1 //===--- SemaTemplateInstantiateDecl.cpp - C++ Template Decl Instantiation ===/
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //===----------------------------------------------------------------------===/
8 // This file implements C++ template instantiation for declarations.
10 //===----------------------------------------------------------------------===/
12 #include "TreeTransform.h"
13 #include "clang/AST/ASTConsumer.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTMutationListener.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/DeclVisitor.h"
18 #include "clang/AST/DependentDiagnostic.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/PrettyDeclStackTrace.h"
22 #include "clang/AST/TypeLoc.h"
23 #include "clang/Basic/SourceManager.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Sema/Initialization.h"
26 #include "clang/Sema/Lookup.h"
27 #include "clang/Sema/ScopeInfo.h"
28 #include "clang/Sema/SemaInternal.h"
29 #include "clang/Sema/Template.h"
30 #include "clang/Sema/TemplateInstCallback.h"
31 #include "llvm/Support/TimeProfiler.h"
33 using namespace clang
;
35 static bool isDeclWithinFunction(const Decl
*D
) {
36 const DeclContext
*DC
= D
->getDeclContext();
37 if (DC
->isFunctionOrMethod())
41 return cast
<CXXRecordDecl
>(DC
)->isLocalClass();
46 template<typename DeclT
>
47 static bool SubstQualifier(Sema
&SemaRef
, const DeclT
*OldDecl
, DeclT
*NewDecl
,
48 const MultiLevelTemplateArgumentList
&TemplateArgs
) {
49 if (!OldDecl
->getQualifierLoc())
52 assert((NewDecl
->getFriendObjectKind() ||
53 !OldDecl
->getLexicalDeclContext()->isDependentContext()) &&
54 "non-friend with qualified name defined in dependent context");
55 Sema::ContextRAII
SavedContext(
57 const_cast<DeclContext
*>(NewDecl
->getFriendObjectKind()
58 ? NewDecl
->getLexicalDeclContext()
59 : OldDecl
->getLexicalDeclContext()));
61 NestedNameSpecifierLoc NewQualifierLoc
62 = SemaRef
.SubstNestedNameSpecifierLoc(OldDecl
->getQualifierLoc(),
68 NewDecl
->setQualifierInfo(NewQualifierLoc
);
72 bool TemplateDeclInstantiator::SubstQualifier(const DeclaratorDecl
*OldDecl
,
73 DeclaratorDecl
*NewDecl
) {
74 return ::SubstQualifier(SemaRef
, OldDecl
, NewDecl
, TemplateArgs
);
77 bool TemplateDeclInstantiator::SubstQualifier(const TagDecl
*OldDecl
,
79 return ::SubstQualifier(SemaRef
, OldDecl
, NewDecl
, TemplateArgs
);
82 // Include attribute instantiation code.
83 #include "clang/Sema/AttrTemplateInstantiate.inc"
85 static void instantiateDependentAlignedAttr(
86 Sema
&S
, const MultiLevelTemplateArgumentList
&TemplateArgs
,
87 const AlignedAttr
*Aligned
, Decl
*New
, bool IsPackExpansion
) {
88 if (Aligned
->isAlignmentExpr()) {
89 // The alignment expression is a constant expression.
90 EnterExpressionEvaluationContext
Unevaluated(
91 S
, Sema::ExpressionEvaluationContext::ConstantEvaluated
);
92 ExprResult Result
= S
.SubstExpr(Aligned
->getAlignmentExpr(), TemplateArgs
);
93 if (!Result
.isInvalid())
94 S
.AddAlignedAttr(New
, *Aligned
, Result
.getAs
<Expr
>(), IsPackExpansion
);
96 TypeSourceInfo
*Result
= S
.SubstType(Aligned
->getAlignmentType(),
97 TemplateArgs
, Aligned
->getLocation(),
100 S
.AddAlignedAttr(New
, *Aligned
, Result
, IsPackExpansion
);
104 static void instantiateDependentAlignedAttr(
105 Sema
&S
, const MultiLevelTemplateArgumentList
&TemplateArgs
,
106 const AlignedAttr
*Aligned
, Decl
*New
) {
107 if (!Aligned
->isPackExpansion()) {
108 instantiateDependentAlignedAttr(S
, TemplateArgs
, Aligned
, New
, false);
112 SmallVector
<UnexpandedParameterPack
, 2> Unexpanded
;
113 if (Aligned
->isAlignmentExpr())
114 S
.collectUnexpandedParameterPacks(Aligned
->getAlignmentExpr(),
117 S
.collectUnexpandedParameterPacks(Aligned
->getAlignmentType()->getTypeLoc(),
119 assert(!Unexpanded
.empty() && "Pack expansion without parameter packs?");
121 // Determine whether we can expand this attribute pack yet.
122 bool Expand
= true, RetainExpansion
= false;
123 Optional
<unsigned> NumExpansions
;
124 // FIXME: Use the actual location of the ellipsis.
125 SourceLocation EllipsisLoc
= Aligned
->getLocation();
126 if (S
.CheckParameterPacksForExpansion(EllipsisLoc
, Aligned
->getRange(),
127 Unexpanded
, TemplateArgs
, Expand
,
128 RetainExpansion
, NumExpansions
))
132 Sema::ArgumentPackSubstitutionIndexRAII
SubstIndex(S
, -1);
133 instantiateDependentAlignedAttr(S
, TemplateArgs
, Aligned
, New
, true);
135 for (unsigned I
= 0; I
!= *NumExpansions
; ++I
) {
136 Sema::ArgumentPackSubstitutionIndexRAII
SubstIndex(S
, I
);
137 instantiateDependentAlignedAttr(S
, TemplateArgs
, Aligned
, New
, false);
142 static void instantiateDependentAssumeAlignedAttr(
143 Sema
&S
, const MultiLevelTemplateArgumentList
&TemplateArgs
,
144 const AssumeAlignedAttr
*Aligned
, Decl
*New
) {
145 // The alignment expression is a constant expression.
146 EnterExpressionEvaluationContext
Unevaluated(
147 S
, Sema::ExpressionEvaluationContext::ConstantEvaluated
);
149 Expr
*E
, *OE
= nullptr;
150 ExprResult Result
= S
.SubstExpr(Aligned
->getAlignment(), TemplateArgs
);
151 if (Result
.isInvalid())
153 E
= Result
.getAs
<Expr
>();
155 if (Aligned
->getOffset()) {
156 Result
= S
.SubstExpr(Aligned
->getOffset(), TemplateArgs
);
157 if (Result
.isInvalid())
159 OE
= Result
.getAs
<Expr
>();
162 S
.AddAssumeAlignedAttr(New
, *Aligned
, E
, OE
);
165 static void instantiateDependentAlignValueAttr(
166 Sema
&S
, const MultiLevelTemplateArgumentList
&TemplateArgs
,
167 const AlignValueAttr
*Aligned
, Decl
*New
) {
168 // The alignment expression is a constant expression.
169 EnterExpressionEvaluationContext
Unevaluated(
170 S
, Sema::ExpressionEvaluationContext::ConstantEvaluated
);
171 ExprResult Result
= S
.SubstExpr(Aligned
->getAlignment(), TemplateArgs
);
172 if (!Result
.isInvalid())
173 S
.AddAlignValueAttr(New
, *Aligned
, Result
.getAs
<Expr
>());
176 static void instantiateDependentAllocAlignAttr(
177 Sema
&S
, const MultiLevelTemplateArgumentList
&TemplateArgs
,
178 const AllocAlignAttr
*Align
, Decl
*New
) {
179 Expr
*Param
= IntegerLiteral::Create(
181 llvm::APInt(64, Align
->getParamIndex().getSourceIndex()),
182 S
.getASTContext().UnsignedLongLongTy
, Align
->getLocation());
183 S
.AddAllocAlignAttr(New
, *Align
, Param
);
186 static void instantiateDependentAnnotationAttr(
187 Sema
&S
, const MultiLevelTemplateArgumentList
&TemplateArgs
,
188 const AnnotateAttr
*Attr
, Decl
*New
) {
189 EnterExpressionEvaluationContext
Unevaluated(
190 S
, Sema::ExpressionEvaluationContext::ConstantEvaluated
);
192 // If the attribute has delayed arguments it will have to instantiate those
193 // and handle them as new arguments for the attribute.
194 bool HasDelayedArgs
= Attr
->delayedArgs_size();
196 ArrayRef
<Expr
*> ArgsToInstantiate
=
198 ? ArrayRef
<Expr
*>{Attr
->delayedArgs_begin(), Attr
->delayedArgs_end()}
199 : ArrayRef
<Expr
*>{Attr
->args_begin(), Attr
->args_end()};
201 SmallVector
<Expr
*, 4> Args
;
202 if (S
.SubstExprs(ArgsToInstantiate
,
203 /*IsCall=*/false, TemplateArgs
, Args
))
206 StringRef Str
= Attr
->getAnnotation();
207 if (HasDelayedArgs
) {
208 if (Args
.size() < 1) {
209 S
.Diag(Attr
->getLoc(), diag::err_attribute_too_few_arguments
)
214 if (!S
.checkStringLiteralArgumentAttr(*Attr
, Args
[0], Str
))
217 llvm::SmallVector
<Expr
*, 4> ActualArgs
;
218 ActualArgs
.insert(ActualArgs
.begin(), Args
.begin() + 1, Args
.end());
219 std::swap(Args
, ActualArgs
);
221 S
.AddAnnotationAttr(New
, *Attr
, Str
, Args
);
224 static Expr
*instantiateDependentFunctionAttrCondition(
225 Sema
&S
, const MultiLevelTemplateArgumentList
&TemplateArgs
,
226 const Attr
*A
, Expr
*OldCond
, const Decl
*Tmpl
, FunctionDecl
*New
) {
227 Expr
*Cond
= nullptr;
229 Sema::ContextRAII
SwitchContext(S
, New
);
230 EnterExpressionEvaluationContext
Unevaluated(
231 S
, Sema::ExpressionEvaluationContext::ConstantEvaluated
);
232 ExprResult Result
= S
.SubstExpr(OldCond
, TemplateArgs
);
233 if (Result
.isInvalid())
235 Cond
= Result
.getAs
<Expr
>();
237 if (!Cond
->isTypeDependent()) {
238 ExprResult Converted
= S
.PerformContextuallyConvertToBool(Cond
);
239 if (Converted
.isInvalid())
241 Cond
= Converted
.get();
244 SmallVector
<PartialDiagnosticAt
, 8> Diags
;
245 if (OldCond
->isValueDependent() && !Cond
->isValueDependent() &&
246 !Expr::isPotentialConstantExprUnevaluated(Cond
, New
, Diags
)) {
247 S
.Diag(A
->getLocation(), diag::err_attr_cond_never_constant_expr
) << A
;
248 for (const auto &P
: Diags
)
249 S
.Diag(P
.first
, P
.second
);
255 static void instantiateDependentEnableIfAttr(
256 Sema
&S
, const MultiLevelTemplateArgumentList
&TemplateArgs
,
257 const EnableIfAttr
*EIA
, const Decl
*Tmpl
, FunctionDecl
*New
) {
258 Expr
*Cond
= instantiateDependentFunctionAttrCondition(
259 S
, TemplateArgs
, EIA
, EIA
->getCond(), Tmpl
, New
);
262 New
->addAttr(new (S
.getASTContext()) EnableIfAttr(S
.getASTContext(), *EIA
,
263 Cond
, EIA
->getMessage()));
266 static void instantiateDependentDiagnoseIfAttr(
267 Sema
&S
, const MultiLevelTemplateArgumentList
&TemplateArgs
,
268 const DiagnoseIfAttr
*DIA
, const Decl
*Tmpl
, FunctionDecl
*New
) {
269 Expr
*Cond
= instantiateDependentFunctionAttrCondition(
270 S
, TemplateArgs
, DIA
, DIA
->getCond(), Tmpl
, New
);
273 New
->addAttr(new (S
.getASTContext()) DiagnoseIfAttr(
274 S
.getASTContext(), *DIA
, Cond
, DIA
->getMessage(),
275 DIA
->getDiagnosticType(), DIA
->getArgDependent(), New
));
278 // Constructs and adds to New a new instance of CUDALaunchBoundsAttr using
279 // template A as the base and arguments from TemplateArgs.
280 static void instantiateDependentCUDALaunchBoundsAttr(
281 Sema
&S
, const MultiLevelTemplateArgumentList
&TemplateArgs
,
282 const CUDALaunchBoundsAttr
&Attr
, Decl
*New
) {
283 // The alignment expression is a constant expression.
284 EnterExpressionEvaluationContext
Unevaluated(
285 S
, Sema::ExpressionEvaluationContext::ConstantEvaluated
);
287 ExprResult Result
= S
.SubstExpr(Attr
.getMaxThreads(), TemplateArgs
);
288 if (Result
.isInvalid())
290 Expr
*MaxThreads
= Result
.getAs
<Expr
>();
292 Expr
*MinBlocks
= nullptr;
293 if (Attr
.getMinBlocks()) {
294 Result
= S
.SubstExpr(Attr
.getMinBlocks(), TemplateArgs
);
295 if (Result
.isInvalid())
297 MinBlocks
= Result
.getAs
<Expr
>();
300 S
.AddLaunchBoundsAttr(New
, Attr
, MaxThreads
, MinBlocks
);
304 instantiateDependentModeAttr(Sema
&S
,
305 const MultiLevelTemplateArgumentList
&TemplateArgs
,
306 const ModeAttr
&Attr
, Decl
*New
) {
307 S
.AddModeAttr(New
, Attr
, Attr
.getMode(),
308 /*InInstantiation=*/true);
311 /// Instantiation of 'declare simd' attribute and its arguments.
312 static void instantiateOMPDeclareSimdDeclAttr(
313 Sema
&S
, const MultiLevelTemplateArgumentList
&TemplateArgs
,
314 const OMPDeclareSimdDeclAttr
&Attr
, Decl
*New
) {
315 // Allow 'this' in clauses with varlists.
316 if (auto *FTD
= dyn_cast
<FunctionTemplateDecl
>(New
))
317 New
= FTD
->getTemplatedDecl();
318 auto *FD
= cast
<FunctionDecl
>(New
);
319 auto *ThisContext
= dyn_cast_or_null
<CXXRecordDecl
>(FD
->getDeclContext());
320 SmallVector
<Expr
*, 4> Uniforms
, Aligneds
, Alignments
, Linears
, Steps
;
321 SmallVector
<unsigned, 4> LinModifiers
;
323 auto SubstExpr
= [&](Expr
*E
) -> ExprResult
{
324 if (auto *DRE
= dyn_cast
<DeclRefExpr
>(E
->IgnoreParenImpCasts()))
325 if (auto *PVD
= dyn_cast
<ParmVarDecl
>(DRE
->getDecl())) {
326 Sema::ContextRAII
SavedContext(S
, FD
);
327 LocalInstantiationScope
Local(S
);
328 if (FD
->getNumParams() > PVD
->getFunctionScopeIndex())
329 Local
.InstantiatedLocal(
330 PVD
, FD
->getParamDecl(PVD
->getFunctionScopeIndex()));
331 return S
.SubstExpr(E
, TemplateArgs
);
333 Sema::CXXThisScopeRAII
ThisScope(S
, ThisContext
, Qualifiers(),
334 FD
->isCXXInstanceMember());
335 return S
.SubstExpr(E
, TemplateArgs
);
338 // Substitute a single OpenMP clause, which is a potentially-evaluated
340 auto Subst
= [&](Expr
*E
) -> ExprResult
{
341 EnterExpressionEvaluationContext
Evaluated(
342 S
, Sema::ExpressionEvaluationContext::PotentiallyEvaluated
);
343 ExprResult Res
= SubstExpr(E
);
346 return S
.ActOnFinishFullExpr(Res
.get(), false);
350 if (auto *E
= Attr
.getSimdlen())
353 if (Attr
.uniforms_size() > 0) {
354 for(auto *E
: Attr
.uniforms()) {
355 ExprResult Inst
= Subst(E
);
356 if (Inst
.isInvalid())
358 Uniforms
.push_back(Inst
.get());
362 auto AI
= Attr
.alignments_begin();
363 for (auto *E
: Attr
.aligneds()) {
364 ExprResult Inst
= Subst(E
);
365 if (Inst
.isInvalid())
367 Aligneds
.push_back(Inst
.get());
370 Inst
= S
.SubstExpr(*AI
, TemplateArgs
);
371 Alignments
.push_back(Inst
.get());
375 auto SI
= Attr
.steps_begin();
376 for (auto *E
: Attr
.linears()) {
377 ExprResult Inst
= Subst(E
);
378 if (Inst
.isInvalid())
380 Linears
.push_back(Inst
.get());
383 Inst
= S
.SubstExpr(*SI
, TemplateArgs
);
384 Steps
.push_back(Inst
.get());
387 LinModifiers
.append(Attr
.modifiers_begin(), Attr
.modifiers_end());
388 (void)S
.ActOnOpenMPDeclareSimdDirective(
389 S
.ConvertDeclToDeclGroup(New
), Attr
.getBranchState(), Simdlen
.get(),
390 Uniforms
, Aligneds
, Alignments
, Linears
, LinModifiers
, Steps
,
394 /// Instantiation of 'declare variant' attribute and its arguments.
395 static void instantiateOMPDeclareVariantAttr(
396 Sema
&S
, const MultiLevelTemplateArgumentList
&TemplateArgs
,
397 const OMPDeclareVariantAttr
&Attr
, Decl
*New
) {
398 // Allow 'this' in clauses with varlists.
399 if (auto *FTD
= dyn_cast
<FunctionTemplateDecl
>(New
))
400 New
= FTD
->getTemplatedDecl();
401 auto *FD
= cast
<FunctionDecl
>(New
);
402 auto *ThisContext
= dyn_cast_or_null
<CXXRecordDecl
>(FD
->getDeclContext());
404 auto &&SubstExpr
= [FD
, ThisContext
, &S
, &TemplateArgs
](Expr
*E
) {
405 if (auto *DRE
= dyn_cast
<DeclRefExpr
>(E
->IgnoreParenImpCasts()))
406 if (auto *PVD
= dyn_cast
<ParmVarDecl
>(DRE
->getDecl())) {
407 Sema::ContextRAII
SavedContext(S
, FD
);
408 LocalInstantiationScope
Local(S
);
409 if (FD
->getNumParams() > PVD
->getFunctionScopeIndex())
410 Local
.InstantiatedLocal(
411 PVD
, FD
->getParamDecl(PVD
->getFunctionScopeIndex()));
412 return S
.SubstExpr(E
, TemplateArgs
);
414 Sema::CXXThisScopeRAII
ThisScope(S
, ThisContext
, Qualifiers(),
415 FD
->isCXXInstanceMember());
416 return S
.SubstExpr(E
, TemplateArgs
);
419 // Substitute a single OpenMP clause, which is a potentially-evaluated
421 auto &&Subst
= [&SubstExpr
, &S
](Expr
*E
) {
422 EnterExpressionEvaluationContext
Evaluated(
423 S
, Sema::ExpressionEvaluationContext::PotentiallyEvaluated
);
424 ExprResult Res
= SubstExpr(E
);
427 return S
.ActOnFinishFullExpr(Res
.get(), false);
430 ExprResult VariantFuncRef
;
431 if (Expr
*E
= Attr
.getVariantFuncRef()) {
432 // Do not mark function as is used to prevent its emission if this is the
433 // only place where it is used.
434 EnterExpressionEvaluationContext
Unevaluated(
435 S
, Sema::ExpressionEvaluationContext::ConstantEvaluated
);
436 VariantFuncRef
= Subst(E
);
439 // Copy the template version of the OMPTraitInfo and run substitute on all
440 // score and condition expressiosn.
441 OMPTraitInfo
&TI
= S
.getASTContext().getNewOMPTraitInfo();
442 TI
= *Attr
.getTraitInfos();
444 // Try to substitute template parameters in score and condition expressions.
445 auto SubstScoreOrConditionExpr
= [&S
, Subst
](Expr
*&E
, bool) {
447 EnterExpressionEvaluationContext
Unevaluated(
448 S
, Sema::ExpressionEvaluationContext::ConstantEvaluated
);
449 ExprResult ER
= Subst(E
);
457 if (TI
.anyScoreOrCondition(SubstScoreOrConditionExpr
))
460 Expr
*E
= VariantFuncRef
.get();
462 // Check function/variant ref for `omp declare variant` but not for `omp
463 // begin declare variant` (which use implicit attributes).
464 Optional
<std::pair
<FunctionDecl
*, Expr
*>> DeclVarData
=
465 S
.checkOpenMPDeclareVariantFunction(S
.ConvertDeclToDeclGroup(New
), E
, TI
,
466 Attr
.appendArgs_size(),
472 E
= DeclVarData
.value().second
;
473 FD
= DeclVarData
.value().first
;
475 if (auto *VariantDRE
= dyn_cast
<DeclRefExpr
>(E
->IgnoreParenImpCasts())) {
476 if (auto *VariantFD
= dyn_cast
<FunctionDecl
>(VariantDRE
->getDecl())) {
477 if (auto *VariantFTD
= VariantFD
->getDescribedFunctionTemplate()) {
478 if (!VariantFTD
->isThisDeclarationADefinition())
480 Sema::TentativeAnalysisScope
Trap(S
);
481 const TemplateArgumentList
*TAL
= TemplateArgumentList::CreateCopy(
482 S
.Context
, TemplateArgs
.getInnermost());
484 auto *SubstFD
= S
.InstantiateFunctionDeclaration(VariantFTD
, TAL
,
488 QualType NewType
= S
.Context
.mergeFunctionTypes(
489 SubstFD
->getType(), FD
->getType(),
490 /* OfBlockPointer */ false,
491 /* Unqualified */ false, /* AllowCXX */ true);
492 if (NewType
.isNull())
494 S
.InstantiateFunctionDefinition(
495 New
->getLocation(), SubstFD
, /* Recursive */ true,
496 /* DefinitionRequired */ false, /* AtEndOfTU */ false);
497 SubstFD
->setInstantiationIsPending(!SubstFD
->isDefined());
498 E
= DeclRefExpr::Create(S
.Context
, NestedNameSpecifierLoc(),
499 SourceLocation(), SubstFD
,
500 /* RefersToEnclosingVariableOrCapture */ false,
501 /* NameLoc */ SubstFD
->getLocation(),
502 SubstFD
->getType(), ExprValueKind::VK_PRValue
);
507 SmallVector
<Expr
*, 8> NothingExprs
;
508 SmallVector
<Expr
*, 8> NeedDevicePtrExprs
;
509 SmallVector
<OMPInteropInfo
, 4> AppendArgs
;
511 for (Expr
*E
: Attr
.adjustArgsNothing()) {
512 ExprResult ER
= Subst(E
);
515 NothingExprs
.push_back(ER
.get());
517 for (Expr
*E
: Attr
.adjustArgsNeedDevicePtr()) {
518 ExprResult ER
= Subst(E
);
521 NeedDevicePtrExprs
.push_back(ER
.get());
523 for (OMPInteropInfo
&II
: Attr
.appendArgs()) {
524 // When prefer_type is implemented for append_args handle them here too.
525 AppendArgs
.emplace_back(II
.IsTarget
, II
.IsTargetSync
);
528 S
.ActOnOpenMPDeclareVariantDirective(
529 FD
, E
, TI
, NothingExprs
, NeedDevicePtrExprs
, AppendArgs
, SourceLocation(),
530 SourceLocation(), Attr
.getRange());
533 static void instantiateDependentAMDGPUFlatWorkGroupSizeAttr(
534 Sema
&S
, const MultiLevelTemplateArgumentList
&TemplateArgs
,
535 const AMDGPUFlatWorkGroupSizeAttr
&Attr
, Decl
*New
) {
536 // Both min and max expression are constant expressions.
537 EnterExpressionEvaluationContext
Unevaluated(
538 S
, Sema::ExpressionEvaluationContext::ConstantEvaluated
);
540 ExprResult Result
= S
.SubstExpr(Attr
.getMin(), TemplateArgs
);
541 if (Result
.isInvalid())
543 Expr
*MinExpr
= Result
.getAs
<Expr
>();
545 Result
= S
.SubstExpr(Attr
.getMax(), TemplateArgs
);
546 if (Result
.isInvalid())
548 Expr
*MaxExpr
= Result
.getAs
<Expr
>();
550 S
.addAMDGPUFlatWorkGroupSizeAttr(New
, Attr
, MinExpr
, MaxExpr
);
553 static ExplicitSpecifier
554 instantiateExplicitSpecifier(Sema
&S
,
555 const MultiLevelTemplateArgumentList
&TemplateArgs
,
556 ExplicitSpecifier ES
, FunctionDecl
*New
) {
559 Expr
*OldCond
= ES
.getExpr();
560 Expr
*Cond
= nullptr;
562 EnterExpressionEvaluationContext
Unevaluated(
563 S
, Sema::ExpressionEvaluationContext::ConstantEvaluated
);
564 ExprResult SubstResult
= S
.SubstExpr(OldCond
, TemplateArgs
);
565 if (SubstResult
.isInvalid()) {
566 return ExplicitSpecifier::Invalid();
568 Cond
= SubstResult
.get();
570 ExplicitSpecifier
Result(Cond
, ES
.getKind());
571 if (!Cond
->isTypeDependent())
572 S
.tryResolveExplicitSpecifier(Result
);
576 static void instantiateDependentAMDGPUWavesPerEUAttr(
577 Sema
&S
, const MultiLevelTemplateArgumentList
&TemplateArgs
,
578 const AMDGPUWavesPerEUAttr
&Attr
, Decl
*New
) {
579 // Both min and max expression are constant expressions.
580 EnterExpressionEvaluationContext
Unevaluated(
581 S
, Sema::ExpressionEvaluationContext::ConstantEvaluated
);
583 ExprResult Result
= S
.SubstExpr(Attr
.getMin(), TemplateArgs
);
584 if (Result
.isInvalid())
586 Expr
*MinExpr
= Result
.getAs
<Expr
>();
588 Expr
*MaxExpr
= nullptr;
589 if (auto Max
= Attr
.getMax()) {
590 Result
= S
.SubstExpr(Max
, TemplateArgs
);
591 if (Result
.isInvalid())
593 MaxExpr
= Result
.getAs
<Expr
>();
596 S
.addAMDGPUWavesPerEUAttr(New
, Attr
, MinExpr
, MaxExpr
);
599 // This doesn't take any template parameters, but we have a custom action that
600 // needs to happen when the kernel itself is instantiated. We need to run the
601 // ItaniumMangler to mark the names required to name this kernel.
602 static void instantiateDependentSYCLKernelAttr(
603 Sema
&S
, const MultiLevelTemplateArgumentList
&TemplateArgs
,
604 const SYCLKernelAttr
&Attr
, Decl
*New
) {
605 New
->addAttr(Attr
.clone(S
.getASTContext()));
608 /// Determine whether the attribute A might be relevant to the declaration D.
609 /// If not, we can skip instantiating it. The attribute may or may not have
610 /// been instantiated yet.
611 static bool isRelevantAttr(Sema
&S
, const Decl
*D
, const Attr
*A
) {
612 // 'preferred_name' is only relevant to the matching specialization of the
614 if (const auto *PNA
= dyn_cast
<PreferredNameAttr
>(A
)) {
615 QualType T
= PNA
->getTypedefType();
616 const auto *RD
= cast
<CXXRecordDecl
>(D
);
617 if (!T
->isDependentType() && !RD
->isDependentContext() &&
618 !declaresSameEntity(T
->getAsCXXRecordDecl(), RD
))
620 for (const auto *ExistingPNA
: D
->specific_attrs
<PreferredNameAttr
>())
621 if (S
.Context
.hasSameType(ExistingPNA
->getTypedefType(),
622 PNA
->getTypedefType()))
627 if (const auto *BA
= dyn_cast
<BuiltinAttr
>(A
)) {
628 const FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(D
);
629 switch (BA
->getID()) {
630 case Builtin::BIforward
:
631 // Do not treat 'std::forward' as a builtin if it takes an rvalue reference
632 // type and returns an lvalue reference type. The library implementation
633 // will produce an error in this case; don't get in its way.
634 if (FD
&& FD
->getNumParams() >= 1 &&
635 FD
->getParamDecl(0)->getType()->isRValueReferenceType() &&
636 FD
->getReturnType()->isLValueReferenceType()) {
640 case Builtin::BImove
:
641 case Builtin::BImove_if_noexcept
:
642 // HACK: Super-old versions of libc++ (3.1 and earlier) provide
643 // std::forward and std::move overloads that sometimes return by value
644 // instead of by reference when building in C++98 mode. Don't treat such
645 // cases as builtins.
646 if (FD
&& !FD
->getReturnType()->isReferenceType())
655 void Sema::InstantiateAttrsForDecl(
656 const MultiLevelTemplateArgumentList
&TemplateArgs
, const Decl
*Tmpl
,
657 Decl
*New
, LateInstantiatedAttrVec
*LateAttrs
,
658 LocalInstantiationScope
*OuterMostScope
) {
659 if (NamedDecl
*ND
= dyn_cast
<NamedDecl
>(New
)) {
660 // FIXME: This function is called multiple times for the same template
661 // specialization. We should only instantiate attributes that were added
662 // since the previous instantiation.
663 for (const auto *TmplAttr
: Tmpl
->attrs()) {
664 if (!isRelevantAttr(*this, New
, TmplAttr
))
667 // FIXME: If any of the special case versions from InstantiateAttrs become
668 // applicable to template declaration, we'll need to add them here.
669 CXXThisScopeRAII
ThisScope(
670 *this, dyn_cast_or_null
<CXXRecordDecl
>(ND
->getDeclContext()),
671 Qualifiers(), ND
->isCXXInstanceMember());
673 Attr
*NewAttr
= sema::instantiateTemplateAttributeForDecl(
674 TmplAttr
, Context
, *this, TemplateArgs
);
675 if (NewAttr
&& isRelevantAttr(*this, New
, NewAttr
))
676 New
->addAttr(NewAttr
);
681 static Sema::RetainOwnershipKind
682 attrToRetainOwnershipKind(const Attr
*A
) {
683 switch (A
->getKind()) {
684 case clang::attr::CFConsumed
:
685 return Sema::RetainOwnershipKind::CF
;
686 case clang::attr::OSConsumed
:
687 return Sema::RetainOwnershipKind::OS
;
688 case clang::attr::NSConsumed
:
689 return Sema::RetainOwnershipKind::NS
;
691 llvm_unreachable("Wrong argument supplied");
695 void Sema::InstantiateAttrs(const MultiLevelTemplateArgumentList
&TemplateArgs
,
696 const Decl
*Tmpl
, Decl
*New
,
697 LateInstantiatedAttrVec
*LateAttrs
,
698 LocalInstantiationScope
*OuterMostScope
) {
699 for (const auto *TmplAttr
: Tmpl
->attrs()) {
700 if (!isRelevantAttr(*this, New
, TmplAttr
))
703 // FIXME: This should be generalized to more than just the AlignedAttr.
704 const AlignedAttr
*Aligned
= dyn_cast
<AlignedAttr
>(TmplAttr
);
705 if (Aligned
&& Aligned
->isAlignmentDependent()) {
706 instantiateDependentAlignedAttr(*this, TemplateArgs
, Aligned
, New
);
710 if (const auto *AssumeAligned
= dyn_cast
<AssumeAlignedAttr
>(TmplAttr
)) {
711 instantiateDependentAssumeAlignedAttr(*this, TemplateArgs
, AssumeAligned
, New
);
715 if (const auto *AlignValue
= dyn_cast
<AlignValueAttr
>(TmplAttr
)) {
716 instantiateDependentAlignValueAttr(*this, TemplateArgs
, AlignValue
, New
);
720 if (const auto *AllocAlign
= dyn_cast
<AllocAlignAttr
>(TmplAttr
)) {
721 instantiateDependentAllocAlignAttr(*this, TemplateArgs
, AllocAlign
, New
);
725 if (const auto *Annotate
= dyn_cast
<AnnotateAttr
>(TmplAttr
)) {
726 instantiateDependentAnnotationAttr(*this, TemplateArgs
, Annotate
, New
);
730 if (const auto *EnableIf
= dyn_cast
<EnableIfAttr
>(TmplAttr
)) {
731 instantiateDependentEnableIfAttr(*this, TemplateArgs
, EnableIf
, Tmpl
,
732 cast
<FunctionDecl
>(New
));
736 if (const auto *DiagnoseIf
= dyn_cast
<DiagnoseIfAttr
>(TmplAttr
)) {
737 instantiateDependentDiagnoseIfAttr(*this, TemplateArgs
, DiagnoseIf
, Tmpl
,
738 cast
<FunctionDecl
>(New
));
742 if (const auto *CUDALaunchBounds
=
743 dyn_cast
<CUDALaunchBoundsAttr
>(TmplAttr
)) {
744 instantiateDependentCUDALaunchBoundsAttr(*this, TemplateArgs
,
745 *CUDALaunchBounds
, New
);
749 if (const auto *Mode
= dyn_cast
<ModeAttr
>(TmplAttr
)) {
750 instantiateDependentModeAttr(*this, TemplateArgs
, *Mode
, New
);
754 if (const auto *OMPAttr
= dyn_cast
<OMPDeclareSimdDeclAttr
>(TmplAttr
)) {
755 instantiateOMPDeclareSimdDeclAttr(*this, TemplateArgs
, *OMPAttr
, New
);
759 if (const auto *OMPAttr
= dyn_cast
<OMPDeclareVariantAttr
>(TmplAttr
)) {
760 instantiateOMPDeclareVariantAttr(*this, TemplateArgs
, *OMPAttr
, New
);
764 if (const auto *AMDGPUFlatWorkGroupSize
=
765 dyn_cast
<AMDGPUFlatWorkGroupSizeAttr
>(TmplAttr
)) {
766 instantiateDependentAMDGPUFlatWorkGroupSizeAttr(
767 *this, TemplateArgs
, *AMDGPUFlatWorkGroupSize
, New
);
770 if (const auto *AMDGPUFlatWorkGroupSize
=
771 dyn_cast
<AMDGPUWavesPerEUAttr
>(TmplAttr
)) {
772 instantiateDependentAMDGPUWavesPerEUAttr(*this, TemplateArgs
,
773 *AMDGPUFlatWorkGroupSize
, New
);
776 // Existing DLL attribute on the instantiation takes precedence.
777 if (TmplAttr
->getKind() == attr::DLLExport
||
778 TmplAttr
->getKind() == attr::DLLImport
) {
779 if (New
->hasAttr
<DLLExportAttr
>() || New
->hasAttr
<DLLImportAttr
>()) {
784 if (const auto *ABIAttr
= dyn_cast
<ParameterABIAttr
>(TmplAttr
)) {
785 AddParameterABIAttr(New
, *ABIAttr
, ABIAttr
->getABI());
789 if (isa
<NSConsumedAttr
>(TmplAttr
) || isa
<OSConsumedAttr
>(TmplAttr
) ||
790 isa
<CFConsumedAttr
>(TmplAttr
)) {
791 AddXConsumedAttr(New
, *TmplAttr
, attrToRetainOwnershipKind(TmplAttr
),
792 /*template instantiation=*/true);
796 if (auto *A
= dyn_cast
<PointerAttr
>(TmplAttr
)) {
797 if (!New
->hasAttr
<PointerAttr
>())
798 New
->addAttr(A
->clone(Context
));
802 if (auto *A
= dyn_cast
<OwnerAttr
>(TmplAttr
)) {
803 if (!New
->hasAttr
<OwnerAttr
>())
804 New
->addAttr(A
->clone(Context
));
808 if (auto *A
= dyn_cast
<SYCLKernelAttr
>(TmplAttr
)) {
809 instantiateDependentSYCLKernelAttr(*this, TemplateArgs
, *A
, New
);
813 assert(!TmplAttr
->isPackExpansion());
814 if (TmplAttr
->isLateParsed() && LateAttrs
) {
815 // Late parsed attributes must be instantiated and attached after the
816 // enclosing class has been instantiated. See Sema::InstantiateClass.
