1 //===-- Utility class to test different flavors of ldexp --------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #ifndef LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H
10 #define LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H
12 #include "src/__support/FPUtil/FPBits.h"
13 #include "src/__support/FPUtil/NormalFloat.h"
14 #include "test/UnitTest/FPMatcher.h"
15 #include "test/UnitTest/Test.h"
22 class LdExpTestTemplate
: public __llvm_libc::testing::Test
{
23 using FPBits
= __llvm_libc::fputil::FPBits
<T
>;
24 using NormalFloat
= __llvm_libc::fputil::NormalFloat
<T
>;
25 using UIntType
= typename
FPBits::UIntType
;
26 static constexpr UIntType MANTISSA_WIDTH
=
27 __llvm_libc::fputil::MantissaWidth
<T
>::VALUE
;
28 // A normalized mantissa to be used with tests.
29 static constexpr UIntType MANTISSA
= NormalFloat::ONE
+ 0x1234;
31 const T zero
= T(__llvm_libc::fputil::FPBits
<T
>::zero());
32 const T neg_zero
= T(__llvm_libc::fputil::FPBits
<T
>::neg_zero());
33 const T inf
= T(__llvm_libc::fputil::FPBits
<T
>::inf());
34 const T neg_inf
= T(__llvm_libc::fputil::FPBits
<T
>::neg_inf());
35 const T nan
= T(__llvm_libc::fputil::FPBits
<T
>::build_quiet_nan(1));
38 typedef T (*LdExpFunc
)(T
, int);
40 void testSpecialNumbers(LdExpFunc func
) {
41 int exp_array
[5] = {-INT_MAX
- 1, -10, 0, 10, INT_MAX
};
42 for (int exp
: exp_array
) {
43 ASSERT_FP_EQ(zero
, func(zero
, exp
));
44 ASSERT_FP_EQ(neg_zero
, func(neg_zero
, exp
));
45 ASSERT_FP_EQ(inf
, func(inf
, exp
));
46 ASSERT_FP_EQ(neg_inf
, func(neg_inf
, exp
));
47 ASSERT_FP_EQ(nan
, func(nan
, exp
));
51 void testPowersOfTwo(LdExpFunc func
) {
52 int32_t exp_array
[5] = {1, 2, 3, 4, 5};
53 int32_t val_array
[6] = {1, 2, 4, 8, 16, 32};
54 for (int32_t exp
: exp_array
) {
55 for (int32_t val
: val_array
) {
56 ASSERT_FP_EQ(T(val
<< exp
), func(T(val
), exp
));
57 ASSERT_FP_EQ(T(-1 * (val
<< exp
)), func(T(-val
), exp
));
62 void testOverflow(LdExpFunc func
) {
63 NormalFloat
x(FPBits::MAX_EXPONENT
- 10, NormalFloat::ONE
+ 0xF00BA, 0);
64 for (int32_t exp
= 10; exp
< 100; ++exp
) {
65 ASSERT_FP_EQ(inf
, func(T(x
), exp
));
66 ASSERT_FP_EQ(neg_inf
, func(-T(x
), exp
));
70 void testUnderflowToZeroOnNormal(LdExpFunc func
) {
71 // In this test, we pass a normal nubmer to func and expect zero
72 // to be returned due to underflow.
73 int32_t base_exponent
= FPBits::EXPONENT_BIAS
+ MANTISSA_WIDTH
;
74 int32_t exp_array
[] = {base_exponent
+ 5, base_exponent
+ 4,
75 base_exponent
+ 3, base_exponent
+ 2,
77 T x
= NormalFloat(0, MANTISSA
, 0);
78 for (int32_t exp
: exp_array
) {
79 ASSERT_FP_EQ(func(x
, -exp
), x
> 0 ? zero
: neg_zero
);
83 void testUnderflowToZeroOnSubnormal(LdExpFunc func
) {
84 // In this test, we pass a normal nubmer to func and expect zero
85 // to be returned due to underflow.
