[AMDGPU] prevent shrinking udiv/urem if either operand is in (SignedMax,UnsignedMax...
[llvm-project.git] / llvm / lib / MC / XCOFFObjectWriter.cpp
blob5d8f3dbdaadad54cca1cbb9074d5f66116c10cd6
1 //===-- lib/MC/XCOFFObjectWriter.cpp - XCOFF file writer ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements XCOFF object file writer information.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/BinaryFormat/XCOFF.h"
14 #include "llvm/MC/MCAsmBackend.h"
15 #include "llvm/MC/MCAssembler.h"
16 #include "llvm/MC/MCFixup.h"
17 #include "llvm/MC/MCFixupKindInfo.h"
18 #include "llvm/MC/MCObjectWriter.h"
19 #include "llvm/MC/MCSectionXCOFF.h"
20 #include "llvm/MC/MCSymbolXCOFF.h"
21 #include "llvm/MC/MCValue.h"
22 #include "llvm/MC/MCXCOFFObjectWriter.h"
23 #include "llvm/MC/StringTableBuilder.h"
24 #include "llvm/Support/Casting.h"
25 #include "llvm/Support/EndianStream.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
29 #include <deque>
30 #include <map>
32 using namespace llvm;
34 // An XCOFF object file has a limited set of predefined sections. The most
35 // important ones for us (right now) are:
36 // .text --> contains program code and read-only data.
37 // .data --> contains initialized data, function descriptors, and the TOC.
38 // .bss --> contains uninitialized data.
39 // Each of these sections is composed of 'Control Sections'. A Control Section
40 // is more commonly referred to as a csect. A csect is an indivisible unit of
41 // code or data, and acts as a container for symbols. A csect is mapped
42 // into a section based on its storage-mapping class, with the exception of
43 // XMC_RW which gets mapped to either .data or .bss based on whether it's
44 // explicitly initialized or not.
46 // We don't represent the sections in the MC layer as there is nothing
47 // interesting about them at at that level: they carry information that is
48 // only relevant to the ObjectWriter, so we materialize them in this class.
49 namespace {
51 constexpr unsigned DefaultSectionAlign = 4;
52 constexpr int16_t MaxSectionIndex = INT16_MAX;
54 // Packs the csect's alignment and type into a byte.
55 uint8_t getEncodedType(const MCSectionXCOFF *);
57 struct XCOFFRelocation {
58 uint32_t SymbolTableIndex;
59 uint32_t FixupOffsetInCsect;
60 uint8_t SignAndSize;
61 uint8_t Type;
64 // Wrapper around an MCSymbolXCOFF.
65 struct Symbol {
66 const MCSymbolXCOFF *const MCSym;
67 uint32_t SymbolTableIndex;
69 XCOFF::VisibilityType getVisibilityType() const {
70 return MCSym->getVisibilityType();
73 XCOFF::StorageClass getStorageClass() const {
74 return MCSym->getStorageClass();
76 StringRef getSymbolTableName() const { return MCSym->getSymbolTableName(); }
77 Symbol(const MCSymbolXCOFF *MCSym) : MCSym(MCSym), SymbolTableIndex(-1) {}
80 // Wrapper for an MCSectionXCOFF.
81 // It can be a Csect or debug section or DWARF section and so on.
82 struct XCOFFSection {
83 const MCSectionXCOFF *const MCSec;
84 uint32_t SymbolTableIndex;
85 uint64_t Address;
86 uint64_t Size;
88 SmallVector<Symbol, 1> Syms;
89 SmallVector<XCOFFRelocation, 1> Relocations;
90 StringRef getSymbolTableName() const { return MCSec->getSymbolTableName(); }
91 XCOFF::VisibilityType getVisibilityType() const {
92 return MCSec->getVisibilityType();
94 XCOFFSection(const MCSectionXCOFF *MCSec)
95 : MCSec(MCSec), SymbolTableIndex(-1), Address(-1), Size(0) {}
98 // Type to be used for a container representing a set of csects with
99 // (approximately) the same storage mapping class. For example all the csects
100 // with a storage mapping class of `xmc_pr` will get placed into the same
101 // container.
102 using CsectGroup = std::deque<XCOFFSection>;
103 using CsectGroups = std::deque<CsectGroup *>;
105 // The basic section entry defination. This Section represents a section entry
106 // in XCOFF section header table.
107 struct SectionEntry {
108 char Name[XCOFF::NameSize];
109 // The physical/virtual address of the section. For an object file these
110 // values are equivalent, except for in the overflow section header, where
111 // the physical address specifies the number of relocation entries and the
112 // virtual address specifies the number of line number entries.
113 // TODO: Divide Address into PhysicalAddress and VirtualAddress when line
114 // number entries are supported.
115 uint64_t Address;
116 uint64_t Size;
117 uint64_t FileOffsetToData;
118 uint64_t FileOffsetToRelocations;
119 uint32_t RelocationCount;
120 int32_t Flags;
122 int16_t Index;
124 virtual uint64_t advanceFileOffset(const uint64_t MaxRawDataSize,
125 const uint64_t RawPointer) {
126 FileOffsetToData = RawPointer;
127 uint64_t NewPointer = RawPointer + Size;
128 if (NewPointer > MaxRawDataSize)
129 report_fatal_error("Section raw data overflowed this object file.");
130 return NewPointer;
133 // XCOFF has special section numbers for symbols:
134 // -2 Specifies N_DEBUG, a special symbolic debugging symbol.
135 // -1 Specifies N_ABS, an absolute symbol. The symbol has a value but is not
136 // relocatable.
137 // 0 Specifies N_UNDEF, an undefined external symbol.
138 // Therefore, we choose -3 (N_DEBUG - 1) to represent a section index that
139 // hasn't been initialized.
140 static constexpr int16_t UninitializedIndex =
141 XCOFF::ReservedSectionNum::N_DEBUG - 1;
143 SectionEntry(StringRef N, int32_t Flags)
144 : Name(), Address(0), Size(0), FileOffsetToData(0),
145 FileOffsetToRelocations(0), RelocationCount(0), Flags(Flags),
146 Index(UninitializedIndex) {
147 assert(N.size() <= XCOFF::NameSize && "section name too long");
148 memcpy(Name, N.data(), N.size());
151 virtual void reset() {
152 Address = 0;
153 Size = 0;
154 FileOffsetToData = 0;
155 FileOffsetToRelocations = 0;
156 RelocationCount = 0;
157 Index = UninitializedIndex;
160 virtual ~SectionEntry() = default;
163 // Represents the data related to a section excluding the csects that make up
164 // the raw data of the section. The csects are stored separately as not all
165 // sections contain csects, and some sections contain csects which are better
166 // stored separately, e.g. the .data section containing read-write, descriptor,
167 // TOCBase and TOC-entry csects.
168 struct CsectSectionEntry : public SectionEntry {
169 // Virtual sections do not need storage allocated in the object file.
170 const bool IsVirtual;
172 // This is a section containing csect groups.
173 CsectGroups Groups;
175 CsectSectionEntry(StringRef N, XCOFF::SectionTypeFlags Flags, bool IsVirtual,
176 CsectGroups Groups)
177 : SectionEntry(N, Flags), IsVirtual(IsVirtual), Groups(Groups) {
178 assert(N.size() <= XCOFF::NameSize && "section name too long");
179 memcpy(Name, N.data(), N.size());
182 void reset() override {
183 SectionEntry::reset();
184 // Clear any csects we have stored.
