[docs] Fix build-docs.sh
[llvm-project.git] / clang / lib / Sema / SemaModule.cpp
blobb205fd914f9d3a444ae6cb5a6d66c0af8898c0cd
1 //===--- SemaModule.cpp - Semantic Analysis for Modules -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for modules (C++ modules syntax,
10 // Objective-C modules syntax, and Clang header modules).
12 //===----------------------------------------------------------------------===//
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/Lex/HeaderSearch.h"
16 #include "clang/Lex/Preprocessor.h"
17 #include "clang/Sema/SemaInternal.h"
19 using namespace clang;
20 using namespace sema;
22 static void checkModuleImportContext(Sema &S, Module *M,
23 SourceLocation ImportLoc, DeclContext *DC,
24 bool FromInclude = false) {
25 SourceLocation ExternCLoc;
27 if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) {
28 switch (LSD->getLanguage()) {
29 case LinkageSpecDecl::lang_c:
30 if (ExternCLoc.isInvalid())
31 ExternCLoc = LSD->getBeginLoc();
32 break;
33 case LinkageSpecDecl::lang_cxx:
34 break;
36 DC = LSD->getParent();
39 while (isa<LinkageSpecDecl>(DC) || isa<ExportDecl>(DC))
40 DC = DC->getParent();
42 if (!isa<TranslationUnitDecl>(DC)) {
43 S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M))
44 ? diag::ext_module_import_not_at_top_level_noop
45 : diag::err_module_import_not_at_top_level_fatal)
46 << M->getFullModuleName() << DC;
47 S.Diag(cast<Decl>(DC)->getBeginLoc(),
48 diag::note_module_import_not_at_top_level)
49 << DC;
50 } else if (!M->IsExternC && ExternCLoc.isValid()) {
51 S.Diag(ImportLoc, diag::ext_module_import_in_extern_c)
52 << M->getFullModuleName();
53 S.Diag(ExternCLoc, diag::note_extern_c_begins_here);
57 // We represent the primary and partition names as 'Paths' which are sections
58 // of the hierarchical access path for a clang module. However for C++20
59 // the periods in a name are just another character, and we will need to
60 // flatten them into a string.
61 static std::string stringFromPath(ModuleIdPath Path) {
62 std::string Name;
63 if (Path.empty())
64 return Name;
66 for (auto &Piece : Path) {
67 if (!Name.empty())
68 Name += ".";
69 Name += Piece.first->getName();
71 return Name;
74 Sema::DeclGroupPtrTy
75 Sema::ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc) {
76 if (!ModuleScopes.empty() &&
77 ModuleScopes.back().Module->Kind == Module::GlobalModuleFragment) {
78 // Under -std=c++2a -fmodules-ts, we can find an explicit 'module;' after
79 // already implicitly entering the global module fragment. That's OK.
80 assert(getLangOpts().CPlusPlusModules && getLangOpts().ModulesTS &&
81 "unexpectedly encountered multiple global module fragment decls");
82 ModuleScopes.back().BeginLoc = ModuleLoc;
83 return nullptr;
86 // We start in the global module; all those declarations are implicitly
87 // module-private (though they do not have module linkage).
88 Module *GlobalModule =
89 PushGlobalModuleFragment(ModuleLoc, /*IsImplicit=*/false);
91 // All declarations created from now on are owned by the global module.
92 auto *TU = Context.getTranslationUnitDecl();
93 // [module.global.frag]p2
94 // A global-module-fragment specifies the contents of the global module
95 // fragment for a module unit. The global module fragment can be used to
96 // provide declarations that are attached to the global module and usable
97 // within the module unit.
99 // So the declations in the global module shouldn't be visible by default.
100 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported);
101 TU->setLocalOwningModule(GlobalModule);
103 // FIXME: Consider creating an explicit representation of this declaration.
104 return nullptr;
107 void Sema::HandleStartOfHeaderUnit() {
108 assert(getLangOpts().CPlusPlusModules &&
109 "Header units are only valid for C++20 modules");
110 SourceLocation StartOfTU =
111 SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID());
113 StringRef HUName = getLangOpts().CurrentModule;
114 if (HUName.empty()) {
115 HUName = SourceMgr.getFileEntryForID(SourceMgr.getMainFileID())->getName();
116 const_cast<LangOptions &>(getLangOpts()).CurrentModule = HUName.str();
119 // TODO: Make the C++20 header lookup independent.
120 // When the input is pre-processed source, we need a file ref to the original
121 // file for the header map.
122 auto F = SourceMgr.getFileManager().getFile(HUName);
123 // For the sake of error recovery (if someone has moved the original header
124 // after creating the pre-processed output) fall back to obtaining the file
125 // ref for the input file, which must be present.