817 LocalInstantiationScope
*Saved
= nullptr;
818 if (CurrentInstantiationScope
)
819 Saved
= CurrentInstantiationScope
->cloneScopes(OuterMostScope
);
820 LateAttrs
->push_back(LateInstantiatedAttribute(TmplAttr
, Saved
, New
));
822 // Allow 'this' within late-parsed attributes.
823 auto *ND
= cast
<NamedDecl
>(New
);
824 auto *ThisContext
= dyn_cast_or_null
<CXXRecordDecl
>(ND
->getDeclContext());
825 CXXThisScopeRAII
ThisScope(*this, ThisContext
, Qualifiers(),
826 ND
->isCXXInstanceMember());
828 Attr
*NewAttr
= sema::instantiateTemplateAttribute(TmplAttr
, Context
,
829 *this, TemplateArgs
);
830 if (NewAttr
&& isRelevantAttr(*this, New
, TmplAttr
))
831 New
->addAttr(NewAttr
);
836 /// In the MS ABI, we need to instantiate default arguments of dllexported
837 /// default constructors along with the constructor definition. This allows IR
838 /// gen to emit a constructor closure which calls the default constructor with
839 /// its default arguments.
840 void Sema::InstantiateDefaultCtorDefaultArgs(CXXConstructorDecl
*Ctor
) {
841 assert(Context
.getTargetInfo().getCXXABI().isMicrosoft() &&
842 Ctor
->isDefaultConstructor());
843 unsigned NumParams
= Ctor
->getNumParams();
846 DLLExportAttr
*Attr
= Ctor
->getAttr
<DLLExportAttr
>();
849 for (unsigned I
= 0; I
!= NumParams
; ++I
) {
850 (void)CheckCXXDefaultArgExpr(Attr
->getLocation(), Ctor
,
851 Ctor
->getParamDecl(I
));
852 CleanupVarDeclMarking();
856 /// Get the previous declaration of a declaration for the purposes of template
857 /// instantiation. If this finds a previous declaration, then the previous
858 /// declaration of the instantiation of D should be an instantiation of the
859 /// result of this function.
860 template<typename DeclT
>
861 static DeclT
*getPreviousDeclForInstantiation(DeclT
*D
) {
862 DeclT
*Result
= D
->getPreviousDecl();
864 // If the declaration is within a class, and the previous declaration was
865 // merged from a different definition of that class, then we don't have a
866 // previous declaration for the purpose of template instantiation.
867 if (Result
&& isa
<CXXRecordDecl
>(D
->getDeclContext()) &&
868 D
->getLexicalDeclContext() != Result
->getLexicalDeclContext())
875 TemplateDeclInstantiator::VisitTranslationUnitDecl(TranslationUnitDecl
*D
) {
876 llvm_unreachable("Translation units cannot be instantiated");
880 TemplateDeclInstantiator::VisitPragmaCommentDecl(PragmaCommentDecl
*D
) {
881 llvm_unreachable("pragma comment cannot be instantiated");
884 Decl
*TemplateDeclInstantiator::VisitPragmaDetectMismatchDecl(
885 PragmaDetectMismatchDecl
*D
) {
886 llvm_unreachable("pragma comment cannot be instantiated");
890 TemplateDeclInstantiator::VisitExternCContextDecl(ExternCContextDecl
*D
) {
891 llvm_unreachable("extern \"C\" context cannot be instantiated");
894 Decl
*TemplateDeclInstantiator::VisitMSGuidDecl(MSGuidDecl
*D
) {
895 llvm_unreachable("GUID declaration cannot be instantiated");
898 Decl
*TemplateDeclInstantiator::VisitUnnamedGlobalConstantDecl(
899 UnnamedGlobalConstantDecl
*D
) {
900 llvm_unreachable("UnnamedGlobalConstantDecl cannot be instantiated");
903 Decl
*TemplateDeclInstantiator::VisitTemplateParamObjectDecl(
904 TemplateParamObjectDecl
*D
) {
905 llvm_unreachable("template parameter objects cannot be instantiated");
909 TemplateDeclInstantiator::VisitLabelDecl(LabelDecl
*D
) {
910 LabelDecl
*Inst
= LabelDecl::Create(SemaRef
.Context
, Owner
, D
->getLocation(),
912 Owner
->addDecl(Inst
);
917 TemplateDeclInstantiator::VisitNamespaceDecl(NamespaceDecl
*D
) {
918 llvm_unreachable("Namespaces cannot be instantiated");
922 TemplateDeclInstantiator::VisitNamespaceAliasDecl(NamespaceAliasDecl
*D
) {
923 NamespaceAliasDecl
*Inst
924 = NamespaceAliasDecl::Create(SemaRef
.Context
, Owner
,
925 D
->getNamespaceLoc(),
928 D
->getQualifierLoc(),
929 D
->getTargetNameLoc(),
931 Owner
->addDecl(Inst
);
935 Decl
*TemplateDeclInstantiator::InstantiateTypedefNameDecl(TypedefNameDecl
*D
,
937 bool Invalid
= false;
938 TypeSourceInfo
*DI
= D
->getTypeSourceInfo();
939 if (DI
->getType()->isInstantiationDependentType() ||
940 DI
->getType()->isVariablyModifiedType()) {
941 DI
= SemaRef
.SubstType(DI
, TemplateArgs
,
942 D
->getLocation(), D
->getDeclName());
945 DI
= SemaRef
.Context
.getTrivialTypeSourceInfo(SemaRef
.Context
.IntTy
);
948 SemaRef
.MarkDeclarationsReferencedInType(D
->getLocation(), DI
->getType());
951 // HACK: 2012-10-23 g++ has a bug where it gets the value kind of ?: wrong.
952 // libstdc++ relies upon this bug in its implementation of common_type. If we
953 // happen to be processing that implementation, fake up the g++ ?:
954 // semantics. See LWG issue 2141 for more information on the bug. The bugs
955 // are fixed in g++ and libstdc++ 4.9.0 (2014-04-22).
956 const DecltypeType
*DT
= DI
->getType()->getAs
<DecltypeType
>();
957 CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(D
->getDeclContext());
958 if (DT
&& RD
&& isa
<ConditionalOperator
>(DT
->getUnderlyingExpr()) &&
959 DT
->isReferenceType() &&
960 RD
->getEnclosingNamespaceContext() == SemaRef
.getStdNamespace() &&
961 RD
->getIdentifier() && RD
->getIdentifier()->isStr("common_type") &&
962 D
->getIdentifier() && D
->getIdentifier()->isStr("type") &&
963 SemaRef
.getSourceManager().isInSystemHeader(D
->getBeginLoc()))
964 // Fold it to the (non-reference) type which g++ would have produced.
965 DI
= SemaRef
.Context
.getTrivialTypeSourceInfo(
966 DI
->getType().getNonReferenceType());
968 // Create the new typedef
969 TypedefNameDecl
*Typedef
;
971 Typedef
= TypeAliasDecl::Create(SemaRef
.Context
, Owner
, D
->getBeginLoc(),
972 D
->getLocation(), D
->getIdentifier(), DI
);
974 Typedef
= TypedefDecl::Create(SemaRef
.Context
, Owner
, D
->getBeginLoc(),
975 D
->getLocation(), D
->getIdentifier(), DI
);
977 Typedef
->setInvalidDecl();
979 // If the old typedef was the name for linkage purposes of an anonymous
980 // tag decl, re-establish that relationship for the new typedef.
981 if (const TagType
*oldTagType
= D
->getUnderlyingType()->getAs
<TagType
>()) {
982 TagDecl
*oldTag
= oldTagType
->getDecl();
983 if (oldTag
->getTypedefNameForAnonDecl() == D
&& !Invalid
) {
984 TagDecl
*newTag
= DI
->getType()->castAs
<TagType
>()->getDecl();
985 assert(!newTag
->hasNameForLinkage());
986 newTag
->setTypedefNameForAnonDecl(Typedef
);
990 if (TypedefNameDecl
*Prev
= getPreviousDeclForInstantiation(D
)) {
991 NamedDecl
*InstPrev
= SemaRef
.FindInstantiatedDecl(D
->getLocation(), Prev
,
996 TypedefNameDecl
*InstPrevTypedef
= cast
<TypedefNameDecl
>(InstPrev
);
998 // If the typedef types are not identical, reject them.
999 SemaRef
.isIncompatibleTypedef(InstPrevTypedef
, Typedef
);
1001 Typedef
->setPreviousDecl(InstPrevTypedef
);
1004 SemaRef
.InstantiateAttrs(TemplateArgs
, D
, Typedef
);
1006 if (D
->getUnderlyingType()->getAs
<DependentNameType
>())
1007 SemaRef
.inferGslPointerAttribute(Typedef
);
1009 Typedef
->setAccess(D
->getAccess());
1010 Typedef
->setReferenced(D
->isReferenced());
1015 Decl
*TemplateDeclInstantiator::VisitTypedefDecl(TypedefDecl
*D
) {
1016 Decl
*Typedef
= InstantiateTypedefNameDecl(D
, /*IsTypeAlias=*/false);
1018 Owner
->addDecl(Typedef
);
1022 Decl
*TemplateDeclInstantiator::VisitTypeAliasDecl(TypeAliasDecl
*D
) {
1023 Decl
*Typedef
= InstantiateTypedefNameDecl(D
, /*IsTypeAlias=*/true);
1025 Owner
->addDecl(Typedef
);
1030 TemplateDeclInstantiator::VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl
*D
) {
1031 // Create a local instantiation scope for this type alias template, which
1032 // will contain the instantiations of the template parameters.
1033 LocalInstantiationScope
Scope(SemaRef
);
1035 TemplateParameterList
*TempParams
= D
->getTemplateParameters();
1036 TemplateParameterList
*InstParams
= SubstTemplateParams(TempParams
);
1040 TypeAliasDecl
*Pattern
= D
->getTemplatedDecl();
1042 TypeAliasTemplateDecl
*PrevAliasTemplate
= nullptr;
1043 if (getPreviousDeclForInstantiation
<TypedefNameDecl
>(Pattern
)) {
1044 DeclContext::lookup_result Found
= Owner
->lookup(Pattern
->getDeclName());
1045 if (!Found
.empty()) {
1046 PrevAliasTemplate
= dyn_cast
<TypeAliasTemplateDecl
>(Found
.front());
1050 TypeAliasDecl
*AliasInst
= cast_or_null
<TypeAliasDecl
>(
1051 InstantiateTypedefNameDecl(Pattern
, /*IsTypeAlias=*/true));
1055 TypeAliasTemplateDecl
*Inst
1056 = TypeAliasTemplateDecl::Create(SemaRef
.Context
, Owner
, D
->getLocation(),
1057 D
->getDeclName(), InstParams
, AliasInst
);
1058 AliasInst
->setDescribedAliasTemplate(Inst
);
1059 if (PrevAliasTemplate
)
1060 Inst
->setPreviousDecl(PrevAliasTemplate
);
1062 Inst
->setAccess(D
->getAccess());
1064 if (!PrevAliasTemplate
)
1065 Inst
->setInstantiatedFromMemberTemplate(D
);
1067 Owner
->addDecl(Inst
);
1072 Decl
*TemplateDeclInstantiator::VisitBindingDecl(BindingDecl
*D
) {
1073 auto *NewBD
= BindingDecl::Create(SemaRef
.Context
, Owner
, D
->getLocation(),
1074 D
->getIdentifier());
1075 NewBD
->setReferenced(D
->isReferenced());
1076 SemaRef
.CurrentInstantiationScope
->InstantiatedLocal(D
, NewBD
);
1080 Decl
*TemplateDeclInstantiator::VisitDecompositionDecl(DecompositionDecl
*D
) {
1081 // Transform the bindings first.
1082 SmallVector
<BindingDecl
*, 16> NewBindings
;
1083 for (auto *OldBD
: D
->bindings())
1084 NewBindings
.push_back(cast
<BindingDecl
>(VisitBindingDecl(OldBD
)));
1085 ArrayRef
<BindingDecl
*> NewBindingArray
= NewBindings
;
1087 auto *NewDD
= cast_or_null
<DecompositionDecl
>(
1088 VisitVarDecl(D
, /*InstantiatingVarTemplate=*/false, &NewBindingArray
));
1090 if (!NewDD
|| NewDD
->isInvalidDecl())
1091 for (auto *NewBD
: NewBindings
)
1092 NewBD
->setInvalidDecl();
1097 Decl
*TemplateDeclInstantiator::VisitVarDecl(VarDecl
*D
) {
1098 return VisitVarDecl(D
, /*InstantiatingVarTemplate=*/false);
1101 Decl
*TemplateDeclInstantiator::VisitVarDecl(VarDecl
*D
,
1102 bool InstantiatingVarTemplate
,
1103 ArrayRef
<BindingDecl
*> *Bindings
) {
1105 // Do substitution on the type of the declaration
1106 TypeSourceInfo
*DI
= SemaRef
.SubstType(
1107 D
->getTypeSourceInfo(), TemplateArgs
, D
->getTypeSpecStartLoc(),
1108 D
->getDeclName(), /*AllowDeducedTST*/true);
1112 if (DI
->getType()->isFunctionType()) {
1113 SemaRef
.Diag(D
->getLocation(), diag::err_variable_instantiates_to_function
)
1114 << D
->isStaticDataMember() << DI
->getType();
1118 DeclContext
*DC
= Owner
;
1119 if (D
->isLocalExternDecl())
1120 SemaRef
.adjustContextForLocalExternDecl(DC
);
1122 // Build the instantiated declaration.
1125 Var
= DecompositionDecl::Create(SemaRef
.Context
, DC
, D
->getInnerLocStart(),
1126 D
->getLocation(), DI
->getType(), DI
,
1127 D
->getStorageClass(), *Bindings
);
1129 Var
= VarDecl::Create(SemaRef
.Context
, DC
, D
->getInnerLocStart(),
1130 D
->getLocation(), D
->getIdentifier(), DI
->getType(),
1131 DI
, D
->getStorageClass());
1133 // In ARC, infer 'retaining' for variables of retainable type.
1134 if (SemaRef
.getLangOpts().ObjCAutoRefCount
&&
1135 SemaRef
.inferObjCARCLifetime(Var
))
1136 Var
->setInvalidDecl();
1138 if (SemaRef
.getLangOpts().OpenCL
)
1139 SemaRef
.deduceOpenCLAddressSpace(Var
);
1141 // Substitute the nested name specifier, if any.
1142 if (SubstQualifier(D
, Var
))
1145 SemaRef
.BuildVariableInstantiation(Var
, D
, TemplateArgs
, LateAttrs
, Owner
,
1146 StartingScope
, InstantiatingVarTemplate
);
1147 if (D
->isNRVOVariable() && !Var
->isInvalidDecl()) {
1149 if (auto *F
= dyn_cast
<FunctionDecl
>(DC
))
1150 RT
= F
->getReturnType();
1151 else if (isa
<BlockDecl
>(DC
))
1152 RT
= cast
<FunctionType
>(SemaRef
.getCurBlock()->FunctionType
)
1155 llvm_unreachable("Unknown context type");
1157 // This is the last chance we have of checking copy elision eligibility
1158 // for functions in dependent contexts. The sema actions for building
1159 // the return statement during template instantiation will have no effect
1160 // regarding copy elision, since NRVO propagation runs on the scope exit
1161 // actions, and these are not run on instantiation.
1162 // This might run through some VarDecls which were returned from non-taken
1163 // 'if constexpr' branches, and these will end up being constructed on the
1164 // return slot even if they will never be returned, as a sort of accidental
1165 // 'optimization'. Notably, functions with 'auto' return types won't have it
1166 // deduced by this point. Coupled with the limitation described
1167 // previously, this makes it very hard to support copy elision for these.
1168 Sema::NamedReturnInfo Info
= SemaRef
.getNamedReturnInfo(Var
);
1169 bool NRVO
= SemaRef
.getCopyElisionCandidate(Info
, RT
) != nullptr;
1170 Var
->setNRVOVariable(NRVO
);
1173 Var
->setImplicit(D
->isImplicit());
1175 if (Var
->isStaticLocal())
1176 SemaRef
.CheckStaticLocalForDllExport(Var
);
1181 Decl
*TemplateDeclInstantiator::VisitAccessSpecDecl(AccessSpecDecl
*D
) {
1183 = AccessSpecDecl::Create(SemaRef
.Context
, D
->getAccess(), Owner
,
1184 D
->getAccessSpecifierLoc(), D
->getColonLoc());
1185 Owner
->addHiddenDecl(AD
);
1189 Decl
*TemplateDeclInstantiator::VisitFieldDecl(FieldDecl
*D
) {
1190 bool Invalid
= false;
1191 TypeSourceInfo
*DI
= D
->getTypeSourceInfo();
1192 if (DI
->getType()->isInstantiationDependentType() ||
1193 DI
->getType()->isVariablyModifiedType()) {
1194 DI
= SemaRef
.SubstType(DI
, TemplateArgs
,
1195 D
->getLocation(), D
->getDeclName());
1197 DI
= D
->getTypeSourceInfo();
1199 } else if (DI
->getType()->isFunctionType()) {
1200 // C++ [temp.arg.type]p3:
1201 // If a declaration acquires a function type through a type
1202 // dependent on a template-parameter and this causes a
1203 // declaration that does not use the syntactic form of a
1204 // function declarator to have function type, the program is
1206 SemaRef
.Diag(D
->getLocation(), diag::err_field_instantiates_to_function
)
1211 SemaRef
.MarkDeclarationsReferencedInType(D
->getLocation(), DI
->getType());
1214 Expr
*BitWidth
= D
->getBitWidth();
1217 else if (BitWidth
) {
1218 // The bit-width expression is a constant expression.
1219 EnterExpressionEvaluationContext
Unevaluated(
1220 SemaRef
, Sema::ExpressionEvaluationContext::ConstantEvaluated
);
1222 ExprResult InstantiatedBitWidth
1223 = SemaRef
.SubstExpr(BitWidth
, TemplateArgs
);
1224 if (InstantiatedBitWidth
.isInvalid()) {
1228 BitWidth
= InstantiatedBitWidth
.getAs
<Expr
>();
1231 FieldDecl
*Field
= SemaRef
.CheckFieldDecl(D
->getDeclName(),
1233 cast
<RecordDecl
>(Owner
),
1237 D
->getInClassInitStyle(),
1238 D
->getInnerLocStart(),
1242 cast
<Decl
>(Owner
)->setInvalidDecl();
1246 SemaRef
.InstantiateAttrs(TemplateArgs
, D
, Field
, LateAttrs
, StartingScope
);
1248 if (Field
->hasAttrs())
1249 SemaRef
.CheckAlignasUnderalignment(Field
);
1252 Field
->setInvalidDecl();
1254 if (!Field
->getDeclName()) {
1255 // Keep track of where this decl came from.
1256 SemaRef
.Context
.setInstantiatedFromUnnamedFieldDecl(Field
, D
);
1258 if (CXXRecordDecl
*Parent
= dyn_cast
<CXXRecordDecl
>(Field
->getDeclContext())) {
1259 if (Parent
->isAnonymousStructOrUnion() &&
1260 Parent
->getRedeclContext()->isFunctionOrMethod())
1261 SemaRef
.CurrentInstantiationScope
->InstantiatedLocal(D
, Field
);
1264 Field
->setImplicit(D
->isImplicit());
1265 Field
->setAccess(D
->getAccess());
1266 Owner
->addDecl(Field
);
1271 Decl
*TemplateDeclInstantiator::VisitMSPropertyDecl(MSPropertyDecl
*D
) {
1272 bool Invalid
= false;
1273 TypeSourceInfo
*DI
= D
->getTypeSourceInfo();
1275 if (DI
->getType()->isVariablyModifiedType()) {
1276 SemaRef
.Diag(D
->getLocation(), diag::err_property_is_variably_modified
)
1279 } else if (DI
->getType()->isInstantiationDependentType()) {
1280 DI
= SemaRef
.SubstType(DI
, TemplateArgs
,
1281 D
->getLocation(), D
->getDeclName());
1283 DI
= D
->getTypeSourceInfo();
1285 } else if (DI
->getType()->isFunctionType()) {
1286 // C++ [temp.arg.type]p3:
1287 // If a declaration acquires a function type through a type
1288 // dependent on a template-parameter and this causes a
1289 // declaration that does not use the syntactic form of a
1290 // function declarator to have function type, the program is
1292 SemaRef
.Diag(D
->getLocation(), diag::err_field_instantiates_to_function
)
1297 SemaRef
.MarkDeclarationsReferencedInType(D
->getLocation(), DI
->getType());
1300 MSPropertyDecl
*Property
= MSPropertyDecl::Create(
1301 SemaRef
.Context
, Owner
, D
->getLocation(), D
->getDeclName(), DI
->getType(),
1302 DI
, D
->getBeginLoc(), D
->getGetterId(), D
->getSetterId());
1304 SemaRef
.InstantiateAttrs(TemplateArgs
, D
, Property
, LateAttrs
,
1308 Property
->setInvalidDecl();
1310 Property
->setAccess(D
->getAccess());
1311 Owner
->addDecl(Property
);
1316 Decl
*TemplateDeclInstantiator::VisitIndirectFieldDecl(IndirectFieldDecl
*D
) {
1317 NamedDecl
**NamedChain
=
1318 new (SemaRef
.Context
)NamedDecl
*[D
->getChainingSize()];
1321 for (auto *PI
: D
->chain()) {
1322 NamedDecl
*Next
= SemaRef
.FindInstantiatedDecl(D
->getLocation(), PI
,
1327 NamedChain
[i
++] = Next
;
1330 QualType T
= cast
<FieldDecl
>(NamedChain
[i
-1])->getType();
1331 IndirectFieldDecl
*IndirectField
= IndirectFieldDecl::Create(
1332 SemaRef
.Context
, Owner
, D
->getLocation(), D
->getIdentifier(), T
,
1333 {NamedChain
, D
->getChainingSize()});
1335 for (const auto *Attr
: D
->attrs())
1336 IndirectField
->addAttr(Attr
->clone(SemaRef
.Context
));
1338 IndirectField
->setImplicit(D
->isImplicit());
1339 IndirectField
->setAccess(D
->getAccess());
1340 Owner
->addDecl(IndirectField
);
1341 return IndirectField
;
1344 Decl
*TemplateDeclInstantiator::VisitFriendDecl(FriendDecl
*D
) {
1345 // Handle friend type expressions by simply substituting template
1346 // parameters into the pattern type and checking the result.
1347 if (TypeSourceInfo
*Ty
= D
->getFriendType()) {
1348 TypeSourceInfo
*InstTy
;
1349 // If this is an unsupported friend, don't bother substituting template
1350 // arguments into it. The actual type referred to won't be used by any
1351 // parts of Clang, and may not be valid for instantiating. Just use the
1352 // same info for the instantiated friend.
1353 if (D
->isUnsupportedFriend()) {
1356 InstTy
= SemaRef
.SubstType(Ty
, TemplateArgs
,
1357 D
->getLocation(), DeclarationName());
1362 FriendDecl
*FD
= SemaRef
.CheckFriendTypeDecl(D
->getBeginLoc(),
1363 D
->getFriendLoc(), InstTy
);
1367 FD
->setAccess(AS_public
);
1368 FD
->setUnsupportedFriend(D
->isUnsupportedFriend());
1373 NamedDecl
*ND
= D
->getFriendDecl();
1374 assert(ND
&& "friend decl must be a decl or a type!");
1376 // All of the Visit implementations for the various potential friend
1377 // declarations have to be carefully written to work for friend
1378 // objects, with the most important detail being that the target
1379 // decl should almost certainly not be placed in Owner.
1380 Decl
*NewND
= Visit(ND
);
1381 if (!NewND
) return nullptr;
1384 FriendDecl::Create(SemaRef
.Context
, Owner
, D
->getLocation(),
1385 cast
<NamedDecl
>(NewND
), D
->getFriendLoc());
1386 FD
->setAccess(AS_public
);
1387 FD
->setUnsupportedFriend(D
->isUnsupportedFriend());
1392 Decl
*TemplateDeclInstantiator::VisitStaticAssertDecl(StaticAssertDecl
*D
) {
1393 Expr
*AssertExpr
= D
->getAssertExpr();
1395 // The expression in a static assertion is a constant expression.
1396 EnterExpressionEvaluationContext
Unevaluated(
1397 SemaRef
, Sema::ExpressionEvaluationContext::ConstantEvaluated
);
1399 ExprResult InstantiatedAssertExpr
1400 = SemaRef
.SubstExpr(AssertExpr
, TemplateArgs
);
1401 if (InstantiatedAssertExpr
.isInvalid())
1404 return SemaRef
.BuildStaticAssertDeclaration(D
->getLocation(),
1405 InstantiatedAssertExpr
.get(),
1411 Decl
*TemplateDeclInstantiator::VisitEnumDecl(EnumDecl
*D
) {
1412 EnumDecl
*PrevDecl
= nullptr;
1413 if (EnumDecl
*PatternPrev
= getPreviousDeclForInstantiation(D
)) {
1414 NamedDecl
*Prev
= SemaRef
.FindInstantiatedDecl(D
->getLocation(),
1417 if (!Prev
) return nullptr;
1418 PrevDecl
= cast
<EnumDecl
>(Prev
);
1422 EnumDecl::Create(SemaRef
.Context
, Owner
, D
->getBeginLoc(),
1423 D
->getLocation(), D
->getIdentifier(), PrevDecl
,
1424 D
->isScoped(), D
->isScopedUsingClassTag(), D
->isFixed());
1426 if (TypeSourceInfo
*TI
= D
->getIntegerTypeSourceInfo()) {
1427 // If we have type source information for the underlying type, it means it
1428 // has been explicitly set by the user. Perform substitution on it before
1430 SourceLocation UnderlyingLoc
= TI
->getTypeLoc().getBeginLoc();
1431 TypeSourceInfo
*NewTI
= SemaRef
.SubstType(TI
, TemplateArgs
, UnderlyingLoc
,
1433 if (!NewTI
|| SemaRef
.CheckEnumUnderlyingType(NewTI
))
1434 Enum
->setIntegerType(SemaRef
.Context
.IntTy
);
1436 Enum
->setIntegerTypeSourceInfo(NewTI
);
1438 assert(!D
->getIntegerType()->isDependentType()
1439 && "Dependent type without type source info");
1440 Enum
->setIntegerType(D
->getIntegerType());
1444 SemaRef
.InstantiateAttrs(TemplateArgs
, D
, Enum
);
1446 Enum
->setInstantiationOfMemberEnum(D
, TSK_ImplicitInstantiation
);
1447 Enum
->setAccess(D
->getAccess());
1448 // Forward the mangling number from the template to the instantiated decl.
1449 SemaRef
.Context
.setManglingNumber(Enum
, SemaRef
.Context
.getManglingNumber(D
));
1450 // See if the old tag was defined along with a declarator.
1451 // If it did, mark the new tag as being associated with that declarator.
1452 if (DeclaratorDecl
*DD
= SemaRef
.Context
.getDeclaratorForUnnamedTagDecl(D
))
1453 SemaRef
.Context
.addDeclaratorForUnnamedTagDecl(Enum
, DD
);
1454 // See if the old tag was defined along with a typedef.
1455 // If it did, mark the new tag as being associated with that typedef.
1456 if (TypedefNameDecl
*TND
= SemaRef
.Context
.getTypedefNameForUnnamedTagDecl(D
))
1457 SemaRef
.Context
.addTypedefNameForUnnamedTagDecl(Enum
, TND
);
1458 if (SubstQualifier(D
, Enum
)) return nullptr;
1459 Owner
->addDecl(Enum
);
1461 EnumDecl
*Def
= D
->getDefinition();
1462 if (Def
&& Def
!= D
) {
1463 // If this is an out-of-line definition of an enum member template, check
1464 // that the underlying types match in the instantiation of both
1466 if (TypeSourceInfo
*TI
= Def
->getIntegerTypeSourceInfo()) {
1467 SourceLocation UnderlyingLoc
= TI
->getTypeLoc().getBeginLoc();
1468 QualType DefnUnderlying
=
1469 SemaRef
.SubstType(TI
->getType(), TemplateArgs
,
1470 UnderlyingLoc
, DeclarationName());
1471 SemaRef
.CheckEnumRedeclaration(Def
->getLocation(), Def
->isScoped(),
1472 DefnUnderlying
, /*IsFixed=*/true, Enum
);
1476 // C++11 [temp.inst]p1: The implicit instantiation of a class template
1477 // specialization causes the implicit instantiation of the declarations, but
1478 // not the definitions of scoped member enumerations.
1480 // DR1484 clarifies that enumeration definitions inside of a template
1481 // declaration aren't considered entities that can be separately instantiated
1482 // from the rest of the entity they are declared inside of.
1483 if (isDeclWithinFunction(D
) ? D
== Def
: Def
&& !Enum
->isScoped()) {
1484 SemaRef
.CurrentInstantiationScope
->InstantiatedLocal(D
, Enum
);
1485 InstantiateEnumDefinition(Enum
, Def
);
1491 void TemplateDeclInstantiator::InstantiateEnumDefinition(
1492 EnumDecl
*Enum
, EnumDecl
*Pattern
) {
1493 Enum
->startDefinition();
1495 // Update the location to refer to the definition.
1496 Enum
->setLocation(Pattern
->getLocation());
1498 SmallVector
<Decl
*, 4> Enumerators
;
1500 EnumConstantDecl
*LastEnumConst
= nullptr;
1501 for (auto *EC
: Pattern
->enumerators()) {
1502 // The specified value for the enumerator.
1503 ExprResult
Value((Expr
*)nullptr);
1504 if (Expr
*UninstValue
= EC
->getInitExpr()) {
1505 // The enumerator's value expression is a constant expression.
1506 EnterExpressionEvaluationContext
Unevaluated(
1507 SemaRef
, Sema::ExpressionEvaluationContext::ConstantEvaluated
);
1509 Value
= SemaRef
.SubstExpr(UninstValue
, TemplateArgs
);
1512 // Drop the initial value and continue.
1513 bool isInvalid
= false;
1514 if (Value
.isInvalid()) {
1519 EnumConstantDecl
*EnumConst
1520 = SemaRef
.CheckEnumConstant(Enum
, LastEnumConst
,
1521 EC
->getLocation(), EC
->getIdentifier(),
1526 EnumConst
->setInvalidDecl();
1527 Enum
->setInvalidDecl();
1531 SemaRef
.InstantiateAttrs(TemplateArgs
, EC
, EnumConst
);
1533 EnumConst
->setAccess(Enum
->getAccess());
1534 Enum
->addDecl(EnumConst
);
1535 Enumerators
.push_back(EnumConst
);
1536 LastEnumConst
= EnumConst
;
1538 if (Pattern
->getDeclContext()->isFunctionOrMethod() &&
1539 !Enum
->isScoped()) {
1540 // If the enumeration is within a function or method, record the enum
1541 // constant as a local.
1542 SemaRef
.CurrentInstantiationScope
->InstantiatedLocal(EC
, EnumConst
);
1547 SemaRef
.ActOnEnumBody(Enum
->getLocation(), Enum
->getBraceRange(), Enum
,
1548 Enumerators
, nullptr, ParsedAttributesView());
1551 Decl
*TemplateDeclInstantiator::VisitEnumConstantDecl(EnumConstantDecl
*D
) {
1552 llvm_unreachable("EnumConstantDecls can only occur within EnumDecls.");
1556 TemplateDeclInstantiator::VisitBuiltinTemplateDecl(BuiltinTemplateDecl
*D
) {
1557 llvm_unreachable("BuiltinTemplateDecls cannot be instantiated.");
1560 Decl
*TemplateDeclInstantiator::VisitClassTemplateDecl(ClassTemplateDecl
*D
) {
1561 bool isFriend
= (D
->getFriendObjectKind() != Decl::FOK_None
);
1563 // Create a local instantiation scope for this class template, which
1564 // will contain the instantiations of the template parameters.
1565 LocalInstantiationScope
Scope(SemaRef
);
1566 TemplateParameterList
*TempParams
= D
->getTemplateParameters();
1567 TemplateParameterList
*InstParams
= SubstTemplateParams(TempParams
);
1571 CXXRecordDecl
*Pattern
= D
->getTemplatedDecl();
1573 // Instantiate the qualifier. We have to do this first in case
1574 // we're a friend declaration, because if we are then we need to put
1575 // the new declaration in the appropriate context.
1576 NestedNameSpecifierLoc QualifierLoc
= Pattern
->getQualifierLoc();
1578 QualifierLoc
= SemaRef
.SubstNestedNameSpecifierLoc(QualifierLoc
,
1584 CXXRecordDecl
*PrevDecl
= nullptr;
1585 ClassTemplateDecl
*PrevClassTemplate
= nullptr;
1587 if (!isFriend
&& getPreviousDeclForInstantiation(Pattern
)) {
1588 DeclContext::lookup_result Found
= Owner
->lookup(Pattern
->getDeclName());
1589 if (!Found
.empty()) {
1590 PrevClassTemplate
= dyn_cast
<ClassTemplateDecl
>(Found
.front());
1591 if (PrevClassTemplate
)
1592 PrevDecl
= PrevClassTemplate
->getTemplatedDecl();
1596 // If this isn't a friend, then it's a member template, in which
1597 // case we just want to build the instantiation in the
1598 // specialization. If it is a friend, we want to build it in
1599 // the appropriate context.
1600 DeclContext
*DC
= Owner
;
1604 SS
.Adopt(QualifierLoc
);
1605 DC
= SemaRef
.computeDeclContext(SS
);
1606 if (!DC
) return nullptr;
1608 DC
= SemaRef
.FindInstantiatedContext(Pattern
->getLocation(),
1609 Pattern
->getDeclContext(),
1613 // Look for a previous declaration of the template in the owning
1615 LookupResult
R(SemaRef
, Pattern
->getDeclName(), Pattern
->getLocation(),
1616 Sema::LookupOrdinaryName
,
1617 SemaRef
.forRedeclarationInCurContext());
1618 SemaRef
.LookupQualifiedName(R
, DC
);
1620 if (R
.isSingleResult()) {
1621 PrevClassTemplate
= R
.getAsSingle
<ClassTemplateDecl
>();
1622 if (PrevClassTemplate
)
1623 PrevDecl
= PrevClassTemplate
->getTemplatedDecl();
1626 if (!PrevClassTemplate
&& QualifierLoc
) {
1627 SemaRef
.Diag(Pattern
->getLocation(), diag::err_not_tag_in_scope
)
1628 << D
->getTemplatedDecl()->getTagKind() << Pattern
->getDeclName() << DC
1629 << QualifierLoc
.getSourceRange();
1633 if (PrevClassTemplate
) {
1634 TemplateParameterList
*PrevParams
1635 = PrevClassTemplate
->getMostRecentDecl()->getTemplateParameters();
1637 // Make sure the parameter lists match.
