[docs] Fix build-docs.sh
[llvm-project.git] / clang / lib / Sema / SemaExprObjC.cpp
blob21326b3a1ba19c6eb99a1a676ba3a27c60f93b7d
1 //===--- SemaExprObjC.cpp - Semantic Analysis for ObjC Expressions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for Objective-C expressions.
11 //===----------------------------------------------------------------------===//
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/DeclObjC.h"
15 #include "clang/AST/ExprObjC.h"
16 #include "clang/AST/StmtVisitor.h"
17 #include "clang/AST/TypeLoc.h"
18 #include "clang/Analysis/DomainSpecific/CocoaConventions.h"
19 #include "clang/Basic/Builtins.h"
20 #include "clang/Edit/Commit.h"
21 #include "clang/Edit/Rewriters.h"
22 #include "clang/Lex/Preprocessor.h"
23 #include "clang/Sema/Initialization.h"
24 #include "clang/Sema/Lookup.h"
25 #include "clang/Sema/Scope.h"
26 #include "clang/Sema/ScopeInfo.h"
27 #include "clang/Sema/SemaInternal.h"
28 #include "llvm/ADT/SmallString.h"
29 #include "llvm/Support/ConvertUTF.h"
31 using namespace clang;
32 using namespace sema;
33 using llvm::makeArrayRef;
35 ExprResult Sema::ParseObjCStringLiteral(SourceLocation *AtLocs,
36 ArrayRef<Expr *> Strings) {
37 // Most ObjC strings are formed out of a single piece. However, we *can*
38 // have strings formed out of multiple @ strings with multiple pptokens in
39 // each one, e.g. @"foo" "bar" @"baz" "qux" which need to be turned into one
40 // StringLiteral for ObjCStringLiteral to hold onto.
41 StringLiteral *S = cast<StringLiteral>(Strings[0]);
43 // If we have a multi-part string, merge it all together.
44 if (Strings.size() != 1) {
45 // Concatenate objc strings.
46 SmallString<128> StrBuf;
47 SmallVector<SourceLocation, 8> StrLocs;
49 for (Expr *E : Strings) {
50 S = cast<StringLiteral>(E);
52 // ObjC strings can't be wide or UTF.
53 if (!S->isOrdinary()) {
54 Diag(S->getBeginLoc(), diag::err_cfstring_literal_not_string_constant)
55 << S->getSourceRange();
56 return true;
59 // Append the string.
60 StrBuf += S->getString();
62 // Get the locations of the string tokens.
63 StrLocs.append(S->tokloc_begin(), S->tokloc_end());
66 // Create the aggregate string with the appropriate content and location
67 // information.
68 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
69 assert(CAT && "String literal not of constant array type!");
70 QualType StrTy = Context.getConstantArrayType(
71 CAT->getElementType(), llvm::APInt(32, StrBuf.size() + 1), nullptr,
72 CAT->getSizeModifier(), CAT->getIndexTypeCVRQualifiers());
73 S = StringLiteral::Create(Context, StrBuf, StringLiteral::Ordinary,
74 /*Pascal=*/false, StrTy, &StrLocs[0],
75 StrLocs.size());
78 return BuildObjCStringLiteral(AtLocs[0], S);
81 ExprResult Sema::BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S){
82 // Verify that this composite string is acceptable for ObjC strings.
83 if (CheckObjCString(S))
84 return true;
86 // Initialize the constant string interface lazily. This assumes
87 // the NSString interface is seen in this translation unit. Note: We
88 // don't use NSConstantString, since the runtime team considers this
89 // interface private (even though it appears in the header files).
90 QualType Ty = Context.getObjCConstantStringInterface();
91 if (!Ty.isNull()) {
92 Ty = Context.getObjCObjectPointerType(Ty);
93 } else if (getLangOpts().NoConstantCFStrings) {
94 IdentifierInfo *NSIdent=nullptr;
95 std::string StringClass(getLangOpts().ObjCConstantStringClass);
97 if (StringClass.empty())
98 NSIdent = &Context.Idents.get("NSConstantString");
99 else
100 NSIdent = &Context.Idents.get(StringClass);
102 NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc,
103 LookupOrdinaryName);
104 if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) {
105 Context.setObjCConstantStringInterface(StrIF);
106 Ty = Context.getObjCConstantStringInterface();
107 Ty = Context.getObjCObjectPointerType(Ty);
108 } else {
109 // If there is no NSConstantString interface defined then treat this
110 // as error and recover from it.
111 Diag(S->getBeginLoc(), diag::err_no_nsconstant_string_class)
112 << NSIdent << S->getSourceRange();
113 Ty = Context.getObjCIdType();
115 } else {
116 IdentifierInfo *NSIdent = NSAPIObj->getNSClassId(NSAPI::ClassId_NSString);
117 NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc,
118 LookupOrdinaryName);
119 if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) {
120 Context.setObjCConstantStringInterface(StrIF);
121 Ty = Context.getObjCConstantStringInterface();
122 Ty = Context.getObjCObjectPointerType(Ty);
123 } else {
124 // If there is no NSString interface defined, implicitly declare
125 // a @class NSString; and use that instead. This is to make sure
126 // type of an NSString literal is represented correctly, instead of
127 // being an 'id' type.
128 Ty = Context.getObjCNSStringType();
129 if (Ty.isNull()) {
130 ObjCInterfaceDecl *NSStringIDecl =
131 ObjCInterfaceDecl::Create (Context,
132 Context.getTranslationUnitDecl(),
133 SourceLocation(), NSIdent,
134 nullptr, nullptr, SourceLocation());
135 Ty = Context.getObjCInterfaceType(NSStringIDecl);
136 Context.setObjCNSStringType(Ty);
138 Ty = Context.getObjCObjectPointerType(Ty);
142 return new (Context) ObjCStringLiteral(S, Ty, AtLoc);
145 /// Emits an error if the given method does not exist, or if the return
146 /// type is not an Objective-C object.
147 static bool validateBoxingMethod(Sema &S, SourceLocation Loc,
148 const ObjCInterfaceDecl *Class,
149 Selector Sel, const ObjCMethodDecl *Method) {
150 if (!Method) {
151 // FIXME: Is there a better way to avoid quotes than using getName()?
152 S.Diag(Loc, diag::err_undeclared_boxing_method) << Sel << Class->getName();
153 return false;
156 // Make sure the return type is reasonable.
157 QualType ReturnType = Method->getReturnType();
158 if (!ReturnType->isObjCObjectPointerType()) {
159 S.Diag(Loc, diag::err_objc_literal_method_sig)
160 << Sel;
161 S.Diag(Method->getLocation(), diag::note_objc_literal_method_return)
162 << ReturnType;
163 return false;
166 return true;
169 /// Maps ObjCLiteralKind to NSClassIdKindKind
170 static NSAPI::NSClassIdKindKind ClassKindFromLiteralKind(
171 Sema::ObjCLiteralKind LiteralKind) {
172 switch (LiteralKind) {
173 case Sema::LK_Array:
174 return NSAPI::ClassId_NSArray;
175 case Sema::LK_Dictionary:
176 return NSAPI::ClassId_NSDictionary;
177 case Sema::LK_Numeric:
178 return NSAPI::ClassId_NSNumber;
179 case Sema::LK_String:
180 return NSAPI::ClassId_NSString;
181 case Sema::LK_Boxed:
182 return NSAPI::ClassId_NSValue;
184 // there is no corresponding matching
185 // between LK_None/LK_Block and NSClassIdKindKind
186 case Sema::LK_Block:
187 case Sema::LK_None:
188 break;
190 llvm_unreachable("LiteralKind can't be converted into a ClassKind");
193 /// Validates ObjCInterfaceDecl availability.
194 /// ObjCInterfaceDecl, used to create ObjC literals, should be defined
195 /// if clang not in a debugger mode.
196 static bool ValidateObjCLiteralInterfaceDecl(Sema &S, ObjCInterfaceDecl *Decl,
197 SourceLocation Loc,
198 Sema::ObjCLiteralKind LiteralKind) {
199 if (!Decl) {
200 NSAPI::NSClassIdKindKind Kind = ClassKindFromLiteralKind(LiteralKind);
201 IdentifierInfo *II = S.NSAPIObj->getNSClassId(Kind);
202 S.Diag(Loc, diag::err_undeclared_objc_literal_class)
203 << II->getName() << LiteralKind;
204 return false;
205 } else if (!Decl->hasDefinition() && !S.getLangOpts().DebuggerObjCLiteral) {
206 S.Diag(Loc, diag::err_undeclared_objc_literal_class)
207 << Decl->getName() << LiteralKind;
208 S.Diag(Decl->getLocation(), diag::note_forward_class);
209 return false;
212 return true;
215 /// Looks up ObjCInterfaceDecl of a given NSClassIdKindKind.
216 /// Used to create ObjC literals, such as NSDictionary (@{}),
217 /// NSArray (@[]) and Boxed Expressions (@())
218 static ObjCInterfaceDecl *LookupObjCInterfaceDeclForLiteral(Sema &S,
219 SourceLocation Loc,
220 Sema::ObjCLiteralKind LiteralKind) {
221 NSAPI::NSClassIdKindKind ClassKind = ClassKindFromLiteralKind(LiteralKind);
222 IdentifierInfo *II = S.NSAPIObj->getNSClassId(ClassKind);
223 NamedDecl *IF = S.LookupSingleName(S.TUScope, II, Loc,
224 Sema::LookupOrdinaryName);
225 ObjCInterfaceDecl *ID = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
226 if (!ID && S.getLangOpts().DebuggerObjCLiteral) {
227 ASTContext &Context = S.Context;
228 TranslationUnitDecl *TU = Context.getTranslationUnitDecl();
229 ID = ObjCInterfaceDecl::Create (Context, TU, SourceLocation(), II,
230 nullptr, nullptr, SourceLocation());
233 if (!ValidateObjCLiteralInterfaceDecl(S, ID, Loc, LiteralKind)) {
234 ID = nullptr;
237 return ID;
240 /// Retrieve the NSNumber factory method that should be used to create
241 /// an Objective-C literal for the given type.
242 static ObjCMethodDecl *getNSNumberFactoryMethod(Sema &S, SourceLocation Loc,
243 QualType NumberType,
244 bool isLiteral = false,
245 SourceRange R = SourceRange()) {
246 Optional<NSAPI::NSNumberLiteralMethodKind> Kind =
247 S.NSAPIObj->getNSNumberFactoryMethodKind(NumberType);
249 if (!Kind) {
250 if (isLiteral) {
251 S.Diag(Loc, diag::err_invalid_nsnumber_type)
252 << NumberType << R;
254 return nullptr;
257 // If we already looked up this method, we're done.
258 if (S.NSNumberLiteralMethods[*Kind])
259 return S.NSNumberLiteralMethods[*Kind];
261 Selector Sel = S.NSAPIObj->getNSNumberLiteralSelector(*Kind,
262 /*Instance=*/false);
264 ASTContext &CX = S.Context;
266 // Look up the NSNumber class, if we haven't done so already. It's cached
267 // in the Sema instance.
268 if (!S.NSNumberDecl) {
269 S.NSNumberDecl = LookupObjCInterfaceDeclForLiteral(S, Loc,
270 Sema::LK_Numeric);
271 if (!S.NSNumberDecl) {
272 return nullptr;
276 if (S.NSNumberPointer.isNull()) {
277 // generate the pointer to NSNumber type.
278 QualType NSNumberObject = CX.getObjCInterfaceType(S.NSNumberDecl);
279 S.NSNumberPointer = CX.getObjCObjectPointerType(NSNumberObject);
282 // Look for the appropriate method within NSNumber.
283 ObjCMethodDecl *Method = S.NSNumberDecl->lookupClassMethod(Sel);
284 if (!Method && S.getLangOpts().DebuggerObjCLiteral) {
285 // create a stub definition this NSNumber factory method.
286 TypeSourceInfo *ReturnTInfo = nullptr;
287 Method =
288 ObjCMethodDecl::Create(CX, SourceLocation(), SourceLocation(), Sel,
289 S.NSNumberPointer, ReturnTInfo, S.NSNumberDecl,
290 /*isInstance=*/false, /*isVariadic=*/false,
291 /*isPropertyAccessor=*/false,
292 /*isSynthesizedAccessorStub=*/false,
293 /*isImplicitlyDeclared=*/true,
294 /*isDefined=*/false, ObjCMethodDecl::Required,
295 /*HasRelatedResultType=*/false);
296 ParmVarDecl *value = ParmVarDecl::Create(S.Context, Method,
297 SourceLocation(), SourceLocation(),
298 &CX.Idents.get("value"),
299 NumberType, /*TInfo=*/nullptr,
300 SC_None, nullptr);
301 Method->setMethodParams(S.Context, value, None);
304 if (!validateBoxingMethod(S, Loc, S.NSNumberDecl, Sel, Method))
305 return nullptr;
307 // Note: if the parameter type is out-of-line, we'll catch it later in the
308 // implicit conversion.
310 S.NSNumberLiteralMethods[*Kind] = Method;
311 return Method;
314 /// BuildObjCNumericLiteral - builds an ObjCBoxedExpr AST node for the
315 /// numeric literal expression. Type of the expression will be "NSNumber *".
316 ExprResult Sema::BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number) {
317 // Determine the type of the literal.
318 QualType NumberType = Number->getType();
319 if (CharacterLiteral *Char = dyn_cast<CharacterLiteral>(Number)) {
320 // In C, character literals have type 'int'. That's not the type we want
321 // to use to determine the Objective-c literal kind.
322 switch (Char->getKind()) {
323 case CharacterLiteral::Ascii:
324 case CharacterLiteral::UTF8:
325 NumberType = Context.CharTy;
326 break;
328 case CharacterLiteral::Wide:
329 NumberType = Context.getWideCharType();
330 break;
332 case CharacterLiteral::UTF16:
333 NumberType = Context.Char16Ty;
334 break;
336 case CharacterLiteral::UTF32:
337 NumberType = Context.Char32Ty;
338 break;
342 // Look for the appropriate method within NSNumber.
343 // Construct the literal.
344 SourceRange NR(Number->getSourceRange());
345 ObjCMethodDecl *Method = getNSNumberFactoryMethod(*this, AtLoc, NumberType,
346 true, NR);
347 if (!Method)
348 return ExprError();
350 // Convert the number to the type that the parameter expects.
351 ParmVarDecl *ParamDecl = Method->parameters()[0];
352 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
353 ParamDecl);
354 ExprResult ConvertedNumber = PerformCopyInitialization(Entity,
355 SourceLocation(),
356 Number);
357 if (ConvertedNumber.isInvalid())
358 return ExprError();
359 Number = ConvertedNumber.get();
361 // Use the effective source range of the literal, including the leading '@'.
362 return MaybeBindToTemporary(
363 new (Context) ObjCBoxedExpr(Number, NSNumberPointer, Method,
364 SourceRange(AtLoc, NR.getEnd())));
367 ExprResult Sema::ActOnObjCBoolLiteral(SourceLocation AtLoc,
368 SourceLocation ValueLoc,
369 bool Value) {
370 ExprResult Inner;
371 if (getLangOpts().CPlusPlus) {
372 Inner = ActOnCXXBoolLiteral(ValueLoc, Value? tok::kw_true : tok::kw_false);
373 } else {
374 // C doesn't actually have a way to represent literal values of type
375 // _Bool. So, we'll use 0/1 and implicit cast to _Bool.
376 Inner = ActOnIntegerConstant(ValueLoc, Value? 1 : 0);
377 Inner = ImpCastExprToType(Inner.get(), Context.BoolTy,
378 CK_IntegralToBoolean);
381 return BuildObjCNumericLiteral(AtLoc, Inner.get());
384 /// Check that the given expression is a valid element of an Objective-C
385 /// collection literal.
386 static ExprResult CheckObjCCollectionLiteralElement(Sema &S, Expr *Element,
387 QualType T,
388 bool ArrayLiteral = false) {
389 // If the expression is type-dependent, there's nothing for us to do.
390 if (Element->isTypeDependent())
391 return Element;
393 ExprResult Result = S.CheckPlaceholderExpr(Element);
394 if (Result.isInvalid())
395 return ExprError();
396 Element = Result.get();
398 // In C++, check for an implicit conversion to an Objective-C object pointer
399 // type.
400 if (S.getLangOpts().CPlusPlus && Element->getType()->isRecordType()) {
401 InitializedEntity Entity
402 = InitializedEntity::InitializeParameter(S.Context, T,
403 /*Consumed=*/false);
404 InitializationKind Kind = InitializationKind::CreateCopy(
405 Element->getBeginLoc(), SourceLocation());
406 InitializationSequence Seq(S, Entity, Kind, Element);
407 if (!Seq.Failed())
408 return Seq.Perform(S, Entity, Kind, Element);
411 Expr *OrigElement = Element;
413 // Perform lvalue-to-rvalue conversion.
414 Result = S.DefaultLvalueConversion(Element);
415 if (Result.isInvalid())
416 return ExprError();
417 Element = Result.get();
419 // Make sure that we have an Objective-C pointer type or block.
420 if (!Element->getType()->isObjCObjectPointerType() &&
421 !Element->getType()->isBlockPointerType()) {
422 bool Recovered = false;
424 // If this is potentially an Objective-C numeric literal, add the '@'.
425 if (isa<IntegerLiteral>(OrigElement) ||
426 isa<CharacterLiteral>(OrigElement) ||
427 isa<FloatingLiteral>(OrigElement) ||
428 isa<ObjCBoolLiteralExpr>(OrigElement) ||
429 isa<CXXBoolLiteralExpr>(OrigElement)) {
430 if (S.NSAPIObj->getNSNumberFactoryMethodKind(OrigElement->getType())) {
431 int Which = isa<CharacterLiteral>(OrigElement) ? 1
432 : (isa<CXXBoolLiteralExpr>(OrigElement) ||
433 isa<ObjCBoolLiteralExpr>(OrigElement)) ? 2
434 : 3;
436 S.Diag(OrigElement->getBeginLoc(), diag::err_box_literal_collection)
437 << Which << OrigElement->getSourceRange()
438 << FixItHint::CreateInsertion(OrigElement->getBeginLoc(), "@");
440 Result =
441 S.BuildObjCNumericLiteral(OrigElement->getBeginLoc(), OrigElement);
442 if (Result.isInvalid())
443 return ExprError();
445 Element = Result.get();
446 Recovered = true;
449 // If this is potentially an Objective-C string literal, add the '@'.
450 else if (StringLiteral *String = dyn_cast<StringLiteral>(OrigElement)) {
451 if (String->isOrdinary()) {
452 S.Diag(OrigElement->getBeginLoc(), diag::err_box_literal_collection)
453 << 0 << OrigElement->getSourceRange()
454 << FixItHint::CreateInsertion(OrigElement->getBeginLoc(), "@");
456 Result = S.BuildObjCStringLiteral(OrigElement->getBeginLoc(), String);
457 if (Result.isInvalid())
458 return ExprError();
460 Element = Result.get();
461 Recovered = true;
465 if (!Recovered) {
466 S.Diag(Element->getBeginLoc(), diag::err_invalid_collection_element)
467 << Element->getType();
468 return ExprError();
471 if (ArrayLiteral)
472 if (ObjCStringLiteral *getString =
473 dyn_cast<ObjCStringLiteral>(OrigElement)) {
474 if (StringLiteral *SL = getString->getString()) {
475 unsigned numConcat = SL->getNumConcatenated();
476 if (numConcat > 1) {
477 // Only warn if the concatenated string doesn't come from a macro.
478 bool hasMacro = false;
479 for (unsigned i = 0; i < numConcat ; ++i)
480 if (SL->getStrTokenLoc(i).isMacroID()) {
481 hasMacro = true;
482 break;
484 if (!hasMacro)
485 S.Diag(Element->getBeginLoc(),
486 diag::warn_concatenated_nsarray_literal)
487 << Element->getType();
492 // Make sure that the element has the type that the container factory
493 // function expects.
494 return S.PerformCopyInitialization(
495 InitializedEntity::InitializeParameter(S.Context, T,
496 /*Consumed=*/false),
497 Element->getBeginLoc(), Element);
500 ExprResult Sema::BuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) {
501 if (ValueExpr->isTypeDependent()) {
502 ObjCBoxedExpr *BoxedExpr =
503 new (Context) ObjCBoxedExpr(ValueExpr, Context.DependentTy, nullptr, SR);
504 return BoxedExpr;
506 ObjCMethodDecl *BoxingMethod = nullptr;
507 QualType BoxedType;
508 // Convert the expression to an RValue, so we can check for pointer types...
509 ExprResult RValue = DefaultFunctionArrayLvalueConversion(ValueExpr);
510 if (RValue.isInvalid()) {
511 return ExprError();
513 SourceLocation Loc = SR.getBegin();
514 ValueExpr = RValue.get();
515 QualType ValueType(ValueExpr->getType());
516 if (const PointerType *PT = ValueType->getAs<PointerType>()) {
517 QualType PointeeType = PT->getPointeeType();
518 if (Context.hasSameUnqualifiedType(PointeeType, Context.CharTy)) {
520 if (!NSStringDecl) {
521 NSStringDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc,
522 Sema::LK_String);
523 if (!NSStringDecl) {
524 return ExprError();
526 QualType NSStringObject = Context.getObjCInterfaceType(NSStringDecl);
527 NSStringPointer = Context.getObjCObjectPointerType(NSStringObject);
530 // The boxed expression can be emitted as a compile time constant if it is
531 // a string literal whose character encoding is compatible with UTF-8.
532 if (auto *CE = dyn_cast<ImplicitCastExpr>(ValueExpr))
533 if (CE->getCastKind() == CK_ArrayToPointerDecay)
534 if (auto *SL =
535 dyn_cast<StringLiteral>(CE->getSubExpr()->IgnoreParens())) {
536 assert((SL->isOrdinary() || SL->isUTF8()) &&
537 "unexpected character encoding");
538 StringRef Str = SL->getString();
539 const llvm::UTF8 *StrBegin = Str.bytes_begin();
540 const llvm::UTF8 *StrEnd = Str.bytes_end();
541 // Check that this is a valid UTF-8 string.
542 if (llvm::isLegalUTF8String(&StrBegin, StrEnd)) {
543 BoxedType = Context.getAttributedType(
544 AttributedType::getNullabilityAttrKind(
545 NullabilityKind::NonNull),
546 NSStringPointer, NSStringPointer);
547 return new (Context) ObjCBoxedExpr(CE, BoxedType, nullptr, SR);
550 Diag(SL->getBeginLoc(), diag::warn_objc_boxing_invalid_utf8_string)
551 << NSStringPointer << SL->getSourceRange();
554 if (!StringWithUTF8StringMethod) {
555 IdentifierInfo *II = &Context.Idents.get("stringWithUTF8String");
556 Selector stringWithUTF8String = Context.Selectors.getUnarySelector(II);
558 // Look for the appropriate method within NSString.
559 BoxingMethod = NSStringDecl->lookupClassMethod(stringWithUTF8String);
560 if (!BoxingMethod && getLangOpts().DebuggerObjCLiteral) {
561 // Debugger needs to work even if NSString hasn't been defined.
562 TypeSourceInfo *ReturnTInfo = nullptr;
563 ObjCMethodDecl *M = ObjCMethodDecl::Create(
564 Context, SourceLocation(), SourceLocation(), stringWithUTF8String,
565 NSStringPointer, ReturnTInfo, NSStringDecl,
566 /*isInstance=*/false, /*isVariadic=*/false,
567 /*isPropertyAccessor=*/false,
568 /*isSynthesizedAccessorStub=*/false,
569 /*isImplicitlyDeclared=*/true,
570 /*isDefined=*/false, ObjCMethodDecl::Required,
571 /*HasRelatedResultType=*/false);
572 QualType ConstCharType = Context.CharTy.withConst();
573 ParmVarDecl *value =
574 ParmVarDecl::Create(Context, M,
575 SourceLocation(), SourceLocation(),
576 &Context.Idents.get("value"),
577 Context.getPointerType(ConstCharType),
578 /*TInfo=*/nullptr,
579 SC_None, nullptr);
580 M->setMethodParams(Context, value, None);
581 BoxingMethod = M;
584 if (!validateBoxingMethod(*this, Loc, NSStringDecl,
585 stringWithUTF8String, BoxingMethod))
586 return ExprError();
588 StringWithUTF8StringMethod = BoxingMethod;
591 BoxingMethod = StringWithUTF8StringMethod;
592 BoxedType = NSStringPointer;
593 // Transfer the nullability from method's return type.
