[docs] Fix build-docs.sh
[llvm-project.git] / clang / lib / Sema / SemaStmt.cpp
blob9d1f506ef5847d3f6869953c59e1099488b47a75
1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for statements.
11 //===----------------------------------------------------------------------===//
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/ASTDiagnostic.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/EvaluatedExprVisitor.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/IgnoreExpr.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/AST/TypeOrdering.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Preprocessor.h"
30 #include "clang/Sema/Initialization.h"
31 #include "clang/Sema/Lookup.h"
32 #include "clang/Sema/Ownership.h"
33 #include "clang/Sema/Scope.h"
34 #include "clang/Sema/ScopeInfo.h"
35 #include "clang/Sema/SemaInternal.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallString.h"
41 #include "llvm/ADT/SmallVector.h"
43 using namespace clang;
44 using namespace sema;
46 StmtResult Sema::ActOnExprStmt(ExprResult FE, bool DiscardedValue) {
47 if (FE.isInvalid())
48 return StmtError();
50 FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(), DiscardedValue);
51 if (FE.isInvalid())
52 return StmtError();
54 // C99 6.8.3p2: The expression in an expression statement is evaluated as a
55 // void expression for its side effects. Conversion to void allows any
56 // operand, even incomplete types.
58 // Same thing in for stmt first clause (when expr) and third clause.
59 return StmtResult(FE.getAs<Stmt>());
63 StmtResult Sema::ActOnExprStmtError() {
64 DiscardCleanupsInEvaluationContext();
65 return StmtError();
68 StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
69 bool HasLeadingEmptyMacro) {
70 return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro);
73 StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
74 SourceLocation EndLoc) {
75 DeclGroupRef DG = dg.get();
77 // If we have an invalid decl, just return an error.
78 if (DG.isNull()) return StmtError();
80 return new (Context) DeclStmt(DG, StartLoc, EndLoc);
83 void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
84 DeclGroupRef DG = dg.get();
86 // If we don't have a declaration, or we have an invalid declaration,
87 // just return.
88 if (DG.isNull() || !DG.isSingleDecl())
89 return;
91 Decl *decl = DG.getSingleDecl();
92 if (!decl || decl->isInvalidDecl())
93 return;
95 // Only variable declarations are permitted.
96 VarDecl *var = dyn_cast<VarDecl>(decl);
97 if (!var) {
98 Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
99 decl->setInvalidDecl();
100 return;
103 // foreach variables are never actually initialized in the way that
104 // the parser came up with.
105 var->setInit(nullptr);
107 // In ARC, we don't need to retain the iteration variable of a fast
108 // enumeration loop. Rather than actually trying to catch that
109 // during declaration processing, we remove the consequences here.
110 if (getLangOpts().ObjCAutoRefCount) {
111 QualType type = var->getType();
113 // Only do this if we inferred the lifetime. Inferred lifetime
114 // will show up as a local qualifier because explicit lifetime
115 // should have shown up as an AttributedType instead.
116 if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
117 // Add 'const' and mark the variable as pseudo-strong.
118 var->setType(type.withConst());
119 var->setARCPseudoStrong(true);
124 /// Diagnose unused comparisons, both builtin and overloaded operators.
125 /// For '==' and '!=', suggest fixits for '=' or '|='.
127 /// Adding a cast to void (or other expression wrappers) will prevent the
128 /// warning from firing.
129 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
130 SourceLocation Loc;
131 bool CanAssign;
132 enum { Equality, Inequality, Relational, ThreeWay } Kind;
134 if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
135 if (!Op->isComparisonOp())
136 return false;
138 if (Op->getOpcode() == BO_EQ)
139 Kind = Equality;
140 else if (Op->getOpcode() == BO_NE)
141 Kind = Inequality;
142 else if (Op->getOpcode() == BO_Cmp)
143 Kind = ThreeWay;
144 else {
145 assert(Op->isRelationalOp());
146 Kind = Relational;
148 Loc = Op->getOperatorLoc();
149 CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
150 } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
151 switch (Op->getOperator()) {
152 case OO_EqualEqual:
153 Kind = Equality;
154 break;
155 case OO_ExclaimEqual:
156 Kind = Inequality;
157 break;
158 case OO_Less:
159 case OO_Greater:
160 case OO_GreaterEqual:
161 case OO_LessEqual:
162 Kind = Relational;
163 break;
164 case OO_Spaceship:
165 Kind = ThreeWay;
166 break;
167 default:
168 return false;
171 Loc = Op->getOperatorLoc();
172 CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
173 } else {
174 // Not a typo-prone comparison.
175 return false;
178 // Suppress warnings when the operator, suspicious as it may be, comes from
179 // a macro expansion.
180 if (S.SourceMgr.isMacroBodyExpansion(Loc))
181 return false;
183 S.Diag(Loc, diag::warn_unused_comparison)
184 << (unsigned)Kind << E->getSourceRange();
186 // If the LHS is a plausible entity to assign to, provide a fixit hint to
187 // correct common typos.
188 if (CanAssign) {
189 if (Kind == Inequality)
190 S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
191 << FixItHint::CreateReplacement(Loc, "|=");
192 else if (Kind == Equality)
193 S.Diag(Loc, diag::note_equality_comparison_to_assign)
194 << FixItHint::CreateReplacement(Loc, "=");
197 return true;
200 static bool DiagnoseNoDiscard(Sema &S, const WarnUnusedResultAttr *A,
201 SourceLocation Loc, SourceRange R1,
202 SourceRange R2, bool IsCtor) {
203 if (!A)
204 return false;
205 StringRef Msg = A->getMessage();
207 if (Msg.empty()) {
208 if (IsCtor)
209 return S.Diag(Loc, diag::warn_unused_constructor) << A << R1 << R2;
210 return S.Diag(Loc, diag::warn_unused_result) << A << R1 << R2;
213 if (IsCtor)
214 return S.Diag(Loc, diag::warn_unused_constructor_msg) << A << Msg << R1
215 << R2;
216 return S.Diag(Loc, diag::warn_unused_result_msg) << A << Msg << R1 << R2;
219 void Sema::DiagnoseUnusedExprResult(const Stmt *S, unsigned DiagID) {
220 if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
221 return DiagnoseUnusedExprResult(Label->getSubStmt(), DiagID);
223 const Expr *E = dyn_cast_or_null<Expr>(S);
224 if (!E)
225 return;
227 // If we are in an unevaluated expression context, then there can be no unused
228 // results because the results aren't expected to be used in the first place.
229 if (isUnevaluatedContext())
230 return;
232 SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc();
233 // In most cases, we don't want to warn if the expression is written in a
234 // macro body, or if the macro comes from a system header. If the offending
235 // expression is a call to a function with the warn_unused_result attribute,
236 // we warn no matter the location. Because of the order in which the various
237 // checks need to happen, we factor out the macro-related test here.
238 bool ShouldSuppress =
239 SourceMgr.isMacroBodyExpansion(ExprLoc) ||
240 SourceMgr.isInSystemMacro(ExprLoc);
242 const Expr *WarnExpr;
243 SourceLocation Loc;
244 SourceRange R1, R2;
245 if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
246 return;
248 // If this is a GNU statement expression expanded from a macro, it is probably
249 // unused because it is a function-like macro that can be used as either an
250 // expression or statement. Don't warn, because it is almost certainly a
251 // false positive.
252 if (isa<StmtExpr>(E) && Loc.isMacroID())
253 return;
255 // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers.
256 // That macro is frequently used to suppress "unused parameter" warnings,
257 // but its implementation makes clang's -Wunused-value fire. Prevent this.
258 if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) {
259 SourceLocation SpellLoc = Loc;
260 if (findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER"))
261 return;
264 // Okay, we have an unused result. Depending on what the base expression is,
265 // we might want to make a more specific diagnostic. Check for one of these
266 // cases now.
267 if (const FullExpr *Temps = dyn_cast<FullExpr>(E))
268 E = Temps->getSubExpr();
269 if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
270 E = TempExpr->getSubExpr();
272 if (DiagnoseUnusedComparison(*this, E))
273 return;
275 E = WarnExpr;
276 if (const auto *Cast = dyn_cast<CastExpr>(E))
277 if (Cast->getCastKind() == CK_NoOp ||
278 Cast->getCastKind() == CK_ConstructorConversion)
279 E = Cast->getSubExpr()->IgnoreImpCasts();
281 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
282 if (E->getType()->isVoidType())
283 return;
285 if (DiagnoseNoDiscard(*this, cast_or_null<WarnUnusedResultAttr>(
286 CE->getUnusedResultAttr(Context)),
287 Loc, R1, R2, /*isCtor=*/false))
288 return;
290 // If the callee has attribute pure, const, or warn_unused_result, warn with
291 // a more specific message to make it clear what is happening. If the call
292 // is written in a macro body, only warn if it has the warn_unused_result
293 // attribute.
294 if (const Decl *FD = CE->getCalleeDecl()) {
295 if (ShouldSuppress)
296 return;
297 if (FD->hasAttr<PureAttr>()) {
298 Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
299 return;
301 if (FD->hasAttr<ConstAttr>()) {
302 Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
303 return;
306 } else if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) {
307 if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
308 const auto *A = Ctor->getAttr<WarnUnusedResultAttr>();
309 A = A ? A : Ctor->getParent()->getAttr<WarnUnusedResultAttr>();
310 if (DiagnoseNoDiscard(*this, A, Loc, R1, R2, /*isCtor=*/true))
311 return;
313 } else if (const auto *ILE = dyn_cast<InitListExpr>(E)) {
314 if (const TagDecl *TD = ILE->getType()->getAsTagDecl()) {
316 if (DiagnoseNoDiscard(*this, TD->getAttr<WarnUnusedResultAttr>(), Loc, R1,
317 R2, /*isCtor=*/false))
318 return;
320 } else if (ShouldSuppress)
321 return;
323 E = WarnExpr;
324 if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
325 if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
326 Diag(Loc, diag::err_arc_unused_init_message) << R1;
327 return;
329 const ObjCMethodDecl *MD = ME->getMethodDecl();
330 if (MD) {
331 if (DiagnoseNoDiscard(*this, MD->getAttr<WarnUnusedResultAttr>(), Loc, R1,
332 R2, /*isCtor=*/false))
333 return;
335 } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
336 const Expr *Source = POE->getSyntacticForm();
337 // Handle the actually selected call of an OpenMP specialized call.
338 if (LangOpts.OpenMP && isa<CallExpr>(Source) &&
339 POE->getNumSemanticExprs() == 1 &&
340 isa<CallExpr>(POE->getSemanticExpr(0)))
341 return DiagnoseUnusedExprResult(POE->getSemanticExpr(0), DiagID);
342 if (isa<ObjCSubscriptRefExpr>(Source))
343 DiagID = diag::warn_unused_container_subscript_expr;
344 else if (isa<ObjCPropertyRefExpr>(Source))
345 DiagID = diag::warn_unused_property_expr;
346 } else if (const CXXFunctionalCastExpr *FC
347 = dyn_cast<CXXFunctionalCastExpr>(E)) {
348 const Expr *E = FC->getSubExpr();
349 if (const CXXBindTemporaryExpr *TE = dyn_cast<CXXBindTemporaryExpr>(E))
350 E = TE->getSubExpr();
351 if (isa<CXXTemporaryObjectExpr>(E))
352 return;
353 if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(E))
354 if (const CXXRecordDecl *RD = CE->getType()->getAsCXXRecordDecl())
355 if (!RD->getAttr<WarnUnusedAttr>())
356 return;
358 // Diagnose "(void*) blah" as a typo for "(void) blah".
359 else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
360 TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
361 QualType T = TI->getType();
363 // We really do want to use the non-canonical type here.
364 if (T == Context.VoidPtrTy) {
365 PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>();
367 Diag(Loc, diag::warn_unused_voidptr)
368 << FixItHint::CreateRemoval(TL.getStarLoc());
369 return;
373 // Tell the user to assign it into a variable to force a volatile load if this
374 // isn't an array.
375 if (E->isGLValue() && E->getType().isVolatileQualified() &&
376 !E->getType()->isArrayType()) {
377 Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
378 return;
381 // Do not diagnose use of a comma operator in a SFINAE context because the
382 // type of the left operand could be used for SFINAE, so technically it is
383 // *used*.
384 if (DiagID != diag::warn_unused_comma_left_operand || !isSFINAEContext())
385 DiagIfReachable(Loc, S ? llvm::makeArrayRef(S) : llvm::None,
386 PDiag(DiagID) << R1 << R2);
389 void Sema::ActOnStartOfCompoundStmt(bool IsStmtExpr) {
390 PushCompoundScope(IsStmtExpr);
393 void Sema::ActOnAfterCompoundStatementLeadingPragmas() {
394 if (getCurFPFeatures().isFPConstrained()) {
395 FunctionScopeInfo *FSI = getCurFunction();
396 assert(FSI);
397 FSI->setUsesFPIntrin();
401 void Sema::ActOnFinishOfCompoundStmt() {
402 PopCompoundScope();
405 sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
406 return getCurFunction()->CompoundScopes.back();
409 StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
410 ArrayRef<Stmt *> Elts, bool isStmtExpr) {
411 const unsigned NumElts = Elts.size();
413 // If we're in C mode, check that we don't have any decls after stmts. If
414 // so, emit an extension diagnostic in C89 and potentially a warning in later
415 // versions.
416 const unsigned MixedDeclsCodeID = getLangOpts().C99
417 ? diag::warn_mixed_decls_code
418 : diag::ext_mixed_decls_code;
419 if (!getLangOpts().CPlusPlus && !Diags.isIgnored(MixedDeclsCodeID, L)) {
420 // Note that __extension__ can be around a decl.
421 unsigned i = 0;
422 // Skip over all declarations.
423 for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
424 /*empty*/;
426 // We found the end of the list or a statement. Scan for another declstmt.
427 for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
428 /*empty*/;
430 if (i != NumElts) {
431 Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
432 Diag(D->getLocation(), MixedDeclsCodeID);
436 // Check for suspicious empty body (null statement) in `for' and `while'
437 // statements. Don't do anything for template instantiations, this just adds
438 // noise.
439 if (NumElts != 0 && !CurrentInstantiationScope &&
440 getCurCompoundScope().HasEmptyLoopBodies) {
441 for (unsigned i = 0; i != NumElts - 1; ++i)
442 DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
445 // Calculate difference between FP options in this compound statement and in
446 // the enclosing one. If this is a function body, take the difference against
447 // default options. In this case the difference will indicate options that are
448 // changed upon entry to the statement.
449 FPOptions FPO = (getCurFunction()->CompoundScopes.size() == 1)
450 ? FPOptions(getLangOpts())
451 : getCurCompoundScope().InitialFPFeatures;
452 FPOptionsOverride FPDiff = getCurFPFeatures().getChangesFrom(FPO);
454 return CompoundStmt::Create(Context, Elts, FPDiff, L, R);
457 ExprResult
458 Sema::ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val) {
459 if (!Val.get())
460 return Val;
462 if (DiagnoseUnexpandedParameterPack(Val.get()))
463 return ExprError();
465 // If we're not inside a switch, let the 'case' statement handling diagnose
466 // this. Just clean up after the expression as best we can.
467 if (getCurFunction()->SwitchStack.empty())
468 return ActOnFinishFullExpr(Val.get(), Val.get()->getExprLoc(), false,
469 getLangOpts().CPlusPlus11);
471 Expr *CondExpr =
472 getCurFunction()->SwitchStack.back().getPointer()->getCond();
473 if (!CondExpr)
474 return ExprError();
475 QualType CondType = CondExpr->getType();
477 auto CheckAndFinish = [&](Expr *E) {
478 if (CondType->isDependentType() || E->isTypeDependent())
479 return ExprResult(E);
481 if (getLangOpts().CPlusPlus11) {
482 // C++11 [stmt.switch]p2: the constant-expression shall be a converted
483 // constant expression of the promoted type of the switch condition.
484 llvm::APSInt TempVal;
485 return CheckConvertedConstantExpression(E, CondType, TempVal,
486 CCEK_CaseValue);
489 ExprResult ER = E;
490 if (!E->isValueDependent())
491 ER = VerifyIntegerConstantExpression(E, AllowFold);
492 if (!ER.isInvalid())
493 ER = DefaultLvalueConversion(ER.get());
494 if (!ER.isInvalid())
495 ER = ImpCastExprToType(ER.get(), CondType, CK_IntegralCast);
496 if (!ER.isInvalid())
497 ER = ActOnFinishFullExpr(ER.get(), ER.get()->getExprLoc(), false);
498 return ER;
501 ExprResult Converted = CorrectDelayedTyposInExpr(
502 Val, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
503 CheckAndFinish);
504 if (Converted.get() == Val.get())
505 Converted = CheckAndFinish(Val.get());
506 return Converted;
509 StmtResult
510 Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHSVal,
511 SourceLocation DotDotDotLoc, ExprResult RHSVal,
512 SourceLocation ColonLoc) {
513 assert((LHSVal.isInvalid() || LHSVal.get()) && "missing LHS value");
514 assert((DotDotDotLoc.isInvalid() ? RHSVal.isUnset()
515 : RHSVal.isInvalid() || RHSVal.get()) &&
516 "missing RHS value");
518 if (getCurFunction()->SwitchStack.empty()) {
519 Diag(CaseLoc, diag::err_case_not_in_switch);
520 return StmtError();
523 if (LHSVal.isInvalid() || RHSVal.isInvalid()) {
524 getCurFunction()->SwitchStack.back().setInt(true);
525 return StmtError();
528 auto *CS = CaseStmt::Create(Context, LHSVal.get(), RHSVal.get(),
529 CaseLoc, DotDotDotLoc, ColonLoc);
530 getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(CS);
531 return CS;
534 /// ActOnCaseStmtBody - This installs a statement as the body of a case.
535 void Sema::ActOnCaseStmtBody(Stmt *S, Stmt *SubStmt) {
536 cast<CaseStmt>(S)->setSubStmt(SubStmt);
539 StmtResult
540 Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
541 Stmt *SubStmt, Scope *CurScope) {
542 if (getCurFunction()->SwitchStack.empty()) {
543 Diag(DefaultLoc, diag::err_default_not_in_switch);
544 return SubStmt;
547 DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
548 getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(DS);
549 return DS;
552 StmtResult
553 Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
554 SourceLocation ColonLoc, Stmt *SubStmt) {
555 // If the label was multiply defined, reject it now.
556 if (TheDecl->getStmt()) {
557 Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
558 Diag(TheDecl->getLocation(), diag::note_previous_definition);
559 return SubStmt;
562 ReservedIdentifierStatus Status = TheDecl->isReserved(getLangOpts());
563 if (isReservedInAllContexts(Status) &&
564 !Context.getSourceManager().isInSystemHeader(IdentLoc))
565 Diag(IdentLoc, diag::warn_reserved_extern_symbol)
566 << TheDecl << static_cast<int>(Status);
568 // Otherwise, things are good. Fill in the declaration and return it.
569 LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
570 TheDecl->setStmt(LS);
571 if (!TheDecl->isGnuLocal()) {
572 TheDecl->setLocStart(IdentLoc);
573 if (!TheDecl->isMSAsmLabel()) {
574 // Don't update the location of MS ASM labels. These will result in
575 // a diagnostic, and changing the location here will mess that up.
576 TheDecl->setLocation(IdentLoc);
579 return LS;
582 StmtResult Sema::BuildAttributedStmt(SourceLocation AttrsLoc,
583 ArrayRef<const Attr *> Attrs,
584 Stmt *SubStmt) {
585 // FIXME: this code should move when a planned refactoring around statement
586 // attributes lands.
587 for (const auto *A : Attrs) {
588 if (A->getKind() == attr::MustTail) {
589 if (!checkAndRewriteMustTailAttr(SubStmt, *A)) {
590 return SubStmt;
592 setFunctionHasMustTail();
596 return AttributedStmt::Create(Context, AttrsLoc, Attrs, SubStmt);
599 StmtResult Sema::ActOnAttributedStmt(const ParsedAttributes &Attrs,
600 Stmt *SubStmt) {
601 SmallVector<const Attr *, 1> SemanticAttrs;
602 ProcessStmtAttributes(SubStmt, Attrs, SemanticAttrs);
603 if (!SemanticAttrs.empty())
604 return BuildAttributedStmt(Attrs.Range.getBegin(), SemanticAttrs, SubStmt);
605 // If none of the attributes applied, that's fine, we can recover by
606 // returning the substatement directly instead of making an AttributedStmt
607 // with no attributes on it.
608 return SubStmt;
611 bool Sema::checkAndRewriteMustTailAttr(Stmt *St, const Attr &MTA) {
612 ReturnStmt *R = cast<ReturnStmt>(St);
613 Expr *E = R->getRetValue();
615 if (CurContext->isDependentContext() || (E && E->isInstantiationDependent()))
616 // We have to suspend our check until template instantiation time.
617 return true;
619 if (!checkMustTailAttr(St, MTA))
620 return false;
622 // FIXME: Replace Expr::IgnoreImplicitAsWritten() with this function.
623 // Currently it does not skip implicit constructors in an initialization
624 // context.
625 auto IgnoreImplicitAsWritten = [](Expr *E) -> Expr * {
626 return IgnoreExprNodes(E, IgnoreImplicitAsWrittenSingleStep,
627 IgnoreElidableImplicitConstructorSingleStep);
630 // Now that we have verified that 'musttail' is valid here, rewrite the
631 // return value to remove all implicit nodes, but retain parentheses.
632 R->setRetValue(IgnoreImplicitAsWritten(E));
633 return true;
636 bool Sema::checkMustTailAttr(const Stmt *St, const Attr &MTA) {
637 assert(!CurContext->isDependentContext() &&
638 "musttail cannot be checked from a dependent context");
640 // FIXME: Add Expr::IgnoreParenImplicitAsWritten() with this definition.