1638 if (!SemaRef
.TemplateParameterListsAreEqual(InstParams
, PrevParams
, true,
1639 Sema::TPL_TemplateMatch
))
1642 // Do some additional validation, then merge default arguments
1643 // from the existing declarations.
1644 if (SemaRef
.CheckTemplateParameterList(InstParams
, PrevParams
,
1645 Sema::TPC_ClassTemplate
))
1650 CXXRecordDecl
*RecordInst
= CXXRecordDecl::Create(
1651 SemaRef
.Context
, Pattern
->getTagKind(), DC
, Pattern
->getBeginLoc(),
1652 Pattern
->getLocation(), Pattern
->getIdentifier(), PrevDecl
,
1653 /*DelayTypeCreation=*/true);
1656 RecordInst
->setQualifierInfo(QualifierLoc
);
1658 SemaRef
.InstantiateAttrsForDecl(TemplateArgs
, Pattern
, RecordInst
, LateAttrs
,
1661 ClassTemplateDecl
*Inst
1662 = ClassTemplateDecl::Create(SemaRef
.Context
, DC
, D
->getLocation(),
1663 D
->getIdentifier(), InstParams
, RecordInst
);
1664 assert(!(isFriend
&& Owner
->isDependentContext()));
1665 Inst
->setPreviousDecl(PrevClassTemplate
);
1667 RecordInst
->setDescribedClassTemplate(Inst
);
1670 if (PrevClassTemplate
)
1671 Inst
->setAccess(PrevClassTemplate
->getAccess());
1673 Inst
->setAccess(D
->getAccess());
1675 Inst
->setObjectOfFriendDecl();
1676 // TODO: do we want to track the instantiation progeny of this
1677 // friend target decl?
1679 Inst
->setAccess(D
->getAccess());
1680 if (!PrevClassTemplate
)
1681 Inst
->setInstantiatedFromMemberTemplate(D
);
1684 // Trigger creation of the type for the instantiation.
1685 SemaRef
.Context
.getInjectedClassNameType(RecordInst
,
1686 Inst
->getInjectedClassNameSpecialization());
1688 // Finish handling of friends.
1690 DC
->makeDeclVisibleInContext(Inst
);
1691 Inst
->setLexicalDeclContext(Owner
);
1692 RecordInst
->setLexicalDeclContext(Owner
);
1696 if (D
->isOutOfLine()) {
1697 Inst
->setLexicalDeclContext(D
->getLexicalDeclContext());
1698 RecordInst
->setLexicalDeclContext(D
->getLexicalDeclContext());
1701 Owner
->addDecl(Inst
);
1703 if (!PrevClassTemplate
) {
1704 // Queue up any out-of-line partial specializations of this member
1705 // class template; the client will force their instantiation once
1706 // the enclosing class has been instantiated.
1707 SmallVector
<ClassTemplatePartialSpecializationDecl
*, 4> PartialSpecs
;
1708 D
->getPartialSpecializations(PartialSpecs
);
1709 for (unsigned I
= 0, N
= PartialSpecs
.size(); I
!= N
; ++I
)
1710 if (PartialSpecs
[I
]->getFirstDecl()->isOutOfLine())
1711 OutOfLinePartialSpecs
.push_back(std::make_pair(Inst
, PartialSpecs
[I
]));
1718 TemplateDeclInstantiator::VisitClassTemplatePartialSpecializationDecl(
1719 ClassTemplatePartialSpecializationDecl
*D
) {
1720 ClassTemplateDecl
*ClassTemplate
= D
->getSpecializedTemplate();
1722 // Lookup the already-instantiated declaration in the instantiation
1723 // of the class template and return that.
1724 DeclContext::lookup_result Found
1725 = Owner
->lookup(ClassTemplate
->getDeclName());
1729 ClassTemplateDecl
*InstClassTemplate
1730 = dyn_cast
<ClassTemplateDecl
>(Found
.front());
1731 if (!InstClassTemplate
)
1734 if (ClassTemplatePartialSpecializationDecl
*Result
1735 = InstClassTemplate
->findPartialSpecInstantiatedFromMember(D
))
1738 return InstantiateClassTemplatePartialSpecialization(InstClassTemplate
, D
);
1741 Decl
*TemplateDeclInstantiator::VisitVarTemplateDecl(VarTemplateDecl
*D
) {
1742 assert(D
->getTemplatedDecl()->isStaticDataMember() &&
1743 "Only static data member templates are allowed.");
1745 // Create a local instantiation scope for this variable template, which
1746 // will contain the instantiations of the template parameters.
1747 LocalInstantiationScope
Scope(SemaRef
);
1748 TemplateParameterList
*TempParams
= D
->getTemplateParameters();
1749 TemplateParameterList
*InstParams
= SubstTemplateParams(TempParams
);
1753 VarDecl
*Pattern
= D
->getTemplatedDecl();
1754 VarTemplateDecl
*PrevVarTemplate
= nullptr;
1756 if (getPreviousDeclForInstantiation(Pattern
)) {
1757 DeclContext::lookup_result Found
= Owner
->lookup(Pattern
->getDeclName());
1759 PrevVarTemplate
= dyn_cast
<VarTemplateDecl
>(Found
.front());
1763 cast_or_null
<VarDecl
>(VisitVarDecl(Pattern
,
1764 /*InstantiatingVarTemplate=*/true));
1765 if (!VarInst
) return nullptr;
1767 DeclContext
*DC
= Owner
;
1769 VarTemplateDecl
*Inst
= VarTemplateDecl::Create(
1770 SemaRef
.Context
, DC
, D
->getLocation(), D
->getIdentifier(), InstParams
,
1772 VarInst
->setDescribedVarTemplate(Inst
);
1773 Inst
->setPreviousDecl(PrevVarTemplate
);
1775 Inst
->setAccess(D
->getAccess());
1776 if (!PrevVarTemplate
)
1777 Inst
->setInstantiatedFromMemberTemplate(D
);
1779 if (D
->isOutOfLine()) {
1780 Inst
->setLexicalDeclContext(D
->getLexicalDeclContext());
1781 VarInst
->setLexicalDeclContext(D
->getLexicalDeclContext());
1784 Owner
->addDecl(Inst
);
1786 if (!PrevVarTemplate
) {
1787 // Queue up any out-of-line partial specializations of this member
1788 // variable template; the client will force their instantiation once
1789 // the enclosing class has been instantiated.
1790 SmallVector
<VarTemplatePartialSpecializationDecl
*, 4> PartialSpecs
;
1791 D
->getPartialSpecializations(PartialSpecs
);
1792 for (unsigned I
= 0, N
= PartialSpecs
.size(); I
!= N
; ++I
)
1793 if (PartialSpecs
[I
]->getFirstDecl()->isOutOfLine())
1794 OutOfLineVarPartialSpecs
.push_back(
1795 std::make_pair(Inst
, PartialSpecs
[I
]));
1801 Decl
*TemplateDeclInstantiator::VisitVarTemplatePartialSpecializationDecl(
1802 VarTemplatePartialSpecializationDecl
*D
) {
1803 assert(D
->isStaticDataMember() &&
1804 "Only static data member templates are allowed.");
1806 VarTemplateDecl
*VarTemplate
= D
->getSpecializedTemplate();
1808 // Lookup the already-instantiated declaration and return that.
1809 DeclContext::lookup_result Found
= Owner
->lookup(VarTemplate
->getDeclName());
1810 assert(!Found
.empty() && "Instantiation found nothing?");
1812 VarTemplateDecl
*InstVarTemplate
= dyn_cast
<VarTemplateDecl
>(Found
.front());
1813 assert(InstVarTemplate
&& "Instantiation did not find a variable template?");
1815 if (VarTemplatePartialSpecializationDecl
*Result
=
1816 InstVarTemplate
->findPartialSpecInstantiatedFromMember(D
))
1819 return InstantiateVarTemplatePartialSpecialization(InstVarTemplate
, D
);
1823 TemplateDeclInstantiator::VisitFunctionTemplateDecl(FunctionTemplateDecl
*D
) {
1824 // Create a local instantiation scope for this function template, which
1825 // will contain the instantiations of the template parameters and then get
1826 // merged with the local instantiation scope for the function template
1828 LocalInstantiationScope
Scope(SemaRef
);
1830 TemplateParameterList
*TempParams
= D
->getTemplateParameters();
1831 TemplateParameterList
*InstParams
= SubstTemplateParams(TempParams
);
1835 FunctionDecl
*Instantiated
= nullptr;
1836 if (CXXMethodDecl
*DMethod
= dyn_cast
<CXXMethodDecl
>(D
->getTemplatedDecl()))
1837 Instantiated
= cast_or_null
<FunctionDecl
>(VisitCXXMethodDecl(DMethod
,
1840 Instantiated
= cast_or_null
<FunctionDecl
>(VisitFunctionDecl(
1841 D
->getTemplatedDecl(),
1847 // Link the instantiated function template declaration to the function
1848 // template from which it was instantiated.
1849 FunctionTemplateDecl
*InstTemplate
1850 = Instantiated
->getDescribedFunctionTemplate();
1851 InstTemplate
->setAccess(D
->getAccess());
1852 assert(InstTemplate
&&
1853 "VisitFunctionDecl/CXXMethodDecl didn't create a template!");
1855 bool isFriend
= (InstTemplate
->getFriendObjectKind() != Decl::FOK_None
);
1857 // Link the instantiation back to the pattern *unless* this is a
1858 // non-definition friend declaration.
1859 if (!InstTemplate
->getInstantiatedFromMemberTemplate() &&
1860 !(isFriend
&& !D
->getTemplatedDecl()->isThisDeclarationADefinition()))
1861 InstTemplate
->setInstantiatedFromMemberTemplate(D
);
1863 // Make declarations visible in the appropriate context.
1865 Owner
->addDecl(InstTemplate
);
1866 } else if (InstTemplate
->getDeclContext()->isRecord() &&
1867 !getPreviousDeclForInstantiation(D
)) {
1868 SemaRef
.CheckFriendAccess(InstTemplate
);
1871 return InstTemplate
;
1874 Decl
*TemplateDeclInstantiator::VisitCXXRecordDecl(CXXRecordDecl
*D
) {
1875 CXXRecordDecl
*PrevDecl
= nullptr;
1876 if (CXXRecordDecl
*PatternPrev
= getPreviousDeclForInstantiation(D
)) {
1877 NamedDecl
*Prev
= SemaRef
.FindInstantiatedDecl(D
->getLocation(),
1880 if (!Prev
) return nullptr;
1881 PrevDecl
= cast
<CXXRecordDecl
>(Prev
);
1884 CXXRecordDecl
*Record
= nullptr;
1885 bool IsInjectedClassName
= D
->isInjectedClassName();
1887 Record
= CXXRecordDecl::CreateLambda(
1888 SemaRef
.Context
, Owner
, D
->getLambdaTypeInfo(), D
->getLocation(),
1889 D
->getLambdaDependencyKind(), D
->isGenericLambda(),
1890 D
->getLambdaCaptureDefault());
1892 Record
= CXXRecordDecl::Create(SemaRef
.Context
, D
->getTagKind(), Owner
,
1893 D
->getBeginLoc(), D
->getLocation(),
1894 D
->getIdentifier(), PrevDecl
,
1895 /*DelayTypeCreation=*/IsInjectedClassName
);
1896 // Link the type of the injected-class-name to that of the outer class.
1897 if (IsInjectedClassName
)
1898 (void)SemaRef
.Context
.getTypeDeclType(Record
, cast
<CXXRecordDecl
>(Owner
));
1900 // Substitute the nested name specifier, if any.
1901 if (SubstQualifier(D
, Record
))
1904 SemaRef
.InstantiateAttrsForDecl(TemplateArgs
, D
, Record
, LateAttrs
,
1907 Record
->setImplicit(D
->isImplicit());
1908 // FIXME: Check against AS_none is an ugly hack to work around the issue that
1909 // the tag decls introduced by friend class declarations don't have an access
1910 // specifier. Remove once this area of the code gets sorted out.
1911 if (D
->getAccess() != AS_none
)
1912 Record
->setAccess(D
->getAccess());
1913 if (!IsInjectedClassName
)
1914 Record
->setInstantiationOfMemberClass(D
, TSK_ImplicitInstantiation
);
1916 // If the original function was part of a friend declaration,
1917 // inherit its namespace state.
1918 if (D
->getFriendObjectKind())
1919 Record
->setObjectOfFriendDecl();
1921 // Make sure that anonymous structs and unions are recorded.
1922 if (D
->isAnonymousStructOrUnion())
1923 Record
->setAnonymousStructOrUnion(true);
1925 if (D
->isLocalClass())
1926 SemaRef
.CurrentInstantiationScope
->InstantiatedLocal(D
, Record
);
1928 // Forward the mangling number from the template to the instantiated decl.
1929 SemaRef
.Context
.setManglingNumber(Record
,
1930 SemaRef
.Context
.getManglingNumber(D
));
1932 // See if the old tag was defined along with a declarator.
1933 // If it did, mark the new tag as being associated with that declarator.
1934 if (DeclaratorDecl
*DD
= SemaRef
.Context
.getDeclaratorForUnnamedTagDecl(D
))
1935 SemaRef
.Context
.addDeclaratorForUnnamedTagDecl(Record
, DD
);
1937 // See if the old tag was defined along with a typedef.
1938 // If it did, mark the new tag as being associated with that typedef.
1939 if (TypedefNameDecl
*TND
= SemaRef
.Context
.getTypedefNameForUnnamedTagDecl(D
))
1940 SemaRef
.Context
.addTypedefNameForUnnamedTagDecl(Record
, TND
);
1942 Owner
->addDecl(Record
);
1944 // DR1484 clarifies that the members of a local class are instantiated as part
1945 // of the instantiation of their enclosing entity.
1946 if (D
->isCompleteDefinition() && D
->isLocalClass()) {
1947 Sema::LocalEagerInstantiationScope
LocalInstantiations(SemaRef
);
1949 SemaRef
.InstantiateClass(D
->getLocation(), Record
, D
, TemplateArgs
,
1950 TSK_ImplicitInstantiation
,
1953 // For nested local classes, we will instantiate the members when we
1954 // reach the end of the outermost (non-nested) local class.
1955 if (!D
->isCXXClassMember())
1956 SemaRef
.InstantiateClassMembers(D
->getLocation(), Record
, TemplateArgs
,
1957 TSK_ImplicitInstantiation
);
1959 // This class may have local implicit instantiations that need to be
1960 // performed within this scope.
1961 LocalInstantiations
.perform();
1964 SemaRef
.DiagnoseUnusedNestedTypedefs(Record
);
1966 if (IsInjectedClassName
)
1967 assert(Record
->isInjectedClassName() && "Broken injected-class-name");
1972 /// Adjust the given function type for an instantiation of the
1973 /// given declaration, to cope with modifications to the function's type that
1974 /// aren't reflected in the type-source information.
1976 /// \param D The declaration we're instantiating.
1977 /// \param TInfo The already-instantiated type.
1978 static QualType
adjustFunctionTypeForInstantiation(ASTContext
&Context
,
1980 TypeSourceInfo
*TInfo
) {
1981 const FunctionProtoType
*OrigFunc
1982 = D
->getType()->castAs
<FunctionProtoType
>();
1983 const FunctionProtoType
*NewFunc
1984 = TInfo
->getType()->castAs
<FunctionProtoType
>();
1985 if (OrigFunc
->getExtInfo() == NewFunc
->getExtInfo())
1986 return TInfo
->getType();
1988 FunctionProtoType::ExtProtoInfo NewEPI
= NewFunc
->getExtProtoInfo();
1989 NewEPI
.ExtInfo
= OrigFunc
->getExtInfo();
1990 return Context
.getFunctionType(NewFunc
->getReturnType(),
1991 NewFunc
->getParamTypes(), NewEPI
);
1994 /// Normal class members are of more specific types and therefore
1995 /// don't make it here. This function serves three purposes:
1996 /// 1) instantiating function templates
1997 /// 2) substituting friend declarations
1998 /// 3) substituting deduction guide declarations for nested class templates
1999 Decl
*TemplateDeclInstantiator::VisitFunctionDecl(
2000 FunctionDecl
*D
, TemplateParameterList
*TemplateParams
,
2001 RewriteKind FunctionRewriteKind
) {
2002 // Check whether there is already a function template specialization for
2003 // this declaration.
2004 FunctionTemplateDecl
*FunctionTemplate
= D
->getDescribedFunctionTemplate();
2005 if (FunctionTemplate
&& !TemplateParams
) {
2006 ArrayRef
<TemplateArgument
> Innermost
= TemplateArgs
.getInnermost();
2008 void *InsertPos
= nullptr;
2009 FunctionDecl
*SpecFunc
2010 = FunctionTemplate
->findSpecialization(Innermost
, InsertPos
);
2012 // If we already have a function template specialization, return it.
2018 if (FunctionTemplate
)
2019 isFriend
= (FunctionTemplate
->getFriendObjectKind() != Decl::FOK_None
);
2021 isFriend
= (D
->getFriendObjectKind() != Decl::FOK_None
);
2023 bool MergeWithParentScope
= (TemplateParams
!= nullptr) ||
2024 Owner
->isFunctionOrMethod() ||
2025 !(isa
<Decl
>(Owner
) &&
2026 cast
<Decl
>(Owner
)->isDefinedOutsideFunctionOrMethod());
2027 LocalInstantiationScope
Scope(SemaRef
, MergeWithParentScope
);
2029 ExplicitSpecifier InstantiatedExplicitSpecifier
;
2030 if (auto *DGuide
= dyn_cast
<CXXDeductionGuideDecl
>(D
)) {
2031 InstantiatedExplicitSpecifier
= instantiateExplicitSpecifier(
2032 SemaRef
, TemplateArgs
, DGuide
->getExplicitSpecifier(), DGuide
);
2033 if (InstantiatedExplicitSpecifier
.isInvalid())
2037 SmallVector
<ParmVarDecl
*, 4> Params
;
2038 TypeSourceInfo
*TInfo
= SubstFunctionType(D
, Params
);
2041 QualType T
= adjustFunctionTypeForInstantiation(SemaRef
.Context
, D
, TInfo
);
2043 if (TemplateParams
&& TemplateParams
->size()) {
2045 dyn_cast
<TemplateTypeParmDecl
>(TemplateParams
->asArray().back());
2046 if (LastParam
&& LastParam
->isImplicit() &&
2047 LastParam
->hasTypeConstraint()) {
2048 // In abbreviated templates, the type-constraints of invented template
2049 // type parameters are instantiated with the function type, invalidating
2050 // the TemplateParameterList which relied on the template type parameter
2051 // not having a type constraint. Recreate the TemplateParameterList with
2052 // the updated parameter list.
2053 TemplateParams
= TemplateParameterList::Create(
2054 SemaRef
.Context
, TemplateParams
->getTemplateLoc(),
2055 TemplateParams
->getLAngleLoc(), TemplateParams
->asArray(),
2056 TemplateParams
->getRAngleLoc(), TemplateParams
->getRequiresClause());
2060 NestedNameSpecifierLoc QualifierLoc
= D
->getQualifierLoc();
2062 QualifierLoc
= SemaRef
.SubstNestedNameSpecifierLoc(QualifierLoc
,
2068 // FIXME: Concepts: Do not substitute into constraint expressions
2069 Expr
*TrailingRequiresClause
= D
->getTrailingRequiresClause();
2070 if (TrailingRequiresClause
) {
2071 EnterExpressionEvaluationContext
ConstantEvaluated(
2072 SemaRef
, Sema::ExpressionEvaluationContext::Unevaluated
);
2073 ExprResult SubstRC
= SemaRef
.SubstExpr(TrailingRequiresClause
,
2075 if (SubstRC
.isInvalid())
2077 TrailingRequiresClause
= SubstRC
.get();
2078 if (!SemaRef
.CheckConstraintExpression(TrailingRequiresClause
))
2082 // If we're instantiating a local function declaration, put the result
2083 // in the enclosing namespace; otherwise we need to find the instantiated
2086 if (D
->isLocalExternDecl()) {
2088 SemaRef
.adjustContextForLocalExternDecl(DC
);
2089 } else if (isFriend
&& QualifierLoc
) {
2091 SS
.Adopt(QualifierLoc
);
2092 DC
= SemaRef
.computeDeclContext(SS
);
2093 if (!DC
) return nullptr;
2095 DC
= SemaRef
.FindInstantiatedContext(D
->getLocation(), D
->getDeclContext(),
2099 DeclarationNameInfo NameInfo
2100 = SemaRef
.SubstDeclarationNameInfo(D
->getNameInfo(), TemplateArgs
);
2102 if (FunctionRewriteKind
!= RewriteKind::None
)
2103 adjustForRewrite(FunctionRewriteKind
, D
, T
, TInfo
, NameInfo
);
2105 FunctionDecl
*Function
;
2106 if (auto *DGuide
= dyn_cast
<CXXDeductionGuideDecl
>(D
)) {
2107 Function
= CXXDeductionGuideDecl::Create(
2108 SemaRef
.Context
, DC
, D
->getInnerLocStart(),
2109 InstantiatedExplicitSpecifier
, NameInfo
, T
, TInfo
,
2110 D
->getSourceRange().getEnd());
2111 if (DGuide
->isCopyDeductionCandidate())
2112 cast
<CXXDeductionGuideDecl
>(Function
)->setIsCopyDeductionCandidate();
2113 Function
->setAccess(D
->getAccess());
2115 Function
= FunctionDecl::Create(
2116 SemaRef
.Context
, DC
, D
->getInnerLocStart(), NameInfo
, T
, TInfo
,
2117 D
->getCanonicalDecl()->getStorageClass(), D
->UsesFPIntrin(),
2118 D
->isInlineSpecified(), D
->hasWrittenPrototype(), D
->getConstexprKind(),
2119 TrailingRequiresClause
);
2120 Function
->setRangeEnd(D
->getSourceRange().getEnd());
2124 Function
->setImplicitlyInline();
2127 Function
->setQualifierInfo(QualifierLoc
);
2129 if (D
->isLocalExternDecl())
2130 Function
->setLocalExternDecl();
2132 DeclContext
*LexicalDC
= Owner
;
2133 if (!isFriend
&& D
->isOutOfLine() && !D
->isLocalExternDecl()) {
2134 assert(D
->getDeclContext()->isFileContext());
2135 LexicalDC
= D
->getDeclContext();
2138 Function
->setLexicalDeclContext(LexicalDC
);
2140 // Attach the parameters
2141 for (unsigned P
= 0; P
< Params
.size(); ++P
)
2143 Params
[P
]->setOwningFunction(Function
);
2144 Function
->setParams(Params
);
2146 if (TrailingRequiresClause
)
2147 Function
->setTrailingRequiresClause(TrailingRequiresClause
);
2149 if (TemplateParams
) {
2150 // Our resulting instantiation is actually a function template, since we
2151 // are substituting only the outer template parameters. For example, given
2153 // template<typename T>
2155 // template<typename U> friend void f(T, U);
2160 // We are instantiating the friend function template "f" within X<int>,
2161 // which means substituting int for T, but leaving "f" as a friend function
2163 // Build the function template itself.
2164 FunctionTemplate
= FunctionTemplateDecl::Create(SemaRef
.Context
, DC
,
2165 Function
->getLocation(),
2166 Function
->getDeclName(),
2167 TemplateParams
, Function
);
2168 Function
->setDescribedFunctionTemplate(FunctionTemplate
);
2170 FunctionTemplate
->setLexicalDeclContext(LexicalDC
);
2172 if (isFriend
&& D
->isThisDeclarationADefinition()) {
2173 FunctionTemplate
->setInstantiatedFromMemberTemplate(
2174 D
->getDescribedFunctionTemplate());
2176 } else if (FunctionTemplate
) {
2177 // Record this function template specialization.
2178 ArrayRef
<TemplateArgument
> Innermost
= TemplateArgs
.getInnermost();
2179 Function
->setFunctionTemplateSpecialization(FunctionTemplate
,
2180 TemplateArgumentList::CreateCopy(SemaRef
.Context
,
2182 /*InsertPos=*/nullptr);
2183 } else if (isFriend
&& D
->isThisDeclarationADefinition()) {
2184 // Do not connect the friend to the template unless it's actually a
2185 // definition. We don't want non-template functions to be marked as being
2186 // template instantiations.
2187 Function
->setInstantiationOfMemberFunction(D
, TSK_ImplicitInstantiation
);
2188 } else if (!isFriend
) {
2189 // If this is not a function template, and this is not a friend (that is,
2190 // this is a locally declared function), save the instantiation relationship
2191 // for the purposes of constraint instantiation.
2192 Function
->setInstantiatedFromDecl(D
);
2196 Function
->setObjectOfFriendDecl();
2197 if (FunctionTemplateDecl
*FT
= Function
->getDescribedFunctionTemplate())
2198 FT
->setObjectOfFriendDecl();
2201 if (InitFunctionInstantiation(Function
, D
))
2202 Function
->setInvalidDecl();
2204 bool IsExplicitSpecialization
= false;
2206 LookupResult
Previous(
2207 SemaRef
, Function
->getDeclName(), SourceLocation(),
2208 D
->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage
2209 : Sema::LookupOrdinaryName
,
2210 D
->isLocalExternDecl() ? Sema::ForExternalRedeclaration
2211 : SemaRef
.forRedeclarationInCurContext());
2213 if (DependentFunctionTemplateSpecializationInfo
*Info
2214 = D
->getDependentSpecializationInfo()) {
2215 assert(isFriend
&& "non-friend has dependent specialization info?");
2217 // Instantiate the explicit template arguments.
2218 TemplateArgumentListInfo
ExplicitArgs(Info
->getLAngleLoc(),
2219 Info
->getRAngleLoc());
2220 if (SemaRef
.SubstTemplateArguments(Info
->arguments(), TemplateArgs
,
2224 // Map the candidate templates to their instantiations.
2225 for (unsigned I
= 0, E
= Info
->getNumTemplates(); I
!= E
; ++I
) {
2226 Decl
*Temp
= SemaRef
.FindInstantiatedDecl(D
->getLocation(),
2227 Info
->getTemplate(I
),
2229 if (!Temp
) return nullptr;
2231 Previous
.addDecl(cast
<FunctionTemplateDecl
>(Temp
));
2234 if (SemaRef
.CheckFunctionTemplateSpecialization(Function
,
2237 Function
->setInvalidDecl();
2239 IsExplicitSpecialization
= true;
2240 } else if (const ASTTemplateArgumentListInfo
*Info
=
2241 D
->getTemplateSpecializationArgsAsWritten()) {
2242 // The name of this function was written as a template-id.
2243 SemaRef
.LookupQualifiedName(Previous
, DC
);
2245 // Instantiate the explicit template arguments.
2246 TemplateArgumentListInfo
ExplicitArgs(Info
->getLAngleLoc(),
2247 Info
->getRAngleLoc());
2248 if (SemaRef
.SubstTemplateArguments(Info
->arguments(), TemplateArgs
,
2252 if (SemaRef
.CheckFunctionTemplateSpecialization(Function
,
2255 Function
->setInvalidDecl();
2257 IsExplicitSpecialization
= true;
2258 } else if (TemplateParams
|| !FunctionTemplate
) {
2259 // Look only into the namespace where the friend would be declared to
2260 // find a previous declaration. This is the innermost enclosing namespace,
2261 // as described in ActOnFriendFunctionDecl.
2262 SemaRef
.LookupQualifiedName(Previous
, DC
->getRedeclContext());
2264 // In C++, the previous declaration we find might be a tag type
2265 // (class or enum). In this case, the new declaration will hide the
2266 // tag type. Note that this does does not apply if we're declaring a
2267 // typedef (C++ [dcl.typedef]p4).
2268 if (Previous
.isSingleTagDecl())
2271 // Filter out previous declarations that don't match the scope. The only
2272 // effect this has is to remove declarations found in inline namespaces
2273 // for friend declarations with unqualified names.
2274 SemaRef
.FilterLookupForScope(Previous
, DC
, /*Scope*/ nullptr,
2275 /*ConsiderLinkage*/ true,
2276 QualifierLoc
.hasQualifier());
2279 SemaRef
.CheckFunctionDeclaration(/*Scope*/ nullptr, Function
, Previous
,
2280 IsExplicitSpecialization
,
2281 Function
->isThisDeclarationADefinition());
2283 // Check the template parameter list against the previous declaration. The
2284 // goal here is to pick up default arguments added since the friend was
2285 // declared; we know the template parameter lists match, since otherwise
2286 // we would not have picked this template as the previous declaration.
2287 if (isFriend
&& TemplateParams
&& FunctionTemplate
->getPreviousDecl()) {
2288 SemaRef
.CheckTemplateParameterList(
2290 FunctionTemplate
->getPreviousDecl()->getTemplateParameters(),
2291 Function
->isThisDeclarationADefinition()
2292 ? Sema::TPC_FriendFunctionTemplateDefinition
2293 : Sema::TPC_FriendFunctionTemplate
);
2296 // If we're introducing a friend definition after the first use, trigger
2298 // FIXME: If this is a friend function template definition, we should check
2299 // to see if any specializations have been used.
2300 if (isFriend
&& D
->isThisDeclarationADefinition() && Function
->isUsed(false)) {
2301 if (MemberSpecializationInfo
*MSInfo
=
2302 Function
->getMemberSpecializationInfo()) {
2303 if (MSInfo
->getPointOfInstantiation().isInvalid()) {
2304 SourceLocation Loc
= D
->getLocation(); // FIXME
2305 MSInfo
->setPointOfInstantiation(Loc
);
2306 SemaRef
.PendingLocalImplicitInstantiations
.push_back(
2307 std::make_pair(Function
, Loc
));
2312 if (D
->isExplicitlyDefaulted()) {
2313 if (SubstDefaultedFunction(Function
, D
))
2317 SemaRef
.SetDeclDeleted(Function
, D
->getLocation());
2319 NamedDecl
*PrincipalDecl
=
2320 (TemplateParams
? cast
<NamedDecl
>(FunctionTemplate
) : Function
);
2322 // If this declaration lives in a different context from its lexical context,
2323 // add it to the corresponding lookup table.
2325 (Function
->isLocalExternDecl() && !Function
->getPreviousDecl()))
2326 DC
->makeDeclVisibleInContext(PrincipalDecl
);
2328 if (Function
->isOverloadedOperator() && !DC
->isRecord() &&
2329 PrincipalDecl
->isInIdentifierNamespace(Decl::IDNS_Ordinary
))
2330 PrincipalDecl
->setNonMemberOperator();
2335 Decl
*TemplateDeclInstantiator::VisitCXXMethodDecl(
2336 CXXMethodDecl
*D
, TemplateParameterList
*TemplateParams
,
2337 Optional
<const ASTTemplateArgumentListInfo
*> ClassScopeSpecializationArgs
,
2338 RewriteKind FunctionRewriteKind
) {
2339 FunctionTemplateDecl
*FunctionTemplate
= D
->getDescribedFunctionTemplate();
2340 if (FunctionTemplate
&& !TemplateParams
) {
2341 // We are creating a function template specialization from a function
2342 // template. Check whether there is already a function template
2343 // specialization for this particular set of template arguments.
2344 ArrayRef
<TemplateArgument
> Innermost
= TemplateArgs
.getInnermost();
2346 void *InsertPos
= nullptr;
2347 FunctionDecl
*SpecFunc
2348 = FunctionTemplate
->findSpecialization(Innermost
, InsertPos
);
2350 // If we already have a function template specialization, return it.
2356 if (FunctionTemplate
)
2357 isFriend
= (FunctionTemplate
->getFriendObjectKind() != Decl::FOK_None
);
2359 isFriend
= (D
->getFriendObjectKind() != Decl::FOK_None
);
2361 bool MergeWithParentScope
= (TemplateParams
!= nullptr) ||
2362 !(isa
<Decl
>(Owner
) &&
2363 cast
<Decl
>(Owner
)->isDefinedOutsideFunctionOrMethod());
2364 LocalInstantiationScope
Scope(SemaRef
, MergeWithParentScope
);
2366 // Instantiate enclosing template arguments for friends.
2367 SmallVector
<TemplateParameterList
*, 4> TempParamLists
;
2368 unsigned NumTempParamLists
= 0;
2369 if (isFriend
&& (NumTempParamLists
= D
->getNumTemplateParameterLists())) {
2370 TempParamLists
.resize(NumTempParamLists
);
2371 for (unsigned I
= 0; I
!= NumTempParamLists
; ++I
) {
2372 TemplateParameterList
*TempParams
= D
->getTemplateParameterList(I
);
2373 TemplateParameterList
*InstParams
= SubstTemplateParams(TempParams
);
2376 TempParamLists
[I
] = InstParams
;
2380 ExplicitSpecifier InstantiatedExplicitSpecifier
=
2381 instantiateExplicitSpecifier(SemaRef
, TemplateArgs
,
2382 ExplicitSpecifier::getFromDecl(D
), D
);
2383 if (InstantiatedExplicitSpecifier
.isInvalid())
2386 // Implicit destructors/constructors created for local classes in
2387 // DeclareImplicit* (see SemaDeclCXX.cpp) might not have an associated TSI.
2388 // Unfortunately there isn't enough context in those functions to
2389 // conditionally populate the TSI without breaking non-template related use
2390 // cases. Populate TSIs prior to calling SubstFunctionType to make sure we get
2391 // a proper transformation.
2392 if (cast
<CXXRecordDecl
>(D
->getParent())->isLambda() &&
2393 !D
->getTypeSourceInfo() &&
2394 isa
<CXXConstructorDecl
, CXXDestructorDecl
>(D
)) {
2395 TypeSourceInfo
*TSI
=
2396 SemaRef
.Context
.getTrivialTypeSourceInfo(D
->getType());
2397 D
->setTypeSourceInfo(TSI
);
2400 SmallVector
<ParmVarDecl
*, 4> Params
;
2401 TypeSourceInfo
*TInfo
= SubstFunctionType(D
, Params
);
2404 QualType T
= adjustFunctionTypeForInstantiation(SemaRef
.Context
, D
, TInfo
);
2406 if (TemplateParams
&& TemplateParams
->size()) {
2408 dyn_cast
<TemplateTypeParmDecl
>(TemplateParams
->asArray().back());
2409 if (LastParam
&& LastParam
->isImplicit() &&
2410 LastParam
->hasTypeConstraint()) {
2411 // In abbreviated templates, the type-constraints of invented template
2412 // type parameters are instantiated with the function type, invalidating
2413 // the TemplateParameterList which relied on the template type parameter
2414 // not having a type constraint. Recreate the TemplateParameterList with
2415 // the updated parameter list.