185 for (auto *Group : Groups)
186 Group->clear();
189 virtual ~CsectSectionEntry() = default;
192 struct DwarfSectionEntry : public SectionEntry {
193 // For DWARF section entry.
194 std::unique_ptr<XCOFFSection> DwarfSect;
196 // For DWARF section, we must use real size in the section header. MemorySize
197 // is for the size the DWARF section occupies including paddings.
198 uint32_t MemorySize;
200 // TODO: Remove this override. Loadable sections (e.g., .text, .data) may need
201 // to be aligned. Other sections generally don't need any alignment, but if
202 // they're aligned, the RawPointer should be adjusted before writing the
203 // section. Then a dwarf-specific function wouldn't be needed.
204 uint64_t advanceFileOffset(const uint64_t MaxRawDataSize,
205 const uint64_t RawPointer) override {
206 FileOffsetToData = RawPointer;
207 uint64_t NewPointer = RawPointer + MemorySize;
208 assert(NewPointer <= MaxRawDataSize &&
209 "Section raw data overflowed this object file.");
210 return NewPointer;
213 DwarfSectionEntry(StringRef N, int32_t Flags,
214 std::unique_ptr<XCOFFSection> Sect)
215 : SectionEntry(N, Flags | XCOFF::STYP_DWARF), DwarfSect(std::move(Sect)),
216 MemorySize(0) {
217 assert(DwarfSect->MCSec->isDwarfSect() &&
218 "This should be a DWARF section!");
219 assert(N.size() <= XCOFF::NameSize && "section name too long");
220 memcpy(Name, N.data(), N.size());
223 DwarfSectionEntry(DwarfSectionEntry &&s) = default;
225 virtual ~DwarfSectionEntry() = default;
228 struct ExceptionTableEntry {
229 const MCSymbol *Trap;
230 uint64_t TrapAddress = ~0ul;
231 unsigned Lang;
232 unsigned Reason;
234 ExceptionTableEntry(const MCSymbol *Trap, unsigned Lang, unsigned Reason)
235 : Trap(Trap), Lang(Lang), Reason(Reason) {}
238 struct ExceptionInfo {
239 const MCSymbol *FunctionSymbol;
240 unsigned FunctionSize;
241 std::vector<ExceptionTableEntry> Entries;
244 struct ExceptionSectionEntry : public SectionEntry {
245 std::map<const StringRef, ExceptionInfo> ExceptionTable;
246 bool isDebugEnabled = false;
248 ExceptionSectionEntry(StringRef N, int32_t Flags)
249 : SectionEntry(N, Flags | XCOFF::STYP_EXCEPT) {
250 assert(N.size() <= XCOFF::NameSize && "Section too long.");
251 memcpy(Name, N.data(), N.size());
254 virtual ~ExceptionSectionEntry() = default;
257 struct CInfoSymInfo {
258 // Name of the C_INFO symbol associated with the section
259 std::string Name;
260 std::string Metadata;
261 // Offset into the start of the metadata in the section
262 uint64_t Offset;
264 CInfoSymInfo(std::string Name, std::string Metadata)
265 : Name(Name), Metadata(Metadata) {}
266 // Metadata needs to be padded out to an even word size.
267 uint32_t paddingSize() const {
268 return alignTo(Metadata.size(), sizeof(uint32_t)) - Metadata.size();
271 // Total size of the entry, including the 4 byte length
272 uint32_t size() const {
273 return Metadata.size() + paddingSize() + sizeof(uint32_t);
277 struct CInfoSymSectionEntry : public SectionEntry {
278 std::unique_ptr<CInfoSymInfo> Entry;
280 CInfoSymSectionEntry(StringRef N, int32_t Flags) : SectionEntry(N, Flags) {}
281 virtual ~CInfoSymSectionEntry() = default;
282 void addEntry(std::unique_ptr<CInfoSymInfo> NewEntry) {
283 Entry = std::move(NewEntry);
284 Entry->Offset = sizeof(uint32_t);
285 Size += Entry->size();
287 void reset() override {
288 SectionEntry::reset();
289 Entry.reset();
293 class XCOFFWriter final : public XCOFFObjectWriter {
294 uint32_t SymbolTableEntryCount = 0;
295 uint64_t SymbolTableOffset = 0;
296 uint16_t SectionCount = 0;
297 uint32_t PaddingsBeforeDwarf = 0;
298 bool HasVisibility = false;
300 support::endian::Writer W;
301 std::unique_ptr<MCXCOFFObjectTargetWriter> TargetObjectWriter;
302 StringTableBuilder Strings;
304 const uint64_t MaxRawDataSize =
305 TargetObjectWriter->is64Bit() ? UINT64_MAX : UINT32_MAX;
307 // Maps the MCSection representation to its corresponding XCOFFSection
308 // wrapper. Needed for finding the XCOFFSection to insert an MCSymbol into
309 // from its containing MCSectionXCOFF.
310 DenseMap<const MCSectionXCOFF *, XCOFFSection *> SectionMap;
312 // Maps the MCSymbol representation to its corrresponding symbol table index.
313 // Needed for relocation.
314 DenseMap<const MCSymbol *, uint32_t> SymbolIndexMap;
316 // CsectGroups. These store the csects which make up different parts of
317 // the sections. Should have one for each set of csects that get mapped into
318 // the same section and get handled in a 'similar' way.
319 CsectGroup UndefinedCsects;
320 CsectGroup ProgramCodeCsects;
321 CsectGroup ReadOnlyCsects;
322 CsectGroup DataCsects;
323 CsectGroup FuncDSCsects;
324 CsectGroup TOCCsects;
325 CsectGroup BSSCsects;
326 CsectGroup TDataCsects;
327 CsectGroup TBSSCsects;
329 // The Predefined sections.
330 CsectSectionEntry Text;
331 CsectSectionEntry Data;
332 CsectSectionEntry BSS;
333 CsectSectionEntry TData;
334 CsectSectionEntry TBSS;
336 // All the XCOFF sections, in the order they will appear in the section header
337 // table.