641 auto IgnoreParenImplicitAsWritten = [](const Expr *E) -> const Expr * {
642 return IgnoreExprNodes(const_cast<Expr *>(E), IgnoreParensSingleStep,
643 IgnoreImplicitAsWrittenSingleStep,
644 IgnoreElidableImplicitConstructorSingleStep);
647 const Expr *E = cast<ReturnStmt>(St)->getRetValue();
648 const auto *CE = dyn_cast_or_null<CallExpr>(IgnoreParenImplicitAsWritten(E));
650 if (!CE) {
651 Diag(St->getBeginLoc(), diag::err_musttail_needs_call) << &MTA;
652 return false;
655 if (const auto *EWC = dyn_cast<ExprWithCleanups>(E)) {
656 if (EWC->cleanupsHaveSideEffects()) {
657 Diag(St->getBeginLoc(), diag::err_musttail_needs_trivial_args) << &MTA;
658 return false;
662 // We need to determine the full function type (including "this" type, if any)
663 // for both caller and callee.
664 struct FuncType {
665 enum {
666 ft_non_member,
667 ft_static_member,
668 ft_non_static_member,
669 ft_pointer_to_member,
670 } MemberType = ft_non_member;
672 QualType This;
673 const FunctionProtoType *Func;
674 const CXXMethodDecl *Method = nullptr;
675 } CallerType, CalleeType;
677 auto GetMethodType = [this, St, MTA](const CXXMethodDecl *CMD, FuncType &Type,
678 bool IsCallee) -> bool {
679 if (isa<CXXConstructorDecl, CXXDestructorDecl>(CMD)) {
680 Diag(St->getBeginLoc(), diag::err_musttail_structors_forbidden)
681 << IsCallee << isa<CXXDestructorDecl>(CMD);
682 if (IsCallee)
683 Diag(CMD->getBeginLoc(), diag::note_musttail_structors_forbidden)
684 << isa<CXXDestructorDecl>(CMD);
685 Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
686 return false;
688 if (CMD->isStatic())
689 Type.MemberType = FuncType::ft_static_member;
690 else {
691 Type.This = CMD->getThisType()->getPointeeType();
692 Type.MemberType = FuncType::ft_non_static_member;
694 Type.Func = CMD->getType()->castAs<FunctionProtoType>();
695 return true;
698 const auto *CallerDecl = dyn_cast<FunctionDecl>(CurContext);
700 // Find caller function signature.
701 if (!CallerDecl) {
702 int ContextType;
703 if (isa<BlockDecl>(CurContext))
704 ContextType = 0;
705 else if (isa<ObjCMethodDecl>(CurContext))
706 ContextType = 1;
707 else
708 ContextType = 2;
709 Diag(St->getBeginLoc(), diag::err_musttail_forbidden_from_this_context)
710 << &MTA << ContextType;
711 return false;
712 } else if (const auto *CMD = dyn_cast<CXXMethodDecl>(CurContext)) {
713 // Caller is a class/struct method.
714 if (!GetMethodType(CMD, CallerType, false))
715 return false;
716 } else {
717 // Caller is a non-method function.
718 CallerType.Func = CallerDecl->getType()->getAs<FunctionProtoType>();
721 const Expr *CalleeExpr = CE->getCallee()->IgnoreParens();
722 const auto *CalleeBinOp = dyn_cast<BinaryOperator>(CalleeExpr);
723 SourceLocation CalleeLoc = CE->getCalleeDecl()
724 ? CE->getCalleeDecl()->getBeginLoc()
725 : St->getBeginLoc();
727 // Find callee function signature.
728 if (const CXXMethodDecl *CMD =
729 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) {
730 // Call is: obj.method(), obj->method(), functor(), etc.
731 if (!GetMethodType(CMD, CalleeType, true))
732 return false;
733 } else if (CalleeBinOp && CalleeBinOp->isPtrMemOp()) {
734 // Call is: obj->*method_ptr or obj.*method_ptr
735 const auto *MPT =
736 CalleeBinOp->getRHS()->getType()->castAs<MemberPointerType>();
737 CalleeType.This = QualType(MPT->getClass(), 0);
738 CalleeType.Func = MPT->getPointeeType()->castAs<FunctionProtoType>();
739 CalleeType.MemberType = FuncType::ft_pointer_to_member;
740 } else if (isa<CXXPseudoDestructorExpr>(CalleeExpr)) {
741 Diag(St->getBeginLoc(), diag::err_musttail_structors_forbidden)
742 << /* IsCallee = */ 1 << /* IsDestructor = */ 1;
743 Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
744 return false;
745 } else {
746 // Non-method function.
747 CalleeType.Func =
748 CalleeExpr->getType()->getPointeeType()->getAs<FunctionProtoType>();
751 // Both caller and callee must have a prototype (no K&R declarations).
752 if (!CalleeType.Func || !CallerType.Func) {
753 Diag(St->getBeginLoc(), diag::err_musttail_needs_prototype) << &MTA;
754 if (!CalleeType.Func && CE->getDirectCallee()) {
755 Diag(CE->getDirectCallee()->getBeginLoc(),
756 diag::note_musttail_fix_non_prototype);
758 if (!CallerType.Func)
759 Diag(CallerDecl->getBeginLoc(), diag::note_musttail_fix_non_prototype);
760 return false;
763 // Caller and callee must have matching calling conventions.
765 // Some calling conventions are physically capable of supporting tail calls
766 // even if the function types don't perfectly match. LLVM is currently too
767 // strict to allow this, but if LLVM added support for this in the future, we
768 // could exit early here and skip the remaining checks if the functions are
769 // using such a calling convention.
770 if (CallerType.Func->getCallConv() != CalleeType.Func->getCallConv()) {
771 if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl()))
772 Diag(St->getBeginLoc(), diag::err_musttail_callconv_mismatch)
773 << true << ND->getDeclName();
774 else
775 Diag(St->getBeginLoc(), diag::err_musttail_callconv_mismatch) << false;
776 Diag(CalleeLoc, diag::note_musttail_callconv_mismatch)
777 << FunctionType::getNameForCallConv(CallerType.Func->getCallConv())
778 << FunctionType::getNameForCallConv(CalleeType.Func->getCallConv());
779 Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
780 return false;
783 if (CalleeType.Func->isVariadic() || CallerType.Func->isVariadic()) {
784 Diag(St->getBeginLoc(), diag::err_musttail_no_variadic) << &MTA;
785 return false;
788 // Caller and callee must match in whether they have a "this" parameter.
789 if (CallerType.This.isNull() != CalleeType.This.isNull()) {
790 if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
791 Diag(St->getBeginLoc(), diag::err_musttail_member_mismatch)
792 << CallerType.MemberType << CalleeType.MemberType << true
793 << ND->getDeclName();
794 Diag(CalleeLoc, diag::note_musttail_callee_defined_here)
795 << ND->getDeclName();
796 } else
797 Diag(St->getBeginLoc(), diag::err_musttail_member_mismatch)
798 << CallerType.MemberType << CalleeType.MemberType << false;
799 Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
800 return false;
803 auto CheckTypesMatch = [this](FuncType CallerType, FuncType CalleeType,
804 PartialDiagnostic &PD) -> bool {
805 enum {
806 ft_different_class,
807 ft_parameter_arity,
808 ft_parameter_mismatch,
809 ft_return_type,
812 auto DoTypesMatch = [this, &PD](QualType A, QualType B,
813 unsigned Select) -> bool {
814 if (!Context.hasSimilarType(A, B)) {
815 PD << Select << A.getUnqualifiedType() << B.getUnqualifiedType();
816 return false;
818 return true;
821 if (!CallerType.This.isNull() &&
822 !DoTypesMatch(CallerType.This, CalleeType.This, ft_different_class))
823 return false;
825 if (!DoTypesMatch(CallerType.Func->getReturnType(),
826 CalleeType.Func->getReturnType(), ft_return_type))
827 return false;
829 if (CallerType.Func->getNumParams() != CalleeType.Func->getNumParams()) {
830 PD << ft_parameter_arity << CallerType.Func->getNumParams()
831 << CalleeType.Func->getNumParams();
832 return false;
835 ArrayRef<QualType> CalleeParams = CalleeType.Func->getParamTypes();
836 ArrayRef<QualType> CallerParams = CallerType.Func->getParamTypes();
837 size_t N = CallerType.Func->getNumParams();
838 for (size_t I = 0; I < N; I++) {
839 if (!DoTypesMatch(CalleeParams[I], CallerParams[I],
840 ft_parameter_mismatch)) {
841 PD << static_cast<int>(I) + 1;
842 return false;
846 return true;
849 PartialDiagnostic PD = PDiag(diag::note_musttail_mismatch);
850 if (!CheckTypesMatch(CallerType, CalleeType, PD)) {
851 if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl()))
852 Diag(St->getBeginLoc(), diag::err_musttail_mismatch)
853 << true << ND->getDeclName();
854 else
855 Diag(St->getBeginLoc(), diag::err_musttail_mismatch) << false;
856 Diag(CalleeLoc, PD);
857 Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
858 return false;
861 return true;
864 namespace {
865 class CommaVisitor : public EvaluatedExprVisitor<CommaVisitor> {
866 typedef EvaluatedExprVisitor<CommaVisitor> Inherited;
867 Sema &SemaRef;
868 public:
869 CommaVisitor(Sema &SemaRef) : Inherited(SemaRef.Context), SemaRef(SemaRef) {}
870 void VisitBinaryOperator(BinaryOperator *E) {
871 if (E->getOpcode() == BO_Comma)
872 SemaRef.DiagnoseCommaOperator(E->getLHS(), E->getExprLoc());
873 EvaluatedExprVisitor<CommaVisitor>::VisitBinaryOperator(E);
878 StmtResult Sema::ActOnIfStmt(SourceLocation IfLoc,
879 IfStatementKind StatementKind,
880 SourceLocation LParenLoc, Stmt *InitStmt,
881 ConditionResult Cond, SourceLocation RParenLoc,
882 Stmt *thenStmt, SourceLocation ElseLoc,
883 Stmt *elseStmt) {
884 if (Cond.isInvalid())
885 return StmtError();
887 bool ConstevalOrNegatedConsteval =
888 StatementKind == IfStatementKind::ConstevalNonNegated ||
889 StatementKind == IfStatementKind::ConstevalNegated;
891 Expr *CondExpr = Cond.get().second;
892 assert((CondExpr || ConstevalOrNegatedConsteval) &&
893 "If statement: missing condition");
894 // Only call the CommaVisitor when not C89 due to differences in scope flags.
895 if (CondExpr && (getLangOpts().C99 || getLangOpts().CPlusPlus) &&
896 !Diags.isIgnored(diag::warn_comma_operator, CondExpr->getExprLoc()))
897 CommaVisitor(*this).Visit(CondExpr);
899 if (!ConstevalOrNegatedConsteval && !elseStmt)
900 DiagnoseEmptyStmtBody(RParenLoc, thenStmt, diag::warn_empty_if_body);
902 if (ConstevalOrNegatedConsteval ||
903 StatementKind == IfStatementKind::Constexpr) {
904 auto DiagnoseLikelihood = [&](const Stmt *S) {
905 if (const Attr *A = Stmt::getLikelihoodAttr(S)) {
906 Diags.Report(A->getLocation(),
907 diag::warn_attribute_has_no_effect_on_compile_time_if)
908 << A << ConstevalOrNegatedConsteval << A->getRange();
909 Diags.Report(IfLoc,
910 diag::note_attribute_has_no_effect_on_compile_time_if_here)
911 << ConstevalOrNegatedConsteval
912 << SourceRange(IfLoc, (ConstevalOrNegatedConsteval
913 ? thenStmt->getBeginLoc()
914 : LParenLoc)
915 .getLocWithOffset(-1));
918 DiagnoseLikelihood(thenStmt);
919 DiagnoseLikelihood(elseStmt);
920 } else {
921 std::tuple<bool, const Attr *, const Attr *> LHC =
922 Stmt::determineLikelihoodConflict(thenStmt, elseStmt);
923 if (std::get<0>(LHC)) {
924 const Attr *ThenAttr = std::get<1>(LHC);
925 const Attr *ElseAttr = std::get<2>(LHC);
926 Diags.Report(ThenAttr->getLocation(),
927 diag::warn_attributes_likelihood_ifstmt_conflict)
928 << ThenAttr << ThenAttr->getRange();
929 Diags.Report(ElseAttr->getLocation(), diag::note_conflicting_attribute)
930 << ElseAttr << ElseAttr->getRange();
934 if (ConstevalOrNegatedConsteval) {
935 bool Immediate = isImmediateFunctionContext();
936 if (CurContext->isFunctionOrMethod()) {
937 const auto *FD =
938 dyn_cast<FunctionDecl>(Decl::castFromDeclContext(CurContext));
939 if (FD && FD->isConsteval())
940 Immediate = true;
942 if (isUnevaluatedContext() || Immediate)
943 Diags.Report(IfLoc, diag::warn_consteval_if_always_true) << Immediate;
946 return BuildIfStmt(IfLoc, StatementKind, LParenLoc, InitStmt, Cond, RParenLoc,
947 thenStmt, ElseLoc, elseStmt);
950 StmtResult Sema::BuildIfStmt(SourceLocation IfLoc,
951 IfStatementKind StatementKind,
952 SourceLocation LParenLoc, Stmt *InitStmt,
953 ConditionResult Cond, SourceLocation RParenLoc,
954 Stmt *thenStmt, SourceLocation ElseLoc,
955 Stmt *elseStmt) {
956 if (Cond.isInvalid())
957 return StmtError();
959 if (StatementKind != IfStatementKind::Ordinary ||
960 isa<ObjCAvailabilityCheckExpr>(Cond.get().second))
961 setFunctionHasBranchProtectedScope();
963 return IfStmt::Create(Context, IfLoc, StatementKind, InitStmt,
964 Cond.get().first, Cond.get().second, LParenLoc,
965 RParenLoc, thenStmt, ElseLoc, elseStmt);
968 namespace {
969 struct CaseCompareFunctor {
970 bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
971 const llvm::APSInt &RHS) {
972 return LHS.first < RHS;
974 bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
975 const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
976 return LHS.first < RHS.first;
978 bool operator()(const llvm::APSInt &LHS,
979 const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
980 return LHS < RHS.first;
985 /// CmpCaseVals - Comparison predicate for sorting case values.
987 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
988 const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
989 if (lhs.first < rhs.first)
990 return true;
992 if (lhs.first == rhs.first &&
993 lhs.second->getCaseLoc() < rhs.second->getCaseLoc())
994 return true;
995 return false;
998 /// CmpEnumVals - Comparison predicate for sorting enumeration values.
1000 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
1001 const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
1003 return lhs.first < rhs.first;
1006 /// EqEnumVals - Comparison preficate for uniqing enumeration values.
1008 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
1009 const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
1011 return lhs.first == rhs.first;
1014 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
1015 /// potentially integral-promoted expression @p expr.
1016 static QualType GetTypeBeforeIntegralPromotion(const Expr *&E) {
1017 if (const auto *FE = dyn_cast<FullExpr>(E))
1018 E = FE->getSubExpr();
1019 while (const auto *ImpCast = dyn_cast<ImplicitCastExpr>(E)) {
1020 if (ImpCast->getCastKind() != CK_IntegralCast) break;
1021 E = ImpCast->getSubExpr();
1023 return E->getType();
1026 ExprResult Sema::CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond) {
1027 class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
1028 Expr *Cond;
1030 public:
1031 SwitchConvertDiagnoser(Expr *Cond)
1032 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
1033 Cond(Cond) {}
1035 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1036 QualType T) override {
1037 return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
1040 SemaDiagnosticBuilder diagnoseIncomplete(
1041 Sema &S, SourceLocation Loc, QualType T) override {
1042 return S.Diag(Loc, diag::err_switch_incomplete_class_type)
1043 << T << Cond->getSourceRange();
1046 SemaDiagnosticBuilder diagnoseExplicitConv(
1047 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1048 return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
1051 SemaDiagnosticBuilder noteExplicitConv(
1052 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1053 return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
1054 << ConvTy->isEnumeralType() << ConvTy;
1057 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
1058 QualType T) override {
1059 return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
1062 SemaDiagnosticBuilder noteAmbiguous(
1063 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1064 return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
1065 << ConvTy->isEnumeralType() << ConvTy;
1068 SemaDiagnosticBuilder diagnoseConversion(
1069 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1070 llvm_unreachable("conversion functions are permitted");
1072 } SwitchDiagnoser(Cond);
1074 ExprResult CondResult =
1075 PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
1076 if (CondResult.isInvalid())
1077 return ExprError();
1079 // FIXME: PerformContextualImplicitConversion doesn't always tell us if it
1080 // failed and produced a diagnostic.
1081 Cond = CondResult.get();
1082 if (!Cond->isTypeDependent() &&
1083 !Cond->getType()->isIntegralOrEnumerationType())
1084 return ExprError();
1086 // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
1087 return UsualUnaryConversions(Cond);
1090 StmtResult Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,
1091 SourceLocation LParenLoc,
1092 Stmt *InitStmt, ConditionResult Cond,
1093 SourceLocation RParenLoc) {
1094 Expr *CondExpr = Cond.get().second;
1095 assert((Cond.isInvalid() || CondExpr) && "switch with no condition");
1097 if (CondExpr && !CondExpr->isTypeDependent()) {
1098 // We have already converted the expression to an integral or enumeration
1099 // type, when we parsed the switch condition. There are cases where we don't
1100 // have an appropriate type, e.g. a typo-expr Cond was corrected to an
1101 // inappropriate-type expr, we just return an error.
1102 if (!CondExpr->getType()->isIntegralOrEnumerationType())
1103 return StmtError();
1104 if (CondExpr->isKnownToHaveBooleanValue()) {
1105 // switch(bool_expr) {...} is often a programmer error, e.g.
1106 // switch(n && mask) { ... } // Doh - should be "n & mask".
1107 // One can always use an if statement instead of switch(bool_expr).
1108 Diag(SwitchLoc, diag::warn_bool_switch_condition)
1109 << CondExpr->getSourceRange();
1113 setFunctionHasBranchIntoScope();
1115 auto *SS = SwitchStmt::Create(Context, InitStmt, Cond.get().first, CondExpr,
1116 LParenLoc, RParenLoc);
1117 getCurFunction()->SwitchStack.push_back(
1118 FunctionScopeInfo::SwitchInfo(SS, false));
1119 return SS;
1122 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
1123 Val = Val.extOrTrunc(BitWidth);
1124 Val.setIsSigned(IsSigned);
1127 /// Check the specified case value is in range for the given unpromoted switch
1128 /// type.
1129 static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val,
1130 unsigned UnpromotedWidth, bool UnpromotedSign) {
1131 // In C++11 onwards, this is checked by the language rules.
1132 if (S.getLangOpts().CPlusPlus11)
1133 return;
1135 // If the case value was signed and negative and the switch expression is
1136 // unsigned, don't bother to warn: this is implementation-defined behavior.
1137 // FIXME: Introduce a second, default-ignored warning for this case?
1138 if (UnpromotedWidth < Val.getBitWidth()) {
1139 llvm::APSInt ConvVal(Val);
1140 AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign);
1141 AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned());
1142 // FIXME: Use different diagnostics for overflow in conversion to promoted
1143 // type versus "switch expression cannot have this value". Use proper
1144 // IntRange checking rather than just looking at the unpromoted type here.
1145 if (ConvVal != Val)
1146 S.Diag(Loc, diag::warn_case_value_overflow) << toString(Val, 10)
1147 << toString(ConvVal, 10);
1151 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
1153 /// Returns true if we should emit a diagnostic about this case expression not
1154 /// being a part of the enum used in the switch controlling expression.
1155 static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S,
1156 const EnumDecl *ED,
1157 const Expr *CaseExpr,
1158 EnumValsTy::iterator &EI,
1159 EnumValsTy::iterator &EIEnd,
1160 const llvm::APSInt &Val) {
1161 if (!ED->isClosed())
1162 return false;
1164 if (const DeclRefExpr *DRE =
1165 dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) {
1166 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
1167 QualType VarType = VD->getType();
1168 QualType EnumType = S.Context.getTypeDeclType(ED);
1169 if (VD->hasGlobalStorage() && VarType.isConstQualified() &&
1170 S.Context.hasSameUnqualifiedType(EnumType, VarType))
1171 return false;
1175 if (ED->hasAttr<FlagEnumAttr>())
1176 return !S.IsValueInFlagEnum(ED, Val, false);
1178 while (EI != EIEnd && EI->first < Val)
1179 EI++;
1181 if (EI != EIEnd && EI->first == Val)
1182 return false;
1184 return true;
1187 static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond,
1188 const Expr *Case) {
1189 QualType CondType = Cond->getType();
1190 QualType CaseType = Case->getType();
1192 const EnumType *CondEnumType = CondType->getAs<EnumType>();
1193 const EnumType *CaseEnumType = CaseType->getAs<EnumType>();
1194 if (!CondEnumType || !CaseEnumType)
1195 return;
1197 // Ignore anonymous enums.
1198 if (!CondEnumType->getDecl()->getIdentifier() &&
1199 !CondEnumType->getDecl()->getTypedefNameForAnonDecl())
1200 return;
1201 if (!CaseEnumType->getDecl()->getIdentifier() &&
1202 !CaseEnumType->getDecl()->getTypedefNameForAnonDecl())
1203 return;
1205 if (S.Context.hasSameUnqualifiedType(CondType, CaseType))
1206 return;
1208 S.Diag(Case->getExprLoc(), diag::warn_comparison_of_mixed_enum_types_switch)
1209 << CondType << CaseType << Cond->getSourceRange()
1210 << Case->getSourceRange();
1213 StmtResult
1214 Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
1215 Stmt *BodyStmt) {
1216 SwitchStmt *SS = cast<SwitchStmt>(Switch);
1217 bool CaseListIsIncomplete = getCurFunction()->SwitchStack.back().getInt();
1218 assert(SS == getCurFunction()->SwitchStack.back().getPointer() &&
1219 "switch stack missing push/pop!");
1221 getCurFunction()->SwitchStack.pop_back();
1223 if (!BodyStmt) return StmtError();
1224 SS->setBody(BodyStmt, SwitchLoc);
1226 Expr *CondExpr = SS->getCond();
1227 if (!CondExpr) return StmtError();
1229 QualType CondType = CondExpr->getType();
1231 // C++ 6.4.2.p2:
1232 // Integral promotions are performed (on the switch condition).