2416 TemplateParams
= TemplateParameterList::Create(
2417 SemaRef
.Context
, TemplateParams
->getTemplateLoc(),
2418 TemplateParams
->getLAngleLoc(), TemplateParams
->asArray(),
2419 TemplateParams
->getRAngleLoc(), TemplateParams
->getRequiresClause());
2423 NestedNameSpecifierLoc QualifierLoc
= D
->getQualifierLoc();
2425 QualifierLoc
= SemaRef
.SubstNestedNameSpecifierLoc(QualifierLoc
,
2431 // FIXME: Concepts: Do not substitute into constraint expressions
2432 Expr
*TrailingRequiresClause
= D
->getTrailingRequiresClause();
2433 if (TrailingRequiresClause
) {
2434 EnterExpressionEvaluationContext
ConstantEvaluated(
2435 SemaRef
, Sema::ExpressionEvaluationContext::Unevaluated
);
2436 auto *ThisContext
= dyn_cast_or_null
<CXXRecordDecl
>(Owner
);
2437 Sema::CXXThisScopeRAII
ThisScope(SemaRef
, ThisContext
,
2438 D
->getMethodQualifiers(), ThisContext
);
2439 ExprResult SubstRC
= SemaRef
.SubstExpr(TrailingRequiresClause
,
2441 if (SubstRC
.isInvalid())
2443 TrailingRequiresClause
= SubstRC
.get();
2444 if (!SemaRef
.CheckConstraintExpression(TrailingRequiresClause
))
2448 DeclContext
*DC
= Owner
;
2452 SS
.Adopt(QualifierLoc
);
2453 DC
= SemaRef
.computeDeclContext(SS
);
2455 if (DC
&& SemaRef
.RequireCompleteDeclContext(SS
, DC
))
2458 DC
= SemaRef
.FindInstantiatedContext(D
->getLocation(),
2459 D
->getDeclContext(),
2462 if (!DC
) return nullptr;
2465 DeclarationNameInfo NameInfo
2466 = SemaRef
.SubstDeclarationNameInfo(D
->getNameInfo(), TemplateArgs
);
2468 if (FunctionRewriteKind
!= RewriteKind::None
)
2469 adjustForRewrite(FunctionRewriteKind
, D
, T
, TInfo
, NameInfo
);
2471 // Build the instantiated method declaration.
2472 CXXRecordDecl
*Record
= cast
<CXXRecordDecl
>(DC
);
2473 CXXMethodDecl
*Method
= nullptr;
2475 SourceLocation StartLoc
= D
->getInnerLocStart();
2476 if (CXXConstructorDecl
*Constructor
= dyn_cast
<CXXConstructorDecl
>(D
)) {
2477 Method
= CXXConstructorDecl::Create(
2478 SemaRef
.Context
, Record
, StartLoc
, NameInfo
, T
, TInfo
,
2479 InstantiatedExplicitSpecifier
, Constructor
->UsesFPIntrin(),
2480 Constructor
->isInlineSpecified(), false,
2481 Constructor
->getConstexprKind(), InheritedConstructor(),
2482 TrailingRequiresClause
);
2483 Method
->setRangeEnd(Constructor
->getEndLoc());
2484 if (Constructor
->isDefaultConstructor() ||
2485 Constructor
->isCopyOrMoveConstructor())
2486 Method
->setIneligibleOrNotSelected(true);
2487 } else if (CXXDestructorDecl
*Destructor
= dyn_cast
<CXXDestructorDecl
>(D
)) {
2488 Method
= CXXDestructorDecl::Create(
2489 SemaRef
.Context
, Record
, StartLoc
, NameInfo
, T
, TInfo
,
2490 Destructor
->UsesFPIntrin(), Destructor
->isInlineSpecified(), false,
2491 Destructor
->getConstexprKind(), TrailingRequiresClause
);
2492 Method
->setIneligibleOrNotSelected(true);
2493 Method
->setRangeEnd(Destructor
->getEndLoc());
2494 Method
->setDeclName(SemaRef
.Context
.DeclarationNames
.getCXXDestructorName(
2495 SemaRef
.Context
.getCanonicalType(
2496 SemaRef
.Context
.getTypeDeclType(Record
))));
2497 } else if (CXXConversionDecl
*Conversion
= dyn_cast
<CXXConversionDecl
>(D
)) {
2498 Method
= CXXConversionDecl::Create(
2499 SemaRef
.Context
, Record
, StartLoc
, NameInfo
, T
, TInfo
,
2500 Conversion
->UsesFPIntrin(), Conversion
->isInlineSpecified(),
2501 InstantiatedExplicitSpecifier
, Conversion
->getConstexprKind(),
2502 Conversion
->getEndLoc(), TrailingRequiresClause
);
2504 StorageClass SC
= D
->isStatic() ? SC_Static
: SC_None
;
2505 Method
= CXXMethodDecl::Create(
2506 SemaRef
.Context
, Record
, StartLoc
, NameInfo
, T
, TInfo
, SC
,
2507 D
->UsesFPIntrin(), D
->isInlineSpecified(), D
->getConstexprKind(),
2508 D
->getEndLoc(), TrailingRequiresClause
);
2509 if (D
->isMoveAssignmentOperator() || D
->isCopyAssignmentOperator())
2510 Method
->setIneligibleOrNotSelected(true);
2514 Method
->setImplicitlyInline();
2517 Method
->setQualifierInfo(QualifierLoc
);
2519 if (TemplateParams
) {
2520 // Our resulting instantiation is actually a function template, since we
2521 // are substituting only the outer template parameters. For example, given
2523 // template<typename T>
2525 // template<typename U> void f(T, U);
2530 // We are instantiating the member template "f" within X<int>, which means
2531 // substituting int for T, but leaving "f" as a member function template.
2532 // Build the function template itself.
2533 FunctionTemplate
= FunctionTemplateDecl::Create(SemaRef
.Context
, Record
,
2534 Method
->getLocation(),
2535 Method
->getDeclName(),
2536 TemplateParams
, Method
);
2538 FunctionTemplate
->setLexicalDeclContext(Owner
);
2539 FunctionTemplate
->setObjectOfFriendDecl();
2540 } else if (D
->isOutOfLine())
2541 FunctionTemplate
->setLexicalDeclContext(D
->getLexicalDeclContext());
2542 Method
->setDescribedFunctionTemplate(FunctionTemplate
);
2543 } else if (FunctionTemplate
) {
2544 // Record this function template specialization.
2545 ArrayRef
<TemplateArgument
> Innermost
= TemplateArgs
.getInnermost();
2546 Method
->setFunctionTemplateSpecialization(FunctionTemplate
,
2547 TemplateArgumentList::CreateCopy(SemaRef
.Context
,
2549 /*InsertPos=*/nullptr);
2550 } else if (!isFriend
) {
2551 // Record that this is an instantiation of a member function.
2552 Method
->setInstantiationOfMemberFunction(D
, TSK_ImplicitInstantiation
);
2555 // If we are instantiating a member function defined
2556 // out-of-line, the instantiation will have the same lexical
2557 // context (which will be a namespace scope) as the template.
2559 if (NumTempParamLists
)
2560 Method
->setTemplateParameterListsInfo(
2562 llvm::makeArrayRef(TempParamLists
.data(), NumTempParamLists
));
2564 Method
->setLexicalDeclContext(Owner
);
2565 Method
->setObjectOfFriendDecl();
2566 } else if (D
->isOutOfLine())
2567 Method
->setLexicalDeclContext(D
->getLexicalDeclContext());
2569 // Attach the parameters
2570 for (unsigned P
= 0; P
< Params
.size(); ++P
)
2571 Params
[P
]->setOwningFunction(Method
);
2572 Method
->setParams(Params
);
2574 if (InitMethodInstantiation(Method
, D
))
2575 Method
->setInvalidDecl();
2577 LookupResult
Previous(SemaRef
, NameInfo
, Sema::LookupOrdinaryName
,
2578 Sema::ForExternalRedeclaration
);
2580 bool IsExplicitSpecialization
= false;
2582 // If the name of this function was written as a template-id, instantiate
2583 // the explicit template arguments.
2584 if (DependentFunctionTemplateSpecializationInfo
*Info
2585 = D
->getDependentSpecializationInfo()) {
2586 assert(isFriend
&& "non-friend has dependent specialization info?");
2588 // Instantiate the explicit template arguments.
2589 TemplateArgumentListInfo
ExplicitArgs(Info
->getLAngleLoc(),
2590 Info
->getRAngleLoc());
2591 if (SemaRef
.SubstTemplateArguments(Info
->arguments(), TemplateArgs
,
2595 // Map the candidate templates to their instantiations.
2596 for (unsigned I
= 0, E
= Info
->getNumTemplates(); I
!= E
; ++I
) {
2597 Decl
*Temp
= SemaRef
.FindInstantiatedDecl(D
->getLocation(),
2598 Info
->getTemplate(I
),
2600 if (!Temp
) return nullptr;
2602 Previous
.addDecl(cast
<FunctionTemplateDecl
>(Temp
));
2605 if (SemaRef
.CheckFunctionTemplateSpecialization(Method
,
2608 Method
->setInvalidDecl();
2610 IsExplicitSpecialization
= true;
2611 } else if (const ASTTemplateArgumentListInfo
*Info
=
2612 ClassScopeSpecializationArgs
.value_or(
2613 D
->getTemplateSpecializationArgsAsWritten())) {
2614 SemaRef
.LookupQualifiedName(Previous
, DC
);
2616 TemplateArgumentListInfo
ExplicitArgs(Info
->getLAngleLoc(),
2617 Info
->getRAngleLoc());
2618 if (SemaRef
.SubstTemplateArguments(Info
->arguments(), TemplateArgs
,
2622 if (SemaRef
.CheckFunctionTemplateSpecialization(Method
,
2625 Method
->setInvalidDecl();
2627 IsExplicitSpecialization
= true;
2628 } else if (ClassScopeSpecializationArgs
) {
2629 // Class-scope explicit specialization written without explicit template
2631 SemaRef
.LookupQualifiedName(Previous
, DC
);
2632 if (SemaRef
.CheckFunctionTemplateSpecialization(Method
, nullptr, Previous
))
2633 Method
->setInvalidDecl();
2635 IsExplicitSpecialization
= true;
2636 } else if (!FunctionTemplate
|| TemplateParams
|| isFriend
) {
2637 SemaRef
.LookupQualifiedName(Previous
, Record
);
2639 // In C++, the previous declaration we find might be a tag type
2640 // (class or enum). In this case, the new declaration will hide the
2641 // tag type. Note that this does does not apply if we're declaring a
2642 // typedef (C++ [dcl.typedef]p4).
2643 if (Previous
.isSingleTagDecl())
2647 SemaRef
.CheckFunctionDeclaration(nullptr, Method
, Previous
,
2648 IsExplicitSpecialization
,
2649 Method
->isThisDeclarationADefinition());
2652 SemaRef
.CheckPureMethod(Method
, SourceRange());
2654 // Propagate access. For a non-friend declaration, the access is
2655 // whatever we're propagating from. For a friend, it should be the
2656 // previous declaration we just found.
2657 if (isFriend
&& Method
->getPreviousDecl())
2658 Method
->setAccess(Method
->getPreviousDecl()->getAccess());
2660 Method
->setAccess(D
->getAccess());
2661 if (FunctionTemplate
)
2662 FunctionTemplate
->setAccess(Method
->getAccess());
2664 SemaRef
.CheckOverrideControl(Method
);
2666 // If a function is defined as defaulted or deleted, mark it as such now.
2667 if (D
->isExplicitlyDefaulted()) {
2668 if (SubstDefaultedFunction(Method
, D
))
2671 if (D
->isDeletedAsWritten())
2672 SemaRef
.SetDeclDeleted(Method
, Method
->getLocation());
2674 // If this is an explicit specialization, mark the implicitly-instantiated
2675 // template specialization as being an explicit specialization too.
2676 // FIXME: Is this necessary?
2677 if (IsExplicitSpecialization
&& !isFriend
)
2678 SemaRef
.CompleteMemberSpecialization(Method
, Previous
);
2680 // If there's a function template, let our caller handle it.
2681 if (FunctionTemplate
) {
2684 // Don't hide a (potentially) valid declaration with an invalid one.
2685 } else if (Method
->isInvalidDecl() && !Previous
.empty()) {
2688 // Otherwise, check access to friends and make them visible.
2689 } else if (isFriend
) {
2690 // We only need to re-check access for methods which we didn't
2691 // manage to match during parsing.
2692 if (!D
->getPreviousDecl())
2693 SemaRef
.CheckFriendAccess(Method
);
2695 Record
->makeDeclVisibleInContext(Method
);
2697 // Otherwise, add the declaration. We don't need to do this for
2698 // class-scope specializations because we'll have matched them with
2699 // the appropriate template.
2701 Owner
->addDecl(Method
);
2704 // PR17480: Honor the used attribute to instantiate member function
2706 if (Method
->hasAttr
<UsedAttr
>()) {
2707 if (const auto *A
= dyn_cast
<CXXRecordDecl
>(Owner
)) {
2709 if (const MemberSpecializationInfo
*MSInfo
=
2710 A
->getMemberSpecializationInfo())
2711 Loc
= MSInfo
->getPointOfInstantiation();
2712 else if (const auto *Spec
= dyn_cast
<ClassTemplateSpecializationDecl
>(A
))
2713 Loc
= Spec
->getPointOfInstantiation();
2714 SemaRef
.MarkFunctionReferenced(Loc
, Method
);
2721 Decl
*TemplateDeclInstantiator::VisitCXXConstructorDecl(CXXConstructorDecl
*D
) {
2722 return VisitCXXMethodDecl(D
);
2725 Decl
*TemplateDeclInstantiator::VisitCXXDestructorDecl(CXXDestructorDecl
*D
) {
2726 return VisitCXXMethodDecl(D
);
2729 Decl
*TemplateDeclInstantiator::VisitCXXConversionDecl(CXXConversionDecl
*D
) {
2730 return VisitCXXMethodDecl(D
);
2733 Decl
*TemplateDeclInstantiator::VisitParmVarDecl(ParmVarDecl
*D
) {
2734 return SemaRef
.SubstParmVarDecl(D
, TemplateArgs
, /*indexAdjustment*/ 0, None
,
2735 /*ExpectParameterPack=*/ false);
2738 Decl
*TemplateDeclInstantiator::VisitTemplateTypeParmDecl(
2739 TemplateTypeParmDecl
*D
) {
2740 assert(D
->getTypeForDecl()->isTemplateTypeParmType());
2742 Optional
<unsigned> NumExpanded
;
2744 if (const TypeConstraint
*TC
= D
->getTypeConstraint()) {
2745 if (D
->isPackExpansion() && !D
->isExpandedParameterPack()) {
2746 assert(TC
->getTemplateArgsAsWritten() &&
2747 "type parameter can only be an expansion when explicit arguments "
2749 // The template type parameter pack's type is a pack expansion of types.
2750 // Determine whether we need to expand this parameter pack into separate
2752 SmallVector
<UnexpandedParameterPack
, 2> Unexpanded
;
2753 for (auto &ArgLoc
: TC
->getTemplateArgsAsWritten()->arguments())
2754 SemaRef
.collectUnexpandedParameterPacks(ArgLoc
, Unexpanded
);
2756 // Determine whether the set of unexpanded parameter packs can and should
2759 bool RetainExpansion
= false;
2760 if (SemaRef
.CheckParameterPacksForExpansion(
2761 cast
<CXXFoldExpr
>(TC
->getImmediatelyDeclaredConstraint())
2763 SourceRange(TC
->getConceptNameLoc(),
2764 TC
->hasExplicitTemplateArgs() ?
2765 TC
->getTemplateArgsAsWritten()->getRAngleLoc() :
2766 TC
->getConceptNameInfo().getEndLoc()),
2767 Unexpanded
, TemplateArgs
, Expand
, RetainExpansion
, NumExpanded
))
2772 TemplateTypeParmDecl
*Inst
= TemplateTypeParmDecl::Create(
2773 SemaRef
.Context
, Owner
, D
->getBeginLoc(), D
->getLocation(),
2774 D
->getDepth() - TemplateArgs
.getNumSubstitutedLevels(), D
->getIndex(),
2775 D
->getIdentifier(), D
->wasDeclaredWithTypename(), D
->isParameterPack(),
2776 D
->hasTypeConstraint(), NumExpanded
);
2778 Inst
->setAccess(AS_public
);
2779 Inst
->setImplicit(D
->isImplicit());
2780 if (auto *TC
= D
->getTypeConstraint()) {
2781 if (!D
->isImplicit()) {
2782 // Invented template parameter type constraints will be instantiated with
2783 // the corresponding auto-typed parameter as it might reference other
2786 // TODO: Concepts: do not instantiate the constraint (delayed constraint
2788 if (SemaRef
.SubstTypeConstraint(Inst
, TC
, TemplateArgs
))
2792 if (D
->hasDefaultArgument() && !D
->defaultArgumentWasInherited()) {
2793 TypeSourceInfo
*InstantiatedDefaultArg
=
2794 SemaRef
.SubstType(D
->getDefaultArgumentInfo(), TemplateArgs
,
2795 D
->getDefaultArgumentLoc(), D
->getDeclName());
2796 if (InstantiatedDefaultArg
)
2797 Inst
->setDefaultArgument(InstantiatedDefaultArg
);
2800 // Introduce this template parameter's instantiation into the instantiation
2802 SemaRef
.CurrentInstantiationScope
->InstantiatedLocal(D
, Inst
);
2807 Decl
*TemplateDeclInstantiator::VisitNonTypeTemplateParmDecl(
2808 NonTypeTemplateParmDecl
*D
) {
2809 // Substitute into the type of the non-type template parameter.
2810 TypeLoc TL
= D
->getTypeSourceInfo()->getTypeLoc();
2811 SmallVector
<TypeSourceInfo
*, 4> ExpandedParameterPackTypesAsWritten
;
2812 SmallVector
<QualType
, 4> ExpandedParameterPackTypes
;
2813 bool IsExpandedParameterPack
= false;
2816 bool Invalid
= false;
2818 if (D
->isExpandedParameterPack()) {
2819 // The non-type template parameter pack is an already-expanded pack
2820 // expansion of types. Substitute into each of the expanded types.
2821 ExpandedParameterPackTypes
.reserve(D
->getNumExpansionTypes());
2822 ExpandedParameterPackTypesAsWritten
.reserve(D
->getNumExpansionTypes());
2823 for (unsigned I
= 0, N
= D
->getNumExpansionTypes(); I
!= N
; ++I
) {
2824 TypeSourceInfo
*NewDI
=
2825 SemaRef
.SubstType(D
->getExpansionTypeSourceInfo(I
), TemplateArgs
,
2826 D
->getLocation(), D
->getDeclName());
2831 SemaRef
.CheckNonTypeTemplateParameterType(NewDI
, D
->getLocation());
2835 ExpandedParameterPackTypesAsWritten
.push_back(NewDI
);
2836 ExpandedParameterPackTypes
.push_back(NewT
);
2839 IsExpandedParameterPack
= true;
2840 DI
= D
->getTypeSourceInfo();
2842 } else if (D
->isPackExpansion()) {
2843 // The non-type template parameter pack's type is a pack expansion of types.
2844 // Determine whether we need to expand this parameter pack into separate
2846 PackExpansionTypeLoc Expansion
= TL
.castAs
<PackExpansionTypeLoc
>();
2847 TypeLoc Pattern
= Expansion
.getPatternLoc();
2848 SmallVector
<UnexpandedParameterPack
, 2> Unexpanded
;
2849 SemaRef
.collectUnexpandedParameterPacks(Pattern
, Unexpanded
);
2851 // Determine whether the set of unexpanded parameter packs can and should
2854 bool RetainExpansion
= false;
2855 Optional
<unsigned> OrigNumExpansions
2856 = Expansion
.getTypePtr()->getNumExpansions();
2857 Optional
<unsigned> NumExpansions
= OrigNumExpansions
;
2858 if (SemaRef
.CheckParameterPacksForExpansion(Expansion
.getEllipsisLoc(),
2859 Pattern
.getSourceRange(),
2862 Expand
, RetainExpansion
,
2867 for (unsigned I
= 0; I
!= *NumExpansions
; ++I
) {
2868 Sema::ArgumentPackSubstitutionIndexRAII
SubstIndex(SemaRef
, I
);
2869 TypeSourceInfo
*NewDI
= SemaRef
.SubstType(Pattern
, TemplateArgs
,
2876 SemaRef
.CheckNonTypeTemplateParameterType(NewDI
, D
->getLocation());
2880 ExpandedParameterPackTypesAsWritten
.push_back(NewDI
);
2881 ExpandedParameterPackTypes
.push_back(NewT
);
2884 // Note that we have an expanded parameter pack. The "type" of this
2885 // expanded parameter pack is the original expansion type, but callers
2886 // will end up using the expanded parameter pack types for type-checking.
2887 IsExpandedParameterPack
= true;
2888 DI
= D
->getTypeSourceInfo();
2891 // We cannot fully expand the pack expansion now, so substitute into the
2892 // pattern and create a new pack expansion type.
2893 Sema::ArgumentPackSubstitutionIndexRAII
SubstIndex(SemaRef
, -1);
2894 TypeSourceInfo
*NewPattern
= SemaRef
.SubstType(Pattern
, TemplateArgs
,
2900 SemaRef
.CheckNonTypeTemplateParameterType(NewPattern
, D
->getLocation());
2901 DI
= SemaRef
.CheckPackExpansion(NewPattern
, Expansion
.getEllipsisLoc(),
2909 // Simple case: substitution into a parameter that is not a parameter pack.
2910 DI
= SemaRef
.SubstType(D
->getTypeSourceInfo(), TemplateArgs
,
2911 D
->getLocation(), D
->getDeclName());
2915 // Check that this type is acceptable for a non-type template parameter.
2916 T
= SemaRef
.CheckNonTypeTemplateParameterType(DI
, D
->getLocation());
2918 T
= SemaRef
.Context
.IntTy
;
2923 NonTypeTemplateParmDecl
*Param
;
2924 if (IsExpandedParameterPack
)
2925 Param
= NonTypeTemplateParmDecl::Create(
2926 SemaRef
.Context
, Owner
, D
->getInnerLocStart(), D
->getLocation(),
2927 D
->getDepth() - TemplateArgs
.getNumSubstitutedLevels(),
2928 D
->getPosition(), D
->getIdentifier(), T
, DI
, ExpandedParameterPackTypes
,
2929 ExpandedParameterPackTypesAsWritten
);
2931 Param
= NonTypeTemplateParmDecl::Create(
2932 SemaRef
.Context
, Owner
, D
->getInnerLocStart(), D
->getLocation(),
2933 D
->getDepth() - TemplateArgs
.getNumSubstitutedLevels(),
2934 D
->getPosition(), D
->getIdentifier(), T
, D
->isParameterPack(), DI
);
2936 if (AutoTypeLoc AutoLoc
= DI
->getTypeLoc().getContainedAutoTypeLoc())
2937 if (AutoLoc
.isConstrained())
2938 if (SemaRef
.AttachTypeConstraint(
2940 IsExpandedParameterPack
2941 ? DI
->getTypeLoc().getAs
<PackExpansionTypeLoc
>()
2943 : SourceLocation()))
2946 Param
->setAccess(AS_public
);
2947 Param
->setImplicit(D
->isImplicit());
2949 Param
->setInvalidDecl();
2951 if (D
->hasDefaultArgument() && !D
->defaultArgumentWasInherited()) {
2952 EnterExpressionEvaluationContext
ConstantEvaluated(
2953 SemaRef
, Sema::ExpressionEvaluationContext::ConstantEvaluated
);
2954 ExprResult Value
= SemaRef
.SubstExpr(D
->getDefaultArgument(), TemplateArgs
);
2955 if (!Value
.isInvalid())
2956 Param
->setDefaultArgument(Value
.get());
2959 // Introduce this template parameter's instantiation into the instantiation
2961 SemaRef
.CurrentInstantiationScope
->InstantiatedLocal(D
, Param
);
2965 static void collectUnexpandedParameterPacks(
2967 TemplateParameterList
*Params
,
2968 SmallVectorImpl
<UnexpandedParameterPack
> &Unexpanded
) {
2969 for (const auto &P
: *Params
) {
2970 if (P
->isTemplateParameterPack())
2972 if (NonTypeTemplateParmDecl
*NTTP
= dyn_cast
<NonTypeTemplateParmDecl
>(P
))
2973 S
.collectUnexpandedParameterPacks(NTTP
->getTypeSourceInfo()->getTypeLoc(),
2975 if (TemplateTemplateParmDecl
*TTP
= dyn_cast
<TemplateTemplateParmDecl
>(P
))
2976 collectUnexpandedParameterPacks(S
, TTP
->getTemplateParameters(),
2982 TemplateDeclInstantiator::VisitTemplateTemplateParmDecl(
2983 TemplateTemplateParmDecl
*D
) {
2984 // Instantiate the template parameter list of the template template parameter.
2985 TemplateParameterList
*TempParams
= D
->getTemplateParameters();
2986 TemplateParameterList
*InstParams
;
2987 SmallVector
<TemplateParameterList
*, 8> ExpandedParams
;
2989 bool IsExpandedParameterPack
= false;
2991 if (D
->isExpandedParameterPack()) {
2992 // The template template parameter pack is an already-expanded pack
2993 // expansion of template parameters. Substitute into each of the expanded
2995 ExpandedParams
.reserve(D
->getNumExpansionTemplateParameters());
2996 for (unsigned I
= 0, N
= D
->getNumExpansionTemplateParameters();
2998 LocalInstantiationScope
Scope(SemaRef
);
2999 TemplateParameterList
*Expansion
=
3000 SubstTemplateParams(D
->getExpansionTemplateParameters(I
));
3003 ExpandedParams
.push_back(Expansion
);
3006 IsExpandedParameterPack
= true;
3007 InstParams
= TempParams
;
3008 } else if (D
->isPackExpansion()) {
3009 // The template template parameter pack expands to a pack of template
3010 // template parameters. Determine whether we need to expand this parameter
3011 // pack into separate parameters.
3012 SmallVector
<UnexpandedParameterPack
, 2> Unexpanded
;
3013 collectUnexpandedParameterPacks(SemaRef
, D
->getTemplateParameters(),
3016 // Determine whether the set of unexpanded parameter packs can and should
3019 bool RetainExpansion
= false;
3020 Optional
<unsigned> NumExpansions
;
3021 if (SemaRef
.CheckParameterPacksForExpansion(D
->getLocation(),
3022 TempParams
->getSourceRange(),
3025 Expand
, RetainExpansion
,
3030 for (unsigned I
= 0; I
!= *NumExpansions
; ++I
) {
3031 Sema::ArgumentPackSubstitutionIndexRAII
SubstIndex(SemaRef
, I
);
3032 LocalInstantiationScope
Scope(SemaRef
);
3033 TemplateParameterList
*Expansion
= SubstTemplateParams(TempParams
);
3036 ExpandedParams
.push_back(Expansion
);
3039 // Note that we have an expanded parameter pack. The "type" of this
3040 // expanded parameter pack is the original expansion type, but callers
3041 // will end up using the expanded parameter pack types for type-checking.
3042 IsExpandedParameterPack
= true;
3043 InstParams
= TempParams
;
3045 // We cannot fully expand the pack expansion now, so just substitute
3046 // into the pattern.
3047 Sema::ArgumentPackSubstitutionIndexRAII
SubstIndex(SemaRef
, -1);
3049 LocalInstantiationScope
Scope(SemaRef
);
3050 InstParams
= SubstTemplateParams(TempParams
);
3055 // Perform the actual substitution of template parameters within a new,
3056 // local instantiation scope.
3057 LocalInstantiationScope
Scope(SemaRef
);
3058 InstParams
= SubstTemplateParams(TempParams
);
3063 // Build the template template parameter.
3064 TemplateTemplateParmDecl
*Param
;
3065 if (IsExpandedParameterPack
)
3066 Param
= TemplateTemplateParmDecl::Create(
3067 SemaRef
.Context
, Owner
, D
->getLocation(),
3068 D
->getDepth() - TemplateArgs
.getNumSubstitutedLevels(),
3069 D
->getPosition(), D
->getIdentifier(), InstParams
, ExpandedParams
);
3071 Param
= TemplateTemplateParmDecl::Create(
3072 SemaRef
.Context
, Owner
, D
->getLocation(),
3073 D
->getDepth() - TemplateArgs
.getNumSubstitutedLevels(),
3074 D
->getPosition(), D
->isParameterPack(), D
->getIdentifier(), InstParams
);
3075 if (D
->hasDefaultArgument() && !D
->defaultArgumentWasInherited()) {
3076 NestedNameSpecifierLoc QualifierLoc
=
3077 D
->getDefaultArgument().getTemplateQualifierLoc();
3079 SemaRef
.SubstNestedNameSpecifierLoc(QualifierLoc
, TemplateArgs
);
3080 TemplateName TName
= SemaRef
.SubstTemplateName(
3081 QualifierLoc
, D
->getDefaultArgument().getArgument().getAsTemplate(),
3082 D
->getDefaultArgument().getTemplateNameLoc(), TemplateArgs
);
3083 if (!TName
.isNull())
3084 Param
->setDefaultArgument(
3086 TemplateArgumentLoc(SemaRef
.Context
, TemplateArgument(TName
),
3087 D
->getDefaultArgument().getTemplateQualifierLoc(),
3088 D
->getDefaultArgument().getTemplateNameLoc()));
3090 Param
->setAccess(AS_public
);
3091 Param
->setImplicit(D
->isImplicit());
3093 // Introduce this template parameter's instantiation into the instantiation
3095 SemaRef
.CurrentInstantiationScope
->InstantiatedLocal(D
, Param
);
3100 Decl
*TemplateDeclInstantiator::VisitUsingDirectiveDecl(UsingDirectiveDecl
*D
) {
3101 // Using directives are never dependent (and never contain any types or
3102 // expressions), so they require no explicit instantiation work.
3104 UsingDirectiveDecl
*Inst
3105 = UsingDirectiveDecl::Create(SemaRef
.Context
, Owner
, D
->getLocation(),
3106 D
->getNamespaceKeyLocation(),
3107 D
->getQualifierLoc(),
3108 D
->getIdentLocation(),
3109 D
->getNominatedNamespace(),
3110 D
->getCommonAncestor());
3112 // Add the using directive to its declaration context
3113 // only if this is not a function or method.
3114 if (!Owner
->isFunctionOrMethod())
3115 Owner
->addDecl(Inst
);
3120 Decl
*TemplateDeclInstantiator::VisitBaseUsingDecls(BaseUsingDecl
*D
,
3121 BaseUsingDecl
*Inst
,
3122 LookupResult
*Lookup
) {
3124 bool isFunctionScope
= Owner
->isFunctionOrMethod();
3126 for (auto *Shadow
: D
->shadows()) {
3127 // FIXME: UsingShadowDecl doesn't preserve its immediate target, so
3128 // reconstruct it in the case where it matters. Hm, can we extract it from
3129 // the DeclSpec when parsing and save it in the UsingDecl itself?
3130 NamedDecl
*OldTarget
= Shadow
->getTargetDecl();
3131 if (auto *CUSD
= dyn_cast
<ConstructorUsingShadowDecl
>(Shadow
))
3132 if (auto *BaseShadow
= CUSD
->getNominatedBaseClassShadowDecl())
3133 OldTarget
= BaseShadow
;
3135 NamedDecl
*InstTarget
= nullptr;
3137 dyn_cast
<UnresolvedUsingIfExistsDecl
>(Shadow
->getTargetDecl())) {
3138 InstTarget
= UnresolvedUsingIfExistsDecl::Create(
3139 SemaRef
.Context
, Owner
, EmptyD
->getLocation(), EmptyD
->getDeclName());
3141 InstTarget
= cast_or_null
<NamedDecl
>(SemaRef
.FindInstantiatedDecl(
3142 Shadow
->getLocation(), OldTarget
, TemplateArgs
));
3147 UsingShadowDecl
*PrevDecl
= nullptr;
3149 SemaRef
.CheckUsingShadowDecl(Inst
, InstTarget
, *Lookup
, PrevDecl
))
3152 if (UsingShadowDecl
*OldPrev
= getPreviousDeclForInstantiation(Shadow
))
3153 PrevDecl
= cast_or_null
<UsingShadowDecl
>(SemaRef
.FindInstantiatedDecl(
3154 Shadow
->getLocation(), OldPrev
, TemplateArgs
));
3156 UsingShadowDecl
*InstShadow
= SemaRef
.BuildUsingShadowDecl(
3157 /*Scope*/ nullptr, Inst
, InstTarget
, PrevDecl
);
3158 SemaRef
.Context
.setInstantiatedFromUsingShadowDecl(InstShadow
, Shadow
);
3160 if (isFunctionScope
)
3161 SemaRef
.CurrentInstantiationScope
->InstantiatedLocal(Shadow
, InstShadow
);
3167 Decl
*TemplateDeclInstantiator::VisitUsingDecl(UsingDecl
*D
) {
3169 // The nested name specifier may be dependent, for example
3170 // template <typename T> struct t {
3171 // struct s1 { T f1(); };
3172 // struct s2 : s1 { using s1::f1; };
3174 // template struct t<int>;
3175 // Here, in using s1::f1, s1 refers to t<T>::s1;
3176 // we need to substitute for t<int>::s1.
3177 NestedNameSpecifierLoc QualifierLoc
3178 = SemaRef
.SubstNestedNameSpecifierLoc(D
->getQualifierLoc(),
3183 // For an inheriting constructor declaration, the name of the using
3184 // declaration is the name of a constructor in this class, not in the
3186 DeclarationNameInfo NameInfo
= D
->getNameInfo();
3187 if (NameInfo
.getName().getNameKind() == DeclarationName::CXXConstructorName
)
3188 if (auto *RD
= dyn_cast
<CXXRecordDecl
>(SemaRef
.CurContext
))
3189 NameInfo
.setName(SemaRef
.Context
.DeclarationNames
.getCXXConstructorName(
3190 SemaRef
.Context
.getCanonicalType(SemaRef
.Context
.getRecordType(RD
))));
3192 // We only need to do redeclaration lookups if we're in a class scope (in
3193 // fact, it's not really even possible in non-class scopes).
3194 bool CheckRedeclaration
= Owner
->isRecord();
3195 LookupResult
Prev(SemaRef
, NameInfo
, Sema::LookupUsingDeclName
,
3196 Sema::ForVisibleRedeclaration
);
3198 UsingDecl
*NewUD
= UsingDecl::Create(SemaRef
.Context
, Owner
,
3205 SS
.Adopt(QualifierLoc
);
3206 if (CheckRedeclaration
) {
3207 Prev
.setHideTags(false);
3208 SemaRef
.LookupQualifiedName(Prev
, Owner
);
3210 // Check for invalid redeclarations.
3211 if (SemaRef
.CheckUsingDeclRedeclaration(D
->getUsingLoc(),
3212 D
->hasTypename(), SS
,
3213 D
->getLocation(), Prev
))
3214 NewUD
->setInvalidDecl();
3217 if (!NewUD
->isInvalidDecl() &&
3218 SemaRef
.CheckUsingDeclQualifier(D
->getUsingLoc(), D
->hasTypename(), SS
,
3219 NameInfo
, D
->getLocation(), nullptr, D
))
3220 NewUD
->setInvalidDecl();
3222 SemaRef
.Context
.setInstantiatedFromUsingDecl(NewUD
, D
);
3223 NewUD
->setAccess(D
->getAccess());
3224 Owner
->addDecl(NewUD
);
3226 // Don't process the shadow decls for an invalid decl.