338 std::array<CsectSectionEntry *const, 5> Sections{
339 {&Text, &Data, &BSS, &TData, &TBSS}};
341 std::vector<DwarfSectionEntry> DwarfSections;
342 std::vector<SectionEntry> OverflowSections;
344 ExceptionSectionEntry ExceptionSection;
345 CInfoSymSectionEntry CInfoSymSection;
347 CsectGroup &getCsectGroup(const MCSectionXCOFF *MCSec);
349 void reset() override;
351 void executePostLayoutBinding(MCAssembler &) override;
353 void recordRelocation(MCAssembler &, const MCFragment *, const MCFixup &,
354 MCValue, uint64_t &) override;
356 uint64_t writeObject(MCAssembler &) override;
358 bool is64Bit() const { return TargetObjectWriter->is64Bit(); }
359 bool nameShouldBeInStringTable(const StringRef &);
360 void writeSymbolName(const StringRef &);
361 bool auxFileSymNameShouldBeInStringTable(const StringRef &);
362 void writeAuxFileSymName(const StringRef &);
364 void writeSymbolEntryForCsectMemberLabel(const Symbol &SymbolRef,
365 const XCOFFSection &CSectionRef,
366 int16_t SectionIndex,
367 uint64_t SymbolOffset);
368 void writeSymbolEntryForControlSection(const XCOFFSection &CSectionRef,
369 int16_t SectionIndex,
370 XCOFF::StorageClass StorageClass);
371 void writeSymbolEntryForDwarfSection(const XCOFFSection &DwarfSectionRef,
372 int16_t SectionIndex);
373 void writeFileHeader();
374 void writeAuxFileHeader();
375 void writeSectionHeader(const SectionEntry *Sec);
376 void writeSectionHeaderTable();
377 void writeSections(const MCAssembler &Asm);
378 void writeSectionForControlSectionEntry(const MCAssembler &Asm,
379 const CsectSectionEntry &CsectEntry,
380 uint64_t &CurrentAddressLocation);
381 void writeSectionForDwarfSectionEntry(const MCAssembler &Asm,
382 const DwarfSectionEntry &DwarfEntry,
383 uint64_t &CurrentAddressLocation);
384 void
385 writeSectionForExceptionSectionEntry(const MCAssembler &Asm,
386 ExceptionSectionEntry &ExceptionEntry,
387 uint64_t &CurrentAddressLocation);
388 void writeSectionForCInfoSymSectionEntry(const MCAssembler &Asm,
389 CInfoSymSectionEntry &CInfoSymEntry,
390 uint64_t &CurrentAddressLocation);
391 void writeSymbolTable(MCAssembler &Asm);
392 void writeSymbolAuxFileEntry(StringRef &Name, uint8_t ftype);
393 void writeSymbolAuxDwarfEntry(uint64_t LengthOfSectionPortion,
394 uint64_t NumberOfRelocEnt = 0);
395 void writeSymbolAuxCsectEntry(uint64_t SectionOrLength,
396 uint8_t SymbolAlignmentAndType,
397 uint8_t StorageMappingClass);
398 void writeSymbolAuxFunctionEntry(uint32_t EntryOffset, uint32_t FunctionSize,
399 uint64_t LineNumberPointer,
400 uint32_t EndIndex);
401 void writeSymbolAuxExceptionEntry(uint64_t EntryOffset, uint32_t FunctionSize,
402 uint32_t EndIndex);
403 void writeSymbolEntry(StringRef SymbolName, uint64_t Value,
404 int16_t SectionNumber, uint16_t SymbolType,
405 uint8_t StorageClass, uint8_t NumberOfAuxEntries = 1);
406 void writeRelocations();
407 void writeRelocation(XCOFFRelocation Reloc, const XCOFFSection &Section);
409 // Called after all the csects and symbols have been processed by
410 // `executePostLayoutBinding`, this function handles building up the majority
411 // of the structures in the object file representation. Namely:
412 // *) Calculates physical/virtual addresses, raw-pointer offsets, and section
413 // sizes.
414 // *) Assigns symbol table indices.
415 // *) Builds up the section header table by adding any non-empty sections to
416 // `Sections`.
417 void assignAddressesAndIndices(MCAssembler &Asm);
418 // Called after relocations are recorded.
419 void finalizeSectionInfo();
420 void finalizeRelocationInfo(SectionEntry *Sec, uint64_t RelCount);
421 void calcOffsetToRelocations(SectionEntry *Sec, uint64_t &RawPointer);
423 bool hasExceptionSection() {
424 return !ExceptionSection.ExceptionTable.empty();
426 unsigned getExceptionSectionSize();
427 unsigned getExceptionOffset(const MCSymbol *Symbol);
429 size_t auxiliaryHeaderSize() const {
430 // 64-bit object files have no auxiliary header.
431 return HasVisibility && !is64Bit() ? XCOFF::AuxFileHeaderSizeShort : 0;
434 public:
435 XCOFFWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
436 raw_pwrite_stream &OS);
438 void writeWord(uint64_t Word) {
439 is64Bit() ? W.write<uint64_t>(Word) : W.write<uint32_t>(Word);
442 void addExceptionEntry(const MCSymbol *Symbol, const MCSymbol *Trap,
443 unsigned LanguageCode, unsigned ReasonCode,
444 unsigned FunctionSize, bool hasDebug) override;
445 void addCInfoSymEntry(StringRef Name, StringRef Metadata) override;
448 XCOFFWriter::XCOFFWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
449 raw_pwrite_stream &OS)
450 : W(OS, llvm::endianness::big), TargetObjectWriter(std::move(MOTW)),
451 Strings(StringTableBuilder::XCOFF),
452 Text(".text", XCOFF::STYP_TEXT, /* IsVirtual */ false,
453 CsectGroups{&ProgramCodeCsects, &ReadOnlyCsects}),
454 Data(".data", XCOFF::STYP_DATA, /* IsVirtual */ false,
455 CsectGroups{&DataCsects, &FuncDSCsects, &TOCCsects}),
456 BSS(".bss", XCOFF::STYP_BSS, /* IsVirtual */ true,
457 CsectGroups{&BSSCsects}),
458 TData(".tdata", XCOFF::STYP_TDATA, /* IsVirtual */ false,
459 CsectGroups{&TDataCsects}),
460 TBSS(".tbss", XCOFF::STYP_TBSS, /* IsVirtual */ true,
461 CsectGroups{&TBSSCsects}),
462 ExceptionSection(".except", XCOFF::STYP_EXCEPT),
463 CInfoSymSection(".info", XCOFF::STYP_INFO) {}
465 void XCOFFWriter::reset() {
466 // Clear the mappings we created.
467 SymbolIndexMap.clear();
468 SectionMap.clear();
470 UndefinedCsects.clear();
471 // Reset any sections we have written to, and empty the section header table.
472 for (auto *Sec : Sections)
473 Sec->reset();
474 for (auto &DwarfSec : DwarfSections)
475 DwarfSec.reset();
476 for (auto &OverflowSec : OverflowSections)
477 OverflowSec.reset();
478 ExceptionSection.reset();
479 CInfoSymSection.reset();
481 // Reset states in XCOFFWriter.