1234 // A case value unrepresentable by the original switch condition
1235 // type (before the promotion) doesn't make sense, even when it can
1236 // be represented by the promoted type. Therefore we need to find
1237 // the pre-promotion type of the switch condition.
1238 const Expr *CondExprBeforePromotion = CondExpr;
1239 QualType CondTypeBeforePromotion =
1240 GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
1242 // Get the bitwidth of the switched-on value after promotions. We must
1243 // convert the integer case values to this width before comparison.
1244 bool HasDependentValue
1245 = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
1246 unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType);
1247 bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType();
1249 // Get the width and signedness that the condition might actually have, for
1250 // warning purposes.
1251 // FIXME: Grab an IntRange for the condition rather than using the unpromoted
1252 // type.
1253 unsigned CondWidthBeforePromotion
1254 = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
1255 bool CondIsSignedBeforePromotion
1256 = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
1258 // Accumulate all of the case values in a vector so that we can sort them
1259 // and detect duplicates. This vector contains the APInt for the case after
1260 // it has been converted to the condition type.
1261 typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
1262 CaseValsTy CaseVals;
1264 // Keep track of any GNU case ranges we see. The APSInt is the low value.
1265 typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
1266 CaseRangesTy CaseRanges;
1268 DefaultStmt *TheDefaultStmt = nullptr;
1270 bool CaseListIsErroneous = false;
1272 for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
1273 SC = SC->getNextSwitchCase()) {
1275 if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
1276 if (TheDefaultStmt) {
1277 Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
1278 Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
1280 // FIXME: Remove the default statement from the switch block so that
1281 // we'll return a valid AST. This requires recursing down the AST and
1282 // finding it, not something we are set up to do right now. For now,
1283 // just lop the entire switch stmt out of the AST.
1284 CaseListIsErroneous = true;
1286 TheDefaultStmt = DS;
1288 } else {
1289 CaseStmt *CS = cast<CaseStmt>(SC);
1291 Expr *Lo = CS->getLHS();
1293 if (Lo->isValueDependent()) {
1294 HasDependentValue = true;
1295 break;
1298 // We already verified that the expression has a constant value;
1299 // get that value (prior to conversions).
1300 const Expr *LoBeforePromotion = Lo;
1301 GetTypeBeforeIntegralPromotion(LoBeforePromotion);
1302 llvm::APSInt LoVal = LoBeforePromotion->EvaluateKnownConstInt(Context);
1304 // Check the unconverted value is within the range of possible values of
1305 // the switch expression.
1306 checkCaseValue(*this, Lo->getBeginLoc(), LoVal, CondWidthBeforePromotion,
1307 CondIsSignedBeforePromotion);
1309 // FIXME: This duplicates the check performed for warn_not_in_enum below.
1310 checkEnumTypesInSwitchStmt(*this, CondExprBeforePromotion,
1311 LoBeforePromotion);
1313 // Convert the value to the same width/sign as the condition.
1314 AdjustAPSInt(LoVal, CondWidth, CondIsSigned);
1316 // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
1317 if (CS->getRHS()) {
1318 if (CS->getRHS()->isValueDependent()) {
1319 HasDependentValue = true;
1320 break;
1322 CaseRanges.push_back(std::make_pair(LoVal, CS));
1323 } else
1324 CaseVals.push_back(std::make_pair(LoVal, CS));
1328 if (!HasDependentValue) {
1329 // If we don't have a default statement, check whether the
1330 // condition is constant.
1331 llvm::APSInt ConstantCondValue;
1332 bool HasConstantCond = false;
1333 if (!TheDefaultStmt) {
1334 Expr::EvalResult Result;
1335 HasConstantCond = CondExpr->EvaluateAsInt(Result, Context,
1336 Expr::SE_AllowSideEffects);
1337 if (Result.Val.isInt())
1338 ConstantCondValue = Result.Val.getInt();
1339 assert(!HasConstantCond ||
1340 (ConstantCondValue.getBitWidth() == CondWidth &&
1341 ConstantCondValue.isSigned() == CondIsSigned));
1343 bool ShouldCheckConstantCond = HasConstantCond;
1345 // Sort all the scalar case values so we can easily detect duplicates.
1346 llvm::stable_sort(CaseVals, CmpCaseVals);
1348 if (!CaseVals.empty()) {
1349 for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
1350 if (ShouldCheckConstantCond &&
1351 CaseVals[i].first == ConstantCondValue)
1352 ShouldCheckConstantCond = false;
1354 if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
1355 // If we have a duplicate, report it.
1356 // First, determine if either case value has a name
1357 StringRef PrevString, CurrString;
1358 Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
1359 Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
1360 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
1361 PrevString = DeclRef->getDecl()->getName();
1363 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
1364 CurrString = DeclRef->getDecl()->getName();
1366 SmallString<16> CaseValStr;
1367 CaseVals[i-1].first.toString(CaseValStr);
1369 if (PrevString == CurrString)
1370 Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
1371 diag::err_duplicate_case)
1372 << (PrevString.empty() ? CaseValStr.str() : PrevString);
1373 else
1374 Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
1375 diag::err_duplicate_case_differing_expr)
1376 << (PrevString.empty() ? CaseValStr.str() : PrevString)
1377 << (CurrString.empty() ? CaseValStr.str() : CurrString)
1378 << CaseValStr;
1380 Diag(CaseVals[i - 1].second->getLHS()->getBeginLoc(),
1381 diag::note_duplicate_case_prev);
1382 // FIXME: We really want to remove the bogus case stmt from the
1383 // substmt, but we have no way to do this right now.
1384 CaseListIsErroneous = true;
1389 // Detect duplicate case ranges, which usually don't exist at all in
1390 // the first place.
1391 if (!CaseRanges.empty()) {
1392 // Sort all the case ranges by their low value so we can easily detect
1393 // overlaps between ranges.
1394 llvm::stable_sort(CaseRanges);
1396 // Scan the ranges, computing the high values and removing empty ranges.
1397 std::vector<llvm::APSInt> HiVals;
1398 for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1399 llvm::APSInt &LoVal = CaseRanges[i].first;
1400 CaseStmt *CR = CaseRanges[i].second;
1401 Expr *Hi = CR->getRHS();
1403 const Expr *HiBeforePromotion = Hi;
1404 GetTypeBeforeIntegralPromotion(HiBeforePromotion);
1405 llvm::APSInt HiVal = HiBeforePromotion->EvaluateKnownConstInt(Context);
1407 // Check the unconverted value is within the range of possible values of
1408 // the switch expression.
1409 checkCaseValue(*this, Hi->getBeginLoc(), HiVal,
1410 CondWidthBeforePromotion, CondIsSignedBeforePromotion);
1412 // Convert the value to the same width/sign as the condition.
1413 AdjustAPSInt(HiVal, CondWidth, CondIsSigned);
1415 // If the low value is bigger than the high value, the case is empty.
1416 if (LoVal > HiVal) {
1417 Diag(CR->getLHS()->getBeginLoc(), diag::warn_case_empty_range)
1418 << SourceRange(CR->getLHS()->getBeginLoc(), Hi->getEndLoc());
1419 CaseRanges.erase(CaseRanges.begin()+i);
1420 --i;
1421 --e;
1422 continue;
1425 if (ShouldCheckConstantCond &&
1426 LoVal <= ConstantCondValue &&
1427 ConstantCondValue <= HiVal)
1428 ShouldCheckConstantCond = false;
1430 HiVals.push_back(HiVal);
1433 // Rescan the ranges, looking for overlap with singleton values and other
1434 // ranges. Since the range list is sorted, we only need to compare case
1435 // ranges with their neighbors.
1436 for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1437 llvm::APSInt &CRLo = CaseRanges[i].first;
1438 llvm::APSInt &CRHi = HiVals[i];
1439 CaseStmt *CR = CaseRanges[i].second;
1441 // Check to see whether the case range overlaps with any
1442 // singleton cases.
1443 CaseStmt *OverlapStmt = nullptr;
1444 llvm::APSInt OverlapVal(32);
1446 // Find the smallest value >= the lower bound. If I is in the
1447 // case range, then we have overlap.
1448 CaseValsTy::iterator I =
1449 llvm::lower_bound(CaseVals, CRLo, CaseCompareFunctor());
1450 if (I != CaseVals.end() && I->first < CRHi) {
1451 OverlapVal = I->first; // Found overlap with scalar.
1452 OverlapStmt = I->second;
1455 // Find the smallest value bigger than the upper bound.
1456 I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
1457 if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
1458 OverlapVal = (I-1)->first; // Found overlap with scalar.
1459 OverlapStmt = (I-1)->second;
1462 // Check to see if this case stmt overlaps with the subsequent
1463 // case range.
1464 if (i && CRLo <= HiVals[i-1]) {
1465 OverlapVal = HiVals[i-1]; // Found overlap with range.
1466 OverlapStmt = CaseRanges[i-1].second;
1469 if (OverlapStmt) {
1470 // If we have a duplicate, report it.
1471 Diag(CR->getLHS()->getBeginLoc(), diag::err_duplicate_case)
1472 << toString(OverlapVal, 10);
1473 Diag(OverlapStmt->getLHS()->getBeginLoc(),
1474 diag::note_duplicate_case_prev);
1475 // FIXME: We really want to remove the bogus case stmt from the
1476 // substmt, but we have no way to do this right now.
1477 CaseListIsErroneous = true;
1482 // Complain if we have a constant condition and we didn't find a match.
1483 if (!CaseListIsErroneous && !CaseListIsIncomplete &&
1484 ShouldCheckConstantCond) {
1485 // TODO: it would be nice if we printed enums as enums, chars as
1486 // chars, etc.
1487 Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
1488 << toString(ConstantCondValue, 10)
1489 << CondExpr->getSourceRange();
1492 // Check to see if switch is over an Enum and handles all of its
1493 // values. We only issue a warning if there is not 'default:', but
1494 // we still do the analysis to preserve this information in the AST
1495 // (which can be used by flow-based analyes).
1497 const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
1499 // If switch has default case, then ignore it.
1500 if (!CaseListIsErroneous && !CaseListIsIncomplete && !HasConstantCond &&
1501 ET && ET->getDecl()->isCompleteDefinition() &&
1502 !ET->getDecl()->enumerators().empty()) {
1503 const EnumDecl *ED = ET->getDecl();
1504 EnumValsTy EnumVals;
1506 // Gather all enum values, set their type and sort them,
1507 // allowing easier comparison with CaseVals.
1508 for (auto *EDI : ED->enumerators()) {
1509 llvm::APSInt Val = EDI->getInitVal();
1510 AdjustAPSInt(Val, CondWidth, CondIsSigned);
1511 EnumVals.push_back(std::make_pair(Val, EDI));
1513 llvm::stable_sort(EnumVals, CmpEnumVals);
1514 auto EI = EnumVals.begin(), EIEnd =
1515 std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1517 // See which case values aren't in enum.
1518 for (CaseValsTy::const_iterator CI = CaseVals.begin();
1519 CI != CaseVals.end(); CI++) {
1520 Expr *CaseExpr = CI->second->getLHS();
1521 if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1522 CI->first))
1523 Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1524 << CondTypeBeforePromotion;
1527 // See which of case ranges aren't in enum
1528 EI = EnumVals.begin();
1529 for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
1530 RI != CaseRanges.end(); RI++) {
1531 Expr *CaseExpr = RI->second->getLHS();
1532 if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1533 RI->first))
1534 Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1535 << CondTypeBeforePromotion;
1537 llvm::APSInt Hi =
1538 RI->second->getRHS()->EvaluateKnownConstInt(Context);
1539 AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1541 CaseExpr = RI->second->getRHS();
1542 if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1543 Hi))
1544 Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1545 << CondTypeBeforePromotion;
1548 // Check which enum vals aren't in switch
1549 auto CI = CaseVals.begin();
1550 auto RI = CaseRanges.begin();
1551 bool hasCasesNotInSwitch = false;
1553 SmallVector<DeclarationName,8> UnhandledNames;
1555 for (EI = EnumVals.begin(); EI != EIEnd; EI++) {
1556 // Don't warn about omitted unavailable EnumConstantDecls.
1557 switch (EI->second->getAvailability()) {
1558 case AR_Deprecated:
1559 // Omitting a deprecated constant is ok; it should never materialize.
1560 case AR_Unavailable:
1561 continue;
1563 case AR_NotYetIntroduced:
1564 // Partially available enum constants should be present. Note that we
1565 // suppress -Wunguarded-availability diagnostics for such uses.
1566 case AR_Available:
1567 break;
1570 if (EI->second->hasAttr<UnusedAttr>())
1571 continue;
1573 // Drop unneeded case values
1574 while (CI != CaseVals.end() && CI->first < EI->first)
1575 CI++;
1577 if (CI != CaseVals.end() && CI->first == EI->first)
1578 continue;
1580 // Drop unneeded case ranges
1581 for (; RI != CaseRanges.end(); RI++) {
1582 llvm::APSInt Hi =
1583 RI->second->getRHS()->EvaluateKnownConstInt(Context);
1584 AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1585 if (EI->first <= Hi)
1586 break;
1589 if (RI == CaseRanges.end() || EI->first < RI->first) {
1590 hasCasesNotInSwitch = true;
1591 UnhandledNames.push_back(EI->second->getDeclName());
1595 if (TheDefaultStmt && UnhandledNames.empty() && ED->isClosedNonFlag())
1596 Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1598 // Produce a nice diagnostic if multiple values aren't handled.
1599 if (!UnhandledNames.empty()) {
1600 auto DB = Diag(CondExpr->getExprLoc(), TheDefaultStmt
1601 ? diag::warn_def_missing_case
1602 : diag::warn_missing_case)
1603 << CondExpr->getSourceRange() << (int)UnhandledNames.size();
1605 for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3);
1606 I != E; ++I)
1607 DB << UnhandledNames[I];
1610 if (!hasCasesNotInSwitch)
1611 SS->setAllEnumCasesCovered();
1615 if (BodyStmt)
1616 DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), BodyStmt,
1617 diag::warn_empty_switch_body);
1619 // FIXME: If the case list was broken is some way, we don't have a good system
1620 // to patch it up. Instead, just return the whole substmt as broken.
1621 if (CaseListIsErroneous)
1622 return StmtError();
1624 return SS;
1627 void
1628 Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
1629 Expr *SrcExpr) {
1630 if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc()))
1631 return;
1633 if (const EnumType *ET = DstType->getAs<EnumType>())
1634 if (!Context.hasSameUnqualifiedType(SrcType, DstType) &&
1635 SrcType->isIntegerType()) {
1636 if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1637 SrcExpr->isIntegerConstantExpr(Context)) {
1638 // Get the bitwidth of the enum value before promotions.
1639 unsigned DstWidth = Context.getIntWidth(DstType);
1640 bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1642 llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1643 AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
1644 const EnumDecl *ED = ET->getDecl();
1646 if (!ED->isClosed())
1647 return;
1649 if (ED->hasAttr<FlagEnumAttr>()) {
1650 if (!IsValueInFlagEnum(ED, RhsVal, true))
1651 Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1652 << DstType.getUnqualifiedType();
1653 } else {
1654 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64>
1655 EnumValsTy;
1656 EnumValsTy EnumVals;
1658 // Gather all enum values, set their type and sort them,
1659 // allowing easier comparison with rhs constant.
1660 for (auto *EDI : ED->enumerators()) {
1661 llvm::APSInt Val = EDI->getInitVal();
1662 AdjustAPSInt(Val, DstWidth, DstIsSigned);
1663 EnumVals.push_back(std::make_pair(Val, EDI));
1665 if (EnumVals.empty())
1666 return;
1667 llvm::stable_sort(EnumVals, CmpEnumVals);
1668 EnumValsTy::iterator EIend =
1669 std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1671 // See which values aren't in the enum.
1672 EnumValsTy::const_iterator EI = EnumVals.begin();
1673 while (EI != EIend && EI->first < RhsVal)
1674 EI++;
1675 if (EI == EIend || EI->first != RhsVal) {
1676 Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1677 << DstType.getUnqualifiedType();
1684 StmtResult Sema::ActOnWhileStmt(SourceLocation WhileLoc,
1685 SourceLocation LParenLoc, ConditionResult Cond,
1686 SourceLocation RParenLoc, Stmt *Body) {
1687 if (Cond.isInvalid())
1688 return StmtError();
1690 auto CondVal = Cond.get();
1691 CheckBreakContinueBinding(CondVal.second);
1693 if (CondVal.second &&
1694 !Diags.isIgnored(diag::warn_comma_operator, CondVal.second->getExprLoc()))
1695 CommaVisitor(*this).Visit(CondVal.second);
1697 if (isa<NullStmt>(Body))
1698 getCurCompoundScope().setHasEmptyLoopBodies();
1700 return WhileStmt::Create(Context, CondVal.first, CondVal.second, Body,
1701 WhileLoc, LParenLoc, RParenLoc);
1704 StmtResult
1705 Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1706 SourceLocation WhileLoc, SourceLocation CondLParen,
1707 Expr *Cond, SourceLocation CondRParen) {
1708 assert(Cond && "ActOnDoStmt(): missing expression");
1710 CheckBreakContinueBinding(Cond);
1711 ExprResult CondResult = CheckBooleanCondition(DoLoc, Cond);
1712 if (CondResult.isInvalid())
1713 return StmtError();
1714 Cond = CondResult.get();
1716 CondResult = ActOnFinishFullExpr(Cond, DoLoc, /*DiscardedValue*/ false);
1717 if (CondResult.isInvalid())
1718 return StmtError();
1719 Cond = CondResult.get();
1721 // Only call the CommaVisitor for C89 due to differences in scope flags.
1722 if (Cond && !getLangOpts().C99 && !getLangOpts().CPlusPlus &&
1723 !Diags.isIgnored(diag::warn_comma_operator, Cond->getExprLoc()))
1724 CommaVisitor(*this).Visit(Cond);
1726 return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen);
1729 namespace {
1730 // Use SetVector since the diagnostic cares about the ordering of the Decl's.
1731 using DeclSetVector =
1732 llvm::SetVector<VarDecl *, llvm::SmallVector<VarDecl *, 8>,
1733 llvm::SmallPtrSet<VarDecl *, 8>>;
1735 // This visitor will traverse a conditional statement and store all
1736 // the evaluated decls into a vector. Simple is set to true if none
1737 // of the excluded constructs are used.
1738 class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1739 DeclSetVector &Decls;
1740 SmallVectorImpl<SourceRange> &Ranges;
1741 bool Simple;
1742 public:
1743 typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1745 DeclExtractor(Sema &S, DeclSetVector &Decls,
1746 SmallVectorImpl<SourceRange> &Ranges) :
1747 Inherited(S.Context),
1748 Decls(Decls),
1749 Ranges(Ranges),
1750 Simple(true) {}
1752 bool isSimple() { return Simple; }
1754 // Replaces the method in EvaluatedExprVisitor.
1755 void VisitMemberExpr(MemberExpr* E) {
1756 Simple = false;
1759 // Any Stmt not explicitly listed will cause the condition to be marked
1760 // complex.
1761 void VisitStmt(Stmt *S) { Simple = false; }
1763 void VisitBinaryOperator(BinaryOperator *E) {
1764 Visit(E->getLHS());
1765 Visit(E->getRHS());
1768 void VisitCastExpr(CastExpr *E) {
1769 Visit(E->getSubExpr());
1772 void VisitUnaryOperator(UnaryOperator *E) {
1773 // Skip checking conditionals with derefernces.
1774 if (E->getOpcode() == UO_Deref)
1775 Simple = false;
1776 else
1777 Visit(E->getSubExpr());
1780 void VisitConditionalOperator(ConditionalOperator *E) {
1781 Visit(E->getCond());
1782 Visit(E->getTrueExpr());
1783 Visit(E->getFalseExpr());
1786 void VisitParenExpr(ParenExpr *E) {
1787 Visit(E->getSubExpr());
1790 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1791 Visit(E->getOpaqueValue()->getSourceExpr());
1792 Visit(E->getFalseExpr());
1795 void VisitIntegerLiteral(IntegerLiteral *E) { }
1796 void VisitFloatingLiteral(FloatingLiteral *E) { }
1797 void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
1798 void VisitCharacterLiteral(CharacterLiteral *E) { }
1799 void VisitGNUNullExpr(GNUNullExpr *E) { }
1800 void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1802 void VisitDeclRefExpr(DeclRefExpr *E) {
1803 VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1804 if (!VD) {
1805 // Don't allow unhandled Decl types.
1806 Simple = false;
1807 return;
1810 Ranges.push_back(E->getSourceRange());
1812 Decls.insert(VD);
1815 }; // end class DeclExtractor
1817 // DeclMatcher checks to see if the decls are used in a non-evaluated
1818 // context.
