see whether there was a locally-scoped declaration of
15526 // this name as a function or variable. If so, use that
15527 // (non-visible) declaration, and complain about it.
15528 NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II);
15529 if (ExternCPrev) {
15530 // We still need to inject the function into the enclosing block scope so
15531 // that later (non-call) uses can see it.
15532 PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false);
15534 // C89 footnote 38:
15535 // If in fact it is not defined as having type "function returning int",
15536 // the behavior is undefined.
15537 if (!isa<FunctionDecl>(ExternCPrev) ||
15538 !Context.typesAreCompatible(
15539 cast<FunctionDecl>(ExternCPrev)->getType(),
15540 Context.getFunctionNoProtoType(Context.IntTy))) {
15541 Diag(Loc, diag::ext_use_out_of_scope_declaration)
15542 << ExternCPrev << !getLangOpts().C99;
15543 Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
15544 return ExternCPrev;
15548 // Extension in C99 (defaults to error). Legal in C89, but warn about it.
15549 unsigned diag_id;
15550 if (II.getName().startswith("__builtin_"))
15551 diag_id = diag::warn_builtin_unknown;
15552 // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
15553 else if (getLangOpts().C99)
15554 diag_id = diag::ext_implicit_function_decl_c99;
15555 else
15556 diag_id = diag::warn_implicit_function_decl;
15558 TypoCorrection Corrected;
15559 // Because typo correction is expensive, only do it if the implicit
15560 // function declaration is going to be treated as an error.
15562 // Perform the correction before issuing the main diagnostic, as some
15563 // consumers use typo-correction callbacks to enhance the main diagnostic.
15564 if (S && !ExternCPrev &&
15565 (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error)) {
15566 DeclFilterCCC<FunctionDecl> CCC{};
15567 Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName,
15568 S, nullptr, CCC, CTK_NonError);
15571 Diag(Loc, diag_id) << &II;
15572 if (Corrected) {
15573 // If the correction is going to suggest an implicitly defined function,
15574 // skip the correction as not being a particularly good idea.
15575 bool Diagnose = true;
15576 if (const auto *D = Corrected.getCorrectionDecl())
15577 Diagnose = !D->isImplicit();
15578 if (Diagnose)
15579 diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
15580 /*ErrorRecovery*/ false);
15583 // If we found a prior declaration of this function, don't bother building
15584 // another one. We've already pushed that one into scope, so there's nothing
15585 // more to do.
15586 if (ExternCPrev)
15587 return ExternCPrev;
15589 // Set a Declarator for the implicit definition: int foo();
15590 const char *Dummy;
15591 AttributeFactory attrFactory;
15592 DeclSpec DS(attrFactory);
15593 unsigned DiagID;
15594 bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
15595 Context.getPrintingPolicy());
15596 (void)Error; // Silence warning.
15597 assert(!Error && "Error setting up implicit decl!");
15598 SourceLocation NoLoc;
15599 Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::Block);
15600 D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
15601 /*IsAmbiguous=*/false,
15602 /*LParenLoc=*/NoLoc,
15603 /*Params=*/nullptr,
15604 /*NumParams=*/0,
15605 /*EllipsisLoc=*/NoLoc,
15606 /*RParenLoc=*/NoLoc,
15607 /*RefQualifierIsLvalueRef=*/true,
15608 /*RefQualifierLoc=*/NoLoc,
15609 /*MutableLoc=*/NoLoc, EST_None,
15610 /*ESpecRange=*/SourceRange(),
15611 /*Exceptions=*/nullptr,
15612 /*ExceptionRanges=*/nullptr,
15613 /*NumExceptions=*/0,
15614 /*NoexceptExpr=*/nullptr,
15615 /*ExceptionSpecTokens=*/nullptr,
15616 /*DeclsInPrototype=*/None, Loc,
15617 Loc, D),
15618 std::move(DS.getAttributes()), SourceLocation());
15619 D.SetIdentifier(&II, Loc);
15621 // Insert this function into the enclosing block scope.
15622 FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D));
15623 FD->setImplicit();
15625 AddKnownFunctionAttributes(FD);
15627 return FD;
15630 /// If this function is a C++ replaceable global allocation function
15631 /// (C++2a [basic.stc.dynamic.allocation], C++2a [new.delete]),
15632 /// adds any function attributes that we know a priori based on the standard.
15634 /// We need to check for duplicate attributes both here and where user-written
15635 /// attributes are applied to declarations.
15636 void Sema::AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(
15637 FunctionDecl *FD) {
15638 if (FD->isInvalidDecl())
15639 return;
15641 if (FD->getDeclName().getCXXOverloadedOperator() != OO_New &&
15642 FD->getDeclName().getCXXOverloadedOperator() != OO_Array_New)
15643 return;
15645 Optional<unsigned> AlignmentParam;
15646 bool IsNothrow = false;
15647 if (!FD->isReplaceableGlobalAllocationFunction(&AlignmentParam, &IsNothrow))
15648 return;
15650 // C++2a [basic.stc.dynamic.allocation]p4:
15651 // An allocation function that has a non-throwing exception specification
15652 // indicates failure by returning a null pointer value. Any other allocation
15653 // function never returns a null pointer value and indicates failure only by
15654 // throwing an exception [...]
15655 if (!IsNothrow && !FD->hasAttr<ReturnsNonNullAttr>())
15656 FD->addAttr(ReturnsNonNullAttr::CreateImplicit(Context, FD->getLocation()));
15658 // C++2a [basic.stc.dynamic.allocation]p2:
15659 // An allocation function attempts to allocate the requested amount of
15660 // storage. [...] If the request succeeds, the value returned by a
15661 // replaceable allocation function is a [...] pointer value p0 different
15662 // from any previously returned value p1 [...]
15664 // However, this particular information is being added in codegen,
15665 // because there is an opt-out switch for it (-fno-assume-sane-operator-new)
15667 // C++2a [basic.stc.dynamic.allocation]p2:
15668 // An allocation function attempts to allocate the requested amount of
15669 // storage. If it is successful, it returns the address of the start of a
15670 // block of storage whose length in bytes is at least as large as the
15671 // requested size.
15672 if (!FD->hasAttr<AllocSizeAttr>()) {
15673 FD->addAttr(AllocSizeAttr::CreateImplicit(
15674 Context, /*ElemSizeParam=*/ParamIdx(1, FD),
15675 /*NumElemsParam=*/ParamIdx(), FD->getLocation()));
15678 // C++2a [basic.stc.dynamic.allocation]p3:
15679 // For an allocation function [...], the pointer returned on a successful
15680 // call shall represent the address of storage that is aligned as follows:
15681 // (3.1) If the allocation function takes an argument of type
15682 // std​::​align_­val_­t, the storage will have the alignment
15683 // specified by the value of this argument.
15684 if (AlignmentParam && !FD->hasAttr<AllocAlignAttr>()) {
15685 FD->addAttr(AllocAlignAttr::CreateImplicit(
15686 Context, ParamIdx(AlignmentParam.value(), FD), FD->getLocation()));
15689 // FIXME:
15690 // C++2a [basic.stc.dynamic.allocation]p3:
15691 // For an allocation function [...], the pointer returned on a successful
15692 // call shall represent the address of storage that is aligned as follows:
15693 // (3.2) Otherwise, if the allocation function is named operator new[],
15694 // the storage is aligned for any object that does not have
15695 // new-extended alignment ([basic.align]) and is no larger than the
15696 // requested size.
15697 // (3.3) Otherwise, the storage is aligned for any object that does not
15698 // have new-extended alignment and is of the requested size.
15701 /// Adds any function attributes that we know a priori based on
15702 /// the declaration of this function.
15704 /// These attributes can apply both to implicitly-declared builtins
15705 /// (like __builtin___printf_chk) or to library-declared functions
15706 /// like NSLog or printf.
15708 /// We need to check for duplicate attributes both here and where user-written
15709 /// attributes are applied to declarations.
15710 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
15711 if (FD->isInvalidDecl())
15712 return;
15714 // If this is a built-in function, map its builtin attributes to
15715 // actual attributes.
15716 if (unsigned BuiltinID = FD->getBuiltinID()) {
15717 // Handle printf-formatting attributes.
15718 unsigned FormatIdx;
15719 bool HasVAListArg;
15720 if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
15721 if (!FD->hasAttr<FormatAttr>()) {
15722 const char *fmt = "printf";
15723 unsigned int NumParams = FD->getNumParams();
15724 if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
15725 FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
15726 fmt = "NSString";
15727 FD->addAttr(FormatAttr::CreateImplicit(Context,
15728 &Context.Idents.get(fmt),
15729 FormatIdx+1,
15730 HasVAListArg ? 0 : FormatIdx+2,
15731 FD->getLocation()));
15734 if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
15735 HasVAListArg)) {
15736 if (!FD->hasAttr<FormatAttr>())
15737 FD->addAttr(FormatAttr::CreateImplicit(Context,
15738 &Context.Idents.get("scanf"),
15739 FormatIdx+1,
15740 HasVAListArg ? 0 : FormatIdx+2,
15741 FD->getLocation()));
15744 // Handle automatically recognized callbacks.
15745 SmallVector<int, 4> Encoding;
15746 if (!FD->hasAttr<CallbackAttr>() &&
15747 Context.BuiltinInfo.performsCallback(BuiltinID, Encoding))
15748 FD->addAttr(CallbackAttr::CreateImplicit(
15749 Context, Encoding.data(), Encoding.size(), FD->getLocation()));
15751 // Mark const if we don't care about errno and/or floating point exceptions
15752 // that are the only thing preventing the function from being const. This
15753 // allows IRgen to use LLVM intrinsics for such functions.
15754 bool NoExceptions =
15755 getLangOpts().getDefaultExceptionMode() == LangOptions::FPE_Ignore;
15756 bool ConstWithoutErrnoAndExceptions =
15757 Context.BuiltinInfo.isConstWithoutErrnoAndExceptions(BuiltinID);
15758 bool ConstWithoutExceptions =
15759 Context.BuiltinInfo.isConstWithoutExceptions(BuiltinID);
15760 if (!FD->hasAttr<ConstAttr>() &&
15761 (ConstWithoutErrnoAndExceptions || ConstWithoutExceptions) &&
15762 (!ConstWithoutErrnoAndExceptions ||
15763 (!getLangOpts().MathErrno && NoExceptions)) &&
15764 (!ConstWithoutExceptions || NoExceptions))
15765 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
15767 // We make "fma" on GNU or Windows const because we know it does not set
15768 // errno in those environments even though it could set errno based on the
15769 // C standard.
15770 const llvm::Triple &Trip = Context.getTargetInfo().getTriple();
15771 if ((Trip.isGNUEnvironment() || Trip.isOSMSVCRT()) &&
15772 !FD->hasAttr<ConstAttr>()) {
15773 switch (BuiltinID) {
15774 case Builtin::BI__builtin_fma:
15775 case Builtin::BI__builtin_fmaf:
15776 case Builtin::BI__builtin_fmal:
15777 case Builtin::BIfma:
15778 case Builtin::BIfmaf:
15779 case Builtin::BIfmal:
15780 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
15781 break;
15782 default:
15783 break;
15787 if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
15788 !FD->hasAttr<ReturnsTwiceAttr>())
15789 FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
15790 FD->getLocation()));
15791 if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
15792 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
15793 if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>())
15794 FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation()));
15795 if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
15796 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
15797 if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
15798 !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
15799 // Add the appropriate attribute, depending on the CUDA compilation mode
15800 // and which target the builtin belongs to. For example, during host
15801 // compilation, aux builtins are __device__, while the rest are __host__.
15802 if (getLangOpts().CUDAIsDevice !=
15803 Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
15804 FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
15805 else
15806 FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
15809 // Add known guaranteed alignment for allocation functions.
15810 switch (BuiltinID) {
15811 case Builtin::BImemalign:
15812 case Builtin::BIaligned_alloc:
15813 if (!FD->hasAttr<AllocAlignAttr>())
15814 FD->addAttr(AllocAlignAttr::CreateImplicit(Context, ParamIdx(1, FD),
15815 FD->getLocation()));
15816 break;
15817 default:
15818 break;
15821 // Add allocsize attribute for allocation functions.
15822 switch (BuiltinID) {
15823 case Builtin::BIcalloc:
15824 FD->addAttr(AllocSizeAttr::CreateImplicit(
15825 Context, ParamIdx(1, FD), ParamIdx(2, FD), FD->getLocation()));
15826 break;
15827 case Builtin::BImemalign:
15828 case Builtin::BIaligned_alloc:
15829 case Builtin::BIrealloc:
15830 FD->addAttr(AllocSizeAttr::CreateImplicit(Context, ParamIdx(2, FD),
15831 ParamIdx(), FD->getLocation()));
15832 break;
15833 case Builtin::BImalloc:
15834 FD->addAttr(AllocSizeAttr::CreateImplicit(Context, ParamIdx(1, FD),
15835 ParamIdx(), FD->getLocation()));
15836 break;
15837 default:
15838 break;
15842 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FD);
15844 // If C++ exceptions are enabled but we are told extern "C" functions cannot
15845 // throw, add an implicit nothrow attribute to any extern "C" function we come
15846 // across.
15847 if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind &&
15848 FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) {
15849 const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
15850 if (!FPT || FPT->getExceptionSpecType() == EST_None)
15851 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
15854 IdentifierInfo *Name = FD->getIdentifier();
15855 if (!Name)
15856 return;
15857 if ((!getLangOpts().CPlusPlus &&
15858 FD->getDeclContext()->isTranslationUnit()) ||
15859 (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
15860 cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
15861 LinkageSpecDecl::lang_c)) {
15862 // Okay: this could be a libc/libm/Objective-C function we know
15863 // about.
15864 } else
15865 return;
15867 if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
15868 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
15869 // target-specific builtins, perhaps?
15870 if (!FD->hasAttr<FormatAttr>())
15871 FD->addAttr(FormatAttr::CreateImplicit(Context,
15872 &Context.Idents.get("printf"), 2,
15873 Name->isStr("vasprintf") ? 0 : 3,
15874 FD->getLocation()));
15877 if (Name->isStr("__CFStringMakeConstantString")) {
15878 // We already have a __builtin___CFStringMakeConstantString,
15879 // but builds that use -fno-constant-cfstrings don't go through that.
15880 if (!FD->hasAttr<FormatArgAttr>())
15881 FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD),
15882 FD->getLocation()));
15886 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
15887 TypeSourceInfo *TInfo) {
15888 assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
15889 assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
15891 if (!TInfo) {
15892 assert(D.isInvalidType() && "no declarator info for valid type");
15893 TInfo = Context.getTrivialTypeSourceInfo(T);
15896 // Scope manipulation handled by caller.
15897 TypedefDecl *NewTD =
15898 TypedefDecl::Create(Context, CurContext, D.getBeginLoc(),
15899 D.getIdentifierLoc(), D.getIdentifier(), TInfo);
15901 // Bail out immediately if we have an invalid declaration.
15902 if (D.isInvalidType()) {
15903 NewTD->setInvalidDecl();
15904 return NewTD;
15907 if (D.getDeclSpec().isModulePrivateSpecified()) {
15908 if (CurContext->isFunctionOrMethod())
15909 Diag(NewTD->getLocation(), diag::err_module_private_local)
15910 << 2 << NewTD
15911 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
15912 << FixItHint::CreateRemoval(
15913 D.getDeclSpec().getModulePrivateSpecLoc());
15914 else
15915 NewTD->setModulePrivate();
15918 // C++ [dcl.typedef]p8:
15919 // If the typedef declaration defines an unnamed class (or
15920 // enum), the first typedef-name declared by the declaration
15921 // to be that class type (or enum type) is used to denote the
15922 // class type (or enum type) for linkage purposes only.
15923 // We need to check whether the type was declared in the declaration.
15924 switch (D.getDeclSpec().getTypeSpecType()) {
15925 case TST_enum:
15926 case TST_struct:
15927 case TST_interface:
15928 case TST_union:
15929 case TST_class: {
15930 TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
15931 setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
15932 break;
15935 default:
15936 break;
15939 return NewTD;
15942 /// Check that this is a valid underlying type for an enum declaration.
15943 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
15944 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
15945 QualType T = TI->getType();
15947 if (T->isDependentType())
15948 return false;
15950 // This doesn't use 'isIntegralType' despite the error message mentioning
15951 // integral type because isIntegralType would also allow enum types in C.
15952 if (const BuiltinType *BT = T->getAs<BuiltinType>())
15953 if (BT->isInteger())
15954 return false;
15956 if (T->isBitIntType())
15957 return false;
15959 return Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
15962 /// Check whether this is a valid redeclaration of a previous enumeration.
15963 /// \return true if the redeclaration was invalid.
15964 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
15965 QualType EnumUnderlyingTy, bool IsFixed,
15966 const EnumDecl *Prev) {
15967 if (IsScoped != Prev->isScoped()) {
15968 Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
15969 << Prev->isScoped();
15970 Diag(Prev->getLocation(), diag::note_previous_declaration);
15971 return true;
15974 if (IsFixed && Prev->isFixed()) {
15975 if (!EnumUnderlyingTy->isDependentType() &&
15976 !Prev->getIntegerType()->isDependentType() &&
15977 !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
15978 Prev->getIntegerType())) {
15979 // TODO: Highlight the underlying type of the redeclaration.
15980 Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
15981 << EnumUnderlyingTy << Prev->getIntegerType();
15982 Diag(Prev->getLocation(), diag::note_previous_declaration)
15983 << Prev->getIntegerTypeRange();
15984 return true;
15986 } else if (IsFixed != Prev->isFixed()) {
15987 Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
15988 << Prev->isFixed();
15989 Diag(Prev->getLocation(), diag::note_previous_declaration);
15990 return true;
15993 return false;
15996 /// Get diagnostic %select index for tag kind for
15997 /// redeclaration diagnostic message.
15998 /// WARNING: Indexes apply to particular diagnostics only!
16000 /// \returns diagnostic %select index.
16001 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
16002 switch (Tag) {
16003 case TTK_Struct: return 0;
16004 case TTK_Interface: return 1;
16005 case TTK_Class: return 2;
16006 default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
16010 /// Determine if tag kind is a class-key compatible with
16011 /// class for redeclaration (class, struct, or __interface).
16013 /// \returns true iff the tag kind is compatible.
