[flang] Accept polymorphic component element in storage_size
[llvm-project.git] / flang / runtime / time-intrinsic.cpp
blob5f7b50964fe2a9544e58e50adc813b65fe978048
1 //===-- runtime/time-intrinsic.cpp ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 // Implements time-related intrinsic subroutines.
11 #include "flang/Runtime/time-intrinsic.h"
12 #include "terminator.h"
13 #include "tools.h"
14 #include "flang/Runtime/cpp-type.h"
15 #include "flang/Runtime/descriptor.h"
16 #include <algorithm>
17 #include <cstdint>
18 #include <cstdio>
19 #include <cstdlib>
20 #include <cstring>
21 #include <ctime>
22 #ifndef _WIN32
23 #include <sys/time.h> // gettimeofday
24 #endif
26 // CPU_TIME (Fortran 2018 16.9.57)
27 // SYSTEM_CLOCK (Fortran 2018 16.9.168)
29 // We can use std::clock() from the <ctime> header as a fallback implementation
30 // that should be available everywhere. This may not provide the best resolution
31 // and is particularly troublesome on (some?) POSIX systems where CLOCKS_PER_SEC
32 // is defined as 10^6 regardless of the actual precision of std::clock().
33 // Therefore, we will usually prefer platform-specific alternatives when they
34 // are available.
36 // We can use SFINAE to choose a platform-specific alternative. To do so, we
37 // introduce a helper function template, whose overload set will contain only
38 // implementations relying on interfaces which are actually available. Each
39 // overload will have a dummy parameter whose type indicates whether or not it
40 // should be preferred. Any other parameters required for SFINAE should have
41 // default values provided.
42 namespace {
43 // Types for the dummy parameter indicating the priority of a given overload.
44 // We will invoke our helper with an integer literal argument, so the overload
45 // with the highest priority should have the type int.
46 using fallback_implementation = double;
47 using preferred_implementation = int;
49 // This is the fallback implementation, which should work everywhere.
50 template <typename Unused = void> double GetCpuTime(fallback_implementation) {
51 std::clock_t timestamp{std::clock()};
52 if (timestamp != static_cast<std::clock_t>(-1)) {
53 return static_cast<double>(timestamp) / CLOCKS_PER_SEC;
55 // Return some negative value to represent failure.
56 return -1.0;
59 #if defined CLOCK_PROCESS_CPUTIME_ID
60 #define CLOCKID CLOCK_PROCESS_CPUTIME_ID
61 #elif defined CLOCK_THREAD_CPUTIME_ID
62 #define CLOCKID CLOCK_THREAD_CPUTIME_ID
63 #elif defined CLOCK_MONOTONIC
64 #define CLOCKID CLOCK_MONOTONIC
65 #elif defined CLOCK_REALTIME
66 #define CLOCKID CLOCK_REALTIME
67 #else
68 #undef CLOCKID
69 #endif
71 #ifdef CLOCKID
72 // POSIX implementation using clock_gettime. This is only enabled where
73 // clock_gettime is available.
74 template <typename T = int, typename U = struct timespec>
75 double GetCpuTime(preferred_implementation,
76 // We need some dummy parameters to pass to decltype(clock_gettime).
77 T ClockId = 0, U *Timespec = nullptr,
78 decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
79 struct timespec tspec;
80 if (clock_gettime(CLOCKID, &tspec) == 0) {
81 return tspec.tv_nsec * 1.0e-9 + tspec.tv_sec;
83 // Return some negative value to represent failure.
84 return -1.0;
86 #endif
88 using count_t = std::int64_t;
89 using unsigned_count_t = std::uint64_t;
91 // Computes HUGE(INT(0,kind)) as an unsigned integer value.
92 static constexpr inline unsigned_count_t GetHUGE(int kind) {
93 if (kind > 8) {
94 kind = 8;
96 return (unsigned_count_t{1} << ((8 * kind) - 1)) - 1;
99 // This is the fallback implementation, which should work everywhere. Note that
100 // in general we can't recover after std::clock has reached its maximum value.