482 SymbolTableEntryCount = 0;
483 SymbolTableOffset = 0;
484 SectionCount = 0;
485 PaddingsBeforeDwarf = 0;
486 Strings.clear();
488 MCObjectWriter::reset();
491 CsectGroup &XCOFFWriter::getCsectGroup(const MCSectionXCOFF *MCSec) {
492 switch (MCSec->getMappingClass()) {
493 case XCOFF::XMC_PR:
494 assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
495 "Only an initialized csect can contain program code.");
496 return ProgramCodeCsects;
497 case XCOFF::XMC_RO:
498 assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
499 "Only an initialized csect can contain read only data.");
500 return ReadOnlyCsects;
501 case XCOFF::XMC_RW:
502 if (XCOFF::XTY_CM == MCSec->getCSectType())
503 return BSSCsects;
505 if (XCOFF::XTY_SD == MCSec->getCSectType())
506 return DataCsects;
508 report_fatal_error("Unhandled mapping of read-write csect to section.");
509 case XCOFF::XMC_DS:
510 return FuncDSCsects;
511 case XCOFF::XMC_BS:
512 assert(XCOFF::XTY_CM == MCSec->getCSectType() &&
513 "Mapping invalid csect. CSECT with bss storage class must be "
514 "common type.");
515 return BSSCsects;
516 case XCOFF::XMC_TL:
517 assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
518 "Mapping invalid csect. CSECT with tdata storage class must be "
519 "an initialized csect.");
520 return TDataCsects;
521 case XCOFF::XMC_UL:
522 assert(XCOFF::XTY_CM == MCSec->getCSectType() &&
523 "Mapping invalid csect. CSECT with tbss storage class must be "
524 "an uninitialized csect.");
525 return TBSSCsects;
526 case XCOFF::XMC_TC0:
527 assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
528 "Only an initialized csect can contain TOC-base.");
529 assert(TOCCsects.empty() &&
530 "We should have only one TOC-base, and it should be the first csect "
531 "in this CsectGroup.");
532 return TOCCsects;
533 case XCOFF::XMC_TC:
534 case XCOFF::XMC_TE:
535 assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
536 "A TOC symbol must be an initialized csect.");
537 assert(!TOCCsects.empty() &&
538 "We should at least have a TOC-base in this CsectGroup.");
539 return TOCCsects;
540 case XCOFF::XMC_TD:
541 assert((XCOFF::XTY_SD == MCSec->getCSectType() ||
542 XCOFF::XTY_CM == MCSec->getCSectType()) &&
543 "Symbol type incompatible with toc-data.");
544 assert(!TOCCsects.empty() &&
545 "We should at least have a TOC-base in this CsectGroup.");
546 return TOCCsects;
547 default:
548 report_fatal_error("Unhandled mapping of csect to section.");
552 static MCSectionXCOFF *getContainingCsect(const MCSymbolXCOFF *XSym) {
553 if (XSym->isDefined())
554 return cast<MCSectionXCOFF>(XSym->getFragment()->getParent());
555 return XSym->getRepresentedCsect();
558 void XCOFFWriter::executePostLayoutBinding(MCAssembler &Asm) {
559 for (const auto &S : Asm) {
560 const auto *MCSec = cast<const MCSectionXCOFF>(&S);
561 assert(!SectionMap.contains(MCSec) && "Cannot add a section twice.");
563 // If the name does not fit in the storage provided in the symbol table
564 // entry, add it to the string table.
565 if (nameShouldBeInStringTable(MCSec->getSymbolTableName()))
566 Strings.add(MCSec->getSymbolTableName());
567 if (MCSec->isCsect()) {
568 // A new control section. Its CsectSectionEntry should already be staticly
569 // generated as Text/Data/BSS/TDATA/TBSS. Add this section to the group of
570 // the CsectSectionEntry.
571 assert(XCOFF::XTY_ER != MCSec->getCSectType() &&
572 "An undefined csect should not get registered.");
573 CsectGroup &Group = getCsectGroup(MCSec);
574 Group.emplace_back(MCSec);
575 SectionMap[MCSec] = &Group.back();
576 } else if (MCSec->isDwarfSect()) {
577 // A new DwarfSectionEntry.
578 std::unique_ptr<XCOFFSection> DwarfSec =
579 std::make_unique<XCOFFSection>(MCSec);
580 SectionMap[MCSec] = DwarfSec.get();
582 DwarfSectionEntry SecEntry(MCSec->getName(),
583 *MCSec->getDwarfSubtypeFlags(),
584 std::move(DwarfSec));
585 DwarfSections.push_back(std::move(SecEntry));
586 } else
587 llvm_unreachable("unsupport section type!");
590 for (const MCSymbol &S : Asm.symbols()) {
591 // Nothing to do for temporary symbols.
592 if (S.isTemporary())
593 continue;
595 const MCSymbolXCOFF *XSym = cast<MCSymbolXCOFF>(&S);
596 const MCSectionXCOFF *ContainingCsect = getContainingCsect(XSym);
598 if (ContainingCsect->isDwarfSect())
599 continue;
601 if (XSym->getVisibilityType() != XCOFF::SYM_V_UNSPECIFIED)
602 HasVisibility = true;
604 if (ContainingCsect->getCSectType() == XCOFF::XTY_ER) {
605 // Handle undefined symbol.
606 UndefinedCsects.emplace_back(ContainingCsect);
607 SectionMap[ContainingCsect] = &UndefinedCsects.back();
608 if (nameShouldBeInStringTable(ContainingCsect->getSymbolTableName()))
609 Strings.add(ContainingCsect->getSymbolTableName());
610 continue;
613 // If the symbol is the csect itself, we don't need to put the symbol
614 // into csect's Syms.
615 if (XSym == ContainingCsect->getQualNameSymbol())
616 continue;
618 // Only put a label into the symbol table when it is an external label.
619 if (!XSym->isExternal())
620 continue;
622 assert(SectionMap.contains(ContainingCsect) &&
623 "Expected containing csect to exist in map");
624 XCOFFSection *Csect = SectionMap[ContainingCsect];
625 // Lookup the containing csect and add the symbol to it.
626 assert(Csect->MCSec->isCsect() && "only csect is supported now!");
627 Csect->Syms.emplace_back(XSym);
629 // If the name does not fit in the storage provided in the symbol table
630 // entry, add it to the string table.
631 if (nameShouldBeInStringTable(XSym->getSymbolTableName()))
632 Strings.add(XSym->getSymbolTableName());
635 std::unique_ptr<CInfoSymInfo> &CISI = CInfoSymSection.Entry;
636 if (CISI && nameShouldBeInStringTable(CISI->Name))
637 Strings.add(CISI->Name);
639 // Emit ".file" as the source file name when there is no file name.
640 if (FileNames.empty())
641 FileNames.emplace_back(".file", 0);
642 for (const std::pair<std::string, size_t> &F : FileNames) {
643 if (auxFileSymNameShouldBeInStringTable(F.first))
644 Strings.add(F.first);
647 // Always add ".file" to the symbol table. The actual file name will be in
648 // the AUX_FILE auxiliary entry.
649 if (nameShouldBeInStringTable(".file"))
650 Strings.add(".file");
651 StringRef Vers = CompilerVersion;
652 if (auxFileSymNameShouldBeInStringTable(Vers))
653 Strings.add(Vers);
655 Strings.finalize();
656 assignAddressesAndIndices(Asm);
659 void XCOFFWriter::recordRelocation(MCAssembler &Asm, const MCFragment *Fragment,
660 const MCFixup &Fixup, MCValue Target,
661 uint64_t &FixedValue) {
662 auto getIndex = [this](const MCSymbol *Sym,
663 const MCSectionXCOFF *ContainingCsect) {
664 // If we could not find the symbol directly in SymbolIndexMap, this symbol
665 // could either be a temporary symbol or an undefined symbol. In this case,
666 // we would need to have the relocation reference its csect instead.
667 auto It = SymbolIndexMap.find(Sym);
668 return It != SymbolIndexMap.end()
669 ? It->second
670 : SymbolIndexMap[ContainingCsect->getQualNameSymbol()];
673 auto getVirtualAddress =
674 [this, &Asm](const MCSymbol *Sym,
675 const MCSectionXCOFF *ContainingSect) -> uint64_t {
676 // A DWARF section.
677 if (ContainingSect->isDwarfSect())
678 return Asm.getSymbolOffset(*Sym);
680 // A csect.
681 if (!Sym->isDefined())
682 return SectionMap[ContainingSect]->Address;
684 // A label.