594 Optional<NullabilityKind> Nullability =
595 BoxingMethod->getReturnType()->getNullability(Context);
596 if (Nullability)
597 BoxedType = Context.getAttributedType(
598 AttributedType::getNullabilityAttrKind(*Nullability), BoxedType,
599 BoxedType);
601 } else if (ValueType->isBuiltinType()) {
602 // The other types we support are numeric, char and BOOL/bool. We could also
603 // provide limited support for structure types, such as NSRange, NSRect, and
604 // NSSize. See NSValue (NSValueGeometryExtensions) in <Foundation/NSGeometry.h>
605 // for more details.
607 // Check for a top-level character literal.
608 if (const CharacterLiteral *Char =
609 dyn_cast<CharacterLiteral>(ValueExpr->IgnoreParens())) {
610 // In C, character literals have type 'int'. That's not the type we want
611 // to use to determine the Objective-c literal kind.
612 switch (Char->getKind()) {
613 case CharacterLiteral::Ascii:
614 case CharacterLiteral::UTF8:
615 ValueType = Context.CharTy;
616 break;
618 case CharacterLiteral::Wide:
619 ValueType = Context.getWideCharType();
620 break;
622 case CharacterLiteral::UTF16:
623 ValueType = Context.Char16Ty;
624 break;
626 case CharacterLiteral::UTF32:
627 ValueType = Context.Char32Ty;
628 break;
631 // FIXME: Do I need to do anything special with BoolTy expressions?
633 // Look for the appropriate method within NSNumber.
634 BoxingMethod = getNSNumberFactoryMethod(*this, Loc, ValueType);
635 BoxedType = NSNumberPointer;
636 } else if (const EnumType *ET = ValueType->getAs<EnumType>()) {
637 if (!ET->getDecl()->isComplete()) {
638 Diag(Loc, diag::err_objc_incomplete_boxed_expression_type)
639 << ValueType << ValueExpr->getSourceRange();
640 return ExprError();
643 BoxingMethod = getNSNumberFactoryMethod(*this, Loc,
644 ET->getDecl()->getIntegerType());
645 BoxedType = NSNumberPointer;
646 } else if (ValueType->isObjCBoxableRecordType()) {
647 // Support for structure types, that marked as objc_boxable
648 // struct __attribute__((objc_boxable)) s { ... };
650 // Look up the NSValue class, if we haven't done so already. It's cached
651 // in the Sema instance.
652 if (!NSValueDecl) {
653 NSValueDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc,
654 Sema::LK_Boxed);
655 if (!NSValueDecl) {
656 return ExprError();
659 // generate the pointer to NSValue type.
660 QualType NSValueObject = Context.getObjCInterfaceType(NSValueDecl);
661 NSValuePointer = Context.getObjCObjectPointerType(NSValueObject);
664 if (!ValueWithBytesObjCTypeMethod) {
665 IdentifierInfo *II[] = {
666 &Context.Idents.get("valueWithBytes"),
667 &Context.Idents.get("objCType")
669 Selector ValueWithBytesObjCType = Context.Selectors.getSelector(2, II);
671 // Look for the appropriate method within NSValue.
672 BoxingMethod = NSValueDecl->lookupClassMethod(ValueWithBytesObjCType);
673 if (!BoxingMethod && getLangOpts().DebuggerObjCLiteral) {
674 // Debugger needs to work even if NSValue hasn't been defined.
675 TypeSourceInfo *ReturnTInfo = nullptr;
676 ObjCMethodDecl *M = ObjCMethodDecl::Create(
677 Context, SourceLocation(), SourceLocation(), ValueWithBytesObjCType,
678 NSValuePointer, ReturnTInfo, NSValueDecl,
679 /*isInstance=*/false,
680 /*isVariadic=*/false,
681 /*isPropertyAccessor=*/false,
682 /*isSynthesizedAccessorStub=*/false,
683 /*isImplicitlyDeclared=*/true,
684 /*isDefined=*/false, ObjCMethodDecl::Required,
685 /*HasRelatedResultType=*/false);
687 SmallVector<ParmVarDecl *, 2> Params;
689 ParmVarDecl *bytes =
690 ParmVarDecl::Create(Context, M,
691 SourceLocation(), SourceLocation(),
692 &Context.Idents.get("bytes"),
693 Context.VoidPtrTy.withConst(),
694 /*TInfo=*/nullptr,
695 SC_None, nullptr);
696 Params.push_back(bytes);
698 QualType ConstCharType = Context.CharTy.withConst();
699 ParmVarDecl *type =
700 ParmVarDecl::Create(Context, M,
701 SourceLocation(), SourceLocation(),
702 &Context.Idents.get("type"),
703 Context.getPointerType(ConstCharType),
704 /*TInfo=*/nullptr,
705 SC_None, nullptr);
706 Params.push_back(type);
708 M->setMethodParams(Context, Params, None);
709 BoxingMethod = M;
712 if (!validateBoxingMethod(*this, Loc, NSValueDecl,
713 ValueWithBytesObjCType, BoxingMethod))
714 return ExprError();
716 ValueWithBytesObjCTypeMethod = BoxingMethod;
719 if (!ValueType.isTriviallyCopyableType(Context)) {
720 Diag(Loc, diag::err_objc_non_trivially_copyable_boxed_expression_type)
721 << ValueType << ValueExpr->getSourceRange();
722 return ExprError();
725 BoxingMethod = ValueWithBytesObjCTypeMethod;
726 BoxedType = NSValuePointer;
729 if (!BoxingMethod) {
730 Diag(Loc, diag::err_objc_illegal_boxed_expression_type)
731 << ValueType << ValueExpr->getSourceRange();
732 return ExprError();
735 DiagnoseUseOfDecl(BoxingMethod, Loc);
737 ExprResult ConvertedValueExpr;
738 if (ValueType->isObjCBoxableRecordType()) {
739 InitializedEntity IE = InitializedEntity::InitializeTemporary(ValueType);
740 ConvertedValueExpr = PerformCopyInitialization(IE, ValueExpr->getExprLoc(),
741 ValueExpr);
742 } else {
743 // Convert the expression to the type that the parameter requires.
744 ParmVarDecl *ParamDecl = BoxingMethod->parameters()[0];
745 InitializedEntity IE = InitializedEntity::InitializeParameter(Context,
746 ParamDecl);
747 ConvertedValueExpr = PerformCopyInitialization(IE, SourceLocation(),
748 ValueExpr);
751 if (ConvertedValueExpr.isInvalid())
752 return ExprError();
753 ValueExpr = ConvertedValueExpr.get();
755 ObjCBoxedExpr *BoxedExpr =
756 new (Context) ObjCBoxedExpr(ValueExpr, BoxedType,
757 BoxingMethod, SR);
758 return MaybeBindToTemporary(BoxedExpr);
761 /// Build an ObjC subscript pseudo-object expression, given that
762 /// that's supported by the runtime.
763 ExprResult Sema::BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr,
764 Expr *IndexExpr,
765 ObjCMethodDecl *getterMethod,
766 ObjCMethodDecl *setterMethod) {
767 assert(!LangOpts.isSubscriptPointerArithmetic());
769 // We can't get dependent types here; our callers should have
770 // filtered them out.
771 assert((!BaseExpr->isTypeDependent() && !IndexExpr->isTypeDependent()) &&
772 "base or index cannot have dependent type here");
774 // Filter out placeholders in the index. In theory, overloads could
775 // be preserved here, although that might not actually work correctly.
776 ExprResult Result = CheckPlaceholderExpr(IndexExpr);
777 if (Result.isInvalid())
778 return ExprError();
779 IndexExpr = Result.get();
781 // Perform lvalue-to-rvalue conversion on the base.
782 Result = DefaultLvalueConversion(BaseExpr);
783 if (Result.isInvalid())
784 return ExprError();
785 BaseExpr = Result.get();
787 // Build the pseudo-object expression.
788 return new (Context) ObjCSubscriptRefExpr(
789 BaseExpr, IndexExpr, Context.PseudoObjectTy, VK_LValue, OK_ObjCSubscript,
790 getterMethod, setterMethod, RB);
793 ExprResult Sema::BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements) {
794 SourceLocation Loc = SR.getBegin();
796 if (!NSArrayDecl) {
797 NSArrayDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc,
798 Sema::LK_Array);
799 if (!NSArrayDecl) {
800 return ExprError();
804 // Find the arrayWithObjects:count: method, if we haven't done so already.
805 QualType IdT = Context.getObjCIdType();
806 if (!ArrayWithObjectsMethod) {
807 Selector
808 Sel = NSAPIObj->getNSArraySelector(NSAPI::NSArr_arrayWithObjectsCount);
809 ObjCMethodDecl *Method = NSArrayDecl->lookupClassMethod(Sel);
810 if (!Method && getLangOpts().DebuggerObjCLiteral) {
811 TypeSourceInfo *ReturnTInfo = nullptr;
812 Method = ObjCMethodDecl::Create(
813 Context, SourceLocation(), SourceLocation(), Sel, IdT, ReturnTInfo,
814 Context.getTranslationUnitDecl(), false /*Instance*/,
815 false /*isVariadic*/,
816 /*isPropertyAccessor=*/false, /*isSynthesizedAccessorStub=*/false,
817 /*isImplicitlyDeclared=*/true, /*isDefined=*/false,
818 ObjCMethodDecl::Required, false);
819 SmallVector<ParmVarDecl *, 2> Params;
820 ParmVarDecl *objects = ParmVarDecl::Create(Context, Method,
821 SourceLocation(),
822 SourceLocation(),
823 &Context.Idents.get("objects"),
824 Context.getPointerType(IdT),
825 /*TInfo=*/nullptr,
826 SC_None, nullptr);
827 Params.push_back(objects);
828 ParmVarDecl *cnt = ParmVarDecl::Create(Context, Method,
829 SourceLocation(),
830 SourceLocation(),
831 &Context.Idents.get("cnt"),
832 Context.UnsignedLongTy,
833 /*TInfo=*/nullptr, SC_None,
834 nullptr);
835 Params.push_back(cnt);
836 Method->setMethodParams(Context, Params, None);
839 if (!validateBoxingMethod(*this, Loc, NSArrayDecl, Sel, Method))
840 return ExprError();
842 // Dig out the type that all elements should be converted to.
843 QualType T = Method->parameters()[0]->getType();
844 const PointerType *PtrT = T->getAs<PointerType>();
845 if (!PtrT ||
846 !Context.hasSameUnqualifiedType(PtrT->getPointeeType(), IdT)) {
847 Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
848 << Sel;
849 Diag(Method->parameters()[0]->getLocation(),
850 diag::note_objc_literal_method_param)
851 << 0 << T
852 << Context.getPointerType(IdT.withConst());
853 return ExprError();
856 // Check that the 'count' parameter is integral.
857 if (!Method->parameters()[1]->getType()->isIntegerType()) {
858 Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
859 << Sel;
860 Diag(Method->parameters()[1]->getLocation(),
861 diag::note_objc_literal_method_param)
862 << 1
863 << Method->parameters()[1]->getType()
864 << "integral";
865 return ExprError();
868 // We've found a good +arrayWithObjects:count: method. Save it!
869 ArrayWithObjectsMethod = Method;
872 QualType ObjectsType = ArrayWithObjectsMethod->parameters()[0]->getType();
873 QualType RequiredType = ObjectsType->castAs<PointerType>()->getPointeeType();
875 // Check that each of the elements provided is valid in a collection literal,
876 // performing conversions as necessary.
877 Expr **ElementsBuffer = Elements.data();
878 for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
879 ExprResult Converted = CheckObjCCollectionLiteralElement(*this,
880 ElementsBuffer[I],
881 RequiredType, true);
882 if (Converted.isInvalid())
883 return ExprError();
885 ElementsBuffer[I] = Converted.get();
888 QualType Ty
889 = Context.getObjCObjectPointerType(
890 Context.getObjCInterfaceType(NSArrayDecl));
892 return MaybeBindToTemporary(
893 ObjCArrayLiteral::Create(Context, Elements, Ty,
894 ArrayWithObjectsMethod, SR));
897 /// Check for duplicate keys in an ObjC dictionary literal. For instance:
898 /// NSDictionary *nd = @{ @"foo" : @"bar", @"foo" : @"baz" };
899 static void
900 CheckObjCDictionaryLiteralDuplicateKeys(Sema &S,
901 ObjCDictionaryLiteral *Literal) {
902 if (Literal->isValueDependent() || Literal->isTypeDependent())
903 return;
905 // NSNumber has quite relaxed equality semantics (for instance, @YES is
906 // considered equal to @1.0). For now, ignore floating points and just do a
907 // bit-width and sign agnostic integer compare.
908 struct APSIntCompare {
909 bool operator()(const llvm::APSInt &LHS, const llvm::APSInt &RHS) const {
910 return llvm::APSInt::compareValues(LHS, RHS) < 0;
914 llvm::DenseMap<StringRef, SourceLocation> StringKeys;
915 std::map<llvm::APSInt, SourceLocation, APSIntCompare> IntegralKeys;
917 auto checkOneKey = [&](auto &Map, const auto &Key, SourceLocation Loc) {
918 auto Pair = Map.insert({Key, Loc});
919 if (!Pair.second) {
920 S.Diag(Loc, diag::warn_nsdictionary_duplicate_key);
921 S.Diag(Pair.first->second, diag::note_nsdictionary_duplicate_key_here);
925 for (unsigned Idx = 0, End = Literal->getNumElements(); Idx != End; ++Idx) {
926 Expr *Key = Literal->getKeyValueElement(Idx).Key->IgnoreParenImpCasts();
928 if (auto *StrLit = dyn_cast<ObjCStringLiteral>(Key)) {
929 StringRef Bytes = StrLit->getString()->getBytes();
930 SourceLocation Loc = StrLit->getExprLoc();
931 checkOneKey(StringKeys, Bytes, Loc);
934 if (auto *BE = dyn_cast<ObjCBoxedExpr>(Key)) {
935 Expr *Boxed = BE->getSubExpr();
936 SourceLocation Loc = BE->getExprLoc();
938 // Check for @("foo").
939 if (auto *Str = dyn_cast<StringLiteral>(Boxed->IgnoreParenImpCasts())) {
940 checkOneKey(StringKeys, Str->getBytes(), Loc);
941 continue;
944 Expr::EvalResult Result;
945 if (Boxed->EvaluateAsInt(Result, S.getASTContext(),
946 Expr::SE_AllowSideEffects)) {
947 checkOneKey(IntegralKeys, Result.Val.getInt(), Loc);
953 ExprResult Sema::BuildObjCDictionaryLiteral(SourceRange SR,
954 MutableArrayRef<ObjCDictionaryElement> Elements) {
955 SourceLocation Loc = SR.getBegin();
957 if (!NSDictionaryDecl) {
958 NSDictionaryDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc,
959 Sema::LK_Dictionary);
960 if (!NSDictionaryDecl) {
961 return ExprError();
965 // Find the dictionaryWithObjects:forKeys:count: method, if we haven't done
966 // so already.
967 QualType IdT = Context.getObjCIdType();
968 if (!DictionaryWithObjectsMethod) {
969 Selector Sel = NSAPIObj->getNSDictionarySelector(
970 NSAPI::NSDict_dictionaryWithObjectsForKeysCount);
971 ObjCMethodDecl *Method = NSDictionaryDecl->lookupClassMethod(Sel);
972 if (!Method && getLangOpts().DebuggerObjCLiteral) {
973 Method = ObjCMethodDecl::Create(
974 Context, SourceLocation(), SourceLocation(), Sel, IdT,
975 nullptr /*TypeSourceInfo */, Context.getTranslationUnitDecl(),
976 false /*Instance*/, false /*isVariadic*/,
977 /*isPropertyAccessor=*/false,
978 /*isSynthesizedAccessorStub=*/false,
979 /*isImplicitlyDeclared=*/true, /*isDefined=*/false,
980 ObjCMethodDecl::Required, false);
981 SmallVector<ParmVarDecl *, 3> Params;
982 ParmVarDecl *objects = ParmVarDecl::Create(Context, Method,
983 SourceLocation(),
984 SourceLocation(),
985 &Context.Idents.get("objects"),
986 Context.getPointerType(IdT),
987 /*TInfo=*/nullptr, SC_None,
988 nullptr);
989 Params.push_back(objects);
990 ParmVarDecl *keys = ParmVarDecl::Create(Context, Method,
991 SourceLocation(),
992 SourceLocation(),
993 &Context.Idents.get("keys"),
994 Context.getPointerType(IdT),
995 /*TInfo=*/nullptr, SC_None,
996 nullptr);
997 Params.push_back(keys);
998 ParmVarDecl *cnt = ParmVarDecl::Create(Context, Method,
999 SourceLocation(),
1000 SourceLocation(),
1001 &Context.Idents.get("cnt"),
1002 Context.UnsignedLongTy,
1003 /*TInfo=*/nullptr, SC_None,
1004 nullptr);
1005 Params.push_back(cnt);
1006 Method->setMethodParams(Context, Params, None);
1009 if (!validateBoxingMethod(*this, SR.getBegin(), NSDictionaryDecl, Sel,
1010 Method))
1011 return ExprError();
1013 // Dig out the type that all values should be converted to.
1014 QualType ValueT = Method->parameters()[0]->getType();
1015 const PointerType *PtrValue = ValueT->getAs<PointerType>();
1016 if (!PtrValue ||
1017 !Context.hasSameUnqualifiedType(PtrValue->getPointeeType(), IdT)) {
1018 Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
1019 << Sel;
1020 Diag(Method->parameters()[0]->getLocation(),
1021 diag::note_objc_literal_method_param)
1022 << 0 << ValueT
1023 << Context.getPointerType(IdT.withConst());
1024 return ExprError();
1027 // Dig out the type that all keys should be converted to.
1028 QualType KeyT = Method->parameters()[1]->getType();
1029 const PointerType *PtrKey = KeyT->getAs<PointerType>();
1030 if (!PtrKey ||
1031 !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(),
1032 IdT)) {
1033 bool err = true;
1034 if (PtrKey) {
1035 if (QIDNSCopying.isNull()) {
1036 // key argument of selector is id<NSCopying>?
1037 if (ObjCProtocolDecl *NSCopyingPDecl =
1038 LookupProtocol(&Context.Idents.get("NSCopying"), SR.getBegin())) {
1039 ObjCProtocolDecl *PQ[] = {NSCopyingPDecl};
1040 QIDNSCopying =
1041 Context.getObjCObjectType(Context.ObjCBuiltinIdTy, { },
1042 llvm::makeArrayRef(
1043 (ObjCProtocolDecl**) PQ,
1045 false);
1046 QIDNSCopying = Context.getObjCObjectPointerType(QIDNSCopying);
1049 if (!QIDNSCopying.isNull())
1050 err = !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(),
1051 QIDNSCopying);
1054 if (err) {
1055 Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
1056 << Sel;
1057 Diag(Method->parameters()[1]->getLocation(),
1058 diag::note_objc_literal_method_param)
1059 << 1 << KeyT
1060 << Context.getPointerType(IdT.withConst());
1061 return ExprError();
1065 // Check that the 'count' parameter is integral.
1066 QualType CountType = Method->parameters()[2]->getType();
1067 if (!CountType->isIntegerType()) {
1068 Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
1069 << Sel;
1070 Diag(Method->parameters()[2]->getLocation(),
1071 diag::note_objc_literal_method_param)
1072 << 2 << CountType
1073 << "integral";
1074 return ExprError();
1077 // We've found a good +dictionaryWithObjects:keys:count: method; save it!
1078 DictionaryWithObjectsMethod = Method;
1081 QualType ValuesT = DictionaryWithObjectsMethod->parameters()[0]->getType();
1082 QualType ValueT = ValuesT->castAs<PointerType>()->getPointeeType();
1083 QualType KeysT = DictionaryWithObjectsMethod->parameters()[1]->getType();
1084 QualType KeyT = KeysT->castAs<PointerType>()->getPointeeType();
1086 // Check that each of the keys and values provided is valid in a collection
1087 // literal, performing conversions as necessary.
1088 bool HasPackExpansions = false;
1089 for (ObjCDictionaryElement &Element : Elements) {
1090 // Check the key.
1091 ExprResult Key = CheckObjCCollectionLiteralElement(*this, Element.Key,
1092 KeyT);
1093 if (Key.isInvalid())
1094 return ExprError();
1096 // Check the value.
1097 ExprResult Value
1098 = CheckObjCCollectionLiteralElement(*this, Element.Value, ValueT);
1099 if (Value.isInvalid())
1100 return ExprError();
1102 Element.Key = Key.get();
1103 Element.Value = Value.get();
1105 if (Element.EllipsisLoc.isInvalid())
1106 continue;
1108 if (!Element.Key->containsUnexpandedParameterPack() &&
1109 !Element.Value->containsUnexpandedParameterPack()) {
1110 Diag(Element.EllipsisLoc,
1111 diag::err_pack_expansion_without_parameter_packs)
1112 << SourceRange(Element.Key->getBeginLoc(),
1113 Element.Value->getEndLoc());
1114 return ExprError();
1117 HasPackExpansions = true;
1120 QualType Ty = Context.getObjCObjectPointerType(
1121 Context.getObjCInterfaceType(NSDictionaryDecl));
1123 auto *Literal =
1124 ObjCDictionaryLiteral::Create(Context, Elements, HasPackExpansions, Ty,
1125 DictionaryWithObjectsMethod, SR);
1126 CheckObjCDictionaryLiteralDuplicateKeys(*this, Literal);
1127 return MaybeBindToTemporary(Literal);
1130 ExprResult Sema::BuildObjCEncodeExpression(SourceLocation AtLoc,
1131 TypeSourceInfo *EncodedTypeInfo,
1132 SourceLocation RParenLoc) {
1133 QualType EncodedType = EncodedTypeInfo->getType();
1134 QualType StrTy;
1135 if (EncodedType->isDependentType())
1136 StrTy = Context.DependentTy;
1137 else {
1138 if (!EncodedType->getAsArrayTypeUnsafe() && //// Incomplete array is handled.
1139 !EncodedType->isVoidType()) // void is handled too.
1140 if (RequireCompleteType(AtLoc, EncodedType,
1141 diag::err_incomplete_type_objc_at_encode,
1142 EncodedTypeInfo->getTypeLoc()))
1143 return ExprError();
1145 std::string Str;
1146 QualType NotEncodedT;
1147 Context.getObjCEncodingForType(EncodedType, Str, nullptr, &NotEncodedT);
1148 if (!NotEncodedT.isNull())
1149 Diag(AtLoc, diag::warn_incomplete_encoded_type)
1150 << EncodedType << NotEncodedT;
1152 // The type of @encode is the same as the type of the corresponding string,
1153 // which is an array type.
1154 StrTy = Context.getStringLiteralArrayType(Context.CharTy, Str.size());
1157 return new (Context) ObjCEncodeExpr(StrTy, EncodedTypeInfo, AtLoc, RParenLoc);
1160 ExprResult Sema::ParseObjCEncodeExpression(SourceLocation AtLoc,
1161 SourceLocation EncodeLoc,
1162 SourceLocation LParenLoc,
1163 ParsedType ty,
1164 SourceLocation RParenLoc) {
1165 // FIXME: Preserve type source info ?
