1 //===--- SemaModule.cpp - Semantic Analysis for Modules -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements semantic analysis for modules (C++ modules syntax,
10 // Objective-C modules syntax, and Clang header modules).
12 //===----------------------------------------------------------------------===//
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/Lex/HeaderSearch.h"
16 #include "clang/Lex/Preprocessor.h"
17 #include "clang/Sema/SemaInternal.h"
19 using namespace clang
;
22 static void checkModuleImportContext(Sema
&S
, Module
*M
,
23 SourceLocation ImportLoc
, DeclContext
*DC
,
24 bool FromInclude
= false) {
25 SourceLocation ExternCLoc
;
27 if (auto *LSD
= dyn_cast
<LinkageSpecDecl
>(DC
)) {
28 switch (LSD
->getLanguage()) {
29 case LinkageSpecDecl::lang_c
:
30 if (ExternCLoc
.isInvalid())
31 ExternCLoc
= LSD
->getBeginLoc();
33 case LinkageSpecDecl::lang_cxx
:
36 DC
= LSD
->getParent();
39 while (isa
<LinkageSpecDecl
>(DC
) || isa
<ExportDecl
>(DC
))
42 if (!isa
<TranslationUnitDecl
>(DC
)) {
43 S
.Diag(ImportLoc
, (FromInclude
&& S
.isModuleVisible(M
))
44 ? diag::ext_module_import_not_at_top_level_noop
45 : diag::err_module_import_not_at_top_level_fatal
)
46 << M
->getFullModuleName() << DC
;
47 S
.Diag(cast
<Decl
>(DC
)->getBeginLoc(),
48 diag::note_module_import_not_at_top_level
)
50 } else if (!M
->IsExternC
&& ExternCLoc
.isValid()) {
51 S
.Diag(ImportLoc
, diag::ext_module_import_in_extern_c
)
52 << M
->getFullModuleName();
53 S
.Diag(ExternCLoc
, diag::note_extern_c_begins_here
);
57 // We represent the primary and partition names as 'Paths' which are sections
58 // of the hierarchical access path for a clang module. However for C++20
59 // the periods in a name are just another character, and we will need to
60 // flatten them into a string.
61 static std::string
stringFromPath(ModuleIdPath Path
) {
66 for (auto &Piece
: Path
) {
69 Name
+= Piece
.first
->getName();
75 Sema::ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc
) {
76 if (!ModuleScopes
.empty() &&
77 ModuleScopes
.back().Module
->Kind
== Module::GlobalModuleFragment
) {
78 // Under -std=c++2a -fmodules-ts, we can find an explicit 'module;' after
79 // already implicitly entering the global module fragment. That's OK.
80 assert(getLangOpts().CPlusPlusModules
&& getLangOpts().ModulesTS
&&
81 "unexpectedly encountered multiple global module fragment decls");
82 ModuleScopes
.back().BeginLoc
= ModuleLoc
;
86 // We start in the global module; all those declarations are implicitly
87 // module-private (though they do not have module linkage).
88 Module
*GlobalModule
=
89 PushGlobalModuleFragment(ModuleLoc
, /*IsImplicit=*/false);
91 // All declarations created from now on are owned by the global module.
92 auto *TU
= Context
.getTranslationUnitDecl();
93 // [module.global.frag]p2
94 // A global-module-fragment specifies the contents of the global module
95 // fragment for a module unit. The global module fragment can be used to
96 // provide declarations that are attached to the global module and usable
97 // within the module unit.
99 // So the declations in the global module shouldn't be visible by default.
100 TU
->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported
);
101 TU
->setLocalOwningModule(GlobalModule
);
103 // FIXME: Consider creating an explicit representation of this declaration.
107 void Sema::HandleStartOfHeaderUnit() {
108 assert(getLangOpts().CPlusPlusModules
&&
109 "Header units are only valid for C++20 modules");
110 SourceLocation StartOfTU
=
111 SourceMgr
.getLocForStartOfFile(SourceMgr
.getMainFileID());
113 StringRef HUName
= getLangOpts().CurrentModule
;
114 if (HUName
.empty()) {
115 HUName
= SourceMgr
.getFileEntryForID(SourceMgr
.getMainFileID())->getName();
116 const_cast<LangOptions
&>(getLangOpts()).CurrentModule
= HUName
.str();
119 // TODO: Make the C++20 header lookup independent.
120 // When the input is pre-processed source, we need a file ref to the original
121 // file for the header map.
122 auto F
= SourceMgr
.getFileManager().getFile(HUName
);
123 // For the sake of error recovery (if someone has moved the original header
124 // after creating the pre-processed output) fall back to obtaining the file
125 // ref for the input file, which must be present.