126 if (!F)
127 F = SourceMgr.getFileEntryForID(SourceMgr.getMainFileID());
128 assert(F && "failed to find the header unit source?");
129 Module::Header H{HUName.str(), HUName.str(), *F};
130 auto &Map = PP.getHeaderSearchInfo().getModuleMap();
131 Module *Mod = Map.createHeaderUnit(StartOfTU, HUName, H);
132 assert(Mod && "module creation should not fail");
133 ModuleScopes.push_back({}); // No GMF
134 ModuleScopes.back().BeginLoc = StartOfTU;
135 ModuleScopes.back().Module = Mod;
136 ModuleScopes.back().ModuleInterface = true;
137 ModuleScopes.back().IsPartition = false;
138 VisibleModules.setVisible(Mod, StartOfTU);
140 // From now on, we have an owning module for all declarations we see.
141 // All of these are implicitly exported.
142 auto *TU = Context.getTranslationUnitDecl();
143 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::Visible);
144 TU->setLocalOwningModule(Mod);
147 Sema::DeclGroupPtrTy
148 Sema::ActOnModuleDecl(SourceLocation StartLoc, SourceLocation ModuleLoc,
149 ModuleDeclKind MDK, ModuleIdPath Path,
150 ModuleIdPath Partition, ModuleImportState &ImportState) {
151 assert((getLangOpts().ModulesTS || getLangOpts().CPlusPlusModules) &&
152 "should only have module decl in Modules TS or C++20");
154 bool IsFirstDecl = ImportState == ModuleImportState::FirstDecl;
155 bool SeenGMF = ImportState == ModuleImportState::GlobalFragment;
156 // If any of the steps here fail, we count that as invalidating C++20
157 // module state;
158 ImportState = ModuleImportState::NotACXX20Module;
160 bool IsPartition = !Partition.empty();
161 if (IsPartition)
162 switch (MDK) {
163 case ModuleDeclKind::Implementation:
164 MDK = ModuleDeclKind::PartitionImplementation;
165 break;
166 case ModuleDeclKind::Interface:
167 MDK = ModuleDeclKind::PartitionInterface;
168 break;
169 default:
170 llvm_unreachable("how did we get a partition type set?");
173 // A (non-partition) module implementation unit requires that we are not
174 // compiling a module of any kind. A partition implementation emits an
175 // interface (and the AST for the implementation), which will subsequently
176 // be consumed to emit a binary.
177 // A module interface unit requires that we are not compiling a module map.
178 switch (getLangOpts().getCompilingModule()) {
179 case LangOptions::CMK_None:
180 // It's OK to compile a module interface as a normal translation unit.
181 break;
183 case LangOptions::CMK_ModuleInterface:
184 if (MDK != ModuleDeclKind::Implementation)
185 break;
187 // We were asked to compile a module interface unit but this is a module
188 // implementation unit.
189 Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch)
190 << FixItHint::CreateInsertion(ModuleLoc, "export ");
191 MDK = ModuleDeclKind::Interface;
192 break;
194 case LangOptions::CMK_ModuleMap:
195 Diag(ModuleLoc, diag::err_module_decl_in_module_map_module);
196 return nullptr;
198 case LangOptions::CMK_HeaderModule:
199 case LangOptions::CMK_HeaderUnit:
200 Diag(ModuleLoc, diag::err_module_decl_in_header_module);
201 return nullptr;
204 assert(ModuleScopes.size() <= 1 && "expected to be at global module scope");
206 // FIXME: Most of this work should be done by the preprocessor rather than
207 // here, in order to support macro import.
209 // Only one module-declaration is permitted per source file.
210 if (isCurrentModulePurview()) {
211 Diag(ModuleLoc, diag::err_module_redeclaration);
212 Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module),
213 diag::note_prev_module_declaration);
214 return nullptr;
217 // Find the global module fragment we're adopting into this module, if any.
218 Module *GlobalModuleFragment = nullptr;
219 if (!ModuleScopes.empty() &&
220 ModuleScopes.back().Module->Kind == Module::GlobalModuleFragment)
221 GlobalModuleFragment = ModuleScopes.back().Module;
223 assert((!getLangOpts().CPlusPlusModules || getLangOpts().ModulesTS ||
224 SeenGMF == (bool)GlobalModuleFragment) &&
225 "mismatched global module state");
227 // In C++20, the module-declaration must be the first declaration if there
228 // is no global module fragment.
229 if (getLangOpts().CPlusPlusModules && !IsFirstDecl && !SeenGMF) {
230 Diag(ModuleLoc, diag::err_module_decl_not_at_start);
231 SourceLocation BeginLoc =
232 ModuleScopes.empty()
233 ? SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID())
234 : ModuleScopes.back().BeginLoc;
235 if (BeginLoc.isValid()) {
236 Diag(BeginLoc, diag::note_global_module_introducer_missing)
237 << FixItHint::CreateInsertion(BeginLoc, "module;\n");
241 // Flatten the dots in a module name. Unlike Clang's hierarchical module map
242 // modules, the dots here are just another character that can appear in a
243 // module name.