685 assert(Sym->isDefined() && "not a valid object that has address!");
686 return SectionMap[ContainingSect]->Address + Asm.getSymbolOffset(*Sym);
689 const MCSymbol *const SymA = &Target.getSymA()->getSymbol();
691 MCAsmBackend &Backend = Asm.getBackend();
692 bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
693 MCFixupKindInfo::FKF_IsPCRel;
695 uint8_t Type;
696 uint8_t SignAndSize;
697 std::tie(Type, SignAndSize) =
698 TargetObjectWriter->getRelocTypeAndSignSize(Target, Fixup, IsPCRel);
700 const MCSectionXCOFF *SymASec = getContainingCsect(cast<MCSymbolXCOFF>(SymA));
701 assert(SectionMap.contains(SymASec) &&
702 "Expected containing csect to exist in map.");
704 assert((Fixup.getOffset() <=
705 MaxRawDataSize - Asm.getFragmentOffset(*Fragment)) &&
706 "Fragment offset + fixup offset is overflowed.");
707 uint32_t FixupOffsetInCsect =
708 Asm.getFragmentOffset(*Fragment) + Fixup.getOffset();
710 const uint32_t Index = getIndex(SymA, SymASec);
711 if (Type == XCOFF::RelocationType::R_POS ||
712 Type == XCOFF::RelocationType::R_TLS ||
713 Type == XCOFF::RelocationType::R_TLS_LE ||
714 Type == XCOFF::RelocationType::R_TLS_IE ||
715 Type == XCOFF::RelocationType::R_TLS_LD)
716 // The FixedValue should be symbol's virtual address in this object file
717 // plus any constant value that we might get.
718 FixedValue = getVirtualAddress(SymA, SymASec) + Target.getConstant();
719 else if (Type == XCOFF::RelocationType::R_TLSM)
720 // The FixedValue should always be zero since the region handle is only
721 // known at load time.
722 FixedValue = 0;
723 else if (Type == XCOFF::RelocationType::R_TOC ||
724 Type == XCOFF::RelocationType::R_TOCL) {
725 // For non toc-data external symbols, R_TOC type relocation will relocate to
726 // data symbols that have XCOFF::XTY_SD type csect. For toc-data external
727 // symbols, R_TOC type relocation will relocate to data symbols that have
728 // XCOFF_ER type csect. For XCOFF_ER kind symbols, there will be no TOC
729 // entry for them, so the FixedValue should always be 0.
730 if (SymASec->getCSectType() == XCOFF::XTY_ER) {
731 FixedValue = 0;
732 } else {
733 // The FixedValue should be the TOC entry offset from the TOC-base plus
734 // any constant offset value.
735 int64_t TOCEntryOffset = SectionMap[SymASec]->Address -
736 TOCCsects.front().Address + Target.getConstant();
737 // For small code model, if the TOCEntryOffset overflows the 16-bit value,
738 // we truncate it back down to 16 bits. The linker will be able to insert
739 // fix-up code when needed.
740 // For non toc-data symbols, we already did the truncation in
741 // PPCAsmPrinter.cpp through setting Target.getConstant() in the
742 // expression above by calling getTOCEntryLoadingExprForXCOFF for the
743 // various TOC PseudoOps.
744 // For toc-data symbols, we were not able to calculate the offset from
745 // the TOC in PPCAsmPrinter.cpp since the TOC has not been finalized at
746 // that point, so we are adjusting it here though
747 // llvm::SignExtend64<16>(TOCEntryOffset);
748 // TODO: Since the time that the handling for offsets over 16-bits was
749 // added in PPCAsmPrinter.cpp using getTOCEntryLoadingExprForXCOFF, the
750 // system assembler and linker have been updated to be able to handle the
751 // overflowing offsets, so we no longer need to keep
752 // getTOCEntryLoadingExprForXCOFF.
753 if (Type == XCOFF::RelocationType::R_TOC && !isInt<16>(TOCEntryOffset))
754 TOCEntryOffset = llvm::SignExtend64<16>(TOCEntryOffset);
756 FixedValue = TOCEntryOffset;
758 } else if (Type == XCOFF::RelocationType::R_RBR) {
759 MCSectionXCOFF *ParentSec = cast<MCSectionXCOFF>(Fragment->getParent());
760 assert((SymASec->getMappingClass() == XCOFF::XMC_PR &&
761 ParentSec->getMappingClass() == XCOFF::XMC_PR) &&
762 "Only XMC_PR csect may have the R_RBR relocation.");
764 // The address of the branch instruction should be the sum of section
765 // address, fragment offset and Fixup offset.
766 uint64_t BRInstrAddress =
767 SectionMap[ParentSec]->Address + FixupOffsetInCsect;
768 // The FixedValue should be the difference between symbol's virtual address
769 // and BR instr address plus any constant value.
770 FixedValue = getVirtualAddress(SymA, SymASec) - BRInstrAddress +
771 Target.getConstant();
772 } else if (Type == XCOFF::RelocationType::R_REF) {
773 // The FixedValue and FixupOffsetInCsect should always be 0 since it
774 // specifies a nonrelocating reference.
775 FixedValue = 0;
776 FixupOffsetInCsect = 0;
779 XCOFFRelocation Reloc = {Index, FixupOffsetInCsect, SignAndSize, Type};
780 MCSectionXCOFF *RelocationSec = cast<MCSectionXCOFF>(Fragment->getParent());
781 assert(SectionMap.contains(RelocationSec) &&
782 "Expected containing csect to exist in map.");
783 SectionMap[RelocationSec]->Relocations.push_back(Reloc);
785 if (!Target.getSymB())
786 return;
788 const MCSymbol *const SymB = &Target.getSymB()->getSymbol();
789 if (SymA == SymB)
790 report_fatal_error("relocation for opposite term is not yet supported");
792 const MCSectionXCOFF *SymBSec = getContainingCsect(cast<MCSymbolXCOFF>(SymB));
793 assert(SectionMap.contains(SymBSec) &&
794 "Expected containing csect to exist in map.");
795 if (SymASec == SymBSec)
796 report_fatal_error(
797 "relocation for paired relocatable term is not yet supported");
799 assert(Type == XCOFF::RelocationType::R_POS &&
800 "SymA must be R_POS here if it's not opposite term or paired "
801 "relocatable term.");
802 const uint32_t IndexB = getIndex(SymB, SymBSec);
803 // SymB must be R_NEG here, given the general form of Target(MCValue) is
804 // "SymbolA - SymbolB + imm64".
805 const uint8_t TypeB = XCOFF::RelocationType::R_NEG;
806 XCOFFRelocation RelocB = {IndexB, FixupOffsetInCsect, SignAndSize, TypeB};
807 SectionMap[RelocationSec]->Relocations.push_back(RelocB);
808 // We already folded "SymbolA + imm64" above when Type is R_POS for SymbolA,
809 // now we just need to fold "- SymbolB" here.