127 F
= SourceMgr
.getFileEntryForID(SourceMgr
.getMainFileID());
128 assert(F
&& "failed to find the header unit source?");
129 Module::Header H
{HUName
.str(), HUName
.str(), *F
};
130 auto &Map
= PP
.getHeaderSearchInfo().getModuleMap();
131 Module
*Mod
= Map
.createHeaderUnit(StartOfTU
, HUName
, H
);
132 assert(Mod
&& "module creation should not fail");
133 ModuleScopes
.push_back({}); // No GMF
134 ModuleScopes
.back().BeginLoc
= StartOfTU
;
135 ModuleScopes
.back().Module
= Mod
;
136 ModuleScopes
.back().ModuleInterface
= true;
137 ModuleScopes
.back().IsPartition
= false;
138 VisibleModules
.setVisible(Mod
, StartOfTU
);
140 // From now on, we have an owning module for all declarations we see.
141 // All of these are implicitly exported.
142 auto *TU
= Context
.getTranslationUnitDecl();
143 TU
->setModuleOwnershipKind(Decl::ModuleOwnershipKind::Visible
);
144 TU
->setLocalOwningModule(Mod
);
148 Sema::ActOnModuleDecl(SourceLocation StartLoc
, SourceLocation ModuleLoc
,
149 ModuleDeclKind MDK
, ModuleIdPath Path
,
150 ModuleIdPath Partition
, ModuleImportState
&ImportState
) {
151 assert((getLangOpts().ModulesTS
|| getLangOpts().CPlusPlusModules
) &&
152 "should only have module decl in Modules TS or C++20");
154 bool IsFirstDecl
= ImportState
== ModuleImportState::FirstDecl
;
155 bool SeenGMF
= ImportState
== ModuleImportState::GlobalFragment
;
156 // If any of the steps here fail, we count that as invalidating C++20
158 ImportState
= ModuleImportState::NotACXX20Module
;
160 bool IsPartition
= !Partition
.empty();
163 case ModuleDeclKind::Implementation
:
164 MDK
= ModuleDeclKind::PartitionImplementation
;
166 case ModuleDeclKind::Interface
:
167 MDK
= ModuleDeclKind::PartitionInterface
;
170 llvm_unreachable("how did we get a partition type set?");
173 // A (non-partition) module implementation unit requires that we are not
174 // compiling a module of any kind. A partition implementation emits an
175 // interface (and the AST for the implementation), which will subsequently
176 // be consumed to emit a binary.
177 // A module interface unit requires that we are not compiling a module map.
178 switch (getLangOpts().getCompilingModule()) {
179 case LangOptions::CMK_None
:
180 // It's OK to compile a module interface as a normal translation unit.
183 case LangOptions::CMK_ModuleInterface
:
184 if (MDK
!= ModuleDeclKind::Implementation
)
187 // We were asked to compile a module interface unit but this is a module
188 // implementation unit.
189 Diag(ModuleLoc
, diag::err_module_interface_implementation_mismatch
)
190 << FixItHint::CreateInsertion(ModuleLoc
, "export ");
191 MDK
= ModuleDeclKind::Interface
;
194 case LangOptions::CMK_ModuleMap
:
195 Diag(ModuleLoc
, diag::err_module_decl_in_module_map_module
);
198 case LangOptions::CMK_HeaderModule
:
199 case LangOptions::CMK_HeaderUnit
:
200 Diag(ModuleLoc
, diag::err_module_decl_in_header_module
);
204 assert(ModuleScopes
.size() <= 1 && "expected to be at global module scope");
206 // FIXME: Most of this work should be done by the preprocessor rather than
207 // here, in order to support macro import.
209 // Only one module-declaration is permitted per source file.
210 if (isCurrentModulePurview()) {
211 Diag(ModuleLoc
, diag::err_module_redeclaration
);
212 Diag(VisibleModules
.getImportLoc(ModuleScopes
.back().Module
),
213 diag::note_prev_module_declaration
);
217 // Find the global module fragment we're adopting into this module, if any.
218 Module
*GlobalModuleFragment
= nullptr;
219 if (!ModuleScopes
.empty() &&
220 ModuleScopes
.back().Module
->Kind
== Module::GlobalModuleFragment
)
221 GlobalModuleFragment
= ModuleScopes
.back().Module
;
223 assert((!getLangOpts().CPlusPlusModules
|| getLangOpts().ModulesTS
||
224 SeenGMF
== (bool)GlobalModuleFragment
) &&
225 "mismatched global module state");
227 // In C++20, the module-declaration must be the first declaration if there
228 // is no global module fragment.
229 if (getLangOpts().CPlusPlusModules
&& !IsFirstDecl
&& !SeenGMF
) {
230 Diag(ModuleLoc
, diag::err_module_decl_not_at_start
);
231 SourceLocation BeginLoc
=
233 ? SourceMgr
.getLocForStartOfFile(SourceMgr
.getMainFileID())
234 : ModuleScopes
.back().BeginLoc
;
235 if (BeginLoc
.isValid()) {
236 Diag(BeginLoc
, diag::note_global_module_introducer_missing
)
237 << FixItHint::CreateInsertion(BeginLoc
, "module;\n");
241 // Flatten the dots in a module name. Unlike Clang's hierarchical module map
242 // modules, the dots here are just another character that can appear in a
244 std::string ModuleName
= stringFromPath(Path
);
247 ModuleName
+= stringFromPath(Partition
);
249 // If a module name was explicitly specified on the command line, it must be
251 if (!getLangOpts().CurrentModule
.empty() &&
252 getLangOpts().CurrentModule
!= ModuleName
) {
253 Diag(Path
.front().second
, diag::err_current_module_name_mismatch
)
254 << SourceRange(Path
.front().second
, IsPartition
255 ? Partition
.back().second
256 : Path
.back().second
)
257 << getLangOpts().CurrentModule
;
260 const_cast<LangOptions
&>(getLangOpts()).CurrentModule
= ModuleName
;
262 auto &Map
= PP
.getHeaderSearchInfo().getModuleMap();
266 case ModuleDeclKind::Interface
:
267 case ModuleDeclKind::PartitionInterface
: {
268 // We can't have parsed or imported a definition of this module or parsed a
269 // module map defining it already.