244 std::string ModuleName = stringFromPath(Path);
245 if (IsPartition) {
246 ModuleName += ":";
247 ModuleName += stringFromPath(Partition);
249 // If a module name was explicitly specified on the command line, it must be
250 // correct.
251 if (!getLangOpts().CurrentModule.empty() &&
252 getLangOpts().CurrentModule != ModuleName) {
253 Diag(Path.front().second, diag::err_current_module_name_mismatch)
254 << SourceRange(Path.front().second, IsPartition
255 ? Partition.back().second
256 : Path.back().second)
257 << getLangOpts().CurrentModule;
258 return nullptr;
260 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName;
262 auto &Map = PP.getHeaderSearchInfo().getModuleMap();
263 Module *Mod;
265 switch (MDK) {
266 case ModuleDeclKind::Interface:
267 case ModuleDeclKind::PartitionInterface: {
268 // We can't have parsed or imported a definition of this module or parsed a
269 // module map defining it already.
270 if (auto *M = Map.findModule(ModuleName)) {
271 Diag(Path[0].second, diag::err_module_redefinition) << ModuleName;
272 if (M->DefinitionLoc.isValid())
273 Diag(M->DefinitionLoc, diag::note_prev_module_definition);
274 else if (Optional<FileEntryRef> FE = M->getASTFile())
275 Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file)
276 << FE->getName();
277 Mod = M;
278 break;
281 // Create a Module for the module that we're defining.
282 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName,
283 GlobalModuleFragment);
284 if (MDK == ModuleDeclKind::PartitionInterface)
285 Mod->Kind = Module::ModulePartitionInterface;
286 assert(Mod && "module creation should not fail");
287 break;
290 case ModuleDeclKind::Implementation: {
291 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc(
292 PP.getIdentifierInfo(ModuleName), Path[0].second);
293 // C++20 A module-declaration that contains neither an export-
294 // keyword nor a module-partition implicitly imports the primary
295 // module interface unit of the module as if by a module-import-
296 // declaration.
297 Mod = getModuleLoader().loadModule(ModuleLoc, {ModuleNameLoc},
298 Module::AllVisible,
299 /*IsInclusionDirective=*/false);
300 if (!Mod) {
301 Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName;
302 // Create an empty module interface unit for error recovery.
303 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName,
304 GlobalModuleFragment);
306 } break;
308 case ModuleDeclKind::PartitionImplementation:
309 // Create an interface, but note that it is an implementation
310 // unit.
311 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName,
312 GlobalModuleFragment);
313 Mod->Kind = Module::ModulePartitionImplementation;
314 break;
317 if (!GlobalModuleFragment) {
318 ModuleScopes.push_back({});
319 if (getLangOpts().ModulesLocalVisibility)
320 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules);
321 } else {
322 // We're done with the global module fragment now.
323 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Global);
326 // Switch from the global module fragment (if any) to the named module.
327 ModuleScopes.back().BeginLoc = StartLoc;
328 ModuleScopes.back().Module = Mod;
329 ModuleScopes.back().ModuleInterface = MDK != ModuleDeclKind::Implementation;
330 ModuleScopes.back().IsPartition = IsPartition;
331 VisibleModules.setVisible(Mod, ModuleLoc);
333 // From now on, we have an owning module for all declarations we see.
334 // In C++20 modules, those declaration would be reachable when imported
335 // unless explicitily exported.
336 // Otherwise, those declarations are module-private unless explicitly
337 // exported.
338 auto *TU = Context.getTranslationUnitDecl();
339 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported);
340 TU->setLocalOwningModule(Mod);
342 // We are in the module purview, but before any other (non import)
343 // statements, so imports are allowed.
344 ImportState = ModuleImportState::ImportAllowed;
346 // For an implementation, We already made an implicit import (its interface).
347 // Make and return the import decl to be added to the current TU.
348 if (MDK == ModuleDeclKind::Implementation) {
349 // Make the import decl for the interface.
350 ImportDecl *Import =
351 ImportDecl::Create(Context, CurContext, ModuleLoc, Mod, Path[0].second);
352 // and return it to be added.
353 return ConvertDeclToDeclGroup(Import);
356 // FIXME: Create a ModuleDecl.
357 return nullptr;
360 Sema::DeclGroupPtrTy
361 Sema::ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc,
362 SourceLocation PrivateLoc) {
363 // C++20 [basic.link]/2:
364 // A private-module-fragment shall appear only in a primary module
365 // interface unit.