16014 static bool isClassCompatTagKind(TagTypeKind Tag)
16016 return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
16019 Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl,
16020 TagTypeKind TTK) {
16021 if (isa<TypedefDecl>(PrevDecl))
16022 return NTK_Typedef;
16023 else if (isa<TypeAliasDecl>(PrevDecl))
16024 return NTK_TypeAlias;
16025 else if (isa<ClassTemplateDecl>(PrevDecl))
16026 return NTK_Template;
16027 else if (isa<TypeAliasTemplateDecl>(PrevDecl))
16028 return NTK_TypeAliasTemplate;
16029 else if (isa<TemplateTemplateParmDecl>(PrevDecl))
16030 return NTK_TemplateTemplateArgument;
16031 switch (TTK) {
16032 case TTK_Struct:
16033 case TTK_Interface:
16034 case TTK_Class:
16035 return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct;
16036 case TTK_Union:
16037 return NTK_NonUnion;
16038 case TTK_Enum:
16039 return NTK_NonEnum;
16041 llvm_unreachable("invalid TTK");
16044 /// Determine whether a tag with a given kind is acceptable
16045 /// as a redeclaration of the given tag declaration.
16047 /// \returns true if the new tag kind is acceptable, false otherwise.
16048 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
16049 TagTypeKind NewTag, bool isDefinition,
16050 SourceLocation NewTagLoc,
16051 const IdentifierInfo *Name) {
16052 // C++ [dcl.type.elab]p3:
16053 // The class-key or enum keyword present in the
16054 // elaborated-type-specifier shall agree in kind with the
16055 // declaration to which the name in the elaborated-type-specifier
16056 // refers. This rule also applies to the form of
16057 // elaborated-type-specifier that declares a class-name or
16058 // friend class since it can be construed as referring to the
16059 // definition of the class. Thus, in any
16060 // elaborated-type-specifier, the enum keyword shall be used to
16061 // refer to an enumeration (7.2), the union class-key shall be
16062 // used to refer to a union (clause 9), and either the class or
16063 // struct class-key shall be used to refer to a class (clause 9)
16064 // declared using the class or struct class-key.
16065 TagTypeKind OldTag = Previous->getTagKind();
16066 if (OldTag != NewTag &&
16067 !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)))
16068 return false;
16070 // Tags are compatible, but we might still want to warn on mismatched tags.
16071 // Non-class tags can't be mismatched at this point.
16072 if (!isClassCompatTagKind(NewTag))
16073 return true;
16075 // Declarations for which -Wmismatched-tags is disabled are entirely ignored
16076 // by our warning analysis. We don't want to warn about mismatches with (eg)
16077 // declarations in system headers that are designed to be specialized, but if
16078 // a user asks us to warn, we should warn if their code contains mismatched
16079 // declarations.
16080 auto IsIgnoredLoc = [&](SourceLocation Loc) {
16081 return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch,
16082 Loc);
16084 if (IsIgnoredLoc(NewTagLoc))
16085 return true;
16087 auto IsIgnored = [&](const TagDecl *Tag) {
16088 return IsIgnoredLoc(Tag->getLocation());
16090 while (IsIgnored(Previous)) {
16091 Previous = Previous->getPreviousDecl();
16092 if (!Previous)
16093 return true;
16094 OldTag = Previous->getTagKind();
16097 bool isTemplate = false;
16098 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
16099 isTemplate = Record->getDescribedClassTemplate();
16101 if (inTemplateInstantiation()) {
16102 if (OldTag != NewTag) {
16103 // In a template instantiation, do not offer fix-its for tag mismatches
16104 // since they usually mess up the template instead of fixing the problem.
16105 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
16106 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
16107 << getRedeclDiagFromTagKind(OldTag);
16108 // FIXME: Note previous location?
16110 return true;
16113 if (isDefinition) {
16114 // On definitions, check all previous tags and issue a fix-it for each
16115 // one that doesn't match the current tag.
16116 if (Previous->getDefinition()) {
16117 // Don't suggest fix-its for redefinitions.
16118 return true;
16121 bool previousMismatch = false;
16122 for (const TagDecl *I : Previous->redecls()) {
16123 if (I->getTagKind() != NewTag) {
16124 // Ignore previous declarations for which the warning was disabled.
16125 if (IsIgnored(I))
16126 continue;
16128 if (!previousMismatch) {
16129 previousMismatch = true;
16130 Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
16131 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
16132 << getRedeclDiagFromTagKind(I->getTagKind());
16134 Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
16135 << getRedeclDiagFromTagKind(NewTag)
16136 << FixItHint::CreateReplacement(I->getInnerLocStart(),
16137 TypeWithKeyword::getTagTypeKindName(NewTag));
16140 return true;
16143 // Identify the prevailing tag kind: this is the kind of the definition (if
16144 // there is a non-ignored definition), or otherwise the kind of the prior
16145 // (non-ignored) declaration.
16146 const TagDecl *PrevDef = Previous->getDefinition();
16147 if (PrevDef && IsIgnored(PrevDef))
16148 PrevDef = nullptr;
16149 const TagDecl *Redecl = PrevDef ? PrevDef : Previous;
16150 if (Redecl->getTagKind() != NewTag) {
16151 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
16152 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
16153 << getRedeclDiagFromTagKind(OldTag);
16154 Diag(Redecl->getLocation(), diag::note_previous_use);
16156 // If there is a previous definition, suggest a fix-it.
16157 if (PrevDef) {
16158 Diag(NewTagLoc, diag::note_struct_class_suggestion)
16159 << getRedeclDiagFromTagKind(Redecl->getTagKind())
16160 << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
16161 TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
16165 return true;
16168 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
16169 /// from an outer enclosing namespace or file scope inside a friend declaration.
16170 /// This should provide the commented out code in the following snippet:
16171 /// namespace N {
16172 /// struct X;
16173 /// namespace M {
16174 /// struct Y { friend struct /*N::*/ X; };
16175 /// }
16176 /// }
16177 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
16178 SourceLocation NameLoc) {
16179 // While the decl is in a namespace, do repeated lookup of that name and see
16180 // if we get the same namespace back. If we do not, continue until
16181 // translation unit scope, at which point we have a fully qualified NNS.
16182 SmallVector<IdentifierInfo *, 4> Namespaces;
16183 DeclContext *DC = ND->getDeclContext()->getRedeclContext();
16184 for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
16185 // This tag should be declared in a namespace, which can only be enclosed by
16186 // other namespaces. Bail if there's an anonymous namespace in the chain.
16187 NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
16188 if (!Namespace || Namespace->isAnonymousNamespace())
16189 return FixItHint();
16190 IdentifierInfo *II = Namespace->getIdentifier();
16191 Namespaces.push_back(II);
16192 NamedDecl *Lookup = SemaRef.LookupSingleName(
16193 S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
16194 if (Lookup == Namespace)
16195 break;
16198 // Once we have all the namespaces, reverse them to go outermost first, and
16199 // build an NNS.
16200 SmallString<64> Insertion;
16201 llvm::raw_svector_ostream OS(Insertion);
16202 if (DC->isTranslationUnit())
16203 OS << "::";
16204 std::reverse(Namespaces.begin(), Namespaces.end());
16205 for (auto *II : Namespaces)
16206 OS << II->getName() << "::";
16207 return FixItHint::CreateInsertion(NameLoc, Insertion);
16210 /// Determine whether a tag originally declared in context \p OldDC can
16211 /// be redeclared with an unqualified name in \p NewDC (assuming name lookup
16212 /// found a declaration in \p OldDC as a previous decl, perhaps through a
16213 /// using-declaration).
16214 static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
16215 DeclContext *NewDC) {
16216 OldDC = OldDC->getRedeclContext();
16217 NewDC = NewDC->getRedeclContext();
16219 if (OldDC->Equals(NewDC))
16220 return true;
16222 // In MSVC mode, we allow a redeclaration if the contexts are related (either
16223 // encloses the other).
16224 if (S.getLangOpts().MSVCCompat &&
16225 (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
16226 return true;
16228 return false;
16231 /// This is invoked when we see 'struct foo' or 'struct {'. In the
16232 /// former case, Name will be non-null. In the later case, Name will be null.
16233 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
16234 /// reference/declaration/definition of a tag.
16236 /// \param IsTypeSpecifier \c true if this is a type-specifier (or
16237 /// trailing-type-specifier) other than one in an alias-declaration.
16239 /// \param SkipBody If non-null, will be set to indicate if the caller should
16240 /// skip the definition of this tag and treat it as if it were a declaration.
16241 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
16242 SourceLocation KWLoc, CXXScopeSpec &SS,
16243 IdentifierInfo *Name, SourceLocation NameLoc,
16244 const ParsedAttributesView &Attrs, AccessSpecifier AS,
16245 SourceLocation ModulePrivateLoc,
16246 MultiTemplateParamsArg TemplateParameterLists,
16247 bool &OwnedDecl, bool &IsDependent,
16248 SourceLocation ScopedEnumKWLoc,
16249 bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
16250 bool IsTypeSpecifier, bool IsTemplateParamOrArg,
16251 SkipBodyInfo *SkipBody) {
16252 // If this is not a definition, it must have a name.
16253 IdentifierInfo *OrigName = Name;
16254 assert((Name != nullptr || TUK == TUK_Definition) &&
16255 "Nameless record must be a definition!");
16256 assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
16258 OwnedDecl = false;
16259 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
16260 bool ScopedEnum = ScopedEnumKWLoc.isValid();
16262 // FIXME: Check member specializations more carefully.
16263 bool isMemberSpecialization = false;
16264 bool Invalid = false;
16266 // We only need to do this matching if we have template parameters
16267 // or a scope specifier, which also conveniently avoids this work
16268 // for non-C++ cases.
16269 if (TemplateParameterLists.size() > 0 ||
16270 (SS.isNotEmpty() && TUK != TUK_Reference)) {
16271 if (TemplateParameterList *TemplateParams =
16272 MatchTemplateParametersToScopeSpecifier(
16273 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
16274 TUK == TUK_Friend, isMemberSpecialization, Invalid)) {
16275 if (Kind == TTK_Enum) {
16276 Diag(KWLoc, diag::err_enum_template);
16277 return nullptr;
16280 if (TemplateParams->size() > 0) {
16281 // This is a declaration or definition of a class template (which may
16282 // be a member of another template).
16284 if (Invalid)
16285 return nullptr;
16287 OwnedDecl = false;
16288 DeclResult Result = CheckClassTemplate(
16289 S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams,
16290 AS, ModulePrivateLoc,
16291 /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1,
16292 TemplateParameterLists.data(), SkipBody);
16293 return Result.get();
16294 } else {
16295 // The "template<>" header is extraneous.
16296 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
16297 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
16298 isMemberSpecialization = true;
16302 if (!TemplateParameterLists.empty() && isMemberSpecialization &&
16303 CheckTemplateDeclScope(S, TemplateParameterLists.back()))
16304 return nullptr;
16307 // Figure out the underlying type if this a enum declaration. We need to do
16308 // this early, because it's needed to detect if this is an incompatible
16309 // redeclaration.
16310 llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
16311 bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum;
16313 if (Kind == TTK_Enum) {
16314 if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) {
16315 // No underlying type explicitly specified, or we failed to parse the
16316 // type, default to int.
16317 EnumUnderlying = Context.IntTy.getTypePtr();
16318 } else if (UnderlyingType.get()) {
16319 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
16320 // integral type; any cv-qualification is ignored.
16321 TypeSourceInfo *TI = nullptr;
16322 GetTypeFromParser(UnderlyingType.get(), &TI);
16323 EnumUnderlying = TI;
16325 if (CheckEnumUnderlyingType(TI))
16326 // Recover by falling back to int.
16327 EnumUnderlying = Context.IntTy.getTypePtr();
16329 if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
16330 UPPC_FixedUnderlyingType))
16331 EnumUnderlying = Context.IntTy.getTypePtr();
16333 } else if (Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment()) {
16334 // For MSVC ABI compatibility, unfixed enums must use an underlying type
16335 // of 'int'. However, if this is an unfixed forward declaration, don't set
16336 // the underlying type unless the user enables -fms-compatibility. This
16337 // makes unfixed forward declared enums incomplete and is more conforming.
16338 if (TUK == TUK_Definition || getLangOpts().MSVCCompat)
16339 EnumUnderlying = Context.IntTy.getTypePtr();
16343 DeclContext *SearchDC = CurContext;
16344 DeclContext *DC = CurContext;
16345 bool isStdBadAlloc = false;
16346 bool isStdAlignValT = false;
16348 RedeclarationKind Redecl = forRedeclarationInCurContext();
16349 if (TUK == TUK_Friend || TUK == TUK_Reference)
16350 Redecl = NotForRedeclaration;
16352 /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
16353 /// implemented asks for structural equivalence checking, the returned decl
16354 /// here is passed back to the parser, allowing the tag body to be parsed.
16355 auto createTagFromNewDecl = [&]() -> TagDecl * {
16356 assert(!getLangOpts().CPlusPlus && "not meant for C++ usage");
16357 // If there is an identifier, use the location of the identifier as the
16358 // location of the decl, otherwise use the location of the struct/union
16359 // keyword.
16360 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
16361 TagDecl *New = nullptr;
16363 if (Kind == TTK_Enum) {
16364 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr,
16365 ScopedEnum, ScopedEnumUsesClassTag, IsFixed);
16366 // If this is an undefined enum, bail.
16367 if (TUK != TUK_Definition && !Invalid)
16368 return nullptr;
16369 if (EnumUnderlying) {
16370 EnumDecl *ED = cast<EnumDecl>(New);
16371 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>())
16372 ED->setIntegerTypeSourceInfo(TI);
16373 else
16374 ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
16375 QualType EnumTy = ED->getIntegerType();
16376 ED->setPromotionType(EnumTy->isPromotableIntegerType()
16377 ? Context.getPromotedIntegerType(EnumTy)
16378 : EnumTy);
16380 } else { // struct/union
16381 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
16382 nullptr);
16385 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
16386 // Add alignment attributes if necessary; these attributes are checked
16387 // when the ASTContext lays out the structure.
16389 // It is important for implementing the correct semantics that this
16390 // happen here (in ActOnTag). The #pragma pack stack is
16391 // maintained as a result of parser callbacks which can occur at
16392 // many points during the parsing of a struct declaration (because
16393 // the #pragma tokens are effectively skipped over during the
16394 // parsing of the struct).
16395 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
16396 AddAlignmentAttributesForRecord(RD);
16397 AddMsStructLayoutForRecord(RD);
16400 New->setLexicalDeclContext(CurContext);
16401 return New;
16404 LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
16405 if (Name && SS.isNotEmpty()) {
16406 // We have a nested-name tag ('struct foo::bar').
16408 // Check for invalid 'foo::'.
16409 if (SS.isInvalid()) {
16410 Name = nullptr;
16411 goto CreateNewDecl;
16414 // If this is a friend or a reference to a class in a dependent
16415 // context, don't try to make a decl for it.
16416 if (TUK == TUK_Friend || TUK == TUK_Reference) {
16417 DC = computeDeclContext(SS, false);
16418 if (!DC) {
16419 IsDependent = true;
16420 return nullptr;
16422 } else {
16423 DC = computeDeclContext(SS, true);
16424 if (!DC) {
16425 Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
16426 << SS.getRange();
16427 return nullptr;
16431 if (RequireCompleteDeclContext(SS, DC))
16432 return nullptr;
16434 SearchDC = DC;
16435 // Look-up name inside 'foo::'.
16436 LookupQualifiedName(Previous, DC);
16438 if (Previous.isAmbiguous())
16439 return nullptr;
16441 if (Previous.empty()) {
16442 // Name lookup did not find anything. However, if the
16443 // nested-name-specifier refers to the current instantiation,
16444 // and that current instantiation has any dependent base
16445 // classes, we might find something at instantiation time: treat
16446 // this as a dependent elaborated-type-specifier.
16447 // But this only makes any sense for reference-like lookups.
16448 if (Previous.wasNotFoundInCurrentInstantiation() &&
16449 (TUK == TUK_Reference || TUK == TUK_Friend)) {
16450 IsDependent = true;
16451 return nullptr;
16454 // A tag 'foo::bar' must already exist.
16455 Diag(NameLoc, diag::err_not_tag_in_scope)
16456 << Kind << Name << DC << SS.getRange();
16457 Name = nullptr;
16458 Invalid = true;
16459 goto CreateNewDecl;
16461 } else if (Name) {
16462 // C++14 [class.mem]p14:
16463 // If T is the name of a class, then each of the following shall have a
16464 // name different from T:
16465 // -- every member of class T that is itself a type
16466 if (TUK != TUK_Reference && TUK != TUK_Friend &&
16467 DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
16468 return nullptr;
16470 // If this is a named struct, check to see if there was a previous forward
16471 // declaration or definition.
16472 // FIXME: We're looking into outer scopes here, even when we
16473 // shouldn't be. Doing so can result in ambiguities that we
16474 // shouldn't be diagnosing.
16475 LookupName(Previous, S);
16477 // When declaring or defining a tag, ignore ambiguities introduced
16478 // by types using'ed into this scope.
16479 if (Previous.isAmbiguous() &&
16480 (TUK == TUK_Definition || TUK == TUK_Declaration)) {
16481 LookupResult::Filter F = Previous.makeFilter();
16482 while (F.hasNext()) {
16483 NamedDecl *ND = F.next();
16484 if (!ND->getDeclContext()->getRedeclContext()->Equals(
16485 SearchDC->getRedeclContext()))
16486 F.erase();
16488 F.done();
16491 // C++11 [namespace.memdef]p3:
16492 // If the name in a friend declaration is neither qualified nor
16493 // a template-id and the declaration is a function or an
16494 // elaborated-type-specifier, the lookup to determine whether
16495 // the entity has been previously declared shall not consider
16496 // any scopes outside the innermost enclosing namespace.
16498 // MSVC doesn't implement the above rule for types, so a friend tag
16499 // declaration may be a redeclaration of a type declared in an enclosing
16500 // scope. They do implement this rule for friend functions.
16502 // Does it matter that this should be by scope instead of by
16503 // semantic context?