270 if (auto *M
= Map
.findModule(ModuleName
)) {
271 Diag(Path
[0].second
, diag::err_module_redefinition
) << ModuleName
;
272 if (M
->DefinitionLoc
.isValid())
273 Diag(M
->DefinitionLoc
, diag::note_prev_module_definition
);
274 else if (Optional
<FileEntryRef
> FE
= M
->getASTFile())
275 Diag(M
->DefinitionLoc
, diag::note_prev_module_definition_from_ast_file
)
281 // Create a Module for the module that we're defining.
282 Mod
= Map
.createModuleForInterfaceUnit(ModuleLoc
, ModuleName
,
283 GlobalModuleFragment
);
284 if (MDK
== ModuleDeclKind::PartitionInterface
)
285 Mod
->Kind
= Module::ModulePartitionInterface
;
286 assert(Mod
&& "module creation should not fail");
290 case ModuleDeclKind::Implementation
: {
291 std::pair
<IdentifierInfo
*, SourceLocation
> ModuleNameLoc(
292 PP
.getIdentifierInfo(ModuleName
), Path
[0].second
);
293 // C++20 A module-declaration that contains neither an export-
294 // keyword nor a module-partition implicitly imports the primary
295 // module interface unit of the module as if by a module-import-
297 Mod
= getModuleLoader().loadModule(ModuleLoc
, {ModuleNameLoc
},
299 /*IsInclusionDirective=*/false);
301 Diag(ModuleLoc
, diag::err_module_not_defined
) << ModuleName
;
302 // Create an empty module interface unit for error recovery.
303 Mod
= Map
.createModuleForInterfaceUnit(ModuleLoc
, ModuleName
,
304 GlobalModuleFragment
);
308 case ModuleDeclKind::PartitionImplementation
:
309 // Create an interface, but note that it is an implementation
311 Mod
= Map
.createModuleForInterfaceUnit(ModuleLoc
, ModuleName
,
312 GlobalModuleFragment
);
313 Mod
->Kind
= Module::ModulePartitionImplementation
;
317 if (!GlobalModuleFragment
) {
318 ModuleScopes
.push_back({});
319 if (getLangOpts().ModulesLocalVisibility
)
320 ModuleScopes
.back().OuterVisibleModules
= std::move(VisibleModules
);
322 // We're done with the global module fragment now.
323 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Global
);
326 // Switch from the global module fragment (if any) to the named module.
327 ModuleScopes
.back().BeginLoc
= StartLoc
;
328 ModuleScopes
.back().Module
= Mod
;
329 ModuleScopes
.back().ModuleInterface
= MDK
!= ModuleDeclKind::Implementation
;
330 ModuleScopes
.back().IsPartition
= IsPartition
;
331 VisibleModules
.setVisible(Mod
, ModuleLoc
);
333 // From now on, we have an owning module for all declarations we see.
334 // In C++20 modules, those declaration would be reachable when imported
335 // unless explicitily exported.
336 // Otherwise, those declarations are module-private unless explicitly
338 auto *TU
= Context
.getTranslationUnitDecl();
339 TU
->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported
);
340 TU
->setLocalOwningModule(Mod
);
342 // We are in the module purview, but before any other (non import)
343 // statements, so imports are allowed.
344 ImportState
= ModuleImportState::ImportAllowed
;
346 // For an implementation, We already made an implicit import (its interface).
347 // Make and return the import decl to be added to the current TU.
348 if (MDK
== ModuleDeclKind::Implementation
) {
349 // Make the import decl for the interface.
351 ImportDecl::Create(Context
, CurContext
, ModuleLoc
, Mod
, Path
[0].second
);
352 // and return it to be added.
353 return ConvertDeclToDeclGroup(Import
);
356 // FIXME: Create a ModuleDecl.