101 template <typename Unused = void>
102 count_t GetSystemClockCount(int kind, fallback_implementation) {
103 std::clock_t timestamp{std::clock()};
104 if (timestamp == static_cast<std::clock_t>(-1)) {
105 // Return -HUGE(COUNT) to represent failure.
106 return -static_cast<count_t>(GetHUGE(kind));
108 // Convert the timestamp to std::uint64_t with wrap-around. The timestamp is
109 // most likely a floating-point value (since C'11), so compute the modulus
110 // carefully when one is required.
111 constexpr auto maxUnsignedCount{std::numeric_limits<unsigned_count_t>::max()};
112 if constexpr (std::numeric_limits<std::clock_t>::max() > maxUnsignedCount) {
113 timestamp -= maxUnsignedCount * std::floor(timestamp / maxUnsignedCount);
115 unsigned_count_t unsignedCount{static_cast<unsigned_count_t>(timestamp)};
116 // Return the modulus of the unsigned integral count with HUGE(COUNT)+1.
117 // The result is a signed integer but never negative.
118 return static_cast<count_t>(unsignedCount % (GetHUGE(kind) + 1));
121 template <typename Unused = void>
122 count_t GetSystemClockCountRate(int kind, fallback_implementation) {
123 return CLOCKS_PER_SEC;
126 template <typename Unused = void>
127 count_t GetSystemClockCountMax(int kind, fallback_implementation) {
128 constexpr auto max_clock_t{std::numeric_limits<std::clock_t>::max()};
129 unsigned_count_t maxCount{GetHUGE(kind)};
130 return max_clock_t <= maxCount ? static_cast<count_t>(max_clock_t)
131 : static_cast<count_t>(maxCount);
134 // POSIX implementation using clock_gettime where available. The clock_gettime
135 // result is in nanoseconds, which is converted as necessary to
136 // - deciseconds for kind 1
137 // - milliseconds for kinds 2, 4
138 // - nanoseconds for kinds 8, 16
139 constexpr unsigned_count_t DS_PER_SEC{10u};
140 constexpr unsigned_count_t MS_PER_SEC{1'000u};
141 constexpr unsigned_count_t NS_PER_SEC{1'000'000'000u};
143 #ifdef CLOCKID
144 template <typename T = int, typename U = struct timespec>
145 count_t GetSystemClockCount(int kind, preferred_implementation,
146 // We need some dummy parameters to pass to decltype(clock_gettime).
147 T ClockId = 0, U *Timespec = nullptr,
148 decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
149 struct timespec tspec;
150 const unsigned_count_t huge{GetHUGE(kind)};
151 if (clock_gettime(CLOCKID, &tspec) != 0) {
152 return -huge; // failure
154 unsigned_count_t sec{static_cast<unsigned_count_t>(tspec.tv_sec)};
155 unsigned_count_t nsec{static_cast<unsigned_count_t>(tspec.tv_nsec)};
156 if (kind >= 8) {
157 return (sec * NS_PER_SEC + nsec) % (huge + 1);
158 } else if (kind >= 2) {
159 return (sec * MS_PER_SEC + (nsec / (NS_PER_SEC / MS_PER_SEC))) % (huge + 1);
160 } else { // kind == 1
161 return (sec * DS_PER_SEC + (nsec / (NS_PER_SEC / DS_PER_SEC))) % (huge + 1);
164 #endif
166 template <typename T = int, typename U = struct timespec>
167 count_t GetSystemClockCountRate(int kind, preferred_implementation,
168 // We need some dummy parameters to pass to decltype(clock_gettime).
169 T ClockId = 0, U *Timespec = nullptr,
170 decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
171 return kind >= 8 ? NS_PER_SEC : kind >= 2 ? MS_PER_SEC : DS_PER_SEC;
174 template <typename T = int, typename U = struct timespec>
175 count_t GetSystemClockCountMax(int kind, preferred_implementation,
176 // We need some dummy parameters to pass to decltype(clock_gettime).