3227 if (NewUD
->isInvalidDecl())
3230 // If the using scope was dependent, or we had dependent bases, we need to
3231 // recheck the inheritance
3232 if (NameInfo
.getName().getNameKind() == DeclarationName::CXXConstructorName
)
3233 SemaRef
.CheckInheritingConstructorUsingDecl(NewUD
);
3235 return VisitBaseUsingDecls(D
, NewUD
, CheckRedeclaration
? &Prev
: nullptr);
3238 Decl
*TemplateDeclInstantiator::VisitUsingEnumDecl(UsingEnumDecl
*D
) {
3239 // Cannot be a dependent type, but still could be an instantiation
3240 EnumDecl
*EnumD
= cast_or_null
<EnumDecl
>(SemaRef
.FindInstantiatedDecl(
3241 D
->getLocation(), D
->getEnumDecl(), TemplateArgs
));
3243 if (SemaRef
.RequireCompleteEnumDecl(EnumD
, EnumD
->getLocation()))
3246 UsingEnumDecl
*NewUD
=
3247 UsingEnumDecl::Create(SemaRef
.Context
, Owner
, D
->getUsingLoc(),
3248 D
->getEnumLoc(), D
->getLocation(), EnumD
);
3250 SemaRef
.Context
.setInstantiatedFromUsingEnumDecl(NewUD
, D
);
3251 NewUD
->setAccess(D
->getAccess());
3252 Owner
->addDecl(NewUD
);
3254 // Don't process the shadow decls for an invalid decl.
3255 if (NewUD
->isInvalidDecl())
3258 // We don't have to recheck for duplication of the UsingEnumDecl itself, as it
3259 // cannot be dependent, and will therefore have been checked during template
3262 return VisitBaseUsingDecls(D
, NewUD
, nullptr);
3265 Decl
*TemplateDeclInstantiator::VisitUsingShadowDecl(UsingShadowDecl
*D
) {
3266 // Ignore these; we handle them in bulk when processing the UsingDecl.
3270 Decl
*TemplateDeclInstantiator::VisitConstructorUsingShadowDecl(
3271 ConstructorUsingShadowDecl
*D
) {
3272 // Ignore these; we handle them in bulk when processing the UsingDecl.
3276 template <typename T
>
3277 Decl
*TemplateDeclInstantiator::instantiateUnresolvedUsingDecl(
3278 T
*D
, bool InstantiatingPackElement
) {
3279 // If this is a pack expansion, expand it now.
3280 if (D
->isPackExpansion() && !InstantiatingPackElement
) {
3281 SmallVector
<UnexpandedParameterPack
, 2> Unexpanded
;
3282 SemaRef
.collectUnexpandedParameterPacks(D
->getQualifierLoc(), Unexpanded
);
3283 SemaRef
.collectUnexpandedParameterPacks(D
->getNameInfo(), Unexpanded
);
3285 // Determine whether the set of unexpanded parameter packs can and should
3288 bool RetainExpansion
= false;
3289 Optional
<unsigned> NumExpansions
;
3290 if (SemaRef
.CheckParameterPacksForExpansion(
3291 D
->getEllipsisLoc(), D
->getSourceRange(), Unexpanded
, TemplateArgs
,
3292 Expand
, RetainExpansion
, NumExpansions
))
3295 // This declaration cannot appear within a function template signature,
3296 // so we can't have a partial argument list for a parameter pack.
3297 assert(!RetainExpansion
&&
3298 "should never need to retain an expansion for UsingPackDecl");
3301 // We cannot fully expand the pack expansion now, so substitute into the
3302 // pattern and create a new pack expansion.
3303 Sema::ArgumentPackSubstitutionIndexRAII
SubstIndex(SemaRef
, -1);
3304 return instantiateUnresolvedUsingDecl(D
, true);
3307 // Within a function, we don't have any normal way to check for conflicts
3308 // between shadow declarations from different using declarations in the
3309 // same pack expansion, but this is always ill-formed because all expansions
3310 // must produce (conflicting) enumerators.
3312 // Sadly we can't just reject this in the template definition because it
3313 // could be valid if the pack is empty or has exactly one expansion.
3314 if (D
->getDeclContext()->isFunctionOrMethod() && *NumExpansions
> 1) {
3315 SemaRef
.Diag(D
->getEllipsisLoc(),
3316 diag::err_using_decl_redeclaration_expansion
);
3320 // Instantiate the slices of this pack and build a UsingPackDecl.
3321 SmallVector
<NamedDecl
*, 8> Expansions
;
3322 for (unsigned I
= 0; I
!= *NumExpansions
; ++I
) {
3323 Sema::ArgumentPackSubstitutionIndexRAII
SubstIndex(SemaRef
, I
);
3324 Decl
*Slice
= instantiateUnresolvedUsingDecl(D
, true);
3327 // Note that we can still get unresolved using declarations here, if we
3328 // had arguments for all packs but the pattern also contained other
3329 // template arguments (this only happens during partial substitution, eg
3330 // into the body of a generic lambda in a function template).
3331 Expansions
.push_back(cast
<NamedDecl
>(Slice
));
3334 auto *NewD
= SemaRef
.BuildUsingPackDecl(D
, Expansions
);
3335 if (isDeclWithinFunction(D
))
3336 SemaRef
.CurrentInstantiationScope
->InstantiatedLocal(D
, NewD
);
3340 UnresolvedUsingTypenameDecl
*TD
= dyn_cast
<UnresolvedUsingTypenameDecl
>(D
);
3341 SourceLocation TypenameLoc
= TD
? TD
->getTypenameLoc() : SourceLocation();
3343 NestedNameSpecifierLoc QualifierLoc
3344 = SemaRef
.SubstNestedNameSpecifierLoc(D
->getQualifierLoc(),
3350 SS
.Adopt(QualifierLoc
);
3352 DeclarationNameInfo NameInfo
3353 = SemaRef
.SubstDeclarationNameInfo(D
->getNameInfo(), TemplateArgs
);
3355 // Produce a pack expansion only if we're not instantiating a particular
3356 // slice of a pack expansion.
3357 bool InstantiatingSlice
= D
->getEllipsisLoc().isValid() &&
3358 SemaRef
.ArgumentPackSubstitutionIndex
!= -1;
3359 SourceLocation EllipsisLoc
=
3360 InstantiatingSlice
? SourceLocation() : D
->getEllipsisLoc();
3362 bool IsUsingIfExists
= D
->template hasAttr
<UsingIfExistsAttr
>();
3363 NamedDecl
*UD
= SemaRef
.BuildUsingDeclaration(
3364 /*Scope*/ nullptr, D
->getAccess(), D
->getUsingLoc(),
3365 /*HasTypename*/ TD
, TypenameLoc
, SS
, NameInfo
, EllipsisLoc
,
3366 ParsedAttributesView(),
3367 /*IsInstantiation*/ true, IsUsingIfExists
);
3369 SemaRef
.InstantiateAttrs(TemplateArgs
, D
, UD
);
3370 SemaRef
.Context
.setInstantiatedFromUsingDecl(UD
, D
);
3376 Decl
*TemplateDeclInstantiator::VisitUnresolvedUsingTypenameDecl(
3377 UnresolvedUsingTypenameDecl
*D
) {
3378 return instantiateUnresolvedUsingDecl(D
);
3381 Decl
*TemplateDeclInstantiator::VisitUnresolvedUsingValueDecl(
3382 UnresolvedUsingValueDecl
*D
) {
3383 return instantiateUnresolvedUsingDecl(D
);
3386 Decl
*TemplateDeclInstantiator::VisitUnresolvedUsingIfExistsDecl(
3387 UnresolvedUsingIfExistsDecl
*D
) {
3388 llvm_unreachable("referring to unresolved decl out of UsingShadowDecl");
3391 Decl
*TemplateDeclInstantiator::VisitUsingPackDecl(UsingPackDecl
*D
) {
3392 SmallVector
<NamedDecl
*, 8> Expansions
;
3393 for (auto *UD
: D
->expansions()) {
3394 if (NamedDecl
*NewUD
=
3395 SemaRef
.FindInstantiatedDecl(D
->getLocation(), UD
, TemplateArgs
))
3396 Expansions
.push_back(NewUD
);
3401 auto *NewD
= SemaRef
.BuildUsingPackDecl(D
, Expansions
);
3402 if (isDeclWithinFunction(D
))
3403 SemaRef
.CurrentInstantiationScope
->InstantiatedLocal(D
, NewD
);
3407 Decl
*TemplateDeclInstantiator::VisitClassScopeFunctionSpecializationDecl(
3408 ClassScopeFunctionSpecializationDecl
*Decl
) {
3409 CXXMethodDecl
*OldFD
= Decl
->getSpecialization();
3410 return cast_or_null
<CXXMethodDecl
>(
3411 VisitCXXMethodDecl(OldFD
, nullptr, Decl
->getTemplateArgsAsWritten()));
3414 Decl
*TemplateDeclInstantiator::VisitOMPThreadPrivateDecl(
3415 OMPThreadPrivateDecl
*D
) {
3416 SmallVector
<Expr
*, 5> Vars
;
3417 for (auto *I
: D
->varlists()) {
3418 Expr
*Var
= SemaRef
.SubstExpr(I
, TemplateArgs
).get();
3419 assert(isa
<DeclRefExpr
>(Var
) && "threadprivate arg is not a DeclRefExpr");
3420 Vars
.push_back(Var
);
3423 OMPThreadPrivateDecl
*TD
=
3424 SemaRef
.CheckOMPThreadPrivateDecl(D
->getLocation(), Vars
);
3426 TD
->setAccess(AS_public
);
3432 Decl
*TemplateDeclInstantiator::VisitOMPAllocateDecl(OMPAllocateDecl
*D
) {
3433 SmallVector
<Expr
*, 5> Vars
;
3434 for (auto *I
: D
->varlists()) {
3435 Expr
*Var
= SemaRef
.SubstExpr(I
, TemplateArgs
).get();
3436 assert(isa
<DeclRefExpr
>(Var
) && "allocate arg is not a DeclRefExpr");
3437 Vars
.push_back(Var
);
3439 SmallVector
<OMPClause
*, 4> Clauses
;
3440 // Copy map clauses from the original mapper.
3441 for (OMPClause
*C
: D
->clauselists()) {
3442 OMPClause
*IC
= nullptr;
3443 if (auto *AC
= dyn_cast
<OMPAllocatorClause
>(C
)) {
3444 ExprResult NewE
= SemaRef
.SubstExpr(AC
->getAllocator(), TemplateArgs
);
3445 if (!NewE
.isUsable())
3447 IC
= SemaRef
.ActOnOpenMPAllocatorClause(
3448 NewE
.get(), AC
->getBeginLoc(), AC
->getLParenLoc(), AC
->getEndLoc());
3449 } else if (auto *AC
= dyn_cast
<OMPAlignClause
>(C
)) {
3450 ExprResult NewE
= SemaRef
.SubstExpr(AC
->getAlignment(), TemplateArgs
);
3451 if (!NewE
.isUsable())
3453 IC
= SemaRef
.ActOnOpenMPAlignClause(NewE
.get(), AC
->getBeginLoc(),
3454 AC
->getLParenLoc(), AC
->getEndLoc());
3455 // If align clause value ends up being invalid, this can end up null.
3459 Clauses
.push_back(IC
);
3462 Sema::DeclGroupPtrTy Res
= SemaRef
.ActOnOpenMPAllocateDirective(
3463 D
->getLocation(), Vars
, Clauses
, Owner
);
3464 if (Res
.get().isNull())
3466 return Res
.get().getSingleDecl();
3469 Decl
*TemplateDeclInstantiator::VisitOMPRequiresDecl(OMPRequiresDecl
*D
) {
3471 "Requires directive cannot be instantiated within a dependent context");
3474 Decl
*TemplateDeclInstantiator::VisitOMPDeclareReductionDecl(
3475 OMPDeclareReductionDecl
*D
) {
3476 // Instantiate type and check if it is allowed.
3477 const bool RequiresInstantiation
=
3478 D
->getType()->isDependentType() ||
3479 D
->getType()->isInstantiationDependentType() ||
3480 D
->getType()->containsUnexpandedParameterPack();
3481 QualType SubstReductionType
;
3482 if (RequiresInstantiation
) {
3483 SubstReductionType
= SemaRef
.ActOnOpenMPDeclareReductionType(
3485 ParsedType::make(SemaRef
.SubstType(
3486 D
->getType(), TemplateArgs
, D
->getLocation(), DeclarationName())));
3488 SubstReductionType
= D
->getType();
3490 if (SubstReductionType
.isNull())
3492 Expr
*Combiner
= D
->getCombiner();
3493 Expr
*Init
= D
->getInitializer();
3494 bool IsCorrect
= true;
3495 // Create instantiated copy.
3496 std::pair
<QualType
, SourceLocation
> ReductionTypes
[] = {
3497 std::make_pair(SubstReductionType
, D
->getLocation())};
3498 auto *PrevDeclInScope
= D
->getPrevDeclInScope();
3499 if (PrevDeclInScope
&& !PrevDeclInScope
->isInvalidDecl()) {
3500 PrevDeclInScope
= cast
<OMPDeclareReductionDecl
>(
3501 SemaRef
.CurrentInstantiationScope
->findInstantiationOf(PrevDeclInScope
)
3504 auto DRD
= SemaRef
.ActOnOpenMPDeclareReductionDirectiveStart(
3505 /*S=*/nullptr, Owner
, D
->getDeclName(), ReductionTypes
, D
->getAccess(),
3507 auto *NewDRD
= cast
<OMPDeclareReductionDecl
>(DRD
.get().getSingleDecl());
3508 SemaRef
.CurrentInstantiationScope
->InstantiatedLocal(D
, NewDRD
);
3509 Expr
*SubstCombiner
= nullptr;
3510 Expr
*SubstInitializer
= nullptr;
3511 // Combiners instantiation sequence.
3513 SemaRef
.ActOnOpenMPDeclareReductionCombinerStart(
3514 /*S=*/nullptr, NewDRD
);
3515 SemaRef
.CurrentInstantiationScope
->InstantiatedLocal(
3516 cast
<DeclRefExpr
>(D
->getCombinerIn())->getDecl(),
3517 cast
<DeclRefExpr
>(NewDRD
->getCombinerIn())->getDecl());
3518 SemaRef
.CurrentInstantiationScope
->InstantiatedLocal(
3519 cast
<DeclRefExpr
>(D
->getCombinerOut())->getDecl(),
3520 cast
<DeclRefExpr
>(NewDRD
->getCombinerOut())->getDecl());
3521 auto *ThisContext
= dyn_cast_or_null
<CXXRecordDecl
>(Owner
);
3522 Sema::CXXThisScopeRAII
ThisScope(SemaRef
, ThisContext
, Qualifiers(),
3524 SubstCombiner
= SemaRef
.SubstExpr(Combiner
, TemplateArgs
).get();
3525 SemaRef
.ActOnOpenMPDeclareReductionCombinerEnd(NewDRD
, SubstCombiner
);
3527 // Initializers instantiation sequence.
3529 VarDecl
*OmpPrivParm
= SemaRef
.ActOnOpenMPDeclareReductionInitializerStart(
3530 /*S=*/nullptr, NewDRD
);
3531 SemaRef
.CurrentInstantiationScope
->InstantiatedLocal(
3532 cast
<DeclRefExpr
>(D
->getInitOrig())->getDecl(),
3533 cast
<DeclRefExpr
>(NewDRD
->getInitOrig())->getDecl());
3534 SemaRef
.CurrentInstantiationScope
->InstantiatedLocal(
3535 cast
<DeclRefExpr
>(D
->getInitPriv())->getDecl(),
3536 cast
<DeclRefExpr
>(NewDRD
->getInitPriv())->getDecl());
3537 if (D
->getInitializerKind() == OMPDeclareReductionDecl::CallInit
) {
3538 SubstInitializer
= SemaRef
.SubstExpr(Init
, TemplateArgs
).get();
3541 cast
<VarDecl
>(cast
<DeclRefExpr
>(D
->getInitPriv())->getDecl());
3542 IsCorrect
= IsCorrect
&& OldPrivParm
->hasInit();
3544 SemaRef
.InstantiateVariableInitializer(OmpPrivParm
, OldPrivParm
,
3547 SemaRef
.ActOnOpenMPDeclareReductionInitializerEnd(NewDRD
, SubstInitializer
,
3550 IsCorrect
= IsCorrect
&& SubstCombiner
&&
3552 (D
->getInitializerKind() == OMPDeclareReductionDecl::CallInit
&&
3553 SubstInitializer
) ||
3554 (D
->getInitializerKind() != OMPDeclareReductionDecl::CallInit
&&
3555 !SubstInitializer
));
3557 (void)SemaRef
.ActOnOpenMPDeclareReductionDirectiveEnd(
3558 /*S=*/nullptr, DRD
, IsCorrect
&& !D
->isInvalidDecl());
3564 TemplateDeclInstantiator::VisitOMPDeclareMapperDecl(OMPDeclareMapperDecl
*D
) {
3565 // Instantiate type and check if it is allowed.
3566 const bool RequiresInstantiation
=
3567 D
->getType()->isDependentType() ||
3568 D
->getType()->isInstantiationDependentType() ||
3569 D
->getType()->containsUnexpandedParameterPack();
3570 QualType SubstMapperTy
;
3571 DeclarationName VN
= D
->getVarName();
3572 if (RequiresInstantiation
) {
3573 SubstMapperTy
= SemaRef
.ActOnOpenMPDeclareMapperType(
3575 ParsedType::make(SemaRef
.SubstType(D
->getType(), TemplateArgs
,
3576 D
->getLocation(), VN
)));
3578 SubstMapperTy
= D
->getType();
3580 if (SubstMapperTy
.isNull())
3582 // Create an instantiated copy of mapper.
3583 auto *PrevDeclInScope
= D
->getPrevDeclInScope();
3584 if (PrevDeclInScope
&& !PrevDeclInScope
->isInvalidDecl()) {
3585 PrevDeclInScope
= cast
<OMPDeclareMapperDecl
>(
3586 SemaRef
.CurrentInstantiationScope
->findInstantiationOf(PrevDeclInScope
)
3589 bool IsCorrect
= true;
3590 SmallVector
<OMPClause
*, 6> Clauses
;
3591 // Instantiate the mapper variable.
3592 DeclarationNameInfo DirName
;
3593 SemaRef
.StartOpenMPDSABlock(llvm::omp::OMPD_declare_mapper
, DirName
,
3595 (*D
->clauselist_begin())->getBeginLoc());
3596 ExprResult MapperVarRef
= SemaRef
.ActOnOpenMPDeclareMapperDirectiveVarDecl(
3597 /*S=*/nullptr, SubstMapperTy
, D
->getLocation(), VN
);
3598 SemaRef
.CurrentInstantiationScope
->InstantiatedLocal(
3599 cast
<DeclRefExpr
>(D
->getMapperVarRef())->getDecl(),
3600 cast
<DeclRefExpr
>(MapperVarRef
.get())->getDecl());
3601 auto *ThisContext
= dyn_cast_or_null
<CXXRecordDecl
>(Owner
);
3602 Sema::CXXThisScopeRAII
ThisScope(SemaRef
, ThisContext
, Qualifiers(),
3604 // Instantiate map clauses.
3605 for (OMPClause
*C
: D
->clauselists()) {
3606 auto *OldC
= cast
<OMPMapClause
>(C
);
3607 SmallVector
<Expr
*, 4> NewVars
;
3608 for (Expr
*OE
: OldC
->varlists()) {
3609 Expr
*NE
= SemaRef
.SubstExpr(OE
, TemplateArgs
).get();
3614 NewVars
.push_back(NE
);
3618 NestedNameSpecifierLoc NewQualifierLoc
=
3619 SemaRef
.SubstNestedNameSpecifierLoc(OldC
->getMapperQualifierLoc(),
3622 SS
.Adopt(NewQualifierLoc
);
3623 DeclarationNameInfo NewNameInfo
=
3624 SemaRef
.SubstDeclarationNameInfo(OldC
->getMapperIdInfo(), TemplateArgs
);
3625 OMPVarListLocTy
Locs(OldC
->getBeginLoc(), OldC
->getLParenLoc(),
3627 OMPClause
*NewC
= SemaRef
.ActOnOpenMPMapClause(
3628 OldC
->getMapTypeModifiers(), OldC
->getMapTypeModifiersLoc(), SS
,
3629 NewNameInfo
, OldC
->getMapType(), OldC
->isImplicitMapType(),
3630 OldC
->getMapLoc(), OldC
->getColonLoc(), NewVars
, Locs
);
3631 Clauses
.push_back(NewC
);
3633 SemaRef
.EndOpenMPDSABlock(nullptr);
3636 Sema::DeclGroupPtrTy DG
= SemaRef
.ActOnOpenMPDeclareMapperDirective(
3637 /*S=*/nullptr, Owner
, D
->getDeclName(), SubstMapperTy
, D
->getLocation(),
3638 VN
, D
->getAccess(), MapperVarRef
.get(), Clauses
, PrevDeclInScope
);
3639 Decl
*NewDMD
= DG
.get().getSingleDecl();
3640 SemaRef
.CurrentInstantiationScope
->InstantiatedLocal(D
, NewDMD
);
3644 Decl
*TemplateDeclInstantiator::VisitOMPCapturedExprDecl(
3645 OMPCapturedExprDecl
* /*D*/) {
3646 llvm_unreachable("Should not be met in templates");
3649 Decl
*TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl
*D
) {
3650 return VisitFunctionDecl(D
, nullptr);
3654 TemplateDeclInstantiator::VisitCXXDeductionGuideDecl(CXXDeductionGuideDecl
*D
) {
3655 Decl
*Inst
= VisitFunctionDecl(D
, nullptr);
3656 if (Inst
&& !D
->getDescribedFunctionTemplate())
3657 Owner
->addDecl(Inst
);
3661 Decl
*TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl
*D
) {
3662 return VisitCXXMethodDecl(D
, nullptr);
3665 Decl
*TemplateDeclInstantiator::VisitRecordDecl(RecordDecl
*D
) {
3666 llvm_unreachable("There are only CXXRecordDecls in C++");
3670 TemplateDeclInstantiator::VisitClassTemplateSpecializationDecl(
3671 ClassTemplateSpecializationDecl
*D
) {
3672 // As a MS extension, we permit class-scope explicit specialization
3673 // of member class templates.
3674 ClassTemplateDecl
*ClassTemplate
= D
->getSpecializedTemplate();
3675 assert(ClassTemplate
->getDeclContext()->isRecord() &&
3676 D
->getTemplateSpecializationKind() == TSK_ExplicitSpecialization
&&
3677 "can only instantiate an explicit specialization "
3678 "for a member class template");
3680 // Lookup the already-instantiated declaration in the instantiation
3681 // of the class template.
3682 ClassTemplateDecl
*InstClassTemplate
=
3683 cast_or_null
<ClassTemplateDecl
>(SemaRef
.FindInstantiatedDecl(
3684 D
->getLocation(), ClassTemplate
, TemplateArgs
));
3685 if (!InstClassTemplate
)
3688 // Substitute into the template arguments of the class template explicit
3690 TemplateSpecializationTypeLoc Loc
= D
->getTypeAsWritten()->getTypeLoc().
3691 castAs
<TemplateSpecializationTypeLoc
>();
3692 TemplateArgumentListInfo
InstTemplateArgs(Loc
.getLAngleLoc(),
3693 Loc
.getRAngleLoc());
3694 SmallVector
<TemplateArgumentLoc
, 4> ArgLocs
;
3695 for (unsigned I
= 0; I
!= Loc
.getNumArgs(); ++I
)
3696 ArgLocs
.push_back(Loc
.getArgLoc(I
));
3697 if (SemaRef
.SubstTemplateArguments(ArgLocs
, TemplateArgs
, InstTemplateArgs
))
3700 // Check that the template argument list is well-formed for this
3702 SmallVector
<TemplateArgument
, 4> Converted
;
3703 if (SemaRef
.CheckTemplateArgumentList(InstClassTemplate
,
3708 /*UpdateArgsWithConversions=*/true))
3711 // Figure out where to insert this class template explicit specialization
3712 // in the member template's set of class template explicit specializations.
3713 void *InsertPos
= nullptr;
3714 ClassTemplateSpecializationDecl
*PrevDecl
=
3715 InstClassTemplate
->findSpecialization(Converted
, InsertPos
);
3717 // Check whether we've already seen a conflicting instantiation of this
3718 // declaration (for instance, if there was a prior implicit instantiation).
3721 SemaRef
.CheckSpecializationInstantiationRedecl(D
->getLocation(),
3722 D
->getSpecializationKind(),
3724 PrevDecl
->getSpecializationKind(),
3725 PrevDecl
->getPointOfInstantiation(),
3729 // If PrevDecl was a definition and D is also a definition, diagnose.
3730 // This happens in cases like:
3732 // template<typename T, typename U>
3734 // template<typename X> struct Inner;
3735 // template<> struct Inner<T> {};
3736 // template<> struct Inner<U> {};
3739 // Outer<int, int> outer; // error: the explicit specializations of Inner
3740 // // have the same signature.
3741 if (PrevDecl
&& PrevDecl
->getDefinition() &&
3742 D
->isThisDeclarationADefinition()) {
3743 SemaRef
.Diag(D
->getLocation(), diag::err_redefinition
) << PrevDecl
;
3744 SemaRef
.Diag(PrevDecl
->getDefinition()->getLocation(),
3745 diag::note_previous_definition
);
3749 // Create the class template partial specialization declaration.
3750 ClassTemplateSpecializationDecl
*InstD
=
3751 ClassTemplateSpecializationDecl::Create(
3752 SemaRef
.Context
, D
->getTagKind(), Owner
, D
->getBeginLoc(),
3753 D
->getLocation(), InstClassTemplate
, Converted
, PrevDecl
);
3755 // Add this partial specialization to the set of class template partial
3758 InstClassTemplate
->AddSpecialization(InstD
, InsertPos
);
3760 // Substitute the nested name specifier, if any.
3761 if (SubstQualifier(D
, InstD
))
3764 // Build the canonical type that describes the converted template
3765 // arguments of the class template explicit specialization.
3766 QualType CanonType
= SemaRef
.Context
.getTemplateSpecializationType(
3767 TemplateName(InstClassTemplate
), Converted
,
3768 SemaRef
.Context
.getRecordType(InstD
));
3770 // Build the fully-sugared type for this class template
3771 // specialization as the user wrote in the specialization
3772 // itself. This means that we'll pretty-print the type retrieved
3773 // from the specialization's declaration the way that the user
3774 // actually wrote the specialization, rather than formatting the
3775 // name based on the "canonical" representation used to store the
3776 // template arguments in the specialization.
3777 TypeSourceInfo
*WrittenTy
= SemaRef
.Context
.getTemplateSpecializationTypeInfo(
3778 TemplateName(InstClassTemplate
), D
->getLocation(), InstTemplateArgs
,
3781 InstD
->setAccess(D
->getAccess());
3782 InstD
->setInstantiationOfMemberClass(D
, TSK_ImplicitInstantiation
);
3783 InstD
->setSpecializationKind(D
->getSpecializationKind());
3784 InstD
->setTypeAsWritten(WrittenTy
);
3785 InstD
->setExternLoc(D
->getExternLoc());
3786 InstD
->setTemplateKeywordLoc(D
->getTemplateKeywordLoc());
3788 Owner
->addDecl(InstD
);
3790 // Instantiate the members of the class-scope explicit specialization eagerly.
3791 // We don't have support for lazy instantiation of an explicit specialization
3792 // yet, and MSVC eagerly instantiates in this case.
3793 // FIXME: This is wrong in standard C++.
3794 if (D
->isThisDeclarationADefinition() &&
3795 SemaRef
.InstantiateClass(D
->getLocation(), InstD
, D
, TemplateArgs
,
3796 TSK_ImplicitInstantiation
,
3803 Decl
*TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl(
3804 VarTemplateSpecializationDecl
*D
) {
3806 TemplateArgumentListInfo VarTemplateArgsInfo
;
3807 VarTemplateDecl
*VarTemplate
= D
->getSpecializedTemplate();
3808 assert(VarTemplate
&&
3809 "A template specialization without specialized template?");
3811 VarTemplateDecl
*InstVarTemplate
=
3812 cast_or_null
<VarTemplateDecl
>(SemaRef
.FindInstantiatedDecl(
3813 D
->getLocation(), VarTemplate
, TemplateArgs
));
3814 if (!InstVarTemplate
)
3817 // Substitute the current template arguments.
3818 if (const ASTTemplateArgumentListInfo
*TemplateArgsInfo
=
3819 D
->getTemplateArgsInfo()) {
3820 VarTemplateArgsInfo
.setLAngleLoc(TemplateArgsInfo
->getLAngleLoc());
3821 VarTemplateArgsInfo
.setRAngleLoc(TemplateArgsInfo
->getRAngleLoc());
3823 if (SemaRef
.SubstTemplateArguments(TemplateArgsInfo
->arguments(),
3824 TemplateArgs
, VarTemplateArgsInfo
))
3828 // Check that the template argument list is well-formed for this template.
3829 SmallVector
<TemplateArgument
, 4> Converted
;
3830 if (SemaRef
.CheckTemplateArgumentList(InstVarTemplate
, D
->getLocation(),
3831 VarTemplateArgsInfo
, false, Converted
,
3832 /*UpdateArgsWithConversions=*/true))
3835 // Check whether we've already seen a declaration of this specialization.
3836 void *InsertPos
= nullptr;
3837 VarTemplateSpecializationDecl
*PrevDecl
=
3838 InstVarTemplate
->findSpecialization(Converted
, InsertPos
);
3840 // Check whether we've already seen a conflicting instantiation of this
3841 // declaration (for instance, if there was a prior implicit instantiation).
3843 if (PrevDecl
&& SemaRef
.CheckSpecializationInstantiationRedecl(
3844 D
->getLocation(), D
->getSpecializationKind(), PrevDecl
,
3845 PrevDecl
->getSpecializationKind(),
3846 PrevDecl
->getPointOfInstantiation(), Ignored
))
3849 return VisitVarTemplateSpecializationDecl(
3850 InstVarTemplate
, D
, VarTemplateArgsInfo
, Converted
, PrevDecl
);
3853 Decl
*TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl(
3854 VarTemplateDecl
*VarTemplate
, VarDecl
*D
,
3855 const TemplateArgumentListInfo
&TemplateArgsInfo
,
3856 ArrayRef
<TemplateArgument
> Converted
,
3857 VarTemplateSpecializationDecl
*PrevDecl
) {
3859 // Do substitution on the type of the declaration
3860 TypeSourceInfo
*DI
=
3861 SemaRef
.SubstType(D
->getTypeSourceInfo(), TemplateArgs
,
3862 D
->getTypeSpecStartLoc(), D
->getDeclName());
3866 if (DI
->getType()->isFunctionType()) {
3867 SemaRef
.Diag(D
->getLocation(), diag::err_variable_instantiates_to_function
)
3868 << D
->isStaticDataMember() << DI
->getType();
3872 // Build the instantiated declaration
3873 VarTemplateSpecializationDecl
*Var
= VarTemplateSpecializationDecl::Create(
3874 SemaRef
.Context
, Owner
, D
->getInnerLocStart(), D
->getLocation(),
3875 VarTemplate
, DI
->getType(), DI
, D
->getStorageClass(), Converted
);
3876 Var
->setTemplateArgsInfo(TemplateArgsInfo
);
3878 void *InsertPos
= nullptr;
3879 VarTemplate
->findSpecialization(Converted
, InsertPos
);
3880 VarTemplate
->AddSpecialization(Var
, InsertPos
);
3883 if (SemaRef
.getLangOpts().OpenCL
)
3884 SemaRef
.deduceOpenCLAddressSpace(Var
);
3886 // Substitute the nested name specifier, if any.
3887 if (SubstQualifier(D
, Var
))
3890 SemaRef
.BuildVariableInstantiation(Var
, D
, TemplateArgs
, LateAttrs
, Owner
,
3891 StartingScope
, false, PrevDecl
);
3896 Decl
*TemplateDeclInstantiator::VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl
*D
) {
3897 llvm_unreachable("@defs is not supported in Objective-C++");
3900 Decl
*TemplateDeclInstantiator::VisitFriendTemplateDecl(FriendTemplateDecl
*D
) {
3901 // FIXME: We need to be able to instantiate FriendTemplateDecls.
3902 unsigned DiagID
= SemaRef
.getDiagnostics().getCustomDiagID(
3903 DiagnosticsEngine::Error
,
3904 "cannot instantiate %0 yet");
3905 SemaRef
.Diag(D
->getLocation(), DiagID
)
3906 << D
->getDeclKindName();
3911 Decl
*TemplateDeclInstantiator::VisitConceptDecl(ConceptDecl
*D
) {
3912 llvm_unreachable("Concept definitions cannot reside inside a template");
3916 TemplateDeclInstantiator::VisitRequiresExprBodyDecl(RequiresExprBodyDecl
*D
) {
3917 return RequiresExprBodyDecl::Create(SemaRef
.Context
, D
->getDeclContext(),
3921 Decl
*TemplateDeclInstantiator::VisitDecl(Decl
*D
) {
3922 llvm_unreachable("Unexpected decl");
3925 Decl
*Sema::SubstDecl(Decl
*D
, DeclContext
*Owner
,
3926 const MultiLevelTemplateArgumentList
&TemplateArgs
) {
3927 TemplateDeclInstantiator
Instantiator(*this, Owner
, TemplateArgs
);
3928 if (D
->isInvalidDecl())
3932 runWithSufficientStackSpace(D
->getLocation(), [&] {
3933 SubstD
= Instantiator
.Visit(D
);
3938 void TemplateDeclInstantiator::adjustForRewrite(RewriteKind RK
,
3939 FunctionDecl
*Orig
, QualType
&T
,
3940 TypeSourceInfo
*&TInfo
,
3941 DeclarationNameInfo
&NameInfo
) {
3942 assert(RK
== RewriteKind::RewriteSpaceshipAsEqualEqual
);
3944 // C++2a [class.compare.default]p3:
3945 // the return type is replaced with bool
3946 auto *FPT
= T
->castAs
<FunctionProtoType
>();
3947 T
= SemaRef
.Context
.getFunctionType(
3948 SemaRef
.Context
.BoolTy
, FPT
->getParamTypes(), FPT
->getExtProtoInfo());
3950 // Update the return type in the source info too. The most straightforward
3951 // way is to create new TypeSourceInfo for the new type. Use the location of
3952 // the '= default' as the location of the new type.
3954 // FIXME: Set the correct return type when we initially transform the type,
3955 // rather than delaying it to now.