1166 TypeSourceInfo *TInfo;
1167 QualType EncodedType = GetTypeFromParser(ty, &TInfo);
1168 if (!TInfo)
1169 TInfo = Context.getTrivialTypeSourceInfo(EncodedType,
1170 getLocForEndOfToken(LParenLoc));
1172 return BuildObjCEncodeExpression(AtLoc, TInfo, RParenLoc);
1175 static bool HelperToDiagnoseMismatchedMethodsInGlobalPool(Sema &S,
1176 SourceLocation AtLoc,
1177 SourceLocation LParenLoc,
1178 SourceLocation RParenLoc,
1179 ObjCMethodDecl *Method,
1180 ObjCMethodList &MethList) {
1181 ObjCMethodList *M = &MethList;
1182 bool Warned = false;
1183 for (M = M->getNext(); M; M=M->getNext()) {
1184 ObjCMethodDecl *MatchingMethodDecl = M->getMethod();
1185 if (MatchingMethodDecl == Method ||
1186 isa<ObjCImplDecl>(MatchingMethodDecl->getDeclContext()) ||
1187 MatchingMethodDecl->getSelector() != Method->getSelector())
1188 continue;
1189 if (!S.MatchTwoMethodDeclarations(Method,
1190 MatchingMethodDecl, Sema::MMS_loose)) {
1191 if (!Warned) {
1192 Warned = true;
1193 S.Diag(AtLoc, diag::warn_multiple_selectors)
1194 << Method->getSelector() << FixItHint::CreateInsertion(LParenLoc, "(")
1195 << FixItHint::CreateInsertion(RParenLoc, ")");
1196 S.Diag(Method->getLocation(), diag::note_method_declared_at)
1197 << Method->getDeclName();
1199 S.Diag(MatchingMethodDecl->getLocation(), diag::note_method_declared_at)
1200 << MatchingMethodDecl->getDeclName();
1203 return Warned;
1206 static void DiagnoseMismatchedSelectors(Sema &S, SourceLocation AtLoc,
1207 ObjCMethodDecl *Method,
1208 SourceLocation LParenLoc,
1209 SourceLocation RParenLoc,
1210 bool WarnMultipleSelectors) {
1211 if (!WarnMultipleSelectors ||
1212 S.Diags.isIgnored(diag::warn_multiple_selectors, SourceLocation()))
1213 return;
1214 bool Warned = false;
1215 for (Sema::GlobalMethodPool::iterator b = S.MethodPool.begin(),
1216 e = S.MethodPool.end(); b != e; b++) {
1217 // first, instance methods
1218 ObjCMethodList &InstMethList = b->second.first;
1219 if (HelperToDiagnoseMismatchedMethodsInGlobalPool(S, AtLoc, LParenLoc, RParenLoc,
1220 Method, InstMethList))
1221 Warned = true;
1223 // second, class methods
1224 ObjCMethodList &ClsMethList = b->second.second;
1225 if (HelperToDiagnoseMismatchedMethodsInGlobalPool(S, AtLoc, LParenLoc, RParenLoc,
1226 Method, ClsMethList) || Warned)
1227 return;
1231 static ObjCMethodDecl *LookupDirectMethodInMethodList(Sema &S, Selector Sel,
1232 ObjCMethodList &MethList,
1233 bool &onlyDirect,
1234 bool &anyDirect) {
1235 (void)Sel;
1236 ObjCMethodList *M = &MethList;
1237 ObjCMethodDecl *DirectMethod = nullptr;
1238 for (; M; M = M->getNext()) {
1239 ObjCMethodDecl *Method = M->getMethod();
1240 if (!Method)
1241 continue;
1242 assert(Method->getSelector() == Sel && "Method with wrong selector in method list");
1243 if (Method->isDirectMethod()) {
1244 anyDirect = true;
1245 DirectMethod = Method;
1246 } else
1247 onlyDirect = false;
1250 return DirectMethod;
1253 // Search the global pool for (potentially) direct methods matching the given
1254 // selector. If a non-direct method is found, set \param onlyDirect to false. If
1255 // a direct method is found, set \param anyDirect to true. Returns a direct
1256 // method, if any.
1257 static ObjCMethodDecl *LookupDirectMethodInGlobalPool(Sema &S, Selector Sel,
1258 bool &onlyDirect,
1259 bool &anyDirect) {
1260 auto Iter = S.MethodPool.find(Sel);
1261 if (Iter == S.MethodPool.end())
1262 return nullptr;
1264 ObjCMethodDecl *DirectInstance = LookupDirectMethodInMethodList(
1265 S, Sel, Iter->second.first, onlyDirect, anyDirect);
1266 ObjCMethodDecl *DirectClass = LookupDirectMethodInMethodList(
1267 S, Sel, Iter->second.second, onlyDirect, anyDirect);
1269 return DirectInstance ? DirectInstance : DirectClass;
1272 static ObjCMethodDecl *findMethodInCurrentClass(Sema &S, Selector Sel) {
1273 auto *CurMD = S.getCurMethodDecl();
1274 if (!CurMD)
1275 return nullptr;
1276 ObjCInterfaceDecl *IFace = CurMD->getClassInterface();
1278 // The language enforce that only one direct method is present in a given
1279 // class, so we just need to find one method in the current class to know
1280 // whether Sel is potentially direct in this context.
1281 if (ObjCMethodDecl *MD = IFace->lookupMethod(Sel, /*isInstance=*/true))
1282 return MD;
1283 if (ObjCMethodDecl *MD = IFace->lookupPrivateMethod(Sel, /*Instance=*/true))
1284 return MD;
1285 if (ObjCMethodDecl *MD = IFace->lookupMethod(Sel, /*isInstance=*/false))
1286 return MD;
1287 if (ObjCMethodDecl *MD = IFace->lookupPrivateMethod(Sel, /*Instance=*/false))
1288 return MD;
1290 return nullptr;
1293 ExprResult Sema::ParseObjCSelectorExpression(Selector Sel,
1294 SourceLocation AtLoc,
1295 SourceLocation SelLoc,
1296 SourceLocation LParenLoc,
1297 SourceLocation RParenLoc,
1298 bool WarnMultipleSelectors) {
1299 ObjCMethodDecl *Method = LookupInstanceMethodInGlobalPool(Sel,
1300 SourceRange(LParenLoc, RParenLoc));
1301 if (!Method)
1302 Method = LookupFactoryMethodInGlobalPool(Sel,
1303 SourceRange(LParenLoc, RParenLoc));
1304 if (!Method) {
1305 if (const ObjCMethodDecl *OM = SelectorsForTypoCorrection(Sel)) {
1306 Selector MatchedSel = OM->getSelector();
1307 SourceRange SelectorRange(LParenLoc.getLocWithOffset(1),
1308 RParenLoc.getLocWithOffset(-1));
1309 Diag(SelLoc, diag::warn_undeclared_selector_with_typo)
1310 << Sel << MatchedSel
1311 << FixItHint::CreateReplacement(SelectorRange, MatchedSel.getAsString());
1313 } else
1314 Diag(SelLoc, diag::warn_undeclared_selector) << Sel;
1315 } else {
1316 DiagnoseMismatchedSelectors(*this, AtLoc, Method, LParenLoc, RParenLoc,
1317 WarnMultipleSelectors);
1319 bool onlyDirect = true;
1320 bool anyDirect = false;
1321 ObjCMethodDecl *GlobalDirectMethod =
1322 LookupDirectMethodInGlobalPool(*this, Sel, onlyDirect, anyDirect);
1324 if (onlyDirect) {
1325 Diag(AtLoc, diag::err_direct_selector_expression)
1326 << Method->getSelector();
1327 Diag(Method->getLocation(), diag::note_direct_method_declared_at)
1328 << Method->getDeclName();
1329 } else if (anyDirect) {
1330 // If we saw any direct methods, see if we see a direct member of the
1331 // current class. If so, the @selector will likely be used to refer to
1332 // this direct method.
1333 ObjCMethodDecl *LikelyTargetMethod = findMethodInCurrentClass(*this, Sel);
1334 if (LikelyTargetMethod && LikelyTargetMethod->isDirectMethod()) {
1335 Diag(AtLoc, diag::warn_potentially_direct_selector_expression) << Sel;
1336 Diag(LikelyTargetMethod->getLocation(),
1337 diag::note_direct_method_declared_at)
1338 << LikelyTargetMethod->getDeclName();
1339 } else if (!LikelyTargetMethod) {
1340 // Otherwise, emit the "strict" variant of this diagnostic, unless
1341 // LikelyTargetMethod is non-direct.
1342 Diag(AtLoc, diag::warn_strict_potentially_direct_selector_expression)
1343 << Sel;
1344 Diag(GlobalDirectMethod->getLocation(),
1345 diag::note_direct_method_declared_at)
1346 << GlobalDirectMethod->getDeclName();
1351 if (Method &&
1352 Method->getImplementationControl() != ObjCMethodDecl::Optional &&
1353 !getSourceManager().isInSystemHeader(Method->getLocation()))
1354 ReferencedSelectors.insert(std::make_pair(Sel, AtLoc));
1356 // In ARC, forbid the user from using @selector for
1357 // retain/release/autorelease/dealloc/retainCount.
1358 if (getLangOpts().ObjCAutoRefCount) {
1359 switch (Sel.getMethodFamily()) {
1360 case OMF_retain:
1361 case OMF_release:
1362 case OMF_autorelease:
1363 case OMF_retainCount:
1364 case OMF_dealloc:
1365 Diag(AtLoc, diag::err_arc_illegal_selector) <<
1366 Sel << SourceRange(LParenLoc, RParenLoc);
1367 break;
1369 case OMF_None:
1370 case OMF_alloc:
1371 case OMF_copy:
1372 case OMF_finalize:
1373 case OMF_init:
1374 case OMF_mutableCopy:
1375 case OMF_new:
1376 case OMF_self:
1377 case OMF_initialize:
1378 case OMF_performSelector:
1379 break;
1382 QualType Ty = Context.getObjCSelType();
1383 return new (Context) ObjCSelectorExpr(Ty, Sel, AtLoc, RParenLoc);
1386 ExprResult Sema::ParseObjCProtocolExpression(IdentifierInfo *ProtocolId,
1387 SourceLocation AtLoc,
1388 SourceLocation ProtoLoc,
1389 SourceLocation LParenLoc,
1390 SourceLocation ProtoIdLoc,
1391 SourceLocation RParenLoc) {
1392 ObjCProtocolDecl* PDecl = LookupProtocol(ProtocolId, ProtoIdLoc);
1393 if (!PDecl) {
1394 Diag(ProtoLoc, diag::err_undeclared_protocol) << ProtocolId;
1395 return true;
1397 if (PDecl->isNonRuntimeProtocol())
1398 Diag(ProtoLoc, diag::err_objc_non_runtime_protocol_in_protocol_expr)
1399 << PDecl;
1400 if (!PDecl->hasDefinition()) {
1401 Diag(ProtoLoc, diag::err_atprotocol_protocol) << PDecl;
1402 Diag(PDecl->getLocation(), diag::note_entity_declared_at) << PDecl;
1403 } else {
1404 PDecl = PDecl->getDefinition();
1407 QualType Ty = Context.getObjCProtoType();
1408 if (Ty.isNull())
1409 return true;
1410 Ty = Context.getObjCObjectPointerType(Ty);
1411 return new (Context) ObjCProtocolExpr(Ty, PDecl, AtLoc, ProtoIdLoc, RParenLoc);
1414 /// Try to capture an implicit reference to 'self'.
1415 ObjCMethodDecl *Sema::tryCaptureObjCSelf(SourceLocation Loc) {
1416 DeclContext *DC = getFunctionLevelDeclContext();
1418 // If we're not in an ObjC method, error out. Note that, unlike the
1419 // C++ case, we don't require an instance method --- class methods
1420 // still have a 'self', and we really do still need to capture it!
1421 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(DC);
1422 if (!method)
1423 return nullptr;
1425 tryCaptureVariable(method->getSelfDecl(), Loc);
1427 return method;
1430 static QualType stripObjCInstanceType(ASTContext &Context, QualType T) {
1431 QualType origType = T;
1432 if (auto nullability = AttributedType::stripOuterNullability(T)) {
1433 if (T == Context.getObjCInstanceType()) {
1434 return Context.getAttributedType(
1435 AttributedType::getNullabilityAttrKind(*nullability),
1436 Context.getObjCIdType(),
1437 Context.getObjCIdType());
1440 return origType;
1443 if (T == Context.getObjCInstanceType())
1444 return Context.getObjCIdType();
1446 return origType;
1449 /// Determine the result type of a message send based on the receiver type,
1450 /// method, and the kind of message send.
1452 /// This is the "base" result type, which will still need to be adjusted
1453 /// to account for nullability.
1454 static QualType getBaseMessageSendResultType(Sema &S,
1455 QualType ReceiverType,
1456 ObjCMethodDecl *Method,
1457 bool isClassMessage,
1458 bool isSuperMessage) {
1459 assert(Method && "Must have a method");
1460 if (!Method->hasRelatedResultType())
1461 return Method->getSendResultType(ReceiverType);
1463 ASTContext &Context = S.Context;
1465 // Local function that transfers the nullability of the method's
1466 // result type to the returned result.
1467 auto transferNullability = [&](QualType type) -> QualType {
1468 // If the method's result type has nullability, extract it.
1469 if (auto nullability = Method->getSendResultType(ReceiverType)
1470 ->getNullability(Context)){
1471 // Strip off any outer nullability sugar from the provided type.
1472 (void)AttributedType::stripOuterNullability(type);
1474 // Form a new attributed type using the method result type's nullability.
1475 return Context.getAttributedType(
1476 AttributedType::getNullabilityAttrKind(*nullability),
1477 type,
1478 type);
1481 return type;
1484 // If a method has a related return type:
1485 // - if the method found is an instance method, but the message send
1486 // was a class message send, T is the declared return type of the method
1487 // found
1488 if (Method->isInstanceMethod() && isClassMessage)
1489 return stripObjCInstanceType(Context,
1490 Method->getSendResultType(ReceiverType));
1492 // - if the receiver is super, T is a pointer to the class of the
1493 // enclosing method definition
1494 if (isSuperMessage) {
1495 if (ObjCMethodDecl *CurMethod = S.getCurMethodDecl())
1496 if (ObjCInterfaceDecl *Class = CurMethod->getClassInterface()) {
1497 return transferNullability(
1498 Context.getObjCObjectPointerType(
1499 Context.getObjCInterfaceType(Class)));
1503 // - if the receiver is the name of a class U, T is a pointer to U
1504 if (ReceiverType->getAsObjCInterfaceType())
1505 return transferNullability(Context.getObjCObjectPointerType(ReceiverType));
1506 // - if the receiver is of type Class or qualified Class type,
1507 // T is the declared return type of the method.
1508 if (ReceiverType->isObjCClassType() ||
1509 ReceiverType->isObjCQualifiedClassType())
1510 return stripObjCInstanceType(Context,
1511 Method->getSendResultType(ReceiverType));
1513 // - if the receiver is id, qualified id, Class, or qualified Class, T
1514 // is the receiver type, otherwise
1515 // - T is the type of the receiver expression.
1516 return transferNullability(ReceiverType);
1519 QualType Sema::getMessageSendResultType(const Expr *Receiver,
1520 QualType ReceiverType,
1521 ObjCMethodDecl *Method,
1522 bool isClassMessage,
1523 bool isSuperMessage) {
1524 // Produce the result type.
1525 QualType resultType = getBaseMessageSendResultType(*this, ReceiverType,
1526 Method,
1527 isClassMessage,
1528 isSuperMessage);
1530 // If this is a class message, ignore the nullability of the receiver.
1531 if (isClassMessage) {
1532 // In a class method, class messages to 'self' that return instancetype can
1533 // be typed as the current class. We can safely do this in ARC because self
1534 // can't be reassigned, and we do it unsafely outside of ARC because in
1535 // practice people never reassign self in class methods and there's some
1536 // virtue in not being aggressively pedantic.
1537 if (Receiver && Receiver->isObjCSelfExpr()) {
1538 assert(ReceiverType->isObjCClassType() && "expected a Class self");
1539 QualType T = Method->getSendResultType(ReceiverType);
1540 AttributedType::stripOuterNullability(T);
1541 if (T == Context.getObjCInstanceType()) {
1542 const ObjCMethodDecl *MD = cast<ObjCMethodDecl>(
1543 cast<ImplicitParamDecl>(
1544 cast<DeclRefExpr>(Receiver->IgnoreParenImpCasts())->getDecl())
1545 ->getDeclContext());
1546 assert(MD->isClassMethod() && "expected a class method");
1547 QualType NewResultType = Context.getObjCObjectPointerType(
1548 Context.getObjCInterfaceType(MD->getClassInterface()));
1549 if (auto Nullability = resultType->getNullability(Context))
1550 NewResultType = Context.getAttributedType(
1551 AttributedType::getNullabilityAttrKind(*Nullability),
1552 NewResultType, NewResultType);
1553 return NewResultType;
1556 return resultType;
1559 // There is nothing left to do if the result type cannot have a nullability
1560 // specifier.
1561 if (!resultType->canHaveNullability())
1562 return resultType;
1564 // Map the nullability of the result into a table index.
1565 unsigned receiverNullabilityIdx = 0;
1566 if (Optional<NullabilityKind> nullability =
1567 ReceiverType->getNullability(Context)) {
1568 if (*nullability == NullabilityKind::NullableResult)
1569 nullability = NullabilityKind::Nullable;
1570 receiverNullabilityIdx = 1 + static_cast<unsigned>(*nullability);
1573 unsigned resultNullabilityIdx = 0;
1574 if (Optional<NullabilityKind> nullability =
1575 resultType->getNullability(Context)) {
1576 if (*nullability == NullabilityKind::NullableResult)
1577 nullability = NullabilityKind::Nullable;
1578 resultNullabilityIdx = 1 + static_cast<unsigned>(*nullability);
1581 // The table of nullability mappings, indexed by the receiver's nullability
1582 // and then the result type's nullability.
1583 static const uint8_t None = 0;
1584 static const uint8_t NonNull = 1;
1585 static const uint8_t Nullable = 2;
1586 static const uint8_t Unspecified = 3;
1587 static const uint8_t nullabilityMap[4][4] = {
1588 // None NonNull Nullable Unspecified
1589 /* None */ { None, None, Nullable, None },
1590 /* NonNull */ { None, NonNull, Nullable, Unspecified },
1591 /* Nullable */ { Nullable, Nullable, Nullable, Nullable },
1592 /* Unspecified */ { None, Unspecified, Nullable, Unspecified }
1595 unsigned newResultNullabilityIdx
1596 = nullabilityMap[receiverNullabilityIdx][resultNullabilityIdx];
1597 if (newResultNullabilityIdx == resultNullabilityIdx)
1598 return resultType;
1600 // Strip off the existing nullability. This removes as little type sugar as
1601 // possible.
1602 do {
1603 if (auto attributed = dyn_cast<AttributedType>(resultType.getTypePtr())) {
1604 resultType = attributed->getModifiedType();
1605 } else {
1606 resultType = resultType.getDesugaredType(Context);
1608 } while (resultType->getNullability(Context));
1610 // Add nullability back if needed.
1611 if (newResultNullabilityIdx > 0) {
1612 auto newNullability
1613 = static_cast<NullabilityKind>(newResultNullabilityIdx-1);
1614 return Context.getAttributedType(
1615 AttributedType::getNullabilityAttrKind(newNullability),
1616 resultType, resultType);
1619 return resultType;
1622 /// Look for an ObjC method whose result type exactly matches the given type.
1623 static const ObjCMethodDecl *
1624 findExplicitInstancetypeDeclarer(const ObjCMethodDecl *MD,
1625 QualType instancetype) {
1626 if (MD->getReturnType() == instancetype)
1627 return MD;
1629 // For these purposes, a method in an @implementation overrides a
1630 // declaration in the @interface.
1631 if (const ObjCImplDecl *impl =
1632 dyn_cast<ObjCImplDecl>(MD->getDeclContext())) {
1633 const ObjCContainerDecl *iface;
1634 if (const ObjCCategoryImplDecl *catImpl =
1635 dyn_cast<ObjCCategoryImplDecl>(impl)) {
1636 iface = catImpl->getCategoryDecl();
1637 } else {
1638 iface = impl->getClassInterface();
1641 const ObjCMethodDecl *ifaceMD =
1642 iface->getMethod(MD->getSelector(), MD->isInstanceMethod());
1643 if (ifaceMD) return findExplicitInstancetypeDeclarer(ifaceMD, instancetype);
1646 SmallVector<const ObjCMethodDecl *, 4> overrides;
1647 MD->getOverriddenMethods(overrides);
1648 for (unsigned i = 0, e = overrides.size(); i != e; ++i) {
1649 if (const ObjCMethodDecl *result =
1650 findExplicitInstancetypeDeclarer(overrides[i], instancetype))
1651 return result;
1654 return nullptr;
1657 void Sema::EmitRelatedResultTypeNoteForReturn(QualType destType) {
1658 // Only complain if we're in an ObjC method and the required return
1659 // type doesn't match the method's declared return type.
1660 ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurContext);
1661 if (!MD || !MD->hasRelatedResultType() ||
1662 Context.hasSameUnqualifiedType(destType, MD->getReturnType()))
1663 return;
1665 // Look for a method overridden by this method which explicitly uses
1666 // 'instancetype'.
1667 if (const ObjCMethodDecl *overridden =
1668 findExplicitInstancetypeDeclarer(MD, Context.getObjCInstanceType())) {
1669 SourceRange range = overridden->getReturnTypeSourceRange();
1670 SourceLocation loc = range.getBegin();
1671 if (loc.isInvalid())
1672 loc = overridden->getLocation();
1673 Diag(loc, diag::note_related_result_type_explicit)
1674 << /*current method*/ 1 << range;
1675 return;
1678 // Otherwise, if we have an interesting method family, note that.
1679 // This should always trigger if the above didn't.
1680 if (ObjCMethodFamily family = MD->getMethodFamily())
1681 Diag(MD->getLocation(), diag::note_related_result_type_family)
1682 << /*current method*/ 1
1683 << family;
1686 void Sema::EmitRelatedResultTypeNote(const Expr *E) {
1687 E = E->IgnoreParenImpCasts();
1688 const ObjCMessageExpr *MsgSend = dyn_cast<ObjCMessageExpr>(E);
1689 if (!MsgSend)
1690 return;
1692 const ObjCMethodDecl *Method = MsgSend->getMethodDecl();
1693 if (!Method)
1694 return;
1696 if (!Method->hasRelatedResultType())
1697 return;
1699 if (Context.hasSameUnqualifiedType(
1700 Method->getReturnType().getNonReferenceType(), MsgSend->getType()))
1701 return;
1703 if (!Context.hasSameUnqualifiedType(Method->getReturnType(),
1704 Context.getObjCInstanceType()))
1705 return;
1707 Diag(Method->getLocation(), diag::note_related_result_type_inferred)
1708 << Method->isInstanceMethod() << Method->getSelector()
1709 << MsgSend->getType();
1712 bool Sema::CheckMessageArgumentTypes(
1713 const Expr *Receiver, QualType ReceiverType, MultiExprArg Args,
1714 Selector Sel, ArrayRef<SourceLocation> SelectorLocs, ObjCMethodDecl *Method,
1715 bool isClassMessage, bool isSuperMessage, SourceLocation lbrac,
1716 SourceLocation rbrac, SourceRange RecRange, QualType &ReturnType,
1717 ExprValueKind &VK) {
1718 SourceLocation SelLoc;
1719 if (!SelectorLocs.empty() && SelectorLocs.front().isValid())
1720 SelLoc = SelectorLocs.front();
1721 else
1722 SelLoc = lbrac;
1724 if (!Method) {
1725 // Apply default argument promotion as for (C99 6.5.2.2p6).
1726 for (unsigned i = 0, e = Args.size(); i != e; i++) {
1727 if (Args[i]->isTypeDependent())
1728 continue;
1730 ExprResult result;
1731 if (getLangOpts().DebuggerSupport) {
1732 QualType paramTy; // ignored
1733 result = checkUnknownAnyArg(SelLoc, Args[i], paramTy);
1734 } else {
1735 result = DefaultArgumentPromotion(Args[i]);
1737 if (result.isInvalid())
1738 return true;
1739 Args[i] = result.get();
1742 unsigned DiagID;
1743 if (getLangOpts().ObjCAutoRefCount)
1744 DiagID = diag::err_arc_method_not_found;
1745 else
1746 DiagID = isClassMessage ? diag::warn_class_method_not_found
1747 : diag::warn_inst_method_not_found;
1748 if (!getLangOpts().DebuggerSupport) {
1749 const ObjCMethodDecl *OMD = SelectorsForTypoCorrection(Sel, ReceiverType);
1750 if (OMD && !OMD->isInvalidDecl()) {
1751 if (getLangOpts().ObjCAutoRefCount)
1752 DiagID = diag::err_method_not_found_with_typo;
1753 else
1754 DiagID = isClassMessage ? diag::warn_class_method_not_found_with_typo
1755 : diag::warn_instance_method_not_found_with_typo;
1756 Selector MatchedSel = OMD->getSelector();
1757 SourceRange SelectorRange(SelectorLocs.front(), SelectorLocs.back());
1758 if (MatchedSel.isUnarySelector())
1759 Diag(SelLoc, DiagID)
1760 << Sel<< isClassMessage << MatchedSel
1761 << FixItHint::CreateReplacement(SelectorRange, MatchedSel.getAsString());
1762 else
1763 Diag(SelLoc, DiagID) << Sel<< isClassMessage << MatchedSel;
1765 else
1766 Diag(SelLoc, DiagID)
1767 << Sel << isClassMessage << SourceRange(SelectorLocs.front(),
1768 SelectorLocs.back());
1769 // Find the class to which we are sending this message.