16504 if (!Previous.empty() && TUK == TUK_Friend) {
16505 DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
16506 LookupResult::Filter F = Previous.makeFilter();
16507 bool FriendSawTagOutsideEnclosingNamespace = false;
16508 while (F.hasNext()) {
16509 NamedDecl *ND = F.next();
16510 DeclContext *DC = ND->getDeclContext()->getRedeclContext();
16511 if (DC->isFileContext() &&
16512 !EnclosingNS->Encloses(ND->getDeclContext())) {
16513 if (getLangOpts().MSVCCompat)
16514 FriendSawTagOutsideEnclosingNamespace = true;
16515 else
16516 F.erase();
16519 F.done();
16521 // Diagnose this MSVC extension in the easy case where lookup would have
16522 // unambiguously found something outside the enclosing namespace.
16523 if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
16524 NamedDecl *ND = Previous.getFoundDecl();
16525 Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
16526 << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
16530 // Note: there used to be some attempt at recovery here.
16531 if (Previous.isAmbiguous())
16532 return nullptr;
16534 if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
16535 // FIXME: This makes sure that we ignore the contexts associated
16536 // with C structs, unions, and enums when looking for a matching
16537 // tag declaration or definition. See the similar lookup tweak
16538 // in Sema::LookupName; is there a better way to deal with this?
16539 while (isa<RecordDecl, EnumDecl, ObjCContainerDecl>(SearchDC))
16540 SearchDC = SearchDC->getParent();
16541 } else if (getLangOpts().CPlusPlus) {
16542 // Inside ObjCContainer want to keep it as a lexical decl context but go
16543 // past it (most often to TranslationUnit) to find the semantic decl
16544 // context.
16545 while (isa<ObjCContainerDecl>(SearchDC))
16546 SearchDC = SearchDC->getParent();
16548 } else if (getLangOpts().CPlusPlus) {
16549 // Don't use ObjCContainerDecl as the semantic decl context for anonymous
16550 // TagDecl the same way as we skip it for named TagDecl.
16551 while (isa<ObjCContainerDecl>(SearchDC))
16552 SearchDC = SearchDC->getParent();
16555 if (Previous.isSingleResult() &&
16556 Previous.getFoundDecl()->isTemplateParameter()) {
16557 // Maybe we will complain about the shadowed template parameter.
16558 DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
16559 // Just pretend that we didn't see the previous declaration.
16560 Previous.clear();
16563 if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
16564 DC->Equals(getStdNamespace())) {
16565 if (Name->isStr("bad_alloc")) {
16566 // This is a declaration of or a reference to "std::bad_alloc".
16567 isStdBadAlloc = true;
16569 // If std::bad_alloc has been implicitly declared (but made invisible to
16570 // name lookup), fill in this implicit declaration as the previous
16571 // declaration, so that the declarations get chained appropriately.
16572 if (Previous.empty() && StdBadAlloc)
16573 Previous.addDecl(getStdBadAlloc());
16574 } else if (Name->isStr("align_val_t")) {
16575 isStdAlignValT = true;
16576 if (Previous.empty() && StdAlignValT)
16577 Previous.addDecl(getStdAlignValT());
16581 // If we didn't find a previous declaration, and this is a reference
16582 // (or friend reference), move to the correct scope. In C++, we
16583 // also need to do a redeclaration lookup there, just in case
16584 // there's a shadow friend decl.
16585 if (Name && Previous.empty() &&
16586 (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) {
16587 if (Invalid) goto CreateNewDecl;
16588 assert(SS.isEmpty());
16590 if (TUK == TUK_Reference || IsTemplateParamOrArg) {
16591 // C++ [basic.scope.pdecl]p5:
16592 // -- for an elaborated-type-specifier of the form
16594 // class-key identifier
16596 // if the elaborated-type-specifier is used in the
16597 // decl-specifier-seq or parameter-declaration-clause of a
16598 // function defined in namespace scope, the identifier is
16599 // declared as a class-name in the namespace that contains
16600 // the declaration; otherwise, except as a friend
16601 // declaration, the identifier is declared in the smallest
16602 // non-class, non-function-prototype scope that contains the
16603 // declaration.
16605 // C99 6.7.2.3p8 has a similar (but not identical!) provision for
16606 // C structs and unions.
16608 // It is an error in C++ to declare (rather than define) an enum
16609 // type, including via an elaborated type specifier. We'll
16610 // diagnose that later; for now, declare the enum in the same
16611 // scope as we would have picked for any other tag type.
16613 // GNU C also supports this behavior as part of its incomplete
16614 // enum types extension, while GNU C++ does not.
16616 // Find the context where we'll be declaring the tag.
16617 // FIXME: We would like to maintain the current DeclContext as the
16618 // lexical context,
16619 SearchDC = getTagInjectionContext(SearchDC);
16621 // Find the scope where we'll be declaring the tag.
16622 S = getTagInjectionScope(S, getLangOpts());
16623 } else {
16624 assert(TUK == TUK_Friend);
16625 // C++ [namespace.memdef]p3:
16626 // If a friend declaration in a non-local class first declares a
16627 // class or function, the friend class or function is a member of
16628 // the innermost enclosing namespace.
16629 SearchDC = SearchDC->getEnclosingNamespaceContext();
16632 // In C++, we need to do a redeclaration lookup to properly
16633 // diagnose some problems.
16634 // FIXME: redeclaration lookup is also used (with and without C++) to find a
16635 // hidden declaration so that we don't get ambiguity errors when using a
16636 // type declared by an elaborated-type-specifier. In C that is not correct
16637 // and we should instead merge compatible types found by lookup.
16638 if (getLangOpts().CPlusPlus) {
16639 // FIXME: This can perform qualified lookups into function contexts,
16640 // which are meaningless.
16641 Previous.setRedeclarationKind(forRedeclarationInCurContext());
16642 LookupQualifiedName(Previous, SearchDC);
16643 } else {
16644 Previous.setRedeclarationKind(forRedeclarationInCurContext());
16645 LookupName(Previous, S);
16649 // If we have a known previous declaration to use, then use it.
16650 if (Previous.empty() && SkipBody && SkipBody->Previous)
16651 Previous.addDecl(SkipBody->Previous);
16653 if (!Previous.empty()) {
16654 NamedDecl *PrevDecl = Previous.getFoundDecl();
16655 NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
16657 // It's okay to have a tag decl in the same scope as a typedef
16658 // which hides a tag decl in the same scope. Finding this
16659 // with a redeclaration lookup can only actually happen in C++.
16661 // This is also okay for elaborated-type-specifiers, which is
16662 // technically forbidden by the current standard but which is
16663 // okay according to the likely resolution of an open issue;
16664 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
16665 if (getLangOpts().CPlusPlus) {
16666 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
16667 if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
16668 TagDecl *Tag = TT->getDecl();
16669 if (Tag->getDeclName() == Name &&
16670 Tag->getDeclContext()->getRedeclContext()
16671 ->Equals(TD->getDeclContext()->getRedeclContext())) {
16672 PrevDecl = Tag;
16673 Previous.clear();
16674 Previous.addDecl(Tag);
16675 Previous.resolveKind();
16681 // If this is a redeclaration of a using shadow declaration, it must
16682 // declare a tag in the same context. In MSVC mode, we allow a
16683 // redefinition if either context is within the other.
16684 if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
16685 auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
16686 if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
16687 isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) &&
16688 !(OldTag && isAcceptableTagRedeclContext(
16689 *this, OldTag->getDeclContext(), SearchDC))) {
16690 Diag(KWLoc, diag::err_using_decl_conflict_reverse);
16691 Diag(Shadow->getTargetDecl()->getLocation(),
16692 diag::note_using_decl_target);
16693 Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl)
16694 << 0;
16695 // Recover by ignoring the old declaration.
16696 Previous.clear();
16697 goto CreateNewDecl;
16701 if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
16702 // If this is a use of a previous tag, or if the tag is already declared
16703 // in the same scope (so that the definition/declaration completes or
16704 // rementions the tag), reuse the decl.
16705 if (TUK == TUK_Reference || TUK == TUK_Friend ||
16706 isDeclInScope(DirectPrevDecl, SearchDC, S,
16707 SS.isNotEmpty() || isMemberSpecialization)) {
16708 // Make sure that this wasn't declared as an enum and now used as a
16709 // struct or something similar.
16710 if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
16711 TUK == TUK_Definition, KWLoc,
16712 Name)) {
16713 bool SafeToContinue
16714 = (PrevTagDecl->getTagKind() != TTK_Enum &&
16715 Kind != TTK_Enum);
16716 if (SafeToContinue)
16717 Diag(KWLoc, diag::err_use_with_wrong_tag)
16718 << Name
16719 << FixItHint::CreateReplacement(SourceRange(KWLoc),
16720 PrevTagDecl->getKindName());
16721 else
16722 Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
16723 Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
16725 if (SafeToContinue)
16726 Kind = PrevTagDecl->getTagKind();
16727 else {
16728 // Recover by making this an anonymous redefinition.
16729 Name = nullptr;
16730 Previous.clear();
16731 Invalid = true;
16735 if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
16736 const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
16737 if (TUK == TUK_Reference || TUK == TUK_Friend)
16738 return PrevTagDecl;
16740 QualType EnumUnderlyingTy;
16741 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
16742 EnumUnderlyingTy = TI->getType().getUnqualifiedType();
16743 else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
16744 EnumUnderlyingTy = QualType(T, 0);
16746 // All conflicts with previous declarations are recovered by
16747 // returning the previous declaration, unless this is a definition,
16748 // in which case we want the caller to bail out.
16749 if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
16750 ScopedEnum, EnumUnderlyingTy,
16751 IsFixed, PrevEnum))
16752 return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
16755 // C++11 [class.mem]p1:
16756 // A member shall not be declared twice in the member-specification,
16757 // except that a nested class or member class template can be declared
16758 // and then later defined.
16759 if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
16760 S->isDeclScope(PrevDecl)) {
16761 Diag(NameLoc, diag::ext_member_redeclared);
16762 Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
16765 if (!Invalid) {
16766 // If this is a use, just return the declaration we found, unless
16767 // we have attributes.
16768 if (TUK == TUK_Reference || TUK == TUK_Friend) {
16769 if (!Attrs.empty()) {
16770 // FIXME: Diagnose these attributes. For now, we create a new
16771 // declaration to hold them.
16772 } else if (TUK == TUK_Reference &&
16773 (PrevTagDecl->getFriendObjectKind() ==
16774 Decl::FOK_Undeclared ||
16775 PrevDecl->getOwningModule() != getCurrentModule()) &&
16776 SS.isEmpty()) {
16777 // This declaration is a reference to an existing entity, but
16778 // has different visibility from that entity: it either makes
16779 // a friend visible or it makes a type visible in a new module.
16780 // In either case, create a new declaration. We only do this if
16781 // the declaration would have meant the same thing if no prior
16782 // declaration were found, that is, if it was found in the same
16783 // scope where we would have injected a declaration.
16784 if (!getTagInjectionContext(CurContext)->getRedeclContext()
16785 ->Equals(PrevDecl->getDeclContext()->getRedeclContext()))
16786 return PrevTagDecl;
16787 // This is in the injected scope, create a new declaration in
16788 // that scope.
16789 S = getTagInjectionScope(S, getLangOpts());
16790 } else {
16791 return PrevTagDecl;
16795 // Diagnose attempts to redefine a tag.
16796 if (TUK == TUK_Definition) {
16797 if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
16798 // If we're defining a specialization and the previous definition
16799 // is from an implicit instantiation, don't emit an error
16800 // here; we'll catch this in the general case below.
16801 bool IsExplicitSpecializationAfterInstantiation = false;
16802 if (isMemberSpecialization) {
16803 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
16804 IsExplicitSpecializationAfterInstantiation =
16805 RD->getTemplateSpecializationKind() !=
16806 TSK_ExplicitSpecialization;
16807 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
16808 IsExplicitSpecializationAfterInstantiation =
16809 ED->getTemplateSpecializationKind() !=
16810 TSK_ExplicitSpecialization;
16813 // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
16814 // not keep more that one definition around (merge them). However,
16815 // ensure the decl passes the structural compatibility check in
16816 // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
16817 NamedDecl *Hidden = nullptr;
16818 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
16819 // There is a definition of this tag, but it is not visible. We
16820 // explicitly make use of C++'s one definition rule here, and
16821 // assume that this definition is identical to the hidden one
16822 // we already have. Make the existing definition visible and
16823 // use it in place of this one.
16824 if (!getLangOpts().CPlusPlus) {
16825 // Postpone making the old definition visible until after we
16826 // complete parsing the new one and do the structural
16827 // comparison.
16828 SkipBody->CheckSameAsPrevious = true;
16829 SkipBody->New = createTagFromNewDecl();
16830 SkipBody->Previous = Def;
16831 return Def;
16832 } else {
16833 SkipBody->ShouldSkip = true;
16834 SkipBody->Previous = Def;
16835 makeMergedDefinitionVisible(Hidden);
16836 // Carry on and handle it like a normal definition. We'll
16837 // skip starting the definitiion later.
16839 } else if (!IsExplicitSpecializationAfterInstantiation) {
16840 // A redeclaration in function prototype scope in C isn't
16841 // visible elsewhere, so merely issue a warning.
16842 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
16843 Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
16844 else
16845 Diag(NameLoc, diag::err_redefinition) << Name;
16846 notePreviousDefinition(Def,
16847 NameLoc.isValid() ? NameLoc : KWLoc);
16848 // If this is a redefinition, recover by making this
16849 // struct be anonymous, which will make any later
16850 // references get the previous definition.
16851 Name = nullptr;
16852 Previous.clear();
16853 Invalid = true;
16855 } else {
16856 // If the type is currently being defined, complain
16857 // about a nested redefinition.
16858 auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
16859 if (TD->isBeingDefined()) {
16860 Diag(NameLoc, diag::err_nested_redefinition) << Name;
16861 Diag(PrevTagDecl->getLocation(),
16862 diag::note_previous_definition);
16863 Name = nullptr;
16864 Previous.clear();
16865 Invalid = true;
16869 // Okay, this is definition of a previously declared or referenced
16870 // tag. We're going to create a new Decl for it.
16873 // Okay, we're going to make a redeclaration. If this is some kind
16874 // of reference, make sure we build the redeclaration in the same DC
16875 // as the original, and ignore the current access specifier.
16876 if (TUK == TUK_Friend || TUK == TUK_Reference) {
16877 SearchDC = PrevTagDecl->getDeclContext();
16878 AS = AS_none;
16881 // If we get here we have (another) forward declaration or we
16882 // have a definition. Just create a new decl.
16884 } else {
16885 // If we get here, this is a definition of a new tag type in a nested
16886 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
16887 // new decl/type. We set PrevDecl to NULL so that the entities
16888 // have distinct types.
16889 Previous.clear();
16891 // If we get here, we're going to create a new Decl. If PrevDecl
16892 // is non-NULL, it's a definition of the tag declared by
16893 // PrevDecl. If it's NULL, we have a new definition.
16895 // Otherwise, PrevDecl is not a tag, but was found with tag
16896 // lookup. This is only actually possible in C++, where a few
16897 // things like templates still live in the tag namespace.
16898 } else {
16899 // Use a better diagnostic if an elaborated-type-specifier
16900 // found the wrong kind of type on the first
16901 // (non-redeclaration) lookup.
16902 if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
16903 !Previous.isForRedeclaration()) {
16904 NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
16905 Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK
16906 << Kind;
16907 Diag(PrevDecl->getLocation(), diag::note_declared_at);
16908 Invalid = true;
16910 // Otherwise, only diagnose if the declaration is in scope.
16911 } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
16912 SS.isNotEmpty() || isMemberSpecialization)) {
16913 // do nothing
16915 // Diagnose implicit declarations introduced by elaborated types.
16916 } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
16917 NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
16918 Diag(NameLoc, diag::err_tag_reference_conflict) << NTK;
16919 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
16920 Invalid = true;
16922 // Otherwise it's a declaration. Call out a particularly common
16923 // case here.
16924 } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
16925 unsigned Kind = 0;
16926 if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
16927 Diag(NameLoc, diag::err_tag_definition_of_typedef)
16928 << Name << Kind << TND->getUnderlyingType();
16929 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
16930 Invalid = true;
16932 // Otherwise, diagnose.
16933 } else {
16934 // The tag name clashes with something else in the target scope,
16935 // issue an error and recover by making this tag be anonymous.
16936 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
16937 notePreviousDefinition(PrevDecl, NameLoc);
16938 Name = nullptr;
16939 Invalid = true;
16942 // The existing declaration isn't relevant to us; we're in a
16943 // new scope, so clear out the previous declaration.
16944 Previous.clear();
16948 CreateNewDecl:
16950 TagDecl *PrevDecl = nullptr;
16951 if (Previous.isSingleResult())
16952 PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
16954 // If there is an identifier, use the location of the identifier as the
16955 // location of the decl, otherwise use the location of the struct/union
16956 // keyword.
16957 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
16959 // Otherwise, create a new declaration. If there is a previous
16960 // declaration of the same entity, the two will be linked via
16961 // PrevDecl.
16962 TagDecl *New;
16964 if (Kind == TTK_Enum) {
16965 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
16966 // enum X { A, B, C } D; D should chain to X.
16967 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
16968 cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
16969 ScopedEnumUsesClassTag, IsFixed);
16971 if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit()))
16972 StdAlignValT = cast<EnumDecl>(New);
16974 // If this is an undefined enum, warn.
16975 if (TUK != TUK_Definition && !Invalid) {
16976 TagDecl *Def;
16977 if (IsFixed && cast<EnumDecl>(New)->isFixed()) {
16978 // C++0x: 7.2p2: opaque-enum-declaration.
16979 // Conflicts are diagnosed above. Do nothing.
16981 else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
16982 Diag(Loc, diag::ext_forward_ref_enum_def)
16983 << New;
16984 Diag(Def->getLocation(), diag::note_previous_definition);
16985 } else {
16986 unsigned DiagID = diag::ext_forward_ref_enum;
16987 if (getLangOpts().MSVCCompat)
16988 DiagID = diag::ext_ms_forward_ref_enum;
16989 else if (getLangOpts().CPlusPlus)
16990 DiagID = diag::err_forward_ref_enum;
16991 Diag(Loc, DiagID);
16995 if (EnumUnderlying) {
16996 EnumDecl *ED = cast<EnumDecl>(New);
16997 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
16998 ED->setIntegerTypeSourceInfo(TI);
16999 else
17000 ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
17001 QualType EnumTy = ED->getIntegerType();
17002 ED->setPromotionType(EnumTy->isPromotableIntegerType()
17003 ? Context.getPromotedIntegerType(EnumTy)
17004 : EnumTy);
17005 assert(ED->isComplete() && "enum with type should be complete");
17007 } else {
17008 // struct/union/class
17010 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
17011 // struct X { int A; } D; D should chain to X.