361 Sema::ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc
,
362 SourceLocation PrivateLoc
) {
363 // C++20 [basic.link]/2:
364 // A private-module-fragment shall appear only in a primary module
366 switch (ModuleScopes
.empty() ? Module::GlobalModuleFragment
367 : ModuleScopes
.back().Module
->Kind
) {
368 case Module::ModuleMapModule
:
369 case Module::GlobalModuleFragment
:
370 case Module::ModulePartitionImplementation
:
371 case Module::ModulePartitionInterface
:
372 case Module::ModuleHeaderUnit
:
373 Diag(PrivateLoc
, diag::err_private_module_fragment_not_module
);
376 case Module::PrivateModuleFragment
:
377 Diag(PrivateLoc
, diag::err_private_module_fragment_redefined
);
378 Diag(ModuleScopes
.back().BeginLoc
, diag::note_previous_definition
);
381 case Module::ModuleInterfaceUnit
:
385 if (!ModuleScopes
.back().ModuleInterface
) {
386 Diag(PrivateLoc
, diag::err_private_module_fragment_not_module_interface
);
387 Diag(ModuleScopes
.back().BeginLoc
,
388 diag::note_not_module_interface_add_export
)
389 << FixItHint::CreateInsertion(ModuleScopes
.back().BeginLoc
, "export ");
393 // FIXME: Check this isn't a module interface partition.
394 // FIXME: Check that this translation unit does not import any partitions;
395 // such imports would violate [basic.link]/2's "shall be the only module unit"
398 // We've finished the public fragment of the translation unit.
399 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Normal
);
401 auto &Map
= PP
.getHeaderSearchInfo().getModuleMap();
402 Module
*PrivateModuleFragment
=
403 Map
.createPrivateModuleFragmentForInterfaceUnit(
404 ModuleScopes
.back().Module
, PrivateLoc
);
405 assert(PrivateModuleFragment
&& "module creation should not fail");
407 // Enter the scope of the private module fragment.
408 ModuleScopes
.push_back({});
409 ModuleScopes
.back().BeginLoc
= ModuleLoc
;
410 ModuleScopes
.back().Module
= PrivateModuleFragment
;
411 ModuleScopes
.back().ModuleInterface
= true;
412 VisibleModules
.setVisible(PrivateModuleFragment
, ModuleLoc
);
414 // All declarations created from now on are scoped to the private module
415 // fragment (and are neither visible nor reachable in importers of the module
417 auto *TU
= Context
.getTranslationUnitDecl();
418 TU
->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate
);
419 TU
->setLocalOwningModule(PrivateModuleFragment
);
421 // FIXME: Consider creating an explicit representation of this declaration.
425 DeclResult
Sema::ActOnModuleImport(SourceLocation StartLoc
,
426 SourceLocation ExportLoc
,
427 SourceLocation ImportLoc
, ModuleIdPath Path
,
430 bool Cxx20Mode
= getLangOpts().CPlusPlusModules
|| getLangOpts().ModulesTS
;
431 assert((!IsPartition
|| Cxx20Mode
) && "partition seen in non-C++20 code?");
433 // For a C++20 module name, flatten into a single identifier with the source
434 // location of the first component.
435 std::pair
<IdentifierInfo
*, SourceLocation
> ModuleNameLoc
;
437 std::string ModuleName
;
439 // We already checked that we are in a module purview in the parser.
440 assert(!ModuleScopes
.empty() && "in a module purview, but no module?");
441 Module
*NamedMod
= ModuleScopes
.back().Module
;
442 // If we are importing into a partition, find the owning named module,
443 // otherwise, the name of the importing named module.
444 ModuleName
= NamedMod
->getPrimaryModuleInterfaceName().str();
446 ModuleName
+= stringFromPath(Path
);
447 ModuleNameLoc
= {PP
.getIdentifierInfo(ModuleName
), Path
[0].second
};
448 Path
= ModuleIdPath(ModuleNameLoc
);
449 } else if (Cxx20Mode
) {
450 ModuleName
= stringFromPath(Path
);
451 ModuleNameLoc
= {PP
.getIdentifierInfo(ModuleName
), Path
[0].second
};
452 Path
= ModuleIdPath(ModuleNameLoc
);
455 // Diagnose self-import before attempting a load.
457 // A module implementation unit of a module M that is not a module partition
458 // shall not contain a module-import-declaration nominating M.
459 // (for an implementation, the module interface is imported implicitly,
460 // but that's handled in the module decl code).
462 if (getLangOpts().CPlusPlusModules
&& isCurrentModulePurview() &&
463 getCurrentModule()->Name
== ModuleName
) {
464 Diag(ImportLoc
, diag::err_module_self_import_cxx20
)
465 << ModuleName
<< !ModuleScopes
.back().ModuleInterface
;
469 Module
*Mod
= getModuleLoader().loadModule(
470 ImportLoc
, Path
, Module::AllVisible
, /*IsInclusionDirective=*/false);
474 return ActOnModuleImport(StartLoc
, ExportLoc
, ImportLoc
, Mod
, Path
);
477 /// Determine whether \p D is lexically within an export-declaration.
478 static const ExportDecl
*getEnclosingExportDecl(const Decl
*D
) {
479 for (auto *DC
= D
->getLexicalDeclContext(); DC
; DC
= DC
->getLexicalParent())
480 if (auto *ED
= dyn_cast
<ExportDecl
>(DC
))
485 DeclResult
Sema::ActOnModuleImport(SourceLocation StartLoc
,
486 SourceLocation ExportLoc
,
487 SourceLocation ImportLoc
, Module
*Mod
,
489 VisibleModules
.setVisible(Mod
, ImportLoc
);
491 checkModuleImportContext(*this, Mod
, ImportLoc
, CurContext
);
493 // FIXME: we should support importing a submodule within a different submodule
494 // of the same top-level module. Until we do, make it an error rather than
495 // silently ignoring the import.