86 int32_t base_exponent
= FPBits::EXPONENT_BIAS
+ MANTISSA_WIDTH
;
87 int32_t exp_array
[] = {base_exponent
+ 5, base_exponent
+ 4,
88 base_exponent
+ 3, base_exponent
+ 2,
90 T x
= NormalFloat(-FPBits::EXPONENT_BIAS
, MANTISSA
, 0);
91 for (int32_t exp
: exp_array
) {
92 ASSERT_FP_EQ(func(x
, -exp
), x
> 0 ? zero
: neg_zero
);
96 void testNormalOperation(LdExpFunc func
) {
99 NormalFloat(100, MANTISSA
, 0), NormalFloat(-100, MANTISSA
, 0),
100 NormalFloat(100, MANTISSA
, 1), NormalFloat(-100, MANTISSA
, 1),
102 NormalFloat(-FPBits::EXPONENT_BIAS
, MANTISSA
, 0),
103 NormalFloat(-FPBits::EXPONENT_BIAS
, MANTISSA
, 1)};
104 for (int32_t exp
= 0; exp
<= static_cast<int32_t>(MANTISSA_WIDTH
); ++exp
) {
105 for (T x
: val_array
) {
106 // We compare the result of ldexp with the result
107 // of the native multiplication/division instruction.
108 ASSERT_FP_EQ(func(x
, exp
), x
* (UIntType(1) << exp
));
109 ASSERT_FP_EQ(func(x
, -exp
), x
/ (UIntType(1) << exp
));
113 // Normal which trigger mantissa overflow.
114 T x
= NormalFloat(-FPBits::EXPONENT_BIAS
+ 1, 2 * NormalFloat::ONE
- 1, 0);
115 ASSERT_FP_EQ(func(x
, -1), x
/ 2);
116 ASSERT_FP_EQ(func(-x
, -1), -x
/ 2);
118 // Start with a normal number high exponent but pass a very low number for
119 // exp. The result should be a subnormal number.
120 x
= NormalFloat(FPBits::EXPONENT_BIAS
, NormalFloat::ONE
, 0);
121 int exp
= -FPBits::MAX_EXPONENT
- 5;
122 T result
= func(x
, exp
);
123 FPBits
result_bits(result
);
124 ASSERT_FALSE(result_bits
.is_zero());
125 // Verify that the result is indeed subnormal.
126 ASSERT_EQ(result_bits
.get_unbiased_exponent(), uint16_t(0));
127 // But if the exp is so less that normalization leads to zero, then
128 // the result should be zero.
129 result
= func(x
, -FPBits::MAX_EXPONENT
- int(MANTISSA_WIDTH
) - 5);
130 ASSERT_TRUE(FPBits(result
).is_zero());
132 // Start with a subnormal number but pass a very high number for exponent.
133 // The result should not be infinity.
134 x
= NormalFloat(-FPBits::EXPONENT_BIAS
+ 1, NormalFloat::ONE
>> 10, 0);
135 exp
= FPBits::MAX_EXPONENT
+ 5;
136 ASSERT_FALSE(FPBits(func(x
, exp
)).is_inf());
137 // But if the exp is large enough to oversome than the normalization shift,
138 // then it should result in infinity.
139 exp
= FPBits::MAX_EXPONENT
+ 15;
140 ASSERT_FP_EQ(func(x
, exp
), inf
);
144 #define LIST_LDEXP_TESTS(T, func) \
145 using LlvmLibcLdExpTest = LdExpTestTemplate<T>; \
146 TEST_F(LlvmLibcLdExpTest, SpecialNumbers) { testSpecialNumbers(&func); } \
147 TEST_F(LlvmLibcLdExpTest, PowersOfTwo) { testPowersOfTwo(&func); } \
148 TEST_F(LlvmLibcLdExpTest, OverFlow) { testOverflow(&func); } \
149 TEST_F(LlvmLibcLdExpTest, UnderflowToZeroOnNormal) { \
150 testUnderflowToZeroOnNormal(&func); \
152 TEST_F(LlvmLibcLdExpTest, UnderflowToZeroOnSubnormal) { \
153 testUnderflowToZeroOnSubnormal(&func); \
155 TEST_F(LlvmLibcLdExpTest, NormalOperation) { testNormalOperation(&func); }
157 #endif // LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H