17012 if (getLangOpts().CPlusPlus) {
17013 // FIXME: Look for a way to use RecordDecl for simple structs.
17014 New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
17015 cast_or_null<CXXRecordDecl>(PrevDecl));
17017 if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
17018 StdBadAlloc = cast<CXXRecordDecl>(New);
17019 } else
17020 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
17021 cast_or_null<RecordDecl>(PrevDecl));
17024 // C++11 [dcl.type]p3:
17025 // A type-specifier-seq shall not define a class or enumeration [...].
17026 if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) &&
17027 TUK == TUK_Definition) {
17028 Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
17029 << Context.getTagDeclType(New);
17030 Invalid = true;
17033 if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition &&
17034 DC->getDeclKind() == Decl::Enum) {
17035 Diag(New->getLocation(), diag::err_type_defined_in_enum)
17036 << Context.getTagDeclType(New);
17037 Invalid = true;
17040 // Maybe add qualifier info.
17041 if (SS.isNotEmpty()) {
17042 if (SS.isSet()) {
17043 // If this is either a declaration or a definition, check the
17044 // nested-name-specifier against the current context.
17045 if ((TUK == TUK_Definition || TUK == TUK_Declaration) &&
17046 diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc,
17047 isMemberSpecialization))
17048 Invalid = true;
17050 New->setQualifierInfo(SS.getWithLocInContext(Context));
17051 if (TemplateParameterLists.size() > 0) {
17052 New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
17055 else
17056 Invalid = true;
17059 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
17060 // Add alignment attributes if necessary; these attributes are checked when
17061 // the ASTContext lays out the structure.
17063 // It is important for implementing the correct semantics that this
17064 // happen here (in ActOnTag). The #pragma pack stack is
17065 // maintained as a result of parser callbacks which can occur at
17066 // many points during the parsing of a struct declaration (because
17067 // the #pragma tokens are effectively skipped over during the
17068 // parsing of the struct).
17069 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
17070 AddAlignmentAttributesForRecord(RD);
17071 AddMsStructLayoutForRecord(RD);
17075 if (ModulePrivateLoc.isValid()) {
17076 if (isMemberSpecialization)
17077 Diag(New->getLocation(), diag::err_module_private_specialization)
17078 << 2
17079 << FixItHint::CreateRemoval(ModulePrivateLoc);
17080 // __module_private__ does not apply to local classes. However, we only
17081 // diagnose this as an error when the declaration specifiers are
17082 // freestanding. Here, we just ignore the __module_private__.
17083 else if (!SearchDC->isFunctionOrMethod())
17084 New->setModulePrivate();
17087 // If this is a specialization of a member class (of a class template),
17088 // check the specialization.
17089 if (isMemberSpecialization && CheckMemberSpecialization(New, Previous))
17090 Invalid = true;
17092 // If we're declaring or defining a tag in function prototype scope in C,
17093 // note that this type can only be used within the function and add it to
17094 // the list of decls to inject into the function definition scope.
17095 if ((Name || Kind == TTK_Enum) &&
17096 getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
17097 if (getLangOpts().CPlusPlus) {
17098 // C++ [dcl.fct]p6:
17099 // Types shall not be defined in return or parameter types.
17100 if (TUK == TUK_Definition && !IsTypeSpecifier) {
17101 Diag(Loc, diag::err_type_defined_in_param_type)
17102 << Name;
17103 Invalid = true;
17105 } else if (!PrevDecl) {
17106 Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
17110 if (Invalid)
17111 New->setInvalidDecl();
17113 // Set the lexical context. If the tag has a C++ scope specifier, the
17114 // lexical context will be different from the semantic context.
17115 New->setLexicalDeclContext(CurContext);
17117 // Mark this as a friend decl if applicable.
17118 // In Microsoft mode, a friend declaration also acts as a forward
17119 // declaration so we always pass true to setObjectOfFriendDecl to make
17120 // the tag name visible.
17121 if (TUK == TUK_Friend)
17122 New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
17124 // Set the access specifier.
17125 if (!Invalid && SearchDC->isRecord())
17126 SetMemberAccessSpecifier(New, PrevDecl, AS);
17128 if (PrevDecl)
17129 CheckRedeclarationInModule(New, PrevDecl);
17131 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
17132 New->startDefinition();
17134 ProcessDeclAttributeList(S, New, Attrs);
17135 AddPragmaAttributes(S, New);
17137 // If this has an identifier, add it to the scope stack.
17138 if (TUK == TUK_Friend) {
17139 // We might be replacing an existing declaration in the lookup tables;
17140 // if so, borrow its access specifier.
17141 if (PrevDecl)
17142 New->setAccess(PrevDecl->getAccess());
17144 DeclContext *DC = New->getDeclContext()->getRedeclContext();
17145 DC->makeDeclVisibleInContext(New);
17146 if (Name) // can be null along some error paths
17147 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
17148 PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
17149 } else if (Name) {
17150 S = getNonFieldDeclScope(S);
17151 PushOnScopeChains(New, S, true);
17152 } else {
17153 CurContext->addDecl(New);
17156 // If this is the C FILE type, notify the AST context.
17157 if (IdentifierInfo *II = New->getIdentifier())
17158 if (!New->isInvalidDecl() &&
17159 New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
17160 II->isStr("FILE"))
17161 Context.setFILEDecl(New);
17163 if (PrevDecl)
17164 mergeDeclAttributes(New, PrevDecl);
17166 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(New))
17167 inferGslOwnerPointerAttribute(CXXRD);
17169 // If there's a #pragma GCC visibility in scope, set the visibility of this
17170 // record.
17171 AddPushedVisibilityAttribute(New);
17173 if (isMemberSpecialization && !New->isInvalidDecl())
17174 CompleteMemberSpecialization(New, Previous);
17176 OwnedDecl = true;
17177 // In C++, don't return an invalid declaration. We can't recover well from
17178 // the cases where we make the type anonymous.
17179 if (Invalid && getLangOpts().CPlusPlus) {
17180 if (New->isBeingDefined())
17181 if (auto RD = dyn_cast<RecordDecl>(New))
17182 RD->completeDefinition();
17183 return nullptr;
17184 } else if (SkipBody && SkipBody->ShouldSkip) {
17185 return SkipBody->Previous;
17186 } else {
17187 return New;
17191 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
17192 AdjustDeclIfTemplate(TagD);
17193 TagDecl *Tag = cast<TagDecl>(TagD);
17195 // Enter the tag context.
17196 PushDeclContext(S, Tag);
17198 ActOnDocumentableDecl(TagD);
17200 // If there's a #pragma GCC visibility in scope, set the visibility of this
17201 // record.
17202 AddPushedVisibilityAttribute(Tag);
17205 bool Sema::ActOnDuplicateDefinition(Decl *Prev, SkipBodyInfo &SkipBody) {
17206 if (!hasStructuralCompatLayout(Prev, SkipBody.New))
17207 return false;
17209 // Make the previous decl visible.
17210 makeMergedDefinitionVisible(SkipBody.Previous);
17211 return true;
17214 void Sema::ActOnObjCContainerStartDefinition(ObjCContainerDecl *IDecl) {
17215 assert(IDecl->getLexicalParent() == CurContext &&
17216 "The next DeclContext should be lexically contained in the current one.");
17217 CurContext = IDecl;
17220 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
17221 SourceLocation FinalLoc,
17222 bool IsFinalSpelledSealed,
17223 bool IsAbstract,
17224 SourceLocation LBraceLoc) {
17225 AdjustDeclIfTemplate(TagD);
17226 CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
17228 FieldCollector->StartClass();
17230 if (!Record->getIdentifier())
17231 return;
17233 if (IsAbstract)
17234 Record->markAbstract();
17236 if (FinalLoc.isValid()) {
17237 Record->addAttr(FinalAttr::Create(
17238 Context, FinalLoc, AttributeCommonInfo::AS_Keyword,
17239 static_cast<FinalAttr::Spelling>(IsFinalSpelledSealed)));
17241 // C++ [class]p2:
17242 // [...] The class-name is also inserted into the scope of the
17243 // class itself; this is known as the injected-class-name. For
17244 // purposes of access checking, the injected-class-name is treated
17245 // as if it were a public member name.
17246 CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create(
17247 Context, Record->getTagKind(), CurContext, Record->getBeginLoc(),
17248 Record->getLocation(), Record->getIdentifier(),
17249 /*PrevDecl=*/nullptr,
17250 /*DelayTypeCreation=*/true);
17251 Context.getTypeDeclType(InjectedClassName, Record);
17252 InjectedClassName->setImplicit();
17253 InjectedClassName->setAccess(AS_public);
17254 if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
17255 InjectedClassName->setDescribedClassTemplate(Template);
17256 PushOnScopeChains(InjectedClassName, S);
17257 assert(InjectedClassName->isInjectedClassName() &&
17258 "Broken injected-class-name");
17261 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
17262 SourceRange BraceRange) {
17263 AdjustDeclIfTemplate(TagD);
17264 TagDecl *Tag = cast<TagDecl>(TagD);
17265 Tag->setBraceRange(BraceRange);
17267 // Make sure we "complete" the definition even it is invalid.
17268 if (Tag->isBeingDefined()) {
17269 assert(Tag->isInvalidDecl() && "We should already have completed it");
17270 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
17271 RD->completeDefinition();
17274 if (auto *RD = dyn_cast<CXXRecordDecl>(Tag)) {
17275 FieldCollector->FinishClass();
17276 if (RD->hasAttr<SYCLSpecialClassAttr>()) {
17277 auto *Def = RD->getDefinition();
17278 assert(Def && "The record is expected to have a completed definition");
17279 unsigned NumInitMethods = 0;
17280 for (auto *Method : Def->methods()) {
17281 if (!Method->getIdentifier())
17282 continue;
17283 if (Method->getName() == "__init")
17284 NumInitMethods++;
17286 if (NumInitMethods > 1 || !Def->hasInitMethod())
17287 Diag(RD->getLocation(), diag::err_sycl_special_type_num_init_method);
17291 // Exit this scope of this tag's definition.
17292 PopDeclContext();
17294 if (getCurLexicalContext()->isObjCContainer() &&
17295 Tag->getDeclContext()->isFileContext())
17296 Tag->setTopLevelDeclInObjCContainer();
17298 // Notify the consumer that we've defined a tag.
17299 if (!Tag->isInvalidDecl())
17300 Consumer.HandleTagDeclDefinition(Tag);
17302 // Clangs implementation of #pragma align(packed) differs in bitfield layout
17303 // from XLs and instead matches the XL #pragma pack(1) behavior.
17304 if (Context.getTargetInfo().getTriple().isOSAIX() &&
17305 AlignPackStack.hasValue()) {
17306 AlignPackInfo APInfo = AlignPackStack.CurrentValue;
17307 // Only diagnose #pragma align(packed).
17308 if (!APInfo.IsAlignAttr() || APInfo.getAlignMode() != AlignPackInfo::Packed)
17309 return;
17310 const RecordDecl *RD = dyn_cast<RecordDecl>(Tag);
17311 if (!RD)
17312 return;
17313 // Only warn if there is at least 1 bitfield member.
17314 if (llvm::any_of(RD->fields(),
17315 [](const FieldDecl *FD) { return FD->isBitField(); }))
17316 Diag(BraceRange.getBegin(), diag::warn_pragma_align_not_xl_compatible);
17320 void Sema::ActOnObjCContainerFinishDefinition() {
17321 // Exit this scope of this interface definition.
17322 PopDeclContext();
17325 void Sema::ActOnObjCTemporaryExitContainerContext(ObjCContainerDecl *ObjCCtx) {
17326 assert(ObjCCtx == CurContext && "Mismatch of container contexts");
17327 OriginalLexicalContext = ObjCCtx;
17328 ActOnObjCContainerFinishDefinition();
17331 void Sema::ActOnObjCReenterContainerContext(ObjCContainerDecl *ObjCCtx) {
17332 ActOnObjCContainerStartDefinition(ObjCCtx);
17333 OriginalLexicalContext = nullptr;
17336 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
17337 AdjustDeclIfTemplate(TagD);
17338 TagDecl *Tag = cast<TagDecl>(TagD);
17339 Tag->setInvalidDecl();
17341 // Make sure we "complete" the definition even it is invalid.
17342 if (Tag->isBeingDefined()) {
17343 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
17344 RD->completeDefinition();
17347 // We're undoing ActOnTagStartDefinition here, not
17348 // ActOnStartCXXMemberDeclarations, so we don't have to mess with
17349 // the FieldCollector.
17351 PopDeclContext();
17354 // Note that FieldName may be null for anonymous bitfields.
17355 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
17356 IdentifierInfo *FieldName, QualType FieldTy,
17357 bool IsMsStruct, Expr *BitWidth) {
17358 assert(BitWidth);
17359 if (BitWidth->containsErrors())
17360 return ExprError();
17362 // C99 6.7.2.1p4 - verify the field type.
17363 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
17364 if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
17365 // Handle incomplete and sizeless types with a specific error.
17366 if (RequireCompleteSizedType(FieldLoc, FieldTy,
17367 diag::err_field_incomplete_or_sizeless))
17368 return ExprError();
17369 if (FieldName)
17370 return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
17371 << FieldName << FieldTy << BitWidth->getSourceRange();
17372 return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
17373 << FieldTy << BitWidth->getSourceRange();
17374 } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
17375 UPPC_BitFieldWidth))
17376 return ExprError();
17378 // If the bit-width is type- or value-dependent, don't try to check
17379 // it now.
17380 if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
17381 return BitWidth;
17383 llvm::APSInt Value;
17384 ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value, AllowFold);
17385 if (ICE.isInvalid())
17386 return ICE;
17387 BitWidth = ICE.get();
17389 // Zero-width bitfield is ok for anonymous field.
17390 if (Value == 0 && FieldName)
17391 return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
17393 if (Value.isSigned() && Value.isNegative()) {
17394 if (FieldName)
17395 return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
17396 << FieldName << toString(Value, 10);
17397 return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
17398 << toString(Value, 10);
17401 // The size of the bit-field must not exceed our maximum permitted object
17402 // size.
17403 if (Value.getActiveBits() > ConstantArrayType::getMaxSizeBits(Context)) {
17404 return Diag(FieldLoc, diag::err_bitfield_too_wide)
17405 << !FieldName << FieldName << toString(Value, 10);
17408 if (!FieldTy->isDependentType()) {
17409 uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
17410 uint64_t TypeWidth = Context.getIntWidth(FieldTy);
17411 bool BitfieldIsOverwide = Value.ugt(TypeWidth);
17413 // Over-wide bitfields are an error in C or when using the MSVC bitfield
17414 // ABI.
17415 bool CStdConstraintViolation =
17416 BitfieldIsOverwide && !getLangOpts().CPlusPlus;
17417 bool MSBitfieldViolation =
17418 Value.ugt(TypeStorageSize) &&
17419 (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
17420 if (CStdConstraintViolation || MSBitfieldViolation) {
17421 unsigned DiagWidth =
17422 CStdConstraintViolation ? TypeWidth : TypeStorageSize;
17423 return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
17424 << (bool)FieldName << FieldName << toString(Value, 10)
17425 << !CStdConstraintViolation << DiagWidth;
17428 // Warn on types where the user might conceivably expect to get all
17429 // specified bits as value bits: that's all integral types other than
17430 // 'bool'.
17431 if (BitfieldIsOverwide && !FieldTy->isBooleanType() && FieldName) {
17432 Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
17433 << FieldName << toString(Value, 10)
17434 << (unsigned)TypeWidth;
17438 return BitWidth;
17441 /// ActOnField - Each field of a C struct/union is passed into this in order
17442 /// to create a FieldDecl object for it.
17443 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
17444 Declarator &D, Expr *BitfieldWidth) {
17445 FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
17446 DeclStart, D, static_cast<Expr*>(BitfieldWidth),
17447 /*InitStyle=*/ICIS_NoInit, AS_public);
17448 return Res;
17451 /// HandleField - Analyze a field of a C struct or a C++ data member.
17453 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
17454 SourceLocation DeclStart,
17455 Declarator &D, Expr *BitWidth,
17456 InClassInitStyle InitStyle,
17457 AccessSpecifier AS) {
17458 if (D.isDecompositionDeclarator()) {
17459 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
17460 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
17461 << Decomp.getSourceRange();
17462 return nullptr;
17465 IdentifierInfo *II = D.getIdentifier();
17466 SourceLocation Loc = DeclStart;
17467 if (II) Loc = D.getIdentifierLoc();
17469 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
17470 QualType T = TInfo->getType();
17471 if (getLangOpts().CPlusPlus) {
17472 CheckExtraCXXDefaultArguments(D);
17474 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
17475 UPPC_DataMemberType)) {
17476 D.setInvalidType();
17477 T = Context.IntTy;
17478 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
17482 DiagnoseFunctionSpecifiers(D.getDeclSpec());
17484 if (D.getDeclSpec().isInlineSpecified())
17485 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
17486 << getLangOpts().CPlusPlus17;
17487 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
17488 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
17489 diag::err_invalid_thread)
17490 << DeclSpec::getSpecifierName(TSCS);
17492 // Check to see if this name was declared as a member previously
17493 NamedDecl *PrevDecl = nullptr;
17494 LookupResult Previous(*this, II, Loc, LookupMemberName,
17495 ForVisibleRedeclaration);
17496 LookupName(Previous, S);
17497 switch (Previous.getResultKind()) {
17498 case LookupResult::Found:
17499 case LookupResult::FoundUnresolvedValue:
17500 PrevDecl = Previous.getAsSingle<NamedDecl>();
17501 break;
17503 case LookupResult::FoundOverloaded:
17504 PrevDecl = Previous.getRepresentativeDecl();
17505 break;
17507 case LookupResult::NotFound:
17508 case LookupResult::NotFoundInCurrentInstantiation:
17509 case LookupResult::Ambiguous:
17510 break;
17512 Previous.suppressDiagnostics();
17514 if (PrevDecl && PrevDecl->isTemplateParameter()) {
17515 // Maybe we will complain about the shadowed template parameter.
17516 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
17517 // Just pretend that we didn't see the previous declaration.