496 // FIXME: Should we warn on a redundant import of the current module?
497 if (Mod
->getTopLevelModuleName() == getLangOpts().CurrentModule
&&
498 (getLangOpts().isCompilingModule() || !getLangOpts().ModulesTS
)) {
499 Diag(ImportLoc
, getLangOpts().isCompilingModule()
500 ? diag::err_module_self_import
501 : diag::err_module_import_in_implementation
)
502 << Mod
->getFullModuleName() << getLangOpts().CurrentModule
;
505 SmallVector
<SourceLocation
, 2> IdentifierLocs
;
508 // If this was a header import, pad out with dummy locations.
509 // FIXME: Pass in and use the location of the header-name token in this
511 for (Module
*ModCheck
= Mod
; ModCheck
; ModCheck
= ModCheck
->Parent
)
512 IdentifierLocs
.push_back(SourceLocation());
513 } else if (getLangOpts().CPlusPlusModules
&& !Mod
->Parent
) {
514 // A single identifier for the whole name.
515 IdentifierLocs
.push_back(Path
[0].second
);
517 Module
*ModCheck
= Mod
;
518 for (unsigned I
= 0, N
= Path
.size(); I
!= N
; ++I
) {
519 // If we've run out of module parents, just drop the remaining
520 // identifiers. We need the length to be consistent.
523 ModCheck
= ModCheck
->Parent
;
525 IdentifierLocs
.push_back(Path
[I
].second
);
529 ImportDecl
*Import
= ImportDecl::Create(Context
, CurContext
, StartLoc
,
530 Mod
, IdentifierLocs
);
531 CurContext
->addDecl(Import
);
533 // Sequence initialization of the imported module before that of the current
535 if (!ModuleScopes
.empty())
536 Context
.addModuleInitializer(ModuleScopes
.back().Module
, Import
);
538 // A module (partition) implementation unit shall not be exported.
539 if (getLangOpts().CPlusPlusModules
&& ExportLoc
.isValid() &&
540 Mod
->Kind
== Module::ModuleKind::ModulePartitionImplementation
) {
541 Diag(ExportLoc
, diag::err_export_partition_impl
)
542 << SourceRange(ExportLoc
, Path
.back().second
);
543 } else if (!ModuleScopes
.empty() &&
544 (ModuleScopes
.back().ModuleInterface
||
545 (getLangOpts().CPlusPlusModules
&&
546 ModuleScopes
.back().Module
->isGlobalModule()))) {
547 assert((!ModuleScopes
.back().Module
->isGlobalModule() ||
548 Mod
->Kind
== Module::ModuleKind::ModuleHeaderUnit
) &&
549 "should only be importing a header unit into the GMF");
550 // Re-export the module if the imported module is exported.
551 // Note that we don't need to add re-exported module to Imports field
552 // since `Exports` implies the module is imported already.
553 if (ExportLoc
.isValid() || getEnclosingExportDecl(Import
))
554 getCurrentModule()->Exports
.emplace_back(Mod
, false);
556 getCurrentModule()->Imports
.insert(Mod
);
557 } else if (ExportLoc
.isValid()) {
558 // [module.interface]p1:
559 // An export-declaration shall inhabit a namespace scope and appear in the
560 // purview of a module interface unit.
561 Diag(ExportLoc
, diag::err_export_not_in_module_interface
)
562 << (!ModuleScopes
.empty() &&
563 !ModuleScopes
.back().ImplicitGlobalModuleFragment
);
564 } else if (getLangOpts().isCompilingModule()) {
565 Module
*ThisModule
= PP
.getHeaderSearchInfo().lookupModule(
566 getLangOpts().CurrentModule
, ExportLoc
, false, false);
568 assert(ThisModule
&& "was expecting a module if building one");
571 // In some cases we need to know if an entity was present in a directly-
572 // imported module (as opposed to a transitive import). This avoids
573 // searching both Imports and Exports.
574 DirectModuleImports
.insert(Mod
);
579 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc
, Module
*Mod
) {
580 checkModuleImportContext(*this, Mod
, DirectiveLoc
, CurContext
, true);
581 BuildModuleInclude(DirectiveLoc
, Mod
);
584 void Sema::BuildModuleInclude(SourceLocation DirectiveLoc
, Module
*Mod
) {
585 // Determine whether we're in the #include buffer for a module. The #includes
586 // in that buffer do not qualify as module imports; they're just an
587 // implementation detail of us building the module.
589 // FIXME: Should we even get ActOnModuleInclude calls for those?
590 bool IsInModuleIncludes
=
591 TUKind
== TU_Module
&&
592 getSourceManager().isWrittenInMainFile(DirectiveLoc
);
594 bool ShouldAddImport
= !IsInModuleIncludes
;
596 // If this module import was due to an inclusion directive, create an
597 // implicit import declaration to capture it in the AST.