1770 if (auto *ObjPT = ReceiverType->getAs<ObjCObjectPointerType>()) {
1771 if (ObjCInterfaceDecl *ThisClass = ObjPT->getInterfaceDecl()) {
1772 Diag(ThisClass->getLocation(), diag::note_receiver_class_declared);
1773 if (!RecRange.isInvalid())
1774 if (ThisClass->lookupClassMethod(Sel))
1775 Diag(RecRange.getBegin(), diag::note_receiver_expr_here)
1776 << FixItHint::CreateReplacement(RecRange,
1777 ThisClass->getNameAsString());
1782 // In debuggers, we want to use __unknown_anytype for these
1783 // results so that clients can cast them.
1784 if (getLangOpts().DebuggerSupport) {
1785 ReturnType = Context.UnknownAnyTy;
1786 } else {
1787 ReturnType = Context.getObjCIdType();
1789 VK = VK_PRValue;
1790 return false;
1793 ReturnType = getMessageSendResultType(Receiver, ReceiverType, Method,
1794 isClassMessage, isSuperMessage);
1795 VK = Expr::getValueKindForType(Method->getReturnType());
1797 unsigned NumNamedArgs = Sel.getNumArgs();
1798 // Method might have more arguments than selector indicates. This is due
1799 // to addition of c-style arguments in method.
1800 if (Method->param_size() > Sel.getNumArgs())
1801 NumNamedArgs = Method->param_size();
1802 // FIXME. This need be cleaned up.
1803 if (Args.size() < NumNamedArgs) {
1804 Diag(SelLoc, diag::err_typecheck_call_too_few_args)
1805 << 2 << NumNamedArgs << static_cast<unsigned>(Args.size());
1806 return false;
1809 // Compute the set of type arguments to be substituted into each parameter
1810 // type.
1811 Optional<ArrayRef<QualType>> typeArgs
1812 = ReceiverType->getObjCSubstitutions(Method->getDeclContext());
1813 bool IsError = false;
1814 for (unsigned i = 0; i < NumNamedArgs; i++) {
1815 // We can't do any type-checking on a type-dependent argument.
1816 if (Args[i]->isTypeDependent())
1817 continue;
1819 Expr *argExpr = Args[i];
1821 ParmVarDecl *param = Method->parameters()[i];
1822 assert(argExpr && "CheckMessageArgumentTypes(): missing expression");
1824 if (param->hasAttr<NoEscapeAttr>() &&
1825 param->getType()->isBlockPointerType())
1826 if (auto *BE = dyn_cast<BlockExpr>(
1827 argExpr->IgnoreParenNoopCasts(Context)))
1828 BE->getBlockDecl()->setDoesNotEscape();
1830 // Strip the unbridged-cast placeholder expression off unless it's
1831 // a consumed argument.
1832 if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
1833 !param->hasAttr<CFConsumedAttr>())
1834 argExpr = stripARCUnbridgedCast(argExpr);
1836 // If the parameter is __unknown_anytype, infer its type
1837 // from the argument.
1838 if (param->getType() == Context.UnknownAnyTy) {
1839 QualType paramType;
1840 ExprResult argE = checkUnknownAnyArg(SelLoc, argExpr, paramType);
1841 if (argE.isInvalid()) {
1842 IsError = true;
1843 } else {
1844 Args[i] = argE.get();
1846 // Update the parameter type in-place.
1847 param->setType(paramType);
1849 continue;
1852 QualType origParamType = param->getType();
1853 QualType paramType = param->getType();
1854 if (typeArgs)
1855 paramType = paramType.substObjCTypeArgs(
1856 Context,
1857 *typeArgs,
1858 ObjCSubstitutionContext::Parameter);
1860 if (RequireCompleteType(argExpr->getSourceRange().getBegin(),
1861 paramType,
1862 diag::err_call_incomplete_argument, argExpr))
1863 return true;
1865 InitializedEntity Entity
1866 = InitializedEntity::InitializeParameter(Context, param, paramType);
1867 ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(), argExpr);
1868 if (ArgE.isInvalid())
1869 IsError = true;
1870 else {
1871 Args[i] = ArgE.getAs<Expr>();
1873 // If we are type-erasing a block to a block-compatible
1874 // Objective-C pointer type, we may need to extend the lifetime
1875 // of the block object.
1876 if (typeArgs && Args[i]->isPRValue() && paramType->isBlockPointerType() &&
1877 Args[i]->getType()->isBlockPointerType() &&
1878 origParamType->isObjCObjectPointerType()) {
1879 ExprResult arg = Args[i];
1880 maybeExtendBlockObject(arg);
1881 Args[i] = arg.get();
1886 // Promote additional arguments to variadic methods.
1887 if (Method->isVariadic()) {
1888 for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
1889 if (Args[i]->isTypeDependent())
1890 continue;
1892 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
1893 nullptr);
1894 IsError |= Arg.isInvalid();
1895 Args[i] = Arg.get();
1897 } else {
1898 // Check for extra arguments to non-variadic methods.
1899 if (Args.size() != NumNamedArgs) {
1900 Diag(Args[NumNamedArgs]->getBeginLoc(),
1901 diag::err_typecheck_call_too_many_args)
1902 << 2 /*method*/ << NumNamedArgs << static_cast<unsigned>(Args.size())
1903 << Method->getSourceRange()
1904 << SourceRange(Args[NumNamedArgs]->getBeginLoc(),
1905 Args.back()->getEndLoc());
1909 DiagnoseSentinelCalls(Method, SelLoc, Args);
1911 // Do additional checkings on method.
1912 IsError |= CheckObjCMethodCall(
1913 Method, SelLoc, makeArrayRef(Args.data(), Args.size()));
1915 return IsError;
1918 bool Sema::isSelfExpr(Expr *RExpr) {
1919 // 'self' is objc 'self' in an objc method only.
1920 ObjCMethodDecl *Method =
1921 dyn_cast_or_null<ObjCMethodDecl>(CurContext->getNonClosureAncestor());
1922 return isSelfExpr(RExpr, Method);
1925 bool Sema::isSelfExpr(Expr *receiver, const ObjCMethodDecl *method) {
1926 if (!method) return false;
1928 receiver = receiver->IgnoreParenLValueCasts();
1929 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(receiver))
1930 if (DRE->getDecl() == method->getSelfDecl())
1931 return true;
1932 return false;
1935 /// LookupMethodInType - Look up a method in an ObjCObjectType.
1936 ObjCMethodDecl *Sema::LookupMethodInObjectType(Selector sel, QualType type,
1937 bool isInstance) {
1938 const ObjCObjectType *objType = type->castAs<ObjCObjectType>();
1939 if (ObjCInterfaceDecl *iface = objType->getInterface()) {
1940 // Look it up in the main interface (and categories, etc.)
1941 if (ObjCMethodDecl *method = iface->lookupMethod(sel, isInstance))
1942 return method;
1944 // Okay, look for "private" methods declared in any
1945 // @implementations we've seen.
1946 if (ObjCMethodDecl *method = iface->lookupPrivateMethod(sel, isInstance))
1947 return method;
1950 // Check qualifiers.
1951 for (const auto *I : objType->quals())
1952 if (ObjCMethodDecl *method = I->lookupMethod(sel, isInstance))
1953 return method;
1955 return nullptr;
1958 /// LookupMethodInQualifiedType - Lookups up a method in protocol qualifier
1959 /// list of a qualified objective pointer type.
1960 ObjCMethodDecl *Sema::LookupMethodInQualifiedType(Selector Sel,
1961 const ObjCObjectPointerType *OPT,
1962 bool Instance)
1964 ObjCMethodDecl *MD = nullptr;
1965 for (const auto *PROTO : OPT->quals()) {
1966 if ((MD = PROTO->lookupMethod(Sel, Instance))) {
1967 return MD;
1970 return nullptr;
1973 /// HandleExprPropertyRefExpr - Handle foo.bar where foo is a pointer to an
1974 /// objective C interface. This is a property reference expression.
1975 ExprResult Sema::
1976 HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT,
1977 Expr *BaseExpr, SourceLocation OpLoc,
1978 DeclarationName MemberName,
1979 SourceLocation MemberLoc,
1980 SourceLocation SuperLoc, QualType SuperType,
1981 bool Super) {
1982 const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
1983 ObjCInterfaceDecl *IFace = IFaceT->getDecl();
1985 if (!MemberName.isIdentifier()) {
1986 Diag(MemberLoc, diag::err_invalid_property_name)
1987 << MemberName << QualType(OPT, 0);
1988 return ExprError();
1991 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1993 SourceRange BaseRange = Super? SourceRange(SuperLoc)
1994 : BaseExpr->getSourceRange();
1995 if (RequireCompleteType(MemberLoc, OPT->getPointeeType(),
1996 diag::err_property_not_found_forward_class,
1997 MemberName, BaseRange))
1998 return ExprError();
2000 if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(
2001 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
2002 // Check whether we can reference this property.
2003 if (DiagnoseUseOfDecl(PD, MemberLoc))
2004 return ExprError();
2005 if (Super)
2006 return new (Context)
2007 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue,
2008 OK_ObjCProperty, MemberLoc, SuperLoc, SuperType);
2009 else
2010 return new (Context)
2011 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue,
2012 OK_ObjCProperty, MemberLoc, BaseExpr);
2014 // Check protocols on qualified interfaces.
2015 for (const auto *I : OPT->quals())
2016 if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(
2017 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
2018 // Check whether we can reference this property.
2019 if (DiagnoseUseOfDecl(PD, MemberLoc))
2020 return ExprError();
2022 if (Super)
2023 return new (Context) ObjCPropertyRefExpr(
2024 PD, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty, MemberLoc,
2025 SuperLoc, SuperType);
2026 else
2027 return new (Context)
2028 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue,
2029 OK_ObjCProperty, MemberLoc, BaseExpr);
2031 // If that failed, look for an "implicit" property by seeing if the nullary
2032 // selector is implemented.
2034 // FIXME: The logic for looking up nullary and unary selectors should be
2035 // shared with the code in ActOnInstanceMessage.
2037 Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2038 ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
2040 // May be found in property's qualified list.
2041 if (!Getter)
2042 Getter = LookupMethodInQualifiedType(Sel, OPT, true);
2044 // If this reference is in an @implementation, check for 'private' methods.
2045 if (!Getter)
2046 Getter = IFace->lookupPrivateMethod(Sel);
2048 if (Getter) {
2049 // Check if we can reference this property.
2050 if (DiagnoseUseOfDecl(Getter, MemberLoc))
2051 return ExprError();
2053 // If we found a getter then this may be a valid dot-reference, we
2054 // will look for the matching setter, in case it is needed.
2055 Selector SetterSel =
2056 SelectorTable::constructSetterSelector(PP.getIdentifierTable(),
2057 PP.getSelectorTable(), Member);
2058 ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
2060 // May be found in property's qualified list.
2061 if (!Setter)
2062 Setter = LookupMethodInQualifiedType(SetterSel, OPT, true);
2064 if (!Setter) {
2065 // If this reference is in an @implementation, also check for 'private'
2066 // methods.
2067 Setter = IFace->lookupPrivateMethod(SetterSel);
2070 if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2071 return ExprError();
2073 // Special warning if member name used in a property-dot for a setter accessor
2074 // does not use a property with same name; e.g. obj.X = ... for a property with
2075 // name 'x'.
2076 if (Setter && Setter->isImplicit() && Setter->isPropertyAccessor() &&
2077 !IFace->FindPropertyDeclaration(
2078 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
2079 if (const ObjCPropertyDecl *PDecl = Setter->findPropertyDecl()) {
2080 // Do not warn if user is using property-dot syntax to make call to
2081 // user named setter.
2082 if (!(PDecl->getPropertyAttributes() &
2083 ObjCPropertyAttribute::kind_setter))
2084 Diag(MemberLoc,
2085 diag::warn_property_access_suggest)
2086 << MemberName << QualType(OPT, 0) << PDecl->getName()
2087 << FixItHint::CreateReplacement(MemberLoc, PDecl->getName());
2091 if (Getter || Setter) {
2092 if (Super)
2093 return new (Context)
2094 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue,
2095 OK_ObjCProperty, MemberLoc, SuperLoc, SuperType);
2096 else
2097 return new (Context)
2098 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue,
2099 OK_ObjCProperty, MemberLoc, BaseExpr);
2103 // Attempt to correct for typos in property names.
2104 DeclFilterCCC<ObjCPropertyDecl> CCC{};
2105 if (TypoCorrection Corrected = CorrectTypo(
2106 DeclarationNameInfo(MemberName, MemberLoc), LookupOrdinaryName,
2107 nullptr, nullptr, CCC, CTK_ErrorRecovery, IFace, false, OPT)) {
2108 DeclarationName TypoResult = Corrected.getCorrection();
2109 if (TypoResult.isIdentifier() &&
2110 TypoResult.getAsIdentifierInfo() == Member) {
2111 // There is no need to try the correction if it is the same.
2112 NamedDecl *ChosenDecl =
2113 Corrected.isKeyword() ? nullptr : Corrected.getFoundDecl();
2114 if (ChosenDecl && isa<ObjCPropertyDecl>(ChosenDecl))
2115 if (cast<ObjCPropertyDecl>(ChosenDecl)->isClassProperty()) {
2116 // This is a class property, we should not use the instance to
2117 // access it.
2118 Diag(MemberLoc, diag::err_class_property_found) << MemberName
2119 << OPT->getInterfaceDecl()->getName()
2120 << FixItHint::CreateReplacement(BaseExpr->getSourceRange(),
2121 OPT->getInterfaceDecl()->getName());
2122 return ExprError();
2124 } else {
2125 diagnoseTypo(Corrected, PDiag(diag::err_property_not_found_suggest)
2126 << MemberName << QualType(OPT, 0));
2127 return HandleExprPropertyRefExpr(OPT, BaseExpr, OpLoc,
2128 TypoResult, MemberLoc,
2129 SuperLoc, SuperType, Super);
2132 ObjCInterfaceDecl *ClassDeclared;
2133 if (ObjCIvarDecl *Ivar =
2134 IFace->lookupInstanceVariable(Member, ClassDeclared)) {
2135 QualType T = Ivar->getType();
2136 if (const ObjCObjectPointerType * OBJPT =
2137 T->getAsObjCInterfacePointerType()) {
2138 if (RequireCompleteType(MemberLoc, OBJPT->getPointeeType(),
2139 diag::err_property_not_as_forward_class,
2140 MemberName, BaseExpr))
2141 return ExprError();
2143 Diag(MemberLoc,
2144 diag::err_ivar_access_using_property_syntax_suggest)
2145 << MemberName << QualType(OPT, 0) << Ivar->getDeclName()
2146 << FixItHint::CreateReplacement(OpLoc, "->");
2147 return ExprError();
2150 Diag(MemberLoc, diag::err_property_not_found)
2151 << MemberName << QualType(OPT, 0);
2152 if (Setter)
2153 Diag(Setter->getLocation(), diag::note_getter_unavailable)
2154 << MemberName << BaseExpr->getSourceRange();
2155 return ExprError();
2158 ExprResult Sema::
2159 ActOnClassPropertyRefExpr(IdentifierInfo &receiverName,
2160 IdentifierInfo &propertyName,
2161 SourceLocation receiverNameLoc,
2162 SourceLocation propertyNameLoc) {
2164 IdentifierInfo *receiverNamePtr = &receiverName;
2165 ObjCInterfaceDecl *IFace = getObjCInterfaceDecl(receiverNamePtr,
2166 receiverNameLoc);
2168 QualType SuperType;
2169 if (!IFace) {
2170 // If the "receiver" is 'super' in a method, handle it as an expression-like
2171 // property reference.
2172 if (receiverNamePtr->isStr("super")) {
2173 if (ObjCMethodDecl *CurMethod = tryCaptureObjCSelf(receiverNameLoc)) {
2174 if (auto classDecl = CurMethod->getClassInterface()) {
2175 SuperType = QualType(classDecl->getSuperClassType(), 0);
2176 if (CurMethod->isInstanceMethod()) {
2177 if (SuperType.isNull()) {
2178 // The current class does not have a superclass.
2179 Diag(receiverNameLoc, diag::err_root_class_cannot_use_super)
2180 << CurMethod->getClassInterface()->getIdentifier();
2181 return ExprError();
2183 QualType T = Context.getObjCObjectPointerType(SuperType);
2185 return HandleExprPropertyRefExpr(T->castAs<ObjCObjectPointerType>(),
2186 /*BaseExpr*/nullptr,
2187 SourceLocation()/*OpLoc*/,
2188 &propertyName,
2189 propertyNameLoc,
2190 receiverNameLoc, T, true);
2193 // Otherwise, if this is a class method, try dispatching to our
2194 // superclass.
2195 IFace = CurMethod->getClassInterface()->getSuperClass();
2200 if (!IFace) {
2201 Diag(receiverNameLoc, diag::err_expected_either) << tok::identifier
2202 << tok::l_paren;
2203 return ExprError();
2207 Selector GetterSel;
2208 Selector SetterSel;
2209 if (auto PD = IFace->FindPropertyDeclaration(
2210 &propertyName, ObjCPropertyQueryKind::OBJC_PR_query_class)) {
2211 GetterSel = PD->getGetterName();
2212 SetterSel = PD->getSetterName();
2213 } else {
2214 GetterSel = PP.getSelectorTable().getNullarySelector(&propertyName);
2215 SetterSel = SelectorTable::constructSetterSelector(
2216 PP.getIdentifierTable(), PP.getSelectorTable(), &propertyName);
2219 // Search for a declared property first.
2220 ObjCMethodDecl *Getter = IFace->lookupClassMethod(GetterSel);
2222 // If this reference is in an @implementation, check for 'private' methods.
2223 if (!Getter)
2224 Getter = IFace->lookupPrivateClassMethod(GetterSel);
2226 if (Getter) {
2227 // FIXME: refactor/share with ActOnMemberReference().
2228 // Check if we can reference this property.
2229 if (DiagnoseUseOfDecl(Getter, propertyNameLoc))
2230 return ExprError();
2233 // Look for the matching setter, in case it is needed.
2234 ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
2235 if (!Setter) {
2236 // If this reference is in an @implementation, also check for 'private'
2237 // methods.
2238 Setter = IFace->lookupPrivateClassMethod(SetterSel);
2240 // Look through local category implementations associated with the class.
2241 if (!Setter)
2242 Setter = IFace->getCategoryClassMethod(SetterSel);
2244 if (Setter && DiagnoseUseOfDecl(Setter, propertyNameLoc))
2245 return ExprError();
2247 if (Getter || Setter) {
2248 if (!SuperType.isNull())
2249 return new (Context)
2250 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue,
2251 OK_ObjCProperty, propertyNameLoc, receiverNameLoc,
2252 SuperType);
2254 return new (Context) ObjCPropertyRefExpr(
2255 Getter, Setter, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty,
2256 propertyNameLoc, receiverNameLoc, IFace);
2258 return ExprError(Diag(propertyNameLoc, diag::err_property_not_found)
2259 << &propertyName << Context.getObjCInterfaceType(IFace));
2262 namespace {
2264 class ObjCInterfaceOrSuperCCC final : public CorrectionCandidateCallback {
2265 public:
2266 ObjCInterfaceOrSuperCCC(ObjCMethodDecl *Method) {
2267 // Determine whether "super" is acceptable in the current context.
2268 if (Method && Method->getClassInterface())
2269 WantObjCSuper = Method->getClassInterface()->getSuperClass();
2272 bool ValidateCandidate(const TypoCorrection &candidate) override {
2273 return candidate.getCorrectionDeclAs<ObjCInterfaceDecl>() ||
2274 candidate.isKeyword("super");
2277 std::unique_ptr<CorrectionCandidateCallback> clone() override {
2278 return std::make_unique<ObjCInterfaceOrSuperCCC>(*this);
2282 } // end anonymous namespace
2284 Sema::ObjCMessageKind Sema::getObjCMessageKind(Scope *S,
2285 IdentifierInfo *Name,
2286 SourceLocation NameLoc,
2287 bool IsSuper,
2288 bool HasTrailingDot,
2289 ParsedType &ReceiverType) {
2290 ReceiverType = nullptr;
2292 // If the identifier is "super" and there is no trailing dot, we're
2293 // messaging super. If the identifier is "super" and there is a
2294 // trailing dot, it's an instance message.
2295 if (IsSuper && S->isInObjcMethodScope())
2296 return HasTrailingDot? ObjCInstanceMessage : ObjCSuperMessage;
2298 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
2299 LookupName(Result, S);
2301 switch (Result.getResultKind()) {
2302 case LookupResult::NotFound:
2303 // Normal name lookup didn't find anything. If we're in an
2304 // Objective-C method, look for ivars. If we find one, we're done!
2305 // FIXME: This is a hack. Ivar lookup should be part of normal
2306 // lookup.
2307 if (ObjCMethodDecl *Method = getCurMethodDecl()) {
2308 if (!Method->getClassInterface()) {
2309 // Fall back: let the parser try to parse it as an instance message.
2310 return ObjCInstanceMessage;
2313 ObjCInterfaceDecl *ClassDeclared;
2314 if (Method->getClassInterface()->lookupInstanceVariable(Name,
2315 ClassDeclared))
2316 return ObjCInstanceMessage;
2319 // Break out; we'll perform typo correction below.
2320 break;
2322 case LookupResult::NotFoundInCurrentInstantiation:
2323 case LookupResult::FoundOverloaded:
2324 case LookupResult::FoundUnresolvedValue:
2325 case LookupResult::Ambiguous:
2326 Result.suppressDiagnostics();
2327 return ObjCInstanceMessage;
2329 case LookupResult::Found: {
2330 // If the identifier is a class or not, and there is a trailing dot,
2331 // it's an instance message.
2332 if (HasTrailingDot)
2333 return ObjCInstanceMessage;
2334 // We found something. If it's a type, then we have a class
2335 // message. Otherwise, it's an instance message.
2336 NamedDecl *ND = Result.getFoundDecl();
2337 QualType T;
2338 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(ND))
2339 T = Context.getObjCInterfaceType(Class);
2340 else if (TypeDecl *Type = dyn_cast<TypeDecl>(ND)) {
2341 T = Context.getTypeDeclType(Type);
2342 DiagnoseUseOfDecl(Type, NameLoc);
2344 else
2345 return ObjCInstanceMessage;
2347 // We have a class message, and T is the type we're
2348 // messaging. Build source-location information for it.
2349 TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc);
2350 ReceiverType = CreateParsedType(T, TSInfo);
2351 return ObjCClassMessage;
2355 ObjCInterfaceOrSuperCCC CCC(getCurMethodDecl());
2356 if (TypoCorrection Corrected = CorrectTypo(
2357 Result.getLookupNameInfo(), Result.getLookupKind(), S, nullptr, CCC,
2358 CTK_ErrorRecovery, nullptr, false, nullptr, false)) {
2359 if (Corrected.isKeyword()) {
2360 // If we've found the keyword "super" (the only keyword that would be
2361 // returned by CorrectTypo), this is a send to super.
2362 diagnoseTypo(Corrected,
2363 PDiag(diag::err_unknown_receiver_suggest) << Name);
2364 return ObjCSuperMessage;
2365 } else if (ObjCInterfaceDecl *Class =
2366 Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
2367 // If we found a declaration, correct when it refers to an Objective-C
2368 // class.
2369 diagnoseTypo(Corrected,
2370 PDiag(diag::err_unknown_receiver_suggest) << Name);
2371 QualType T = Context.getObjCInterfaceType(Class);
2372 TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc);
2373 ReceiverType = CreateParsedType(T, TSInfo);
2374 return ObjCClassMessage;
2378 // Fall back: let the parser try to parse it as an instance message.
2379 return ObjCInstanceMessage;
2382 ExprResult Sema::ActOnSuperMessage(Scope *S,
2383 SourceLocation SuperLoc,
2384 Selector Sel,
2385 SourceLocation LBracLoc,
2386 ArrayRef<SourceLocation> SelectorLocs,
2387 SourceLocation RBracLoc,
2388 MultiExprArg Args) {
2389 // Determine whether we are inside a method or not.
2390 ObjCMethodDecl *Method = tryCaptureObjCSelf(SuperLoc);
2391 if (!Method) {
2392 Diag(SuperLoc, diag::err_invalid_receiver_to_message_super);
2393 return ExprError();
2396 ObjCInterfaceDecl *Class = Method->getClassInterface();
2397 if (!Class) {
2398 Diag(SuperLoc, diag::err_no_super_class_message)
2399 << Method->getDeclName();
2400 return ExprError();
2403 QualType SuperTy(Class->getSuperClassType(), 0);
2404 if (SuperTy.isNull()) {
2405 // The current class does not have a superclass.