17518 PrevDecl = nullptr;
17521 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
17522 PrevDecl = nullptr;
17524 bool Mutable
17525 = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
17526 SourceLocation TSSL = D.getBeginLoc();
17527 FieldDecl *NewFD
17528 = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
17529 TSSL, AS, PrevDecl, &D);
17531 if (NewFD->isInvalidDecl())
17532 Record->setInvalidDecl();
17534 if (D.getDeclSpec().isModulePrivateSpecified())
17535 NewFD->setModulePrivate();
17537 if (NewFD->isInvalidDecl() && PrevDecl) {
17538 // Don't introduce NewFD into scope; there's already something
17539 // with the same name in the same scope.
17540 } else if (II) {
17541 PushOnScopeChains(NewFD, S);
17542 } else
17543 Record->addDecl(NewFD);
17545 return NewFD;
17548 /// Build a new FieldDecl and check its well-formedness.
17550 /// This routine builds a new FieldDecl given the fields name, type,
17551 /// record, etc. \p PrevDecl should refer to any previous declaration
17552 /// with the same name and in the same scope as the field to be
17553 /// created.
17555 /// \returns a new FieldDecl.
17557 /// \todo The Declarator argument is a hack. It will be removed once
17558 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
17559 TypeSourceInfo *TInfo,
17560 RecordDecl *Record, SourceLocation Loc,
17561 bool Mutable, Expr *BitWidth,
17562 InClassInitStyle InitStyle,
17563 SourceLocation TSSL,
17564 AccessSpecifier AS, NamedDecl *PrevDecl,
17565 Declarator *D) {
17566 IdentifierInfo *II = Name.getAsIdentifierInfo();
17567 bool InvalidDecl = false;
17568 if (D) InvalidDecl = D->isInvalidType();
17570 // If we receive a broken type, recover by assuming 'int' and
17571 // marking this declaration as invalid.
17572 if (T.isNull() || T->containsErrors()) {
17573 InvalidDecl = true;
17574 T = Context.IntTy;
17577 QualType EltTy = Context.getBaseElementType(T);
17578 if (!EltTy->isDependentType() && !EltTy->containsErrors()) {
17579 if (RequireCompleteSizedType(Loc, EltTy,
17580 diag::err_field_incomplete_or_sizeless)) {
17581 // Fields of incomplete type force their record to be invalid.
17582 Record->setInvalidDecl();
17583 InvalidDecl = true;
17584 } else {
17585 NamedDecl *Def;
17586 EltTy->isIncompleteType(&Def);
17587 if (Def && Def->isInvalidDecl()) {
17588 Record->setInvalidDecl();
17589 InvalidDecl = true;
17594 // TR 18037 does not allow fields to be declared with address space
17595 if (T.hasAddressSpace() || T->isDependentAddressSpaceType() ||
17596 T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
17597 Diag(Loc, diag::err_field_with_address_space);
17598 Record->setInvalidDecl();
17599 InvalidDecl = true;
17602 if (LangOpts.OpenCL) {
17603 // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
17604 // used as structure or union field: image, sampler, event or block types.
17605 if (T->isEventT() || T->isImageType() || T->isSamplerT() ||
17606 T->isBlockPointerType()) {
17607 Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T;
17608 Record->setInvalidDecl();
17609 InvalidDecl = true;
17611 // OpenCL v1.2 s6.9.c: bitfields are not supported, unless Clang extension
17612 // is enabled.
17613 if (BitWidth && !getOpenCLOptions().isAvailableOption(
17614 "__cl_clang_bitfields", LangOpts)) {
17615 Diag(Loc, diag::err_opencl_bitfields);
17616 InvalidDecl = true;
17620 // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
17621 if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth &&
17622 T.hasQualifiers()) {
17623 InvalidDecl = true;
17624 Diag(Loc, diag::err_anon_bitfield_qualifiers);
17627 // C99 6.7.2.1p8: A member of a structure or union may have any type other
17628 // than a variably modified type.
17629 if (!InvalidDecl && T->isVariablyModifiedType()) {
17630 if (!tryToFixVariablyModifiedVarType(
17631 TInfo, T, Loc, diag::err_typecheck_field_variable_size))
17632 InvalidDecl = true;
17635 // Fields can not have abstract class types
17636 if (!InvalidDecl && RequireNonAbstractType(Loc, T,
17637 diag::err_abstract_type_in_decl,
17638 AbstractFieldType))
17639 InvalidDecl = true;
17641 if (InvalidDecl)
17642 BitWidth = nullptr;
17643 // If this is declared as a bit-field, check the bit-field.
17644 if (BitWidth) {
17645 BitWidth =
17646 VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth).get();
17647 if (!BitWidth) {
17648 InvalidDecl = true;
17649 BitWidth = nullptr;
17653 // Check that 'mutable' is consistent with the type of the declaration.
17654 if (!InvalidDecl && Mutable) {
17655 unsigned DiagID = 0;
17656 if (T->isReferenceType())
17657 DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
17658 : diag::err_mutable_reference;
17659 else if (T.isConstQualified())
17660 DiagID = diag::err_mutable_const;
17662 if (DiagID) {
17663 SourceLocation ErrLoc = Loc;
17664 if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
17665 ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
17666 Diag(ErrLoc, DiagID);
17667 if (DiagID != diag::ext_mutable_reference) {
17668 Mutable = false;
17669 InvalidDecl = true;
17674 // C++11 [class.union]p8 (DR1460):
17675 // At most one variant member of a union may have a
17676 // brace-or-equal-initializer.
17677 if (InitStyle != ICIS_NoInit)
17678 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
17680 FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
17681 BitWidth, Mutable, InitStyle);
17682 if (InvalidDecl)
17683 NewFD->setInvalidDecl();
17685 if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
17686 Diag(Loc, diag::err_duplicate_member) << II;
17687 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
17688 NewFD->setInvalidDecl();
17691 if (!InvalidDecl && getLangOpts().CPlusPlus) {
17692 if (Record->isUnion()) {
17693 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
17694 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
17695 if (RDecl->getDefinition()) {
17696 // C++ [class.union]p1: An object of a class with a non-trivial
17697 // constructor, a non-trivial copy constructor, a non-trivial
17698 // destructor, or a non-trivial copy assignment operator
17699 // cannot be a member of a union, nor can an array of such
17700 // objects.
17701 if (CheckNontrivialField(NewFD))
17702 NewFD->setInvalidDecl();
17706 // C++ [class.union]p1: If a union contains a member of reference type,
17707 // the program is ill-formed, except when compiling with MSVC extensions
17708 // enabled.
17709 if (EltTy->isReferenceType()) {
17710 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
17711 diag::ext_union_member_of_reference_type :
17712 diag::err_union_member_of_reference_type)
17713 << NewFD->getDeclName() << EltTy;
17714 if (!getLangOpts().MicrosoftExt)
17715 NewFD->setInvalidDecl();
17720 // FIXME: We need to pass in the attributes given an AST
17721 // representation, not a parser representation.
17722 if (D) {
17723 // FIXME: The current scope is almost... but not entirely... correct here.
17724 ProcessDeclAttributes(getCurScope(), NewFD, *D);
17726 if (NewFD->hasAttrs())
17727 CheckAlignasUnderalignment(NewFD);
17730 // In auto-retain/release, infer strong retension for fields of
17731 // retainable type.
17732 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
17733 NewFD->setInvalidDecl();
17735 if (T.isObjCGCWeak())
17736 Diag(Loc, diag::warn_attribute_weak_on_field);
17738 // PPC MMA non-pointer types are not allowed as field types.
17739 if (Context.getTargetInfo().getTriple().isPPC64() &&
17740 CheckPPCMMAType(T, NewFD->getLocation()))
17741 NewFD->setInvalidDecl();
17743 NewFD->setAccess(AS);
17744 return NewFD;
17747 bool Sema::CheckNontrivialField(FieldDecl *FD) {
17748 assert(FD);
17749 assert(getLangOpts().CPlusPlus && "valid check only for C++");
17751 if (FD->isInvalidDecl() || FD->getType()->isDependentType())
17752 return false;
17754 QualType EltTy = Context.getBaseElementType(FD->getType());
17755 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
17756 CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
17757 if (RDecl->getDefinition()) {
17758 // We check for copy constructors before constructors
17759 // because otherwise we'll never get complaints about
17760 // copy constructors.
17762 CXXSpecialMember member = CXXInvalid;
17763 // We're required to check for any non-trivial constructors. Since the
17764 // implicit default constructor is suppressed if there are any
17765 // user-declared constructors, we just need to check that there is a
17766 // trivial default constructor and a trivial copy constructor. (We don't
17767 // worry about move constructors here, since this is a C++98 check.)
17768 if (RDecl->hasNonTrivialCopyConstructor())
17769 member = CXXCopyConstructor;
17770 else if (!RDecl->hasTrivialDefaultConstructor())
17771 member = CXXDefaultConstructor;
17772 else if (RDecl->hasNonTrivialCopyAssignment())
17773 member = CXXCopyAssignment;
17774 else if (RDecl->hasNonTrivialDestructor())
17775 member = CXXDestructor;
17777 if (member != CXXInvalid) {
17778 if (!getLangOpts().CPlusPlus11 &&
17779 getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
17780 // Objective-C++ ARC: it is an error to have a non-trivial field of
17781 // a union. However, system headers in Objective-C programs
17782 // occasionally have Objective-C lifetime objects within unions,
17783 // and rather than cause the program to fail, we make those
17784 // members unavailable.
17785 SourceLocation Loc = FD->getLocation();
17786 if (getSourceManager().isInSystemHeader(Loc)) {
17787 if (!FD->hasAttr<UnavailableAttr>())
17788 FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
17789 UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
17790 return false;
17794 Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
17795 diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
17796 diag::err_illegal_union_or_anon_struct_member)
17797 << FD->getParent()->isUnion() << FD->getDeclName() << member;
17798 DiagnoseNontrivial(RDecl, member);
17799 return !getLangOpts().CPlusPlus11;
17804 return false;
17807 /// TranslateIvarVisibility - Translate visibility from a token ID to an
17808 /// AST enum value.
17809 static ObjCIvarDecl::AccessControl
17810 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
17811 switch (ivarVisibility) {
17812 default: llvm_unreachable("Unknown visitibility kind");
17813 case tok::objc_private: return ObjCIvarDecl::Private;
17814 case tok::objc_public: return ObjCIvarDecl::Public;
17815 case tok::objc_protected: return ObjCIvarDecl::Protected;
17816 case tok::objc_package: return ObjCIvarDecl::Package;
17820 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
17821 /// in order to create an IvarDecl object for it.
17822 Decl *Sema::ActOnIvar(Scope *S,
17823 SourceLocation DeclStart,
17824 Declarator &D, Expr *BitfieldWidth,
17825 tok::ObjCKeywordKind Visibility) {
17827 IdentifierInfo *II = D.getIdentifier();
17828 Expr *BitWidth = (Expr*)BitfieldWidth;
17829 SourceLocation Loc = DeclStart;
17830 if (II) Loc = D.getIdentifierLoc();
17832 // FIXME: Unnamed fields can be handled in various different ways, for
17833 // example, unnamed unions inject all members into the struct namespace!
17835 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
17836 QualType T = TInfo->getType();
17838 if (BitWidth) {
17839 // 6.7.2.1p3, 6.7.2.1p4
17840 BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
17841 if (!BitWidth)
17842 D.setInvalidType();
17843 } else {
17844 // Not a bitfield.
17846 // validate II.
17849 if (T->isReferenceType()) {
17850 Diag(Loc, diag::err_ivar_reference_type);
17851 D.setInvalidType();
17853 // C99 6.7.2.1p8: A member of a structure or union may have any type other
17854 // than a variably modified type.
17855 else if (T->isVariablyModifiedType()) {
17856 if (!tryToFixVariablyModifiedVarType(
17857 TInfo, T, Loc, diag::err_typecheck_ivar_variable_size))
17858 D.setInvalidType();
17861 // Get the visibility (access control) for this ivar.
17862 ObjCIvarDecl::AccessControl ac =
17863 Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
17864 : ObjCIvarDecl::None;
17865 // Must set ivar's DeclContext to its enclosing interface.
17866 ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
17867 if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
17868 return nullptr;
17869 ObjCContainerDecl *EnclosingContext;
17870 if (ObjCImplementationDecl *IMPDecl =
17871 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
17872 if (LangOpts.ObjCRuntime.isFragile()) {
17873 // Case of ivar declared in an implementation. Context is that of its class.
17874 EnclosingContext = IMPDecl->getClassInterface();
17875 assert(EnclosingContext && "Implementation has no class interface!");
17877 else
17878 EnclosingContext = EnclosingDecl;
17879 } else {
17880 if (ObjCCategoryDecl *CDecl =
17881 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
17882 if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
17883 Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
17884 return nullptr;
17887 EnclosingContext = EnclosingDecl;
17890 // Construct the decl.
17891 ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
17892 DeclStart, Loc, II, T,
17893 TInfo, ac, (Expr *)BitfieldWidth);
17895 if (II) {
17896 NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
17897 ForVisibleRedeclaration);
17898 if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
17899 && !isa<TagDecl>(PrevDecl)) {
17900 Diag(Loc, diag::err_duplicate_member) << II;
17901 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
17902 NewID->setInvalidDecl();
17906 // Process attributes attached to the ivar.
17907 ProcessDeclAttributes(S, NewID, D);
17909 if (D.isInvalidType())
17910 NewID->setInvalidDecl();
17912 // In ARC, infer 'retaining' for ivars of retainable type.
17913 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
17914 NewID->setInvalidDecl();
17916 if (D.getDeclSpec().isModulePrivateSpecified())
17917 NewID->setModulePrivate();
17919 if (II) {
17920 // FIXME: When interfaces are DeclContexts, we'll need to add
17921 // these to the interface.
17922 S->AddDecl(NewID);
17923 IdResolver.AddDecl(NewID);
17926 if (LangOpts.ObjCRuntime.isNonFragile() &&
17927 !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
17928 Diag(Loc, diag::warn_ivars_in_interface);
17930 return NewID;
17933 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
17934 /// class and class extensions. For every class \@interface and class
17935 /// extension \@interface, if the last ivar is a bitfield of any type,
17936 /// then add an implicit `char :0` ivar to the end of that interface.
17937 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
17938 SmallVectorImpl<Decl *> &AllIvarDecls) {
17939 if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
17940 return;
17942 Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
17943 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
17945 if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context))
17946 return;
17947 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
17948 if (!ID) {
17949 if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
17950 if (!CD->IsClassExtension())
17951 return;
17953 // No need to add this to end of @implementation.
17954 else
17955 return;
17957 // All conditions are met. Add a new bitfield to the tail end of ivars.
17958 llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
17959 Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
17961 Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
17962 DeclLoc, DeclLoc, nullptr,
17963 Context.CharTy,
17964 Context.getTrivialTypeSourceInfo(Context.CharTy,
17965 DeclLoc),
17966 ObjCIvarDecl::Private, BW,
17967 true);
17968 AllIvarDecls.push_back(Ivar);
17971 /// [class.dtor]p4:
17972 /// At the end of the definition of a class, overload resolution is
17973 /// performed among the prospective destructors declared in that class with
17974 /// an empty argument list to select the destructor for the class, also
17975 /// known as the selected destructor.
17977 /// We do the overload resolution here, then mark the selected constructor in the AST.
17978 /// Later CXXRecordDecl::getDestructor() will return the selected constructor.
17979 static void ComputeSelectedDestructor(Sema &S, CXXRecordDecl *Record) {
17980 if (!Record->hasUserDeclaredDestructor()) {
17981 return;
17984 SourceLocation Loc = Record->getLocation();
17985 OverloadCandidateSet OCS(Loc, OverloadCandidateSet::CSK_Normal);
17987 for (auto *Decl : Record->decls()) {
17988 if (auto *DD = dyn_cast<CXXDestructorDecl>(Decl)) {
17989 if (DD->isInvalidDecl())
17990 continue;
17991 S.AddOverloadCandidate(DD, DeclAccessPair::make(DD, DD->getAccess()), {},
17992 OCS);
17993 assert(DD->isIneligibleOrNotSelected() && "Selecting a destructor but a destructor was already selected.");
17997 if (OCS.empty()) {
17998 return;
18000 OverloadCandidateSet::iterator Best;
18001 unsigned Msg = 0;
18002 OverloadCandidateDisplayKind DisplayKind;
18004 switch (OCS.BestViableFunction(S, Loc, Best)) {
18005 case OR_Success:
18006 case OR_Deleted:
18007 Record->addedSelectedDestructor(dyn_cast<CXXDestructorDecl>(Best->Function));
18008 break;
18010 case OR_Ambiguous:
18011 Msg = diag::err_ambiguous_destructor;
18012 DisplayKind = OCD_AmbiguousCandidates;
18013 break;
18015 case OR_No_Viable_Function:
18016 Msg = diag::err_no_viable_destructor;
18017 DisplayKind = OCD_AllCandidates;
18018 break;
18021 if (Msg) {
18022 // OpenCL have got their own thing going with destructors. It's slightly broken,
18023 // but we allow it.
18024 if (!S.LangOpts.OpenCL) {
18025 PartialDiagnostic Diag = S.PDiag(Msg) << Record;
18026 OCS.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, DisplayKind, {});
18027 Record->setInvalidDecl();
18029 // It's a bit hacky: At this point we've raised an error but we want the
18030 // rest of the compiler to continue somehow working. However almost
18031 // everything we'll try to do with the class will depend on there being a
18032 // destructor. So let's pretend the first one is selected and hope for the
18033 // best.
18034 Record->addedSelectedDestructor(dyn_cast<CXXDestructorDecl>(OCS.begin()->Function));
18038 /// [class.mem.special]p5
18039 /// Two special member functions are of the same kind if:
18040 /// - they are both default constructors,
18041 /// - they are both copy or move constructors with the same first parameter
18042 /// type, or
18043 /// - they are both copy or move assignment operators with the same first
18044 /// parameter type and the same cv-qualifiers and ref-qualifier, if any.
18045 static bool AreSpecialMemberFunctionsSameKind(ASTContext &Context,
18046 CXXMethodDecl *M1,
18047 CXXMethodDecl *M2,
18048 Sema::CXXSpecialMember CSM) {
18049 if (CSM == Sema::CXXDefaultConstructor)
18050 return true;
18051 if (!Context.hasSameType(M1->getParamDecl(0)->getType(),
18052 M2->getParamDecl(0)->getType()))
18053 return false;
18054 if (!Context.hasSameType(M1->getThisType(), M2->getThisType()))
18055 return false;
18057 return true;
18060 /// [class.mem.special]p6:
18061 /// An eligible special member function is a special member function for which:
18062 /// - the function is not deleted,
18063 /// - the associated constraints, if any, are satisfied, and
18064 /// - no special member function of the same kind whose associated constraints
18065 /// [CWG2595], if any, are satisfied is more constrained.