598 if (ShouldAddImport
) {
599 TranslationUnitDecl
*TU
= getASTContext().getTranslationUnitDecl();
600 ImportDecl
*ImportD
= ImportDecl::CreateImplicit(getASTContext(), TU
,
603 if (!ModuleScopes
.empty())
604 Context
.addModuleInitializer(ModuleScopes
.back().Module
, ImportD
);
605 TU
->addDecl(ImportD
);
606 Consumer
.HandleImplicitImportDecl(ImportD
);
609 getModuleLoader().makeModuleVisible(Mod
, Module::AllVisible
, DirectiveLoc
);
610 VisibleModules
.setVisible(Mod
, DirectiveLoc
);
612 if (getLangOpts().isCompilingModule()) {
613 Module
*ThisModule
= PP
.getHeaderSearchInfo().lookupModule(
614 getLangOpts().CurrentModule
, DirectiveLoc
, false, false);
616 assert(ThisModule
&& "was expecting a module if building one");
620 void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc
, Module
*Mod
) {
621 checkModuleImportContext(*this, Mod
, DirectiveLoc
, CurContext
, true);
623 ModuleScopes
.push_back({});
624 ModuleScopes
.back().Module
= Mod
;
625 if (getLangOpts().ModulesLocalVisibility
)
626 ModuleScopes
.back().OuterVisibleModules
= std::move(VisibleModules
);
628 VisibleModules
.setVisible(Mod
, DirectiveLoc
);
630 // The enclosing context is now part of this module.
631 // FIXME: Consider creating a child DeclContext to hold the entities
632 // lexically within the module.
633 if (getLangOpts().trackLocalOwningModule()) {
634 for (auto *DC
= CurContext
; DC
; DC
= DC
->getLexicalParent()) {
635 cast
<Decl
>(DC
)->setModuleOwnershipKind(
636 getLangOpts().ModulesLocalVisibility
637 ? Decl::ModuleOwnershipKind::VisibleWhenImported
638 : Decl::ModuleOwnershipKind::Visible
);
639 cast
<Decl
>(DC
)->setLocalOwningModule(Mod
);
644 void Sema::ActOnModuleEnd(SourceLocation EomLoc
, Module
*Mod
) {
645 if (getLangOpts().ModulesLocalVisibility
) {
646 VisibleModules
= std::move(ModuleScopes
.back().OuterVisibleModules
);
647 // Leaving a module hides namespace names, so our visible namespace cache
648 // is now out of date.
649 VisibleNamespaceCache
.clear();
652 assert(!ModuleScopes
.empty() && ModuleScopes
.back().Module
== Mod
&&
653 "left the wrong module scope");
654 ModuleScopes
.pop_back();
656 // We got to the end of processing a local module. Create an
657 // ImportDecl as we would for an imported module.
658 FileID File
= getSourceManager().getFileID(EomLoc
);
659 SourceLocation DirectiveLoc
;
660 if (EomLoc
== getSourceManager().getLocForEndOfFile(File
)) {
661 // We reached the end of a #included module header. Use the #include loc.
662 assert(File
!= getSourceManager().getMainFileID() &&
663 "end of submodule in main source file");
664 DirectiveLoc
= getSourceManager().getIncludeLoc(File
);
666 // We reached an EOM pragma. Use the pragma location.
667 DirectiveLoc
= EomLoc
;
669 BuildModuleInclude(DirectiveLoc
, Mod
);
671 // Any further declarations are in whatever module we returned to.
672 if (getLangOpts().trackLocalOwningModule()) {
673 // The parser guarantees that this is the same context that we entered
674 // the module within.
675 for (auto *DC
= CurContext
; DC
; DC
= DC
->getLexicalParent()) {
676 cast
<Decl
>(DC
)->setLocalOwningModule(getCurrentModule());
677 if (!getCurrentModule())
678 cast
<Decl
>(DC
)->setModuleOwnershipKind(
679 Decl::ModuleOwnershipKind::Unowned
);
684 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc
,
686 // Bail if we're not allowed to implicitly import a module here.
687 if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery
||
688 VisibleModules
.isVisible(Mod
))
691 // Create the implicit import declaration.
692 TranslationUnitDecl
*TU
= getASTContext().getTranslationUnitDecl();
693 ImportDecl
*ImportD
= ImportDecl::CreateImplicit(getASTContext(), TU
,
695 TU
->addDecl(ImportD
);
696 Consumer
.HandleImplicitImportDecl(ImportD
);
698 // Make the module visible.
699 getModuleLoader().makeModuleVisible(Mod
, Module::AllVisible
, Loc
);
700 VisibleModules
.setVisible(Mod
, Loc
);
703 /// We have parsed the start of an export declaration, including the '{'
705 Decl
*Sema::ActOnStartExportDecl(Scope
*S
, SourceLocation ExportLoc
,
706 SourceLocation LBraceLoc
) {
707 ExportDecl
*D
= ExportDecl::Create(Context
, CurContext
, ExportLoc
);
709 // Set this temporarily so we know the export-declaration was braced.