2406 Diag(SuperLoc, diag::err_root_class_cannot_use_super)
2407 << Class->getIdentifier();
2408 return ExprError();
2411 // We are in a method whose class has a superclass, so 'super'
2412 // is acting as a keyword.
2413 if (Method->getSelector() == Sel)
2414 getCurFunction()->ObjCShouldCallSuper = false;
2416 if (Method->isInstanceMethod()) {
2417 // Since we are in an instance method, this is an instance
2418 // message to the superclass instance.
2419 SuperTy = Context.getObjCObjectPointerType(SuperTy);
2420 return BuildInstanceMessage(nullptr, SuperTy, SuperLoc,
2421 Sel, /*Method=*/nullptr,
2422 LBracLoc, SelectorLocs, RBracLoc, Args);
2425 // Since we are in a class method, this is a class message to
2426 // the superclass.
2427 return BuildClassMessage(/*ReceiverTypeInfo=*/nullptr,
2428 SuperTy,
2429 SuperLoc, Sel, /*Method=*/nullptr,
2430 LBracLoc, SelectorLocs, RBracLoc, Args);
2433 ExprResult Sema::BuildClassMessageImplicit(QualType ReceiverType,
2434 bool isSuperReceiver,
2435 SourceLocation Loc,
2436 Selector Sel,
2437 ObjCMethodDecl *Method,
2438 MultiExprArg Args) {
2439 TypeSourceInfo *receiverTypeInfo = nullptr;
2440 if (!ReceiverType.isNull())
2441 receiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType);
2443 return BuildClassMessage(receiverTypeInfo, ReceiverType,
2444 /*SuperLoc=*/isSuperReceiver ? Loc : SourceLocation(),
2445 Sel, Method, Loc, Loc, Loc, Args,
2446 /*isImplicit=*/true);
2449 static void applyCocoaAPICheck(Sema &S, const ObjCMessageExpr *Msg,
2450 unsigned DiagID,
2451 bool (*refactor)(const ObjCMessageExpr *,
2452 const NSAPI &, edit::Commit &)) {
2453 SourceLocation MsgLoc = Msg->getExprLoc();
2454 if (S.Diags.isIgnored(DiagID, MsgLoc))
2455 return;
2457 SourceManager &SM = S.SourceMgr;
2458 edit::Commit ECommit(SM, S.LangOpts);
2459 if (refactor(Msg,*S.NSAPIObj, ECommit)) {
2460 auto Builder = S.Diag(MsgLoc, DiagID)
2461 << Msg->getSelector() << Msg->getSourceRange();
2462 // FIXME: Don't emit diagnostic at all if fixits are non-commitable.
2463 if (!ECommit.isCommitable())
2464 return;
2465 for (edit::Commit::edit_iterator
2466 I = ECommit.edit_begin(), E = ECommit.edit_end(); I != E; ++I) {
2467 const edit::Commit::Edit &Edit = *I;
2468 switch (Edit.Kind) {
2469 case edit::Commit::Act_Insert:
2470 Builder.AddFixItHint(FixItHint::CreateInsertion(Edit.OrigLoc,
2471 Edit.Text,
2472 Edit.BeforePrev));
2473 break;
2474 case edit::Commit::Act_InsertFromRange:
2475 Builder.AddFixItHint(
2476 FixItHint::CreateInsertionFromRange(Edit.OrigLoc,
2477 Edit.getInsertFromRange(SM),
2478 Edit.BeforePrev));
2479 break;
2480 case edit::Commit::Act_Remove:
2481 Builder.AddFixItHint(FixItHint::CreateRemoval(Edit.getFileRange(SM)));
2482 break;
2488 static void checkCocoaAPI(Sema &S, const ObjCMessageExpr *Msg) {
2489 applyCocoaAPICheck(S, Msg, diag::warn_objc_redundant_literal_use,
2490 edit::rewriteObjCRedundantCallWithLiteral);
2493 static void checkFoundationAPI(Sema &S, SourceLocation Loc,
2494 const ObjCMethodDecl *Method,
2495 ArrayRef<Expr *> Args, QualType ReceiverType,
2496 bool IsClassObjectCall) {
2497 // Check if this is a performSelector method that uses a selector that returns
2498 // a record or a vector type.
2499 if (Method->getSelector().getMethodFamily() != OMF_performSelector ||
2500 Args.empty())
2501 return;
2502 const auto *SE = dyn_cast<ObjCSelectorExpr>(Args[0]->IgnoreParens());
2503 if (!SE)
2504 return;
2505 ObjCMethodDecl *ImpliedMethod;
2506 if (!IsClassObjectCall) {
2507 const auto *OPT = ReceiverType->getAs<ObjCObjectPointerType>();
2508 if (!OPT || !OPT->getInterfaceDecl())
2509 return;
2510 ImpliedMethod =
2511 OPT->getInterfaceDecl()->lookupInstanceMethod(SE->getSelector());
2512 if (!ImpliedMethod)
2513 ImpliedMethod =
2514 OPT->getInterfaceDecl()->lookupPrivateMethod(SE->getSelector());
2515 } else {
2516 const auto *IT = ReceiverType->getAs<ObjCInterfaceType>();
2517 if (!IT)
2518 return;
2519 ImpliedMethod = IT->getDecl()->lookupClassMethod(SE->getSelector());
2520 if (!ImpliedMethod)
2521 ImpliedMethod =
2522 IT->getDecl()->lookupPrivateClassMethod(SE->getSelector());
2524 if (!ImpliedMethod)
2525 return;
2526 QualType Ret = ImpliedMethod->getReturnType();
2527 if (Ret->isRecordType() || Ret->isVectorType() || Ret->isExtVectorType()) {
2528 S.Diag(Loc, diag::warn_objc_unsafe_perform_selector)
2529 << Method->getSelector()
2530 << (!Ret->isRecordType()
2531 ? /*Vector*/ 2
2532 : Ret->isUnionType() ? /*Union*/ 1 : /*Struct*/ 0);
2533 S.Diag(ImpliedMethod->getBeginLoc(),
2534 diag::note_objc_unsafe_perform_selector_method_declared_here)
2535 << ImpliedMethod->getSelector() << Ret;
2539 /// Diagnose use of %s directive in an NSString which is being passed
2540 /// as formatting string to formatting method.
2541 static void
2542 DiagnoseCStringFormatDirectiveInObjCAPI(Sema &S,
2543 ObjCMethodDecl *Method,
2544 Selector Sel,
2545 Expr **Args, unsigned NumArgs) {
2546 unsigned Idx = 0;
2547 bool Format = false;
2548 ObjCStringFormatFamily SFFamily = Sel.getStringFormatFamily();
2549 if (SFFamily == ObjCStringFormatFamily::SFF_NSString) {
2550 Idx = 0;
2551 Format = true;
2553 else if (Method) {
2554 for (const auto *I : Method->specific_attrs<FormatAttr>()) {
2555 if (S.GetFormatNSStringIdx(I, Idx)) {
2556 Format = true;
2557 break;
2561 if (!Format || NumArgs <= Idx)
2562 return;
2564 Expr *FormatExpr = Args[Idx];
2565 if (ObjCStringLiteral *OSL =
2566 dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts())) {
2567 StringLiteral *FormatString = OSL->getString();
2568 if (S.FormatStringHasSArg(FormatString)) {
2569 S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
2570 << "%s" << 0 << 0;
2571 if (Method)
2572 S.Diag(Method->getLocation(), diag::note_method_declared_at)
2573 << Method->getDeclName();
2578 /// Build an Objective-C class message expression.
2580 /// This routine takes care of both normal class messages and
2581 /// class messages to the superclass.
2583 /// \param ReceiverTypeInfo Type source information that describes the
2584 /// receiver of this message. This may be NULL, in which case we are
2585 /// sending to the superclass and \p SuperLoc must be a valid source
2586 /// location.
2588 /// \param ReceiverType The type of the object receiving the
2589 /// message. When \p ReceiverTypeInfo is non-NULL, this is the same
2590 /// type as that refers to. For a superclass send, this is the type of
2591 /// the superclass.
2593 /// \param SuperLoc The location of the "super" keyword in a
2594 /// superclass message.
2596 /// \param Sel The selector to which the message is being sent.
2598 /// \param Method The method that this class message is invoking, if
2599 /// already known.
2601 /// \param LBracLoc The location of the opening square bracket ']'.
2603 /// \param RBracLoc The location of the closing square bracket ']'.
2605 /// \param ArgsIn The message arguments.
2606 ExprResult Sema::BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo,
2607 QualType ReceiverType,
2608 SourceLocation SuperLoc,
2609 Selector Sel,
2610 ObjCMethodDecl *Method,
2611 SourceLocation LBracLoc,
2612 ArrayRef<SourceLocation> SelectorLocs,
2613 SourceLocation RBracLoc,
2614 MultiExprArg ArgsIn,
2615 bool isImplicit) {
2616 SourceLocation Loc = SuperLoc.isValid()? SuperLoc
2617 : ReceiverTypeInfo->getTypeLoc().getSourceRange().getBegin();
2618 if (LBracLoc.isInvalid()) {
2619 Diag(Loc, diag::err_missing_open_square_message_send)
2620 << FixItHint::CreateInsertion(Loc, "[");
2621 LBracLoc = Loc;
2623 ArrayRef<SourceLocation> SelectorSlotLocs;
2624 if (!SelectorLocs.empty() && SelectorLocs.front().isValid())
2625 SelectorSlotLocs = SelectorLocs;
2626 else
2627 SelectorSlotLocs = Loc;
2628 SourceLocation SelLoc = SelectorSlotLocs.front();
2630 if (ReceiverType->isDependentType()) {
2631 // If the receiver type is dependent, we can't type-check anything
2632 // at this point. Build a dependent expression.
2633 unsigned NumArgs = ArgsIn.size();
2634 Expr **Args = ArgsIn.data();
2635 assert(SuperLoc.isInvalid() && "Message to super with dependent type");
2636 return ObjCMessageExpr::Create(
2637 Context, ReceiverType, VK_PRValue, LBracLoc, ReceiverTypeInfo, Sel,
2638 SelectorLocs, /*Method=*/nullptr, makeArrayRef(Args, NumArgs), RBracLoc,
2639 isImplicit);
2642 // Find the class to which we are sending this message.
2643 ObjCInterfaceDecl *Class = nullptr;
2644 const ObjCObjectType *ClassType = ReceiverType->getAs<ObjCObjectType>();
2645 if (!ClassType || !(Class = ClassType->getInterface())) {
2646 Diag(Loc, diag::err_invalid_receiver_class_message)
2647 << ReceiverType;
2648 return ExprError();
2650 assert(Class && "We don't know which class we're messaging?");
2651 // objc++ diagnoses during typename annotation.
2652 if (!getLangOpts().CPlusPlus)
2653 (void)DiagnoseUseOfDecl(Class, SelectorSlotLocs);
2654 // Find the method we are messaging.
2655 if (!Method) {
2656 SourceRange TypeRange
2657 = SuperLoc.isValid()? SourceRange(SuperLoc)
2658 : ReceiverTypeInfo->getTypeLoc().getSourceRange();
2659 if (RequireCompleteType(Loc, Context.getObjCInterfaceType(Class),
2660 (getLangOpts().ObjCAutoRefCount
2661 ? diag::err_arc_receiver_forward_class
2662 : diag::warn_receiver_forward_class),
2663 TypeRange)) {
2664 // A forward class used in messaging is treated as a 'Class'
2665 Method = LookupFactoryMethodInGlobalPool(Sel,
2666 SourceRange(LBracLoc, RBracLoc));
2667 if (Method && !getLangOpts().ObjCAutoRefCount)
2668 Diag(Method->getLocation(), diag::note_method_sent_forward_class)
2669 << Method->getDeclName();
2671 if (!Method)
2672 Method = Class->lookupClassMethod(Sel);
2674 // If we have an implementation in scope, check "private" methods.
2675 if (!Method)
2676 Method = Class->lookupPrivateClassMethod(Sel);
2678 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs,
2679 nullptr, false, false, Class))
2680 return ExprError();
2683 // Check the argument types and determine the result type.
2684 QualType ReturnType;
2685 ExprValueKind VK = VK_PRValue;
2687 unsigned NumArgs = ArgsIn.size();
2688 Expr **Args = ArgsIn.data();
2689 if (CheckMessageArgumentTypes(/*Receiver=*/nullptr, ReceiverType,
2690 MultiExprArg(Args, NumArgs), Sel, SelectorLocs,
2691 Method, true, SuperLoc.isValid(), LBracLoc,
2692 RBracLoc, SourceRange(), ReturnType, VK))
2693 return ExprError();
2695 if (Method && !Method->getReturnType()->isVoidType() &&
2696 RequireCompleteType(LBracLoc, Method->getReturnType(),
2697 diag::err_illegal_message_expr_incomplete_type))
2698 return ExprError();
2700 if (Method && Method->isDirectMethod() && SuperLoc.isValid()) {
2701 Diag(SuperLoc, diag::err_messaging_super_with_direct_method)
2702 << FixItHint::CreateReplacement(
2703 SuperLoc, getLangOpts().ObjCAutoRefCount
2704 ? "self"
2705 : Method->getClassInterface()->getName());
2706 Diag(Method->getLocation(), diag::note_direct_method_declared_at)
2707 << Method->getDeclName();
2710 // Warn about explicit call of +initialize on its own class. But not on 'super'.
2711 if (Method && Method->getMethodFamily() == OMF_initialize) {
2712 if (!SuperLoc.isValid()) {
2713 const ObjCInterfaceDecl *ID =
2714 dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext());
2715 if (ID == Class) {
2716 Diag(Loc, diag::warn_direct_initialize_call);
2717 Diag(Method->getLocation(), diag::note_method_declared_at)
2718 << Method->getDeclName();
2721 else if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) {
2722 // [super initialize] is allowed only within an +initialize implementation
2723 if (CurMeth->getMethodFamily() != OMF_initialize) {
2724 Diag(Loc, diag::warn_direct_super_initialize_call);
2725 Diag(Method->getLocation(), diag::note_method_declared_at)
2726 << Method->getDeclName();
2727 Diag(CurMeth->getLocation(), diag::note_method_declared_at)
2728 << CurMeth->getDeclName();
2733 DiagnoseCStringFormatDirectiveInObjCAPI(*this, Method, Sel, Args, NumArgs);
2735 // Construct the appropriate ObjCMessageExpr.
2736 ObjCMessageExpr *Result;
2737 if (SuperLoc.isValid())
2738 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
2739 SuperLoc, /*IsInstanceSuper=*/false,
2740 ReceiverType, Sel, SelectorLocs,
2741 Method, makeArrayRef(Args, NumArgs),
2742 RBracLoc, isImplicit);
2743 else {
2744 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
2745 ReceiverTypeInfo, Sel, SelectorLocs,
2746 Method, makeArrayRef(Args, NumArgs),
2747 RBracLoc, isImplicit);
2748 if (!isImplicit)
2749 checkCocoaAPI(*this, Result);
2751 if (Method)
2752 checkFoundationAPI(*this, SelLoc, Method, makeArrayRef(Args, NumArgs),
2753 ReceiverType, /*IsClassObjectCall=*/true);
2754 return MaybeBindToTemporary(Result);
2757 // ActOnClassMessage - used for both unary and keyword messages.
2758 // ArgExprs is optional - if it is present, the number of expressions
2759 // is obtained from Sel.getNumArgs().
2760 ExprResult Sema::ActOnClassMessage(Scope *S,
2761 ParsedType Receiver,
2762 Selector Sel,
2763 SourceLocation LBracLoc,
2764 ArrayRef<SourceLocation> SelectorLocs,
2765 SourceLocation RBracLoc,
2766 MultiExprArg Args) {
2767 TypeSourceInfo *ReceiverTypeInfo;
2768 QualType ReceiverType = GetTypeFromParser(Receiver, &ReceiverTypeInfo);
2769 if (ReceiverType.isNull())
2770 return ExprError();
2772 if (!ReceiverTypeInfo)
2773 ReceiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType, LBracLoc);
2775 return BuildClassMessage(ReceiverTypeInfo, ReceiverType,
2776 /*SuperLoc=*/SourceLocation(), Sel,
2777 /*Method=*/nullptr, LBracLoc, SelectorLocs, RBracLoc,
2778 Args);
2781 ExprResult Sema::BuildInstanceMessageImplicit(Expr *Receiver,
2782 QualType ReceiverType,
2783 SourceLocation Loc,
2784 Selector Sel,
2785 ObjCMethodDecl *Method,
2786 MultiExprArg Args) {
2787 return BuildInstanceMessage(Receiver, ReceiverType,
2788 /*SuperLoc=*/!Receiver ? Loc : SourceLocation(),
2789 Sel, Method, Loc, Loc, Loc, Args,
2790 /*isImplicit=*/true);
2793 static bool isMethodDeclaredInRootProtocol(Sema &S, const ObjCMethodDecl *M) {
2794 if (!S.NSAPIObj)
2795 return false;
2796 const auto *Protocol = dyn_cast<ObjCProtocolDecl>(M->getDeclContext());
2797 if (!Protocol)
2798 return false;
2799 const IdentifierInfo *II = S.NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
2800 if (const auto *RootClass = dyn_cast_or_null<ObjCInterfaceDecl>(
2801 S.LookupSingleName(S.TUScope, II, Protocol->getBeginLoc(),
2802 Sema::LookupOrdinaryName))) {
2803 for (const ObjCProtocolDecl *P : RootClass->all_referenced_protocols()) {
2804 if (P->getCanonicalDecl() == Protocol->getCanonicalDecl())
2805 return true;
2808 return false;
2811 /// Build an Objective-C instance message expression.
2813 /// This routine takes care of both normal instance messages and
2814 /// instance messages to the superclass instance.
2816 /// \param Receiver The expression that computes the object that will
2817 /// receive this message. This may be empty, in which case we are
2818 /// sending to the superclass instance and \p SuperLoc must be a valid
2819 /// source location.
2821 /// \param ReceiverType The (static) type of the object receiving the
2822 /// message. When a \p Receiver expression is provided, this is the
2823 /// same type as that expression. For a superclass instance send, this
2824 /// is a pointer to the type of the superclass.
2826 /// \param SuperLoc The location of the "super" keyword in a
2827 /// superclass instance message.
2829 /// \param Sel The selector to which the message is being sent.
2831 /// \param Method The method that this instance message is invoking, if
2832 /// already known.
2834 /// \param LBracLoc The location of the opening square bracket ']'.
2836 /// \param RBracLoc The location of the closing square bracket ']'.
2838 /// \param ArgsIn The message arguments.
2839 ExprResult Sema::BuildInstanceMessage(Expr *Receiver,
2840 QualType ReceiverType,
2841 SourceLocation SuperLoc,
2842 Selector Sel,
2843 ObjCMethodDecl *Method,
2844 SourceLocation LBracLoc,
2845 ArrayRef<SourceLocation> SelectorLocs,
2846 SourceLocation RBracLoc,
2847 MultiExprArg ArgsIn,
2848 bool isImplicit) {
2849 assert((Receiver || SuperLoc.isValid()) && "If the Receiver is null, the "
2850 "SuperLoc must be valid so we can "
2851 "use it instead.");
2853 // The location of the receiver.
2854 SourceLocation Loc = SuperLoc.isValid() ? SuperLoc : Receiver->getBeginLoc();
2855 SourceRange RecRange =
2856 SuperLoc.isValid()? SuperLoc : Receiver->getSourceRange();
2857 ArrayRef<SourceLocation> SelectorSlotLocs;
2858 if (!SelectorLocs.empty() && SelectorLocs.front().isValid())
2859 SelectorSlotLocs = SelectorLocs;
2860 else
2861 SelectorSlotLocs = Loc;
2862 SourceLocation SelLoc = SelectorSlotLocs.front();
2864 if (LBracLoc.isInvalid()) {
2865 Diag(Loc, diag::err_missing_open_square_message_send)
2866 << FixItHint::CreateInsertion(Loc, "[");
2867 LBracLoc = Loc;
2870 // If we have a receiver expression, perform appropriate promotions
2871 // and determine receiver type.
2872 if (Receiver) {
2873 if (Receiver->hasPlaceholderType()) {
2874 ExprResult Result;
2875 if (Receiver->getType() == Context.UnknownAnyTy)
2876 Result = forceUnknownAnyToType(Receiver, Context.getObjCIdType());
2877 else
2878 Result = CheckPlaceholderExpr(Receiver);
2879 if (Result.isInvalid()) return ExprError();
2880 Receiver = Result.get();
2883 if (Receiver->isTypeDependent()) {
2884 // If the receiver is type-dependent, we can't type-check anything
2885 // at this point. Build a dependent expression.
2886 unsigned NumArgs = ArgsIn.size();
2887 Expr **Args = ArgsIn.data();
2888 assert(SuperLoc.isInvalid() && "Message to super with dependent type");
2889 return ObjCMessageExpr::Create(
2890 Context, Context.DependentTy, VK_PRValue, LBracLoc, Receiver, Sel,
2891 SelectorLocs, /*Method=*/nullptr, makeArrayRef(Args, NumArgs),
2892 RBracLoc, isImplicit);
2895 // If necessary, apply function/array conversion to the receiver.
2896 // C99 6.7.5.3p[7,8].
2897 ExprResult Result = DefaultFunctionArrayLvalueConversion(Receiver);
2898 if (Result.isInvalid())
2899 return ExprError();
2900 Receiver = Result.get();
2901 ReceiverType = Receiver->getType();
2903 // If the receiver is an ObjC pointer, a block pointer, or an
2904 // __attribute__((NSObject)) pointer, we don't need to do any
2905 // special conversion in order to look up a receiver.
2906 if (ReceiverType->isObjCRetainableType()) {
2907 // do nothing
2908 } else if (!getLangOpts().ObjCAutoRefCount &&
2909 !Context.getObjCIdType().isNull() &&
2910 (ReceiverType->isPointerType() ||
2911 ReceiverType->isIntegerType())) {
2912 // Implicitly convert integers and pointers to 'id' but emit a warning.
2913 // But not in ARC.
2914 Diag(Loc, diag::warn_bad_receiver_type) << ReceiverType << RecRange;
2915 if (ReceiverType->isPointerType()) {
2916 Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(),
2917 CK_CPointerToObjCPointerCast).get();
2918 } else {
2919 // TODO: specialized warning on null receivers?
2920 bool IsNull = Receiver->isNullPointerConstant(Context,
2921 Expr::NPC_ValueDependentIsNull);
2922 CastKind Kind = IsNull ? CK_NullToPointer : CK_IntegralToPointer;
2923 Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(),
2924 Kind).get();
2926 ReceiverType = Receiver->getType();
2927 } else if (getLangOpts().CPlusPlus) {
2928 // The receiver must be a complete type.
2929 if (RequireCompleteType(Loc, Receiver->getType(),
2930 diag::err_incomplete_receiver_type))
2931 return ExprError();
2933 ExprResult result = PerformContextuallyConvertToObjCPointer(Receiver);
2934 if (result.isUsable()) {
2935 Receiver = result.get();
2936 ReceiverType = Receiver->getType();
2941 // There's a somewhat weird interaction here where we assume that we
2942 // won't actually have a method unless we also don't need to do some
2943 // of the more detailed type-checking on the receiver.
2945 if (!Method) {
2946 // Handle messages to id and __kindof types (where we use the
2947 // global method pool).
2948 const ObjCObjectType *typeBound = nullptr;
2949 bool receiverIsIdLike = ReceiverType->isObjCIdOrObjectKindOfType(Context,
2950 typeBound);
2951 if (receiverIsIdLike || ReceiverType->isBlockPointerType() ||
2952 (Receiver && Context.isObjCNSObjectType(Receiver->getType()))) {
2953 SmallVector<ObjCMethodDecl*, 4> Methods;
2954 // If we have a type bound, further filter the methods.
2955 CollectMultipleMethodsInGlobalPool(Sel, Methods, true/*InstanceFirst*/,
2956 true/*CheckTheOther*/, typeBound);
2957 if (!Methods.empty()) {
2958 // We choose the first method as the initial candidate, then try to
2959 // select a better one.