810 FixedValue -= getVirtualAddress(SymB, SymBSec);
813 void XCOFFWriter::writeSections(const MCAssembler &Asm) {
814 uint64_t CurrentAddressLocation = 0;
815 for (const auto *Section : Sections)
816 writeSectionForControlSectionEntry(Asm, *Section, CurrentAddressLocation);
817 for (const auto &DwarfSection : DwarfSections)
818 writeSectionForDwarfSectionEntry(Asm, DwarfSection, CurrentAddressLocation);
819 writeSectionForExceptionSectionEntry(Asm, ExceptionSection,
820 CurrentAddressLocation);
821 writeSectionForCInfoSymSectionEntry(Asm, CInfoSymSection,
822 CurrentAddressLocation);
825 uint64_t XCOFFWriter::writeObject(MCAssembler &Asm) {
826 // We always emit a timestamp of 0 for reproducibility, so ensure incremental
827 // linking is not enabled, in case, like with Windows COFF, such a timestamp
828 // is incompatible with incremental linking of XCOFF.
830 finalizeSectionInfo();
831 uint64_t StartOffset = W.OS.tell();
833 writeFileHeader();
834 writeAuxFileHeader();
835 writeSectionHeaderTable();
836 writeSections(Asm);
837 writeRelocations();
838 writeSymbolTable(Asm);
839 // Write the string table.
840 Strings.write(W.OS);
842 return W.OS.tell() - StartOffset;
845 bool XCOFFWriter::nameShouldBeInStringTable(const StringRef &SymbolName) {
846 return SymbolName.size() > XCOFF::NameSize || is64Bit();
849 void XCOFFWriter::writeSymbolName(const StringRef &SymbolName) {
850 // Magic, Offset or SymbolName.
851 if (nameShouldBeInStringTable(SymbolName)) {
852 W.write<int32_t>(0);
853 W.write<uint32_t>(Strings.getOffset(SymbolName));
854 } else {
855 char Name[XCOFF::NameSize + 1];
856 std::strncpy(Name, SymbolName.data(), XCOFF::NameSize);
857 ArrayRef<char> NameRef(Name, XCOFF::NameSize);
858 W.write(NameRef);
862 void XCOFFWriter::writeSymbolEntry(StringRef SymbolName, uint64_t Value,
863 int16_t SectionNumber, uint16_t SymbolType,
864 uint8_t StorageClass,
865 uint8_t NumberOfAuxEntries) {
866 if (is64Bit()) {
867 W.write<uint64_t>(Value);
868 W.write<uint32_t>(Strings.getOffset(SymbolName));
869 } else {
870 writeSymbolName(SymbolName);
871 W.write<uint32_t>(Value);
873 W.write<int16_t>(SectionNumber);
874 W.write<uint16_t>(SymbolType);
875 W.write<uint8_t>(StorageClass);
876 W.write<uint8_t>(NumberOfAuxEntries);
879 void XCOFFWriter::writeSymbolAuxCsectEntry(uint64_t SectionOrLength,
880 uint8_t SymbolAlignmentAndType,
881 uint8_t StorageMappingClass) {
882 W.write<uint32_t>(is64Bit() ? Lo_32(SectionOrLength) : SectionOrLength);
883 W.write<uint32_t>(0); // ParameterHashIndex
884 W.write<uint16_t>(0); // TypeChkSectNum
885 W.write<uint8_t>(SymbolAlignmentAndType);
886 W.write<uint8_t>(StorageMappingClass);
887 if (is64Bit()) {
888 W.write<uint32_t>(Hi_32(SectionOrLength));
889 W.OS.write_zeros(1); // Reserved
890 W.write<uint8_t>(XCOFF::AUX_CSECT);
891 } else {
892 W.write<uint32_t>(0); // StabInfoIndex
893 W.write<uint16_t>(0); // StabSectNum
897 bool XCOFFWriter::auxFileSymNameShouldBeInStringTable(
898 const StringRef &SymbolName) {
899 return SymbolName.size() > XCOFF::AuxFileEntNameSize;
902 void XCOFFWriter::writeAuxFileSymName(const StringRef &SymbolName) {
903 // Magic, Offset or SymbolName.
904 if (auxFileSymNameShouldBeInStringTable(SymbolName)) {
905 W.write<int32_t>(0);
906 W.write<uint32_t>(Strings.getOffset(SymbolName));
907 W.OS.write_zeros(XCOFF::FileNamePadSize);
908 } else {
909 char Name[XCOFF::AuxFileEntNameSize + 1];
910 std::strncpy(Name, SymbolName.data(), XCOFF::AuxFileEntNameSize);
911 ArrayRef<char> NameRef(Name, XCOFF::AuxFileEntNameSize);
912 W.write(NameRef);
916 void XCOFFWriter::writeSymbolAuxFileEntry(StringRef &Name, uint8_t ftype) {
917 writeAuxFileSymName(Name);
918 W.write<uint8_t>(ftype);
919 W.OS.write_zeros(2);
920 if (is64Bit())
921 W.write<uint8_t>(XCOFF::AUX_FILE);
922 else
923 W.OS.write_zeros(1);
926 void XCOFFWriter::writeSymbolAuxDwarfEntry(uint64_t LengthOfSectionPortion,
927 uint64_t NumberOfRelocEnt) {
928 writeWord(LengthOfSectionPortion);
929 if (!is64Bit())
930 W.OS.write_zeros(4); // Reserved
931 writeWord(NumberOfRelocEnt);
932 if (is64Bit()) {
933 W.OS.write_zeros(1); // Reserved
934 W.write<uint8_t>(XCOFF::AUX_SECT);
935 } else {
936 W.OS.write_zeros(6); // Reserved
940 void XCOFFWriter::writeSymbolEntryForCsectMemberLabel(
941 const Symbol &SymbolRef, const XCOFFSection &CSectionRef,
942 int16_t SectionIndex, uint64_t SymbolOffset) {
943 assert(SymbolOffset <= MaxRawDataSize - CSectionRef.Address &&
944 "Symbol address overflowed.");
946 auto Entry = ExceptionSection.ExceptionTable.find(SymbolRef.MCSym->getName());
947 if (Entry != ExceptionSection.ExceptionTable.end()) {
948 writeSymbolEntry(SymbolRef.getSymbolTableName(),
949 CSectionRef.Address + SymbolOffset, SectionIndex,
950 // In the old version of the 32-bit XCOFF interpretation,
951 // symbols may require bit 10 (0x0020) to be set if the
952 // symbol is a function, otherwise the bit should be 0.
953 is64Bit() ? SymbolRef.getVisibilityType()
954 : SymbolRef.getVisibilityType() | 0x0020,
955 SymbolRef.getStorageClass(),
956 (is64Bit() && ExceptionSection.isDebugEnabled) ? 3 : 2);
957 if (is64Bit() && ExceptionSection.isDebugEnabled) {
958 // On 64 bit with debugging enabled, we have a csect, exception, and
959 // function auxilliary entries, so we must increment symbol index by 4.
960 writeSymbolAuxExceptionEntry(
961 ExceptionSection.FileOffsetToData +
962 getExceptionOffset(Entry->second.FunctionSymbol),
963 Entry->second.FunctionSize,
964 SymbolIndexMap[Entry->second.FunctionSymbol] + 4);
966 // For exception section entries, csect and function auxilliary entries
967 // must exist. On 64-bit there is also an exception auxilliary entry.