1819 class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1820 DeclSetVector &Decls;
1821 bool FoundDecl;
1823 public:
1824 typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1826 DeclMatcher(Sema &S, DeclSetVector &Decls, Stmt *Statement) :
1827 Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1828 if (!Statement) return;
1830 Visit(Statement);
1833 void VisitReturnStmt(ReturnStmt *S) {
1834 FoundDecl = true;
1837 void VisitBreakStmt(BreakStmt *S) {
1838 FoundDecl = true;
1841 void VisitGotoStmt(GotoStmt *S) {
1842 FoundDecl = true;
1845 void VisitCastExpr(CastExpr *E) {
1846 if (E->getCastKind() == CK_LValueToRValue)
1847 CheckLValueToRValueCast(E->getSubExpr());
1848 else
1849 Visit(E->getSubExpr());
1852 void CheckLValueToRValueCast(Expr *E) {
1853 E = E->IgnoreParenImpCasts();
1855 if (isa<DeclRefExpr>(E)) {
1856 return;
1859 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1860 Visit(CO->getCond());
1861 CheckLValueToRValueCast(CO->getTrueExpr());
1862 CheckLValueToRValueCast(CO->getFalseExpr());
1863 return;
1866 if (BinaryConditionalOperator *BCO =
1867 dyn_cast<BinaryConditionalOperator>(E)) {
1868 CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1869 CheckLValueToRValueCast(BCO->getFalseExpr());
1870 return;
1873 Visit(E);
1876 void VisitDeclRefExpr(DeclRefExpr *E) {
1877 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1878 if (Decls.count(VD))
1879 FoundDecl = true;
1882 void VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
1883 // Only need to visit the semantics for POE.
1884 // SyntaticForm doesn't really use the Decal.
1885 for (auto *S : POE->semantics()) {
1886 if (auto *OVE = dyn_cast<OpaqueValueExpr>(S))
1887 // Look past the OVE into the expression it binds.
1888 Visit(OVE->getSourceExpr());
1889 else
1890 Visit(S);
1894 bool FoundDeclInUse() { return FoundDecl; }
1896 }; // end class DeclMatcher
1898 void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1899 Expr *Third, Stmt *Body) {
1900 // Condition is empty
1901 if (!Second) return;
1903 if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body,
1904 Second->getBeginLoc()))
1905 return;
1907 PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1908 DeclSetVector Decls;
1909 SmallVector<SourceRange, 10> Ranges;
1910 DeclExtractor DE(S, Decls, Ranges);
1911 DE.Visit(Second);
1913 // Don't analyze complex conditionals.
1914 if (!DE.isSimple()) return;
1916 // No decls found.
1917 if (Decls.size() == 0) return;
1919 // Don't warn on volatile, static, or global variables.
1920 for (auto *VD : Decls)
1921 if (VD->getType().isVolatileQualified() || VD->hasGlobalStorage())
1922 return;
1924 if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1925 DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1926 DeclMatcher(S, Decls, Body).FoundDeclInUse())
1927 return;
1929 // Load decl names into diagnostic.
1930 if (Decls.size() > 4) {
1931 PDiag << 0;
1932 } else {
1933 PDiag << (unsigned)Decls.size();
1934 for (auto *VD : Decls)
1935 PDiag << VD->getDeclName();
1938 for (auto Range : Ranges)
1939 PDiag << Range;
1941 S.Diag(Ranges.begin()->getBegin(), PDiag);
1944 // If Statement is an incemement or decrement, return true and sets the
1945 // variables Increment and DRE.
1946 bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
1947 DeclRefExpr *&DRE) {
1948 if (auto Cleanups = dyn_cast<ExprWithCleanups>(Statement))
1949 if (!Cleanups->cleanupsHaveSideEffects())
1950 Statement = Cleanups->getSubExpr();
1952 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
1953 switch (UO->getOpcode()) {
1954 default: return false;
1955 case UO_PostInc:
1956 case UO_PreInc:
1957 Increment = true;
1958 break;
1959 case UO_PostDec:
1960 case UO_PreDec:
1961 Increment = false;
1962 break;
1964 DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
1965 return DRE;
1968 if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
1969 FunctionDecl *FD = Call->getDirectCallee();
1970 if (!FD || !FD->isOverloadedOperator()) return false;
1971 switch (FD->getOverloadedOperator()) {
1972 default: return false;
1973 case OO_PlusPlus:
1974 Increment = true;
1975 break;
1976 case OO_MinusMinus:
1977 Increment = false;
1978 break;
1980 DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
1981 return DRE;
1984 return false;
1987 // A visitor to determine if a continue or break statement is a
1988 // subexpression.
1989 class BreakContinueFinder : public ConstEvaluatedExprVisitor<BreakContinueFinder> {
1990 SourceLocation BreakLoc;
1991 SourceLocation ContinueLoc;
1992 bool InSwitch = false;
1994 public:
1995 BreakContinueFinder(Sema &S, const Stmt* Body) :
1996 Inherited(S.Context) {
1997 Visit(Body);
2000 typedef ConstEvaluatedExprVisitor<BreakContinueFinder> Inherited;
2002 void VisitContinueStmt(const ContinueStmt* E) {
2003 ContinueLoc = E->getContinueLoc();
2006 void VisitBreakStmt(const BreakStmt* E) {
2007 if (!InSwitch)
2008 BreakLoc = E->getBreakLoc();
2011 void VisitSwitchStmt(const SwitchStmt* S) {
2012 if (const Stmt *Init = S->getInit())
2013 Visit(Init);
2014 if (const Stmt *CondVar = S->getConditionVariableDeclStmt())
2015 Visit(CondVar);
2016 if (const Stmt *Cond = S->getCond())
2017 Visit(Cond);
2019 // Don't return break statements from the body of a switch.
2020 InSwitch = true;
2021 if (const Stmt *Body = S->getBody())
2022 Visit(Body);
2023 InSwitch = false;
2026 void VisitForStmt(const ForStmt *S) {
2027 // Only visit the init statement of a for loop; the body
2028 // has a different break/continue scope.
2029 if (const Stmt *Init = S->getInit())
2030 Visit(Init);
2033 void VisitWhileStmt(const WhileStmt *) {
2034 // Do nothing; the children of a while loop have a different
2035 // break/continue scope.
2038 void VisitDoStmt(const DoStmt *) {
2039 // Do nothing; the children of a while loop have a different
2040 // break/continue scope.
2043 void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
2044 // Only visit the initialization of a for loop; the body
2045 // has a different break/continue scope.
2046 if (const Stmt *Init = S->getInit())
2047 Visit(Init);
2048 if (const Stmt *Range = S->getRangeStmt())
2049 Visit(Range);
2050 if (const Stmt *Begin = S->getBeginStmt())
2051 Visit(Begin);
2052 if (const Stmt *End = S->getEndStmt())
2053 Visit(End);
2056 void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
2057 // Only visit the initialization of a for loop; the body
2058 // has a different break/continue scope.
2059 if (const Stmt *Element = S->getElement())
2060 Visit(Element);
2061 if (const Stmt *Collection = S->getCollection())
2062 Visit(Collection);
2065 bool ContinueFound() { return ContinueLoc.isValid(); }
2066 bool BreakFound() { return BreakLoc.isValid(); }
2067 SourceLocation GetContinueLoc() { return ContinueLoc; }
2068 SourceLocation GetBreakLoc() { return BreakLoc; }
2070 }; // end class BreakContinueFinder
2072 // Emit a warning when a loop increment/decrement appears twice per loop
2073 // iteration. The conditions which trigger this warning are:
2074 // 1) The last statement in the loop body and the third expression in the
2075 // for loop are both increment or both decrement of the same variable
2076 // 2) No continue statements in the loop body.
2077 void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
2078 // Return when there is nothing to check.
2079 if (!Body || !Third) return;
2081 if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration,
2082 Third->getBeginLoc()))
2083 return;
2085 // Get the last statement from the loop body.
2086 CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
2087 if (!CS || CS->body_empty()) return;
2088 Stmt *LastStmt = CS->body_back();
2089 if (!LastStmt) return;
2091 bool LoopIncrement, LastIncrement;
2092 DeclRefExpr *LoopDRE, *LastDRE;
2094 if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
2095 if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;
2097 // Check that the two statements are both increments or both decrements
2098 // on the same variable.
2099 if (LoopIncrement != LastIncrement ||
2100 LoopDRE->getDecl() != LastDRE->getDecl()) return;
2102 if (BreakContinueFinder(S, Body).ContinueFound()) return;
2104 S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
2105 << LastDRE->getDecl() << LastIncrement;
2106 S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
2107 << LoopIncrement;
2110 } // end namespace
2113 void Sema::CheckBreakContinueBinding(Expr *E) {
2114 if (!E || getLangOpts().CPlusPlus)
2115 return;
2116 BreakContinueFinder BCFinder(*this, E);
2117 Scope *BreakParent = CurScope->getBreakParent();
2118 if (BCFinder.BreakFound() && BreakParent) {
2119 if (BreakParent->getFlags() & Scope::SwitchScope) {
2120 Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch);
2121 } else {
2122 Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner)
2123 << "break";
2125 } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) {
2126 Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner)
2127 << "continue";
2131 StmtResult Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
2132 Stmt *First, ConditionResult Second,
2133 FullExprArg third, SourceLocation RParenLoc,
2134 Stmt *Body) {
2135 if (Second.isInvalid())
2136 return StmtError();
2138 if (!getLangOpts().CPlusPlus) {
2139 if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
2140 // C99 6.8.5p3: The declaration part of a 'for' statement shall only
2141 // declare identifiers for objects having storage class 'auto' or
2142 // 'register'.
2143 const Decl *NonVarSeen = nullptr;
2144 bool VarDeclSeen = false;
2145 for (auto *DI : DS->decls()) {
2146 if (VarDecl *VD = dyn_cast<VarDecl>(DI)) {
2147 VarDeclSeen = true;
2148 if (VD->isLocalVarDecl() && !VD->hasLocalStorage()) {
2149 Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for);
2150 DI->setInvalidDecl();
2152 } else if (!NonVarSeen) {
2153 // Keep track of the first non-variable declaration we saw so that
2154 // we can diagnose if we don't see any variable declarations. This
2155 // covers a case like declaring a typedef, function, or structure
2156 // type rather than a variable.
2157 NonVarSeen = DI;
2160 // Diagnose if we saw a non-variable declaration but no variable
2161 // declarations.
2162 if (NonVarSeen && !VarDeclSeen)
2163 Diag(NonVarSeen->getLocation(), diag::err_non_variable_decl_in_for);
2167 CheckBreakContinueBinding(Second.get().second);
2168 CheckBreakContinueBinding(third.get());
2170 if (!Second.get().first)
2171 CheckForLoopConditionalStatement(*this, Second.get().second, third.get(),
2172 Body);
2173 CheckForRedundantIteration(*this, third.get(), Body);
2175 if (Second.get().second &&
2176 !Diags.isIgnored(diag::warn_comma_operator,
2177 Second.get().second->getExprLoc()))
2178 CommaVisitor(*this).Visit(Second.get().second);
2180 Expr *Third = third.release().getAs<Expr>();
2181 if (isa<NullStmt>(Body))
2182 getCurCompoundScope().setHasEmptyLoopBodies();
2184 return new (Context)
2185 ForStmt(Context, First, Second.get().second, Second.get().first, Third,
2186 Body, ForLoc, LParenLoc, RParenLoc);
2189 /// In an Objective C collection iteration statement:
2190 /// for (x in y)
2191 /// x can be an arbitrary l-value expression. Bind it up as a
2192 /// full-expression.
2193 StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
2194 // Reduce placeholder expressions here. Note that this rejects the
2195 // use of pseudo-object l-values in this position.
2196 ExprResult result = CheckPlaceholderExpr(E);
2197 if (result.isInvalid()) return StmtError();
2198 E = result.get();
2200 ExprResult FullExpr = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
2201 if (FullExpr.isInvalid())
2202 return StmtError();
2203 return StmtResult(static_cast<Stmt*>(FullExpr.get()));
2206 ExprResult
2207 Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
2208 if (!collection)
2209 return ExprError();
2211 ExprResult result = CorrectDelayedTyposInExpr(collection);
2212 if (!result.isUsable())
2213 return ExprError();
2214 collection = result.get();
2216 // Bail out early if we've got a type-dependent expression.
2217 if (collection->isTypeDependent()) return collection;
2219 // Perform normal l-value conversion.
2220 result = DefaultFunctionArrayLvalueConversion(collection);
2221 if (result.isInvalid())
2222 return ExprError();
2223 collection = result.get();
2225 // The operand needs to have object-pointer type.
2226 // TODO: should we do a contextual conversion?
2227 const ObjCObjectPointerType *pointerType =
2228 collection->getType()->getAs<ObjCObjectPointerType>();
2229 if (!pointerType)
2230 return Diag(forLoc, diag::err_collection_expr_type)
2231 << collection->getType() << collection->getSourceRange();
2233 // Check that the operand provides
2234 // - countByEnumeratingWithState:objects:count:
2235 const ObjCObjectType *objectType = pointerType->getObjectType();
2236 ObjCInterfaceDecl *iface = objectType->getInterface();
2238 // If we have a forward-declared type, we can't do this check.
2239 // Under ARC, it is an error not to have a forward-declared class.
2240 if (iface &&
2241 (getLangOpts().ObjCAutoRefCount
2242 ? RequireCompleteType(forLoc, QualType(objectType, 0),
2243 diag::err_arc_collection_forward, collection)
2244 : !isCompleteType(forLoc, QualType(objectType, 0)))) {
2245 // Otherwise, if we have any useful type information, check that
2246 // the type declares the appropriate method.
2247 } else if (iface || !objectType->qual_empty()) {
2248 IdentifierInfo *selectorIdents[] = {
2249 &Context.Idents.get("countByEnumeratingWithState"),
2250 &Context.Idents.get("objects"),
2251 &Context.Idents.get("count")
2253 Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
2255 ObjCMethodDecl *method = nullptr;
2257 // If there's an interface, look in both the public and private APIs.
2258 if (iface) {
2259 method = iface->lookupInstanceMethod(selector);
2260 if (!method) method = iface->lookupPrivateMethod(selector);
2263 // Also check protocol qualifiers.
2264 if (!method)
2265 method = LookupMethodInQualifiedType(selector, pointerType,
2266 /*instance*/ true);
2268 // If we didn't find it anywhere, give up.
2269 if (!method) {
2270 Diag(forLoc, diag::warn_collection_expr_type)
2271 << collection->getType() << selector << collection->getSourceRange();
2274 // TODO: check for an incompatible signature?
2277 // Wrap up any cleanups in the expression.
2278 return collection;
2281 StmtResult
2282 Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
2283 Stmt *First, Expr *collection,
2284 SourceLocation RParenLoc) {
2285 setFunctionHasBranchProtectedScope();
2287 ExprResult CollectionExprResult =
2288 CheckObjCForCollectionOperand(ForLoc, collection);
2290 if (First) {
2291 QualType FirstType;
2292 if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
2293 if (!DS->isSingleDecl())
2294 return StmtError(Diag((*DS->decl_begin())->getLocation(),
2295 diag::err_toomany_element_decls));
2297 VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl());
2298 if (!D || D->isInvalidDecl())
2299 return StmtError();
2301 FirstType = D->getType();
2302 // C99 6.8.5p3: The declaration part of a 'for' statement shall only
2303 // declare identifiers for objects having storage class 'auto' or
2304 // 'register'.
2305 if (!D->hasLocalStorage())
2306 return StmtError(Diag(D->getLocation(),
2307 diag::err_non_local_variable_decl_in_for));
2309 // If the type contained 'auto', deduce the 'auto' to 'id'.
2310 if (FirstType->getContainedAutoType()) {
2311 SourceLocation Loc = D->getLocation();
2312 OpaqueValueExpr OpaqueId(Loc, Context.getObjCIdType(), VK_PRValue);
2313 Expr *DeducedInit = &OpaqueId;
2314 TemplateDeductionInfo Info(Loc);
2315 FirstType = QualType();
2316 TemplateDeductionResult Result = DeduceAutoType(
2317 D->getTypeSourceInfo()->getTypeLoc(), DeducedInit, FirstType, Info);
2318 if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed)
2319 DiagnoseAutoDeductionFailure(D, DeducedInit);
2320 if (FirstType.isNull()) {
2321 D->setInvalidDecl();
2322 return StmtError();
2325 D->setType(FirstType);
2327 if (!inTemplateInstantiation()) {
2328 SourceLocation Loc =
2329 D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
2330 Diag(Loc, diag::warn_auto_var_is_id)
2331 << D->getDeclName();
2335 } else {
2336 Expr *FirstE = cast<Expr>(First);
2337 if (!FirstE->isTypeDependent() && !FirstE->isLValue())
2338 return StmtError(
2339 Diag(First->getBeginLoc(), diag::err_selector_element_not_lvalue)
2340 << First->getSourceRange());
2342 FirstType = static_cast<Expr*>(First)->getType();
2343 if (FirstType.isConstQualified())
2344 Diag(ForLoc, diag::err_selector_element_const_type)
2345 << FirstType << First->getSourceRange();
2347 if (!FirstType->isDependentType() &&
2348 !FirstType->isObjCObjectPointerType() &&
2349 !FirstType->isBlockPointerType())
2350 return StmtError(Diag(ForLoc, diag::err_selector_element_type)
2351 << FirstType << First->getSourceRange());
2354 if (CollectionExprResult.isInvalid())
2355 return StmtError();
2357 CollectionExprResult =
2358 ActOnFinishFullExpr(CollectionExprResult.get(), /*DiscardedValue*/ false);
2359 if (CollectionExprResult.isInvalid())
2360 return StmtError();
2362 return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(),
2363 nullptr, ForLoc, RParenLoc);
2366 /// Finish building a variable declaration for a for-range statement.
2367 /// \return true if an error occurs.
2368 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
2369 SourceLocation Loc, int DiagID) {
2370 if (Decl->getType()->isUndeducedType()) {
2371 ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init);
2372 if (!Res.isUsable()) {
2373 Decl->setInvalidDecl();
2374 return true;
2376 Init = Res.get();
2379 // Deduce the type for the iterator variable now rather than leaving it to
2380 // AddInitializerToDecl, so we can produce a more suitable diagnostic.
2381 QualType InitType;
2382 if (!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) {
2383 SemaRef.Diag(Loc, DiagID) << Init->getType();
2384 } else {
2385 TemplateDeductionInfo Info(Init->getExprLoc());
2386 Sema::TemplateDeductionResult Result = SemaRef.DeduceAutoType(
2387 Decl->getTypeSourceInfo()->getTypeLoc(), Init, InitType, Info);
2388 if (Result != Sema::TDK_Success && Result != Sema::TDK_AlreadyDiagnosed)
2389 SemaRef.Diag(Loc, DiagID) << Init->getType();
2392 if (InitType.isNull()) {
2393 Decl->setInvalidDecl();
2394 return true;
2396 Decl->setType(InitType);
2398 // In ARC, infer lifetime.
2399 // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
2400 // we're doing the equivalent of fast iteration.
2401 if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2402 SemaRef.inferObjCARCLifetime(Decl))
2403 Decl->setInvalidDecl();
2405 SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false);
2406 SemaRef.FinalizeDeclaration(Decl);
2407 SemaRef.CurContext->addHiddenDecl(Decl);
2408 return false;
2411 namespace {
2412 // An enum to represent whether something is dealing with a call to begin()
2413 // or a call to end() in a range-based for loop.
2414 enum BeginEndFunction {
2415 BEF_begin,
2416 BEF_end
2419 /// Produce a note indicating which begin/end function was implicitly called
2420 /// by a C++11 for-range statement. This is often not obvious from the code,
2421 /// nor from the diagnostics produced when analysing the implicit expressions
2422 /// required in a for-range statement.
2423 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
2424 BeginEndFunction BEF) {
2425 CallExpr *CE = dyn_cast<CallExpr>(E);
2426 if (!CE)
2427 return;
2428 FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
2429 if (!D)
2430 return;
2431 SourceLocation Loc = D->getLocation();
2433 std::string Description;
2434 bool IsTemplate = false;
2435 if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
2436 Description = SemaRef.getTemplateArgumentBindingsText(
2437 FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
2438 IsTemplate = true;
2441 SemaRef.Diag(Loc, diag::note_for_range_begin_end)
2442 << BEF << IsTemplate << Description << E->getType();
2445 /// Build a variable declaration for a for-range statement.
2446 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
2447 QualType Type, StringRef Name) {
2448 DeclContext *DC = SemaRef.CurContext;
2449 IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
2450 TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
2451 VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
2452 TInfo, SC_None);
2453 Decl->setImplicit();
2454 return Decl;
2459 static bool ObjCEnumerationCollection(Expr *Collection) {
2460 return !Collection->isTypeDependent()
2461 && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr;
2464 /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
2466 /// C++11 [stmt.ranged]:
2467 /// A range-based for statement is equivalent to
2469 /// {
2470 /// auto && __range = range-init;
2471 /// for ( auto __begin = begin-expr,
2472 /// __end = end-expr;
2473 /// __begin != __end;
2474 /// ++__begin ) {
2475 /// for-range-declaration = *__begin;
2476 /// statement
2477 /// }
2478 /// }
2480 /// The body of the loop is not available yet, since it cannot be analysed until
2481 /// we have determined the type of the for-range-declaration.
2482 StmtResult Sema::ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc,
2483 SourceLocation CoawaitLoc, Stmt *InitStmt,
2484 Stmt *First, SourceLocation ColonLoc,
2485 Expr *Range, SourceLocation RParenLoc,
2486 BuildForRangeKind Kind) {
2487 // FIXME: recover in order to allow the body to be parsed.
2488 if (!First)
2489 return StmtError();
2491 if (Range && ObjCEnumerationCollection(Range)) {
2492 // FIXME: Support init-statements in Objective-C++20 ranged for statement.
2493 if (InitStmt)
2494 return Diag(InitStmt->getBeginLoc(), diag::err_objc_for_range_init_stmt)
2495 << InitStmt->getSourceRange();
2496 return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
2499 DeclStmt *DS = dyn_cast<DeclStmt>(First);
2500 assert(DS && "first part of for range not a decl stmt");
2502 if (!DS->isSingleDecl()) {
2503 Diag(DS->getBeginLoc(), diag::err_type_defined_in_for_range);
2504 return StmtError();
2507 // This function is responsible for attaching an initializer to LoopVar. We
2508 // must call ActOnInitializerError if we fail to do so.