3956 TypeSourceInfo
*NewTInfo
=
3957 SemaRef
.Context
.getTrivialTypeSourceInfo(T
, Orig
->getEndLoc());
3958 auto OldLoc
= TInfo
->getTypeLoc().getAsAdjusted
<FunctionProtoTypeLoc
>();
3959 assert(OldLoc
&& "type of function is not a function type?");
3960 auto NewLoc
= NewTInfo
->getTypeLoc().castAs
<FunctionProtoTypeLoc
>();
3961 for (unsigned I
= 0, N
= OldLoc
.getNumParams(); I
!= N
; ++I
)
3962 NewLoc
.setParam(I
, OldLoc
.getParam(I
));
3965 // and the declarator-id is replaced with operator==
3967 SemaRef
.Context
.DeclarationNames
.getCXXOperatorName(OO_EqualEqual
));
3970 FunctionDecl
*Sema::SubstSpaceshipAsEqualEqual(CXXRecordDecl
*RD
,
3971 FunctionDecl
*Spaceship
) {
3972 if (Spaceship
->isInvalidDecl())
3975 // C++2a [class.compare.default]p3:
3976 // an == operator function is declared implicitly [...] with the same
3977 // access and function-definition and in the same class scope as the
3978 // three-way comparison operator function
3979 MultiLevelTemplateArgumentList NoTemplateArgs
;
3980 NoTemplateArgs
.setKind(TemplateSubstitutionKind::Rewrite
);
3981 NoTemplateArgs
.addOuterRetainedLevels(RD
->getTemplateDepth());
3982 TemplateDeclInstantiator
Instantiator(*this, RD
, NoTemplateArgs
);
3984 if (auto *MD
= dyn_cast
<CXXMethodDecl
>(Spaceship
)) {
3985 R
= Instantiator
.VisitCXXMethodDecl(
3987 TemplateDeclInstantiator::RewriteKind::RewriteSpaceshipAsEqualEqual
);
3989 assert(Spaceship
->getFriendObjectKind() &&
3990 "defaulted spaceship is neither a member nor a friend");
3992 R
= Instantiator
.VisitFunctionDecl(
3994 TemplateDeclInstantiator::RewriteKind::RewriteSpaceshipAsEqualEqual
);
3999 FriendDecl::Create(Context
, RD
, Spaceship
->getLocation(),
4000 cast
<NamedDecl
>(R
), Spaceship
->getBeginLoc());
4001 FD
->setAccess(AS_public
);
4004 return cast_or_null
<FunctionDecl
>(R
);
4007 /// Instantiates a nested template parameter list in the current
4008 /// instantiation context.
4010 /// \param L The parameter list to instantiate
4012 /// \returns NULL if there was an error
4013 TemplateParameterList
*
4014 TemplateDeclInstantiator::SubstTemplateParams(TemplateParameterList
*L
) {
4015 // Get errors for all the parameters before bailing out.
4016 bool Invalid
= false;
4018 unsigned N
= L
->size();
4019 typedef SmallVector
<NamedDecl
*, 8> ParamVector
;
4022 for (auto &P
: *L
) {
4023 NamedDecl
*D
= cast_or_null
<NamedDecl
>(Visit(P
));
4024 Params
.push_back(D
);
4025 Invalid
= Invalid
|| !D
|| D
->isInvalidDecl();
4028 // Clean up if we had an error.
4032 // FIXME: Concepts: Substitution into requires clause should only happen when
4033 // checking satisfaction.
4034 Expr
*InstRequiresClause
= nullptr;
4035 if (Expr
*E
= L
->getRequiresClause()) {
4036 EnterExpressionEvaluationContext
ConstantEvaluated(
4037 SemaRef
, Sema::ExpressionEvaluationContext::Unevaluated
);
4038 ExprResult Res
= SemaRef
.SubstExpr(E
, TemplateArgs
);
4039 if (Res
.isInvalid() || !Res
.isUsable()) {
4042 InstRequiresClause
= Res
.get();
4045 TemplateParameterList
*InstL
4046 = TemplateParameterList::Create(SemaRef
.Context
, L
->getTemplateLoc(),
4047 L
->getLAngleLoc(), Params
,
4048 L
->getRAngleLoc(), InstRequiresClause
);
4052 TemplateParameterList
*
4053 Sema::SubstTemplateParams(TemplateParameterList
*Params
, DeclContext
*Owner
,
4054 const MultiLevelTemplateArgumentList
&TemplateArgs
) {
4055 TemplateDeclInstantiator
Instantiator(*this, Owner
, TemplateArgs
);
4056 return Instantiator
.SubstTemplateParams(Params
);
4059 /// Instantiate the declaration of a class template partial
4062 /// \param ClassTemplate the (instantiated) class template that is partially
4063 // specialized by the instantiation of \p PartialSpec.
4065 /// \param PartialSpec the (uninstantiated) class template partial
4066 /// specialization that we are instantiating.
4068 /// \returns The instantiated partial specialization, if successful; otherwise,
4069 /// NULL to indicate an error.
4070 ClassTemplatePartialSpecializationDecl
*
4071 TemplateDeclInstantiator::InstantiateClassTemplatePartialSpecialization(
4072 ClassTemplateDecl
*ClassTemplate
,
4073 ClassTemplatePartialSpecializationDecl
*PartialSpec
) {
4074 // Create a local instantiation scope for this class template partial
4075 // specialization, which will contain the instantiations of the template
4077 LocalInstantiationScope
Scope(SemaRef
);
4079 // Substitute into the template parameters of the class template partial
4081 TemplateParameterList
*TempParams
= PartialSpec
->getTemplateParameters();
4082 TemplateParameterList
*InstParams
= SubstTemplateParams(TempParams
);
4086 // Substitute into the template arguments of the class template partial
4088 const ASTTemplateArgumentListInfo
*TemplArgInfo
4089 = PartialSpec
->getTemplateArgsAsWritten();
4090 TemplateArgumentListInfo
InstTemplateArgs(TemplArgInfo
->LAngleLoc
,
4091 TemplArgInfo
->RAngleLoc
);
4092 if (SemaRef
.SubstTemplateArguments(TemplArgInfo
->arguments(), TemplateArgs
,
4096 // Check that the template argument list is well-formed for this
4098 SmallVector
<TemplateArgument
, 4> Converted
;
4099 if (SemaRef
.CheckTemplateArgumentList(ClassTemplate
,
4100 PartialSpec
->getLocation(),
4106 // Check these arguments are valid for a template partial specialization.
4107 if (SemaRef
.CheckTemplatePartialSpecializationArgs(
4108 PartialSpec
->getLocation(), ClassTemplate
, InstTemplateArgs
.size(),
4112 // Figure out where to insert this class template partial specialization
4113 // in the member template's set of class template partial specializations.
4114 void *InsertPos
= nullptr;
4115 ClassTemplateSpecializationDecl
*PrevDecl
4116 = ClassTemplate
->findPartialSpecialization(Converted
, InstParams
,
4119 // Build the canonical type that describes the converted template
4120 // arguments of the class template partial specialization.
4122 = SemaRef
.Context
.getTemplateSpecializationType(TemplateName(ClassTemplate
),
4125 // Build the fully-sugared type for this class template
4126 // specialization as the user wrote in the specialization
4127 // itself. This means that we'll pretty-print the type retrieved
4128 // from the specialization's declaration the way that the user
4129 // actually wrote the specialization, rather than formatting the
4130 // name based on the "canonical" representation used to store the
4131 // template arguments in the specialization.
4132 TypeSourceInfo
*WrittenTy
4133 = SemaRef
.Context
.getTemplateSpecializationTypeInfo(
4134 TemplateName(ClassTemplate
),
4135 PartialSpec
->getLocation(),
4140 // We've already seen a partial specialization with the same template
4141 // parameters and template arguments. This can happen, for example, when
4142 // substituting the outer template arguments ends up causing two
4143 // class template partial specializations of a member class template
4144 // to have identical forms, e.g.,
4146 // template<typename T, typename U>
4148 // template<typename X, typename Y> struct Inner;
4149 // template<typename Y> struct Inner<T, Y>;
4150 // template<typename Y> struct Inner<U, Y>;
4153 // Outer<int, int> outer; // error: the partial specializations of Inner
4154 // // have the same signature.
4155 SemaRef
.Diag(PartialSpec
->getLocation(), diag::err_partial_spec_redeclared
)
4156 << WrittenTy
->getType();
4157 SemaRef
.Diag(PrevDecl
->getLocation(), diag::note_prev_partial_spec_here
)
4158 << SemaRef
.Context
.getTypeDeclType(PrevDecl
);
4163 // Create the class template partial specialization declaration.
4164 ClassTemplatePartialSpecializationDecl
*InstPartialSpec
=
4165 ClassTemplatePartialSpecializationDecl::Create(
4166 SemaRef
.Context
, PartialSpec
->getTagKind(), Owner
,
4167 PartialSpec
->getBeginLoc(), PartialSpec
->getLocation(), InstParams
,
4168 ClassTemplate
, Converted
, InstTemplateArgs
, CanonType
, nullptr);
4169 // Substitute the nested name specifier, if any.
4170 if (SubstQualifier(PartialSpec
, InstPartialSpec
))
4173 InstPartialSpec
->setInstantiatedFromMember(PartialSpec
);
4174 InstPartialSpec
->setTypeAsWritten(WrittenTy
);
4176 // Check the completed partial specialization.
4177 SemaRef
.CheckTemplatePartialSpecialization(InstPartialSpec
);
4179 // Add this partial specialization to the set of class template partial
4181 ClassTemplate
->AddPartialSpecialization(InstPartialSpec
,
4182 /*InsertPos=*/nullptr);
4183 return InstPartialSpec
;
4186 /// Instantiate the declaration of a variable template partial
4189 /// \param VarTemplate the (instantiated) variable template that is partially
4190 /// specialized by the instantiation of \p PartialSpec.
4192 /// \param PartialSpec the (uninstantiated) variable template partial
4193 /// specialization that we are instantiating.
4195 /// \returns The instantiated partial specialization, if successful; otherwise,
4196 /// NULL to indicate an error.
4197 VarTemplatePartialSpecializationDecl
*
4198 TemplateDeclInstantiator::InstantiateVarTemplatePartialSpecialization(
4199 VarTemplateDecl
*VarTemplate
,
4200 VarTemplatePartialSpecializationDecl
*PartialSpec
) {
4201 // Create a local instantiation scope for this variable template partial
4202 // specialization, which will contain the instantiations of the template
4204 LocalInstantiationScope
Scope(SemaRef
);
4206 // Substitute into the template parameters of the variable template partial
4208 TemplateParameterList
*TempParams
= PartialSpec
->getTemplateParameters();
4209 TemplateParameterList
*InstParams
= SubstTemplateParams(TempParams
);
4213 // Substitute into the template arguments of the variable template partial
4215 const ASTTemplateArgumentListInfo
*TemplArgInfo
4216 = PartialSpec
->getTemplateArgsAsWritten();
4217 TemplateArgumentListInfo
InstTemplateArgs(TemplArgInfo
->LAngleLoc
,
4218 TemplArgInfo
->RAngleLoc
);
4219 if (SemaRef
.SubstTemplateArguments(TemplArgInfo
->arguments(), TemplateArgs
,
4223 // Check that the template argument list is well-formed for this
4225 SmallVector
<TemplateArgument
, 4> Converted
;
4226 if (SemaRef
.CheckTemplateArgumentList(VarTemplate
, PartialSpec
->getLocation(),
4227 InstTemplateArgs
, false, Converted
))
4230 // Check these arguments are valid for a template partial specialization.
4231 if (SemaRef
.CheckTemplatePartialSpecializationArgs(
4232 PartialSpec
->getLocation(), VarTemplate
, InstTemplateArgs
.size(),
4236 // Figure out where to insert this variable template partial specialization
4237 // in the member template's set of variable template partial specializations.
4238 void *InsertPos
= nullptr;
4239 VarTemplateSpecializationDecl
*PrevDecl
=
4240 VarTemplate
->findPartialSpecialization(Converted
, InstParams
, InsertPos
);
4242 // Build the canonical type that describes the converted template
4243 // arguments of the variable template partial specialization.
4244 QualType CanonType
= SemaRef
.Context
.getTemplateSpecializationType(
4245 TemplateName(VarTemplate
), Converted
);
4247 // Build the fully-sugared type for this variable template
4248 // specialization as the user wrote in the specialization
4249 // itself. This means that we'll pretty-print the type retrieved
4250 // from the specialization's declaration the way that the user
4251 // actually wrote the specialization, rather than formatting the
4252 // name based on the "canonical" representation used to store the
4253 // template arguments in the specialization.
4254 TypeSourceInfo
*WrittenTy
= SemaRef
.Context
.getTemplateSpecializationTypeInfo(
4255 TemplateName(VarTemplate
), PartialSpec
->getLocation(), InstTemplateArgs
,
4259 // We've already seen a partial specialization with the same template
4260 // parameters and template arguments. This can happen, for example, when
4261 // substituting the outer template arguments ends up causing two
4262 // variable template partial specializations of a member variable template
4263 // to have identical forms, e.g.,
4265 // template<typename T, typename U>
4267 // template<typename X, typename Y> pair<X,Y> p;
4268 // template<typename Y> pair<T, Y> p;
4269 // template<typename Y> pair<U, Y> p;
4272 // Outer<int, int> outer; // error: the partial specializations of Inner
4273 // // have the same signature.
4274 SemaRef
.Diag(PartialSpec
->getLocation(),
4275 diag::err_var_partial_spec_redeclared
)
4276 << WrittenTy
->getType();
4277 SemaRef
.Diag(PrevDecl
->getLocation(),
4278 diag::note_var_prev_partial_spec_here
);
4282 // Do substitution on the type of the declaration
4283 TypeSourceInfo
*DI
= SemaRef
.SubstType(
4284 PartialSpec
->getTypeSourceInfo(), TemplateArgs
,
4285 PartialSpec
->getTypeSpecStartLoc(), PartialSpec
->getDeclName());
4289 if (DI
->getType()->isFunctionType()) {
4290 SemaRef
.Diag(PartialSpec
->getLocation(),
4291 diag::err_variable_instantiates_to_function
)
4292 << PartialSpec
->isStaticDataMember() << DI
->getType();
4296 // Create the variable template partial specialization declaration.
4297 VarTemplatePartialSpecializationDecl
*InstPartialSpec
=
4298 VarTemplatePartialSpecializationDecl::Create(
4299 SemaRef
.Context
, Owner
, PartialSpec
->getInnerLocStart(),
4300 PartialSpec
->getLocation(), InstParams
, VarTemplate
, DI
->getType(),
4301 DI
, PartialSpec
->getStorageClass(), Converted
, InstTemplateArgs
);
4303 // Substitute the nested name specifier, if any.
4304 if (SubstQualifier(PartialSpec
, InstPartialSpec
))
4307 InstPartialSpec
->setInstantiatedFromMember(PartialSpec
);
4308 InstPartialSpec
->setTypeAsWritten(WrittenTy
);
4310 // Check the completed partial specialization.
4311 SemaRef
.CheckTemplatePartialSpecialization(InstPartialSpec
);
4313 // Add this partial specialization to the set of variable template partial
4314 // specializations. The instantiation of the initializer is not necessary.
4315 VarTemplate
->AddPartialSpecialization(InstPartialSpec
, /*InsertPos=*/nullptr);
4317 SemaRef
.BuildVariableInstantiation(InstPartialSpec
, PartialSpec
, TemplateArgs
,
4318 LateAttrs
, Owner
, StartingScope
);
4320 return InstPartialSpec
;
4324 TemplateDeclInstantiator::SubstFunctionType(FunctionDecl
*D
,
4325 SmallVectorImpl
<ParmVarDecl
*> &Params
) {
4326 TypeSourceInfo
*OldTInfo
= D
->getTypeSourceInfo();
4327 assert(OldTInfo
&& "substituting function without type source info");
4328 assert(Params
.empty() && "parameter vector is non-empty at start");
4330 CXXRecordDecl
*ThisContext
= nullptr;
4331 Qualifiers ThisTypeQuals
;
4332 if (CXXMethodDecl
*Method
= dyn_cast
<CXXMethodDecl
>(D
)) {
4333 ThisContext
= cast
<CXXRecordDecl
>(Owner
);
4334 ThisTypeQuals
= Method
->getMethodQualifiers();
4337 TypeSourceInfo
*NewTInfo
4338 = SemaRef
.SubstFunctionDeclType(OldTInfo
, TemplateArgs
,
4339 D
->getTypeSpecStartLoc(),
4341 ThisContext
, ThisTypeQuals
);
4345 TypeLoc OldTL
= OldTInfo
->getTypeLoc().IgnoreParens();
4346 if (FunctionProtoTypeLoc OldProtoLoc
= OldTL
.getAs
<FunctionProtoTypeLoc
>()) {
4347 if (NewTInfo
!= OldTInfo
) {
4348 // Get parameters from the new type info.
4349 TypeLoc NewTL
= NewTInfo
->getTypeLoc().IgnoreParens();
4350 FunctionProtoTypeLoc NewProtoLoc
= NewTL
.castAs
<FunctionProtoTypeLoc
>();
4351 unsigned NewIdx
= 0;
4352 for (unsigned OldIdx
= 0, NumOldParams
= OldProtoLoc
.getNumParams();
4353 OldIdx
!= NumOldParams
; ++OldIdx
) {
4354 ParmVarDecl
*OldParam
= OldProtoLoc
.getParam(OldIdx
);
4358 LocalInstantiationScope
*Scope
= SemaRef
.CurrentInstantiationScope
;
4360 Optional
<unsigned> NumArgumentsInExpansion
;
4361 if (OldParam
->isParameterPack())
4362 NumArgumentsInExpansion
=
4363 SemaRef
.getNumArgumentsInExpansion(OldParam
->getType(),
4365 if (!NumArgumentsInExpansion
) {
4366 // Simple case: normal parameter, or a parameter pack that's
4367 // instantiated to a (still-dependent) parameter pack.
4368 ParmVarDecl
*NewParam
= NewProtoLoc
.getParam(NewIdx
++);
4369 Params
.push_back(NewParam
);
4370 Scope
->InstantiatedLocal(OldParam
, NewParam
);
4372 // Parameter pack expansion: make the instantiation an argument pack.
4373 Scope
->MakeInstantiatedLocalArgPack(OldParam
);
4374 for (unsigned I
= 0; I
!= *NumArgumentsInExpansion
; ++I
) {
4375 ParmVarDecl
*NewParam
= NewProtoLoc
.getParam(NewIdx
++);
4376 Params
.push_back(NewParam
);
4377 Scope
->InstantiatedLocalPackArg(OldParam
, NewParam
);
4382 // The function type itself was not dependent and therefore no
4383 // substitution occurred. However, we still need to instantiate
4384 // the function parameters themselves.
4385 const FunctionProtoType
*OldProto
=
4386 cast
<FunctionProtoType
>(OldProtoLoc
.getType());
4387 for (unsigned i
= 0, i_end
= OldProtoLoc
.getNumParams(); i
!= i_end
;
4389 ParmVarDecl
*OldParam
= OldProtoLoc
.getParam(i
);
4391 Params
.push_back(SemaRef
.BuildParmVarDeclForTypedef(
4392 D
, D
->getLocation(), OldProto
->getParamType(i
)));
4397 cast_or_null
<ParmVarDecl
>(VisitParmVarDecl(OldParam
));
4400 Params
.push_back(Parm
);
4404 // If the type of this function, after ignoring parentheses, is not
4405 // *directly* a function type, then we're instantiating a function that
4406 // was declared via a typedef or with attributes, e.g.,
4408 // typedef int functype(int, int);
4410 // int __cdecl meth(int, int);
4412 // In this case, we'll just go instantiate the ParmVarDecls that we
4413 // synthesized in the method declaration.
4414 SmallVector
<QualType
, 4> ParamTypes
;
4415 Sema::ExtParameterInfoBuilder ExtParamInfos
;
4416 if (SemaRef
.SubstParmTypes(D
->getLocation(), D
->parameters(), nullptr,
4417 TemplateArgs
, ParamTypes
, &Params
,
4425 /// Introduce the instantiated function parameters into the local
4426 /// instantiation scope, and set the parameter names to those used
4427 /// in the template.
4428 bool Sema::addInstantiatedParametersToScope(
4429 FunctionDecl
*Function
, const FunctionDecl
*PatternDecl
,
4430 LocalInstantiationScope
&Scope
,
4431 const MultiLevelTemplateArgumentList
&TemplateArgs
) {
4432 unsigned FParamIdx
= 0;
4433 for (unsigned I
= 0, N
= PatternDecl
->getNumParams(); I
!= N
; ++I
) {
4434 const ParmVarDecl
*PatternParam
= PatternDecl
->getParamDecl(I
);
4435 if (!PatternParam
->isParameterPack()) {
4436 // Simple case: not a parameter pack.
4437 assert(FParamIdx
< Function
->getNumParams());
4438 ParmVarDecl
*FunctionParam
= Function
->getParamDecl(FParamIdx
);
4439 FunctionParam
->setDeclName(PatternParam
->getDeclName());
4440 // If the parameter's type is not dependent, update it to match the type
4441 // in the pattern. They can differ in top-level cv-qualifiers, and we want
4442 // the pattern's type here. If the type is dependent, they can't differ,
4443 // per core issue 1668. Substitute into the type from the pattern, in case
4444 // it's instantiation-dependent.
4445 // FIXME: Updating the type to work around this is at best fragile.
4446 if (!PatternDecl
->getType()->isDependentType()) {
4447 QualType T
= SubstType(PatternParam
->getType(), TemplateArgs
,
4448 FunctionParam
->getLocation(),
4449 FunctionParam
->getDeclName());
4452 FunctionParam
->setType(T
);
4455 Scope
.InstantiatedLocal(PatternParam
, FunctionParam
);
4460 // Expand the parameter pack.
4461 Scope
.MakeInstantiatedLocalArgPack(PatternParam
);
4462 Optional
<unsigned> NumArgumentsInExpansion
=
4463 getNumArgumentsInExpansion(PatternParam
->getType(), TemplateArgs
);
4464 if (NumArgumentsInExpansion
) {
4465 QualType PatternType
=
4466 PatternParam
->getType()->castAs
<PackExpansionType
>()->getPattern();
4467 for (unsigned Arg
= 0; Arg
< *NumArgumentsInExpansion
; ++Arg
) {
4468 ParmVarDecl
*FunctionParam
= Function
->getParamDecl(FParamIdx
);
4469 FunctionParam
->setDeclName(PatternParam
->getDeclName());
4470 if (!PatternDecl
->getType()->isDependentType()) {
4471 Sema::ArgumentPackSubstitutionIndexRAII
SubstIndex(*this, Arg
);
4473 SubstType(PatternType
, TemplateArgs
, FunctionParam
->getLocation(),
4474 FunctionParam
->getDeclName());
4477 FunctionParam
->setType(T
);
4480 Scope
.InstantiatedLocalPackArg(PatternParam
, FunctionParam
);
4489 bool Sema::InstantiateDefaultArgument(SourceLocation CallLoc
, FunctionDecl
*FD
,
4490 ParmVarDecl
*Param
) {
4491 assert(Param
->hasUninstantiatedDefaultArg());
4492 Expr
*UninstExpr
= Param
->getUninstantiatedDefaultArg();
4494 EnterExpressionEvaluationContext
EvalContext(
4495 *this, ExpressionEvaluationContext::PotentiallyEvaluated
, Param
);
4497 // Instantiate the expression.
4499 // FIXME: Pass in a correct Pattern argument, otherwise
4500 // getTemplateInstantiationArgs uses the lexical context of FD, e.g.
4502 // template<typename T>
4504 // static int FooImpl();
4506 // template<typename Tp>
4507 // // bug: default argument A<T>::FooImpl() is evaluated with 2-level
4508 // // template argument list [[T], [Tp]], should be [[Tp]].
4509 // friend A<Tp> Foo(int a);
4512 // template<typename T>
4513 // A<T> Foo(int a = A<T>::FooImpl());
4514 MultiLevelTemplateArgumentList TemplateArgs
4515 = getTemplateInstantiationArgs(FD
, nullptr, /*RelativeToPrimary=*/true);
4517 InstantiatingTemplate
Inst(*this, CallLoc
, Param
,
4518 TemplateArgs
.getInnermost());
4519 if (Inst
.isInvalid())
4521 if (Inst
.isAlreadyInstantiating()) {
4522 Diag(Param
->getBeginLoc(), diag::err_recursive_default_argument
) << FD
;
4523 Param
->setInvalidDecl();
4529 // C++ [dcl.fct.default]p5:
4530 // The names in the [default argument] expression are bound, and
4531 // the semantic constraints are checked, at the point where the
4532 // default argument expression appears.
4533 ContextRAII
SavedContext(*this, FD
);
4534 LocalInstantiationScope
Local(*this);
4536 FunctionDecl
*Pattern
= FD
->getTemplateInstantiationPattern(
4537 /*ForDefinition*/ false);
4538 if (addInstantiatedParametersToScope(FD
, Pattern
, Local
, TemplateArgs
))
4541 runWithSufficientStackSpace(CallLoc
, [&] {
4542 Result
= SubstInitializer(UninstExpr
, TemplateArgs
,
4543 /*DirectInit*/false);
4546 if (Result
.isInvalid())
4549 // Check the expression as an initializer for the parameter.
4550 InitializedEntity Entity
4551 = InitializedEntity::InitializeParameter(Context
, Param
);
4552 InitializationKind Kind
= InitializationKind::CreateCopy(
4553 Param
->getLocation(),
4554 /*FIXME:EqualLoc*/ UninstExpr
->getBeginLoc());
4555 Expr
*ResultE
= Result
.getAs
<Expr
>();
4557 InitializationSequence
InitSeq(*this, Entity
, Kind
, ResultE
);
4558 Result
= InitSeq
.Perform(*this, Entity
, Kind
, ResultE
);
4559 if (Result
.isInvalid())
4563 ActOnFinishFullExpr(Result
.getAs
<Expr
>(), Param
->getOuterLocStart(),
4564 /*DiscardedValue*/ false);
4565 if (Result
.isInvalid())
4568 // Remember the instantiated default argument.
4569 Param
->setDefaultArg(Result
.getAs
<Expr
>());
4570 if (ASTMutationListener
*L
= getASTMutationListener())
4571 L
->DefaultArgumentInstantiated(Param
);
4576 void Sema::InstantiateExceptionSpec(SourceLocation PointOfInstantiation
,
4577 FunctionDecl
*Decl
) {
4578 const FunctionProtoType
*Proto
= Decl
->getType()->castAs
<FunctionProtoType
>();
4579 if (Proto
->getExceptionSpecType() != EST_Uninstantiated
)
4582 InstantiatingTemplate
Inst(*this, PointOfInstantiation
, Decl
,
4583 InstantiatingTemplate::ExceptionSpecification());
4584 if (Inst
.isInvalid()) {
4585 // We hit the instantiation depth limit. Clear the exception specification
4586 // so that our callers don't have to cope with EST_Uninstantiated.
4587 UpdateExceptionSpec(Decl
, EST_None
);
4590 if (Inst
.isAlreadyInstantiating()) {
4591 // This exception specification indirectly depends on itself. Reject.
4592 // FIXME: Corresponding rule in the standard?
4593 Diag(PointOfInstantiation
, diag::err_exception_spec_cycle
) << Decl
;
4594 UpdateExceptionSpec(Decl
, EST_None
);
4598 // Enter the scope of this instantiation. We don't use
4599 // PushDeclContext because we don't have a scope.
4600 Sema::ContextRAII
savedContext(*this, Decl
);
4601 LocalInstantiationScope
Scope(*this);
4603 MultiLevelTemplateArgumentList TemplateArgs
=
4604 getTemplateInstantiationArgs(Decl
, nullptr, /*RelativeToPrimary*/true);
4606 // FIXME: We can't use getTemplateInstantiationPattern(false) in general
4607 // here, because for a non-defining friend declaration in a class template,
4608 // we don't store enough information to map back to the friend declaration in
4610 FunctionDecl
*Template
= Proto
->getExceptionSpecTemplate();
4611 if (addInstantiatedParametersToScope(Decl
, Template
, Scope
, TemplateArgs
)) {
4612 UpdateExceptionSpec(Decl
, EST_None
);
4616 SubstExceptionSpec(Decl
, Template
->getType()->castAs
<FunctionProtoType
>(),
4620 /// Initializes the common fields of an instantiation function
4621 /// declaration (New) from the corresponding fields of its template (Tmpl).
4623 /// \returns true if there was an error
4625 TemplateDeclInstantiator::InitFunctionInstantiation(FunctionDecl
*New
,
4626 FunctionDecl
*Tmpl
) {
4627 New
->setImplicit(Tmpl
->isImplicit());
4629 // Forward the mangling number from the template to the instantiated decl.
4630 SemaRef
.Context
.setManglingNumber(New
,
4631 SemaRef
.Context
.getManglingNumber(Tmpl
));
4633 // If we are performing substituting explicitly-specified template arguments
4634 // or deduced template arguments into a function template and we reach this
4635 // point, we are now past the point where SFINAE applies and have committed
4636 // to keeping the new function template specialization. We therefore
4637 // convert the active template instantiation for the function template
4638 // into a template instantiation for this specific function template
4639 // specialization, which is not a SFINAE context, so that we diagnose any
4640 // further errors in the declaration itself.
4642 // FIXME: This is a hack.
4643 typedef Sema::CodeSynthesisContext ActiveInstType
;
4644 ActiveInstType
&ActiveInst
= SemaRef
.CodeSynthesisContexts
.back();
4645 if (ActiveInst
.Kind
== ActiveInstType::ExplicitTemplateArgumentSubstitution
||
4646 ActiveInst
.Kind
== ActiveInstType::DeducedTemplateArgumentSubstitution
) {
4647 if (FunctionTemplateDecl
*FunTmpl
4648 = dyn_cast
<FunctionTemplateDecl
>(ActiveInst
.Entity
)) {
4649 assert(FunTmpl
->getTemplatedDecl() == Tmpl
&&
4650 "Deduction from the wrong function template?");
4652 SemaRef
.InstantiatingSpecializations
.erase(
4653 {ActiveInst
.Entity
->getCanonicalDecl(), ActiveInst
.Kind
});
4654 atTemplateEnd(SemaRef
.TemplateInstCallbacks
, SemaRef
, ActiveInst
);
4655 ActiveInst
.Kind
= ActiveInstType::TemplateInstantiation
;
4656 ActiveInst
.Entity
= New
;
4657 atTemplateBegin(SemaRef
.TemplateInstCallbacks
, SemaRef
, ActiveInst
);
4661 const FunctionProtoType
*Proto
= Tmpl
->getType()->getAs
<FunctionProtoType
>();
4662 assert(Proto
&& "Function template without prototype?");
4664 if (Proto
->hasExceptionSpec() || Proto
->getNoReturnAttr()) {
4665 FunctionProtoType::ExtProtoInfo EPI
= Proto
->getExtProtoInfo();
4667 // DR1330: In C++11, defer instantiation of a non-trivial
4668 // exception specification.
4669 // DR1484: Local classes and their members are instantiated along with the
4670 // containing function.
4671 if (SemaRef
.getLangOpts().CPlusPlus11
&&
4672 EPI
.ExceptionSpec
.Type
!= EST_None
&&
4673 EPI
.ExceptionSpec
.Type
!= EST_DynamicNone
&&
4674 EPI
.ExceptionSpec
.Type
!= EST_BasicNoexcept
&&
4675 !Tmpl
->isInLocalScopeForInstantiation()) {
4676 FunctionDecl
*ExceptionSpecTemplate
= Tmpl
;
4677 if (EPI
.ExceptionSpec
.Type
== EST_Uninstantiated
)
4678 ExceptionSpecTemplate
= EPI
.ExceptionSpec
.SourceTemplate
;
4679 ExceptionSpecificationType NewEST
= EST_Uninstantiated
;
4680 if (EPI
.ExceptionSpec
.Type
== EST_Unevaluated
)
4681 NewEST
= EST_Unevaluated
;
4683 // Mark the function has having an uninstantiated exception specification.
4684 const FunctionProtoType
*NewProto
4685 = New
->getType()->getAs
<FunctionProtoType
>();
4686 assert(NewProto
&& "Template instantiation without function prototype?");
4687 EPI
= NewProto
->getExtProtoInfo();
4688 EPI
.ExceptionSpec
.Type
= NewEST
;
4689 EPI
.ExceptionSpec
.SourceDecl
= New
;
4690 EPI
.ExceptionSpec
.SourceTemplate
= ExceptionSpecTemplate
;
4691 New
->setType(SemaRef
.Context
.getFunctionType(
4692 NewProto
->getReturnType(), NewProto
->getParamTypes(), EPI
));
4694 Sema::ContextRAII
SwitchContext(SemaRef
, New
);
4695 SemaRef
.SubstExceptionSpec(New
, Proto
, TemplateArgs
);
4699 // Get the definition. Leaves the variable unchanged if undefined.
4700 const FunctionDecl
*Definition
= Tmpl
;
4701 Tmpl
->isDefined(Definition
);
4703 SemaRef
.InstantiateAttrs(TemplateArgs
, Definition
, New
,
4704 LateAttrs
, StartingScope
);
4709 /// Initializes common fields of an instantiated method
4710 /// declaration (New) from the corresponding fields of its template
4713 /// \returns true if there was an error
4715 TemplateDeclInstantiator::InitMethodInstantiation(CXXMethodDecl
*New
,
4716 CXXMethodDecl
*Tmpl
) {
4717 if (InitFunctionInstantiation(New
, Tmpl
))
4720 if (isa
<CXXDestructorDecl
>(New
) && SemaRef
.getLangOpts().CPlusPlus11
)
4721 SemaRef
.AdjustDestructorExceptionSpec(cast
<CXXDestructorDecl
>(New
));
4723 New
->setAccess(Tmpl
->getAccess());
4724 if (Tmpl
->isVirtualAsWritten())
4725 New
->setVirtualAsWritten(true);
4727 // FIXME: New needs a pointer to Tmpl
4731 bool TemplateDeclInstantiator::SubstDefaultedFunction(FunctionDecl
*New
,
4732 FunctionDecl
*Tmpl
) {
4733 // Transfer across any unqualified lookups.
4734 if (auto *DFI
= Tmpl
->getDefaultedFunctionInfo()) {
4735 SmallVector
<DeclAccessPair
, 32> Lookups
;
4736 Lookups
.reserve(DFI
->getUnqualifiedLookups().size());
4737 bool AnyChanged
= false;
4738 for (DeclAccessPair DA
: DFI
->getUnqualifiedLookups()) {
4739 NamedDecl
*D
= SemaRef
.FindInstantiatedDecl(New
->getLocation(),
4740 DA
.getDecl(), TemplateArgs
);
4743 AnyChanged
|= (D
!= DA
.getDecl());
4744 Lookups
.push_back(DeclAccessPair::make(D
, DA
.getAccess()));
4747 // It's unlikely that substitution will change any declarations. Don't
4748 // store an unnecessary copy in that case.
4749 New
->setDefaultedFunctionInfo(
4750 AnyChanged
? FunctionDecl::DefaultedFunctionInfo::Create(
4751 SemaRef
.Context
, Lookups
)
4755 SemaRef
.SetDeclDefaulted(New
, Tmpl
->getLocation());
4759 /// Instantiate (or find existing instantiation of) a function template with a
4760 /// given set of template arguments.
4762 /// Usually this should not be used, and template argument deduction should be
4763 /// used in its place.