968 writeSymbolAuxFunctionEntry(
969 ExceptionSection.FileOffsetToData +
970 getExceptionOffset(Entry->second.FunctionSymbol),
971 Entry->second.FunctionSize, 0,
972 (is64Bit() && ExceptionSection.isDebugEnabled)
973 ? SymbolIndexMap[Entry->second.FunctionSymbol] + 4
974 : SymbolIndexMap[Entry->second.FunctionSymbol] + 3);
975 } else {
976 writeSymbolEntry(SymbolRef.getSymbolTableName(),
977 CSectionRef.Address + SymbolOffset, SectionIndex,
978 SymbolRef.getVisibilityType(),
979 SymbolRef.getStorageClass());
981 writeSymbolAuxCsectEntry(CSectionRef.SymbolTableIndex, XCOFF::XTY_LD,
982 CSectionRef.MCSec->getMappingClass());
985 void XCOFFWriter::writeSymbolEntryForDwarfSection(
986 const XCOFFSection &DwarfSectionRef, int16_t SectionIndex) {
987 assert(DwarfSectionRef.MCSec->isDwarfSect() && "Not a DWARF section!");
989 writeSymbolEntry(DwarfSectionRef.getSymbolTableName(), /*Value=*/0,
990 SectionIndex, /*SymbolType=*/0, XCOFF::C_DWARF);
992 writeSymbolAuxDwarfEntry(DwarfSectionRef.Size);
995 void XCOFFWriter::writeSymbolEntryForControlSection(
996 const XCOFFSection &CSectionRef, int16_t SectionIndex,
997 XCOFF::StorageClass StorageClass) {
998 writeSymbolEntry(CSectionRef.getSymbolTableName(), CSectionRef.Address,
999 SectionIndex, CSectionRef.getVisibilityType(), StorageClass);
1001 writeSymbolAuxCsectEntry(CSectionRef.Size, getEncodedType(CSectionRef.MCSec),
1002 CSectionRef.MCSec->getMappingClass());
1005 void XCOFFWriter::writeSymbolAuxFunctionEntry(uint32_t EntryOffset,
1006 uint32_t FunctionSize,
1007 uint64_t LineNumberPointer,
1008 uint32_t EndIndex) {
1009 if (is64Bit())
1010 writeWord(LineNumberPointer);
1011 else
1012 W.write<uint32_t>(EntryOffset);
1013 W.write<uint32_t>(FunctionSize);
1014 if (!is64Bit())
1015 writeWord(LineNumberPointer);
1016 W.write<uint32_t>(EndIndex);
1017 if (is64Bit()) {
1018 W.OS.write_zeros(1);
1019 W.write<uint8_t>(XCOFF::AUX_FCN);
1020 } else {
1021 W.OS.write_zeros(2);
1025 void XCOFFWriter::writeSymbolAuxExceptionEntry(uint64_t EntryOffset,
1026 uint32_t FunctionSize,
1027 uint32_t EndIndex) {
1028 assert(is64Bit() && "Exception auxilliary entries are 64-bit only.");
1029 W.write<uint64_t>(EntryOffset);
1030 W.write<uint32_t>(FunctionSize);
1031 W.write<uint32_t>(EndIndex);
1032 W.OS.write_zeros(1); // Pad (unused)
1033 W.write<uint8_t>(XCOFF::AUX_EXCEPT);
1036 void XCOFFWriter::writeFileHeader() {
1037 W.write<uint16_t>(is64Bit() ? XCOFF::XCOFF64 : XCOFF::XCOFF32);
1038 W.write<uint16_t>(SectionCount);
1039 W.write<int32_t>(0); // TimeStamp
1040 writeWord(SymbolTableOffset);
1041 if (is64Bit()) {
1042 W.write<uint16_t>(auxiliaryHeaderSize());
1043 W.write<uint16_t>(0); // Flags
1044 W.write<int32_t>(SymbolTableEntryCount);
1045 } else {
1046 W.write<int32_t>(SymbolTableEntryCount);
1047 W.write<uint16_t>(auxiliaryHeaderSize());
1048 W.write<uint16_t>(0); // Flags
1052 void XCOFFWriter::writeAuxFileHeader() {
1053 if (!auxiliaryHeaderSize())
1054 return;
1055 W.write<uint16_t>(0); // Magic
1056 W.write<uint16_t>(
1057 XCOFF::NEW_XCOFF_INTERPRET); // Version. The new interpretation of the
1058 // n_type field in the symbol table entry is
1059 // used in XCOFF32.
1060 W.write<uint32_t>(Sections[0]->Size); // TextSize
1061 W.write<uint32_t>(Sections[1]->Size); // InitDataSize
1062 W.write<uint32_t>(Sections[2]->Size); // BssDataSize
1063 W.write<uint32_t>(0); // EntryPointAddr
1064 W.write<uint32_t>(Sections[0]->Address); // TextStartAddr
1065 W.write<uint32_t>(Sections[1]->Address); // DataStartAddr
1068 void XCOFFWriter::writeSectionHeader(const SectionEntry *Sec) {
1069 bool IsDwarf = (Sec->Flags & XCOFF::STYP_DWARF) != 0;
1070 bool IsOvrflo = (Sec->Flags & XCOFF::STYP_OVRFLO) != 0;
1071 // Nothing to write for this Section.
1072 if (Sec->Index == SectionEntry::UninitializedIndex)
1073 return;
1075 // Write Name.
1076 ArrayRef<char> NameRef(Sec->Name, XCOFF::NameSize);
1077 W.write(NameRef);
1079 // Write the Physical Address and Virtual Address.
1080 // We use 0 for DWARF sections' Physical and Virtual Addresses.
1081 writeWord(IsDwarf ? 0 : Sec->Address);
1082 // Since line number is not supported, we set it to 0 for overflow sections.
1083 writeWord((IsDwarf || IsOvrflo) ? 0 : Sec->Address);
1085 writeWord(Sec->Size);
1086 writeWord(Sec->FileOffsetToData);
1087 writeWord(Sec->FileOffsetToRelocations);
1088 writeWord(0); // FileOffsetToLineNumberInfo. Not supported yet.
1090 if (is64Bit()) {
1091 W.write<uint32_t>(Sec->RelocationCount);
1092 W.write<uint32_t>(0); // NumberOfLineNumbers. Not supported yet.
1093 W.write<int32_t>(Sec->Flags);
1094 W.OS.write_zeros(4);
1095 } else {
1096 // For the overflow section header, s_nreloc provides a reference to the
1097 // primary section header and s_nlnno must have the same value.
1098 // For common section headers, if either of s_nreloc or s_nlnno are set to
1099 // 65535, the other one must also be set to 65535.
1100 W.write<uint16_t>(Sec->RelocationCount);
1101 W.write<uint16_t>((IsOvrflo || Sec->RelocationCount == XCOFF::RelocOverflow)
1102 ? Sec->RelocationCount
1103 : 0); // NumberOfLineNumbers. Not supported yet.
1104 W.write<int32_t>(Sec->Flags);
1108 void XCOFFWriter::writeSectionHeaderTable() {
1109 for (const auto *CsectSec : Sections)
1110 writeSectionHeader(CsectSec);
1111 for (const auto &DwarfSec : DwarfSections)
1112 writeSectionHeader(&DwarfSec);
1113 for (const auto &OverflowSec : OverflowSections)
1114 writeSectionHeader(&OverflowSec);
1115 if (hasExceptionSection())
1116 writeSectionHeader(&ExceptionSection);
1117 if (CInfoSymSection.Entry)
1118 writeSectionHeader(&CInfoSymSection);
1121 void XCOFFWriter::writeRelocation(XCOFFRelocation Reloc,
1122 const XCOFFSection &Section) {
1123 if (Section.MCSec->isCsect())
1124 writeWord(Section.Address + Reloc.FixupOffsetInCsect);
1125 else {
1126 // DWARF sections' address is set to 0.