2509 Decl *LoopVar = DS->getSingleDecl();
2510 if (LoopVar->isInvalidDecl() || !Range ||
2511 DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) {
2512 ActOnInitializerError(LoopVar);
2513 return StmtError();
2516 // Build the coroutine state immediately and not later during template
2517 // instantiation
2518 if (!CoawaitLoc.isInvalid()) {
2519 if (!ActOnCoroutineBodyStart(S, CoawaitLoc, "co_await")) {
2520 ActOnInitializerError(LoopVar);
2521 return StmtError();
2525 // Build auto && __range = range-init
2526 // Divide by 2, since the variables are in the inner scope (loop body).
2527 const auto DepthStr = std::to_string(S->getDepth() / 2);
2528 SourceLocation RangeLoc = Range->getBeginLoc();
2529 VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
2530 Context.getAutoRRefDeductType(),
2531 std::string("__range") + DepthStr);
2532 if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
2533 diag::err_for_range_deduction_failure)) {
2534 ActOnInitializerError(LoopVar);
2535 return StmtError();
2538 // Claim the type doesn't contain auto: we've already done the checking.
2539 DeclGroupPtrTy RangeGroup =
2540 BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1));
2541 StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
2542 if (RangeDecl.isInvalid()) {
2543 ActOnInitializerError(LoopVar);
2544 return StmtError();
2547 StmtResult R = BuildCXXForRangeStmt(
2548 ForLoc, CoawaitLoc, InitStmt, ColonLoc, RangeDecl.get(),
2549 /*BeginStmt=*/nullptr, /*EndStmt=*/nullptr,
2550 /*Cond=*/nullptr, /*Inc=*/nullptr, DS, RParenLoc, Kind);
2551 if (R.isInvalid()) {
2552 ActOnInitializerError(LoopVar);
2553 return StmtError();
2556 return R;
2559 /// Create the initialization, compare, and increment steps for
2560 /// the range-based for loop expression.
2561 /// This function does not handle array-based for loops,
2562 /// which are created in Sema::BuildCXXForRangeStmt.
2564 /// \returns a ForRangeStatus indicating success or what kind of error occurred.
2565 /// BeginExpr and EndExpr are set and FRS_Success is returned on success;
2566 /// CandidateSet and BEF are set and some non-success value is returned on
2567 /// failure.
2568 static Sema::ForRangeStatus
2569 BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange,
2570 QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar,
2571 SourceLocation ColonLoc, SourceLocation CoawaitLoc,
2572 OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr,
2573 ExprResult *EndExpr, BeginEndFunction *BEF) {
2574 DeclarationNameInfo BeginNameInfo(
2575 &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
2576 DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
2577 ColonLoc);
2579 LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
2580 Sema::LookupMemberName);
2581 LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
2583 auto BuildBegin = [&] {
2584 *BEF = BEF_begin;
2585 Sema::ForRangeStatus RangeStatus =
2586 SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo,
2587 BeginMemberLookup, CandidateSet,
2588 BeginRange, BeginExpr);
2590 if (RangeStatus != Sema::FRS_Success) {
2591 if (RangeStatus == Sema::FRS_DiagnosticIssued)
2592 SemaRef.Diag(BeginRange->getBeginLoc(), diag::note_in_for_range)
2593 << ColonLoc << BEF_begin << BeginRange->getType();
2594 return RangeStatus;
2596 if (!CoawaitLoc.isInvalid()) {
2597 // FIXME: getCurScope() should not be used during template instantiation.
2598 // We should pick up the set of unqualified lookup results for operator
2599 // co_await during the initial parse.
2600 *BeginExpr = SemaRef.ActOnCoawaitExpr(SemaRef.getCurScope(), ColonLoc,
2601 BeginExpr->get());
2602 if (BeginExpr->isInvalid())
2603 return Sema::FRS_DiagnosticIssued;
2605 if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
2606 diag::err_for_range_iter_deduction_failure)) {
2607 NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
2608 return Sema::FRS_DiagnosticIssued;
2610 return Sema::FRS_Success;
2613 auto BuildEnd = [&] {
2614 *BEF = BEF_end;
2615 Sema::ForRangeStatus RangeStatus =
2616 SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo,
2617 EndMemberLookup, CandidateSet,
2618 EndRange, EndExpr);
2619 if (RangeStatus != Sema::FRS_Success) {
2620 if (RangeStatus == Sema::FRS_DiagnosticIssued)
2621 SemaRef.Diag(EndRange->getBeginLoc(), diag::note_in_for_range)
2622 << ColonLoc << BEF_end << EndRange->getType();
2623 return RangeStatus;
2625 if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
2626 diag::err_for_range_iter_deduction_failure)) {
2627 NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
2628 return Sema::FRS_DiagnosticIssued;
2630 return Sema::FRS_Success;
2633 if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
2634 // - if _RangeT is a class type, the unqualified-ids begin and end are
2635 // looked up in the scope of class _RangeT as if by class member access
2636 // lookup (3.4.5), and if either (or both) finds at least one
2637 // declaration, begin-expr and end-expr are __range.begin() and
2638 // __range.end(), respectively;
2639 SemaRef.LookupQualifiedName(BeginMemberLookup, D);
2640 if (BeginMemberLookup.isAmbiguous())
2641 return Sema::FRS_DiagnosticIssued;
2643 SemaRef.LookupQualifiedName(EndMemberLookup, D);
2644 if (EndMemberLookup.isAmbiguous())
2645 return Sema::FRS_DiagnosticIssued;
2647 if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
2648 // Look up the non-member form of the member we didn't find, first.
2649 // This way we prefer a "no viable 'end'" diagnostic over a "i found
2650 // a 'begin' but ignored it because there was no member 'end'"
2651 // diagnostic.
2652 auto BuildNonmember = [&](
2653 BeginEndFunction BEFFound, LookupResult &Found,
2654 llvm::function_ref<Sema::ForRangeStatus()> BuildFound,
2655 llvm::function_ref<Sema::ForRangeStatus()> BuildNotFound) {
2656 LookupResult OldFound = std::move(Found);
2657 Found.clear();
2659 if (Sema::ForRangeStatus Result = BuildNotFound())
2660 return Result;
2662 switch (BuildFound()) {
2663 case Sema::FRS_Success:
2664 return Sema::FRS_Success;
2666 case Sema::FRS_NoViableFunction:
2667 CandidateSet->NoteCandidates(
2668 PartialDiagnosticAt(BeginRange->getBeginLoc(),
2669 SemaRef.PDiag(diag::err_for_range_invalid)
2670 << BeginRange->getType() << BEFFound),
2671 SemaRef, OCD_AllCandidates, BeginRange);
2672 [[fallthrough]];
2674 case Sema::FRS_DiagnosticIssued:
2675 for (NamedDecl *D : OldFound) {
2676 SemaRef.Diag(D->getLocation(),
2677 diag::note_for_range_member_begin_end_ignored)
2678 << BeginRange->getType() << BEFFound;
2680 return Sema::FRS_DiagnosticIssued;
2682 llvm_unreachable("unexpected ForRangeStatus");
2684 if (BeginMemberLookup.empty())
2685 return BuildNonmember(BEF_end, EndMemberLookup, BuildEnd, BuildBegin);
2686 return BuildNonmember(BEF_begin, BeginMemberLookup, BuildBegin, BuildEnd);
2688 } else {
2689 // - otherwise, begin-expr and end-expr are begin(__range) and
2690 // end(__range), respectively, where begin and end are looked up with
2691 // argument-dependent lookup (3.4.2). For the purposes of this name
2692 // lookup, namespace std is an associated namespace.
2695 if (Sema::ForRangeStatus Result = BuildBegin())
2696 return Result;
2697 return BuildEnd();
2700 /// Speculatively attempt to dereference an invalid range expression.
2701 /// If the attempt fails, this function will return a valid, null StmtResult
2702 /// and emit no diagnostics.
2703 static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S,
2704 SourceLocation ForLoc,
2705 SourceLocation CoawaitLoc,
2706 Stmt *InitStmt,
2707 Stmt *LoopVarDecl,
2708 SourceLocation ColonLoc,
2709 Expr *Range,
2710 SourceLocation RangeLoc,
2711 SourceLocation RParenLoc) {
2712 // Determine whether we can rebuild the for-range statement with a
2713 // dereferenced range expression.
2714 ExprResult AdjustedRange;
2716 Sema::SFINAETrap Trap(SemaRef);
2718 AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
2719 if (AdjustedRange.isInvalid())
2720 return StmtResult();
2722 StmtResult SR = SemaRef.ActOnCXXForRangeStmt(
2723 S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
2724 AdjustedRange.get(), RParenLoc, Sema::BFRK_Check);
2725 if (SR.isInvalid())
2726 return StmtResult();
2729 // The attempt to dereference worked well enough that it could produce a valid
2730 // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
2731 // case there are any other (non-fatal) problems with it.
2732 SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
2733 << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
2734 return SemaRef.ActOnCXXForRangeStmt(
2735 S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
2736 AdjustedRange.get(), RParenLoc, Sema::BFRK_Rebuild);
2739 /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
2740 StmtResult Sema::BuildCXXForRangeStmt(SourceLocation ForLoc,
2741 SourceLocation CoawaitLoc, Stmt *InitStmt,
2742 SourceLocation ColonLoc, Stmt *RangeDecl,
2743 Stmt *Begin, Stmt *End, Expr *Cond,
2744 Expr *Inc, Stmt *LoopVarDecl,
2745 SourceLocation RParenLoc,
2746 BuildForRangeKind Kind) {
2747 // FIXME: This should not be used during template instantiation. We should
2748 // pick up the set of unqualified lookup results for the != and + operators
2749 // in the initial parse.
2751 // Testcase (accepts-invalid):
2752 // template<typename T> void f() { for (auto x : T()) {} }
2753 // namespace N { struct X { X begin(); X end(); int operator*(); }; }
2754 // bool operator!=(N::X, N::X); void operator++(N::X);
2755 // void g() { f<N::X>(); }
2756 Scope *S = getCurScope();
2758 DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
2759 VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
2760 QualType RangeVarType = RangeVar->getType();
2762 DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
2763 VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
2765 StmtResult BeginDeclStmt = Begin;
2766 StmtResult EndDeclStmt = End;
2767 ExprResult NotEqExpr = Cond, IncrExpr = Inc;
2769 if (RangeVarType->isDependentType()) {
2770 // The range is implicitly used as a placeholder when it is dependent.
2771 RangeVar->markUsed(Context);
2773 // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
2774 // them in properly when we instantiate the loop.
2775 if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2776 if (auto *DD = dyn_cast<DecompositionDecl>(LoopVar))
2777 for (auto *Binding : DD->bindings())
2778 Binding->setType(Context.DependentTy);
2779 LoopVar->setType(SubstAutoTypeDependent(LoopVar->getType()));
2781 } else if (!BeginDeclStmt.get()) {
2782 SourceLocation RangeLoc = RangeVar->getLocation();
2784 const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
2786 ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2787 VK_LValue, ColonLoc);
2788 if (BeginRangeRef.isInvalid())
2789 return StmtError();
2791 ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2792 VK_LValue, ColonLoc);
2793 if (EndRangeRef.isInvalid())
2794 return StmtError();
2796 QualType AutoType = Context.getAutoDeductType();
2797 Expr *Range = RangeVar->getInit();
2798 if (!Range)
2799 return StmtError();
2800 QualType RangeType = Range->getType();
2802 if (RequireCompleteType(RangeLoc, RangeType,
2803 diag::err_for_range_incomplete_type))
2804 return StmtError();
2806 // Build auto __begin = begin-expr, __end = end-expr.
2807 // Divide by 2, since the variables are in the inner scope (loop body).
2808 const auto DepthStr = std::to_string(S->getDepth() / 2);
2809 VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2810 std::string("__begin") + DepthStr);
2811 VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2812 std::string("__end") + DepthStr);
2814 // Build begin-expr and end-expr and attach to __begin and __end variables.
2815 ExprResult BeginExpr, EndExpr;
2816 if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
2817 // - if _RangeT is an array type, begin-expr and end-expr are __range and
2818 // __range + __bound, respectively, where __bound is the array bound. If
2819 // _RangeT is an array of unknown size or an array of incomplete type,
2820 // the program is ill-formed;
2822 // begin-expr is __range.
2823 BeginExpr = BeginRangeRef;
2824 if (!CoawaitLoc.isInvalid()) {
2825 BeginExpr = ActOnCoawaitExpr(S, ColonLoc, BeginExpr.get());
2826 if (BeginExpr.isInvalid())
2827 return StmtError();
2829 if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
2830 diag::err_for_range_iter_deduction_failure)) {
2831 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2832 return StmtError();
2835 // Find the array bound.
2836 ExprResult BoundExpr;
2837 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
2838 BoundExpr = IntegerLiteral::Create(
2839 Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc);
2840 else if (const VariableArrayType *VAT =
2841 dyn_cast<VariableArrayType>(UnqAT)) {
2842 // For a variably modified type we can't just use the expression within
2843 // the array bounds, since we don't want that to be re-evaluated here.
2844 // Rather, we need to determine what it was when the array was first
2845 // created - so we resort to using sizeof(vla)/sizeof(element).
2846 // For e.g.
2847 // void f(int b) {
2848 // int vla[b];
2849 // b = -1; <-- This should not affect the num of iterations below
2850 // for (int &c : vla) { .. }
2851 // }
2853 // FIXME: This results in codegen generating IR that recalculates the
2854 // run-time number of elements (as opposed to just using the IR Value
2855 // that corresponds to the run-time value of each bound that was
2856 // generated when the array was created.) If this proves too embarrassing
2857 // even for unoptimized IR, consider passing a magic-value/cookie to
2858 // codegen that then knows to simply use that initial llvm::Value (that
2859 // corresponds to the bound at time of array creation) within
2860 // getelementptr. But be prepared to pay the price of increasing a
2861 // customized form of coupling between the two components - which could
2862 // be hard to maintain as the codebase evolves.
2864 ExprResult SizeOfVLAExprR = ActOnUnaryExprOrTypeTraitExpr(
2865 EndVar->getLocation(), UETT_SizeOf,
2866 /*IsType=*/true,
2867 CreateParsedType(VAT->desugar(), Context.getTrivialTypeSourceInfo(
2868 VAT->desugar(), RangeLoc))
2869 .getAsOpaquePtr(),
2870 EndVar->getSourceRange());
2871 if (SizeOfVLAExprR.isInvalid())
2872 return StmtError();
2874 ExprResult SizeOfEachElementExprR = ActOnUnaryExprOrTypeTraitExpr(
2875 EndVar->getLocation(), UETT_SizeOf,
2876 /*IsType=*/true,
2877 CreateParsedType(VAT->desugar(),
2878 Context.getTrivialTypeSourceInfo(
2879 VAT->getElementType(), RangeLoc))
2880 .getAsOpaquePtr(),
2881 EndVar->getSourceRange());
2882 if (SizeOfEachElementExprR.isInvalid())
2883 return StmtError();
2885 BoundExpr =
2886 ActOnBinOp(S, EndVar->getLocation(), tok::slash,
2887 SizeOfVLAExprR.get(), SizeOfEachElementExprR.get());
2888 if (BoundExpr.isInvalid())
2889 return StmtError();
2891 } else {
2892 // Can't be a DependentSizedArrayType or an IncompleteArrayType since
2893 // UnqAT is not incomplete and Range is not type-dependent.
2894 llvm_unreachable("Unexpected array type in for-range");
2897 // end-expr is __range + __bound.
2898 EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
2899 BoundExpr.get());
2900 if (EndExpr.isInvalid())
2901 return StmtError();
2902 if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
2903 diag::err_for_range_iter_deduction_failure)) {
2904 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2905 return StmtError();
2907 } else {
2908 OverloadCandidateSet CandidateSet(RangeLoc,
2909 OverloadCandidateSet::CSK_Normal);
2910 BeginEndFunction BEFFailure;
2911 ForRangeStatus RangeStatus = BuildNonArrayForRange(
2912 *this, BeginRangeRef.get(), EndRangeRef.get(), RangeType, BeginVar,
2913 EndVar, ColonLoc, CoawaitLoc, &CandidateSet, &BeginExpr, &EndExpr,
2914 &BEFFailure);
2916 if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
2917 BEFFailure == BEF_begin) {
2918 // If the range is being built from an array parameter, emit a
2919 // a diagnostic that it is being treated as a pointer.
2920 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) {
2921 if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
2922 QualType ArrayTy = PVD->getOriginalType();
2923 QualType PointerTy = PVD->getType();
2924 if (PointerTy->isPointerType() && ArrayTy->isArrayType()) {
2925 Diag(Range->getBeginLoc(), diag::err_range_on_array_parameter)
2926 << RangeLoc << PVD << ArrayTy << PointerTy;
2927 Diag(PVD->getLocation(), diag::note_declared_at);
2928 return StmtError();
2933 // If building the range failed, try dereferencing the range expression
2934 // unless a diagnostic was issued or the end function is problematic.
2935 StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
2936 CoawaitLoc, InitStmt,
2937 LoopVarDecl, ColonLoc,
2938 Range, RangeLoc,
2939 RParenLoc);
2940 if (SR.isInvalid() || SR.isUsable())
2941 return SR;
2944 // Otherwise, emit diagnostics if we haven't already.
2945 if (RangeStatus == FRS_NoViableFunction) {
2946 Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
2947 CandidateSet.NoteCandidates(
2948 PartialDiagnosticAt(Range->getBeginLoc(),
2949 PDiag(diag::err_for_range_invalid)
2950 << RangeLoc << Range->getType()
2951 << BEFFailure),
2952 *this, OCD_AllCandidates, Range);
2954 // Return an error if no fix was discovered.
2955 if (RangeStatus != FRS_Success)
2956 return StmtError();
2959 assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
2960 "invalid range expression in for loop");
2962 // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
2963 // C++1z removes this restriction.
2964 QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
2965 if (!Context.hasSameType(BeginType, EndType)) {
2966 Diag(RangeLoc, getLangOpts().CPlusPlus17
2967 ? diag::warn_for_range_begin_end_types_differ
2968 : diag::ext_for_range_begin_end_types_differ)
2969 << BeginType << EndType;
2970 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2971 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2974 BeginDeclStmt =
2975 ActOnDeclStmt(ConvertDeclToDeclGroup(BeginVar), ColonLoc, ColonLoc);
2976 EndDeclStmt =
2977 ActOnDeclStmt(ConvertDeclToDeclGroup(EndVar), ColonLoc, ColonLoc);
2979 const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
2980 ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2981 VK_LValue, ColonLoc);
2982 if (BeginRef.isInvalid())
2983 return StmtError();
2985 ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
2986 VK_LValue, ColonLoc);
2987 if (EndRef.isInvalid())
2988 return StmtError();
2990 // Build and check __begin != __end expression.
2991 NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
2992 BeginRef.get(), EndRef.get());
2993 if (!NotEqExpr.isInvalid())
2994 NotEqExpr = CheckBooleanCondition(ColonLoc, NotEqExpr.get());
2995 if (!NotEqExpr.isInvalid())
2996 NotEqExpr =
2997 ActOnFinishFullExpr(NotEqExpr.get(), /*DiscardedValue*/ false);
2998 if (NotEqExpr.isInvalid()) {
2999 Diag(RangeLoc, diag::note_for_range_invalid_iterator)
3000 << RangeLoc << 0 << BeginRangeRef.get()->getType();
3001 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
3002 if (!Context.hasSameType(BeginType, EndType))
3003 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
3004 return StmtError();
3007 // Build and check ++__begin expression.
3008 BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
3009 VK_LValue, ColonLoc);
3010 if (BeginRef.isInvalid())
3011 return StmtError();
3013 IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
3014 if (!IncrExpr.isInvalid() && CoawaitLoc.isValid())
3015 // FIXME: getCurScope() should not be used during template instantiation.
3016 // We should pick up the set of unqualified lookup results for operator
3017 // co_await during the initial parse.
3018 IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get());
3019 if (!IncrExpr.isInvalid())
3020 IncrExpr = ActOnFinishFullExpr(IncrExpr.get(), /*DiscardedValue*/ false);
3021 if (IncrExpr.isInvalid()) {
3022 Diag(RangeLoc, diag::note_for_range_invalid_iterator)
3023 << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
3024 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
3025 return StmtError();
3028 // Build and check *__begin expression.
3029 BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
3030 VK_LValue, ColonLoc);
3031 if (BeginRef.isInvalid())
3032 return StmtError();
3034 ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
3035 if (DerefExpr.isInvalid()) {
3036 Diag(RangeLoc, diag::note_for_range_invalid_iterator)
3037 << RangeLoc << 1 << BeginRangeRef.get()->getType();
3038 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
3039 return StmtError();
3042 // Attach *__begin as initializer for VD. Don't touch it if we're just
3043 // trying to determine whether this would be a valid range.
3044 if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
3045 AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false);
3046 if (LoopVar->isInvalidDecl() ||
3047 (LoopVar->getInit() && LoopVar->getInit()->containsErrors()))
3048 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
3052 // Don't bother to actually allocate the result if we're just trying to
3053 // determine whether it would be valid.
3054 if (Kind == BFRK_Check)
3055 return StmtResult();
3057 // In OpenMP loop region loop control variable must be private. Perform
3058 // analysis of first part (if any).
3059 if (getLangOpts().OpenMP >= 50 && BeginDeclStmt.isUsable())
3060 ActOnOpenMPLoopInitialization(ForLoc, BeginDeclStmt.get());
3062 return new (Context) CXXForRangeStmt(
3063 InitStmt, RangeDS, cast_or_null<DeclStmt>(BeginDeclStmt.get()),
3064 cast_or_null<DeclStmt>(EndDeclStmt.get()), NotEqExpr.get(),
3065 IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc,
3066 ColonLoc, RParenLoc);
3069 /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
3070 /// statement.