4765 Sema::InstantiateFunctionDeclaration(FunctionTemplateDecl
*FTD
,
4766 const TemplateArgumentList
*Args
,
4767 SourceLocation Loc
) {
4768 FunctionDecl
*FD
= FTD
->getTemplatedDecl();
4770 sema::TemplateDeductionInfo
Info(Loc
);
4771 InstantiatingTemplate
Inst(
4772 *this, Loc
, FTD
, Args
->asArray(),
4773 CodeSynthesisContext::ExplicitTemplateArgumentSubstitution
, Info
);
4774 if (Inst
.isInvalid())
4777 ContextRAII
SavedContext(*this, FD
);
4778 MultiLevelTemplateArgumentList
MArgs(*Args
);
4780 return cast_or_null
<FunctionDecl
>(SubstDecl(FD
, FD
->getParent(), MArgs
));
4783 /// Instantiate the definition of the given function from its
4786 /// \param PointOfInstantiation the point at which the instantiation was
4787 /// required. Note that this is not precisely a "point of instantiation"
4788 /// for the function, but it's close.
4790 /// \param Function the already-instantiated declaration of a
4791 /// function template specialization or member function of a class template
4794 /// \param Recursive if true, recursively instantiates any functions that
4795 /// are required by this instantiation.
4797 /// \param DefinitionRequired if true, then we are performing an explicit
4798 /// instantiation where the body of the function is required. Complain if
4799 /// there is no such body.
4800 void Sema::InstantiateFunctionDefinition(SourceLocation PointOfInstantiation
,
4801 FunctionDecl
*Function
,
4803 bool DefinitionRequired
,
4805 if (Function
->isInvalidDecl() || isa
<CXXDeductionGuideDecl
>(Function
))
4808 // Never instantiate an explicit specialization except if it is a class scope
4809 // explicit specialization.
4810 TemplateSpecializationKind TSK
=
4811 Function
->getTemplateSpecializationKindForInstantiation();
4812 if (TSK
== TSK_ExplicitSpecialization
)
4815 // Never implicitly instantiate a builtin; we don't actually need a function
4817 if (Function
->getBuiltinID() && TSK
== TSK_ImplicitInstantiation
&&
4818 !DefinitionRequired
)
4821 // Don't instantiate a definition if we already have one.
4822 const FunctionDecl
*ExistingDefn
= nullptr;
4823 if (Function
->isDefined(ExistingDefn
,
4824 /*CheckForPendingFriendDefinition=*/true)) {
4825 if (ExistingDefn
->isThisDeclarationADefinition())
4828 // If we're asked to instantiate a function whose body comes from an
4829 // instantiated friend declaration, attach the instantiated body to the
4830 // corresponding declaration of the function.
4831 assert(ExistingDefn
->isThisDeclarationInstantiatedFromAFriendDefinition());
4832 Function
= const_cast<FunctionDecl
*>(ExistingDefn
);
4835 // Find the function body that we'll be substituting.
4836 const FunctionDecl
*PatternDecl
= Function
->getTemplateInstantiationPattern();
4837 assert(PatternDecl
&& "instantiating a non-template");
4839 const FunctionDecl
*PatternDef
= PatternDecl
->getDefinition();
4840 Stmt
*Pattern
= nullptr;
4842 Pattern
= PatternDef
->getBody(PatternDef
);
4843 PatternDecl
= PatternDef
;
4844 if (PatternDef
->willHaveBody())
4845 PatternDef
= nullptr;
4848 // FIXME: We need to track the instantiation stack in order to know which
4849 // definitions should be visible within this instantiation.
4850 if (DiagnoseUninstantiableTemplate(PointOfInstantiation
, Function
,
4851 Function
->getInstantiatedFromMemberFunction(),
4852 PatternDecl
, PatternDef
, TSK
,
4853 /*Complain*/DefinitionRequired
)) {
4854 if (DefinitionRequired
)
4855 Function
->setInvalidDecl();
4856 else if (TSK
== TSK_ExplicitInstantiationDefinition
||
4857 (Function
->isConstexpr() && !Recursive
)) {
4858 // Try again at the end of the translation unit (at which point a
4859 // definition will be required).
4861 Function
->setInstantiationIsPending(true);
4862 PendingInstantiations
.push_back(
4863 std::make_pair(Function
, PointOfInstantiation
));
4864 } else if (TSK
== TSK_ImplicitInstantiation
) {
4865 if (AtEndOfTU
&& !getDiagnostics().hasErrorOccurred() &&
4866 !getSourceManager().isInSystemHeader(PatternDecl
->getBeginLoc())) {
4867 Diag(PointOfInstantiation
, diag::warn_func_template_missing
)
4869 Diag(PatternDecl
->getLocation(), diag::note_forward_template_decl
);
4870 if (getLangOpts().CPlusPlus11
)
4871 Diag(PointOfInstantiation
, diag::note_inst_declaration_hint
)
4879 // Postpone late parsed template instantiations.
4880 if (PatternDecl
->isLateTemplateParsed() &&
4881 !LateTemplateParser
) {
4882 Function
->setInstantiationIsPending(true);
4883 LateParsedInstantiations
.push_back(
4884 std::make_pair(Function
, PointOfInstantiation
));
4888 llvm::TimeTraceScope
TimeScope("InstantiateFunction", [&]() {
4890 llvm::raw_string_ostream
OS(Name
);
4891 Function
->getNameForDiagnostic(OS
, getPrintingPolicy(),
4892 /*Qualified=*/true);
4896 // If we're performing recursive template instantiation, create our own
4897 // queue of pending implicit instantiations that we will instantiate later,
4898 // while we're still within our own instantiation context.
4899 // This has to happen before LateTemplateParser below is called, so that
4900 // it marks vtables used in late parsed templates as used.
4901 GlobalEagerInstantiationScope
GlobalInstantiations(*this,
4902 /*Enabled=*/Recursive
);
4903 LocalEagerInstantiationScope
LocalInstantiations(*this);
4905 // Call the LateTemplateParser callback if there is a need to late parse
4906 // a templated function definition.
4907 if (!Pattern
&& PatternDecl
->isLateTemplateParsed() &&
4908 LateTemplateParser
) {
4909 // FIXME: Optimize to allow individual templates to be deserialized.
4910 if (PatternDecl
->isFromASTFile())
4911 ExternalSource
->ReadLateParsedTemplates(LateParsedTemplateMap
);
4913 auto LPTIter
= LateParsedTemplateMap
.find(PatternDecl
);
4914 assert(LPTIter
!= LateParsedTemplateMap
.end() &&
4915 "missing LateParsedTemplate");
4916 LateTemplateParser(OpaqueParser
, *LPTIter
->second
);
4917 Pattern
= PatternDecl
->getBody(PatternDecl
);
4920 // Note, we should never try to instantiate a deleted function template.
4921 assert((Pattern
|| PatternDecl
->isDefaulted() ||
4922 PatternDecl
->hasSkippedBody()) &&
4923 "unexpected kind of function template definition");
4925 // C++1y [temp.explicit]p10:
4926 // Except for inline functions, declarations with types deduced from their
4927 // initializer or return value, and class template specializations, other
4928 // explicit instantiation declarations have the effect of suppressing the
4929 // implicit instantiation of the entity to which they refer.
4930 if (TSK
== TSK_ExplicitInstantiationDeclaration
&&
4931 !PatternDecl
->isInlined() &&
4932 !PatternDecl
->getReturnType()->getContainedAutoType())
4935 if (PatternDecl
->isInlined()) {
4936 // Function, and all later redeclarations of it (from imported modules,
4937 // for instance), are now implicitly inline.
4938 for (auto *D
= Function
->getMostRecentDecl(); /**/;
4939 D
= D
->getPreviousDecl()) {
4940 D
->setImplicitlyInline();
4946 InstantiatingTemplate
Inst(*this, PointOfInstantiation
, Function
);
4947 if (Inst
.isInvalid() || Inst
.isAlreadyInstantiating())
4949 PrettyDeclStackTraceEntry
CrashInfo(Context
, Function
, SourceLocation(),
4950 "instantiating function definition");
4952 // The instantiation is visible here, even if it was first declared in an
4953 // unimported module.
4954 Function
->setVisibleDespiteOwningModule();
4956 // Copy the inner loc start from the pattern.
4957 Function
->setInnerLocStart(PatternDecl
->getInnerLocStart());
4959 EnterExpressionEvaluationContext
EvalContext(
4960 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated
);
4962 // Introduce a new scope where local variable instantiations will be
4963 // recorded, unless we're actually a member function within a local
4964 // class, in which case we need to merge our results with the parent
4965 // scope (of the enclosing function). The exception is instantiating
4966 // a function template specialization, since the template to be
4967 // instantiated already has references to locals properly substituted.
4968 bool MergeWithParentScope
= false;
4969 if (CXXRecordDecl
*Rec
= dyn_cast
<CXXRecordDecl
>(Function
->getDeclContext()))
4970 MergeWithParentScope
=
4971 Rec
->isLocalClass() && !Function
->isFunctionTemplateSpecialization();
4973 LocalInstantiationScope
Scope(*this, MergeWithParentScope
);
4974 auto RebuildTypeSourceInfoForDefaultSpecialMembers
= [&]() {
4975 // Special members might get their TypeSourceInfo set up w.r.t the
4976 // PatternDecl context, in which case parameters could still be pointing
4977 // back to the original class, make sure arguments are bound to the
4978 // instantiated record instead.
4979 assert(PatternDecl
->isDefaulted() &&
4980 "Special member needs to be defaulted");
4981 auto PatternSM
= getDefaultedFunctionKind(PatternDecl
).asSpecialMember();
4982 if (!(PatternSM
== Sema::CXXCopyConstructor
||
4983 PatternSM
== Sema::CXXCopyAssignment
||
4984 PatternSM
== Sema::CXXMoveConstructor
||
4985 PatternSM
== Sema::CXXMoveAssignment
))
4988 auto *NewRec
= dyn_cast
<CXXRecordDecl
>(Function
->getDeclContext());
4989 const auto *PatternRec
=
4990 dyn_cast
<CXXRecordDecl
>(PatternDecl
->getDeclContext());
4991 if (!NewRec
|| !PatternRec
)
4993 if (!PatternRec
->isLambda())
4996 struct SpecialMemberTypeInfoRebuilder
4997 : TreeTransform
<SpecialMemberTypeInfoRebuilder
> {
4998 using Base
= TreeTransform
<SpecialMemberTypeInfoRebuilder
>;
4999 const CXXRecordDecl
*OldDecl
;
5000 CXXRecordDecl
*NewDecl
;
5002 SpecialMemberTypeInfoRebuilder(Sema
&SemaRef
, const CXXRecordDecl
*O
,
5004 : TreeTransform(SemaRef
), OldDecl(O
), NewDecl(N
) {}
5006 bool TransformExceptionSpec(SourceLocation Loc
,
5007 FunctionProtoType::ExceptionSpecInfo
&ESI
,
5008 SmallVectorImpl
<QualType
> &Exceptions
,
5013 QualType
TransformRecordType(TypeLocBuilder
&TLB
, RecordTypeLoc TL
) {
5014 const RecordType
*T
= TL
.getTypePtr();
5015 RecordDecl
*Record
= cast_or_null
<RecordDecl
>(
5016 getDerived().TransformDecl(TL
.getNameLoc(), T
->getDecl()));
5017 if (Record
!= OldDecl
)
5018 return Base::TransformRecordType(TLB
, TL
);
5020 QualType Result
= getDerived().RebuildRecordType(NewDecl
);
5021 if (Result
.isNull())
5024 RecordTypeLoc NewTL
= TLB
.push
<RecordTypeLoc
>(Result
);
5025 NewTL
.setNameLoc(TL
.getNameLoc());
5028 } IR
{*this, PatternRec
, NewRec
};
5030 TypeSourceInfo
*NewSI
= IR
.TransformType(Function
->getTypeSourceInfo());
5031 Function
->setType(NewSI
->getType());
5032 Function
->setTypeSourceInfo(NewSI
);
5034 ParmVarDecl
*Parm
= Function
->getParamDecl(0);
5035 TypeSourceInfo
*NewParmSI
= IR
.TransformType(Parm
->getTypeSourceInfo());
5036 Parm
->setType(NewParmSI
->getType());
5037 Parm
->setTypeSourceInfo(NewParmSI
);
5040 if (PatternDecl
->isDefaulted()) {
5041 RebuildTypeSourceInfoForDefaultSpecialMembers();
5042 SetDeclDefaulted(Function
, PatternDecl
->getLocation());
5044 MultiLevelTemplateArgumentList TemplateArgs
=
5045 getTemplateInstantiationArgs(Function
, nullptr, false, PatternDecl
);
5047 // Substitute into the qualifier; we can get a substitution failure here
5048 // through evil use of alias templates.
5049 // FIXME: Is CurContext correct for this? Should we go to the (instantiation
5050 // of the) lexical context of the pattern?
5051 SubstQualifier(*this, PatternDecl
, Function
, TemplateArgs
);
5053 ActOnStartOfFunctionDef(nullptr, Function
);
5055 // Enter the scope of this instantiation. We don't use
5056 // PushDeclContext because we don't have a scope.
5057 Sema::ContextRAII
savedContext(*this, Function
);
5059 if (addInstantiatedParametersToScope(Function
, PatternDecl
, Scope
,
5064 if (PatternDecl
->hasSkippedBody()) {
5065 ActOnSkippedFunctionBody(Function
);
5068 if (CXXConstructorDecl
*Ctor
= dyn_cast
<CXXConstructorDecl
>(Function
)) {
5069 // If this is a constructor, instantiate the member initializers.
5070 InstantiateMemInitializers(Ctor
, cast
<CXXConstructorDecl
>(PatternDecl
),
5073 // If this is an MS ABI dllexport default constructor, instantiate any
5074 // default arguments.
5075 if (Context
.getTargetInfo().getCXXABI().isMicrosoft() &&
5076 Ctor
->isDefaultConstructor()) {
5077 InstantiateDefaultCtorDefaultArgs(Ctor
);
5081 // Instantiate the function body.
5082 Body
= SubstStmt(Pattern
, TemplateArgs
);
5084 if (Body
.isInvalid())
5085 Function
->setInvalidDecl();
5087 // FIXME: finishing the function body while in an expression evaluation
5088 // context seems wrong. Investigate more.
5089 ActOnFinishFunctionBody(Function
, Body
.get(), /*IsInstantiation=*/true);
5091 PerformDependentDiagnostics(PatternDecl
, TemplateArgs
);
5093 if (auto *Listener
= getASTMutationListener())
5094 Listener
->FunctionDefinitionInstantiated(Function
);
5099 DeclGroupRef
DG(Function
);
5100 Consumer
.HandleTopLevelDecl(DG
);
5102 // This class may have local implicit instantiations that need to be
5103 // instantiation within this scope.
5104 LocalInstantiations
.perform();
5106 GlobalInstantiations
.perform();
5109 VarTemplateSpecializationDecl
*Sema::BuildVarTemplateInstantiation(
5110 VarTemplateDecl
*VarTemplate
, VarDecl
*FromVar
,
5111 const TemplateArgumentList
&TemplateArgList
,
5112 const TemplateArgumentListInfo
&TemplateArgsInfo
,
5113 SmallVectorImpl
<TemplateArgument
> &Converted
,
5114 SourceLocation PointOfInstantiation
,
5115 LateInstantiatedAttrVec
*LateAttrs
,
5116 LocalInstantiationScope
*StartingScope
) {
5117 if (FromVar
->isInvalidDecl())
5120 InstantiatingTemplate
Inst(*this, PointOfInstantiation
, FromVar
);
5121 if (Inst
.isInvalid())
5124 MultiLevelTemplateArgumentList TemplateArgLists
;
5125 TemplateArgLists
.addOuterTemplateArguments(&TemplateArgList
);
5127 // Instantiate the first declaration of the variable template: for a partial
5128 // specialization of a static data member template, the first declaration may
5129 // or may not be the declaration in the class; if it's in the class, we want
5130 // to instantiate a member in the class (a declaration), and if it's outside,
5131 // we want to instantiate a definition.
5133 // If we're instantiating an explicitly-specialized member template or member
5134 // partial specialization, don't do this. The member specialization completely
5135 // replaces the original declaration in this case.
5136 bool IsMemberSpec
= false;
5137 if (VarTemplatePartialSpecializationDecl
*PartialSpec
=
5138 dyn_cast
<VarTemplatePartialSpecializationDecl
>(FromVar
))
5139 IsMemberSpec
= PartialSpec
->isMemberSpecialization();
5140 else if (VarTemplateDecl
*FromTemplate
= FromVar
->getDescribedVarTemplate())
5141 IsMemberSpec
= FromTemplate
->isMemberSpecialization();
5143 FromVar
= FromVar
->getFirstDecl();
5145 MultiLevelTemplateArgumentList
MultiLevelList(TemplateArgList
);
5146 TemplateDeclInstantiator
Instantiator(*this, FromVar
->getDeclContext(),
5149 // TODO: Set LateAttrs and StartingScope ...
5151 return cast_or_null
<VarTemplateSpecializationDecl
>(
5152 Instantiator
.VisitVarTemplateSpecializationDecl(
5153 VarTemplate
, FromVar
, TemplateArgsInfo
, Converted
));
5156 /// Instantiates a variable template specialization by completing it
5157 /// with appropriate type information and initializer.
5158 VarTemplateSpecializationDecl
*Sema::CompleteVarTemplateSpecializationDecl(
5159 VarTemplateSpecializationDecl
*VarSpec
, VarDecl
*PatternDecl
,
5160 const MultiLevelTemplateArgumentList
&TemplateArgs
) {
5161 assert(PatternDecl
->isThisDeclarationADefinition() &&
5162 "don't have a definition to instantiate from");
5164 // Do substitution on the type of the declaration
5165 TypeSourceInfo
*DI
=
5166 SubstType(PatternDecl
->getTypeSourceInfo(), TemplateArgs
,
5167 PatternDecl
->getTypeSpecStartLoc(), PatternDecl
->getDeclName());
5171 // Update the type of this variable template specialization.
5172 VarSpec
->setType(DI
->getType());
5174 // Convert the declaration into a definition now.
5175 VarSpec
->setCompleteDefinition();
5177 // Instantiate the initializer.
5178 InstantiateVariableInitializer(VarSpec
, PatternDecl
, TemplateArgs
);
5180 if (getLangOpts().OpenCL
)
5181 deduceOpenCLAddressSpace(VarSpec
);
5186 /// BuildVariableInstantiation - Used after a new variable has been created.
5187 /// Sets basic variable data and decides whether to postpone the
5188 /// variable instantiation.
5189 void Sema::BuildVariableInstantiation(
5190 VarDecl
*NewVar
, VarDecl
*OldVar
,
5191 const MultiLevelTemplateArgumentList
&TemplateArgs
,
5192 LateInstantiatedAttrVec
*LateAttrs
, DeclContext
*Owner
,
5193 LocalInstantiationScope
*StartingScope
,
5194 bool InstantiatingVarTemplate
,
5195 VarTemplateSpecializationDecl
*PrevDeclForVarTemplateSpecialization
) {
5196 // Instantiating a partial specialization to produce a partial
5198 bool InstantiatingVarTemplatePartialSpec
=
5199 isa
<VarTemplatePartialSpecializationDecl
>(OldVar
) &&
5200 isa
<VarTemplatePartialSpecializationDecl
>(NewVar
);
5201 // Instantiating from a variable template (or partial specialization) to
5202 // produce a variable template specialization.
5203 bool InstantiatingSpecFromTemplate
=
5204 isa
<VarTemplateSpecializationDecl
>(NewVar
) &&
5205 (OldVar
->getDescribedVarTemplate() ||
5206 isa
<VarTemplatePartialSpecializationDecl
>(OldVar
));
5208 // If we are instantiating a local extern declaration, the
5209 // instantiation belongs lexically to the containing function.
5210 // If we are instantiating a static data member defined
5211 // out-of-line, the instantiation will have the same lexical
5212 // context (which will be a namespace scope) as the template.
5213 if (OldVar
->isLocalExternDecl()) {
5214 NewVar
->setLocalExternDecl();
5215 NewVar
->setLexicalDeclContext(Owner
);
5216 } else if (OldVar
->isOutOfLine())
5217 NewVar
->setLexicalDeclContext(OldVar
->getLexicalDeclContext());
5218 NewVar
->setTSCSpec(OldVar
->getTSCSpec());
5219 NewVar
->setInitStyle(OldVar
->getInitStyle());
5220 NewVar
->setCXXForRangeDecl(OldVar
->isCXXForRangeDecl());
5221 NewVar
->setObjCForDecl(OldVar
->isObjCForDecl());
5222 NewVar
->setConstexpr(OldVar
->isConstexpr());
5223 NewVar
->setInitCapture(OldVar
->isInitCapture());
5224 NewVar
->setPreviousDeclInSameBlockScope(
5225 OldVar
->isPreviousDeclInSameBlockScope());
5226 NewVar
->setAccess(OldVar
->getAccess());
5228 if (!OldVar
->isStaticDataMember()) {
5229 if (OldVar
->isUsed(false))
5230 NewVar
->setIsUsed();
5231 NewVar
->setReferenced(OldVar
->isReferenced());
5234 InstantiateAttrs(TemplateArgs
, OldVar
, NewVar
, LateAttrs
, StartingScope
);
5236 LookupResult
Previous(
5237 *this, NewVar
->getDeclName(), NewVar
->getLocation(),
5238 NewVar
->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage
5239 : Sema::LookupOrdinaryName
,
5240 NewVar
->isLocalExternDecl() ? Sema::ForExternalRedeclaration
5241 : forRedeclarationInCurContext());
5243 if (NewVar
->isLocalExternDecl() && OldVar
->getPreviousDecl() &&
5244 (!OldVar
->getPreviousDecl()->getDeclContext()->isDependentContext() ||
5245 OldVar
->getPreviousDecl()->getDeclContext()==OldVar
->getDeclContext())) {
5246 // We have a previous declaration. Use that one, so we merge with the
5248 if (NamedDecl
*NewPrev
= FindInstantiatedDecl(
5249 NewVar
->getLocation(), OldVar
->getPreviousDecl(), TemplateArgs
))
5250 Previous
.addDecl(NewPrev
);
5251 } else if (!isa
<VarTemplateSpecializationDecl
>(NewVar
) &&
5252 OldVar
->hasLinkage()) {
5253 LookupQualifiedName(Previous
, NewVar
->getDeclContext(), false);
5254 } else if (PrevDeclForVarTemplateSpecialization
) {
5255 Previous
.addDecl(PrevDeclForVarTemplateSpecialization
);
5257 CheckVariableDeclaration(NewVar
, Previous
);
5259 if (!InstantiatingVarTemplate
) {
5260 NewVar
->getLexicalDeclContext()->addHiddenDecl(NewVar
);
5261 if (!NewVar
->isLocalExternDecl() || !NewVar
->getPreviousDecl())
5262 NewVar
->getDeclContext()->makeDeclVisibleInContext(NewVar
);
5265 if (!OldVar
->isOutOfLine()) {
5266 if (NewVar
->getDeclContext()->isFunctionOrMethod())
5267 CurrentInstantiationScope
->InstantiatedLocal(OldVar
, NewVar
);
5270 // Link instantiations of static data members back to the template from
5271 // which they were instantiated.
5273 // Don't do this when instantiating a template (we link the template itself
5274 // back in that case) nor when instantiating a static data member template
5275 // (that's not a member specialization).
5276 if (NewVar
->isStaticDataMember() && !InstantiatingVarTemplate
&&
5277 !InstantiatingSpecFromTemplate
)
5278 NewVar
->setInstantiationOfStaticDataMember(OldVar
,
5279 TSK_ImplicitInstantiation
);
5281 // If the pattern is an (in-class) explicit specialization, then the result
5282 // is also an explicit specialization.
5283 if (VarTemplateSpecializationDecl
*OldVTSD
=
5284 dyn_cast
<VarTemplateSpecializationDecl
>(OldVar
)) {
5285 if (OldVTSD
->getSpecializationKind() == TSK_ExplicitSpecialization
&&
5286 !isa
<VarTemplatePartialSpecializationDecl
>(OldVTSD
))
5287 cast
<VarTemplateSpecializationDecl
>(NewVar
)->setSpecializationKind(
5288 TSK_ExplicitSpecialization
);
5291 // Forward the mangling number from the template to the instantiated decl.
5292 Context
.setManglingNumber(NewVar
, Context
.getManglingNumber(OldVar
));
5293 Context
.setStaticLocalNumber(NewVar
, Context
.getStaticLocalNumber(OldVar
));
5295 // Figure out whether to eagerly instantiate the initializer.
5296 if (InstantiatingVarTemplate
|| InstantiatingVarTemplatePartialSpec
) {
5297 // We're producing a template. Don't instantiate the initializer yet.
5298 } else if (NewVar
->getType()->isUndeducedType()) {
5299 // We need the type to complete the declaration of the variable.
5300 InstantiateVariableInitializer(NewVar
, OldVar
, TemplateArgs
);
5301 } else if (InstantiatingSpecFromTemplate
||
5302 (OldVar
->isInline() && OldVar
->isThisDeclarationADefinition() &&
5303 !NewVar
->isThisDeclarationADefinition())) {
5304 // Delay instantiation of the initializer for variable template
5305 // specializations or inline static data members until a definition of the
5306 // variable is needed.
5308 InstantiateVariableInitializer(NewVar
, OldVar
, TemplateArgs
);
5311 // Diagnose unused local variables with dependent types, where the diagnostic
5312 // will have been deferred.
5313 if (!NewVar
->isInvalidDecl() &&
5314 NewVar
->getDeclContext()->isFunctionOrMethod() &&
5315 OldVar
->getType()->isDependentType())
5316 DiagnoseUnusedDecl(NewVar
);
5319 /// Instantiate the initializer of a variable.
5320 void Sema::InstantiateVariableInitializer(
5321 VarDecl
*Var
, VarDecl
*OldVar
,
5322 const MultiLevelTemplateArgumentList
&TemplateArgs
) {
5323 if (ASTMutationListener
*L
= getASTContext().getASTMutationListener())
5324 L
->VariableDefinitionInstantiated(Var
);
5326 // We propagate the 'inline' flag with the initializer, because it
5327 // would otherwise imply that the variable is a definition for a
5328 // non-static data member.
5329 if (OldVar
->isInlineSpecified())
5330 Var
->setInlineSpecified();
5331 else if (OldVar
->isInline())
5332 Var
->setImplicitlyInline();
5334 if (OldVar
->getInit()) {
5335 EnterExpressionEvaluationContext
Evaluated(
5336 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated
, Var
);
5338 // Instantiate the initializer.
5342 ContextRAII
SwitchContext(*this, Var
->getDeclContext());
5343 Init
= SubstInitializer(OldVar
->getInit(), TemplateArgs
,
5344 OldVar
->getInitStyle() == VarDecl::CallInit
);
5347 if (!Init
.isInvalid()) {
5348 Expr
*InitExpr
= Init
.get();
5350 if (Var
->hasAttr
<DLLImportAttr
>() &&
5352 !InitExpr
->isConstantInitializer(getASTContext(), false))) {
5353 // Do not dynamically initialize dllimport variables.
5354 } else if (InitExpr
) {
5355 bool DirectInit
= OldVar
->isDirectInit();
5356 AddInitializerToDecl(Var
, InitExpr
, DirectInit
);
5358 ActOnUninitializedDecl(Var
);
5360 // FIXME: Not too happy about invalidating the declaration
5361 // because of a bogus initializer.
5362 Var
->setInvalidDecl();
5365 // `inline` variables are a definition and declaration all in one; we won't
5366 // pick up an initializer from anywhere else.
5367 if (Var
->isStaticDataMember() && !Var
->isInline()) {
5368 if (!Var
->isOutOfLine())
5371 // If the declaration inside the class had an initializer, don't add
5372 // another one to the out-of-line definition.
5373 if (OldVar
->getFirstDecl()->hasInit())
5377 // We'll add an initializer to a for-range declaration later.
5378 if (Var
->isCXXForRangeDecl() || Var
->isObjCForDecl())
5381 ActOnUninitializedDecl(Var
);
5384 if (getLangOpts().CUDA
)
5385 checkAllowedCUDAInitializer(Var
);
5388 /// Instantiate the definition of the given variable from its
5391 /// \param PointOfInstantiation the point at which the instantiation was
5392 /// required. Note that this is not precisely a "point of instantiation"
5393 /// for the variable, but it's close.
5395 /// \param Var the already-instantiated declaration of a templated variable.
5397 /// \param Recursive if true, recursively instantiates any functions that
5398 /// are required by this instantiation.
5400 /// \param DefinitionRequired if true, then we are performing an explicit
5401 /// instantiation where a definition of the variable is required. Complain
5402 /// if there is no such definition.
5403 void Sema::InstantiateVariableDefinition(SourceLocation PointOfInstantiation
,
5404 VarDecl
*Var
, bool Recursive
,
5405 bool DefinitionRequired
, bool AtEndOfTU
) {
5406 if (Var
->isInvalidDecl())
5409 // Never instantiate an explicitly-specialized entity.
5410 TemplateSpecializationKind TSK
=
5411 Var
->getTemplateSpecializationKindForInstantiation();
5412 if (TSK
== TSK_ExplicitSpecialization
)
5415 // Find the pattern and the arguments to substitute into it.
5416 VarDecl
*PatternDecl
= Var
->getTemplateInstantiationPattern();
5417 assert(PatternDecl
&& "no pattern for templated variable");
5418 MultiLevelTemplateArgumentList TemplateArgs
=
5419 getTemplateInstantiationArgs(Var
);
5421 VarTemplateSpecializationDecl
*VarSpec
=
5422 dyn_cast
<VarTemplateSpecializationDecl
>(Var
);
5424 // If this is a static data member template, there might be an
5425 // uninstantiated initializer on the declaration. If so, instantiate
5428 // FIXME: This largely duplicates what we would do below. The difference
5429 // is that along this path we may instantiate an initializer from an
5430 // in-class declaration of the template and instantiate the definition
5431 // from a separate out-of-class definition.
5432 if (PatternDecl
->isStaticDataMember() &&
5433 (PatternDecl
= PatternDecl
->getFirstDecl())->hasInit() &&
5435 // FIXME: Factor out the duplicated instantiation context setup/tear down
5437 InstantiatingTemplate
Inst(*this, PointOfInstantiation
, Var
);
5438 if (Inst
.isInvalid() || Inst
.isAlreadyInstantiating())
5440 PrettyDeclStackTraceEntry
CrashInfo(Context
, Var
, SourceLocation(),
5441 "instantiating variable initializer");
5443 // The instantiation is visible here, even if it was first declared in an
5444 // unimported module.
5445 Var
->setVisibleDespiteOwningModule();
5447 // If we're performing recursive template instantiation, create our own
5448 // queue of pending implicit instantiations that we will instantiate
5449 // later, while we're still within our own instantiation context.
5450 GlobalEagerInstantiationScope
GlobalInstantiations(*this,
5451 /*Enabled=*/Recursive
);
5452 LocalInstantiationScope
Local(*this);
5453 LocalEagerInstantiationScope
LocalInstantiations(*this);
5455 // Enter the scope of this instantiation. We don't use
5456 // PushDeclContext because we don't have a scope.
5457 ContextRAII
PreviousContext(*this, Var
->getDeclContext());
5458 InstantiateVariableInitializer(Var
, PatternDecl
, TemplateArgs
);
5459 PreviousContext
.pop();
5461 // This variable may have local implicit instantiations that need to be
5462 // instantiated within this scope.
5463 LocalInstantiations
.perform();
5465 GlobalInstantiations
.perform();
5468 assert(Var
->isStaticDataMember() && PatternDecl
->isStaticDataMember() &&
5469 "not a static data member?");
5472 VarDecl
*Def
= PatternDecl
->getDefinition(getASTContext());
5474 // If we don't have a definition of the variable template, we won't perform
5475 // any instantiation. Rather, we rely on the user to instantiate this
5476 // definition (or provide a specialization for it) in another translation
5478 if (!Def
&& !DefinitionRequired
) {
5479 if (TSK
== TSK_ExplicitInstantiationDefinition
) {
5480 PendingInstantiations
.push_back(
5481 std::make_pair(Var
, PointOfInstantiation
));
5482 } else if (TSK
== TSK_ImplicitInstantiation
) {
5483 // Warn about missing definition at the end of translation unit.
5484 if (AtEndOfTU
&& !getDiagnostics().hasErrorOccurred() &&
5485 !getSourceManager().isInSystemHeader(PatternDecl
->getBeginLoc())) {
5486 Diag(PointOfInstantiation
, diag::warn_var_template_missing
)
5488 Diag(PatternDecl
->getLocation(), diag::note_forward_template_decl
);
5489 if (getLangOpts().CPlusPlus11
)
5490 Diag(PointOfInstantiation
, diag::note_inst_declaration_hint
) << Var
;
5496 // FIXME: We need to track the instantiation stack in order to know which
5497 // definitions should be visible within this instantiation.
5498 // FIXME: Produce diagnostics when Var->getInstantiatedFromStaticDataMember().
5499 if (DiagnoseUninstantiableTemplate(PointOfInstantiation
, Var
,
5500 /*InstantiatedFromMember*/false,
5501 PatternDecl
, Def
, TSK
,
5502 /*Complain*/DefinitionRequired
))
5505 // C++11 [temp.explicit]p10:
5506 // Except for inline functions, const variables of literal types, variables
5507 // of reference types, [...] explicit instantiation declarations
5508 // have the effect of suppressing the implicit instantiation of the entity
5509 // to which they refer.
5511 // FIXME: That's not exactly the same as "might be usable in constant
5512 // expressions", which only allows constexpr variables and const integral
5513 // types, not arbitrary const literal types.
5514 if (TSK
== TSK_ExplicitInstantiationDeclaration
&&
5515 !Var
->mightBeUsableInConstantExpressions(getASTContext()))
5518 // Make sure to pass the instantiated variable to the consumer at the end.
5519 struct PassToConsumerRAII
{
5520 ASTConsumer
&Consumer
;
5523 PassToConsumerRAII(ASTConsumer
&Consumer
, VarDecl
*Var
)
5524 : Consumer(Consumer
), Var(Var
) { }
5526 ~PassToConsumerRAII() {
5527 Consumer
.HandleCXXStaticMemberVarInstantiation(Var
);
5529 } PassToConsumerRAII(Consumer
, Var
);
5531 // If we already have a definition, we're done.
5532 if (VarDecl
*Def
= Var
->getDefinition()) {
5533 // We may be explicitly instantiating something we've already implicitly
5535 Def
->setTemplateSpecializationKind(Var
->getTemplateSpecializationKind(),
5536 PointOfInstantiation
);
5540 InstantiatingTemplate
Inst(*this, PointOfInstantiation
, Var
);
5541 if (Inst
.isInvalid() || Inst
.isAlreadyInstantiating())
5543 PrettyDeclStackTraceEntry
CrashInfo(Context
, Var
, SourceLocation(),
5544 "instantiating variable definition");
5546 // If we're performing recursive template instantiation, create our own
5547 // queue of pending implicit instantiations that we will instantiate later,
5548 // while we're still within our own instantiation context.
5549 GlobalEagerInstantiationScope
GlobalInstantiations(*this,
5550 /*Enabled=*/Recursive
);
5552 // Enter the scope of this instantiation. We don't use
5553 // PushDeclContext because we don't have a scope.