710 D
->setRBraceLoc(LBraceLoc
);
712 CurContext
->addDecl(D
);
713 PushDeclContext(S
, D
);
715 // C++2a [module.interface]p1:
716 // An export-declaration shall appear only [...] in the purview of a module
717 // interface unit. An export-declaration shall not appear directly or
718 // indirectly within [...] a private-module-fragment.
719 if (!isCurrentModulePurview()) {
720 Diag(ExportLoc
, diag::err_export_not_in_module_interface
) << 0;
723 } else if (!ModuleScopes
.back().ModuleInterface
) {
724 Diag(ExportLoc
, diag::err_export_not_in_module_interface
) << 1;
725 Diag(ModuleScopes
.back().BeginLoc
,
726 diag::note_not_module_interface_add_export
)
727 << FixItHint::CreateInsertion(ModuleScopes
.back().BeginLoc
, "export ");
730 } else if (ModuleScopes
.back().Module
->Kind
==
731 Module::PrivateModuleFragment
) {
732 Diag(ExportLoc
, diag::err_export_in_private_module_fragment
);
733 Diag(ModuleScopes
.back().BeginLoc
, diag::note_private_module_fragment
);
738 for (const DeclContext
*DC
= CurContext
; DC
; DC
= DC
->getLexicalParent()) {
739 if (const auto *ND
= dyn_cast
<NamespaceDecl
>(DC
)) {
740 // An export-declaration shall not appear directly or indirectly within
741 // an unnamed namespace [...]
742 if (ND
->isAnonymousNamespace()) {
743 Diag(ExportLoc
, diag::err_export_within_anonymous_namespace
);
744 Diag(ND
->getLocation(), diag::note_anonymous_namespace
);
745 // Don't diagnose internal-linkage declarations in this region.
750 // A declaration is exported if it is [...] a namespace-definition
751 // that contains an exported declaration.
753 // Defer exporting the namespace until after we leave it, in order to
754 // avoid marking all subsequent declarations in the namespace as exported.
755 if (!DeferredExportedNamespaces
.insert(ND
).second
)
760 // [...] its declaration or declaration-seq shall not contain an
761 // export-declaration.
762 if (auto *ED
= getEnclosingExportDecl(D
)) {
763 Diag(ExportLoc
, diag::err_export_within_export
);
765 Diag(ED
->getLocation(), diag::note_export
);
770 D
->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported
);
774 static bool checkExportedDeclContext(Sema
&S
, DeclContext
*DC
,
775 SourceLocation BlockStart
);
778 enum class UnnamedDeclKind
{
788 static llvm::Optional
<UnnamedDeclKind
> getUnnamedDeclKind(Decl
*D
) {
789 if (isa
<EmptyDecl
>(D
))
790 return UnnamedDeclKind::Empty
;
791 if (isa
<StaticAssertDecl
>(D
))
792 return UnnamedDeclKind::StaticAssert
;
793 if (isa
<FileScopeAsmDecl
>(D
))
794 return UnnamedDeclKind::Asm
;
795 if (isa
<UsingDirectiveDecl
>(D
))
796 return UnnamedDeclKind::UsingDirective
;
797 // Everything else either introduces one or more names or is ill-formed.
801 unsigned getUnnamedDeclDiag(UnnamedDeclKind UDK
, bool InBlock
) {
803 case UnnamedDeclKind::Empty
:
804 case UnnamedDeclKind::StaticAssert
:
805 // Allow empty-declarations and static_asserts in an export block as an
807 return InBlock
? diag::ext_export_no_name_block
: diag::err_export_no_name
;
809 case UnnamedDeclKind::UsingDirective
:
810 // Allow exporting using-directives as an extension.
811 return diag::ext_export_using_directive
;
813 case UnnamedDeclKind::Namespace
:
814 // Anonymous namespace with no content.
815 return diag::introduces_no_names
;
817 case UnnamedDeclKind::Context
:
818 // Allow exporting DeclContexts that transitively contain no declarations
820 return diag::ext_export_no_names
;
822 case UnnamedDeclKind::Asm
:
823 return diag::err_export_no_name
;
825 llvm_unreachable("unknown kind");
828 static void diagExportedUnnamedDecl(Sema
&S
, UnnamedDeclKind UDK
, Decl
*D
,
829 SourceLocation BlockStart
) {
830 S
.Diag(D
->getLocation(), getUnnamedDeclDiag(UDK
, BlockStart
.isValid()))
832 if (BlockStart
.isValid())
833 S
.Diag(BlockStart
, diag::note_export
);
836 /// Check that it's valid to export \p D.
837 static bool checkExportedDecl(Sema
&S
, Decl
*D
, SourceLocation BlockStart
) {
838 // C++2a [module.interface]p3:
839 // An exported declaration shall declare at least one name
840 if (auto UDK
= getUnnamedDeclKind(D
))
841 diagExportedUnnamedDecl(S
, *UDK
, D
, BlockStart
);
843 // [...] shall not declare a name with internal linkage.