366 switch (ModuleScopes.empty() ? Module::GlobalModuleFragment
367 : ModuleScopes.back().Module->Kind) {
368 case Module::ModuleMapModule:
369 case Module::GlobalModuleFragment:
370 case Module::ModulePartitionImplementation:
371 case Module::ModulePartitionInterface:
372 case Module::ModuleHeaderUnit:
373 Diag(PrivateLoc, diag::err_private_module_fragment_not_module);
374 return nullptr;
376 case Module::PrivateModuleFragment:
377 Diag(PrivateLoc, diag::err_private_module_fragment_redefined);
378 Diag(ModuleScopes.back().BeginLoc, diag::note_previous_definition);
379 return nullptr;
381 case Module::ModuleInterfaceUnit:
382 break;
385 if (!ModuleScopes.back().ModuleInterface) {
386 Diag(PrivateLoc, diag::err_private_module_fragment_not_module_interface);
387 Diag(ModuleScopes.back().BeginLoc,
388 diag::note_not_module_interface_add_export)
389 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export ");
390 return nullptr;
393 // FIXME: Check this isn't a module interface partition.
394 // FIXME: Check that this translation unit does not import any partitions;
395 // such imports would violate [basic.link]/2's "shall be the only module unit"
396 // restriction.
398 // We've finished the public fragment of the translation unit.
399 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Normal);
401 auto &Map = PP.getHeaderSearchInfo().getModuleMap();
402 Module *PrivateModuleFragment =
403 Map.createPrivateModuleFragmentForInterfaceUnit(
404 ModuleScopes.back().Module, PrivateLoc);
405 assert(PrivateModuleFragment && "module creation should not fail");
407 // Enter the scope of the private module fragment.
408 ModuleScopes.push_back({});
409 ModuleScopes.back().BeginLoc = ModuleLoc;
410 ModuleScopes.back().Module = PrivateModuleFragment;
411 ModuleScopes.back().ModuleInterface = true;
412 VisibleModules.setVisible(PrivateModuleFragment, ModuleLoc);
414 // All declarations created from now on are scoped to the private module
415 // fragment (and are neither visible nor reachable in importers of the module
416 // interface).
417 auto *TU = Context.getTranslationUnitDecl();
418 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate);
419 TU->setLocalOwningModule(PrivateModuleFragment);
421 // FIXME: Consider creating an explicit representation of this declaration.
422 return nullptr;
425 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc,
426 SourceLocation ExportLoc,
427 SourceLocation ImportLoc, ModuleIdPath Path,
428 bool IsPartition) {
430 bool Cxx20Mode = getLangOpts().CPlusPlusModules || getLangOpts().ModulesTS;
431 assert((!IsPartition || Cxx20Mode) && "partition seen in non-C++20 code?");
433 // For a C++20 module name, flatten into a single identifier with the source
434 // location of the first component.
435 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc;
437 std::string ModuleName;
438 if (IsPartition) {
439 // We already checked that we are in a module purview in the parser.
440 assert(!ModuleScopes.empty() && "in a module purview, but no module?");
441 Module *NamedMod = ModuleScopes.back().Module;
442 // If we are importing into a partition, find the owning named module,
443 // otherwise, the name of the importing named module.
444 ModuleName = NamedMod->getPrimaryModuleInterfaceName().str();
445 ModuleName += ":";
446 ModuleName += stringFromPath(Path);
447 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second};
448 Path = ModuleIdPath(ModuleNameLoc);
449 } else if (Cxx20Mode) {
450 ModuleName = stringFromPath(Path);
451 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second};
452 Path = ModuleIdPath(ModuleNameLoc);
455 // Diagnose self-import before attempting a load.
456 // [module.import]/9
457 // A module implementation unit of a module M that is not a module partition
458 // shall not contain a module-import-declaration nominating M.
459 // (for an implementation, the module interface is imported implicitly,
460 // but that's handled in the module decl code).
462 if (getLangOpts().CPlusPlusModules && isCurrentModulePurview() &&
463 getCurrentModule()->Name == ModuleName) {
464 Diag(ImportLoc, diag::err_module_self_import_cxx20)
465 << ModuleName << !ModuleScopes.back().ModuleInterface;
466 return true;
469 Module *Mod = getModuleLoader().loadModule(
470 ImportLoc, Path, Module::AllVisible, /*IsInclusionDirective=*/false);
471 if (!Mod)
472 return true;
474 return ActOnModuleImport(StartLoc, ExportLoc, ImportLoc, Mod, Path);
477 /// Determine whether \p D is lexically within an export-declaration.