2960 Method = Methods[0];
2962 if (ObjCMethodDecl *BestMethod =
2963 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod(), Methods))
2964 Method = BestMethod;
2966 if (!AreMultipleMethodsInGlobalPool(Sel, Method,
2967 SourceRange(LBracLoc, RBracLoc),
2968 receiverIsIdLike, Methods))
2969 DiagnoseUseOfDecl(Method, SelectorSlotLocs);
2971 } else if (ReceiverType->isObjCClassOrClassKindOfType() ||
2972 ReceiverType->isObjCQualifiedClassType()) {
2973 // Handle messages to Class.
2974 // We allow sending a message to a qualified Class ("Class<foo>"), which
2975 // is ok as long as one of the protocols implements the selector (if not,
2976 // warn).
2977 if (!ReceiverType->isObjCClassOrClassKindOfType()) {
2978 const ObjCObjectPointerType *QClassTy
2979 = ReceiverType->getAsObjCQualifiedClassType();
2980 // Search protocols for class methods.
2981 Method = LookupMethodInQualifiedType(Sel, QClassTy, false);
2982 if (!Method) {
2983 Method = LookupMethodInQualifiedType(Sel, QClassTy, true);
2984 // warn if instance method found for a Class message.
2985 if (Method && !isMethodDeclaredInRootProtocol(*this, Method)) {
2986 Diag(SelLoc, diag::warn_instance_method_on_class_found)
2987 << Method->getSelector() << Sel;
2988 Diag(Method->getLocation(), diag::note_method_declared_at)
2989 << Method->getDeclName();
2992 } else {
2993 if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) {
2994 if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) {
2995 // As a guess, try looking for the method in the current interface.
2996 // This very well may not produce the "right" method.
2998 // First check the public methods in the class interface.
2999 Method = ClassDecl->lookupClassMethod(Sel);
3001 if (!Method)
3002 Method = ClassDecl->lookupPrivateClassMethod(Sel);
3004 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs))
3005 return ExprError();
3008 if (!Method) {
3009 // If not messaging 'self', look for any factory method named 'Sel'.
3010 if (!Receiver || !isSelfExpr(Receiver)) {
3011 // If no class (factory) method was found, check if an _instance_
3012 // method of the same name exists in the root class only.
3013 SmallVector<ObjCMethodDecl*, 4> Methods;
3014 CollectMultipleMethodsInGlobalPool(Sel, Methods,
3015 false/*InstanceFirst*/,
3016 true/*CheckTheOther*/);
3017 if (!Methods.empty()) {
3018 // We choose the first method as the initial candidate, then try
3019 // to select a better one.
3020 Method = Methods[0];
3022 // If we find an instance method, emit warning.
3023 if (Method->isInstanceMethod()) {
3024 if (const ObjCInterfaceDecl *ID =
3025 dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext())) {
3026 if (ID->getSuperClass())
3027 Diag(SelLoc, diag::warn_root_inst_method_not_found)
3028 << Sel << SourceRange(LBracLoc, RBracLoc);
3032 if (ObjCMethodDecl *BestMethod =
3033 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod(),
3034 Methods))
3035 Method = BestMethod;
3040 } else {
3041 ObjCInterfaceDecl *ClassDecl = nullptr;
3043 // We allow sending a message to a qualified ID ("id<foo>"), which is ok as
3044 // long as one of the protocols implements the selector (if not, warn).
3045 // And as long as message is not deprecated/unavailable (warn if it is).
3046 if (const ObjCObjectPointerType *QIdTy
3047 = ReceiverType->getAsObjCQualifiedIdType()) {
3048 // Search protocols for instance methods.
3049 Method = LookupMethodInQualifiedType(Sel, QIdTy, true);
3050 if (!Method)
3051 Method = LookupMethodInQualifiedType(Sel, QIdTy, false);
3052 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs))
3053 return ExprError();
3054 } else if (const ObjCObjectPointerType *OCIType
3055 = ReceiverType->getAsObjCInterfacePointerType()) {
3056 // We allow sending a message to a pointer to an interface (an object).
3057 ClassDecl = OCIType->getInterfaceDecl();
3059 // Try to complete the type. Under ARC, this is a hard error from which
3060 // we don't try to recover.
3061 // FIXME: In the non-ARC case, this will still be a hard error if the
3062 // definition is found in a module that's not visible.
3063 const ObjCInterfaceDecl *forwardClass = nullptr;
3064 if (RequireCompleteType(Loc, OCIType->getPointeeType(),
3065 getLangOpts().ObjCAutoRefCount
3066 ? diag::err_arc_receiver_forward_instance
3067 : diag::warn_receiver_forward_instance,
3068 RecRange)) {
3069 if (getLangOpts().ObjCAutoRefCount)
3070 return ExprError();
3072 forwardClass = OCIType->getInterfaceDecl();
3073 Diag(Receiver ? Receiver->getBeginLoc() : SuperLoc,
3074 diag::note_receiver_is_id);
3075 Method = nullptr;
3076 } else {
3077 Method = ClassDecl->lookupInstanceMethod(Sel);
3080 if (!Method)
3081 // Search protocol qualifiers.
3082 Method = LookupMethodInQualifiedType(Sel, OCIType, true);
3084 if (!Method) {
3085 // If we have implementations in scope, check "private" methods.
3086 Method = ClassDecl->lookupPrivateMethod(Sel);
3088 if (!Method && getLangOpts().ObjCAutoRefCount) {
3089 Diag(SelLoc, diag::err_arc_may_not_respond)
3090 << OCIType->getPointeeType() << Sel << RecRange
3091 << SourceRange(SelectorLocs.front(), SelectorLocs.back());
3092 return ExprError();
3095 if (!Method && (!Receiver || !isSelfExpr(Receiver))) {
3096 // If we still haven't found a method, look in the global pool. This
3097 // behavior isn't very desirable, however we need it for GCC
3098 // compatibility. FIXME: should we deviate??
3099 if (OCIType->qual_empty()) {
3100 SmallVector<ObjCMethodDecl*, 4> Methods;
3101 CollectMultipleMethodsInGlobalPool(Sel, Methods,
3102 true/*InstanceFirst*/,
3103 false/*CheckTheOther*/);
3104 if (!Methods.empty()) {
3105 // We choose the first method as the initial candidate, then try
3106 // to select a better one.
3107 Method = Methods[0];
3109 if (ObjCMethodDecl *BestMethod =
3110 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod(),
3111 Methods))
3112 Method = BestMethod;
3114 AreMultipleMethodsInGlobalPool(Sel, Method,
3115 SourceRange(LBracLoc, RBracLoc),
3116 true/*receiverIdOrClass*/,
3117 Methods);
3119 if (Method && !forwardClass)
3120 Diag(SelLoc, diag::warn_maynot_respond)
3121 << OCIType->getInterfaceDecl()->getIdentifier()
3122 << Sel << RecRange;
3126 if (Method && DiagnoseUseOfDecl(Method, SelectorSlotLocs, forwardClass))
3127 return ExprError();
3128 } else {
3129 // Reject other random receiver types (e.g. structs).
3130 Diag(Loc, diag::err_bad_receiver_type) << ReceiverType << RecRange;
3131 return ExprError();
3136 FunctionScopeInfo *DIFunctionScopeInfo =
3137 (Method && Method->getMethodFamily() == OMF_init)
3138 ? getEnclosingFunction() : nullptr;
3140 if (Method && Method->isDirectMethod()) {
3141 if (ReceiverType->isObjCIdType() && !isImplicit) {
3142 Diag(Receiver->getExprLoc(),
3143 diag::err_messaging_unqualified_id_with_direct_method);
3144 Diag(Method->getLocation(), diag::note_direct_method_declared_at)
3145 << Method->getDeclName();
3148 // Under ARC, self can't be assigned, and doing a direct call to `self`
3149 // when it's a Class is hence safe. For other cases, we can't trust `self`
3150 // is what we think it is, so we reject it.
3151 if (ReceiverType->isObjCClassType() && !isImplicit &&
3152 !(Receiver->isObjCSelfExpr() && getLangOpts().ObjCAutoRefCount)) {
3154 auto Builder = Diag(Receiver->getExprLoc(),
3155 diag::err_messaging_class_with_direct_method);
3156 if (Receiver->isObjCSelfExpr()) {
3157 Builder.AddFixItHint(FixItHint::CreateReplacement(
3158 RecRange, Method->getClassInterface()->getName()));
3161 Diag(Method->getLocation(), diag::note_direct_method_declared_at)
3162 << Method->getDeclName();
3165 if (SuperLoc.isValid()) {
3167 auto Builder =
3168 Diag(SuperLoc, diag::err_messaging_super_with_direct_method);
3169 if (ReceiverType->isObjCClassType()) {
3170 Builder.AddFixItHint(FixItHint::CreateReplacement(
3171 SuperLoc, Method->getClassInterface()->getName()));
3172 } else {
3173 Builder.AddFixItHint(FixItHint::CreateReplacement(SuperLoc, "self"));
3176 Diag(Method->getLocation(), diag::note_direct_method_declared_at)
3177 << Method->getDeclName();
3179 } else if (ReceiverType->isObjCIdType() && !isImplicit) {
3180 Diag(Receiver->getExprLoc(), diag::warn_messaging_unqualified_id);
3183 if (DIFunctionScopeInfo &&
3184 DIFunctionScopeInfo->ObjCIsDesignatedInit &&
3185 (SuperLoc.isValid() || isSelfExpr(Receiver))) {
3186 bool isDesignatedInitChain = false;
3187 if (SuperLoc.isValid()) {
3188 if (const ObjCObjectPointerType *
3189 OCIType = ReceiverType->getAsObjCInterfacePointerType()) {
3190 if (const ObjCInterfaceDecl *ID = OCIType->getInterfaceDecl()) {
3191 // Either we know this is a designated initializer or we
3192 // conservatively assume it because we don't know for sure.
3193 if (!ID->declaresOrInheritsDesignatedInitializers() ||
3194 ID->isDesignatedInitializer(Sel)) {
3195 isDesignatedInitChain = true;
3196 DIFunctionScopeInfo->ObjCWarnForNoDesignatedInitChain = false;
3201 if (!isDesignatedInitChain) {
3202 const ObjCMethodDecl *InitMethod = nullptr;
3203 bool isDesignated =
3204 getCurMethodDecl()->isDesignatedInitializerForTheInterface(&InitMethod);
3205 assert(isDesignated && InitMethod);
3206 (void)isDesignated;
3207 Diag(SelLoc, SuperLoc.isValid() ?
3208 diag::warn_objc_designated_init_non_designated_init_call :
3209 diag::warn_objc_designated_init_non_super_designated_init_call);
3210 Diag(InitMethod->getLocation(),
3211 diag::note_objc_designated_init_marked_here);
3215 if (DIFunctionScopeInfo &&
3216 DIFunctionScopeInfo->ObjCIsSecondaryInit &&
3217 (SuperLoc.isValid() || isSelfExpr(Receiver))) {
3218 if (SuperLoc.isValid()) {
3219 Diag(SelLoc, diag::warn_objc_secondary_init_super_init_call);
3220 } else {
3221 DIFunctionScopeInfo->ObjCWarnForNoInitDelegation = false;
3225 // Check the message arguments.
3226 unsigned NumArgs = ArgsIn.size();
3227 Expr **Args = ArgsIn.data();
3228 QualType ReturnType;
3229 ExprValueKind VK = VK_PRValue;
3230 bool ClassMessage = (ReceiverType->isObjCClassType() ||
3231 ReceiverType->isObjCQualifiedClassType());
3232 if (CheckMessageArgumentTypes(Receiver, ReceiverType,
3233 MultiExprArg(Args, NumArgs), Sel, SelectorLocs,
3234 Method, ClassMessage, SuperLoc.isValid(),
3235 LBracLoc, RBracLoc, RecRange, ReturnType, VK))
3236 return ExprError();
3238 if (Method && !Method->getReturnType()->isVoidType() &&
3239 RequireCompleteType(LBracLoc, Method->getReturnType(),
3240 diag::err_illegal_message_expr_incomplete_type))
3241 return ExprError();
3243 // In ARC, forbid the user from sending messages to
3244 // retain/release/autorelease/dealloc/retainCount explicitly.
3245 if (getLangOpts().ObjCAutoRefCount) {
3246 ObjCMethodFamily family =
3247 (Method ? Method->getMethodFamily() : Sel.getMethodFamily());
3248 switch (family) {
3249 case OMF_init:
3250 if (Method)
3251 checkInitMethod(Method, ReceiverType);
3252 break;
3254 case OMF_None:
3255 case OMF_alloc:
3256 case OMF_copy:
3257 case OMF_finalize:
3258 case OMF_mutableCopy:
3259 case OMF_new:
3260 case OMF_self:
3261 case OMF_initialize:
3262 break;
3264 case OMF_dealloc:
3265 case OMF_retain:
3266 case OMF_release:
3267 case OMF_autorelease:
3268 case OMF_retainCount:
3269 Diag(SelLoc, diag::err_arc_illegal_explicit_message)
3270 << Sel << RecRange;
3271 break;
3273 case OMF_performSelector:
3274 if (Method && NumArgs >= 1) {
3275 if (const auto *SelExp =
3276 dyn_cast<ObjCSelectorExpr>(Args[0]->IgnoreParens())) {
3277 Selector ArgSel = SelExp->getSelector();
3278 ObjCMethodDecl *SelMethod =
3279 LookupInstanceMethodInGlobalPool(ArgSel,
3280 SelExp->getSourceRange());
3281 if (!SelMethod)
3282 SelMethod =
3283 LookupFactoryMethodInGlobalPool(ArgSel,
3284 SelExp->getSourceRange());
3285 if (SelMethod) {
3286 ObjCMethodFamily SelFamily = SelMethod->getMethodFamily();
3287 switch (SelFamily) {
3288 case OMF_alloc:
3289 case OMF_copy:
3290 case OMF_mutableCopy:
3291 case OMF_new:
3292 case OMF_init:
3293 // Issue error, unless ns_returns_not_retained.
3294 if (!SelMethod->hasAttr<NSReturnsNotRetainedAttr>()) {
3295 // selector names a +1 method
3296 Diag(SelLoc,
3297 diag::err_arc_perform_selector_retains);
3298 Diag(SelMethod->getLocation(), diag::note_method_declared_at)
3299 << SelMethod->getDeclName();
3301 break;
3302 default:
3303 // +0 call. OK. unless ns_returns_retained.
3304 if (SelMethod->hasAttr<NSReturnsRetainedAttr>()) {
3305 // selector names a +1 method
3306 Diag(SelLoc,
3307 diag::err_arc_perform_selector_retains);
3308 Diag(SelMethod->getLocation(), diag::note_method_declared_at)
3309 << SelMethod->getDeclName();
3311 break;
3314 } else {
3315 // error (may leak).
3316 Diag(SelLoc, diag::warn_arc_perform_selector_leaks);
3317 Diag(Args[0]->getExprLoc(), diag::note_used_here);
3320 break;
3324 DiagnoseCStringFormatDirectiveInObjCAPI(*this, Method, Sel, Args, NumArgs);
3326 // Construct the appropriate ObjCMessageExpr instance.
3327 ObjCMessageExpr *Result;
3328 if (SuperLoc.isValid())
3329 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
3330 SuperLoc, /*IsInstanceSuper=*/true,
3331 ReceiverType, Sel, SelectorLocs, Method,
3332 makeArrayRef(Args, NumArgs), RBracLoc,
3333 isImplicit);
3334 else {
3335 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
3336 Receiver, Sel, SelectorLocs, Method,
3337 makeArrayRef(Args, NumArgs), RBracLoc,
3338 isImplicit);
3339 if (!isImplicit)
3340 checkCocoaAPI(*this, Result);
3342 if (Method) {
3343 bool IsClassObjectCall = ClassMessage;
3344 // 'self' message receivers in class methods should be treated as message
3345 // sends to the class object in order for the semantic checks to be
3346 // performed correctly. Messages to 'super' already count as class messages,
3347 // so they don't need to be handled here.
3348 if (Receiver && isSelfExpr(Receiver)) {
3349 if (const auto *OPT = ReceiverType->getAs<ObjCObjectPointerType>()) {
3350 if (OPT->getObjectType()->isObjCClass()) {
3351 if (const auto *CurMeth = getCurMethodDecl()) {
3352 IsClassObjectCall = true;
3353 ReceiverType =
3354 Context.getObjCInterfaceType(CurMeth->getClassInterface());
3359 checkFoundationAPI(*this, SelLoc, Method, makeArrayRef(Args, NumArgs),
3360 ReceiverType, IsClassObjectCall);
3363 if (getLangOpts().ObjCAutoRefCount) {
3364 // In ARC, annotate delegate init calls.
3365 if (Result->getMethodFamily() == OMF_init &&
3366 (SuperLoc.isValid() || isSelfExpr(Receiver))) {
3367 // Only consider init calls *directly* in init implementations,
3368 // not within blocks.
3369 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CurContext);
3370 if (method && method->getMethodFamily() == OMF_init) {
3371 // The implicit assignment to self means we also don't want to
3372 // consume the result.
3373 Result->setDelegateInitCall(true);
3374 return Result;
3378 // In ARC, check for message sends which are likely to introduce
3379 // retain cycles.
3380 checkRetainCycles(Result);
3383 if (getLangOpts().ObjCWeak) {
3384 if (!isImplicit && Method) {
3385 if (const ObjCPropertyDecl *Prop = Method->findPropertyDecl()) {
3386 bool IsWeak =
3387 Prop->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak;
3388 if (!IsWeak && Sel.isUnarySelector())
3389 IsWeak = ReturnType.getObjCLifetime() & Qualifiers::OCL_Weak;
3390 if (IsWeak && !isUnevaluatedContext() &&
3391 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, LBracLoc))
3392 getCurFunction()->recordUseOfWeak(Result, Prop);
3397 CheckObjCCircularContainer(Result);
3399 return MaybeBindToTemporary(Result);
3402 static void RemoveSelectorFromWarningCache(Sema &S, Expr* Arg) {
3403 if (ObjCSelectorExpr *OSE =
3404 dyn_cast<ObjCSelectorExpr>(Arg->IgnoreParenCasts())) {
3405 Selector Sel = OSE->getSelector();
3406 SourceLocation Loc = OSE->getAtLoc();
3407 auto Pos = S.ReferencedSelectors.find(Sel);
3408 if (Pos != S.ReferencedSelectors.end() && Pos->second == Loc)
3409 S.ReferencedSelectors.erase(Pos);
3413 // ActOnInstanceMessage - used for both unary and keyword messages.
3414 // ArgExprs is optional - if it is present, the number of expressions
3415 // is obtained from Sel.getNumArgs().
3416 ExprResult Sema::ActOnInstanceMessage(Scope *S,
3417 Expr *Receiver,
3418 Selector Sel,
3419 SourceLocation LBracLoc,
3420 ArrayRef<SourceLocation> SelectorLocs,
3421 SourceLocation RBracLoc,
3422 MultiExprArg Args) {
3423 if (!Receiver)
3424 return ExprError();
3426 // A ParenListExpr can show up while doing error recovery with invalid code.
3427 if (isa<ParenListExpr>(Receiver)) {
3428 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Receiver);
3429 if (Result.isInvalid()) return ExprError();
3430 Receiver = Result.get();
3433 if (RespondsToSelectorSel.isNull()) {
3434 IdentifierInfo *SelectorId = &Context.Idents.get("respondsToSelector");
3435 RespondsToSelectorSel = Context.Selectors.getUnarySelector(SelectorId);
3437 if (Sel == RespondsToSelectorSel)
3438 RemoveSelectorFromWarningCache(*this, Args[0]);
3440 return BuildInstanceMessage(Receiver, Receiver->getType(),
3441 /*SuperLoc=*/SourceLocation(), Sel,
3442 /*Method=*/nullptr, LBracLoc, SelectorLocs,
3443 RBracLoc, Args);
3446 enum ARCConversionTypeClass {
3447 /// int, void, struct A
3448 ACTC_none,
3450 /// id, void (^)()
3451 ACTC_retainable,
3453 /// id*, id***, void (^*)(),
3454 ACTC_indirectRetainable,
3456 /// void* might be a normal C type, or it might a CF type.
3457 ACTC_voidPtr,
3459 /// struct A*
3460 ACTC_coreFoundation
3463 static bool isAnyRetainable(ARCConversionTypeClass ACTC) {
3464 return (ACTC == ACTC_retainable ||
3465 ACTC == ACTC_coreFoundation ||
3466 ACTC == ACTC_voidPtr);
3469 static bool isAnyCLike(ARCConversionTypeClass ACTC) {
3470 return ACTC == ACTC_none ||
3471 ACTC == ACTC_voidPtr ||
3472 ACTC == ACTC_coreFoundation;
3475 static ARCConversionTypeClass classifyTypeForARCConversion(QualType type) {
3476 bool isIndirect = false;
3478 // Ignore an outermost reference type.
3479 if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
3480 type = ref->getPointeeType();
3481 isIndirect = true;
3484 // Drill through pointers and arrays recursively.
3485 while (true) {
3486 if (const PointerType *ptr = type->getAs<PointerType>()) {
3487 type = ptr->getPointeeType();
3489 // The first level of pointer may be the innermost pointer on a CF type.
3490 if (!isIndirect) {
3491 if (type->isVoidType()) return ACTC_voidPtr;
3492 if (type->isRecordType()) return ACTC_coreFoundation;
3494 } else if (const ArrayType *array = type->getAsArrayTypeUnsafe()) {
3495 type = QualType(array->getElementType()->getBaseElementTypeUnsafe(), 0);
3496 } else {
3497 break;
3499 isIndirect = true;
3502 if (isIndirect) {
3503 if (type->isObjCARCBridgableType())
3504 return ACTC_indirectRetainable;
3505 return ACTC_none;
3508 if (type->isObjCARCBridgableType())
3509 return ACTC_retainable;
3511 return ACTC_none;
3514 namespace {
3515 /// A result from the cast checker.
3516 enum ACCResult {
3517 /// Cannot be casted.
3518 ACC_invalid,
3520 /// Can be safely retained or not retained.
3521 ACC_bottom,
3523 /// Can be casted at +0.
3524 ACC_plusZero,
3526 /// Can be casted at +1.
3527 ACC_plusOne
3529 ACCResult merge(ACCResult left, ACCResult right) {
3530 if (left == right) return left;
3531 if (left == ACC_bottom) return right;
3532 if (right == ACC_bottom) return left;
3533 return ACC_invalid;
3536 /// A checker which white-lists certain expressions whose conversion
3537 /// to or from retainable type would otherwise be forbidden in ARC.
3538 class ARCCastChecker : public StmtVisitor<ARCCastChecker, ACCResult> {
3539 typedef StmtVisitor<ARCCastChecker, ACCResult> super;
3541 ASTContext &Context;
3542 ARCConversionTypeClass SourceClass;
3543 ARCConversionTypeClass TargetClass;
3544 bool Diagnose;
3546 static bool isCFType(QualType type) {
3547 // Someday this can use ns_bridged. For now, it has to do this.
3548 return type->isCARCBridgableType();
3551 public:
3552 ARCCastChecker(ASTContext &Context, ARCConversionTypeClass source,
3553 ARCConversionTypeClass target, bool diagnose)
3554 : Context(Context), SourceClass(source), TargetClass(target),
3555 Diagnose(diagnose) {}
3557 using super::Visit;
3558 ACCResult Visit(Expr *e) {
3559 return super::Visit(e->IgnoreParens());
3562 ACCResult VisitStmt(Stmt *s) {
3563 return ACC_invalid;
3566 /// Null pointer constants can be casted however you please.
3567 ACCResult VisitExpr(Expr *e) {
3568 if (e->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
3569 return ACC_bottom;
3570 return ACC_invalid;
3573 /// Objective-C string literals can be safely casted.
3574 ACCResult VisitObjCStringLiteral(ObjCStringLiteral *e) {
3575 // If we're casting to any retainable type, go ahead. Global
3576 // strings are immune to retains, so this is bottom.
3577 if (isAnyRetainable(TargetClass)) return ACC_bottom;
3579 return ACC_invalid;
3582 /// Look through certain implicit and explicit casts.
3583 ACCResult VisitCastExpr(CastExpr *e) {
3584 switch (e->getCastKind()) {
3585 case CK_NullToPointer:
3586 return ACC_bottom;
3588 case CK_NoOp:
3589 case CK_LValueToRValue:
3590 case CK_BitCast:
3591 case CK_CPointerToObjCPointerCast:
3592 case CK_BlockPointerToObjCPointerCast:
3593 case CK_AnyPointerToBlockPointerCast:
3594 return Visit(e->getSubExpr());
3596 default:
3597 return ACC_invalid;
3601 /// Look through unary extension.