18066 static void SetEligibleMethods(Sema &S, CXXRecordDecl *Record,
18067 ArrayRef<CXXMethodDecl *> Methods,
18068 Sema::CXXSpecialMember CSM) {
18069 SmallVector<bool, 4> SatisfactionStatus;
18071 for (CXXMethodDecl *Method : Methods) {
18072 const Expr *Constraints = Method->getTrailingRequiresClause();
18073 if (!Constraints)
18074 SatisfactionStatus.push_back(true);
18075 else {
18076 ConstraintSatisfaction Satisfaction;
18077 if (S.CheckFunctionConstraints(Method, Satisfaction))
18078 SatisfactionStatus.push_back(false);
18079 else
18080 SatisfactionStatus.push_back(Satisfaction.IsSatisfied);
18084 for (size_t i = 0; i < Methods.size(); i++) {
18085 if (!SatisfactionStatus[i])
18086 continue;
18087 CXXMethodDecl *Method = Methods[i];
18088 const Expr *Constraints = Method->getTrailingRequiresClause();
18089 bool AnotherMethodIsMoreConstrained = false;
18090 for (size_t j = 0; j < Methods.size(); j++) {
18091 if (i == j || !SatisfactionStatus[j])
18092 continue;
18093 CXXMethodDecl *OtherMethod = Methods[j];
18094 if (!AreSpecialMemberFunctionsSameKind(S.Context, Method, OtherMethod,
18095 CSM))
18096 continue;
18098 const Expr *OtherConstraints = OtherMethod->getTrailingRequiresClause();
18099 if (!OtherConstraints)
18100 continue;
18101 if (!Constraints) {
18102 AnotherMethodIsMoreConstrained = true;
18103 break;
18105 if (S.IsAtLeastAsConstrained(OtherMethod, {OtherConstraints}, Method,
18106 {Constraints},
18107 AnotherMethodIsMoreConstrained)) {
18108 // There was an error with the constraints comparison. Exit the loop
18109 // and don't consider this function eligible.
18110 AnotherMethodIsMoreConstrained = true;
18112 if (AnotherMethodIsMoreConstrained)
18113 break;
18115 // FIXME: Do not consider deleted methods as eligible after implementing
18116 // DR1734 and DR1496.
18117 if (!AnotherMethodIsMoreConstrained) {
18118 Method->setIneligibleOrNotSelected(false);
18119 Record->addedEligibleSpecialMemberFunction(Method, 1 << CSM);
18124 static void ComputeSpecialMemberFunctionsEligiblity(Sema &S,
18125 CXXRecordDecl *Record) {
18126 SmallVector<CXXMethodDecl *, 4> DefaultConstructors;
18127 SmallVector<CXXMethodDecl *, 4> CopyConstructors;
18128 SmallVector<CXXMethodDecl *, 4> MoveConstructors;
18129 SmallVector<CXXMethodDecl *, 4> CopyAssignmentOperators;
18130 SmallVector<CXXMethodDecl *, 4> MoveAssignmentOperators;
18132 for (auto *Decl : Record->decls()) {
18133 auto *MD = dyn_cast<CXXMethodDecl>(Decl);
18134 if (!MD) {
18135 auto *FTD = dyn_cast<FunctionTemplateDecl>(Decl);
18136 if (FTD)
18137 MD = dyn_cast<CXXMethodDecl>(FTD->getTemplatedDecl());
18139 if (!MD)
18140 continue;
18141 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
18142 if (CD->isInvalidDecl())
18143 continue;
18144 if (CD->isDefaultConstructor())
18145 DefaultConstructors.push_back(MD);
18146 else if (CD->isCopyConstructor())
18147 CopyConstructors.push_back(MD);
18148 else if (CD->isMoveConstructor())
18149 MoveConstructors.push_back(MD);
18150 } else if (MD->isCopyAssignmentOperator()) {
18151 CopyAssignmentOperators.push_back(MD);
18152 } else if (MD->isMoveAssignmentOperator()) {
18153 MoveAssignmentOperators.push_back(MD);
18157 SetEligibleMethods(S, Record, DefaultConstructors,
18158 Sema::CXXDefaultConstructor);
18159 SetEligibleMethods(S, Record, CopyConstructors, Sema::CXXCopyConstructor);
18160 SetEligibleMethods(S, Record, MoveConstructors, Sema::CXXMoveConstructor);
18161 SetEligibleMethods(S, Record, CopyAssignmentOperators,
18162 Sema::CXXCopyAssignment);
18163 SetEligibleMethods(S, Record, MoveAssignmentOperators,
18164 Sema::CXXMoveAssignment);
18167 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
18168 ArrayRef<Decl *> Fields, SourceLocation LBrac,
18169 SourceLocation RBrac,
18170 const ParsedAttributesView &Attrs) {
18171 assert(EnclosingDecl && "missing record or interface decl");
18173 // If this is an Objective-C @implementation or category and we have
18174 // new fields here we should reset the layout of the interface since
18175 // it will now change.
18176 if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
18177 ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
18178 switch (DC->getKind()) {
18179 default: break;
18180 case Decl::ObjCCategory:
18181 Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
18182 break;
18183 case Decl::ObjCImplementation:
18184 Context.
18185 ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
18186 break;
18190 RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
18191 CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl);
18193 // Start counting up the number of named members; make sure to include
18194 // members of anonymous structs and unions in the total.
18195 unsigned NumNamedMembers = 0;
18196 if (Record) {
18197 for (const auto *I : Record->decls()) {
18198 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
18199 if (IFD->getDeclName())
18200 ++NumNamedMembers;
18204 // Verify that all the fields are okay.
18205 SmallVector<FieldDecl*, 32> RecFields;
18207 for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
18208 i != end; ++i) {
18209 FieldDecl *FD = cast<FieldDecl>(*i);
18211 // Get the type for the field.
18212 const Type *FDTy = FD->getType().getTypePtr();
18214 if (!FD->isAnonymousStructOrUnion()) {
18215 // Remember all fields written by the user.
18216 RecFields.push_back(FD);
18219 // If the field is already invalid for some reason, don't emit more
18220 // diagnostics about it.
18221 if (FD->isInvalidDecl()) {
18222 EnclosingDecl->setInvalidDecl();
18223 continue;
18226 // C99 6.7.2.1p2:
18227 // A structure or union shall not contain a member with
18228 // incomplete or function type (hence, a structure shall not
18229 // contain an instance of itself, but may contain a pointer to
18230 // an instance of itself), except that the last member of a
18231 // structure with more than one named member may have incomplete
18232 // array type; such a structure (and any union containing,
18233 // possibly recursively, a member that is such a structure)
18234 // shall not be a member of a structure or an element of an
18235 // array.
18236 bool IsLastField = (i + 1 == Fields.end());
18237 if (FDTy->isFunctionType()) {
18238 // Field declared as a function.
18239 Diag(FD->getLocation(), diag::err_field_declared_as_function)
18240 << FD->getDeclName();
18241 FD->setInvalidDecl();
18242 EnclosingDecl->setInvalidDecl();
18243 continue;
18244 } else if (FDTy->isIncompleteArrayType() &&
18245 (Record || isa<ObjCContainerDecl>(EnclosingDecl))) {
18246 if (Record) {
18247 // Flexible array member.
18248 // Microsoft and g++ is more permissive regarding flexible array.
18249 // It will accept flexible array in union and also
18250 // as the sole element of a struct/class.
18251 unsigned DiagID = 0;
18252 if (!Record->isUnion() && !IsLastField) {
18253 Diag(FD->getLocation(), diag::err_flexible_array_not_at_end)
18254 << FD->getDeclName() << FD->getType() << Record->getTagKind();
18255 Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration);
18256 FD->setInvalidDecl();
18257 EnclosingDecl->setInvalidDecl();
18258 continue;
18259 } else if (Record->isUnion())
18260 DiagID = getLangOpts().MicrosoftExt
18261 ? diag::ext_flexible_array_union_ms
18262 : getLangOpts().CPlusPlus
18263 ? diag::ext_flexible_array_union_gnu
18264 : diag::err_flexible_array_union;
18265 else if (NumNamedMembers < 1)
18266 DiagID = getLangOpts().MicrosoftExt
18267 ? diag::ext_flexible_array_empty_aggregate_ms
18268 : getLangOpts().CPlusPlus
18269 ? diag::ext_flexible_array_empty_aggregate_gnu
18270 : diag::err_flexible_array_empty_aggregate;
18272 if (DiagID)
18273 Diag(FD->getLocation(), DiagID) << FD->getDeclName()
18274 << Record->getTagKind();
18275 // While the layout of types that contain virtual bases is not specified
18276 // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
18277 // virtual bases after the derived members. This would make a flexible
18278 // array member declared at the end of an object not adjacent to the end
18279 // of the type.
18280 if (CXXRecord && CXXRecord->getNumVBases() != 0)
18281 Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
18282 << FD->getDeclName() << Record->getTagKind();
18283 if (!getLangOpts().C99)
18284 Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
18285 << FD->getDeclName() << Record->getTagKind();
18287 // If the element type has a non-trivial destructor, we would not
18288 // implicitly destroy the elements, so disallow it for now.
18290 // FIXME: GCC allows this. We should probably either implicitly delete
18291 // the destructor of the containing class, or just allow this.
18292 QualType BaseElem = Context.getBaseElementType(FD->getType());
18293 if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
18294 Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
18295 << FD->getDeclName() << FD->getType();
18296 FD->setInvalidDecl();
18297 EnclosingDecl->setInvalidDecl();
18298 continue;
18300 // Okay, we have a legal flexible array member at the end of the struct.
18301 Record->setHasFlexibleArrayMember(true);
18302 } else {
18303 // In ObjCContainerDecl ivars with incomplete array type are accepted,
18304 // unless they are followed by another ivar. That check is done
18305 // elsewhere, after synthesized ivars are known.
18307 } else if (!FDTy->isDependentType() &&
18308 RequireCompleteSizedType(
18309 FD->getLocation(), FD->getType(),
18310 diag::err_field_incomplete_or_sizeless)) {
18311 // Incomplete type
18312 FD->setInvalidDecl();
18313 EnclosingDecl->setInvalidDecl();
18314 continue;
18315 } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
18316 if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
18317 // A type which contains a flexible array member is considered to be a
18318 // flexible array member.
18319 Record->setHasFlexibleArrayMember(true);
18320 if (!Record->isUnion()) {
18321 // If this is a struct/class and this is not the last element, reject
18322 // it. Note that GCC supports variable sized arrays in the middle of
18323 // structures.
18324 if (!IsLastField)
18325 Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
18326 << FD->getDeclName() << FD->getType();
18327 else {
18328 // We support flexible arrays at the end of structs in
18329 // other structs as an extension.
18330 Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
18331 << FD->getDeclName();
18335 if (isa<ObjCContainerDecl>(EnclosingDecl) &&
18336 RequireNonAbstractType(FD->getLocation(), FD->getType(),
18337 diag::err_abstract_type_in_decl,
18338 AbstractIvarType)) {
18339 // Ivars can not have abstract class types
18340 FD->setInvalidDecl();
18342 if (Record && FDTTy->getDecl()->hasObjectMember())
18343 Record->setHasObjectMember(true);
18344 if (Record && FDTTy->getDecl()->hasVolatileMember())
18345 Record->setHasVolatileMember(true);
18346 } else if (FDTy->isObjCObjectType()) {
18347 /// A field cannot be an Objective-c object
18348 Diag(FD->getLocation(), diag::err_statically_allocated_object)
18349 << FixItHint::CreateInsertion(FD->getLocation(), "*");
18350 QualType T = Context.getObjCObjectPointerType(FD->getType());
18351 FD->setType(T);
18352 } else if (Record && Record->isUnion() &&
18353 FD->getType().hasNonTrivialObjCLifetime() &&
18354 getSourceManager().isInSystemHeader(FD->getLocation()) &&
18355 !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>() &&
18356 (FD->getType().getObjCLifetime() != Qualifiers::OCL_Strong ||
18357 !Context.hasDirectOwnershipQualifier(FD->getType()))) {
18358 // For backward compatibility, fields of C unions declared in system
18359 // headers that have non-trivial ObjC ownership qualifications are marked
18360 // as unavailable unless the qualifier is explicit and __strong. This can
18361 // break ABI compatibility between programs compiled with ARC and MRR, but
18362 // is a better option than rejecting programs using those unions under
18363 // ARC.
18364 FD->addAttr(UnavailableAttr::CreateImplicit(
18365 Context, "", UnavailableAttr::IR_ARCFieldWithOwnership,
18366 FD->getLocation()));
18367 } else if (getLangOpts().ObjC &&
18368 getLangOpts().getGC() != LangOptions::NonGC && Record &&
18369 !Record->hasObjectMember()) {
18370 if (FD->getType()->isObjCObjectPointerType() ||
18371 FD->getType().isObjCGCStrong())
18372 Record->setHasObjectMember(true);
18373 else if (Context.getAsArrayType(FD->getType())) {
18374 QualType BaseType = Context.getBaseElementType(FD->getType());
18375 if (BaseType->isRecordType() &&
18376 BaseType->castAs<RecordType>()->getDecl()->hasObjectMember())
18377 Record->setHasObjectMember(true);
18378 else if (BaseType->isObjCObjectPointerType() ||
18379 BaseType.isObjCGCStrong())
18380 Record->setHasObjectMember(true);
18384 if (Record && !getLangOpts().CPlusPlus &&
18385 !shouldIgnoreForRecordTriviality(FD)) {
18386 QualType FT = FD->getType();
18387 if (FT.isNonTrivialToPrimitiveDefaultInitialize()) {
18388 Record->setNonTrivialToPrimitiveDefaultInitialize(true);
18389 if (FT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
18390 Record->isUnion())
18391 Record->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true);
18393 QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy();
18394 if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial) {
18395 Record->setNonTrivialToPrimitiveCopy(true);
18396 if (FT.hasNonTrivialToPrimitiveCopyCUnion() || Record->isUnion())
18397 Record->setHasNonTrivialToPrimitiveCopyCUnion(true);
18399 if (FT.isDestructedType()) {
18400 Record->setNonTrivialToPrimitiveDestroy(true);
18401 Record->setParamDestroyedInCallee(true);
18402 if (FT.hasNonTrivialToPrimitiveDestructCUnion() || Record->isUnion())
18403 Record->setHasNonTrivialToPrimitiveDestructCUnion(true);
18406 if (const auto *RT = FT->getAs<RecordType>()) {
18407 if (RT->getDecl()->getArgPassingRestrictions() ==
18408 RecordDecl::APK_CanNeverPassInRegs)
18409 Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
18410 } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak)
18411 Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
18414 if (Record && FD->getType().isVolatileQualified())
18415 Record->setHasVolatileMember(true);
18416 // Keep track of the number of named members.
18417 if (FD->getIdentifier())
18418 ++NumNamedMembers;
18421 // Okay, we successfully defined 'Record'.
18422 if (Record) {
18423 bool Completed = false;
18424 if (CXXRecord) {
18425 if (!CXXRecord->isInvalidDecl()) {
18426 // Set access bits correctly on the directly-declared conversions.
18427 for (CXXRecordDecl::conversion_iterator
18428 I = CXXRecord->conversion_begin(),
18429 E = CXXRecord->conversion_end(); I != E; ++I)
18430 I.setAccess((*I)->getAccess());
18433 // Add any implicitly-declared members to this class.
18434 AddImplicitlyDeclaredMembersToClass(CXXRecord);
18436 if (!CXXRecord->isDependentType()) {
18437 if (!CXXRecord->isInvalidDecl()) {
18438 // If we have virtual base classes, we may end up finding multiple
18439 // final overriders for a given virtual function. Check for this
18440 // problem now.
18441 if (CXXRecord->getNumVBases()) {
18442 CXXFinalOverriderMap FinalOverriders;
18443 CXXRecord->getFinalOverriders(FinalOverriders);
18445 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
18446 MEnd = FinalOverriders.end();
18447 M != MEnd; ++M) {
18448 for (OverridingMethods::iterator SO = M->second.begin(),
18449 SOEnd = M->second.end();
18450 SO != SOEnd; ++SO) {
18451 assert(SO->second.size() > 0 &&
18452 "Virtual function without overriding functions?");
18453 if (SO->second.size() == 1)
18454 continue;
18456 // C++ [class.virtual]p2:
18457 // In a derived class, if a virtual member function of a base
18458 // class subobject has more than one final overrider the
18459 // program is ill-formed.
18460 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
18461 << (const NamedDecl *)M->first << Record;
18462 Diag(M->first->getLocation(),
18463 diag::note_overridden_virtual_function);
18464 for (OverridingMethods::overriding_iterator
18465 OM = SO->second.begin(),
18466 OMEnd = SO->second.end();
18467 OM != OMEnd; ++OM)
18468 Diag(OM->Method->getLocation(), diag::note_final_overrider)
18469 << (const NamedDecl *)M->first << OM->Method->getParent();
18471 Record->setInvalidDecl();
18474 CXXRecord->completeDefinition(&FinalOverriders);
18475 Completed = true;
18478 ComputeSelectedDestructor(*this, CXXRecord);
18479 ComputeSpecialMemberFunctionsEligiblity(*this, CXXRecord);
18483 if (!Completed)
18484 Record->completeDefinition();
18486 // Handle attributes before checking the layout.
18487 ProcessDeclAttributeList(S, Record, Attrs);
18489 // Check to see if a FieldDecl is a pointer to a function.
18490 auto IsFunctionPointer = [&](const Decl *D) {
18491 const FieldDecl *FD = dyn_cast<FieldDecl>(D);
18492 if (!FD)
18493 return false;
18494 QualType FieldType = FD->getType().getDesugaredType(Context);
18495 if (isa<PointerType>(FieldType)) {
18496 QualType PointeeType = cast<PointerType>(FieldType)->getPointeeType();
18497 return PointeeType.getDesugaredType(Context)->isFunctionType();
18499 return false;
18502 // Maybe randomize the record's decls. We automatically randomize a record
18503 // of function pointers, unless it has the "no_randomize_layout" attribute.