177 T ClockId = 0, U *Timespec = nullptr,
178 decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
179 return GetHUGE(kind);
182 // DATE_AND_TIME (Fortran 2018 16.9.59)
184 // Helper to set an integer value to -HUGE
185 template <int KIND> struct StoreNegativeHugeAt {
186 void operator()(
187 const Fortran::runtime::Descriptor &result, std::size_t at) const {
188 *result.ZeroBasedIndexedElement<Fortran::runtime::CppTypeFor<
189 Fortran::common::TypeCategory::Integer, KIND>>(at) =
190 -std::numeric_limits<Fortran::runtime::CppTypeFor<
191 Fortran::common::TypeCategory::Integer, KIND>>::max();
195 // Default implementation when date and time information is not available (set
196 // strings to blanks and values to -HUGE as defined by the standard).
197 static void DateAndTimeUnavailable(Fortran::runtime::Terminator &terminator,
198 char *date, std::size_t dateChars, char *time, std::size_t timeChars,
199 char *zone, std::size_t zoneChars,
200 const Fortran::runtime::Descriptor *values) {
201 if (date) {
202 std::memset(date, static_cast<int>(' '), dateChars);
204 if (time) {
205 std::memset(time, static_cast<int>(' '), timeChars);
207 if (zone) {
208 std::memset(zone, static_cast<int>(' '), zoneChars);
210 if (values) {
211 auto typeCode{values->type().GetCategoryAndKind()};
212 RUNTIME_CHECK(terminator,
213 values->rank() == 1 && values->GetDimension(0).Extent() >= 8 &&
214 typeCode &&
215 typeCode->first == Fortran::common::TypeCategory::Integer);
216 // DATE_AND_TIME values argument must have decimal range > 4. Do not accept
217 // KIND 1 here.
218 int kind{typeCode->second};
219 RUNTIME_CHECK(terminator, kind != 1);
220 for (std::size_t i = 0; i < 8; ++i) {
221 Fortran::runtime::ApplyIntegerKind<StoreNegativeHugeAt, void>(
222 kind, terminator, *values, i);
227 #ifndef _WIN32
229 // SFINAE helper to return the struct tm.tm_gmtoff which is not a POSIX standard
230 // field.
231 template <int KIND, typename TM = struct tm>
232 Fortran::runtime::CppTypeFor<Fortran::common::TypeCategory::Integer, KIND>
233 GetGmtOffset(const TM &tm, preferred_implementation,
234 decltype(tm.tm_gmtoff) *Enabled = nullptr) {
235 // Returns the GMT offset in minutes.
236 return tm.tm_gmtoff / 60;
238 template <int KIND, typename TM = struct tm>
239 Fortran::runtime::CppTypeFor<Fortran::common::TypeCategory::Integer, KIND>
240 GetGmtOffset(const TM &tm, fallback_implementation) {
241 // tm.tm_gmtoff is not available, there may be platform dependent alternatives
242 // (such as using timezone from <time.h> when available), but so far just
243 // return -HUGE to report that this information is not available.
244 return -std::numeric_limits<Fortran::runtime::CppTypeFor<
245 Fortran::common::TypeCategory::Integer, KIND>>::max();
247 template <typename TM = struct tm> struct GmtOffsetHelper {
248 template <int KIND> struct StoreGmtOffset {
249 void operator()(const Fortran::runtime::Descriptor &result, std::size_t at,
250 TM &tm) const {
251 *result.ZeroBasedIndexedElement<Fortran::runtime::CppTypeFor<
252 Fortran::common::TypeCategory::Integer, KIND>>(at) =
253 GetGmtOffset<KIND>(tm, 0);
258 // Dispatch to posix implementation where gettimeofday and localtime_r are
259 // available.