478 static const ExportDecl *getEnclosingExportDecl(const Decl *D) {
479 for (auto *DC = D->getLexicalDeclContext(); DC; DC = DC->getLexicalParent())
480 if (auto *ED = dyn_cast<ExportDecl>(DC))
481 return ED;
482 return nullptr;
485 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc,
486 SourceLocation ExportLoc,
487 SourceLocation ImportLoc, Module *Mod,
488 ModuleIdPath Path) {
489 VisibleModules.setVisible(Mod, ImportLoc);
491 checkModuleImportContext(*this, Mod, ImportLoc, CurContext);
493 // FIXME: we should support importing a submodule within a different submodule
494 // of the same top-level module. Until we do, make it an error rather than
495 // silently ignoring the import.
496 // FIXME: Should we warn on a redundant import of the current module?
497 if (Mod->getTopLevelModuleName() == getLangOpts().CurrentModule &&
498 (getLangOpts().isCompilingModule() || !getLangOpts().ModulesTS)) {
499 Diag(ImportLoc, getLangOpts().isCompilingModule()
500 ? diag::err_module_self_import
501 : diag::err_module_import_in_implementation)
502 << Mod->getFullModuleName() << getLangOpts().CurrentModule;
505 SmallVector<SourceLocation, 2> IdentifierLocs;
507 if (Path.empty()) {
508 // If this was a header import, pad out with dummy locations.
509 // FIXME: Pass in and use the location of the header-name token in this
510 // case.
511 for (Module *ModCheck = Mod; ModCheck; ModCheck = ModCheck->Parent)
512 IdentifierLocs.push_back(SourceLocation());
513 } else if (getLangOpts().CPlusPlusModules && !Mod->Parent) {
514 // A single identifier for the whole name.
515 IdentifierLocs.push_back(Path[0].second);
516 } else {
517 Module *ModCheck = Mod;
518 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
519 // If we've run out of module parents, just drop the remaining
520 // identifiers. We need the length to be consistent.
521 if (!ModCheck)
522 break;
523 ModCheck = ModCheck->Parent;
525 IdentifierLocs.push_back(Path[I].second);
529 ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc,
530 Mod, IdentifierLocs);
531 CurContext->addDecl(Import);
533 // Sequence initialization of the imported module before that of the current
534 // module, if any.
535 if (!ModuleScopes.empty())
536 Context.addModuleInitializer(ModuleScopes.back().Module, Import);
538 // A module (partition) implementation unit shall not be exported.
539 if (getLangOpts().CPlusPlusModules && ExportLoc.isValid() &&
540 Mod->Kind == Module::ModuleKind::ModulePartitionImplementation) {
541 Diag(ExportLoc, diag::err_export_partition_impl)
542 << SourceRange(ExportLoc, Path.back().second);
543 } else if (!ModuleScopes.empty() &&
544 (ModuleScopes.back().ModuleInterface ||
545 (getLangOpts().CPlusPlusModules &&
546 ModuleScopes.back().Module->isGlobalModule()))) {
547 assert((!ModuleScopes.back().Module->isGlobalModule() ||
548 Mod->Kind == Module::ModuleKind::ModuleHeaderUnit) &&
549 "should only be importing a header unit into the GMF");
550 // Re-export the module if the imported module is exported.
551 // Note that we don't need to add re-exported module to Imports field
552 // since `Exports` implies the module is imported already.
553 if (ExportLoc.isValid() || getEnclosingExportDecl(Import))
554 getCurrentModule()->Exports.emplace_back(Mod, false);
555 else
556 getCurrentModule()->Imports.insert(Mod);
557 } else if (ExportLoc.isValid()) {
558 // [module.interface]p1:
559 // An export-declaration shall inhabit a namespace scope and appear in the
560 // purview of a module interface unit.
561 Diag(ExportLoc, diag::err_export_not_in_module_interface)
562 << (!ModuleScopes.empty() &&
563 !ModuleScopes.back().ImplicitGlobalModuleFragment);
564 } else if (getLangOpts().isCompilingModule()) {
565 Module *ThisModule = PP.getHeaderSearchInfo().lookupModule(
566 getLangOpts().CurrentModule, ExportLoc, false, false);
567 (void)ThisModule;
568 assert(ThisModule && "was expecting a module if building one");
571 // In some cases we need to know if an entity was present in a directly-
572 // imported module (as opposed to a transitive import). This avoids
573 // searching both Imports and Exports.
574 DirectModuleImports.insert(Mod);
576 return Import;
579 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
580 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
581 BuildModuleInclude(DirectiveLoc, Mod);
584 void Sema::BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
585 // Determine whether we're in the #include buffer for a module. The #includes
586 // in that buffer do not qualify as module imports; they're just an
587 // implementation detail of us building the module.
589 // FIXME: Should we even get ActOnModuleInclude calls for those?