18504 if (!getLangOpts().CPlusPlus &&
18505 (Record->hasAttr<RandomizeLayoutAttr>() ||
18506 (!Record->hasAttr<NoRandomizeLayoutAttr>() &&
18507 llvm::all_of(Record->decls(), IsFunctionPointer))) &&
18508 !Record->isUnion() && !getLangOpts().RandstructSeed.empty() &&
18509 !Record->isRandomized()) {
18510 SmallVector<Decl *, 32> NewDeclOrdering;
18511 if (randstruct::randomizeStructureLayout(Context, Record,
18512 NewDeclOrdering))
18513 Record->reorderDecls(NewDeclOrdering);
18516 // We may have deferred checking for a deleted destructor. Check now.
18517 if (CXXRecord) {
18518 auto *Dtor = CXXRecord->getDestructor();
18519 if (Dtor && Dtor->isImplicit() &&
18520 ShouldDeleteSpecialMember(Dtor, CXXDestructor)) {
18521 CXXRecord->setImplicitDestructorIsDeleted();
18522 SetDeclDeleted(Dtor, CXXRecord->getLocation());
18526 if (Record->hasAttrs()) {
18527 CheckAlignasUnderalignment(Record);
18529 if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
18530 checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
18531 IA->getRange(), IA->getBestCase(),
18532 IA->getInheritanceModel());
18535 // Check if the structure/union declaration is a type that can have zero
18536 // size in C. For C this is a language extension, for C++ it may cause
18537 // compatibility problems.
18538 bool CheckForZeroSize;
18539 if (!getLangOpts().CPlusPlus) {
18540 CheckForZeroSize = true;
18541 } else {
18542 // For C++ filter out types that cannot be referenced in C code.
18543 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
18544 CheckForZeroSize =
18545 CXXRecord->getLexicalDeclContext()->isExternCContext() &&
18546 !CXXRecord->isDependentType() && !inTemplateInstantiation() &&
18547 CXXRecord->isCLike();
18549 if (CheckForZeroSize) {
18550 bool ZeroSize = true;
18551 bool IsEmpty = true;
18552 unsigned NonBitFields = 0;
18553 for (RecordDecl::field_iterator I = Record->field_begin(),
18554 E = Record->field_end();
18555 (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
18556 IsEmpty = false;
18557 if (I->isUnnamedBitfield()) {
18558 if (!I->isZeroLengthBitField(Context))
18559 ZeroSize = false;
18560 } else {
18561 ++NonBitFields;
18562 QualType FieldType = I->getType();
18563 if (FieldType->isIncompleteType() ||
18564 !Context.getTypeSizeInChars(FieldType).isZero())
18565 ZeroSize = false;
18569 // Empty structs are an extension in C (C99 6.7.2.1p7). They are
18570 // allowed in C++, but warn if its declaration is inside
18571 // extern "C" block.
18572 if (ZeroSize) {
18573 Diag(RecLoc, getLangOpts().CPlusPlus ?
18574 diag::warn_zero_size_struct_union_in_extern_c :
18575 diag::warn_zero_size_struct_union_compat)
18576 << IsEmpty << Record->isUnion() << (NonBitFields > 1);
18579 // Structs without named members are extension in C (C99 6.7.2.1p7),
18580 // but are accepted by GCC.
18581 if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
18582 Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
18583 diag::ext_no_named_members_in_struct_union)
18584 << Record->isUnion();
18587 } else {
18588 ObjCIvarDecl **ClsFields =
18589 reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
18590 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
18591 ID->setEndOfDefinitionLoc(RBrac);
18592 // Add ivar's to class's DeclContext.
18593 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
18594 ClsFields[i]->setLexicalDeclContext(ID);
18595 ID->addDecl(ClsFields[i]);
18597 // Must enforce the rule that ivars in the base classes may not be
18598 // duplicates.
18599 if (ID->getSuperClass())
18600 DiagnoseDuplicateIvars(ID, ID->getSuperClass());
18601 } else if (ObjCImplementationDecl *IMPDecl =
18602 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
18603 assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
18604 for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
18605 // Ivar declared in @implementation never belongs to the implementation.
18606 // Only it is in implementation's lexical context.
18607 ClsFields[I]->setLexicalDeclContext(IMPDecl);
18608 CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
18609 IMPDecl->setIvarLBraceLoc(LBrac);
18610 IMPDecl->setIvarRBraceLoc(RBrac);
18611 } else if (ObjCCategoryDecl *CDecl =
18612 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
18613 // case of ivars in class extension; all other cases have been
18614 // reported as errors elsewhere.
18615 // FIXME. Class extension does not have a LocEnd field.
18616 // CDecl->setLocEnd(RBrac);
18617 // Add ivar's to class extension's DeclContext.
18618 // Diagnose redeclaration of private ivars.
18619 ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
18620 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
18621 if (IDecl) {
18622 if (const ObjCIvarDecl *ClsIvar =
18623 IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
18624 Diag(ClsFields[i]->getLocation(),
18625 diag::err_duplicate_ivar_declaration);
18626 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
18627 continue;
18629 for (const auto *Ext : IDecl->known_extensions()) {
18630 if (const ObjCIvarDecl *ClsExtIvar
18631 = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
18632 Diag(ClsFields[i]->getLocation(),
18633 diag::err_duplicate_ivar_declaration);
18634 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
18635 continue;
18639 ClsFields[i]->setLexicalDeclContext(CDecl);
18640 CDecl->addDecl(ClsFields[i]);
18642 CDecl->setIvarLBraceLoc(LBrac);
18643 CDecl->setIvarRBraceLoc(RBrac);
18648 /// Determine whether the given integral value is representable within
18649 /// the given type T.
18650 static bool isRepresentableIntegerValue(ASTContext &Context,
18651 llvm::APSInt &Value,
18652 QualType T) {
18653 assert((T->isIntegralType(Context) || T->isEnumeralType()) &&
18654 "Integral type required!");
18655 unsigned BitWidth = Context.getIntWidth(T);
18657 if (Value.isUnsigned() || Value.isNonNegative()) {
18658 if (T->isSignedIntegerOrEnumerationType())
18659 --BitWidth;
18660 return Value.getActiveBits() <= BitWidth;
18662 return Value.getMinSignedBits() <= BitWidth;
18665 // Given an integral type, return the next larger integral type
18666 // (or a NULL type of no such type exists).
18667 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
18668 // FIXME: Int128/UInt128 support, which also needs to be introduced into
18669 // enum checking below.
18670 assert((T->isIntegralType(Context) ||
18671 T->isEnumeralType()) && "Integral type required!");
18672 const unsigned NumTypes = 4;
18673 QualType SignedIntegralTypes[NumTypes] = {
18674 Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
18676 QualType UnsignedIntegralTypes[NumTypes] = {
18677 Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
18678 Context.UnsignedLongLongTy
18681 unsigned BitWidth = Context.getTypeSize(T);
18682 QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
18683 : UnsignedIntegralTypes;
18684 for (unsigned I = 0; I != NumTypes; ++I)
18685 if (Context.getTypeSize(Types[I]) > BitWidth)
18686 return Types[I];
18688 return QualType();
18691 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
18692 EnumConstantDecl *LastEnumConst,
18693 SourceLocation IdLoc,
18694 IdentifierInfo *Id,
18695 Expr *Val) {
18696 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
18697 llvm::APSInt EnumVal(IntWidth);
18698 QualType EltTy;
18700 if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
18701 Val = nullptr;
18703 if (Val)
18704 Val = DefaultLvalueConversion(Val).get();
18706 if (Val) {
18707 if (Enum->isDependentType() || Val->isTypeDependent() ||
18708 Val->containsErrors())
18709 EltTy = Context.DependentTy;
18710 else {
18711 // FIXME: We don't allow folding in C++11 mode for an enum with a fixed
18712 // underlying type, but do allow it in all other contexts.
18713 if (getLangOpts().CPlusPlus11 && Enum->isFixed()) {
18714 // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
18715 // constant-expression in the enumerator-definition shall be a converted
18716 // constant expression of the underlying type.
18717 EltTy = Enum->getIntegerType();
18718 ExprResult Converted =
18719 CheckConvertedConstantExpression(Val, EltTy, EnumVal,
18720 CCEK_Enumerator);
18721 if (Converted.isInvalid())
18722 Val = nullptr;
18723 else
18724 Val = Converted.get();
18725 } else if (!Val->isValueDependent() &&
18726 !(Val =
18727 VerifyIntegerConstantExpression(Val, &EnumVal, AllowFold)
18728 .get())) {
18729 // C99 6.7.2.2p2: Make sure we have an integer constant expression.
18730 } else {
18731 if (Enum->isComplete()) {
18732 EltTy = Enum->getIntegerType();
18734 // In Obj-C and Microsoft mode, require the enumeration value to be
18735 // representable in the underlying type of the enumeration. In C++11,
18736 // we perform a non-narrowing conversion as part of converted constant
18737 // expression checking.
18738 if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
18739 if (Context.getTargetInfo()
18740 .getTriple()
18741 .isWindowsMSVCEnvironment()) {
18742 Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
18743 } else {
18744 Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
18748 // Cast to the underlying type.
18749 Val = ImpCastExprToType(Val, EltTy,
18750 EltTy->isBooleanType() ? CK_IntegralToBoolean
18751 : CK_IntegralCast)
18752 .get();
18753 } else if (getLangOpts().CPlusPlus) {
18754 // C++11 [dcl.enum]p5:
18755 // If the underlying type is not fixed, the type of each enumerator
18756 // is the type of its initializing value:
18757 // - If an initializer is specified for an enumerator, the
18758 // initializing value has the same type as the expression.
18759 EltTy = Val->getType();
18760 } else {
18761 // C99 6.7.2.2p2:
18762 // The expression that defines the value of an enumeration constant
18763 // shall be an integer constant expression that has a value
18764 // representable as an int.
18766 // Complain if the value is not representable in an int.
18767 if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
18768 Diag(IdLoc, diag::ext_enum_value_not_int)
18769 << toString(EnumVal, 10) << Val->getSourceRange()
18770 << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
18771 else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
18772 // Force the type of the expression to 'int'.
18773 Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
18775 EltTy = Val->getType();
18781 if (!Val) {
18782 if (Enum->isDependentType())
18783 EltTy = Context.DependentTy;
18784 else if (!LastEnumConst) {
18785 // C++0x [dcl.enum]p5:
18786 // If the underlying type is not fixed, the type of each enumerator
18787 // is the type of its initializing value:
18788 // - If no initializer is specified for the first enumerator, the
18789 // initializing value has an unspecified integral type.
18791 // GCC uses 'int' for its unspecified integral type, as does
18792 // C99 6.7.2.2p3.
18793 if (Enum->isFixed()) {
18794 EltTy = Enum->getIntegerType();
18796 else {
18797 EltTy = Context.IntTy;
18799 } else {
18800 // Assign the last value + 1.
18801 EnumVal = LastEnumConst->getInitVal();
18802 ++EnumVal;
18803 EltTy = LastEnumConst->getType();
18805 // Check for overflow on increment.
18806 if (EnumVal < LastEnumConst->getInitVal()) {
18807 // C++0x [dcl.enum]p5:
18808 // If the underlying type is not fixed, the type of each enumerator
18809 // is the type of its initializing value:
18811 // - Otherwise the type of the initializing value is the same as
18812 // the type of the initializing value of the preceding enumerator
18813 // unless the incremented value is not representable in that type,
18814 // in which case the type is an unspecified integral type
18815 // sufficient to contain the incremented value. If no such type
18816 // exists, the program is ill-formed.
18817 QualType T = getNextLargerIntegralType(Context, EltTy);
18818 if (T.isNull() || Enum->isFixed()) {
18819 // There is no integral type larger enough to represent this
18820 // value. Complain, then allow the value to wrap around.
18821 EnumVal = LastEnumConst->getInitVal();
18822 EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
18823 ++EnumVal;
18824 if (Enum->isFixed())
18825 // When the underlying type is fixed, this is ill-formed.
18826 Diag(IdLoc, diag::err_enumerator_wrapped)
18827 << toString(EnumVal, 10)
18828 << EltTy;
18829 else
18830 Diag(IdLoc, diag::ext_enumerator_increment_too_large)
18831 << toString(EnumVal, 10);
18832 } else {
18833 EltTy = T;
18836 // Retrieve the last enumerator's value, extent that type to the
18837 // type that is supposed to be large enough to represent the incremented
18838 // value, then increment.
18839 EnumVal = LastEnumConst->getInitVal();
18840 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
18841 EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
18842 ++EnumVal;
18844 // If we're not in C++, diagnose the overflow of enumerator values,
18845 // which in C99 means that the enumerator value is not representable in
18846 // an int (C99 6.7.2.2p2). However, we support GCC's extension that
18847 // permits enumerator values that are representable in some larger
18848 // integral type.
18849 if (!getLangOpts().CPlusPlus && !T.isNull())
18850 Diag(IdLoc, diag::warn_enum_value_overflow);
18851 } else if (!getLangOpts().CPlusPlus &&
18852 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
18853 // Enforce C99 6.7.2.2p2 even when we compute the next value.
18854 Diag(IdLoc, diag::ext_enum_value_not_int)
18855 << toString(EnumVal, 10) << 1;
18860 if (!EltTy->isDependentType()) {
18861 // Make the enumerator value match the signedness and size of the
18862 // enumerator's type.
18863 EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
18864 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
18867 return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
18868 Val, EnumVal);
18871 Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
18872 SourceLocation IILoc) {
18873 if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
18874 !getLangOpts().CPlusPlus)
18875 return SkipBodyInfo();
18877 // We have an anonymous enum definition. Look up the first enumerator to
18878 // determine if we should merge the definition with an existing one and
18879 // skip the body.
18880 NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
18881 forRedeclarationInCurContext());
18882 auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
18883 if (!PrevECD)
18884 return SkipBodyInfo();
18886 EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
18887 NamedDecl *Hidden;
18888 if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
18889 SkipBodyInfo Skip;
18890 Skip.Previous = Hidden;
18891 return Skip;
18894 return SkipBodyInfo();
18897 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
18898 SourceLocation IdLoc, IdentifierInfo *Id,
18899 const ParsedAttributesView &Attrs,
18900 SourceLocation EqualLoc, Expr *Val) {
18901 EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
18902 EnumConstantDecl *LastEnumConst =
18903 cast_or_null<EnumConstantDecl>(lastEnumConst);
18905 // The scope passed in may not be a decl scope. Zip up the scope tree until
18906 // we find one that is.
18907 S = getNonFieldDeclScope(S);
18909 // Verify that there isn't already something declared with this name in this
18910 // scope.
18911 LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration);
18912 LookupName(R, S);
18913 NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>();
18915 if (PrevDecl && PrevDecl->isTemplateParameter()) {
18916 // Maybe we will complain about the shadowed template parameter.
18917 DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
18918 // Just pretend that we didn't see the previous declaration.
18919 PrevDecl = nullptr;
18922 // C++ [class.mem]p15:
18923 // If T is the name of a class, then each of the following shall have a name
18924 // different from T:
18925 // - every enumerator of every member of class T that is an unscoped
18926 // enumerated type
18927 if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped())
18928 DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
18929 DeclarationNameInfo(Id, IdLoc));
18931 EnumConstantDecl *New =
18932 CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
18933 if (!New)
18934 return nullptr;
18936 if (PrevDecl) {
18937 if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) {
18938 // Check for other kinds of shadowing not already handled.
18939 CheckShadow(New, PrevDecl, R);
18942 // When in C++, we may get a TagDecl with the same name; in this case the
18943 // enum constant will 'hide' the tag.
18944 assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
18945 "Received TagDecl when not in C++!");
18946 if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
18947 if (isa<EnumConstantDecl>(PrevDecl))
18948 Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
18949 else
18950 Diag(IdLoc, diag::err_redefinition) << Id;
18951 notePreviousDefinition(PrevDecl, IdLoc);
18952 return nullptr;
18956 // Process attributes.
18957 ProcessDeclAttributeList(S, New, Attrs);
18958 AddPragmaAttributes(S, New);
18960 // Register this decl in the current scope stack.
18961 New->setAccess(TheEnumDecl->getAccess());
18962 PushOnScopeChains(New, S);
18964 ActOnDocumentableDecl(New);
18966 return New;
18969 // Returns true when the enum initial expression does not trigger the
18970 // duplicate enum warning. A few common cases are exempted as follows:
18971 // Element2 = Element1
18972 // Element2 = Element1 + 1
18973 // Element2 = Element1 - 1
18974 // Where Element2 and Element1 are from the same enum.
18975 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
18976 Expr *InitExpr = ECD->getInitExpr();
18977 if (!InitExpr)
18978 return true;
18979 InitExpr = InitExpr->IgnoreImpCasts();
18981 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
18982 if (!BO->isAdditiveOp())
18983 return true;
18984 IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
18985 if (!IL)
18986 return true;
18987 if (IL->getValue() != 1)
18988 return true;
18990 InitExpr = BO->getLHS();
18993 // This checks if the elements are from the same enum.
18994 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
18995 if (!DRE)
18996 return true;
18998 EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
18999 if (!EnumConstant)
19000 return true;
19002 if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
19003 Enum)
19004 return true;
19006 return false;
19009 // Emits a warning when an element is implicitly set a value that
19010 // a previous element has already been set to.
19011 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
19012 EnumDecl *Enum, QualType EnumType) {
19013 // Avoid anonymous enums
19014 if (!Enum->getIdentifier())
19015 return;
19017 // Only check for small enums.
19018 if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
19019 return;
19021 if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
19022 return;
19024 typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
19025 typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector;
19027 typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
19029 // DenseMaps cannot contain the all ones int64_t value, so use unordered_map.
19030 typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap;
19032 // Use int64_t as a key to avoid needing special handling for map keys.
19033 auto EnumConstantToKey = [](const EnumConstantDecl *D) {
19034 llvm::APSInt Val = D->getInitVal();
19035 return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue();
19038 DuplicatesVector DupVector;
19039 ValueToVectorMap EnumMap;
19041 // Populate the EnumMap with all values represented by enum constants without
19042 // an initializer.
19043 for (auto *Element : Elements) {
19044 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element);
19046 // Null EnumConstantDecl means a previous diagnostic has been emitted for
19047 // this constant. Skip this enum since it may be ill-formed.
19048 if (!ECD) {
19049 return;
19052 // Constants with initalizers are handled in the next loop.