3602 ACCResult VisitUnaryExtension(UnaryOperator *e) {
3603 return Visit(e->getSubExpr());
3606 /// Ignore the LHS of a comma operator.
3607 ACCResult VisitBinComma(BinaryOperator *e) {
3608 return Visit(e->getRHS());
3611 /// Conditional operators are okay if both sides are okay.
3612 ACCResult VisitConditionalOperator(ConditionalOperator *e) {
3613 ACCResult left = Visit(e->getTrueExpr());
3614 if (left == ACC_invalid) return ACC_invalid;
3615 return merge(left, Visit(e->getFalseExpr()));
3618 /// Look through pseudo-objects.
3619 ACCResult VisitPseudoObjectExpr(PseudoObjectExpr *e) {
3620 // If we're getting here, we should always have a result.
3621 return Visit(e->getResultExpr());
3624 /// Statement expressions are okay if their result expression is okay.
3625 ACCResult VisitStmtExpr(StmtExpr *e) {
3626 return Visit(e->getSubStmt()->body_back());
3629 /// Some declaration references are okay.
3630 ACCResult VisitDeclRefExpr(DeclRefExpr *e) {
3631 VarDecl *var = dyn_cast<VarDecl>(e->getDecl());
3632 // References to global constants are okay.
3633 if (isAnyRetainable(TargetClass) &&
3634 isAnyRetainable(SourceClass) &&
3635 var &&
3636 !var->hasDefinition(Context) &&
3637 var->getType().isConstQualified()) {
3639 // In system headers, they can also be assumed to be immune to retains.
3640 // These are things like 'kCFStringTransformToLatin'.
3641 if (Context.getSourceManager().isInSystemHeader(var->getLocation()))
3642 return ACC_bottom;
3644 return ACC_plusZero;
3647 // Nothing else.
3648 return ACC_invalid;
3651 /// Some calls are okay.
3652 ACCResult VisitCallExpr(CallExpr *e) {
3653 if (FunctionDecl *fn = e->getDirectCallee())
3654 if (ACCResult result = checkCallToFunction(fn))
3655 return result;
3657 return super::VisitCallExpr(e);
3660 ACCResult checkCallToFunction(FunctionDecl *fn) {
3661 // Require a CF*Ref return type.
3662 if (!isCFType(fn->getReturnType()))
3663 return ACC_invalid;
3665 if (!isAnyRetainable(TargetClass))
3666 return ACC_invalid;
3668 // Honor an explicit 'not retained' attribute.
3669 if (fn->hasAttr<CFReturnsNotRetainedAttr>())
3670 return ACC_plusZero;
3672 // Honor an explicit 'retained' attribute, except that for
3673 // now we're not going to permit implicit handling of +1 results,
3674 // because it's a bit frightening.
3675 if (fn->hasAttr<CFReturnsRetainedAttr>())
3676 return Diagnose ? ACC_plusOne
3677 : ACC_invalid; // ACC_plusOne if we start accepting this
3679 // Recognize this specific builtin function, which is used by CFSTR.
3680 unsigned builtinID = fn->getBuiltinID();
3681 if (builtinID == Builtin::BI__builtin___CFStringMakeConstantString)
3682 return ACC_bottom;
3684 // Otherwise, don't do anything implicit with an unaudited function.
3685 if (!fn->hasAttr<CFAuditedTransferAttr>())
3686 return ACC_invalid;
3688 // Otherwise, it's +0 unless it follows the create convention.
3689 if (ento::coreFoundation::followsCreateRule(fn))
3690 return Diagnose ? ACC_plusOne
3691 : ACC_invalid; // ACC_plusOne if we start accepting this
3693 return ACC_plusZero;
3696 ACCResult VisitObjCMessageExpr(ObjCMessageExpr *e) {
3697 return checkCallToMethod(e->getMethodDecl());
3700 ACCResult VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *e) {
3701 ObjCMethodDecl *method;
3702 if (e->isExplicitProperty())
3703 method = e->getExplicitProperty()->getGetterMethodDecl();
3704 else
3705 method = e->getImplicitPropertyGetter();
3706 return checkCallToMethod(method);
3709 ACCResult checkCallToMethod(ObjCMethodDecl *method) {
3710 if (!method) return ACC_invalid;
3712 // Check for message sends to functions returning CF types. We
3713 // just obey the Cocoa conventions with these, even though the
3714 // return type is CF.
3715 if (!isAnyRetainable(TargetClass) || !isCFType(method->getReturnType()))
3716 return ACC_invalid;
3718 // If the method is explicitly marked not-retained, it's +0.
3719 if (method->hasAttr<CFReturnsNotRetainedAttr>())
3720 return ACC_plusZero;
3722 // If the method is explicitly marked as returning retained, or its
3723 // selector follows a +1 Cocoa convention, treat it as +1.
3724 if (method->hasAttr<CFReturnsRetainedAttr>())
3725 return ACC_plusOne;
3727 switch (method->getSelector().getMethodFamily()) {
3728 case OMF_alloc:
3729 case OMF_copy:
3730 case OMF_mutableCopy:
3731 case OMF_new:
3732 return ACC_plusOne;
3734 default:
3735 // Otherwise, treat it as +0.
3736 return ACC_plusZero;
3740 } // end anonymous namespace
3742 bool Sema::isKnownName(StringRef name) {
3743 if (name.empty())
3744 return false;
3745 LookupResult R(*this, &Context.Idents.get(name), SourceLocation(),
3746 Sema::LookupOrdinaryName);
3747 return LookupName(R, TUScope, false);
3750 template <typename DiagBuilderT>
3751 static void addFixitForObjCARCConversion(
3752 Sema &S, DiagBuilderT &DiagB, Sema::CheckedConversionKind CCK,
3753 SourceLocation afterLParen, QualType castType, Expr *castExpr,
3754 Expr *realCast, const char *bridgeKeyword, const char *CFBridgeName) {
3755 // We handle C-style and implicit casts here.
3756 switch (CCK) {
3757 case Sema::CCK_ImplicitConversion:
3758 case Sema::CCK_ForBuiltinOverloadedOp:
3759 case Sema::CCK_CStyleCast:
3760 case Sema::CCK_OtherCast:
3761 break;
3762 case Sema::CCK_FunctionalCast:
3763 return;
3766 if (CFBridgeName) {
3767 if (CCK == Sema::CCK_OtherCast) {
3768 if (const CXXNamedCastExpr *NCE = dyn_cast<CXXNamedCastExpr>(realCast)) {
3769 SourceRange range(NCE->getOperatorLoc(),
3770 NCE->getAngleBrackets().getEnd());
3771 SmallString<32> BridgeCall;
3773 SourceManager &SM = S.getSourceManager();
3774 char PrevChar = *SM.getCharacterData(range.getBegin().getLocWithOffset(-1));
3775 if (Lexer::isAsciiIdentifierContinueChar(PrevChar, S.getLangOpts()))
3776 BridgeCall += ' ';
3778 BridgeCall += CFBridgeName;
3779 DiagB.AddFixItHint(FixItHint::CreateReplacement(range, BridgeCall));
3781 return;
3783 Expr *castedE = castExpr;
3784 if (CStyleCastExpr *CCE = dyn_cast<CStyleCastExpr>(castedE))
3785 castedE = CCE->getSubExpr();
3786 castedE = castedE->IgnoreImpCasts();
3787 SourceRange range = castedE->getSourceRange();
3789 SmallString<32> BridgeCall;
3791 SourceManager &SM = S.getSourceManager();
3792 char PrevChar = *SM.getCharacterData(range.getBegin().getLocWithOffset(-1));
3793 if (Lexer::isAsciiIdentifierContinueChar(PrevChar, S.getLangOpts()))
3794 BridgeCall += ' ';
3796 BridgeCall += CFBridgeName;
3798 if (isa<ParenExpr>(castedE)) {
3799 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
3800 BridgeCall));
3801 } else {
3802 BridgeCall += '(';
3803 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
3804 BridgeCall));
3805 DiagB.AddFixItHint(FixItHint::CreateInsertion(
3806 S.getLocForEndOfToken(range.getEnd()),
3807 ")"));
3809 return;
3812 if (CCK == Sema::CCK_CStyleCast) {
3813 DiagB.AddFixItHint(FixItHint::CreateInsertion(afterLParen, bridgeKeyword));
3814 } else if (CCK == Sema::CCK_OtherCast) {
3815 if (const CXXNamedCastExpr *NCE = dyn_cast<CXXNamedCastExpr>(realCast)) {
3816 std::string castCode = "(";
3817 castCode += bridgeKeyword;
3818 castCode += castType.getAsString();
3819 castCode += ")";
3820 SourceRange Range(NCE->getOperatorLoc(),
3821 NCE->getAngleBrackets().getEnd());
3822 DiagB.AddFixItHint(FixItHint::CreateReplacement(Range, castCode));
3824 } else {
3825 std::string castCode = "(";
3826 castCode += bridgeKeyword;
3827 castCode += castType.getAsString();
3828 castCode += ")";
3829 Expr *castedE = castExpr->IgnoreImpCasts();
3830 SourceRange range = castedE->getSourceRange();
3831 if (isa<ParenExpr>(castedE)) {
3832 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
3833 castCode));
3834 } else {
3835 castCode += "(";
3836 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
3837 castCode));
3838 DiagB.AddFixItHint(FixItHint::CreateInsertion(
3839 S.getLocForEndOfToken(range.getEnd()),
3840 ")"));
3845 template <typename T>
3846 static inline T *getObjCBridgeAttr(const TypedefType *TD) {
3847 TypedefNameDecl *TDNDecl = TD->getDecl();
3848 QualType QT = TDNDecl->getUnderlyingType();
3849 if (QT->isPointerType()) {
3850 QT = QT->getPointeeType();
3851 if (const RecordType *RT = QT->getAs<RecordType>()) {
3852 for (auto *Redecl : RT->getDecl()->getMostRecentDecl()->redecls()) {
3853 if (auto *attr = Redecl->getAttr<T>())
3854 return attr;
3858 return nullptr;
3861 static ObjCBridgeRelatedAttr *ObjCBridgeRelatedAttrFromType(QualType T,
3862 TypedefNameDecl *&TDNDecl) {
3863 while (const auto *TD = T->getAs<TypedefType>()) {
3864 TDNDecl = TD->getDecl();
3865 if (ObjCBridgeRelatedAttr *ObjCBAttr =
3866 getObjCBridgeAttr<ObjCBridgeRelatedAttr>(TD))
3867 return ObjCBAttr;
3868 T = TDNDecl->getUnderlyingType();
3870 return nullptr;
3873 static void
3874 diagnoseObjCARCConversion(Sema &S, SourceRange castRange,
3875 QualType castType, ARCConversionTypeClass castACTC,
3876 Expr *castExpr, Expr *realCast,
3877 ARCConversionTypeClass exprACTC,
3878 Sema::CheckedConversionKind CCK) {
3879 SourceLocation loc =
3880 (castRange.isValid() ? castRange.getBegin() : castExpr->getExprLoc());
3882 if (S.makeUnavailableInSystemHeader(loc,
3883 UnavailableAttr::IR_ARCForbiddenConversion))
3884 return;
3886 QualType castExprType = castExpr->getType();
3887 // Defer emitting a diagnostic for bridge-related casts; that will be
3888 // handled by CheckObjCBridgeRelatedConversions.
3889 TypedefNameDecl *TDNDecl = nullptr;
3890 if ((castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable &&
3891 ObjCBridgeRelatedAttrFromType(castType, TDNDecl)) ||
3892 (exprACTC == ACTC_coreFoundation && castACTC == ACTC_retainable &&
3893 ObjCBridgeRelatedAttrFromType(castExprType, TDNDecl)))
3894 return;
3896 unsigned srcKind = 0;
3897 switch (exprACTC) {
3898 case ACTC_none:
3899 case ACTC_coreFoundation:
3900 case ACTC_voidPtr:
3901 srcKind = (castExprType->isPointerType() ? 1 : 0);
3902 break;
3903 case ACTC_retainable:
3904 srcKind = (castExprType->isBlockPointerType() ? 2 : 3);
3905 break;
3906 case ACTC_indirectRetainable:
3907 srcKind = 4;
3908 break;
3911 // Check whether this could be fixed with a bridge cast.
3912 SourceLocation afterLParen = S.getLocForEndOfToken(castRange.getBegin());
3913 SourceLocation noteLoc = afterLParen.isValid() ? afterLParen : loc;
3915 unsigned convKindForDiag = Sema::isCast(CCK) ? 0 : 1;
3917 // Bridge from an ARC type to a CF type.
3918 if (castACTC == ACTC_retainable && isAnyRetainable(exprACTC)) {
3920 S.Diag(loc, diag::err_arc_cast_requires_bridge)
3921 << convKindForDiag
3922 << 2 // of C pointer type
3923 << castExprType
3924 << unsigned(castType->isBlockPointerType()) // to ObjC|block type
3925 << castType
3926 << castRange
3927 << castExpr->getSourceRange();
3928 bool br = S.isKnownName("CFBridgingRelease");
3929 ACCResult CreateRule =
3930 ARCCastChecker(S.Context, exprACTC, castACTC, true).Visit(castExpr);
3931 assert(CreateRule != ACC_bottom && "This cast should already be accepted.");
3932 if (CreateRule != ACC_plusOne)
3934 auto DiagB = (CCK != Sema::CCK_OtherCast)
3935 ? S.Diag(noteLoc, diag::note_arc_bridge)
3936 : S.Diag(noteLoc, diag::note_arc_cstyle_bridge);
3938 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
3939 castType, castExpr, realCast, "__bridge ",
3940 nullptr);
3942 if (CreateRule != ACC_plusZero)
3944 auto DiagB = (CCK == Sema::CCK_OtherCast && !br)
3945 ? S.Diag(noteLoc, diag::note_arc_cstyle_bridge_transfer)
3946 << castExprType
3947 : S.Diag(br ? castExpr->getExprLoc() : noteLoc,
3948 diag::note_arc_bridge_transfer)
3949 << castExprType << br;
3951 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
3952 castType, castExpr, realCast, "__bridge_transfer ",
3953 br ? "CFBridgingRelease" : nullptr);
3956 return;
3959 // Bridge from a CF type to an ARC type.
3960 if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC)) {
3961 bool br = S.isKnownName("CFBridgingRetain");
3962 S.Diag(loc, diag::err_arc_cast_requires_bridge)
3963 << convKindForDiag
3964 << unsigned(castExprType->isBlockPointerType()) // of ObjC|block type
3965 << castExprType
3966 << 2 // to C pointer type
3967 << castType
3968 << castRange
3969 << castExpr->getSourceRange();
3970 ACCResult CreateRule =
3971 ARCCastChecker(S.Context, exprACTC, castACTC, true).Visit(castExpr);
3972 assert(CreateRule != ACC_bottom && "This cast should already be accepted.");
3973 if (CreateRule != ACC_plusOne)
3975 auto DiagB = (CCK != Sema::CCK_OtherCast)
3976 ? S.Diag(noteLoc, diag::note_arc_bridge)
3977 : S.Diag(noteLoc, diag::note_arc_cstyle_bridge);
3978 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
3979 castType, castExpr, realCast, "__bridge ",
3980 nullptr);
3982 if (CreateRule != ACC_plusZero)
3984 auto DiagB = (CCK == Sema::CCK_OtherCast && !br)
3985 ? S.Diag(noteLoc, diag::note_arc_cstyle_bridge_retained)
3986 << castType
3987 : S.Diag(br ? castExpr->getExprLoc() : noteLoc,
3988 diag::note_arc_bridge_retained)
3989 << castType << br;
3991 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
3992 castType, castExpr, realCast, "__bridge_retained ",
3993 br ? "CFBridgingRetain" : nullptr);
3996 return;
3999 S.Diag(loc, diag::err_arc_mismatched_cast)
4000 << !convKindForDiag
4001 << srcKind << castExprType << castType
4002 << castRange << castExpr->getSourceRange();
4005 template <typename TB>
4006 static bool CheckObjCBridgeNSCast(Sema &S, QualType castType, Expr *castExpr,
4007 bool &HadTheAttribute, bool warn) {
4008 QualType T = castExpr->getType();
4009 HadTheAttribute = false;
4010 while (const auto *TD = T->getAs<TypedefType>()) {
4011 TypedefNameDecl *TDNDecl = TD->getDecl();
4012 if (TB *ObjCBAttr = getObjCBridgeAttr<TB>(TD)) {
4013 if (IdentifierInfo *Parm = ObjCBAttr->getBridgedType()) {
4014 HadTheAttribute = true;
4015 if (Parm->isStr("id"))
4016 return true;
4018 // Check for an existing type with this name.
4019 LookupResult R(S, DeclarationName(Parm), SourceLocation(),
4020 Sema::LookupOrdinaryName);
4021 if (S.LookupName(R, S.TUScope)) {
4022 NamedDecl *Target = R.getFoundDecl();
4023 if (Target && isa<ObjCInterfaceDecl>(Target)) {
4024 ObjCInterfaceDecl *ExprClass = cast<ObjCInterfaceDecl>(Target);
4025 if (const ObjCObjectPointerType *InterfacePointerType =
4026 castType->getAsObjCInterfacePointerType()) {
4027 ObjCInterfaceDecl *CastClass
4028 = InterfacePointerType->getObjectType()->getInterface();
4029 if ((CastClass == ExprClass) ||
4030 (CastClass && CastClass->isSuperClassOf(ExprClass)))
4031 return true;
4032 if (warn)
4033 S.Diag(castExpr->getBeginLoc(), diag::warn_objc_invalid_bridge)
4034 << T << Target->getName() << castType->getPointeeType();
4035 return false;
4036 } else if (castType->isObjCIdType() ||
4037 (S.Context.ObjCObjectAdoptsQTypeProtocols(
4038 castType, ExprClass)))
4039 // ok to cast to 'id'.
4040 // casting to id<p-list> is ok if bridge type adopts all of
4041 // p-list protocols.
4042 return true;
4043 else {
4044 if (warn) {
4045 S.Diag(castExpr->getBeginLoc(), diag::warn_objc_invalid_bridge)
4046 << T << Target->getName() << castType;
4047 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
4048 S.Diag(Target->getBeginLoc(), diag::note_declared_at);
4050 return false;
4053 } else if (!castType->isObjCIdType()) {
4054 S.Diag(castExpr->getBeginLoc(),
4055 diag::err_objc_cf_bridged_not_interface)
4056 << castExpr->getType() << Parm;
4057 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
4059 return true;
4061 return false;
4063 T = TDNDecl->getUnderlyingType();
4065 return true;
4068 template <typename TB>
4069 static bool CheckObjCBridgeCFCast(Sema &S, QualType castType, Expr *castExpr,
4070 bool &HadTheAttribute, bool warn) {
4071 QualType T = castType;
4072 HadTheAttribute = false;
4073 while (const auto *TD = T->getAs<TypedefType>()) {
4074 TypedefNameDecl *TDNDecl = TD->getDecl();
4075 if (TB *ObjCBAttr = getObjCBridgeAttr<TB>(TD)) {
4076 if (IdentifierInfo *Parm = ObjCBAttr->getBridgedType()) {
4077 HadTheAttribute = true;
4078 if (Parm->isStr("id"))
4079 return true;
4081 NamedDecl *Target = nullptr;
4082 // Check for an existing type with this name.
4083 LookupResult R(S, DeclarationName(Parm), SourceLocation(),
4084 Sema::LookupOrdinaryName);
4085 if (S.LookupName(R, S.TUScope)) {
4086 Target = R.getFoundDecl();
4087 if (Target && isa<ObjCInterfaceDecl>(Target)) {
4088 ObjCInterfaceDecl *CastClass = cast<ObjCInterfaceDecl>(Target);
4089 if (const ObjCObjectPointerType *InterfacePointerType =
4090 castExpr->getType()->getAsObjCInterfacePointerType()) {
4091 ObjCInterfaceDecl *ExprClass
4092 = InterfacePointerType->getObjectType()->getInterface();
4093 if ((CastClass == ExprClass) ||
4094 (ExprClass && CastClass->isSuperClassOf(ExprClass)))
4095 return true;
4096 if (warn) {
4097 S.Diag(castExpr->getBeginLoc(),
4098 diag::warn_objc_invalid_bridge_to_cf)
4099 << castExpr->getType()->getPointeeType() << T;
4100 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
4102 return false;
4103 } else if (castExpr->getType()->isObjCIdType() ||
4104 (S.Context.QIdProtocolsAdoptObjCObjectProtocols(
4105 castExpr->getType(), CastClass)))
4106 // ok to cast an 'id' expression to a CFtype.
4107 // ok to cast an 'id<plist>' expression to CFtype provided plist
4108 // adopts all of CFtype's ObjetiveC's class plist.
4109 return true;
4110 else {
4111 if (warn) {
4112 S.Diag(castExpr->getBeginLoc(),
4113 diag::warn_objc_invalid_bridge_to_cf)
4114 << castExpr->getType() << castType;
4115 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
4116 S.Diag(Target->getBeginLoc(), diag::note_declared_at);
4118 return false;
4122 S.Diag(castExpr->getBeginLoc(),
4123 diag::err_objc_ns_bridged_invalid_cfobject)
4124 << castExpr->getType() << castType;
4125 S.Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
4126 if (Target)
4127 S.Diag(Target->getBeginLoc(), diag::note_declared_at);
4128 return true;
4130 return false;
4132 T = TDNDecl->getUnderlyingType();
4134 return true;
4137 void Sema::CheckTollFreeBridgeCast(QualType castType, Expr *castExpr) {
4138 if (!getLangOpts().ObjC)
4139 return;
4140 // warn in presence of __bridge casting to or from a toll free bridge cast.
4141 ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExpr->getType());
4142 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(castType);
4143 if (castACTC == ACTC_retainable && exprACTC == ACTC_coreFoundation) {
4144 bool HasObjCBridgeAttr;
4145 bool ObjCBridgeAttrWillNotWarn =
4146 CheckObjCBridgeNSCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr,
4147 false);
4148 if (ObjCBridgeAttrWillNotWarn && HasObjCBridgeAttr)
4149 return;
4150 bool HasObjCBridgeMutableAttr;
4151 bool ObjCBridgeMutableAttrWillNotWarn =
4152 CheckObjCBridgeNSCast<ObjCBridgeMutableAttr>(*this, castType, castExpr,
4153 HasObjCBridgeMutableAttr, false);
4154 if (ObjCBridgeMutableAttrWillNotWarn && HasObjCBridgeMutableAttr)
4155 return;
4157 if (HasObjCBridgeAttr)
4158 CheckObjCBridgeNSCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr,
4159 true);
4160 else if (HasObjCBridgeMutableAttr)
4161 CheckObjCBridgeNSCast<ObjCBridgeMutableAttr>(*this, castType, castExpr,
4162 HasObjCBridgeMutableAttr, true);
4164 else if (castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable) {
4165 bool HasObjCBridgeAttr;
4166 bool ObjCBridgeAttrWillNotWarn =
4167 CheckObjCBridgeCFCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr,
4168 false);
4169 if (ObjCBridgeAttrWillNotWarn && HasObjCBridgeAttr)
4170 return;
4171 bool HasObjCBridgeMutableAttr;
4172 bool ObjCBridgeMutableAttrWillNotWarn =
4173 CheckObjCBridgeCFCast<ObjCBridgeMutableAttr>(*this, castType, castExpr,
4174 HasObjCBridgeMutableAttr, false);
4175 if (ObjCBridgeMutableAttrWillNotWarn && HasObjCBridgeMutableAttr)
4176 return;
4178 if (HasObjCBridgeAttr)
4179 CheckObjCBridgeCFCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr,
4180 true);
4181 else if (HasObjCBridgeMutableAttr)
4182 CheckObjCBridgeCFCast<ObjCBridgeMutableAttr>(*this, castType, castExpr,
4183 HasObjCBridgeMutableAttr, true);
4187 void Sema::CheckObjCBridgeRelatedCast(QualType castType, Expr *castExpr) {
4188 QualType SrcType = castExpr->getType();
4189 if (ObjCPropertyRefExpr *PRE = dyn_cast<ObjCPropertyRefExpr>(castExpr)) {
4190 if (PRE->isExplicitProperty()) {
4191 if (ObjCPropertyDecl *PDecl = PRE->getExplicitProperty())
4192 SrcType = PDecl->getType();
4194 else if (PRE->isImplicitProperty()) {
4195 if (ObjCMethodDecl *Getter = PRE->getImplicitPropertyGetter())
4196 SrcType = Getter->getReturnType();
4200 ARCConversionTypeClass srcExprACTC = classifyTypeForARCConversion(SrcType);
4201 ARCConversionTypeClass castExprACTC = classifyTypeForARCConversion(castType);
4202 if (srcExprACTC != ACTC_retainable || castExprACTC != ACTC_coreFoundation)
4203 return;
4204 CheckObjCBridgeRelatedConversions(castExpr->getBeginLoc(), castType, SrcType,
4205 castExpr);
4208 bool Sema::CheckTollFreeBridgeStaticCast(QualType castType, Expr *castExpr,
4209 CastKind &Kind) {
4210 if (!getLangOpts().ObjC)
4211 return false;
4212 ARCConversionTypeClass exprACTC =
4213 classifyTypeForARCConversion(castExpr->getType());
4214 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(castType);
4215 if ((castACTC == ACTC_retainable && exprACTC == ACTC_coreFoundation) ||
4216 (castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable)) {
4217 CheckTollFreeBridgeCast(castType, castExpr);
4218 Kind = (castACTC == ACTC_coreFoundation) ? CK_BitCast
4219 : CK_CPointerToObjCPointerCast;
4220 return true;
4222 return false;
4225 bool Sema::checkObjCBridgeRelatedComponents(SourceLocation Loc,
4226 QualType DestType, QualType SrcType,
4227 ObjCInterfaceDecl *&RelatedClass,
4228 ObjCMethodDecl *&ClassMethod,
4229 ObjCMethodDecl *&InstanceMethod,
4230 TypedefNameDecl *&TDNDecl,
4231 bool CfToNs, bool Diagnose) {
4232 QualType T = CfToNs ? SrcType : DestType;
4233 ObjCBridgeRelatedAttr *ObjCBAttr = ObjCBridgeRelatedAttrFromType(T, TDNDecl);
4234 if (!ObjCBAttr)
4235 return false;
4237 IdentifierInfo *RCId = ObjCBAttr->getRelatedClass();
4238 IdentifierInfo *CMId = ObjCBAttr->getClassMethod();
4239 IdentifierInfo *IMId = ObjCBAttr->getInstanceMethod();
4240 if (!RCId)
4241 return false;
4242 NamedDecl *Target = nullptr;
4243 // Check for an existing type with this name.