590 bool IsInModuleIncludes =
591 TUKind == TU_Module &&
592 getSourceManager().isWrittenInMainFile(DirectiveLoc);
594 bool ShouldAddImport = !IsInModuleIncludes;
596 // If this module import was due to an inclusion directive, create an
597 // implicit import declaration to capture it in the AST.
598 if (ShouldAddImport) {
599 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
600 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
601 DirectiveLoc, Mod,
602 DirectiveLoc);
603 if (!ModuleScopes.empty())
604 Context.addModuleInitializer(ModuleScopes.back().Module, ImportD);
605 TU->addDecl(ImportD);
606 Consumer.HandleImplicitImportDecl(ImportD);
609 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc);
610 VisibleModules.setVisible(Mod, DirectiveLoc);
612 if (getLangOpts().isCompilingModule()) {
613 Module *ThisModule = PP.getHeaderSearchInfo().lookupModule(
614 getLangOpts().CurrentModule, DirectiveLoc, false, false);
615 (void)ThisModule;
616 assert(ThisModule && "was expecting a module if building one");
620 void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod) {
621 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
623 ModuleScopes.push_back({});
624 ModuleScopes.back().Module = Mod;
625 if (getLangOpts().ModulesLocalVisibility)
626 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules);
628 VisibleModules.setVisible(Mod, DirectiveLoc);
630 // The enclosing context is now part of this module.
631 // FIXME: Consider creating a child DeclContext to hold the entities
632 // lexically within the module.
633 if (getLangOpts().trackLocalOwningModule()) {
634 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) {
635 cast<Decl>(DC)->setModuleOwnershipKind(
636 getLangOpts().ModulesLocalVisibility
637 ? Decl::ModuleOwnershipKind::VisibleWhenImported
638 : Decl::ModuleOwnershipKind::Visible);
639 cast<Decl>(DC)->setLocalOwningModule(Mod);
644 void Sema::ActOnModuleEnd(SourceLocation EomLoc, Module *Mod) {
645 if (getLangOpts().ModulesLocalVisibility) {
646 VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules);
647 // Leaving a module hides namespace names, so our visible namespace cache
648 // is now out of date.
649 VisibleNamespaceCache.clear();
652 assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod &&
653 "left the wrong module scope");
654 ModuleScopes.pop_back();
656 // We got to the end of processing a local module. Create an
657 // ImportDecl as we would for an imported module.
658 FileID File = getSourceManager().getFileID(EomLoc);
659 SourceLocation DirectiveLoc;
660 if (EomLoc == getSourceManager().getLocForEndOfFile(File)) {
661 // We reached the end of a #included module header. Use the #include loc.
662 assert(File != getSourceManager().getMainFileID() &&
663 "end of submodule in main source file");
664 DirectiveLoc = getSourceManager().getIncludeLoc(File);
665 } else {
666 // We reached an EOM pragma. Use the pragma location.
667 DirectiveLoc = EomLoc;
669 BuildModuleInclude(DirectiveLoc, Mod);
671 // Any further declarations are in whatever module we returned to.
672 if (getLangOpts().trackLocalOwningModule()) {
673 // The parser guarantees that this is the same context that we entered
674 // the module within.
675 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) {
676 cast<Decl>(DC)->setLocalOwningModule(getCurrentModule());
677 if (!getCurrentModule())
678 cast<Decl>(DC)->setModuleOwnershipKind(
679 Decl::ModuleOwnershipKind::Unowned);
684 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
685 Module *Mod) {
686 // Bail if we're not allowed to implicitly import a module here.
687 if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery ||
688 VisibleModules.isVisible(Mod))
689 return;
691 // Create the implicit import declaration.
692 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
693 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
694 Loc, Mod, Loc);
695 TU->addDecl(ImportD);
696 Consumer.HandleImplicitImportDecl(ImportD);
698 // Make the module visible.
699 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc);
700 VisibleModules.setVisible(Mod, Loc);
703 /// We have parsed the start of an export declaration, including the '{'
704 /// (if present).
705 Decl *Sema::ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc,
706 SourceLocation LBraceLoc) {
707 ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc);
709 // Set this temporarily so we know the export-declaration was braced.
710 D->setRBraceLoc(LBraceLoc);
712 CurContext->addDecl(D);
713 PushDeclContext(S, D);
715 // C++2a [module.interface]p1:
716 // An export-declaration shall appear only [...] in the purview of a module
717 // interface unit. An export-declaration shall not appear directly or
718 // indirectly within [...] a private-module-fragment.