260 static void GetDateAndTime(Fortran::runtime::Terminator &terminator, char *date,
261 std::size_t dateChars, char *time, std::size_t timeChars, char *zone,
262 std::size_t zoneChars, const Fortran::runtime::Descriptor *values) {
264 timeval t;
265 if (gettimeofday(&t, nullptr) != 0) {
266 DateAndTimeUnavailable(
267 terminator, date, dateChars, time, timeChars, zone, zoneChars, values);
268 return;
270 time_t timer{t.tv_sec};
271 tm localTime;
272 localtime_r(&timer, &localTime);
273 std::intmax_t ms{t.tv_usec / 1000};
275 static constexpr std::size_t buffSize{16};
276 char buffer[buffSize];
277 auto copyBufferAndPad{
278 [&](char *dest, std::size_t destChars, std::size_t len) {
279 auto copyLen{std::min(len, destChars)};
280 std::memcpy(dest, buffer, copyLen);
281 for (auto i{copyLen}; i < destChars; ++i) {
282 dest[i] = ' ';
285 if (date) {
286 auto len = std::strftime(buffer, buffSize, "%Y%m%d", &localTime);
287 copyBufferAndPad(date, dateChars, len);
289 if (time) {
290 auto len{std::snprintf(buffer, buffSize, "%02d%02d%02d.%03jd",
291 localTime.tm_hour, localTime.tm_min, localTime.tm_sec, ms)};
292 copyBufferAndPad(time, timeChars, len);
294 if (zone) {
295 // Note: this may leave the buffer empty on many platforms. Classic flang
296 // has a much more complex way of doing this (see __io_timezone in classic
297 // flang).
298 auto len{std::strftime(buffer, buffSize, "%z", &localTime)};
299 copyBufferAndPad(zone, zoneChars, len);
301 if (values) {
302 auto typeCode{values->type().GetCategoryAndKind()};
303 RUNTIME_CHECK(terminator,
304 values->rank() == 1 && values->GetDimension(0).Extent() >= 8 &&
305 typeCode &&
306 typeCode->first == Fortran::common::TypeCategory::Integer);
307 // DATE_AND_TIME values argument must have decimal range > 4. Do not accept
308 // KIND 1 here.
309 int kind{typeCode->second};
310 RUNTIME_CHECK(terminator, kind != 1);
311 auto storeIntegerAt = [&](std::size_t atIndex, std::int64_t value) {
312 Fortran::runtime::ApplyIntegerKind<Fortran::runtime::StoreIntegerAt,
313 void>(kind, terminator, *values, atIndex, value);
315 storeIntegerAt(0, localTime.tm_year + 1900);
316 storeIntegerAt(1, localTime.tm_mon + 1);
317 storeIntegerAt(2, localTime.tm_mday);
318 Fortran::runtime::ApplyIntegerKind<
319 GmtOffsetHelper<struct tm>::StoreGmtOffset, void>(
320 kind, terminator, *values, 3, localTime);
321 storeIntegerAt(4, localTime.tm_hour);
322 storeIntegerAt(5, localTime.tm_min);
323 storeIntegerAt(6, localTime.tm_sec);
324 storeIntegerAt(7, ms);
328 #else
329 // Fallback implementation where gettimeofday or localtime_r are not both
330 // available (e.g. windows).
331 static void GetDateAndTime(Fortran::runtime::Terminator &terminator, char *date,
332 std::size_t dateChars, char *time, std::size_t timeChars, char *zone,
333 std::size_t zoneChars, const Fortran::runtime::Descriptor *values) {
334 // TODO: An actual implementation for non Posix system should be added.
335 // So far, implement as if the date and time is not available on those
336 // platforms.
337 DateAndTimeUnavailable(
338 terminator, date, dateChars, time, timeChars, zone, zoneChars, values);
340 #endif
341 } // namespace
343 namespace Fortran::runtime {
344 extern "C" {
346 double RTNAME(CpuTime)() { return GetCpuTime(0); }
348 std::int64_t RTNAME(SystemClockCount)(int kind) {
349 return GetSystemClockCount(kind, 0);
352 std::int64_t RTNAME(SystemClockCountRate)(int kind) {
353 return GetSystemClockCountRate(kind, 0);
356 std::int64_t RTNAME(SystemClockCountMax)(int kind) {
357 return GetSystemClockCountMax(kind, 0);
360 void RTNAME(DateAndTime)(char *date, std::size_t dateChars, char *time,
361 std::size_t timeChars, char *zone, std::size_t zoneChars,
362 const char *source, int line, const Descriptor *values) {
363 Fortran::runtime::Terminator terminator{source, line};
364 return GetDateAndTime(
365 terminator, date, dateChars, time, timeChars, zone, zoneChars, values);
368 } // extern "C"
369 } // namespace Fortran::runtime