4244 LookupResult R(*this, DeclarationName(RCId), SourceLocation(),
4245 Sema::LookupOrdinaryName);
4246 if (!LookupName(R, TUScope)) {
4247 if (Diagnose) {
4248 Diag(Loc, diag::err_objc_bridged_related_invalid_class) << RCId
4249 << SrcType << DestType;
4250 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
4252 return false;
4254 Target = R.getFoundDecl();
4255 if (Target && isa<ObjCInterfaceDecl>(Target))
4256 RelatedClass = cast<ObjCInterfaceDecl>(Target);
4257 else {
4258 if (Diagnose) {
4259 Diag(Loc, diag::err_objc_bridged_related_invalid_class_name) << RCId
4260 << SrcType << DestType;
4261 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
4262 if (Target)
4263 Diag(Target->getBeginLoc(), diag::note_declared_at);
4265 return false;
4268 // Check for an existing class method with the given selector name.
4269 if (CfToNs && CMId) {
4270 Selector Sel = Context.Selectors.getUnarySelector(CMId);
4271 ClassMethod = RelatedClass->lookupMethod(Sel, false);
4272 if (!ClassMethod) {
4273 if (Diagnose) {
4274 Diag(Loc, diag::err_objc_bridged_related_known_method)
4275 << SrcType << DestType << Sel << false;
4276 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
4278 return false;
4282 // Check for an existing instance method with the given selector name.
4283 if (!CfToNs && IMId) {
4284 Selector Sel = Context.Selectors.getNullarySelector(IMId);
4285 InstanceMethod = RelatedClass->lookupMethod(Sel, true);
4286 if (!InstanceMethod) {
4287 if (Diagnose) {
4288 Diag(Loc, diag::err_objc_bridged_related_known_method)
4289 << SrcType << DestType << Sel << true;
4290 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
4292 return false;
4295 return true;
4298 bool
4299 Sema::CheckObjCBridgeRelatedConversions(SourceLocation Loc,
4300 QualType DestType, QualType SrcType,
4301 Expr *&SrcExpr, bool Diagnose) {
4302 ARCConversionTypeClass rhsExprACTC = classifyTypeForARCConversion(SrcType);
4303 ARCConversionTypeClass lhsExprACTC = classifyTypeForARCConversion(DestType);
4304 bool CfToNs = (rhsExprACTC == ACTC_coreFoundation && lhsExprACTC == ACTC_retainable);
4305 bool NsToCf = (rhsExprACTC == ACTC_retainable && lhsExprACTC == ACTC_coreFoundation);
4306 if (!CfToNs && !NsToCf)
4307 return false;
4309 ObjCInterfaceDecl *RelatedClass;
4310 ObjCMethodDecl *ClassMethod = nullptr;
4311 ObjCMethodDecl *InstanceMethod = nullptr;
4312 TypedefNameDecl *TDNDecl = nullptr;
4313 if (!checkObjCBridgeRelatedComponents(Loc, DestType, SrcType, RelatedClass,
4314 ClassMethod, InstanceMethod, TDNDecl,
4315 CfToNs, Diagnose))
4316 return false;
4318 if (CfToNs) {
4319 // Implicit conversion from CF to ObjC object is needed.
4320 if (ClassMethod) {
4321 if (Diagnose) {
4322 std::string ExpressionString = "[";
4323 ExpressionString += RelatedClass->getNameAsString();
4324 ExpressionString += " ";
4325 ExpressionString += ClassMethod->getSelector().getAsString();
4326 SourceLocation SrcExprEndLoc =
4327 getLocForEndOfToken(SrcExpr->getEndLoc());
4328 // Provide a fixit: [RelatedClass ClassMethod SrcExpr]
4329 Diag(Loc, diag::err_objc_bridged_related_known_method)
4330 << SrcType << DestType << ClassMethod->getSelector() << false
4331 << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(),
4332 ExpressionString)
4333 << FixItHint::CreateInsertion(SrcExprEndLoc, "]");
4334 Diag(RelatedClass->getBeginLoc(), diag::note_declared_at);
4335 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
4337 QualType receiverType = Context.getObjCInterfaceType(RelatedClass);
4338 // Argument.
4339 Expr *args[] = { SrcExpr };
4340 ExprResult msg = BuildClassMessageImplicit(receiverType, false,
4341 ClassMethod->getLocation(),
4342 ClassMethod->getSelector(), ClassMethod,
4343 MultiExprArg(args, 1));
4344 SrcExpr = msg.get();
4346 return true;
4349 else {
4350 // Implicit conversion from ObjC type to CF object is needed.
4351 if (InstanceMethod) {
4352 if (Diagnose) {
4353 std::string ExpressionString;
4354 SourceLocation SrcExprEndLoc =
4355 getLocForEndOfToken(SrcExpr->getEndLoc());
4356 if (InstanceMethod->isPropertyAccessor())
4357 if (const ObjCPropertyDecl *PDecl =
4358 InstanceMethod->findPropertyDecl()) {
4359 // fixit: ObjectExpr.propertyname when it is aproperty accessor.
4360 ExpressionString = ".";
4361 ExpressionString += PDecl->getNameAsString();
4362 Diag(Loc, diag::err_objc_bridged_related_known_method)
4363 << SrcType << DestType << InstanceMethod->getSelector() << true
4364 << FixItHint::CreateInsertion(SrcExprEndLoc, ExpressionString);
4366 if (ExpressionString.empty()) {
4367 // Provide a fixit: [ObjectExpr InstanceMethod]
4368 ExpressionString = " ";
4369 ExpressionString += InstanceMethod->getSelector().getAsString();
4370 ExpressionString += "]";
4372 Diag(Loc, diag::err_objc_bridged_related_known_method)
4373 << SrcType << DestType << InstanceMethod->getSelector() << true
4374 << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "[")
4375 << FixItHint::CreateInsertion(SrcExprEndLoc, ExpressionString);
4377 Diag(RelatedClass->getBeginLoc(), diag::note_declared_at);
4378 Diag(TDNDecl->getBeginLoc(), diag::note_declared_at);
4380 ExprResult msg =
4381 BuildInstanceMessageImplicit(SrcExpr, SrcType,
4382 InstanceMethod->getLocation(),
4383 InstanceMethod->getSelector(),
4384 InstanceMethod, None);
4385 SrcExpr = msg.get();
4387 return true;
4390 return false;
4393 Sema::ARCConversionResult
4394 Sema::CheckObjCConversion(SourceRange castRange, QualType castType,
4395 Expr *&castExpr, CheckedConversionKind CCK,
4396 bool Diagnose, bool DiagnoseCFAudited,
4397 BinaryOperatorKind Opc) {
4398 QualType castExprType = castExpr->getType();
4400 // For the purposes of the classification, we assume reference types
4401 // will bind to temporaries.
4402 QualType effCastType = castType;
4403 if (const ReferenceType *ref = castType->getAs<ReferenceType>())
4404 effCastType = ref->getPointeeType();
4406 ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExprType);
4407 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(effCastType);
4408 if (exprACTC == castACTC) {
4409 // Check for viability and report error if casting an rvalue to a
4410 // life-time qualifier.
4411 if (castACTC == ACTC_retainable &&
4412 (CCK == CCK_CStyleCast || CCK == CCK_OtherCast) &&
4413 castType != castExprType) {
4414 const Type *DT = castType.getTypePtr();
4415 QualType QDT = castType;
4416 // We desugar some types but not others. We ignore those
4417 // that cannot happen in a cast; i.e. auto, and those which
4418 // should not be de-sugared; i.e typedef.
4419 if (const ParenType *PT = dyn_cast<ParenType>(DT))
4420 QDT = PT->desugar();
4421 else if (const TypeOfType *TP = dyn_cast<TypeOfType>(DT))
4422 QDT = TP->desugar();
4423 else if (const AttributedType *AT = dyn_cast<AttributedType>(DT))
4424 QDT = AT->desugar();
4425 if (QDT != castType &&
4426 QDT.getObjCLifetime() != Qualifiers::OCL_None) {
4427 if (Diagnose) {
4428 SourceLocation loc = (castRange.isValid() ? castRange.getBegin()
4429 : castExpr->getExprLoc());
4430 Diag(loc, diag::err_arc_nolifetime_behavior);
4432 return ACR_error;
4435 return ACR_okay;
4438 // The life-time qualifier cast check above is all we need for ObjCWeak.
4439 // ObjCAutoRefCount has more restrictions on what is legal.
4440 if (!getLangOpts().ObjCAutoRefCount)
4441 return ACR_okay;
4443 if (isAnyCLike(exprACTC) && isAnyCLike(castACTC)) return ACR_okay;
4445 // Allow all of these types to be cast to integer types (but not
4446 // vice-versa).
4447 if (castACTC == ACTC_none && castType->isIntegralType(Context))
4448 return ACR_okay;
4450 // Allow casts between pointers to lifetime types (e.g., __strong id*)
4451 // and pointers to void (e.g., cv void *). Casting from void* to lifetime*
4452 // must be explicit.
4453 // Allow conversions between pointers to lifetime types and coreFoundation
4454 // pointers too, but only when the conversions are explicit.
4455 if (exprACTC == ACTC_indirectRetainable &&
4456 (castACTC == ACTC_voidPtr ||
4457 (castACTC == ACTC_coreFoundation && isCast(CCK))))
4458 return ACR_okay;
4459 if (castACTC == ACTC_indirectRetainable &&
4460 (exprACTC == ACTC_voidPtr || exprACTC == ACTC_coreFoundation) &&
4461 isCast(CCK))
4462 return ACR_okay;
4464 switch (ARCCastChecker(Context, exprACTC, castACTC, false).Visit(castExpr)) {
4465 // For invalid casts, fall through.
4466 case ACC_invalid:
4467 break;
4469 // Do nothing for both bottom and +0.
4470 case ACC_bottom:
4471 case ACC_plusZero:
4472 return ACR_okay;
4474 // If the result is +1, consume it here.
4475 case ACC_plusOne:
4476 castExpr = ImplicitCastExpr::Create(Context, castExpr->getType(),
4477 CK_ARCConsumeObject, castExpr, nullptr,
4478 VK_PRValue, FPOptionsOverride());
4479 Cleanup.setExprNeedsCleanups(true);
4480 return ACR_okay;
4483 // If this is a non-implicit cast from id or block type to a
4484 // CoreFoundation type, delay complaining in case the cast is used
4485 // in an acceptable context.
4486 if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC) && isCast(CCK))
4487 return ACR_unbridged;
4489 // Issue a diagnostic about a missing @-sign when implicit casting a cstring
4490 // to 'NSString *', instead of falling through to report a "bridge cast"
4491 // diagnostic.
4492 if (castACTC == ACTC_retainable && exprACTC == ACTC_none &&
4493 CheckConversionToObjCLiteral(castType, castExpr, Diagnose))
4494 return ACR_error;
4496 // Do not issue "bridge cast" diagnostic when implicit casting
4497 // a retainable object to a CF type parameter belonging to an audited
4498 // CF API function. Let caller issue a normal type mismatched diagnostic
4499 // instead.
4500 if ((!DiagnoseCFAudited || exprACTC != ACTC_retainable ||
4501 castACTC != ACTC_coreFoundation) &&
4502 !(exprACTC == ACTC_voidPtr && castACTC == ACTC_retainable &&
4503 (Opc == BO_NE || Opc == BO_EQ))) {
4504 if (Diagnose)
4505 diagnoseObjCARCConversion(*this, castRange, castType, castACTC, castExpr,
4506 castExpr, exprACTC, CCK);
4507 return ACR_error;
4509 return ACR_okay;
4512 /// Given that we saw an expression with the ARCUnbridgedCastTy
4513 /// placeholder type, complain bitterly.
4514 void Sema::diagnoseARCUnbridgedCast(Expr *e) {
4515 // We expect the spurious ImplicitCastExpr to already have been stripped.
4516 assert(!e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
4517 CastExpr *realCast = cast<CastExpr>(e->IgnoreParens());
4519 SourceRange castRange;
4520 QualType castType;
4521 CheckedConversionKind CCK;
4523 if (CStyleCastExpr *cast = dyn_cast<CStyleCastExpr>(realCast)) {
4524 castRange = SourceRange(cast->getLParenLoc(), cast->getRParenLoc());
4525 castType = cast->getTypeAsWritten();
4526 CCK = CCK_CStyleCast;
4527 } else if (ExplicitCastExpr *cast = dyn_cast<ExplicitCastExpr>(realCast)) {
4528 castRange = cast->getTypeInfoAsWritten()->getTypeLoc().getSourceRange();
4529 castType = cast->getTypeAsWritten();
4530 CCK = CCK_OtherCast;
4531 } else {
4532 llvm_unreachable("Unexpected ImplicitCastExpr");
4535 ARCConversionTypeClass castACTC =
4536 classifyTypeForARCConversion(castType.getNonReferenceType());
4538 Expr *castExpr = realCast->getSubExpr();
4539 assert(classifyTypeForARCConversion(castExpr->getType()) == ACTC_retainable);
4541 diagnoseObjCARCConversion(*this, castRange, castType, castACTC,
4542 castExpr, realCast, ACTC_retainable, CCK);
4545 /// stripARCUnbridgedCast - Given an expression of ARCUnbridgedCast
4546 /// type, remove the placeholder cast.
4547 Expr *Sema::stripARCUnbridgedCast(Expr *e) {
4548 assert(e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
4550 if (ParenExpr *pe = dyn_cast<ParenExpr>(e)) {
4551 Expr *sub = stripARCUnbridgedCast(pe->getSubExpr());
4552 return new (Context) ParenExpr(pe->getLParen(), pe->getRParen(), sub);
4553 } else if (UnaryOperator *uo = dyn_cast<UnaryOperator>(e)) {
4554 assert(uo->getOpcode() == UO_Extension);
4555 Expr *sub = stripARCUnbridgedCast(uo->getSubExpr());
4556 return UnaryOperator::Create(Context, sub, UO_Extension, sub->getType(),
4557 sub->getValueKind(), sub->getObjectKind(),
4558 uo->getOperatorLoc(), false,
4559 CurFPFeatureOverrides());
4560 } else if (GenericSelectionExpr *gse = dyn_cast<GenericSelectionExpr>(e)) {
4561 assert(!gse->isResultDependent());
4563 unsigned n = gse->getNumAssocs();
4564 SmallVector<Expr *, 4> subExprs;
4565 SmallVector<TypeSourceInfo *, 4> subTypes;
4566 subExprs.reserve(n);
4567 subTypes.reserve(n);
4568 for (const GenericSelectionExpr::Association assoc : gse->associations()) {
4569 subTypes.push_back(assoc.getTypeSourceInfo());
4570 Expr *sub = assoc.getAssociationExpr();
4571 if (assoc.isSelected())
4572 sub = stripARCUnbridgedCast(sub);
4573 subExprs.push_back(sub);
4576 return GenericSelectionExpr::Create(
4577 Context, gse->getGenericLoc(), gse->getControllingExpr(), subTypes,
4578 subExprs, gse->getDefaultLoc(), gse->getRParenLoc(),
4579 gse->containsUnexpandedParameterPack(), gse->getResultIndex());
4580 } else {
4581 assert(isa<ImplicitCastExpr>(e) && "bad form of unbridged cast!");
4582 return cast<ImplicitCastExpr>(e)->getSubExpr();
4586 bool Sema::CheckObjCARCUnavailableWeakConversion(QualType castType,
4587 QualType exprType) {
4588 QualType canCastType =
4589 Context.getCanonicalType(castType).getUnqualifiedType();
4590 QualType canExprType =
4591 Context.getCanonicalType(exprType).getUnqualifiedType();
4592 if (isa<ObjCObjectPointerType>(canCastType) &&
4593 castType.getObjCLifetime() == Qualifiers::OCL_Weak &&
4594 canExprType->isObjCObjectPointerType()) {
4595 if (const ObjCObjectPointerType *ObjT =
4596 canExprType->getAs<ObjCObjectPointerType>())
4597 if (const ObjCInterfaceDecl *ObjI = ObjT->getInterfaceDecl())
4598 return !ObjI->isArcWeakrefUnavailable();
4600 return true;
4603 /// Look for an ObjCReclaimReturnedObject cast and destroy it.
4604 static Expr *maybeUndoReclaimObject(Expr *e) {
4605 Expr *curExpr = e, *prevExpr = nullptr;
4607 // Walk down the expression until we hit an implicit cast of kind
4608 // ARCReclaimReturnedObject or an Expr that is neither a Paren nor a Cast.
4609 while (true) {
4610 if (auto *pe = dyn_cast<ParenExpr>(curExpr)) {
4611 prevExpr = curExpr;
4612 curExpr = pe->getSubExpr();
4613 continue;
4616 if (auto *ce = dyn_cast<CastExpr>(curExpr)) {
4617 if (auto *ice = dyn_cast<ImplicitCastExpr>(ce))
4618 if (ice->getCastKind() == CK_ARCReclaimReturnedObject) {
4619 if (!prevExpr)
4620 return ice->getSubExpr();
4621 if (auto *pe = dyn_cast<ParenExpr>(prevExpr))
4622 pe->setSubExpr(ice->getSubExpr());
4623 else
4624 cast<CastExpr>(prevExpr)->setSubExpr(ice->getSubExpr());
4625 return e;
4628 prevExpr = curExpr;
4629 curExpr = ce->getSubExpr();
4630 continue;
4633 // Break out of the loop if curExpr is neither a Paren nor a Cast.
4634 break;
4637 return e;
4640 ExprResult Sema::BuildObjCBridgedCast(SourceLocation LParenLoc,
4641 ObjCBridgeCastKind Kind,
4642 SourceLocation BridgeKeywordLoc,
4643 TypeSourceInfo *TSInfo,
4644 Expr *SubExpr) {
4645 ExprResult SubResult = UsualUnaryConversions(SubExpr);
4646 if (SubResult.isInvalid()) return ExprError();
4647 SubExpr = SubResult.get();
4649 QualType T = TSInfo->getType();
4650 QualType FromType = SubExpr->getType();
4652 CastKind CK;
4654 bool MustConsume = false;
4655 if (T->isDependentType() || SubExpr->isTypeDependent()) {
4656 // Okay: we'll build a dependent expression type.
4657 CK = CK_Dependent;
4658 } else if (T->isObjCARCBridgableType() && FromType->isCARCBridgableType()) {
4659 // Casting CF -> id
4660 CK = (T->isBlockPointerType() ? CK_AnyPointerToBlockPointerCast
4661 : CK_CPointerToObjCPointerCast);
4662 switch (Kind) {
4663 case OBC_Bridge:
4664 break;
4666 case OBC_BridgeRetained: {
4667 bool br = isKnownName("CFBridgingRelease");
4668 Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind)
4669 << 2
4670 << FromType
4671 << (T->isBlockPointerType()? 1 : 0)
4672 << T
4673 << SubExpr->getSourceRange()
4674 << Kind;
4675 Diag(BridgeKeywordLoc, diag::note_arc_bridge)
4676 << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge");
4677 Diag(BridgeKeywordLoc, diag::note_arc_bridge_transfer)
4678 << FromType << br
4679 << FixItHint::CreateReplacement(BridgeKeywordLoc,
4680 br ? "CFBridgingRelease "
4681 : "__bridge_transfer ");
4683 Kind = OBC_Bridge;
4684 break;
4687 case OBC_BridgeTransfer:
4688 // We must consume the Objective-C object produced by the cast.
4689 MustConsume = true;
4690 break;
4692 } else if (T->isCARCBridgableType() && FromType->isObjCARCBridgableType()) {
4693 // Okay: id -> CF
4694 CK = CK_BitCast;
4695 switch (Kind) {
4696 case OBC_Bridge:
4697 // Reclaiming a value that's going to be __bridge-casted to CF
4698 // is very dangerous, so we don't do it.
4699 SubExpr = maybeUndoReclaimObject(SubExpr);
4700 break;
4702 case OBC_BridgeRetained:
4703 // Produce the object before casting it.
4704 SubExpr = ImplicitCastExpr::Create(Context, FromType, CK_ARCProduceObject,
4705 SubExpr, nullptr, VK_PRValue,
4706 FPOptionsOverride());
4707 break;
4709 case OBC_BridgeTransfer: {
4710 bool br = isKnownName("CFBridgingRetain");
4711 Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind)
4712 << (FromType->isBlockPointerType()? 1 : 0)
4713 << FromType
4714 << 2
4715 << T
4716 << SubExpr->getSourceRange()
4717 << Kind;
4719 Diag(BridgeKeywordLoc, diag::note_arc_bridge)
4720 << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge ");
4721 Diag(BridgeKeywordLoc, diag::note_arc_bridge_retained)
4722 << T << br
4723 << FixItHint::CreateReplacement(BridgeKeywordLoc,
4724 br ? "CFBridgingRetain " : "__bridge_retained");
4726 Kind = OBC_Bridge;
4727 break;
4730 } else {
4731 Diag(LParenLoc, diag::err_arc_bridge_cast_incompatible)
4732 << FromType << T << Kind
4733 << SubExpr->getSourceRange()
4734 << TSInfo->getTypeLoc().getSourceRange();
4735 return ExprError();
4738 Expr *Result = new (Context) ObjCBridgedCastExpr(LParenLoc, Kind, CK,
4739 BridgeKeywordLoc,
4740 TSInfo, SubExpr);
4742 if (MustConsume) {
4743 Cleanup.setExprNeedsCleanups(true);
4744 Result = ImplicitCastExpr::Create(Context, T, CK_ARCConsumeObject, Result,
4745 nullptr, VK_PRValue, FPOptionsOverride());
4748 return Result;
4751 ExprResult Sema::ActOnObjCBridgedCast(Scope *S,
4752 SourceLocation LParenLoc,
4753 ObjCBridgeCastKind Kind,
4754 SourceLocation BridgeKeywordLoc,
4755 ParsedType Type,
4756 SourceLocation RParenLoc,
4757 Expr *SubExpr) {
4758 TypeSourceInfo *TSInfo = nullptr;
4759 QualType T = GetTypeFromParser(Type, &TSInfo);
4760 if (Kind == OBC_Bridge)
4761 CheckTollFreeBridgeCast(T, SubExpr);
4762 if (!TSInfo)
4763 TSInfo = Context.getTrivialTypeSourceInfo(T, LParenLoc);
4764 return BuildObjCBridgedCast(LParenLoc, Kind, BridgeKeywordLoc, TSInfo,
4765 SubExpr);