[flang] Accept polymorphic component element in storage_size
[llvm-project.git] / libclc / generic / lib / math / asinpi.cl
blob511d74ec589fc7942642a54fb9a88ede1e16f8f1
1 /*
2 * Copyright (c) 2014,2015 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a copy
5 * of this software and associated documentation files (the "Software"), to deal
6 * in the Software without restriction, including without limitation the rights
7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 * copies of the Software, and to permit persons to whom the Software is
9 * furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 * THE SOFTWARE.
23 #include <clc/clc.h>
25 #include "math.h"
26 #include "../clcmacro.h"
28 _CLC_OVERLOAD _CLC_DEF float asinpi(float x) {
29 // Computes arcsin(x).
30 // The argument is first reduced by noting that arcsin(x)
31 // is invalid for abs(x) > 1 and arcsin(-x) = -arcsin(x).
32 // For denormal and small arguments arcsin(x) = x to machine
33 // accuracy. Remaining argument ranges are handled as follows.
34 // For abs(x) <= 0.5 use
35 // arcsin(x) = x + x^3*R(x^2)
36 // where R(x^2) is a rational minimax approximation to
37 // (arcsin(x) - x)/x^3.
38 // For abs(x) > 0.5 exploit the identity:
39 // arcsin(x) = pi/2 - 2*arcsin(sqrt(1-x)/2)
40 // together with the above rational approximation, and
41 // reconstruct the terms carefully.
44 const float pi = 3.1415926535897933e+00f;
45 const float piby2_tail = 7.5497894159e-08F; /* 0x33a22168 */
46 const float hpiby2_head = 7.8539812565e-01F; /* 0x3f490fda */
48 uint ux = as_uint(x);
49 uint aux = ux & EXSIGNBIT_SP32;
50 uint xs = ux ^ aux;
51 float shalf = as_float(xs | as_uint(0.5f));
53 int xexp = (int)(aux >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32;
55 float y = as_float(aux);
57 // abs(x) >= 0.5
58 int transform = xexp >= -1;
60 float y2 = y * y;
61 float rt = 0.5f * (1.0f - y);
62 float r = transform ? rt : y2;
64 // Use a rational approximation for [0.0, 0.5]
65 float a = mad(r,
66 mad(r,
67 mad(r, -0.00396137437848476485201154797087F, -0.0133819288943925804214011424456F),
68 -0.0565298683201845211985026327361F),
69 0.184161606965100694821398249421F);
70 float b = mad(r, -0.836411276854206731913362287293F, 1.10496961524520294485512696706F);
71 float u = r * MATH_DIVIDE(a, b);
73 float s = MATH_SQRT(r);
74 float s1 = as_float(as_uint(s) & 0xffff0000);
75 float c = MATH_DIVIDE(mad(-s1, s1, r), s + s1);
76 float p = mad(2.0f*s, u, -mad(c, -2.0f, piby2_tail));
77 float q = mad(s1, -2.0f, hpiby2_head);
78 float vt = hpiby2_head - (p - q);
79 float v = mad(y, u, y);
80 v = transform ? vt : v;
81 v = MATH_DIVIDE(v, pi);
82 float xbypi = MATH_DIVIDE(x, pi);
84 float ret = as_float(xs | as_uint(v));
85 ret = aux > 0x3f800000U ? as_float(QNANBITPATT_SP32) : ret;
86 ret = aux == 0x3f800000U ? shalf : ret;
87 ret = xexp < -14 ? xbypi : ret;
89 return ret;
92 _CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, asinpi, float)
94 #ifdef cl_khr_fp64
95 #pragma OPENCL EXTENSION cl_khr_fp64 : enable
97 _CLC_OVERLOAD _CLC_DEF double asinpi(double x) {
98 // Computes arcsin(x).
99 // The argument is first reduced by noting that arcsin(x)
100 // is invalid for abs(x) > 1 and arcsin(-x) = -arcsin(x).
101 // For denormal and small arguments arcsin(x) = x to machine
102 // accuracy. Remaining argument ranges are handled as follows.
103 // For abs(x) <= 0.5 use
104 // arcsin(x) = x + x^3*R(x^2)
105 // where R(x^2) is a rational minimax approximation to
106 // (arcsin(x) - x)/x^3.
107 // For abs(x) > 0.5 exploit the identity:
108 // arcsin(x) = pi/2 - 2*arcsin(sqrt(1-x)/2)
109 // together with the above rational approximation, and
110 // reconstruct the terms carefully.
112 const double pi = 0x1.921fb54442d18p+1;
113 const double piby2_tail = 6.1232339957367660e-17; /* 0x3c91a62633145c07 */
114 const double hpiby2_head = 7.8539816339744831e-01; /* 0x3fe921fb54442d18 */
116 double y = fabs(x);
117 int xneg = as_int2(x).hi < 0;
118 int xexp = (as_int2(y).hi >> 20) - EXPBIAS_DP64;
120 // abs(x) >= 0.5
121 int transform = xexp >= -1;
123 double rt = 0.5 * (1.0 - y);
124 double y2 = y * y;
125 double r = transform ? rt : y2;
127 // Use a rational approximation for [0.0, 0.5]
128 double un = fma(r,
129 fma(r,
130 fma(r,
131 fma(r,
132 fma(r, 0.0000482901920344786991880522822991,
133 0.00109242697235074662306043804220),
134 -0.0549989809235685841612020091328),
135 0.275558175256937652532686256258),
136 -0.445017216867635649900123110649),
137 0.227485835556935010735943483075);
139 double ud = fma(r,
140 fma(r,
141 fma(r,
142 fma(r, 0.105869422087204370341222318533,
143 -0.943639137032492685763471240072),
144 2.76568859157270989520376345954),
145 -3.28431505720958658909889444194),
146 1.36491501334161032038194214209);
148 double u = r * MATH_DIVIDE(un, ud);
151 // Reconstruct asin carefully in transformed region
152 double s = sqrt(r);
153 double sh = as_double(as_ulong(s) & 0xffffffff00000000UL);
154 double c = MATH_DIVIDE(fma(-sh, sh, r), s + sh);
155 double p = fma(2.0*s, u, -fma(-2.0, c, piby2_tail));
156 double q = fma(-2.0, sh, hpiby2_head);
157 double vt = hpiby2_head - (p - q);
158 double v = fma(y, u, y);
159 v = transform ? vt : v;
161 v = xexp < -28 ? y : v;
162 v = MATH_DIVIDE(v, pi);
163 v = xexp >= 0 ? as_double(QNANBITPATT_DP64) : v;
164 v = y == 1.0 ? 0.5 : v;
165 return xneg ? -v : v;
168 _CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, asinpi, double)
170 #endif