[flang] Accept polymorphic component element in storage_size
[llvm-project.git] / libc / test / src / math / LdExpTest.h
blob18755aa2d8455f51d59132ea847bd1b2bf343410
1 //===-- Utility class to test different flavors of ldexp --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #ifndef LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H
10 #define LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H
12 #include "src/__support/FPUtil/FPBits.h"
13 #include "src/__support/FPUtil/NormalFloat.h"
14 #include "test/UnitTest/FPMatcher.h"
15 #include "test/UnitTest/Test.h"
17 #include <limits.h>
18 #include <math.h>
19 #include <stdint.h>
21 template <typename T>
22 class LdExpTestTemplate : public __llvm_libc::testing::Test {
23 using FPBits = __llvm_libc::fputil::FPBits<T>;
24 using NormalFloat = __llvm_libc::fputil::NormalFloat<T>;
25 using UIntType = typename FPBits::UIntType;
26 static constexpr UIntType MANTISSA_WIDTH =
27 __llvm_libc::fputil::MantissaWidth<T>::VALUE;
28 // A normalized mantissa to be used with tests.
29 static constexpr UIntType MANTISSA = NormalFloat::ONE + 0x1234;
31 const T zero = T(__llvm_libc::fputil::FPBits<T>::zero());
32 const T neg_zero = T(__llvm_libc::fputil::FPBits<T>::neg_zero());
33 const T inf = T(__llvm_libc::fputil::FPBits<T>::inf());
34 const T neg_inf = T(__llvm_libc::fputil::FPBits<T>::neg_inf());
35 const T nan = T(__llvm_libc::fputil::FPBits<T>::build_quiet_nan(1));
37 public:
38 typedef T (*LdExpFunc)(T, int);
40 void testSpecialNumbers(LdExpFunc func) {
41 int exp_array[5] = {-INT_MAX - 1, -10, 0, 10, INT_MAX};
42 for (int exp : exp_array) {
43 ASSERT_FP_EQ(zero, func(zero, exp));
44 ASSERT_FP_EQ(neg_zero, func(neg_zero, exp));
45 ASSERT_FP_EQ(inf, func(inf, exp));
46 ASSERT_FP_EQ(neg_inf, func(neg_inf, exp));
47 ASSERT_FP_EQ(nan, func(nan, exp));
51 void testPowersOfTwo(LdExpFunc func) {
52 int32_t exp_array[5] = {1, 2, 3, 4, 5};
53 int32_t val_array[6] = {1, 2, 4, 8, 16, 32};
54 for (int32_t exp : exp_array) {
55 for (int32_t val : val_array) {
56 ASSERT_FP_EQ(T(val << exp), func(T(val), exp));
57 ASSERT_FP_EQ(T(-1 * (val << exp)), func(T(-val), exp));
62 void testOverflow(LdExpFunc func) {
63 NormalFloat x(FPBits::MAX_EXPONENT - 10, NormalFloat::ONE + 0xF00BA, 0);
64 for (int32_t exp = 10; exp < 100; ++exp) {
65 ASSERT_FP_EQ(inf, func(T(x), exp));
66 ASSERT_FP_EQ(neg_inf, func(-T(x), exp));
70 void testUnderflowToZeroOnNormal(LdExpFunc func) {
71 // In this test, we pass a normal nubmer to func and expect zero
72 // to be returned due to underflow.
73 int32_t base_exponent = FPBits::EXPONENT_BIAS + MANTISSA_WIDTH;
74 int32_t exp_array[] = {base_exponent + 5, base_exponent + 4,
75 base_exponent + 3, base_exponent + 2,
76 base_exponent + 1};
77 T x = NormalFloat(0, MANTISSA, 0);
78 for (int32_t exp : exp_array) {
79 ASSERT_FP_EQ(func(x, -exp), x > 0 ? zero : neg_zero);
83 void testUnderflowToZeroOnSubnormal(LdExpFunc func) {
84 // In this test, we pass a normal nubmer to func and expect zero
85 // to be returned due to underflow.