19053 if (ECD->getInitExpr())
19054 continue;
19056 // Duplicate values are handled in the next loop.
19057 EnumMap.insert({EnumConstantToKey(ECD), ECD});
19060 if (EnumMap.size() == 0)
19061 return;
19063 // Create vectors for any values that has duplicates.
19064 for (auto *Element : Elements) {
19065 // The last loop returned if any constant was null.
19066 EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element);
19067 if (!ValidDuplicateEnum(ECD, Enum))
19068 continue;
19070 auto Iter = EnumMap.find(EnumConstantToKey(ECD));
19071 if (Iter == EnumMap.end())
19072 continue;
19074 DeclOrVector& Entry = Iter->second;
19075 if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
19076 // Ensure constants are different.
19077 if (D == ECD)
19078 continue;
19080 // Create new vector and push values onto it.
19081 auto Vec = std::make_unique<ECDVector>();
19082 Vec->push_back(D);
19083 Vec->push_back(ECD);
19085 // Update entry to point to the duplicates vector.
19086 Entry = Vec.get();
19088 // Store the vector somewhere we can consult later for quick emission of
19089 // diagnostics.
19090 DupVector.emplace_back(std::move(Vec));
19091 continue;
19094 ECDVector *Vec = Entry.get<ECDVector*>();
19095 // Make sure constants are not added more than once.
19096 if (*Vec->begin() == ECD)
19097 continue;
19099 Vec->push_back(ECD);
19102 // Emit diagnostics.
19103 for (const auto &Vec : DupVector) {
19104 assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
19106 // Emit warning for one enum constant.
19107 auto *FirstECD = Vec->front();
19108 S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values)
19109 << FirstECD << toString(FirstECD->getInitVal(), 10)
19110 << FirstECD->getSourceRange();
19112 // Emit one note for each of the remaining enum constants with
19113 // the same value.
19114 for (auto *ECD : llvm::drop_begin(*Vec))
19115 S.Diag(ECD->getLocation(), diag::note_duplicate_element)
19116 << ECD << toString(ECD->getInitVal(), 10)
19117 << ECD->getSourceRange();
19121 bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
19122 bool AllowMask) const {
19123 assert(ED->isClosedFlag() && "looking for value in non-flag or open enum");
19124 assert(ED->isCompleteDefinition() && "expected enum definition");
19126 auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
19127 llvm::APInt &FlagBits = R.first->second;
19129 if (R.second) {
19130 for (auto *E : ED->enumerators()) {
19131 const auto &EVal = E->getInitVal();
19132 // Only single-bit enumerators introduce new flag values.
19133 if (EVal.isPowerOf2())
19134 FlagBits = FlagBits.zext(EVal.getBitWidth()) | EVal;
19138 // A value is in a flag enum if either its bits are a subset of the enum's
19139 // flag bits (the first condition) or we are allowing masks and the same is
19140 // true of its complement (the second condition). When masks are allowed, we
19141 // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
19143 // While it's true that any value could be used as a mask, the assumption is
19144 // that a mask will have all of the insignificant bits set. Anything else is
19145 // likely a logic error.
19146 llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
19147 return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
19150 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
19151 Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S,
19152 const ParsedAttributesView &Attrs) {
19153 EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
19154 QualType EnumType = Context.getTypeDeclType(Enum);
19156 ProcessDeclAttributeList(S, Enum, Attrs);
19158 if (Enum->isDependentType()) {
19159 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
19160 EnumConstantDecl *ECD =
19161 cast_or_null<EnumConstantDecl>(Elements[i]);
19162 if (!ECD) continue;
19164 ECD->setType(EnumType);
19167 Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
19168 return;
19171 // TODO: If the result value doesn't fit in an int, it must be a long or long
19172 // long value. ISO C does not support this, but GCC does as an extension,
19173 // emit a warning.
19174 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
19175 unsigned CharWidth = Context.getTargetInfo().getCharWidth();
19176 unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
19178 // Verify that all the values are okay, compute the size of the values, and
19179 // reverse the list.
19180 unsigned NumNegativeBits = 0;
19181 unsigned NumPositiveBits = 0;
19183 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
19184 EnumConstantDecl *ECD =
19185 cast_or_null<EnumConstantDecl>(Elements[i]);
19186 if (!ECD) continue; // Already issued a diagnostic.
19188 const llvm::APSInt &InitVal = ECD->getInitVal();
19190 // Keep track of the size of positive and negative values.
19191 if (InitVal.isUnsigned() || InitVal.isNonNegative()) {
19192 // If the enumerator is zero that should still be counted as a positive
19193 // bit since we need a bit to store the value zero.
19194 unsigned ActiveBits = InitVal.getActiveBits();
19195 NumPositiveBits = std::max({NumPositiveBits, ActiveBits, 1u});
19196 } else {
19197 NumNegativeBits = std::max(NumNegativeBits,
19198 (unsigned)InitVal.getMinSignedBits());
19202 // If we have have an empty set of enumerators we still need one bit.
19203 // From [dcl.enum]p8
19204 // If the enumerator-list is empty, the values of the enumeration are as if
19205 // the enumeration had a single enumerator with value 0
19206 if (!NumPositiveBits && !NumNegativeBits)
19207 NumPositiveBits = 1;
19209 // Figure out the type that should be used for this enum.
19210 QualType BestType;
19211 unsigned BestWidth;
19213 // C++0x N3000 [conv.prom]p3:
19214 // An rvalue of an unscoped enumeration type whose underlying
19215 // type is not fixed can be converted to an rvalue of the first
19216 // of the following types that can represent all the values of
19217 // the enumeration: int, unsigned int, long int, unsigned long
19218 // int, long long int, or unsigned long long int.
19219 // C99 6.4.4.3p2:
19220 // An identifier declared as an enumeration constant has type int.
19221 // The C99 rule is modified by a gcc extension
19222 QualType BestPromotionType;
19224 bool Packed = Enum->hasAttr<PackedAttr>();
19225 // -fshort-enums is the equivalent to specifying the packed attribute on all
19226 // enum definitions.
19227 if (LangOpts.ShortEnums)
19228 Packed = true;
19230 // If the enum already has a type because it is fixed or dictated by the
19231 // target, promote that type instead of analyzing the enumerators.
19232 if (Enum->isComplete()) {
19233 BestType = Enum->getIntegerType();
19234 if (BestType->isPromotableIntegerType())
19235 BestPromotionType = Context.getPromotedIntegerType(BestType);
19236 else
19237 BestPromotionType = BestType;
19239 BestWidth = Context.getIntWidth(BestType);
19241 else if (NumNegativeBits) {
19242 // If there is a negative value, figure out the smallest integer type (of
19243 // int/long/longlong) that fits.
19244 // If it's packed, check also if it fits a char or a short.
19245 if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
19246 BestType = Context.SignedCharTy;
19247 BestWidth = CharWidth;
19248 } else if (Packed && NumNegativeBits <= ShortWidth &&
19249 NumPositiveBits < ShortWidth) {
19250 BestType = Context.ShortTy;
19251 BestWidth = ShortWidth;
19252 } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
19253 BestType = Context.IntTy;
19254 BestWidth = IntWidth;
19255 } else {
19256 BestWidth = Context.getTargetInfo().getLongWidth();
19258 if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
19259 BestType = Context.LongTy;
19260 } else {
19261 BestWidth = Context.getTargetInfo().getLongLongWidth();
19263 if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
19264 Diag(Enum->getLocation(), diag::ext_enum_too_large);
19265 BestType = Context.LongLongTy;
19268 BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
19269 } else {
19270 // If there is no negative value, figure out the smallest type that fits
19271 // all of the enumerator values.
19272 // If it's packed, check also if it fits a char or a short.
19273 if (Packed && NumPositiveBits <= CharWidth) {
19274 BestType = Context.UnsignedCharTy;
19275 BestPromotionType = Context.IntTy;
19276 BestWidth = CharWidth;
19277 } else if (Packed && NumPositiveBits <= ShortWidth) {
19278 BestType = Context.UnsignedShortTy;
19279 BestPromotionType = Context.IntTy;
19280 BestWidth = ShortWidth;
19281 } else if (NumPositiveBits <= IntWidth) {
19282 BestType = Context.UnsignedIntTy;
19283 BestWidth = IntWidth;
19284 BestPromotionType
19285 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
19286 ? Context.UnsignedIntTy : Context.IntTy;
19287 } else if (NumPositiveBits <=
19288 (BestWidth = Context.getTargetInfo().getLongWidth())) {
19289 BestType = Context.UnsignedLongTy;
19290 BestPromotionType
19291 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
19292 ? Context.UnsignedLongTy : Context.LongTy;
19293 } else {
19294 BestWidth = Context.getTargetInfo().getLongLongWidth();
19295 assert(NumPositiveBits <= BestWidth &&
19296 "How could an initializer get larger than ULL?");
19297 BestType = Context.UnsignedLongLongTy;
19298 BestPromotionType
19299 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
19300 ? Context.UnsignedLongLongTy : Context.LongLongTy;
19304 // Loop over all of the enumerator constants, changing their types to match
19305 // the type of the enum if needed.
19306 for (auto *D : Elements) {
19307 auto *ECD = cast_or_null<EnumConstantDecl>(D);
19308 if (!ECD) continue; // Already issued a diagnostic.
19310 // Standard C says the enumerators have int type, but we allow, as an
19311 // extension, the enumerators to be larger than int size. If each
19312 // enumerator value fits in an int, type it as an int, otherwise type it the
19313 // same as the enumerator decl itself. This means that in "enum { X = 1U }"
19314 // that X has type 'int', not 'unsigned'.
19316 // Determine whether the value fits into an int.
19317 llvm::APSInt InitVal = ECD->getInitVal();
19319 // If it fits into an integer type, force it. Otherwise force it to match
19320 // the enum decl type.
19321 QualType NewTy;
19322 unsigned NewWidth;
19323 bool NewSign;
19324 if (!getLangOpts().CPlusPlus &&
19325 !Enum->isFixed() &&
19326 isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
19327 NewTy = Context.IntTy;
19328 NewWidth = IntWidth;
19329 NewSign = true;
19330 } else if (ECD->getType() == BestType) {
19331 // Already the right type!
19332 if (getLangOpts().CPlusPlus)
19333 // C++ [dcl.enum]p4: Following the closing brace of an
19334 // enum-specifier, each enumerator has the type of its
19335 // enumeration.
19336 ECD->setType(EnumType);
19337 continue;
19338 } else {
19339 NewTy = BestType;
19340 NewWidth = BestWidth;
19341 NewSign = BestType->isSignedIntegerOrEnumerationType();
19344 // Adjust the APSInt value.
19345 InitVal = InitVal.extOrTrunc(NewWidth);
19346 InitVal.setIsSigned(NewSign);
19347 ECD->setInitVal(InitVal);
19349 // Adjust the Expr initializer and type.
19350 if (ECD->getInitExpr() &&
19351 !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
19352 ECD->setInitExpr(ImplicitCastExpr::Create(
19353 Context, NewTy, CK_IntegralCast, ECD->getInitExpr(),
19354 /*base paths*/ nullptr, VK_PRValue, FPOptionsOverride()));
19355 if (getLangOpts().CPlusPlus)
19356 // C++ [dcl.enum]p4: Following the closing brace of an
19357 // enum-specifier, each enumerator has the type of its
19358 // enumeration.
19359 ECD->setType(EnumType);
19360 else
19361 ECD->setType(NewTy);
19364 Enum->completeDefinition(BestType, BestPromotionType,
19365 NumPositiveBits, NumNegativeBits);
19367 CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
19369 if (Enum->isClosedFlag()) {
19370 for (Decl *D : Elements) {
19371 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
19372 if (!ECD) continue; // Already issued a diagnostic.
19374 llvm::APSInt InitVal = ECD->getInitVal();
19375 if (InitVal != 0 && !InitVal.isPowerOf2() &&
19376 !IsValueInFlagEnum(Enum, InitVal, true))
19377 Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
19378 << ECD << Enum;
19382 // Now that the enum type is defined, ensure it's not been underaligned.
19383 if (Enum->hasAttrs())
19384 CheckAlignasUnderalignment(Enum);
19387 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
19388 SourceLocation StartLoc,
19389 SourceLocation EndLoc) {
19390 StringLiteral *AsmString = cast<StringLiteral>(expr);
19392 FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
19393 AsmString, StartLoc,
19394 EndLoc);
19395 CurContext->addDecl(New);
19396 return New;
19399 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
19400 IdentifierInfo* AliasName,
19401 SourceLocation PragmaLoc,
19402 SourceLocation NameLoc,
19403 SourceLocation AliasNameLoc) {
19404 NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
19405 LookupOrdinaryName);
19406 AttributeCommonInfo Info(AliasName, SourceRange(AliasNameLoc),
19407 AttributeCommonInfo::AS_Pragma);
19408 AsmLabelAttr *Attr = AsmLabelAttr::CreateImplicit(
19409 Context, AliasName->getName(), /*IsLiteralLabel=*/true, Info);
19411 // If a declaration that:
19412 // 1) declares a function or a variable
19413 // 2) has external linkage
19414 // already exists, add a label attribute to it.
19415 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
19416 if (isDeclExternC(PrevDecl))
19417 PrevDecl->addAttr(Attr);
19418 else
19419 Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
19420 << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
19421 // Otherwise, add a label attribute to ExtnameUndeclaredIdentifiers.
19422 } else
19423 (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
19426 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
19427 SourceLocation PragmaLoc,
19428 SourceLocation NameLoc) {
19429 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
19431 if (PrevDecl) {
19432 PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc, AttributeCommonInfo::AS_Pragma));
19433 } else {
19434 (void)WeakUndeclaredIdentifiers[Name].insert(WeakInfo(nullptr, NameLoc));
19438 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
19439 IdentifierInfo* AliasName,
19440 SourceLocation PragmaLoc,
19441 SourceLocation NameLoc,
19442 SourceLocation AliasNameLoc) {
19443 Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
19444 LookupOrdinaryName);
19445 WeakInfo W = WeakInfo(Name, NameLoc);
19447 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
19448 if (!PrevDecl->hasAttr<AliasAttr>())
19449 if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
19450 DeclApplyPragmaWeak(TUScope, ND, W);
19451 } else {
19452 (void)WeakUndeclaredIdentifiers[AliasName].insert(W);
19456 ObjCContainerDecl *Sema::getObjCDeclContext() const {
19457 return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
19460 Sema::FunctionEmissionStatus Sema::getEmissionStatus(FunctionDecl *FD,
19461 bool Final) {
19462 assert(FD && "Expected non-null FunctionDecl");
19464 // SYCL functions can be template, so we check if they have appropriate
19465 // attribute prior to checking if it is a template.
19466 if (LangOpts.SYCLIsDevice && FD->hasAttr<SYCLKernelAttr>())
19467 return FunctionEmissionStatus::Emitted;
19469 // Templates are emitted when they're instantiated.
19470 if (FD->isDependentContext())
19471 return FunctionEmissionStatus::TemplateDiscarded;
19473 // Check whether this function is an externally visible definition.
19474 auto IsEmittedForExternalSymbol = [this, FD]() {
19475 // We have to check the GVA linkage of the function's *definition* -- if we
19476 // only have a declaration, we don't know whether or not the function will
19477 // be emitted, because (say) the definition could include "inline".
19478 FunctionDecl *Def = FD->getDefinition();
19480 return Def && !isDiscardableGVALinkage(
19481 getASTContext().GetGVALinkageForFunction(Def));
19484 if (LangOpts.OpenMPIsDevice) {
19485 // In OpenMP device mode we will not emit host only functions, or functions
19486 // we don't need due to their linkage.
19487 Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
19488 OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
19489 // DevTy may be changed later by
19490 // #pragma omp declare target to(*) device_type(*).
19491 // Therefore DevTy having no value does not imply host. The emission status
19492 // will be checked again at the end of compilation unit with Final = true.
19493 if (DevTy)
19494 if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host)
19495 return FunctionEmissionStatus::OMPDiscarded;
19496 // If we have an explicit value for the device type, or we are in a target
19497 // declare context, we need to emit all extern and used symbols.
19498 if (isInOpenMPDeclareTargetContext() || DevTy)
19499 if (IsEmittedForExternalSymbol())
19500 return FunctionEmissionStatus::Emitted;
19501 // Device mode only emits what it must, if it wasn't tagged yet and needed,
19502 // we'll omit it.
19503 if (Final)
19504 return FunctionEmissionStatus::OMPDiscarded;
19505 } else if (LangOpts.OpenMP > 45) {
19506 // In OpenMP host compilation prior to 5.0 everything was an emitted host
19507 // function. In 5.0, no_host was introduced which might cause a function to
19508 // be ommitted.
19509 Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
19510 OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
19511 if (DevTy)
19512 if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost)
19513 return FunctionEmissionStatus::OMPDiscarded;
19516 if (Final && LangOpts.OpenMP && !LangOpts.CUDA)
19517 return FunctionEmissionStatus::Emitted;
19519 if (LangOpts.CUDA) {
19520 // When compiling for device, host functions are never emitted. Similarly,
19521 // when compiling for host, device and global functions are never emitted.
19522 // (Technically, we do emit a host-side stub for global functions, but this
19523 // doesn't count for our purposes here.)
19524 Sema::CUDAFunctionTarget T = IdentifyCUDATarget(FD);
19525 if (LangOpts.CUDAIsDevice && T == Sema::CFT_Host)
19526 return FunctionEmissionStatus::CUDADiscarded;
19527 if (!LangOpts.CUDAIsDevice &&
19528 (T == Sema::CFT_Device || T == Sema::CFT_Global))
19529 return FunctionEmissionStatus::CUDADiscarded;
19531 if (IsEmittedForExternalSymbol())
19532 return FunctionEmissionStatus::Emitted;
19535 // Otherwise, the function is known-emitted if it's in our set of
19536 // known-emitted functions.
19537 return FunctionEmissionStatus::Unknown;
19540 bool Sema::shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee) {
19541 // Host-side references to a __global__ function refer to the stub, so the
19542 // function itself is never emitted and therefore should not be marked.
19543 // If we have host fn calls kernel fn calls host+device, the HD function
19544 // does not get instantiated on the host. We model this by omitting at the
19545 // call to the kernel from the callgraph. This ensures that, when compiling
19546 // for host, only HD functions actually called from the host get marked as
19547 // known-emitted.
19548 return LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
19549 IdentifyCUDATarget(Callee) == CFT_Global;