719 if (!isCurrentModulePurview()) {
720 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 0;
721 D->setInvalidDecl();
722 return D;
723 } else if (!ModuleScopes.back().ModuleInterface) {
724 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 1;
725 Diag(ModuleScopes.back().BeginLoc,
726 diag::note_not_module_interface_add_export)
727 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export ");
728 D->setInvalidDecl();
729 return D;
730 } else if (ModuleScopes.back().Module->Kind ==
731 Module::PrivateModuleFragment) {
732 Diag(ExportLoc, diag::err_export_in_private_module_fragment);
733 Diag(ModuleScopes.back().BeginLoc, diag::note_private_module_fragment);
734 D->setInvalidDecl();
735 return D;
738 for (const DeclContext *DC = CurContext; DC; DC = DC->getLexicalParent()) {
739 if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
740 // An export-declaration shall not appear directly or indirectly within
741 // an unnamed namespace [...]
742 if (ND->isAnonymousNamespace()) {
743 Diag(ExportLoc, diag::err_export_within_anonymous_namespace);
744 Diag(ND->getLocation(), diag::note_anonymous_namespace);
745 // Don't diagnose internal-linkage declarations in this region.
746 D->setInvalidDecl();
747 return D;
750 // A declaration is exported if it is [...] a namespace-definition
751 // that contains an exported declaration.
753 // Defer exporting the namespace until after we leave it, in order to
754 // avoid marking all subsequent declarations in the namespace as exported.
755 if (!DeferredExportedNamespaces.insert(ND).second)
756 break;
760 // [...] its declaration or declaration-seq shall not contain an
761 // export-declaration.
762 if (auto *ED = getEnclosingExportDecl(D)) {
763 Diag(ExportLoc, diag::err_export_within_export);
764 if (ED->hasBraces())
765 Diag(ED->getLocation(), diag::note_export);
766 D->setInvalidDecl();
767 return D;
770 D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported);
771 return D;
774 static bool checkExportedDeclContext(Sema &S, DeclContext *DC,
775 SourceLocation BlockStart);
777 namespace {
778 enum class UnnamedDeclKind {
779 Empty,
780 StaticAssert,
781 Asm,
782 UsingDirective,
783 Namespace,
784 Context
788 static llvm::Optional<UnnamedDeclKind> getUnnamedDeclKind(Decl *D) {
789 if (isa<EmptyDecl>(D))
790 return UnnamedDeclKind::Empty;
791 if (isa<StaticAssertDecl>(D))
792 return UnnamedDeclKind::StaticAssert;
793 if (isa<FileScopeAsmDecl>(D))
794 return UnnamedDeclKind::Asm;
795 if (isa<UsingDirectiveDecl>(D))
796 return UnnamedDeclKind::UsingDirective;
797 // Everything else either introduces one or more names or is ill-formed.
798 return llvm::None;
801 unsigned getUnnamedDeclDiag(UnnamedDeclKind UDK, bool InBlock) {
802 switch (UDK) {
803 case UnnamedDeclKind::Empty:
804 case UnnamedDeclKind::StaticAssert:
805 // Allow empty-declarations and static_asserts in an export block as an
806 // extension.
807 return InBlock ? diag::ext_export_no_name_block : diag::err_export_no_name;
809 case UnnamedDeclKind::UsingDirective:
810 // Allow exporting using-directives as an extension.
811 return diag::ext_export_using_directive;
813 case UnnamedDeclKind::Namespace:
814 // Anonymous namespace with no content.
815 return diag::introduces_no_names;
817 case UnnamedDeclKind::Context:
818 // Allow exporting DeclContexts that transitively contain no declarations
819 // as an extension.
820 return diag::ext_export_no_names;
822 case UnnamedDeclKind::Asm:
823 return diag::err_export_no_name;
825 llvm_unreachable("unknown kind");
828 static void diagExportedUnnamedDecl(Sema &S, UnnamedDeclKind UDK, Decl *D,
829 SourceLocation BlockStart) {
830 S.Diag(D->getLocation(), getUnnamedDeclDiag(UDK, BlockStart.isValid()))
831 << (unsigned)UDK;
832 if (BlockStart.isValid())
833 S.Diag(BlockStart, diag::note_export);
836 /// Check that it's valid to export \p D.
837 static bool checkExportedDecl(Sema &S, Decl *D, SourceLocation BlockStart) {
838 // C++2a [module.interface]p3:
839 // An exported declaration shall declare at least one name
840 if (auto UDK = getUnnamedDeclKind(D))
841 diagExportedUnnamedDecl(S, *UDK, D, BlockStart);
843 // [...] shall not declare a name with internal linkage.
844 bool HasName = false;
845 if (auto *ND = dyn_cast<NamedDecl>(D)) {
846 // Don't diagnose anonymous union objects; we'll diagnose their members
847 // instead.