86 int32_t base_exponent = FPBits::EXPONENT_BIAS + MANTISSA_WIDTH;
87 int32_t exp_array[] = {base_exponent + 5, base_exponent + 4,
88 base_exponent + 3, base_exponent + 2,
89 base_exponent + 1};
90 T x = NormalFloat(-FPBits::EXPONENT_BIAS, MANTISSA, 0);
91 for (int32_t exp : exp_array) {
92 ASSERT_FP_EQ(func(x, -exp), x > 0 ? zero : neg_zero);
96 void testNormalOperation(LdExpFunc func) {
97 T val_array[] = {
98 // Normal numbers
99 NormalFloat(100, MANTISSA, 0), NormalFloat(-100, MANTISSA, 0),
100 NormalFloat(100, MANTISSA, 1), NormalFloat(-100, MANTISSA, 1),
101 // Subnormal numbers
102 NormalFloat(-FPBits::EXPONENT_BIAS, MANTISSA, 0),
103 NormalFloat(-FPBits::EXPONENT_BIAS, MANTISSA, 1)};
104 for (int32_t exp = 0; exp <= static_cast<int32_t>(MANTISSA_WIDTH); ++exp) {
105 for (T x : val_array) {
106 // We compare the result of ldexp with the result
107 // of the native multiplication/division instruction.
108 ASSERT_FP_EQ(func(x, exp), x * (UIntType(1) << exp));
109 ASSERT_FP_EQ(func(x, -exp), x / (UIntType(1) << exp));
113 // Normal which trigger mantissa overflow.
114 T x = NormalFloat(-FPBits::EXPONENT_BIAS + 1, 2 * NormalFloat::ONE - 1, 0);
115 ASSERT_FP_EQ(func(x, -1), x / 2);
116 ASSERT_FP_EQ(func(-x, -1), -x / 2);
118 // Start with a normal number high exponent but pass a very low number for
119 // exp. The result should be a subnormal number.
120 x = NormalFloat(FPBits::EXPONENT_BIAS, NormalFloat::ONE, 0);
121 int exp = -FPBits::MAX_EXPONENT - 5;
122 T result = func(x, exp);
123 FPBits result_bits(result);
124 ASSERT_FALSE(result_bits.is_zero());
125 // Verify that the result is indeed subnormal.
126 ASSERT_EQ(result_bits.get_unbiased_exponent(), uint16_t(0));
127 // But if the exp is so less that normalization leads to zero, then
128 // the result should be zero.
129 result = func(x, -FPBits::MAX_EXPONENT - int(MANTISSA_WIDTH) - 5);
130 ASSERT_TRUE(FPBits(result).is_zero());
132 // Start with a subnormal number but pass a very high number for exponent.
133 // The result should not be infinity.
134 x = NormalFloat(-FPBits::EXPONENT_BIAS + 1, NormalFloat::ONE >> 10, 0);
135 exp = FPBits::MAX_EXPONENT + 5;
136 ASSERT_FALSE(FPBits(func(x, exp)).is_inf());
137 // But if the exp is large enough to oversome than the normalization shift,
138 // then it should result in infinity.
139 exp = FPBits::MAX_EXPONENT + 15;
140 ASSERT_FP_EQ(func(x, exp), inf);
144 #define LIST_LDEXP_TESTS(T, func) \
145 using LlvmLibcLdExpTest = LdExpTestTemplate<T>; \
146 TEST_F(LlvmLibcLdExpTest, SpecialNumbers) { testSpecialNumbers(&func); } \
147 TEST_F(LlvmLibcLdExpTest, PowersOfTwo) { testPowersOfTwo(&func); } \
148 TEST_F(LlvmLibcLdExpTest, OverFlow) { testOverflow(&func); } \
149 TEST_F(LlvmLibcLdExpTest, UnderflowToZeroOnNormal) { \
150 testUnderflowToZeroOnNormal(&func); \
152 TEST_F(LlvmLibcLdExpTest, UnderflowToZeroOnSubnormal) { \
153 testUnderflowToZeroOnSubnormal(&func); \
155 TEST_F(LlvmLibcLdExpTest, NormalOperation) { testNormalOperation(&func); }
157 #endif // LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H