844 bool HasName
= false;
845 if (auto *ND
= dyn_cast
<NamedDecl
>(D
)) {
846 // Don't diagnose anonymous union objects; we'll diagnose their members
848 HasName
= (bool)ND
->getDeclName();
849 if (HasName
&& ND
->getFormalLinkage() == InternalLinkage
) {
850 S
.Diag(ND
->getLocation(), diag::err_export_internal
) << ND
;
851 if (BlockStart
.isValid())
852 S
.Diag(BlockStart
, diag::note_export
);
856 // C++2a [module.interface]p5:
857 // all entities to which all of the using-declarators ultimately refer
858 // shall have been introduced with a name having external linkage
859 if (auto *USD
= dyn_cast
<UsingShadowDecl
>(D
)) {
860 NamedDecl
*Target
= USD
->getUnderlyingDecl();
861 Linkage Lk
= Target
->getFormalLinkage();
862 if (Lk
== InternalLinkage
|| Lk
== ModuleLinkage
) {
863 S
.Diag(USD
->getLocation(), diag::err_export_using_internal
)
864 << (Lk
== InternalLinkage
? 0 : 1) << Target
;
865 S
.Diag(Target
->getLocation(), diag::note_using_decl_target
);
866 if (BlockStart
.isValid())
867 S
.Diag(BlockStart
, diag::note_export
);
871 // Recurse into namespace-scope DeclContexts. (Only namespace-scope
872 // declarations are exported.).
873 if (auto *DC
= dyn_cast
<DeclContext
>(D
)) {
874 if (isa
<NamespaceDecl
>(D
) && DC
->decls().empty()) {
876 // We don't allow an empty anonymous namespace (we don't allow decls
877 // in them either, but that's handled in the recursion).
878 diagExportedUnnamedDecl(S
, UnnamedDeclKind::Namespace
, D
, BlockStart
);
879 // We allow an empty named namespace decl.
880 } else if (DC
->getRedeclContext()->isFileContext() && !isa
<EnumDecl
>(D
))
881 return checkExportedDeclContext(S
, DC
, BlockStart
);
886 /// Check that it's valid to export all the declarations in \p DC.
887 static bool checkExportedDeclContext(Sema
&S
, DeclContext
*DC
,
888 SourceLocation BlockStart
) {
889 bool AllUnnamed
= true;
890 for (auto *D
: DC
->decls())
891 AllUnnamed
&= checkExportedDecl(S
, D
, BlockStart
);
895 /// Complete the definition of an export declaration.
896 Decl
*Sema::ActOnFinishExportDecl(Scope
*S
, Decl
*D
, SourceLocation RBraceLoc
) {
897 auto *ED
= cast
<ExportDecl
>(D
);
898 if (RBraceLoc
.isValid())
899 ED
->setRBraceLoc(RBraceLoc
);
903 if (!D
->isInvalidDecl()) {
904 SourceLocation BlockStart
=
905 ED
->hasBraces() ? ED
->getBeginLoc() : SourceLocation();
906 for (auto *Child
: ED
->decls()) {
907 if (checkExportedDecl(*this, Child
, BlockStart
)) {
908 // If a top-level child is a linkage-spec declaration, it might contain
909 // no declarations (transitively), in which case it's ill-formed.
910 diagExportedUnnamedDecl(*this, UnnamedDeclKind::Context
, Child
,
913 if (auto *FD
= dyn_cast
<FunctionDecl
>(Child
)) {
915 // If an inline function or variable that is attached to a named module
916 // is declared in a definition domain, it shall be defined in that
918 // So, if the current declaration does not have a definition, we must
919 // check at the end of the TU (or when the PMF starts) to see that we
920 // have a definition at that point.
921 if (FD
->isInlineSpecified() && !FD
->isDefined())
922 PendingInlineFuncDecls
.insert(FD
);
930 Module
*Sema::PushGlobalModuleFragment(SourceLocation BeginLoc
,
932 // We shouldn't create new global module fragment if there is already
934 if (!GlobalModuleFragment
) {
935 ModuleMap
&Map
= PP
.getHeaderSearchInfo().getModuleMap();
936 GlobalModuleFragment
= Map
.createGlobalModuleFragmentForModuleUnit(
937 BeginLoc
, getCurrentModule());
940 assert(GlobalModuleFragment
&& "module creation should not fail");
942 // Enter the scope of the global module.
943 ModuleScopes
.push_back({BeginLoc
, GlobalModuleFragment
,
944 /*ModuleInterface=*/false,
945 /*IsPartition=*/false,
946 /*ImplicitGlobalModuleFragment=*/IsImplicit
,
947 /*OuterVisibleModules=*/{}});
948 VisibleModules
.setVisible(GlobalModuleFragment
, BeginLoc
);
950 return GlobalModuleFragment
;
953 void Sema::PopGlobalModuleFragment() {
954 assert(!ModuleScopes
.empty() && getCurrentModule()->isGlobalModule() &&
955 "left the wrong module scope, which is not global module fragment");
956 ModuleScopes
.pop_back();
959 bool Sema::isModuleUnitOfCurrentTU(const Module
*M
) const {
962 Module
*CurrentModuleUnit
= getCurrentModule();
964 // If we are not in a module currently, M must not be the module unit of
966 if (!CurrentModuleUnit
)
969 return M
->isSubModuleOf(CurrentModuleUnit
->getTopLevelModule());