3071 StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
3072 if (!S || !B)
3073 return StmtError();
3074 ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
3076 ForStmt->setBody(B);
3077 return S;
3080 // Warn when the loop variable is a const reference that creates a copy.
3081 // Suggest using the non-reference type for copies. If a copy can be prevented
3082 // suggest the const reference type that would do so.
3083 // For instance, given "for (const &Foo : Range)", suggest
3084 // "for (const Foo : Range)" to denote a copy is made for the loop. If
3085 // possible, also suggest "for (const &Bar : Range)" if this type prevents
3086 // the copy altogether.
3087 static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef,
3088 const VarDecl *VD,
3089 QualType RangeInitType) {
3090 const Expr *InitExpr = VD->getInit();
3091 if (!InitExpr)
3092 return;
3094 QualType VariableType = VD->getType();
3096 if (auto Cleanups = dyn_cast<ExprWithCleanups>(InitExpr))
3097 if (!Cleanups->cleanupsHaveSideEffects())
3098 InitExpr = Cleanups->getSubExpr();
3100 const MaterializeTemporaryExpr *MTE =
3101 dyn_cast<MaterializeTemporaryExpr>(InitExpr);
3103 // No copy made.
3104 if (!MTE)
3105 return;
3107 const Expr *E = MTE->getSubExpr()->IgnoreImpCasts();
3109 // Searching for either UnaryOperator for dereference of a pointer or
3110 // CXXOperatorCallExpr for handling iterators.
3111 while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) {
3112 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) {
3113 E = CCE->getArg(0);
3114 } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) {
3115 const MemberExpr *ME = cast<MemberExpr>(Call->getCallee());
3116 E = ME->getBase();
3117 } else {
3118 const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
3119 E = MTE->getSubExpr();
3121 E = E->IgnoreImpCasts();
3124 QualType ReferenceReturnType;
3125 if (isa<UnaryOperator>(E)) {
3126 ReferenceReturnType = SemaRef.Context.getLValueReferenceType(E->getType());
3127 } else {
3128 const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E);
3129 const FunctionDecl *FD = Call->getDirectCallee();
3130 QualType ReturnType = FD->getReturnType();
3131 if (ReturnType->isReferenceType())
3132 ReferenceReturnType = ReturnType;
3135 if (!ReferenceReturnType.isNull()) {
3136 // Loop variable creates a temporary. Suggest either to go with
3137 // non-reference loop variable to indicate a copy is made, or
3138 // the correct type to bind a const reference.
3139 SemaRef.Diag(VD->getLocation(),
3140 diag::warn_for_range_const_ref_binds_temp_built_from_ref)
3141 << VD << VariableType << ReferenceReturnType;
3142 QualType NonReferenceType = VariableType.getNonReferenceType();
3143 NonReferenceType.removeLocalConst();
3144 QualType NewReferenceType =
3145 SemaRef.Context.getLValueReferenceType(E->getType().withConst());
3146 SemaRef.Diag(VD->getBeginLoc(), diag::note_use_type_or_non_reference)
3147 << NonReferenceType << NewReferenceType << VD->getSourceRange()
3148 << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc());
3149 } else if (!VariableType->isRValueReferenceType()) {
3150 // The range always returns a copy, so a temporary is always created.
3151 // Suggest removing the reference from the loop variable.
3152 // If the type is a rvalue reference do not warn since that changes the
3153 // semantic of the code.
3154 SemaRef.Diag(VD->getLocation(), diag::warn_for_range_ref_binds_ret_temp)
3155 << VD << RangeInitType;
3156 QualType NonReferenceType = VariableType.getNonReferenceType();
3157 NonReferenceType.removeLocalConst();
3158 SemaRef.Diag(VD->getBeginLoc(), diag::note_use_non_reference_type)
3159 << NonReferenceType << VD->getSourceRange()
3160 << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc());
3164 /// Determines whether the @p VariableType's declaration is a record with the
3165 /// clang::trivial_abi attribute.
3166 static bool hasTrivialABIAttr(QualType VariableType) {
3167 if (CXXRecordDecl *RD = VariableType->getAsCXXRecordDecl())
3168 return RD->hasAttr<TrivialABIAttr>();
3170 return false;
3173 // Warns when the loop variable can be changed to a reference type to
3174 // prevent a copy. For instance, if given "for (const Foo x : Range)" suggest
3175 // "for (const Foo &x : Range)" if this form does not make a copy.
3176 static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef,
3177 const VarDecl *VD) {
3178 const Expr *InitExpr = VD->getInit();
3179 if (!InitExpr)
3180 return;
3182 QualType VariableType = VD->getType();
3184 if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) {
3185 if (!CE->getConstructor()->isCopyConstructor())
3186 return;
3187 } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) {
3188 if (CE->getCastKind() != CK_LValueToRValue)
3189 return;
3190 } else {
3191 return;
3194 // Small trivially copyable types are cheap to copy. Do not emit the
3195 // diagnostic for these instances. 64 bytes is a common size of a cache line.
3196 // (The function `getTypeSize` returns the size in bits.)
3197 ASTContext &Ctx = SemaRef.Context;
3198 if (Ctx.getTypeSize(VariableType) <= 64 * 8 &&
3199 (VariableType.isTriviallyCopyableType(Ctx) ||
3200 hasTrivialABIAttr(VariableType)))
3201 return;
3203 // Suggest changing from a const variable to a const reference variable
3204 // if doing so will prevent a copy.
3205 SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy)
3206 << VD << VariableType;
3207 SemaRef.Diag(VD->getBeginLoc(), diag::note_use_reference_type)
3208 << SemaRef.Context.getLValueReferenceType(VariableType)
3209 << VD->getSourceRange()
3210 << FixItHint::CreateInsertion(VD->getLocation(), "&");
3213 /// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
3214 /// 1) for (const foo &x : foos) where foos only returns a copy. Suggest
3215 /// using "const foo x" to show that a copy is made
3216 /// 2) for (const bar &x : foos) where bar is a temporary initialized by bar.
3217 /// Suggest either "const bar x" to keep the copying or "const foo& x" to
3218 /// prevent the copy.
3219 /// 3) for (const foo x : foos) where x is constructed from a reference foo.
3220 /// Suggest "const foo &x" to prevent the copy.
3221 static void DiagnoseForRangeVariableCopies(Sema &SemaRef,
3222 const CXXForRangeStmt *ForStmt) {
3223 if (SemaRef.inTemplateInstantiation())
3224 return;
3226 if (SemaRef.Diags.isIgnored(
3227 diag::warn_for_range_const_ref_binds_temp_built_from_ref,
3228 ForStmt->getBeginLoc()) &&
3229 SemaRef.Diags.isIgnored(diag::warn_for_range_ref_binds_ret_temp,
3230 ForStmt->getBeginLoc()) &&
3231 SemaRef.Diags.isIgnored(diag::warn_for_range_copy,
3232 ForStmt->getBeginLoc())) {
3233 return;
3236 const VarDecl *VD = ForStmt->getLoopVariable();
3237 if (!VD)
3238 return;
3240 QualType VariableType = VD->getType();
3242 if (VariableType->isIncompleteType())
3243 return;
3245 const Expr *InitExpr = VD->getInit();
3246 if (!InitExpr)
3247 return;
3249 if (InitExpr->getExprLoc().isMacroID())
3250 return;
3252 if (VariableType->isReferenceType()) {
3253 DiagnoseForRangeReferenceVariableCopies(SemaRef, VD,
3254 ForStmt->getRangeInit()->getType());
3255 } else if (VariableType.isConstQualified()) {
3256 DiagnoseForRangeConstVariableCopies(SemaRef, VD);
3260 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
3261 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the
3262 /// body cannot be performed until after the type of the range variable is
3263 /// determined.
3264 StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
3265 if (!S || !B)
3266 return StmtError();
3268 if (isa<ObjCForCollectionStmt>(S))
3269 return FinishObjCForCollectionStmt(S, B);
3271 CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
3272 ForStmt->setBody(B);
3274 DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
3275 diag::warn_empty_range_based_for_body);
3277 DiagnoseForRangeVariableCopies(*this, ForStmt);
3279 return S;
3282 StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
3283 SourceLocation LabelLoc,
3284 LabelDecl *TheDecl) {
3285 setFunctionHasBranchIntoScope();
3286 TheDecl->markUsed(Context);
3287 return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc);
3290 StmtResult
3291 Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
3292 Expr *E) {
3293 // Convert operand to void*
3294 if (!E->isTypeDependent()) {
3295 QualType ETy = E->getType();
3296 QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
3297 ExprResult ExprRes = E;
3298 AssignConvertType ConvTy =
3299 CheckSingleAssignmentConstraints(DestTy, ExprRes);
3300 if (ExprRes.isInvalid())
3301 return StmtError();
3302 E = ExprRes.get();
3303 if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
3304 return StmtError();
3307 ExprResult ExprRes = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
3308 if (ExprRes.isInvalid())
3309 return StmtError();
3310 E = ExprRes.get();
3312 setFunctionHasIndirectGoto();
3314 return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E);
3317 static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc,
3318 const Scope &DestScope) {
3319 if (!S.CurrentSEHFinally.empty() &&
3320 DestScope.Contains(*S.CurrentSEHFinally.back())) {
3321 S.Diag(Loc, diag::warn_jump_out_of_seh_finally);
3325 StmtResult
3326 Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
3327 Scope *S = CurScope->getContinueParent();
3328 if (!S) {
3329 // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
3330 return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
3332 if (S->isConditionVarScope()) {
3333 // We cannot 'continue;' from within a statement expression in the
3334 // initializer of a condition variable because we would jump past the
3335 // initialization of that variable.
3336 return StmtError(Diag(ContinueLoc, diag::err_continue_from_cond_var_init));
3338 CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S);
3340 return new (Context) ContinueStmt(ContinueLoc);
3343 StmtResult
3344 Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
3345 Scope *S = CurScope->getBreakParent();
3346 if (!S) {
3347 // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
3348 return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
3350 if (S->isOpenMPLoopScope())
3351 return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt)
3352 << "break");
3353 CheckJumpOutOfSEHFinally(*this, BreakLoc, *S);
3355 return new (Context) BreakStmt(BreakLoc);
3358 /// Determine whether the given expression might be move-eligible or
3359 /// copy-elidable in either a (co_)return statement or throw expression,
3360 /// without considering function return type, if applicable.
3362 /// \param E The expression being returned from the function or block,
3363 /// being thrown, or being co_returned from a coroutine. This expression
3364 /// might be modified by the implementation.
3366 /// \param Mode Overrides detection of current language mode
3367 /// and uses the rules for C++2b.
3369 /// \returns An aggregate which contains the Candidate and isMoveEligible
3370 /// and isCopyElidable methods. If Candidate is non-null, it means
3371 /// isMoveEligible() would be true under the most permissive language standard.
3372 Sema::NamedReturnInfo Sema::getNamedReturnInfo(Expr *&E,
3373 SimplerImplicitMoveMode Mode) {
3374 if (!E)
3375 return NamedReturnInfo();
3376 // - in a return statement in a function [where] ...
3377 // ... the expression is the name of a non-volatile automatic object ...
3378 const auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
3379 if (!DR || DR->refersToEnclosingVariableOrCapture())
3380 return NamedReturnInfo();
3381 const auto *VD = dyn_cast<VarDecl>(DR->getDecl());
3382 if (!VD)
3383 return NamedReturnInfo();
3384 NamedReturnInfo Res = getNamedReturnInfo(VD);
3385 if (Res.Candidate && !E->isXValue() &&
3386 (Mode == SimplerImplicitMoveMode::ForceOn ||
3387 (Mode != SimplerImplicitMoveMode::ForceOff &&
3388 getLangOpts().CPlusPlus2b))) {
3389 E = ImplicitCastExpr::Create(Context, VD->getType().getNonReferenceType(),
3390 CK_NoOp, E, nullptr, VK_XValue,
3391 FPOptionsOverride());
3393 return Res;
3396 /// Determine whether the given NRVO candidate variable is move-eligible or
3397 /// copy-elidable, without considering function return type.
3399 /// \param VD The NRVO candidate variable.
3401 /// \returns An aggregate which contains the Candidate and isMoveEligible
3402 /// and isCopyElidable methods. If Candidate is non-null, it means
3403 /// isMoveEligible() would be true under the most permissive language standard.
3404 Sema::NamedReturnInfo Sema::getNamedReturnInfo(const VarDecl *VD) {
3405 NamedReturnInfo Info{VD, NamedReturnInfo::MoveEligibleAndCopyElidable};
3407 // C++20 [class.copy.elision]p3:
3408 // - in a return statement in a function with ...
3409 // (other than a function ... parameter)
3410 if (VD->getKind() == Decl::ParmVar)
3411 Info.S = NamedReturnInfo::MoveEligible;
3412 else if (VD->getKind() != Decl::Var)
3413 return NamedReturnInfo();
3415 // (other than ... a catch-clause parameter)
3416 if (VD->isExceptionVariable())
3417 Info.S = NamedReturnInfo::MoveEligible;
3419 // ...automatic...
3420 if (!VD->hasLocalStorage())
3421 return NamedReturnInfo();
3423 // We don't want to implicitly move out of a __block variable during a return
3424 // because we cannot assume the variable will no longer be used.
3425 if (VD->hasAttr<BlocksAttr>())
3426 return NamedReturnInfo();
3428 QualType VDType = VD->getType();
3429 if (VDType->isObjectType()) {
3430 // C++17 [class.copy.elision]p3:
3431 // ...non-volatile automatic object...
3432 if (VDType.isVolatileQualified())
3433 return NamedReturnInfo();
3434 } else if (VDType->isRValueReferenceType()) {
3435 // C++20 [class.copy.elision]p3:
3436 // ...either a non-volatile object or an rvalue reference to a non-volatile
3437 // object type...
3438 QualType VDReferencedType = VDType.getNonReferenceType();
3439 if (VDReferencedType.isVolatileQualified() ||
3440 !VDReferencedType->isObjectType())
3441 return NamedReturnInfo();
3442 Info.S = NamedReturnInfo::MoveEligible;
3443 } else {
3444 return NamedReturnInfo();
3447 // Variables with higher required alignment than their type's ABI
3448 // alignment cannot use NRVO.
3449 if (!VD->hasDependentAlignment() &&
3450 Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VDType))
3451 Info.S = NamedReturnInfo::MoveEligible;
3453 return Info;
3456 /// Updates given NamedReturnInfo's move-eligible and
3457 /// copy-elidable statuses, considering the function
3458 /// return type criteria as applicable to return statements.
3460 /// \param Info The NamedReturnInfo object to update.
3462 /// \param ReturnType This is the return type of the function.
3463 /// \returns The copy elision candidate, in case the initial return expression
3464 /// was copy elidable, or nullptr otherwise.
3465 const VarDecl *Sema::getCopyElisionCandidate(NamedReturnInfo &Info,
3466 QualType ReturnType) {
3467 if (!Info.Candidate)
3468 return nullptr;
3470 auto invalidNRVO = [&] {
3471 Info = NamedReturnInfo();
3472 return nullptr;
3475 // If we got a non-deduced auto ReturnType, we are in a dependent context and
3476 // there is no point in allowing copy elision since we won't have it deduced
3477 // by the point the VardDecl is instantiated, which is the last chance we have
3478 // of deciding if the candidate is really copy elidable.
3479 if ((ReturnType->getTypeClass() == Type::TypeClass::Auto &&
3480 ReturnType->isCanonicalUnqualified()) ||
3481 ReturnType->isSpecificBuiltinType(BuiltinType::Dependent))
3482 return invalidNRVO();
3484 if (!ReturnType->isDependentType()) {
3485 // - in a return statement in a function with ...
3486 // ... a class return type ...
3487 if (!ReturnType->isRecordType())
3488 return invalidNRVO();
3490 QualType VDType = Info.Candidate->getType();
3491 // ... the same cv-unqualified type as the function return type ...
3492 // When considering moving this expression out, allow dissimilar types.
3493 if (!VDType->isDependentType() &&
3494 !Context.hasSameUnqualifiedType(ReturnType, VDType))
3495 Info.S = NamedReturnInfo::MoveEligible;
3497 return Info.isCopyElidable() ? Info.Candidate : nullptr;
3500 /// Verify that the initialization sequence that was picked for the
3501 /// first overload resolution is permissible under C++98.
3503 /// Reject (possibly converting) constructors not taking an rvalue reference,
3504 /// or user conversion operators which are not ref-qualified.
3505 static bool
3506 VerifyInitializationSequenceCXX98(const Sema &S,
3507 const InitializationSequence &Seq) {
3508 const auto *Step = llvm::find_if(Seq.steps(), [](const auto &Step) {
3509 return Step.Kind == InitializationSequence::SK_ConstructorInitialization ||
3510 Step.Kind == InitializationSequence::SK_UserConversion;
3512 if (Step != Seq.step_end()) {
3513 const auto *FD = Step->Function.Function;
3514 if (isa<CXXConstructorDecl>(FD)
3515 ? !FD->getParamDecl(0)->getType()->isRValueReferenceType()
3516 : cast<CXXMethodDecl>(FD)->getRefQualifier() == RQ_None)
3517 return false;
3519 return true;
3522 /// Perform the initialization of a potentially-movable value, which
3523 /// is the result of return value.
3525 /// This routine implements C++20 [class.copy.elision]p3, which attempts to
3526 /// treat returned lvalues as rvalues in certain cases (to prefer move
3527 /// construction), then falls back to treating them as lvalues if that failed.
3528 ExprResult Sema::PerformMoveOrCopyInitialization(
3529 const InitializedEntity &Entity, const NamedReturnInfo &NRInfo, Expr *Value,
3530 bool SupressSimplerImplicitMoves) {
3531 if (getLangOpts().CPlusPlus &&
3532 (!getLangOpts().CPlusPlus2b || SupressSimplerImplicitMoves) &&
3533 NRInfo.isMoveEligible()) {
3534 ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack, Value->getType(),
3535 CK_NoOp, Value, VK_XValue, FPOptionsOverride());
3536 Expr *InitExpr = &AsRvalue;
3537 auto Kind = InitializationKind::CreateCopy(Value->getBeginLoc(),
3538 Value->getBeginLoc());
3539 InitializationSequence Seq(*this, Entity, Kind, InitExpr);
3540 auto Res = Seq.getFailedOverloadResult();
3541 if ((Res == OR_Success || Res == OR_Deleted) &&
3542 (getLangOpts().CPlusPlus11 ||
3543 VerifyInitializationSequenceCXX98(*this, Seq))) {
3544 // Promote "AsRvalue" to the heap, since we now need this
3545 // expression node to persist.
3546 Value =
3547 ImplicitCastExpr::Create(Context, Value->getType(), CK_NoOp, Value,
3548 nullptr, VK_XValue, FPOptionsOverride());
3549 // Complete type-checking the initialization of the return type
3550 // using the constructor we found.
3551 return Seq.Perform(*this, Entity, Kind, Value);
3554 // Either we didn't meet the criteria for treating an lvalue as an rvalue,
3555 // above, or overload resolution failed. Either way, we need to try
3556 // (again) now with the return value expression as written.
3557 return PerformCopyInitialization(Entity, SourceLocation(), Value);
3560 /// Determine whether the declared return type of the specified function
3561 /// contains 'auto'.
3562 static bool hasDeducedReturnType(FunctionDecl *FD) {
3563 const FunctionProtoType *FPT =
3564 FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
3565 return FPT->getReturnType()->isUndeducedType();
3568 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
3569 /// for capturing scopes.
3571 StmtResult Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc,
3572 Expr *RetValExp,
3573 NamedReturnInfo &NRInfo,
3574 bool SupressSimplerImplicitMoves) {
3575 // If this is the first return we've seen, infer the return type.
3576 // [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
3577 CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
3578 QualType FnRetType = CurCap->ReturnType;
3579 LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap);
3580 bool HasDeducedReturnType =
3581 CurLambda && hasDeducedReturnType(CurLambda->CallOperator);
3583 if (ExprEvalContexts.back().isDiscardedStatementContext() &&
3584 (HasDeducedReturnType || CurCap->HasImplicitReturnType)) {
3585 if (RetValExp) {
3586 ExprResult ER =
3587 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3588 if (ER.isInvalid())
3589 return StmtError();
3590 RetValExp = ER.get();
3592 return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3593 /* NRVOCandidate=*/nullptr);
3596 if (HasDeducedReturnType) {
3597 FunctionDecl *FD = CurLambda->CallOperator;
3598 // If we've already decided this lambda is invalid, e.g. because
3599 // we saw a `return` whose expression had an error, don't keep
3600 // trying to deduce its return type.
3601 if (FD->isInvalidDecl())
3602 return StmtError();
3603 // In C++1y, the return type may involve 'auto'.
3604 // FIXME: Blocks might have a return type of 'auto' explicitly specified.
3605 if (CurCap->ReturnType.isNull())
3606 CurCap->ReturnType = FD->getReturnType();
3608 AutoType *AT = CurCap->ReturnType->getContainedAutoType();
3609 assert(AT && "lost auto type from lambda return type");
3610 if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3611 FD->setInvalidDecl();
3612 // FIXME: preserve the ill-formed return expression.
3613 return StmtError();
3615 CurCap->ReturnType = FnRetType = FD->getReturnType();
3616 } else if (CurCap->HasImplicitReturnType) {
3617 // For blocks/lambdas with implicit return types, we check each return
3618 // statement individually, and deduce the common return type when the block
3619 // or lambda is completed.
3620 // FIXME: Fold this into the 'auto' codepath above.
3621 if (RetValExp && !isa<InitListExpr>(RetValExp)) {
3622 ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
3623 if (Result.isInvalid())
3624 return StmtError();
3625 RetValExp = Result.get();
3627 // DR1048: even prior to C++14, we should use the 'auto' deduction rules
3628 // when deducing a return type for a lambda-expression (or by extension
3629 // for a block). These rules differ from the stated C++11 rules only in
3630 // that they remove top-level cv-qualifiers.