5554 ContextRAII
PreviousContext(*this, Var
->getDeclContext());
5555 LocalInstantiationScope
Local(*this);
5557 LocalEagerInstantiationScope
LocalInstantiations(*this);
5559 VarDecl
*OldVar
= Var
;
5560 if (Def
->isStaticDataMember() && !Def
->isOutOfLine()) {
5561 // We're instantiating an inline static data member whose definition was
5562 // provided inside the class.
5563 InstantiateVariableInitializer(Var
, Def
, TemplateArgs
);
5564 } else if (!VarSpec
) {
5565 Var
= cast_or_null
<VarDecl
>(SubstDecl(Def
, Var
->getDeclContext(),
5567 } else if (Var
->isStaticDataMember() &&
5568 Var
->getLexicalDeclContext()->isRecord()) {
5569 // We need to instantiate the definition of a static data member template,
5570 // and all we have is the in-class declaration of it. Instantiate a separate
5571 // declaration of the definition.
5572 TemplateDeclInstantiator
Instantiator(*this, Var
->getDeclContext(),
5575 TemplateArgumentListInfo TemplateArgInfo
;
5576 if (const ASTTemplateArgumentListInfo
*ArgInfo
=
5577 VarSpec
->getTemplateArgsInfo()) {
5578 TemplateArgInfo
.setLAngleLoc(ArgInfo
->getLAngleLoc());
5579 TemplateArgInfo
.setRAngleLoc(ArgInfo
->getRAngleLoc());
5580 for (const TemplateArgumentLoc
&Arg
: ArgInfo
->arguments())
5581 TemplateArgInfo
.addArgument(Arg
);
5584 Var
= cast_or_null
<VarDecl
>(Instantiator
.VisitVarTemplateSpecializationDecl(
5585 VarSpec
->getSpecializedTemplate(), Def
, TemplateArgInfo
,
5586 VarSpec
->getTemplateArgs().asArray(), VarSpec
));
5588 llvm::PointerUnion
<VarTemplateDecl
*,
5589 VarTemplatePartialSpecializationDecl
*> PatternPtr
=
5590 VarSpec
->getSpecializedTemplateOrPartial();
5591 if (VarTemplatePartialSpecializationDecl
*Partial
=
5592 PatternPtr
.dyn_cast
<VarTemplatePartialSpecializationDecl
*>())
5593 cast
<VarTemplateSpecializationDecl
>(Var
)->setInstantiationOf(
5594 Partial
, &VarSpec
->getTemplateInstantiationArgs());
5596 // Attach the initializer.
5597 InstantiateVariableInitializer(Var
, Def
, TemplateArgs
);
5600 // Complete the existing variable's definition with an appropriately
5601 // substituted type and initializer.
5602 Var
= CompleteVarTemplateSpecializationDecl(VarSpec
, Def
, TemplateArgs
);
5604 PreviousContext
.pop();
5607 PassToConsumerRAII
.Var
= Var
;
5608 Var
->setTemplateSpecializationKind(OldVar
->getTemplateSpecializationKind(),
5609 OldVar
->getPointOfInstantiation());
5612 // This variable may have local implicit instantiations that need to be
5613 // instantiated within this scope.
5614 LocalInstantiations
.perform();
5616 GlobalInstantiations
.perform();
5620 Sema::InstantiateMemInitializers(CXXConstructorDecl
*New
,
5621 const CXXConstructorDecl
*Tmpl
,
5622 const MultiLevelTemplateArgumentList
&TemplateArgs
) {
5624 SmallVector
<CXXCtorInitializer
*, 4> NewInits
;
5625 bool AnyErrors
= Tmpl
->isInvalidDecl();
5627 // Instantiate all the initializers.
5628 for (const auto *Init
: Tmpl
->inits()) {
5629 // Only instantiate written initializers, let Sema re-construct implicit
5631 if (!Init
->isWritten())
5634 SourceLocation EllipsisLoc
;
5636 if (Init
->isPackExpansion()) {
5637 // This is a pack expansion. We should expand it now.
5638 TypeLoc BaseTL
= Init
->getTypeSourceInfo()->getTypeLoc();
5639 SmallVector
<UnexpandedParameterPack
, 4> Unexpanded
;
5640 collectUnexpandedParameterPacks(BaseTL
, Unexpanded
);
5641 collectUnexpandedParameterPacks(Init
->getInit(), Unexpanded
);
5642 bool ShouldExpand
= false;
5643 bool RetainExpansion
= false;
5644 Optional
<unsigned> NumExpansions
;
5645 if (CheckParameterPacksForExpansion(Init
->getEllipsisLoc(),
5646 BaseTL
.getSourceRange(),
5648 TemplateArgs
, ShouldExpand
,
5652 New
->setInvalidDecl();
5655 assert(ShouldExpand
&& "Partial instantiation of base initializer?");
5657 // Loop over all of the arguments in the argument pack(s),
5658 for (unsigned I
= 0; I
!= *NumExpansions
; ++I
) {
5659 Sema::ArgumentPackSubstitutionIndexRAII
SubstIndex(*this, I
);
5661 // Instantiate the initializer.
5662 ExprResult TempInit
= SubstInitializer(Init
->getInit(), TemplateArgs
,
5663 /*CXXDirectInit=*/true);
5664 if (TempInit
.isInvalid()) {
5669 // Instantiate the base type.
5670 TypeSourceInfo
*BaseTInfo
= SubstType(Init
->getTypeSourceInfo(),
5672 Init
->getSourceLocation(),
5673 New
->getDeclName());
5679 // Build the initializer.
5680 MemInitResult NewInit
= BuildBaseInitializer(BaseTInfo
->getType(),
5681 BaseTInfo
, TempInit
.get(),
5684 if (NewInit
.isInvalid()) {
5689 NewInits
.push_back(NewInit
.get());
5695 // Instantiate the initializer.
5696 ExprResult TempInit
= SubstInitializer(Init
->getInit(), TemplateArgs
,
5697 /*CXXDirectInit=*/true);
5698 if (TempInit
.isInvalid()) {
5703 MemInitResult NewInit
;
5704 if (Init
->isDelegatingInitializer() || Init
->isBaseInitializer()) {
5705 TypeSourceInfo
*TInfo
= SubstType(Init
->getTypeSourceInfo(),
5707 Init
->getSourceLocation(),
5708 New
->getDeclName());
5711 New
->setInvalidDecl();
5715 if (Init
->isBaseInitializer())
5716 NewInit
= BuildBaseInitializer(TInfo
->getType(), TInfo
, TempInit
.get(),
5717 New
->getParent(), EllipsisLoc
);
5719 NewInit
= BuildDelegatingInitializer(TInfo
, TempInit
.get(),
5720 cast
<CXXRecordDecl
>(CurContext
->getParent()));
5721 } else if (Init
->isMemberInitializer()) {
5722 FieldDecl
*Member
= cast_or_null
<FieldDecl
>(FindInstantiatedDecl(
5723 Init
->getMemberLocation(),
5728 New
->setInvalidDecl();
5732 NewInit
= BuildMemberInitializer(Member
, TempInit
.get(),
5733 Init
->getSourceLocation());
5734 } else if (Init
->isIndirectMemberInitializer()) {
5735 IndirectFieldDecl
*IndirectMember
=
5736 cast_or_null
<IndirectFieldDecl
>(FindInstantiatedDecl(
5737 Init
->getMemberLocation(),
5738 Init
->getIndirectMember(), TemplateArgs
));
5740 if (!IndirectMember
) {
5742 New
->setInvalidDecl();
5746 NewInit
= BuildMemberInitializer(IndirectMember
, TempInit
.get(),
5747 Init
->getSourceLocation());
5750 if (NewInit
.isInvalid()) {
5752 New
->setInvalidDecl();
5754 NewInits
.push_back(NewInit
.get());
5758 // Assign all the initializers to the new constructor.
5759 ActOnMemInitializers(New
,
5760 /*FIXME: ColonLoc */
5766 // TODO: this could be templated if the various decl types used the
5767 // same method name.
5768 static bool isInstantiationOf(ClassTemplateDecl
*Pattern
,
5769 ClassTemplateDecl
*Instance
) {
5770 Pattern
= Pattern
->getCanonicalDecl();
5773 Instance
= Instance
->getCanonicalDecl();
5774 if (Pattern
== Instance
) return true;
5775 Instance
= Instance
->getInstantiatedFromMemberTemplate();
5781 static bool isInstantiationOf(FunctionTemplateDecl
*Pattern
,
5782 FunctionTemplateDecl
*Instance
) {
5783 Pattern
= Pattern
->getCanonicalDecl();
5786 Instance
= Instance
->getCanonicalDecl();
5787 if (Pattern
== Instance
) return true;
5788 Instance
= Instance
->getInstantiatedFromMemberTemplate();
5795 isInstantiationOf(ClassTemplatePartialSpecializationDecl
*Pattern
,
5796 ClassTemplatePartialSpecializationDecl
*Instance
) {
5798 = cast
<ClassTemplatePartialSpecializationDecl
>(Pattern
->getCanonicalDecl());
5800 Instance
= cast
<ClassTemplatePartialSpecializationDecl
>(
5801 Instance
->getCanonicalDecl());
5802 if (Pattern
== Instance
)
5804 Instance
= Instance
->getInstantiatedFromMember();
5810 static bool isInstantiationOf(CXXRecordDecl
*Pattern
,
5811 CXXRecordDecl
*Instance
) {
5812 Pattern
= Pattern
->getCanonicalDecl();
5815 Instance
= Instance
->getCanonicalDecl();
5816 if (Pattern
== Instance
) return true;
5817 Instance
= Instance
->getInstantiatedFromMemberClass();
5823 static bool isInstantiationOf(FunctionDecl
*Pattern
,
5824 FunctionDecl
*Instance
) {
5825 Pattern
= Pattern
->getCanonicalDecl();
5828 Instance
= Instance
->getCanonicalDecl();
5829 if (Pattern
== Instance
) return true;
5830 Instance
= Instance
->getInstantiatedFromMemberFunction();
5836 static bool isInstantiationOf(EnumDecl
*Pattern
,
5837 EnumDecl
*Instance
) {
5838 Pattern
= Pattern
->getCanonicalDecl();
5841 Instance
= Instance
->getCanonicalDecl();
5842 if (Pattern
== Instance
) return true;
5843 Instance
= Instance
->getInstantiatedFromMemberEnum();
5849 static bool isInstantiationOf(UsingShadowDecl
*Pattern
,
5850 UsingShadowDecl
*Instance
,
5852 return declaresSameEntity(C
.getInstantiatedFromUsingShadowDecl(Instance
),
5856 static bool isInstantiationOf(UsingDecl
*Pattern
, UsingDecl
*Instance
,
5858 return declaresSameEntity(C
.getInstantiatedFromUsingDecl(Instance
), Pattern
);
5861 template<typename T
>
5862 static bool isInstantiationOfUnresolvedUsingDecl(T
*Pattern
, Decl
*Other
,
5864 // An unresolved using declaration can instantiate to an unresolved using
5865 // declaration, or to a using declaration or a using declaration pack.
5867 // Multiple declarations can claim to be instantiated from an unresolved
5868 // using declaration if it's a pack expansion. We want the UsingPackDecl
5869 // in that case, not the individual UsingDecls within the pack.
5870 bool OtherIsPackExpansion
;
5871 NamedDecl
*OtherFrom
;
5872 if (auto *OtherUUD
= dyn_cast
<T
>(Other
)) {
5873 OtherIsPackExpansion
= OtherUUD
->isPackExpansion();
5874 OtherFrom
= Ctx
.getInstantiatedFromUsingDecl(OtherUUD
);
5875 } else if (auto *OtherUPD
= dyn_cast
<UsingPackDecl
>(Other
)) {
5876 OtherIsPackExpansion
= true;
5877 OtherFrom
= OtherUPD
->getInstantiatedFromUsingDecl();
5878 } else if (auto *OtherUD
= dyn_cast
<UsingDecl
>(Other
)) {
5879 OtherIsPackExpansion
= false;
5880 OtherFrom
= Ctx
.getInstantiatedFromUsingDecl(OtherUD
);
5884 return Pattern
->isPackExpansion() == OtherIsPackExpansion
&&
5885 declaresSameEntity(OtherFrom
, Pattern
);
5888 static bool isInstantiationOfStaticDataMember(VarDecl
*Pattern
,
5889 VarDecl
*Instance
) {
5890 assert(Instance
->isStaticDataMember());
5892 Pattern
= Pattern
->getCanonicalDecl();
5895 Instance
= Instance
->getCanonicalDecl();
5896 if (Pattern
== Instance
) return true;
5897 Instance
= Instance
->getInstantiatedFromStaticDataMember();
5903 // Other is the prospective instantiation
5904 // D is the prospective pattern
5905 static bool isInstantiationOf(ASTContext
&Ctx
, NamedDecl
*D
, Decl
*Other
) {
5906 if (auto *UUD
= dyn_cast
<UnresolvedUsingTypenameDecl
>(D
))
5907 return isInstantiationOfUnresolvedUsingDecl(UUD
, Other
, Ctx
);
5909 if (auto *UUD
= dyn_cast
<UnresolvedUsingValueDecl
>(D
))
5910 return isInstantiationOfUnresolvedUsingDecl(UUD
, Other
, Ctx
);
5912 if (D
->getKind() != Other
->getKind())
5915 if (auto *Record
= dyn_cast
<CXXRecordDecl
>(Other
))
5916 return isInstantiationOf(cast
<CXXRecordDecl
>(D
), Record
);
5918 if (auto *Function
= dyn_cast
<FunctionDecl
>(Other
))
5919 return isInstantiationOf(cast
<FunctionDecl
>(D
), Function
);
5921 if (auto *Enum
= dyn_cast
<EnumDecl
>(Other
))
5922 return isInstantiationOf(cast
<EnumDecl
>(D
), Enum
);
5924 if (auto *Var
= dyn_cast
<VarDecl
>(Other
))
5925 if (Var
->isStaticDataMember())
5926 return isInstantiationOfStaticDataMember(cast
<VarDecl
>(D
), Var
);
5928 if (auto *Temp
= dyn_cast
<ClassTemplateDecl
>(Other
))
5929 return isInstantiationOf(cast
<ClassTemplateDecl
>(D
), Temp
);
5931 if (auto *Temp
= dyn_cast
<FunctionTemplateDecl
>(Other
))
5932 return isInstantiationOf(cast
<FunctionTemplateDecl
>(D
), Temp
);
5934 if (auto *PartialSpec
=
5935 dyn_cast
<ClassTemplatePartialSpecializationDecl
>(Other
))
5936 return isInstantiationOf(cast
<ClassTemplatePartialSpecializationDecl
>(D
),
5939 if (auto *Field
= dyn_cast
<FieldDecl
>(Other
)) {
5940 if (!Field
->getDeclName()) {
5941 // This is an unnamed field.
5942 return declaresSameEntity(Ctx
.getInstantiatedFromUnnamedFieldDecl(Field
),
5943 cast
<FieldDecl
>(D
));
5947 if (auto *Using
= dyn_cast
<UsingDecl
>(Other
))
5948 return isInstantiationOf(cast
<UsingDecl
>(D
), Using
, Ctx
);
5950 if (auto *Shadow
= dyn_cast
<UsingShadowDecl
>(Other
))
5951 return isInstantiationOf(cast
<UsingShadowDecl
>(D
), Shadow
, Ctx
);
5953 return D
->getDeclName() &&
5954 D
->getDeclName() == cast
<NamedDecl
>(Other
)->getDeclName();
5957 template<typename ForwardIterator
>
5958 static NamedDecl
*findInstantiationOf(ASTContext
&Ctx
,
5960 ForwardIterator first
,
5961 ForwardIterator last
) {
5962 for (; first
!= last
; ++first
)
5963 if (isInstantiationOf(Ctx
, D
, *first
))
5964 return cast
<NamedDecl
>(*first
);
5969 /// Finds the instantiation of the given declaration context
5970 /// within the current instantiation.
5972 /// \returns NULL if there was an error
5973 DeclContext
*Sema::FindInstantiatedContext(SourceLocation Loc
, DeclContext
* DC
,
5974 const MultiLevelTemplateArgumentList
&TemplateArgs
) {
5975 if (NamedDecl
*D
= dyn_cast
<NamedDecl
>(DC
)) {
5976 Decl
* ID
= FindInstantiatedDecl(Loc
, D
, TemplateArgs
, true);
5977 return cast_or_null
<DeclContext
>(ID
);
5981 /// Determine whether the given context is dependent on template parameters at
5982 /// level \p Level or below.
5984 /// Sometimes we only substitute an inner set of template arguments and leave
5985 /// the outer templates alone. In such cases, contexts dependent only on the
5986 /// outer levels are not effectively dependent.
5987 static bool isDependentContextAtLevel(DeclContext
*DC
, unsigned Level
) {
5988 if (!DC
->isDependentContext())
5992 return cast
<Decl
>(DC
)->getTemplateDepth() > Level
;
5995 /// Find the instantiation of the given declaration within the
5996 /// current instantiation.
5998 /// This routine is intended to be used when \p D is a declaration
5999 /// referenced from within a template, that needs to mapped into the
6000 /// corresponding declaration within an instantiation. For example,
6004 /// template<typename T>
6007 /// KnownValue = sizeof(T)
6010 /// bool getKind() const { return KnownValue; }
6013 /// template struct X<int>;
6016 /// In the instantiation of X<int>::getKind(), we need to map the \p
6017 /// EnumConstantDecl for \p KnownValue (which refers to
6018 /// X<T>::<Kind>::KnownValue) to its instantiation (X<int>::<Kind>::KnownValue).
6019 /// \p FindInstantiatedDecl performs this mapping from within the instantiation
6021 NamedDecl
*Sema::FindInstantiatedDecl(SourceLocation Loc
, NamedDecl
*D
,
6022 const MultiLevelTemplateArgumentList
&TemplateArgs
,
6023 bool FindingInstantiatedContext
) {
6024 DeclContext
*ParentDC
= D
->getDeclContext();
6025 // Determine whether our parent context depends on any of the template
6026 // arguments we're currently substituting.
6027 bool ParentDependsOnArgs
= isDependentContextAtLevel(
6028 ParentDC
, TemplateArgs
.getNumRetainedOuterLevels());
6029 // FIXME: Parameters of pointer to functions (y below) that are themselves
6030 // parameters (p below) can have their ParentDC set to the translation-unit
6031 // - thus we can not consistently check if the ParentDC of such a parameter
6032 // is Dependent or/and a FunctionOrMethod.
6033 // For e.g. this code, during Template argument deduction tries to
6034 // find an instantiated decl for (T y) when the ParentDC for y is
6035 // the translation unit.
6036 // e.g. template <class T> void Foo(auto (*p)(T y) -> decltype(y())) {}
6037 // float baz(float(*)()) { return 0.0; }
6039 // The better fix here is perhaps to ensure that a ParmVarDecl, by the time
6040 // it gets here, always has a FunctionOrMethod as its ParentDC??
6042 // - as long as we have a ParmVarDecl whose parent is non-dependent and
6043 // whose type is not instantiation dependent, do nothing to the decl
6044 // - otherwise find its instantiated decl.
6045 if (isa
<ParmVarDecl
>(D
) && !ParentDependsOnArgs
&&
6046 !cast
<ParmVarDecl
>(D
)->getType()->isInstantiationDependentType())
6048 if (isa
<ParmVarDecl
>(D
) || isa
<NonTypeTemplateParmDecl
>(D
) ||
6049 isa
<TemplateTypeParmDecl
>(D
) || isa
<TemplateTemplateParmDecl
>(D
) ||
6050 (ParentDependsOnArgs
&& (ParentDC
->isFunctionOrMethod() ||
6051 isa
<OMPDeclareReductionDecl
>(ParentDC
) ||
6052 isa
<OMPDeclareMapperDecl
>(ParentDC
))) ||
6053 (isa
<CXXRecordDecl
>(D
) && cast
<CXXRecordDecl
>(D
)->isLambda() &&
6054 cast
<CXXRecordDecl
>(D
)->getTemplateDepth() >
6055 TemplateArgs
.getNumRetainedOuterLevels())) {
6056 // D is a local of some kind. Look into the map of local
6057 // declarations to their instantiations.
6058 if (CurrentInstantiationScope
) {
6059 if (auto Found
= CurrentInstantiationScope
->findInstantiationOf(D
)) {
6060 if (Decl
*FD
= Found
->dyn_cast
<Decl
*>())
6061 return cast
<NamedDecl
>(FD
);
6063 int PackIdx
= ArgumentPackSubstitutionIndex
;
6064 assert(PackIdx
!= -1 &&
6065 "found declaration pack but not pack expanding");
6066 typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack
;
6067 return cast
<NamedDecl
>((*Found
->get
<DeclArgumentPack
*>())[PackIdx
]);
6071 // If we're performing a partial substitution during template argument
6072 // deduction, we may not have values for template parameters yet. They
6073 // just map to themselves.
6074 if (isa
<NonTypeTemplateParmDecl
>(D
) || isa
<TemplateTypeParmDecl
>(D
) ||
6075 isa
<TemplateTemplateParmDecl
>(D
))
6078 if (D
->isInvalidDecl())
6081 // Normally this function only searches for already instantiated declaration
6082 // however we have to make an exclusion for local types used before
6083 // definition as in the code:
6085 // template<typename T> void f1() {
6086 // void g1(struct x1);
6090 // In this case instantiation of the type of 'g1' requires definition of
6091 // 'x1', which is defined later. Error recovery may produce an enum used
6092 // before definition. In these cases we need to instantiate relevant
6093 // declarations here.
6094 bool NeedInstantiate
= false;
6095 if (CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(D
))
6096 NeedInstantiate
= RD
->isLocalClass();
6097 else if (isa
<TypedefNameDecl
>(D
) &&
6098 isa
<CXXDeductionGuideDecl
>(D
->getDeclContext()))
6099 NeedInstantiate
= true;
6101 NeedInstantiate
= isa
<EnumDecl
>(D
);
6102 if (NeedInstantiate
) {
6103 Decl
*Inst
= SubstDecl(D
, CurContext
, TemplateArgs
);
6104 CurrentInstantiationScope
->InstantiatedLocal(D
, Inst
);
6105 return cast
<TypeDecl
>(Inst
);
6108 // If we didn't find the decl, then we must have a label decl that hasn't
6109 // been found yet. Lazily instantiate it and return it now.
6110 assert(isa
<LabelDecl
>(D
));
6112 Decl
*Inst
= SubstDecl(D
, CurContext
, TemplateArgs
);
6113 assert(Inst
&& "Failed to instantiate label??");
6115 CurrentInstantiationScope
->InstantiatedLocal(D
, Inst
);
6116 return cast
<LabelDecl
>(Inst
);
6119 if (CXXRecordDecl
*Record
= dyn_cast
<CXXRecordDecl
>(D
)) {
6120 if (!Record
->isDependentContext())
6123 // Determine whether this record is the "templated" declaration describing
6124 // a class template or class template partial specialization.
6125 ClassTemplateDecl
*ClassTemplate
= Record
->getDescribedClassTemplate();
6127 ClassTemplate
= ClassTemplate
->getCanonicalDecl();
6128 else if (ClassTemplatePartialSpecializationDecl
*PartialSpec
6129 = dyn_cast
<ClassTemplatePartialSpecializationDecl
>(Record
))
6130 ClassTemplate
= PartialSpec
->getSpecializedTemplate()->getCanonicalDecl();
6132 // Walk the current context to find either the record or an instantiation of
6134 DeclContext
*DC
= CurContext
;
6135 while (!DC
->isFileContext()) {
6136 // If we're performing substitution while we're inside the template
6137 // definition, we'll find our own context. We're done.
6138 if (DC
->Equals(Record
))
6141 if (CXXRecordDecl
*InstRecord
= dyn_cast
<CXXRecordDecl
>(DC
)) {
6142 // Check whether we're in the process of instantiating a class template
6143 // specialization of the template we're mapping.
6144 if (ClassTemplateSpecializationDecl
*InstSpec
6145 = dyn_cast
<ClassTemplateSpecializationDecl
>(InstRecord
)){
6146 ClassTemplateDecl
*SpecTemplate
= InstSpec
->getSpecializedTemplate();
6147 if (ClassTemplate
&& isInstantiationOf(ClassTemplate
, SpecTemplate
))
6151 // Check whether we're in the process of instantiating a member class.
6152 if (isInstantiationOf(Record
, InstRecord
))
6156 // Move to the outer template scope.
6157 if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(DC
)) {
6158 // FIXME: We should use `getNonTransparentDeclContext()` here instead
6159 // of `getDeclContext()` once we find the invalid test case.
6160 if (FD
->getFriendObjectKind() && FD
->getDeclContext()->isFileContext()){
6161 DC
= FD
->getLexicalDeclContext();
6164 // An implicit deduction guide acts as if it's within the class template
6165 // specialization described by its name and first N template params.
6166 auto *Guide
= dyn_cast
<CXXDeductionGuideDecl
>(FD
);
6167 if (Guide
&& Guide
->isImplicit()) {
6168 TemplateDecl
*TD
= Guide
->getDeducedTemplate();
6169 // Convert the arguments to an "as-written" list.
6170 TemplateArgumentListInfo
Args(Loc
, Loc
);
6171 for (TemplateArgument Arg
: TemplateArgs
.getInnermost().take_front(
6172 TD
->getTemplateParameters()->size())) {
6173 ArrayRef
<TemplateArgument
> Unpacked(Arg
);
6174 if (Arg
.getKind() == TemplateArgument::Pack
)
6175 Unpacked
= Arg
.pack_elements();
6176 for (TemplateArgument UnpackedArg
: Unpacked
)
6178 getTrivialTemplateArgumentLoc(UnpackedArg
, QualType(), Loc
));
6180 QualType T
= CheckTemplateIdType(TemplateName(TD
), Loc
, Args
);
6183 auto *SubstRecord
= T
->getAsCXXRecordDecl();
6184 assert(SubstRecord
&& "class template id not a class type?");
6185 // Check that this template-id names the primary template and not a
6186 // partial or explicit specialization. (In the latter cases, it's
6187 // meaningless to attempt to find an instantiation of D within the
6189 // FIXME: The standard doesn't say what should happen here.
6190 if (FindingInstantiatedContext
&&
6191 usesPartialOrExplicitSpecialization(
6192 Loc
, cast
<ClassTemplateSpecializationDecl
>(SubstRecord
))) {
6193 Diag(Loc
, diag::err_specialization_not_primary_template
)
6194 << T
<< (SubstRecord
->getTemplateSpecializationKind() ==
6195 TSK_ExplicitSpecialization
);
6203 DC
= DC
->getParent();
6206 // Fall through to deal with other dependent record types (e.g.,
6207 // anonymous unions in class templates).
6210 if (!ParentDependsOnArgs
)
6213 ParentDC
= FindInstantiatedContext(Loc
, ParentDC
, TemplateArgs
);
6217 if (ParentDC
!= D
->getDeclContext()) {
6218 // We performed some kind of instantiation in the parent context,
6219 // so now we need to look into the instantiated parent context to
6220 // find the instantiation of the declaration D.
6222 // If our context used to be dependent, we may need to instantiate
6223 // it before performing lookup into that context.
6224 bool IsBeingInstantiated
= false;
6225 if (CXXRecordDecl
*Spec
= dyn_cast
<CXXRecordDecl
>(ParentDC
)) {
6226 if (!Spec
->isDependentContext()) {
6227 QualType T
= Context
.getTypeDeclType(Spec
);
6228 const RecordType
*Tag
= T
->getAs
<RecordType
>();
6229 assert(Tag
&& "type of non-dependent record is not a RecordType");
6230 if (Tag
->isBeingDefined())
6231 IsBeingInstantiated
= true;
6232 if (!Tag
->isBeingDefined() &&
6233 RequireCompleteType(Loc
, T
, diag::err_incomplete_type
))
6236 ParentDC
= Tag
->getDecl();
6240 NamedDecl
*Result
= nullptr;
6241 // FIXME: If the name is a dependent name, this lookup won't necessarily
6242 // find it. Does that ever matter?
6243 if (auto Name
= D
->getDeclName()) {
6244 DeclarationNameInfo
NameInfo(Name
, D
->getLocation());
6245 DeclarationNameInfo NewNameInfo
=
6246 SubstDeclarationNameInfo(NameInfo
, TemplateArgs
);
6247 Name
= NewNameInfo
.getName();
6250 DeclContext::lookup_result Found
= ParentDC
->lookup(Name
);
6252 Result
= findInstantiationOf(Context
, D
, Found
.begin(), Found
.end());
6254 // Since we don't have a name for the entity we're looking for,
6255 // our only option is to walk through all of the declarations to
6256 // find that name. This will occur in a few cases:
6258 // - anonymous struct/union within a template
6259 // - unnamed class/struct/union/enum within a template
6261 // FIXME: Find a better way to find these instantiations!
6262 Result
= findInstantiationOf(Context
, D
,
6263 ParentDC
->decls_begin(),
6264 ParentDC
->decls_end());
6268 if (isa
<UsingShadowDecl
>(D
)) {
6269 // UsingShadowDecls can instantiate to nothing because of using hiding.
6270 } else if (hasUncompilableErrorOccurred()) {
6271 // We've already complained about some ill-formed code, so most likely
6272 // this declaration failed to instantiate. There's no point in
6273 // complaining further, since this is normal in invalid code.
6274 // FIXME: Use more fine-grained 'invalid' tracking for this.
6275 } else if (IsBeingInstantiated
) {
6276 // The class in which this member exists is currently being
6277 // instantiated, and we haven't gotten around to instantiating this
6278 // member yet. This can happen when the code uses forward declarations
6279 // of member classes, and introduces ordering dependencies via
6280 // template instantiation.
6281 Diag(Loc
, diag::err_member_not_yet_instantiated
)
6283 << Context
.getTypeDeclType(cast
<CXXRecordDecl
>(ParentDC
));
6284 Diag(D
->getLocation(), diag::note_non_instantiated_member_here
);
6285 } else if (EnumConstantDecl
*ED
= dyn_cast
<EnumConstantDecl
>(D
)) {
6286 // This enumeration constant was found when the template was defined,
6287 // but can't be found in the instantiation. This can happen if an
6288 // unscoped enumeration member is explicitly specialized.
6289 EnumDecl
*Enum
= cast
<EnumDecl
>(ED
->getLexicalDeclContext());
6290 EnumDecl
*Spec
= cast
<EnumDecl
>(FindInstantiatedDecl(Loc
, Enum
,
6292 assert(Spec
->getTemplateSpecializationKind() ==
6293 TSK_ExplicitSpecialization
);
6294 Diag(Loc
, diag::err_enumerator_does_not_exist
)
6296 << Context
.getTypeDeclType(cast
<TypeDecl
>(Spec
->getDeclContext()));
6297 Diag(Spec
->getLocation(), diag::note_enum_specialized_here
)
6298 << Context
.getTypeDeclType(Spec
);
6300 // We should have found something, but didn't.
6301 llvm_unreachable("Unable to find instantiation of declaration!");
6311 /// Performs template instantiation for all implicit template
6312 /// instantiations we have seen until this point.
6313 void Sema::PerformPendingInstantiations(bool LocalOnly
) {
6314 std::deque
<PendingImplicitInstantiation
> delayedPCHInstantiations
;
6315 while (!PendingLocalImplicitInstantiations
.empty() ||
6316 (!LocalOnly
&& !PendingInstantiations
.empty())) {
6317 PendingImplicitInstantiation Inst
;
6319 if (PendingLocalImplicitInstantiations
.empty()) {
6320 Inst
= PendingInstantiations
.front();
6321 PendingInstantiations
.pop_front();
6323 Inst
= PendingLocalImplicitInstantiations
.front();
6324 PendingLocalImplicitInstantiations
.pop_front();
6327 // Instantiate function definitions
6328 if (FunctionDecl
*Function
= dyn_cast
<FunctionDecl
>(Inst
.first
)) {
6329 bool DefinitionRequired
= Function
->getTemplateSpecializationKind() ==
6330 TSK_ExplicitInstantiationDefinition
;
6331 if (Function
->isMultiVersion()) {
6332 getASTContext().forEachMultiversionedFunctionVersion(
6333 Function
, [this, Inst
, DefinitionRequired
](FunctionDecl
*CurFD
) {
6334 InstantiateFunctionDefinition(/*FIXME:*/ Inst
.second
, CurFD
, true,
6335 DefinitionRequired
, true);
6336 if (CurFD
->isDefined())
6337 CurFD
->setInstantiationIsPending(false);
6340 InstantiateFunctionDefinition(/*FIXME:*/ Inst
.second
, Function
, true,
6341 DefinitionRequired
, true);
6342 if (Function
->isDefined())
6343 Function
->setInstantiationIsPending(false);
6345 // Definition of a PCH-ed template declaration may be available only in the TU.
6346 if (!LocalOnly
&& LangOpts
.PCHInstantiateTemplates
&&
6347 TUKind
== TU_Prefix
&& Function
->instantiationIsPending())
6348 delayedPCHInstantiations
.push_back(Inst
);
6352 // Instantiate variable definitions
6353 VarDecl
*Var
= cast
<VarDecl
>(Inst
.first
);
6355 assert((Var
->isStaticDataMember() ||
6356 isa
<VarTemplateSpecializationDecl
>(Var
)) &&
6357 "Not a static data member, nor a variable template"
6358 " specialization?");
6360 // Don't try to instantiate declarations if the most recent redeclaration
6362 if (Var
->getMostRecentDecl()->isInvalidDecl())
6365 // Check if the most recent declaration has changed the specialization kind
6366 // and removed the need for implicit instantiation.
6367 switch (Var
->getMostRecentDecl()
6368 ->getTemplateSpecializationKindForInstantiation()) {
6369 case TSK_Undeclared
:
6370 llvm_unreachable("Cannot instantitiate an undeclared specialization.");
6371 case TSK_ExplicitInstantiationDeclaration
:
6372 case TSK_ExplicitSpecialization
:
6373 continue; // No longer need to instantiate this type.
6374 case TSK_ExplicitInstantiationDefinition
:
6375 // We only need an instantiation if the pending instantiation *is* the
6376 // explicit instantiation.
6377 if (Var
!= Var
->getMostRecentDecl())
6380 case TSK_ImplicitInstantiation
:
6384 PrettyDeclStackTraceEntry
CrashInfo(Context
, Var
, SourceLocation(),
6385 "instantiating variable definition");
6386 bool DefinitionRequired
= Var
->getTemplateSpecializationKind() ==
6387 TSK_ExplicitInstantiationDefinition
;
6389 // Instantiate static data member definitions or variable template
6391 InstantiateVariableDefinition(/*FIXME:*/ Inst
.second
, Var
, true,
6392 DefinitionRequired
, true);
6395 if (!LocalOnly
&& LangOpts
.PCHInstantiateTemplates
)
6396 PendingInstantiations
.swap(delayedPCHInstantiations
);
6399 void Sema::PerformDependentDiagnostics(const DeclContext
*Pattern
,
6400 const MultiLevelTemplateArgumentList
&TemplateArgs
) {
6401 for (auto *DD
: Pattern
->ddiags()) {
6402 switch (DD
->getKind()) {
6403 case DependentDiagnostic::Access
:
6404 HandleDependentAccessCheck(*DD
, TemplateArgs
);