848 HasName = (bool)ND->getDeclName();
849 if (HasName && ND->getFormalLinkage() == InternalLinkage) {
850 S.Diag(ND->getLocation(), diag::err_export_internal) << ND;
851 if (BlockStart.isValid())
852 S.Diag(BlockStart, diag::note_export);
856 // C++2a [module.interface]p5:
857 // all entities to which all of the using-declarators ultimately refer
858 // shall have been introduced with a name having external linkage
859 if (auto *USD = dyn_cast<UsingShadowDecl>(D)) {
860 NamedDecl *Target = USD->getUnderlyingDecl();
861 Linkage Lk = Target->getFormalLinkage();
862 if (Lk == InternalLinkage || Lk == ModuleLinkage) {
863 S.Diag(USD->getLocation(), diag::err_export_using_internal)
864 << (Lk == InternalLinkage ? 0 : 1) << Target;
865 S.Diag(Target->getLocation(), diag::note_using_decl_target);
866 if (BlockStart.isValid())
867 S.Diag(BlockStart, diag::note_export);
871 // Recurse into namespace-scope DeclContexts. (Only namespace-scope
872 // declarations are exported.).
873 if (auto *DC = dyn_cast<DeclContext>(D)) {
874 if (isa<NamespaceDecl>(D) && DC->decls().empty()) {
875 if (!HasName)
876 // We don't allow an empty anonymous namespace (we don't allow decls
877 // in them either, but that's handled in the recursion).
878 diagExportedUnnamedDecl(S, UnnamedDeclKind::Namespace, D, BlockStart);
879 // We allow an empty named namespace decl.
880 } else if (DC->getRedeclContext()->isFileContext() && !isa<EnumDecl>(D))
881 return checkExportedDeclContext(S, DC, BlockStart);
883 return false;
886 /// Check that it's valid to export all the declarations in \p DC.
887 static bool checkExportedDeclContext(Sema &S, DeclContext *DC,
888 SourceLocation BlockStart) {
889 bool AllUnnamed = true;
890 for (auto *D : DC->decls())
891 AllUnnamed &= checkExportedDecl(S, D, BlockStart);
892 return AllUnnamed;
895 /// Complete the definition of an export declaration.
896 Decl *Sema::ActOnFinishExportDecl(Scope *S, Decl *D, SourceLocation RBraceLoc) {
897 auto *ED = cast<ExportDecl>(D);
898 if (RBraceLoc.isValid())
899 ED->setRBraceLoc(RBraceLoc);
901 PopDeclContext();
903 if (!D->isInvalidDecl()) {
904 SourceLocation BlockStart =
905 ED->hasBraces() ? ED->getBeginLoc() : SourceLocation();
906 for (auto *Child : ED->decls()) {
907 if (checkExportedDecl(*this, Child, BlockStart)) {
908 // If a top-level child is a linkage-spec declaration, it might contain
909 // no declarations (transitively), in which case it's ill-formed.
910 diagExportedUnnamedDecl(*this, UnnamedDeclKind::Context, Child,
911 BlockStart);
913 if (auto *FD = dyn_cast<FunctionDecl>(Child)) {
914 // [dcl.inline]/7
915 // If an inline function or variable that is attached to a named module
916 // is declared in a definition domain, it shall be defined in that
917 // domain.
918 // So, if the current declaration does not have a definition, we must
919 // check at the end of the TU (or when the PMF starts) to see that we
920 // have a definition at that point.
921 if (FD->isInlineSpecified() && !FD->isDefined())
922 PendingInlineFuncDecls.insert(FD);
927 return D;
930 Module *Sema::PushGlobalModuleFragment(SourceLocation BeginLoc,
931 bool IsImplicit) {
932 // We shouldn't create new global module fragment if there is already
933 // one.
934 if (!GlobalModuleFragment) {
935 ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap();
936 GlobalModuleFragment = Map.createGlobalModuleFragmentForModuleUnit(
937 BeginLoc, getCurrentModule());
940 assert(GlobalModuleFragment && "module creation should not fail");
942 // Enter the scope of the global module.
943 ModuleScopes.push_back({BeginLoc, GlobalModuleFragment,
944 /*ModuleInterface=*/false,
945 /*IsPartition=*/false,
946 /*ImplicitGlobalModuleFragment=*/IsImplicit,
947 /*OuterVisibleModules=*/{}});
948 VisibleModules.setVisible(GlobalModuleFragment, BeginLoc);
950 return GlobalModuleFragment;
953 void Sema::PopGlobalModuleFragment() {
954 assert(!ModuleScopes.empty() && getCurrentModule()->isGlobalModule() &&
955 "left the wrong module scope, which is not global module fragment");
956 ModuleScopes.pop_back();
959 bool Sema::isModuleUnitOfCurrentTU(const Module *M) const {
960 assert(M);
962 Module *CurrentModuleUnit = getCurrentModule();
964 // If we are not in a module currently, M must not be the module unit of
965 // current TU.
966 if (!CurrentModuleUnit)
967 return false;
969 return M->isSubModuleOf(CurrentModuleUnit->getTopLevelModule());