3631 if (!CurContext->isDependentContext())
3632 FnRetType = RetValExp->getType().getUnqualifiedType();
3633 else
3634 FnRetType = CurCap->ReturnType = Context.DependentTy;
3635 } else {
3636 if (RetValExp) {
3637 // C++11 [expr.lambda.prim]p4 bans inferring the result from an
3638 // initializer list, because it is not an expression (even
3639 // though we represent it as one). We still deduce 'void'.
3640 Diag(ReturnLoc, diag::err_lambda_return_init_list)
3641 << RetValExp->getSourceRange();
3644 FnRetType = Context.VoidTy;
3647 // Although we'll properly infer the type of the block once it's completed,
3648 // make sure we provide a return type now for better error recovery.
3649 if (CurCap->ReturnType.isNull())
3650 CurCap->ReturnType = FnRetType;
3652 const VarDecl *NRVOCandidate = getCopyElisionCandidate(NRInfo, FnRetType);
3654 if (auto *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
3655 if (CurBlock->FunctionType->castAs<FunctionType>()->getNoReturnAttr()) {
3656 Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
3657 return StmtError();
3659 } else if (auto *CurRegion = dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
3660 Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
3661 return StmtError();
3662 } else {
3663 assert(CurLambda && "unknown kind of captured scope");
3664 if (CurLambda->CallOperator->getType()
3665 ->castAs<FunctionType>()
3666 ->getNoReturnAttr()) {
3667 Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
3668 return StmtError();
3672 // Otherwise, verify that this result type matches the previous one. We are
3673 // pickier with blocks than for normal functions because we don't have GCC
3674 // compatibility to worry about here.
3675 if (FnRetType->isDependentType()) {
3676 // Delay processing for now. TODO: there are lots of dependent
3677 // types we can conclusively prove aren't void.
3678 } else if (FnRetType->isVoidType()) {
3679 if (RetValExp && !isa<InitListExpr>(RetValExp) &&
3680 !(getLangOpts().CPlusPlus &&
3681 (RetValExp->isTypeDependent() ||
3682 RetValExp->getType()->isVoidType()))) {
3683 if (!getLangOpts().CPlusPlus &&
3684 RetValExp->getType()->isVoidType())
3685 Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
3686 else {
3687 Diag(ReturnLoc, diag::err_return_block_has_expr);
3688 RetValExp = nullptr;
3691 } else if (!RetValExp) {
3692 return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
3693 } else if (!RetValExp->isTypeDependent()) {
3694 // we have a non-void block with an expression, continue checking
3696 // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3697 // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3698 // function return.
3700 // In C++ the return statement is handled via a copy initialization.
3701 // the C version of which boils down to CheckSingleAssignmentConstraints.
3702 InitializedEntity Entity =
3703 InitializedEntity::InitializeResult(ReturnLoc, FnRetType);
3704 ExprResult Res = PerformMoveOrCopyInitialization(
3705 Entity, NRInfo, RetValExp, SupressSimplerImplicitMoves);
3706 if (Res.isInvalid()) {
3707 // FIXME: Cleanup temporaries here, anyway?
3708 return StmtError();
3710 RetValExp = Res.get();
3711 CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc);
3714 if (RetValExp) {
3715 ExprResult ER =
3716 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3717 if (ER.isInvalid())
3718 return StmtError();
3719 RetValExp = ER.get();
3721 auto *Result =
3722 ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
3724 // If we need to check for the named return value optimization,
3725 // or if we need to infer the return type,
3726 // save the return statement in our scope for later processing.
3727 if (CurCap->HasImplicitReturnType || NRVOCandidate)
3728 FunctionScopes.back()->Returns.push_back(Result);
3730 if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
3731 FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
3733 return Result;
3736 namespace {
3737 /// Marks all typedefs in all local classes in a type referenced.
3739 /// In a function like
3740 /// auto f() {
3741 /// struct S { typedef int a; };
3742 /// return S();
3743 /// }
3745 /// the local type escapes and could be referenced in some TUs but not in
3746 /// others. Pretend that all local typedefs are always referenced, to not warn
3747 /// on this. This isn't necessary if f has internal linkage, or the typedef
3748 /// is private.
3749 class LocalTypedefNameReferencer
3750 : public RecursiveASTVisitor<LocalTypedefNameReferencer> {
3751 public:
3752 LocalTypedefNameReferencer(Sema &S) : S(S) {}
3753 bool VisitRecordType(const RecordType *RT);
3754 private:
3755 Sema &S;
3757 bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) {
3758 auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl());
3759 if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() ||
3760 R->isDependentType())
3761 return true;
3762 for (auto *TmpD : R->decls())
3763 if (auto *T = dyn_cast<TypedefNameDecl>(TmpD))
3764 if (T->getAccess() != AS_private || R->hasFriends())
3765 S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false);
3766 return true;
3770 TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const {
3771 return FD->getTypeSourceInfo()
3772 ->getTypeLoc()
3773 .getAsAdjusted<FunctionProtoTypeLoc>()
3774 .getReturnLoc();
3777 /// Deduce the return type for a function from a returned expression, per
3778 /// C++1y [dcl.spec.auto]p6.
3779 bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
3780 SourceLocation ReturnLoc,
3781 Expr *RetExpr, const AutoType *AT) {
3782 // If this is the conversion function for a lambda, we choose to deduce its
3783 // type from the corresponding call operator, not from the synthesized return
3784 // statement within it. See Sema::DeduceReturnType.
3785 if (isLambdaConversionOperator(FD))
3786 return false;
3788 if (RetExpr && isa<InitListExpr>(RetExpr)) {
3789 // If the deduction is for a return statement and the initializer is
3790 // a braced-init-list, the program is ill-formed.
3791 Diag(RetExpr->getExprLoc(),
3792 getCurLambda() ? diag::err_lambda_return_init_list
3793 : diag::err_auto_fn_return_init_list)
3794 << RetExpr->getSourceRange();
3795 return true;
3798 if (FD->isDependentContext()) {
3799 // C++1y [dcl.spec.auto]p12:
3800 // Return type deduction [...] occurs when the definition is
3801 // instantiated even if the function body contains a return
3802 // statement with a non-type-dependent operand.
3803 assert(AT->isDeduced() && "should have deduced to dependent type");
3804 return false;
3807 TypeLoc OrigResultType = getReturnTypeLoc(FD);
3808 // In the case of a return with no operand, the initializer is considered
3809 // to be void().
3810 CXXScalarValueInitExpr VoidVal(Context.VoidTy, nullptr, SourceLocation());
3811 if (!RetExpr) {
3812 // For a function with a deduced result type to return with omitted
3813 // expression, the result type as written must be 'auto' or
3814 // 'decltype(auto)', possibly cv-qualified or constrained, but not
3815 // ref-qualified.
3816 if (!OrigResultType.getType()->getAs<AutoType>()) {
3817 Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
3818 << OrigResultType.getType();
3819 return true;
3821 RetExpr = &VoidVal;
3824 QualType Deduced = AT->getDeducedType();
3826 // Otherwise, [...] deduce a value for U using the rules of template
3827 // argument deduction.
3828 TemplateDeductionInfo Info(RetExpr->getExprLoc());
3829 TemplateDeductionResult Res =
3830 DeduceAutoType(OrigResultType, RetExpr, Deduced, Info);
3831 if (Res != TDK_Success && FD->isInvalidDecl())
3832 return true;
3833 switch (Res) {
3834 case TDK_Success:
3835 break;
3836 case TDK_AlreadyDiagnosed:
3837 return true;
3838 case TDK_Inconsistent: {
3839 // If a function with a declared return type that contains a placeholder
3840 // type has multiple return statements, the return type is deduced for
3841 // each return statement. [...] if the type deduced is not the same in
3842 // each deduction, the program is ill-formed.
3843 const LambdaScopeInfo *LambdaSI = getCurLambda();
3844 if (LambdaSI && LambdaSI->HasImplicitReturnType)
3845 Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
3846 << Info.SecondArg << Info.FirstArg << true /*IsLambda*/;
3847 else
3848 Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
3849 << (AT->isDecltypeAuto() ? 1 : 0) << Info.SecondArg
3850 << Info.FirstArg;
3851 return true;
3853 default:
3854 Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
3855 << OrigResultType.getType() << RetExpr->getType();
3856 return true;
3860 // If a local type is part of the returned type, mark its fields as
3861 // referenced.
3862 LocalTypedefNameReferencer(*this).TraverseType(RetExpr->getType());
3864 // CUDA: Kernel function must have 'void' return type.
3865 if (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>() &&
3866 !Deduced->isVoidType()) {
3867 Diag(FD->getLocation(), diag::err_kern_type_not_void_return)
3868 << FD->getType() << FD->getSourceRange();
3869 return true;
3872 if (!FD->isInvalidDecl() && AT->getDeducedType() != Deduced)
3873 // Update all declarations of the function to have the deduced return type.
3874 Context.adjustDeducedFunctionResultType(FD, Deduced);
3876 return false;
3879 StmtResult
3880 Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
3881 Scope *CurScope) {
3882 // Correct typos, in case the containing function returns 'auto' and
3883 // RetValExp should determine the deduced type.
3884 ExprResult RetVal = CorrectDelayedTyposInExpr(
3885 RetValExp, nullptr, /*RecoverUncorrectedTypos=*/true);
3886 if (RetVal.isInvalid())
3887 return StmtError();
3888 StmtResult R =
3889 BuildReturnStmt(ReturnLoc, RetVal.get(), /*AllowRecovery=*/true);
3890 if (R.isInvalid() || ExprEvalContexts.back().isDiscardedStatementContext())
3891 return R;
3893 VarDecl *VD =
3894 const_cast<VarDecl *>(cast<ReturnStmt>(R.get())->getNRVOCandidate());
3896 CurScope->updateNRVOCandidate(VD);
3898 CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent());
3900 return R;
3903 static bool CheckSimplerImplicitMovesMSVCWorkaround(const Sema &S,
3904 const Expr *E) {
3905 if (!E || !S.getLangOpts().CPlusPlus2b || !S.getLangOpts().MSVCCompat)
3906 return false;
3907 const Decl *D = E->getReferencedDeclOfCallee();
3908 if (!D || !S.SourceMgr.isInSystemHeader(D->getLocation()))
3909 return false;
3910 for (const DeclContext *DC = D->getDeclContext(); DC; DC = DC->getParent()) {
3911 if (DC->isStdNamespace())
3912 return true;
3914 return false;
3917 StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
3918 bool AllowRecovery) {
3919 // Check for unexpanded parameter packs.
3920 if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
3921 return StmtError();
3923 // HACK: We suppress simpler implicit move here in msvc compatibility mode
3924 // just as a temporary work around, as the MSVC STL has issues with
3925 // this change.
3926 bool SupressSimplerImplicitMoves =
3927 CheckSimplerImplicitMovesMSVCWorkaround(*this, RetValExp);
3928 NamedReturnInfo NRInfo = getNamedReturnInfo(
3929 RetValExp, SupressSimplerImplicitMoves ? SimplerImplicitMoveMode::ForceOff
3930 : SimplerImplicitMoveMode::Normal);
3932 if (isa<CapturingScopeInfo>(getCurFunction()))
3933 return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp, NRInfo,
3934 SupressSimplerImplicitMoves);
3936 QualType FnRetType;
3937 QualType RelatedRetType;
3938 const AttrVec *Attrs = nullptr;
3939 bool isObjCMethod = false;
3941 if (const FunctionDecl *FD = getCurFunctionDecl()) {
3942 FnRetType = FD->getReturnType();
3943 if (FD->hasAttrs())
3944 Attrs = &FD->getAttrs();
3945 if (FD->isNoReturn())
3946 Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr) << FD;
3947 if (FD->isMain() && RetValExp)
3948 if (isa<CXXBoolLiteralExpr>(RetValExp))
3949 Diag(ReturnLoc, diag::warn_main_returns_bool_literal)
3950 << RetValExp->getSourceRange();
3951 if (FD->hasAttr<CmseNSEntryAttr>() && RetValExp) {
3952 if (const auto *RT = dyn_cast<RecordType>(FnRetType.getCanonicalType())) {
3953 if (RT->getDecl()->isOrContainsUnion())
3954 Diag(RetValExp->getBeginLoc(), diag::warn_cmse_nonsecure_union) << 1;
3957 } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
3958 FnRetType = MD->getReturnType();
3959 isObjCMethod = true;
3960 if (MD->hasAttrs())
3961 Attrs = &MD->getAttrs();
3962 if (MD->hasRelatedResultType() && MD->getClassInterface()) {
3963 // In the implementation of a method with a related return type, the
3964 // type used to type-check the validity of return statements within the
3965 // method body is a pointer to the type of the class being implemented.
3966 RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
3967 RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
3969 } else // If we don't have a function/method context, bail.
3970 return StmtError();
3972 // C++1z: discarded return statements are not considered when deducing a
3973 // return type.
3974 if (ExprEvalContexts.back().isDiscardedStatementContext() &&
3975 FnRetType->getContainedAutoType()) {
3976 if (RetValExp) {
3977 ExprResult ER =
3978 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3979 if (ER.isInvalid())
3980 return StmtError();
3981 RetValExp = ER.get();
3983 return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3984 /* NRVOCandidate=*/nullptr);
3987 // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
3988 // deduction.
3989 if (getLangOpts().CPlusPlus14) {
3990 if (AutoType *AT = FnRetType->getContainedAutoType()) {
3991 FunctionDecl *FD = cast<FunctionDecl>(CurContext);
3992 // If we've already decided this function is invalid, e.g. because
3993 // we saw a `return` whose expression had an error, don't keep
3994 // trying to deduce its return type.
3995 // (Some return values may be needlessly wrapped in RecoveryExpr).
3996 if (FD->isInvalidDecl() ||
3997 DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3998 FD->setInvalidDecl();
3999 if (!AllowRecovery)
4000 return StmtError();
4001 // The deduction failure is diagnosed and marked, try to recover.
4002 if (RetValExp) {
4003 // Wrap return value with a recovery expression of the previous type.
4004 // If no deduction yet, use DependentTy.
4005 auto Recovery = CreateRecoveryExpr(
4006 RetValExp->getBeginLoc(), RetValExp->getEndLoc(), RetValExp,
4007 AT->isDeduced() ? FnRetType : QualType());
4008 if (Recovery.isInvalid())
4009 return StmtError();
4010 RetValExp = Recovery.get();
4011 } else {
4012 // Nothing to do: a ReturnStmt with no value is fine recovery.
4014 } else {
4015 FnRetType = FD->getReturnType();
4019 const VarDecl *NRVOCandidate = getCopyElisionCandidate(NRInfo, FnRetType);
4021 bool HasDependentReturnType = FnRetType->isDependentType();
4023 ReturnStmt *Result = nullptr;
4024 if (FnRetType->isVoidType()) {
4025 if (RetValExp) {
4026 if (auto *ILE = dyn_cast<InitListExpr>(RetValExp)) {
4027 // We simply never allow init lists as the return value of void
4028 // functions. This is compatible because this was never allowed before,
4029 // so there's no legacy code to deal with.
4030 NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
4031 int FunctionKind = 0;
4032 if (isa<ObjCMethodDecl>(CurDecl))
4033 FunctionKind = 1;
4034 else if (isa<CXXConstructorDecl>(CurDecl))
4035 FunctionKind = 2;
4036 else if (isa<CXXDestructorDecl>(CurDecl))
4037 FunctionKind = 3;
4039 Diag(ReturnLoc, diag::err_return_init_list)
4040 << CurDecl << FunctionKind << RetValExp->getSourceRange();
4042 // Preserve the initializers in the AST.
4043 RetValExp = AllowRecovery
4044 ? CreateRecoveryExpr(ILE->getLBraceLoc(),
4045 ILE->getRBraceLoc(), ILE->inits())
4046 .get()
4047 : nullptr;
4048 } else if (!RetValExp->isTypeDependent()) {
4049 // C99 6.8.6.4p1 (ext_ since GCC warns)
4050 unsigned D = diag::ext_return_has_expr;
4051 if (RetValExp->getType()->isVoidType()) {
4052 NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
4053 if (isa<CXXConstructorDecl>(CurDecl) ||
4054 isa<CXXDestructorDecl>(CurDecl))
4055 D = diag::err_ctor_dtor_returns_void;
4056 else
4057 D = diag::ext_return_has_void_expr;
4059 else {
4060 ExprResult Result = RetValExp;
4061 Result = IgnoredValueConversions(Result.get());
4062 if (Result.isInvalid())
4063 return StmtError();
4064 RetValExp = Result.get();
4065 RetValExp = ImpCastExprToType(RetValExp,
4066 Context.VoidTy, CK_ToVoid).get();
4068 // return of void in constructor/destructor is illegal in C++.
4069 if (D == diag::err_ctor_dtor_returns_void) {
4070 NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
4071 Diag(ReturnLoc, D) << CurDecl << isa<CXXDestructorDecl>(CurDecl)
4072 << RetValExp->getSourceRange();
4074 // return (some void expression); is legal in C++.
4075 else if (D != diag::ext_return_has_void_expr ||
4076 !getLangOpts().CPlusPlus) {
4077 NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
4079 int FunctionKind = 0;
4080 if (isa<ObjCMethodDecl>(CurDecl))
4081 FunctionKind = 1;
4082 else if (isa<CXXConstructorDecl>(CurDecl))
4083 FunctionKind = 2;
4084 else if (isa<CXXDestructorDecl>(CurDecl))
4085 FunctionKind = 3;
4087 Diag(ReturnLoc, D)
4088 << CurDecl << FunctionKind << RetValExp->getSourceRange();
4092 if (RetValExp) {
4093 ExprResult ER =
4094 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
4095 if (ER.isInvalid())
4096 return StmtError();
4097 RetValExp = ER.get();
4101 Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp,
4102 /* NRVOCandidate=*/nullptr);
4103 } else if (!RetValExp && !HasDependentReturnType) {
4104 FunctionDecl *FD = getCurFunctionDecl();
4106 if ((FD && FD->isInvalidDecl()) || FnRetType->containsErrors()) {
4107 // The intended return type might have been "void", so don't warn.
4108 } else if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) {
4109 // C++11 [stmt.return]p2
4110 Diag(ReturnLoc, diag::err_constexpr_return_missing_expr)
4111 << FD << FD->isConsteval();
4112 FD->setInvalidDecl();
4113 } else {
4114 // C99 6.8.6.4p1 (ext_ since GCC warns)
4115 // C90 6.6.6.4p4
4116 unsigned DiagID = getLangOpts().C99 ? diag::ext_return_missing_expr
4117 : diag::warn_return_missing_expr;
4118 // Note that at this point one of getCurFunctionDecl() or
4119 // getCurMethodDecl() must be non-null (see above).
4120 assert((getCurFunctionDecl() || getCurMethodDecl()) &&
4121 "Not in a FunctionDecl or ObjCMethodDecl?");
4122 bool IsMethod = FD == nullptr;
4123 const NamedDecl *ND =
4124 IsMethod ? cast<NamedDecl>(getCurMethodDecl()) : cast<NamedDecl>(FD);
4125 Diag(ReturnLoc, DiagID) << ND << IsMethod;
4128 Result = ReturnStmt::Create(Context, ReturnLoc, /* RetExpr=*/nullptr,
4129 /* NRVOCandidate=*/nullptr);
4130 } else {
4131 assert(RetValExp || HasDependentReturnType);
4132 QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType;
4134 // C99 6.8.6.4p3(136): The return statement is not an assignment. The
4135 // overlap restriction of subclause 6.5.16.1 does not apply to the case of
4136 // function return.
4138 // In C++ the return statement is handled via a copy initialization,
4139 // the C version of which boils down to CheckSingleAssignmentConstraints.
4140 if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
4141 // we have a non-void function with an expression, continue checking
4142 InitializedEntity Entity =
4143 InitializedEntity::InitializeResult(ReturnLoc, RetType);
4144 ExprResult Res = PerformMoveOrCopyInitialization(
4145 Entity, NRInfo, RetValExp, SupressSimplerImplicitMoves);
4146 if (Res.isInvalid() && AllowRecovery)
4147 Res = CreateRecoveryExpr(RetValExp->getBeginLoc(),
4148 RetValExp->getEndLoc(), RetValExp, RetType);
4149 if (Res.isInvalid()) {
4150 // FIXME: Clean up temporaries here anyway?
4151 return StmtError();
4153 RetValExp = Res.getAs<Expr>();
4155 // If we have a related result type, we need to implicitly
4156 // convert back to the formal result type. We can't pretend to
4157 // initialize the result again --- we might end double-retaining
4158 // --- so instead we initialize a notional temporary.
4159 if (!RelatedRetType.isNull()) {
4160 Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
4161 FnRetType);
4162 Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
4163 if (Res.isInvalid()) {
4164 // FIXME: Clean up temporaries here anyway?
4165 return StmtError();
4167 RetValExp = Res.getAs<Expr>();
4170 CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs,
4171 getCurFunctionDecl());
4174 if (RetValExp) {
4175 ExprResult ER =
4176 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
4177 if (ER.isInvalid())
4178 return StmtError();
4179 RetValExp = ER.get();
4181 Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
4184 // If we need to check for the named return value optimization, save the
4185 // return statement in our scope for later processing.
4186 if (Result->getNRVOCandidate())
4187 FunctionScopes.back()->Returns.push_back(Result);
4189 if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
4190 FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
4192 return Result;
4195 StmtResult
4196 Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
4197 SourceLocation RParen, Decl *Parm,
4198 Stmt *Body) {
4199 VarDecl *Var = cast_or_null<VarDecl>(Parm);
4200 if (Var && Var->isInvalidDecl())
4201 return StmtError();
4203 return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body);
4206 StmtResult
4207 Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
4208 return new (Context) ObjCAtFinallyStmt(AtLoc, Body);
4211 StmtResult
4212 Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
4213 MultiStmtArg CatchStmts, Stmt *Finally) {
4214 if (!getLangOpts().ObjCExceptions)
4215 Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
4217 // Objective-C try is incompatible with SEH __try.
4218 sema::FunctionScopeInfo *FSI = getCurFunction();
4219 if (FSI->FirstSEHTryLoc.isValid()) {
4220 Diag(AtLoc, diag::err_mixing_cxx_try_seh_try) << 1;
4221 Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
4224 FSI->setHasObjCTry(AtLoc);
4225 unsigned NumCatchStmts = CatchStmts.size();
4226 return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(),
4227 NumCatchStmts, Finally);
4230 StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
4231 if (Throw) {
4232 ExprResult Result = DefaultLvalueConversion(Throw);
4233 if (Result.isInvalid())
4234 return StmtError();
4236 Result = ActOnFinishFullExpr(Result.get(), /*DiscardedValue*/ false);
4237 if (Result.isInvalid())
4238 return StmtError();
4239 Throw = Result.get();
4241 QualType ThrowType = Throw->getType();
4242 // Make sure the expression type is an ObjC pointer or "void *".
4243 if (!ThrowType->isDependentType() &&
4244 !ThrowType->isObjCObjectPointerType()) {
4245 const PointerType *PT = ThrowType->getAs<PointerType>();
4246 if (!PT || !PT->getPointeeType()->isVoidType())
4247 return StmtError(Diag(AtLoc, diag::err_objc_throw_expects_object)
4248 << Throw->getType() << Throw->getSourceRange());
4252 return new (Context) ObjCAtThrowStmt(AtLoc, Throw);
4255 StmtResult
4256 Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
4257 Scope *CurScope) {
4258 if (!getLangOpts().ObjCExceptions)
4259 Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
4261 if (!Throw) {
4262 // @throw without an expression designates a rethrow (which must occur
4263 // in the context of an @catch clause).
4264 Scope *AtCatchParent = CurScope;
4265 while (AtCatchParent && !AtCatchParent->isAtCatchScope())
4266 AtCatchParent = AtCatchParent->getParent();
4267 if (!AtCatchParent)
4268 return StmtError(Diag(AtLoc, diag::err_rethrow_used_outside_catch));
4270 return BuildObjCAtThrowStmt(AtLoc, Throw);
4273 ExprResult
4274 Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
4275 ExprResult result = DefaultLvalueConversion(operand);
4276 if (result.isInvalid())
4277 return ExprError();
4278 operand = result.get();
4280 // Make sure the expression type is an ObjC pointer or "void *".
4281 QualType type = operand->getType();
4282 if (!type->isDependentType() &&
4283 !type->isObjCObjectPointerType()) {
4284 const PointerType *pointerType = type->getAs<PointerType>();
4285 if (!pointerType || !pointerType->getPointeeType()->isVoidType()) {
4286 if (getLangOpts().CPlusPlus) {
4287 if (RequireCompleteType(atLoc, type,
4288 diag::err_incomplete_receiver_type))
4289 return Diag(atLoc, diag::err_objc_synchronized_expects_object)
4290 << type << operand->getSourceRange();
4292 ExprResult result = PerformContextuallyConvertToObjCPointer(operand);
4293 if (result.isInvalid())
4294 return ExprError();
4295 if (!result.isUsable())
4296 return Diag(atLoc, diag::err_objc_synchronized_expects_object)
4297 << type << operand->getSourceRange();
4299 operand = result.get();
4300 } else {
4301 return Diag(atLoc, diag::err_objc_synchronized_expects_object)
4302 << type << operand->getSourceRange();
4307 // The operand to @synchronized is a full-expression.
4308 return ActOnFinishFullExpr(operand, /*DiscardedValue*/ false);
4311 StmtResult
4312 Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
4313 Stmt *SyncBody) {
4314 // We can't jump into or indirect-jump out of a @synchronized block.
4315 setFunctionHasBranchProtectedScope();
4316 return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody);
4319 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
4320 /// and creates a proper catch handler from them.
4321 StmtResult
4322 Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
4323 Stmt *HandlerBlock) {
4324 // There's nothing to test that ActOnExceptionDecl didn't already test.
4325 return new (Context)
4326 CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock);
4329 StmtResult
4330 Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
4331 setFunctionHasBranchProtectedScope();
4332 return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body);
4335 namespace {
4336 class CatchHandlerType {
4337 QualType QT;
4338 unsigned IsPointer : 1;
4340 // This is a special constructor to be used only with DenseMapInfo's
4341 // getEmptyKey() and getTombstoneKey() functions.
4342 friend struct llvm::DenseMapInfo<CatchHandlerType>;
4343 enum Unique { ForDenseMap };
4344 CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {}
4346 public:
4347 /// Used when creating a CatchHandlerType from a handler type; will determine
4348 /// whether the type is a pointer or reference and will strip off the top
4349 /// level pointer and cv-qualifiers.
4350 CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) {
4351 if (QT->isPointerType())
4352 IsPointer = true;
4354 if (IsPointer || QT->isReferenceType())
4355 QT = QT->getPointeeType();
4356 QT = QT.getUnqualifiedType();
4359 /// Used when creating a CatchHandlerType from a base class type; pretends the
4360 /// type passed in had the pointer qualifier, does not need to get an
4361 /// unqualified type.
4362 CatchHandlerType(QualType QT, bool IsPointer)
4363 : QT(QT), IsPointer(IsPointer) {}
4365 QualType underlying() const { return QT; }
4366 bool isPointer() const { return IsPointer; }
4368 friend bool operator==(const CatchHandlerType &LHS,
4369 const CatchHandlerType &RHS) {
4370 // If the pointer qualification does not match, we can return early.
4371 if (LHS.IsPointer != RHS.IsPointer)
4372 return false;
4373 // Otherwise, check the underlying type without cv-qualifiers.
4374 return LHS.QT == RHS.QT;
4377 } // namespace
4379 namespace llvm {
4380 template <> struct DenseMapInfo<CatchHandlerType> {
4381 static CatchHandlerType getEmptyKey() {
4382 return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(),
4383 CatchHandlerType::ForDenseMap);
4386 static CatchHandlerType getTombstoneKey() {
4387 return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(),
4388 CatchHandlerType::ForDenseMap);
4391 static unsigned getHashValue(const CatchHandlerType &Base) {
4392 return DenseMapInfo<QualType>::getHashValue(Base.underlying());
4395 static bool isEqual(const CatchHandlerType &LHS,
4396 const CatchHandlerType &RHS) {
4397 return LHS == RHS;
4402 namespace {
4403 class CatchTypePublicBases {
4404 ASTContext &Ctx;
4405 const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &TypesToCheck;
4406 const bool CheckAgainstPointer;
4408 CXXCatchStmt *FoundHandler;
4409 CanQualType FoundHandlerType;
4411 public:
4412 CatchTypePublicBases(
4413 ASTContext &Ctx,
4414 const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &T, bool C)
4415 : Ctx(Ctx), TypesToCheck(T), CheckAgainstPointer(C),
4416 FoundHandler(nullptr) {}
4418 CXXCatchStmt *getFoundHandler() const { return FoundHandler; }
4419 CanQualType getFoundHandlerType() const { return FoundHandlerType; }
4421 bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) {
4422 if (S->getAccessSpecifier() == AccessSpecifier::AS_public) {
4423 CatchHandlerType Check(S->getType(), CheckAgainstPointer);
4424 const auto &M = TypesToCheck;
4425 auto I = M.find(Check);
4426 if (I != M.end()) {
4427 FoundHandler = I->second;
4428 FoundHandlerType = Ctx.getCanonicalType(S->getType());
4429 return true;
4432 return false;
4437 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of
4438 /// handlers and creates a try statement from them.
4439 StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
4440 ArrayRef<Stmt *> Handlers) {
4441 // Don't report an error if 'try' is used in system headers.
4442 if (!getLangOpts().CXXExceptions &&
4443 !getSourceManager().isInSystemHeader(TryLoc) && !getLangOpts().CUDA) {
4444 // Delay error emission for the OpenMP device code.
4445 targetDiag(TryLoc, diag::err_exceptions_disabled) << "try";
4448 // Exceptions aren't allowed in CUDA device code.
4449 if (getLangOpts().CUDA)
4450 CUDADiagIfDeviceCode(TryLoc, diag::err_cuda_device_exceptions)
4451 << "try" << CurrentCUDATarget();
4453 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
4454 Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try";
4456 sema::FunctionScopeInfo *FSI = getCurFunction();
4458 // C++ try is incompatible with SEH __try.
4459 if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) {
4460 Diag(TryLoc, diag::err_mixing_cxx_try_seh_try) << 0;
4461 Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
4464 const unsigned NumHandlers = Handlers.size();
4465 assert(!Handlers.empty() &&
4466 "The parser shouldn't call this if there are no handlers.");
4468 llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes;
4469 for (unsigned i = 0; i < NumHandlers; ++i) {
4470 CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]);
4472 // Diagnose when the handler is a catch-all handler, but it isn't the last
4473 // handler for the try block. [except.handle]p5. Also, skip exception
4474 // declarations that are invalid, since we can't usefully report on them.
4475 if (!H->getExceptionDecl()) {
4476 if (i < NumHandlers - 1)
4477 return StmtError(Diag(H->getBeginLoc(), diag::err_early_catch_all));
4478 continue;
4479 } else if (H->getExceptionDecl()->isInvalidDecl())
4480 continue;
4482 // Walk the type hierarchy to diagnose when this type has already been
4483 // handled (duplication), or cannot be handled (derivation inversion). We
4484 // ignore top-level cv-qualifiers, per [except.handle]p3
4485 CatchHandlerType HandlerCHT =
4486 (QualType)Context.getCanonicalType(H->getCaughtType());
4488 // We can ignore whether the type is a reference or a pointer; we need the
4489 // underlying declaration type in order to get at the underlying record
4490 // decl, if there is one.
4491 QualType Underlying = HandlerCHT.underlying();
4492 if (auto *RD = Underlying->getAsCXXRecordDecl()) {
4493 if (!RD->hasDefinition())
4494 continue;
4495 // Check that none of the public, unambiguous base classes are in the
4496 // map ([except.handle]p1). Give the base classes the same pointer
4497 // qualification as the original type we are basing off of. This allows
4498 // comparison against the handler type using the same top-level pointer
4499 // as the original type.
4500 CXXBasePaths Paths;
4501 Paths.setOrigin(RD);
4502 CatchTypePublicBases CTPB(Context, HandledTypes, HandlerCHT.isPointer());
4503 if (RD->lookupInBases(CTPB, Paths)) {
4504 const CXXCatchStmt *Problem = CTPB.getFoundHandler();
4505 if (!Paths.isAmbiguous(CTPB.getFoundHandlerType())) {
4506 Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
4507 diag::warn_exception_caught_by_earlier_handler)
4508 << H->getCaughtType();
4509 Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
4510 diag::note_previous_exception_handler)
4511 << Problem->getCaughtType();
4516 // Add the type the list of ones we have handled; diagnose if we've already
4517 // handled it.
4518 auto R = HandledTypes.insert(std::make_pair(H->getCaughtType(), H));
4519 if (!R.second) {
4520 const CXXCatchStmt *Problem = R.first->second;
4521 Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
4522 diag::warn_exception_caught_by_earlier_handler)
4523 << H->getCaughtType();
4524 Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
4525 diag::note_previous_exception_handler)
4526 << Problem->getCaughtType();
4530 FSI->setHasCXXTry(TryLoc);
4532 return CXXTryStmt::Create(Context, TryLoc, TryBlock, Handlers);
4535 StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc,
4536 Stmt *TryBlock, Stmt *Handler) {
4537 assert(TryBlock && Handler);
4539 sema::FunctionScopeInfo *FSI = getCurFunction();
4541 // SEH __try is incompatible with C++ try. Borland appears to support this,
4542 // however.
4543 if (!getLangOpts().Borland) {
4544 if (FSI->FirstCXXOrObjCTryLoc.isValid()) {
4545 Diag(TryLoc, diag::err_mixing_cxx_try_seh_try) << FSI->FirstTryType;
4546 Diag(FSI->FirstCXXOrObjCTryLoc, diag::note_conflicting_try_here)
4547 << (FSI->FirstTryType == sema::FunctionScopeInfo::TryLocIsCXX
4548 ? "'try'"
4549 : "'@try'");
4553 FSI->setHasSEHTry(TryLoc);
4555 // Reject __try in Obj-C methods, blocks, and captured decls, since we don't
4556 // track if they use SEH.
4557 DeclContext *DC = CurContext;
4558 while (DC && !DC->isFunctionOrMethod())
4559 DC = DC->getParent();
4560 FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC);
4561 if (FD)
4562 FD->setUsesSEHTry(true);
4563 else
4564 Diag(TryLoc, diag::err_seh_try_outside_functions);
4566 // Reject __try on unsupported targets.
4567 if (!Context.getTargetInfo().isSEHTrySupported())
4568 Diag(TryLoc, diag::err_seh_try_unsupported);
4570 return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler);
4573 StmtResult Sema::ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr,
4574 Stmt *Block) {
4575 assert(FilterExpr && Block);
4576 QualType FTy = FilterExpr->getType();
4577 if (!FTy->isIntegerType() && !FTy->isDependentType()) {
4578 return StmtError(
4579 Diag(FilterExpr->getExprLoc(), diag::err_filter_expression_integral)
4580 << FTy);
4582 return SEHExceptStmt::Create(Context, Loc, FilterExpr, Block);
4585 void Sema::ActOnStartSEHFinallyBlock() {
4586 CurrentSEHFinally.push_back(CurScope);
4589 void Sema::ActOnAbortSEHFinallyBlock() {
4590 CurrentSEHFinally.pop_back();
4593 StmtResult Sema::ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block) {
4594 assert(Block);
4595 CurrentSEHFinally.pop_back();
4596 return SEHFinallyStmt::Create(Context, Loc, Block);
4599 StmtResult
4600 Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) {
4601 Scope *SEHTryParent = CurScope;
4602 while (SEHTryParent && !SEHTryParent->isSEHTryScope())
4603 SEHTryParent = SEHTryParent->getParent();
4604 if (!SEHTryParent)
4605 return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try));
4606 CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent);
4608 return new (Context) SEHLeaveStmt(Loc);
4611 StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
4612 bool IsIfExists,
4613 NestedNameSpecifierLoc QualifierLoc,
4614 DeclarationNameInfo NameInfo,
4615 Stmt *Nested)
4617 return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
4618 QualifierLoc, NameInfo,
4619 cast<CompoundStmt>(Nested));
4623 StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
4624 bool IsIfExists,
4625 CXXScopeSpec &SS,
4626 UnqualifiedId &Name,
4627 Stmt *Nested) {
4628 return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
4629 SS.getWithLocInContext(Context),
4630 GetNameFromUnqualifiedId(Name),
4631 Nested);
4634 RecordDecl*
4635 Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc,
4636 unsigned NumParams) {
4637 DeclContext *DC = CurContext;
4638 while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
4639 DC = DC->getParent();
4641 RecordDecl *RD = nullptr;
4642 if (getLangOpts().CPlusPlus)
4643 RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc,
4644 /*Id=*/nullptr);
4645 else
4646 RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/nullptr);
4648 RD->setCapturedRecord();
4649 DC->addDecl(RD);
4650 RD->setImplicit();
4651 RD->startDefinition();
4653 assert(NumParams > 0 && "CapturedStmt requires context parameter");
4654 CD = CapturedDecl::Create(Context, CurContext, NumParams);
4655 DC->addDecl(CD);
4656 return RD;
4659 static bool
4660 buildCapturedStmtCaptureList(Sema &S, CapturedRegionScopeInfo *RSI,
4661 SmallVectorImpl<CapturedStmt::Capture> &Captures,
4662 SmallVectorImpl<Expr *> &CaptureInits) {
4663 for (const sema::Capture &Cap : RSI->Captures) {
4664 if (Cap.isInvalid())
4665 continue;
4667 // Form the initializer for the capture.
4668 ExprResult Init = S.BuildCaptureInit(Cap, Cap.getLocation(),
4669 RSI->CapRegionKind == CR_OpenMP);
4671 // FIXME: Bail out now if the capture is not used and the initializer has
4672 // no side-effects.
4674 // Create a field for this capture.
4675 FieldDecl *Field = S.BuildCaptureField(RSI->TheRecordDecl, Cap);
4677 // Add the capture to our list of captures.
4678 if (Cap.isThisCapture()) {
4679 Captures.push_back(CapturedStmt::Capture(Cap.getLocation(),
4680 CapturedStmt::VCK_This));
4681 } else if (Cap.isVLATypeCapture()) {
4682 Captures.push_back(
4683 CapturedStmt::Capture(Cap.getLocation(), CapturedStmt::VCK_VLAType));
4684 } else {
4685 assert(Cap.isVariableCapture() && "unknown kind of capture");
4687 if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP)
4688 S.setOpenMPCaptureKind(Field, Cap.getVariable(), RSI->OpenMPLevel);
4690 Captures.push_back(CapturedStmt::Capture(
4691 Cap.getLocation(),
4692 Cap.isReferenceCapture() ? CapturedStmt::VCK_ByRef
4693 : CapturedStmt::VCK_ByCopy,
4694 cast<VarDecl>(Cap.getVariable())));
4696 CaptureInits.push_back(Init.get());
4698 return false;
4701 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4702 CapturedRegionKind Kind,
4703 unsigned NumParams) {
4704 CapturedDecl *CD = nullptr;
4705 RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);
4707 // Build the context parameter
4708 DeclContext *DC = CapturedDecl::castToDeclContext(CD);
4709 IdentifierInfo *ParamName = &Context.Idents.get("__context");
4710 QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4711 auto *Param =
4712 ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4713 ImplicitParamDecl::CapturedContext);
4714 DC->addDecl(Param);
4716 CD->setContextParam(0, Param);
4718 // Enter the capturing scope for this captured region.
4719 PushCapturedRegionScope(CurScope, CD, RD, Kind);
4721 if (CurScope)
4722 PushDeclContext(CurScope, CD);
4723 else
4724 CurContext = CD;
4726 PushExpressionEvaluationContext(
4727 ExpressionEvaluationContext::PotentiallyEvaluated);
4730 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4731 CapturedRegionKind Kind,
4732 ArrayRef<CapturedParamNameType> Params,
4733 unsigned OpenMPCaptureLevel) {
4734 CapturedDecl *CD = nullptr;
4735 RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size());
4737 // Build the context parameter
4738 DeclContext *DC = CapturedDecl::castToDeclContext(CD);
4739 bool ContextIsFound = false;
4740 unsigned ParamNum = 0;
4741 for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(),
4742 E = Params.end();
4743 I != E; ++I, ++ParamNum) {
4744 if (I->second.isNull()) {
4745 assert(!ContextIsFound &&
4746 "null type has been found already for '__context' parameter");
4747 IdentifierInfo *ParamName = &Context.Idents.get("__context");
4748 QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD))
4749 .withConst()
4750 .withRestrict();
4751 auto *Param =
4752 ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4753 ImplicitParamDecl::CapturedContext);
4754 DC->addDecl(Param);
4755 CD->setContextParam(ParamNum, Param);
4756 ContextIsFound = true;
4757 } else {
4758 IdentifierInfo *ParamName = &Context.Idents.get(I->first);
4759 auto *Param =
4760 ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second,
4761 ImplicitParamDecl::CapturedContext);
4762 DC->addDecl(Param);
4763 CD->setParam(ParamNum, Param);
4766 assert(ContextIsFound && "no null type for '__context' parameter");
4767 if (!ContextIsFound) {
4768 // Add __context implicitly if it is not specified.
4769 IdentifierInfo *ParamName = &Context.Idents.get("__context");
4770 QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4771 auto *Param =
4772 ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4773 ImplicitParamDecl::CapturedContext);
4774 DC->addDecl(Param);
4775 CD->setContextParam(ParamNum, Param);
4777 // Enter the capturing scope for this captured region.
4778 PushCapturedRegionScope(CurScope, CD, RD, Kind, OpenMPCaptureLevel);
4780 if (CurScope)
4781 PushDeclContext(CurScope, CD);
4782 else
4783 CurContext = CD;
4785 PushExpressionEvaluationContext(
4786 ExpressionEvaluationContext::PotentiallyEvaluated);
4789 void Sema::ActOnCapturedRegionError() {
4790 DiscardCleanupsInEvaluationContext();
4791 PopExpressionEvaluationContext();
4792 PopDeclContext();
4793 PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo();
4794 CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get());
4796 RecordDecl *Record = RSI->TheRecordDecl;
4797 Record->setInvalidDecl();
4799 SmallVector<Decl*, 4> Fields(Record->fields());
4800 ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields,
4801 SourceLocation(), SourceLocation(), ParsedAttributesView());
4804 StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) {
4805 // Leave the captured scope before we start creating captures in the
4806 // enclosing scope.
4807 DiscardCleanupsInEvaluationContext();
4808 PopExpressionEvaluationContext();
4809 PopDeclContext();
4810 PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo();
4811 CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get());
4813 SmallVector<CapturedStmt::Capture, 4> Captures;
4814 SmallVector<Expr *, 4> CaptureInits;
4815 if (buildCapturedStmtCaptureList(*this, RSI, Captures, CaptureInits))
4816 return StmtError();
4818 CapturedDecl *CD = RSI->TheCapturedDecl;
4819 RecordDecl *RD = RSI->TheRecordDecl;
4821 CapturedStmt *Res = CapturedStmt::Create(
4822 getASTContext(), S, static_cast<CapturedRegionKind>(RSI->CapRegionKind),
4823 Captures, CaptureInits, CD, RD);
4825 CD->setBody(Res->getCapturedStmt());
4826 RD->completeDefinition();
4828 return Res;