1127 assert(Section.MCSec->isDwarfSect() && "unsupport section type!");
1128 writeWord(Reloc.FixupOffsetInCsect);
1130 W.write<uint32_t>(Reloc.SymbolTableIndex);
1131 W.write<uint8_t>(Reloc.SignAndSize);
1132 W.write<uint8_t>(Reloc.Type);
1135 void XCOFFWriter::writeRelocations() {
1136 for (const auto *Section : Sections) {
1137 if (Section->Index == SectionEntry::UninitializedIndex)
1138 // Nothing to write for this Section.
1139 continue;
1141 for (const auto *Group : Section->Groups) {
1142 if (Group->empty())
1143 continue;
1145 for (const auto &Csect : *Group) {
1146 for (const auto Reloc : Csect.Relocations)
1147 writeRelocation(Reloc, Csect);
1152 for (const auto &DwarfSection : DwarfSections)
1153 for (const auto &Reloc : DwarfSection.DwarfSect->Relocations)
1154 writeRelocation(Reloc, *DwarfSection.DwarfSect);
1157 void XCOFFWriter::writeSymbolTable(MCAssembler &Asm) {
1158 // Write C_FILE symbols.
1159 StringRef Vers = CompilerVersion;
1161 for (const std::pair<std::string, size_t> &F : FileNames) {
1162 // The n_name of a C_FILE symbol is the source file's name when no auxiliary
1163 // entries are present.
1164 StringRef FileName = F.first;
1166 // For C_FILE symbols, the Source Language ID overlays the high-order byte
1167 // of the SymbolType field, and the CPU Version ID is defined as the
1168 // low-order byte.
1169 // AIX's system assembler determines the source language ID based on the
1170 // source file's name suffix, and the behavior here is consistent with it.
1171 uint8_t LangID;
1172 if (FileName.ends_with(".c"))
1173 LangID = XCOFF::TB_C;
1174 else if (FileName.ends_with_insensitive(".f") ||
1175 FileName.ends_with_insensitive(".f77") ||
1176 FileName.ends_with_insensitive(".f90") ||
1177 FileName.ends_with_insensitive(".f95") ||
1178 FileName.ends_with_insensitive(".f03") ||
1179 FileName.ends_with_insensitive(".f08"))
1180 LangID = XCOFF::TB_Fortran;
1181 else
1182 LangID = XCOFF::TB_CPLUSPLUS;
1183 uint8_t CpuID;
1184 if (is64Bit())
1185 CpuID = XCOFF::TCPU_PPC64;
1186 else
1187 CpuID = XCOFF::TCPU_COM;
1189 int NumberOfFileAuxEntries = 1;
1190 if (!Vers.empty())
1191 ++NumberOfFileAuxEntries;
1192 writeSymbolEntry(".file", /*Value=*/0, XCOFF::ReservedSectionNum::N_DEBUG,
1193 /*SymbolType=*/(LangID << 8) | CpuID, XCOFF::C_FILE,
1194 NumberOfFileAuxEntries);
1195 writeSymbolAuxFileEntry(FileName, XCOFF::XFT_FN);
1196 if (!Vers.empty())
1197 writeSymbolAuxFileEntry(Vers, XCOFF::XFT_CV);
1200 if (CInfoSymSection.Entry)
1201 writeSymbolEntry(CInfoSymSection.Entry->Name, CInfoSymSection.Entry->Offset,
1202 CInfoSymSection.Index,
1203 /*SymbolType=*/0, XCOFF::C_INFO,
1204 /*NumberOfAuxEntries=*/0);
1206 for (const auto &Csect : UndefinedCsects) {
1207 writeSymbolEntryForControlSection(Csect, XCOFF::ReservedSectionNum::N_UNDEF,
1208 Csect.MCSec->getStorageClass());
1211 for (const auto *Section : Sections) {
1212 if (Section->Index == SectionEntry::UninitializedIndex)
1213 // Nothing to write for this Section.
1214 continue;
1216 for (const auto *Group : Section->Groups) {
1217 if (Group->empty())
1218 continue;
1220 const int16_t SectionIndex = Section->Index;
1221 for (const auto &Csect : *Group) {
1222 // Write out the control section first and then each symbol in it.
1223 writeSymbolEntryForControlSection(Csect, SectionIndex,
1224 Csect.MCSec->getStorageClass());
1226 for (const auto &Sym : Csect.Syms)
1227 writeSymbolEntryForCsectMemberLabel(
1228 Sym, Csect, SectionIndex, Asm.getSymbolOffset(*(Sym.MCSym)));
1233 for (const auto &DwarfSection : DwarfSections)
1234 writeSymbolEntryForDwarfSection(*DwarfSection.DwarfSect,
1235 DwarfSection.Index);
1238 void XCOFFWriter::finalizeRelocationInfo(SectionEntry *Sec, uint64_t RelCount) {
1239 // Handles relocation field overflows in an XCOFF32 file. An XCOFF64 file
1240 // may not contain an overflow section header.
1241 if (!is64Bit() && (RelCount >= static_cast<uint32_t>(XCOFF::RelocOverflow))) {
1242 // Generate an overflow section header.
1243 SectionEntry SecEntry(".ovrflo", XCOFF::STYP_OVRFLO);
1245 // This field specifies the file section number of the section header that
1246 // overflowed.
1247 SecEntry.RelocationCount = Sec->Index;
1249 // This field specifies the number of relocation entries actually
1250 // required.
1251 SecEntry.Address = RelCount;
1252 SecEntry.Index = ++SectionCount;
1253 OverflowSections.push_back(std::move(SecEntry));
1255 // The field in the primary section header is always 65535
1256 // (XCOFF::RelocOverflow).
1257 Sec->RelocationCount = XCOFF::RelocOverflow;
1258 } else {
1259 Sec->RelocationCount = RelCount;
1263 void XCOFFWriter::calcOffsetToRelocations(SectionEntry *Sec,
1264 uint64_t &RawPointer) {
1265 if (!Sec->RelocationCount)
1266 return;
1268 Sec->FileOffsetToRelocations = RawPointer;
1269 uint64_t RelocationSizeInSec = 0;
1270 if (!is64Bit() &&
1271 Sec->RelocationCount == static_cast<uint32_t>(XCOFF::RelocOverflow)) {
1272 // Find its corresponding overflow section.
1273 for (auto &OverflowSec : OverflowSections) {
1274 if (OverflowSec.RelocationCount == static_cast<uint32_t>(Sec->Index)) {
1275 RelocationSizeInSec =
1276 OverflowSec.Address * XCOFF::RelocationSerializationSize32;
1278 // This field must have the same values as in the corresponding
1279 // primary section header.
1280 OverflowSec.FileOffsetToRelocations = Sec->FileOffsetToRelocations;
1283 assert(RelocationSizeInSec && "Overflow section header doesn't exist.");
1284 } else {
1285 RelocationSizeInSec = Sec->RelocationCount *
1286 (is64Bit() ? XCOFF::RelocationSerializationSize64
1287 : XCOFF::RelocationSerializationSize32);
1290 RawPointer += RelocationSizeInSec;
1291 if (RawPointer > MaxRawDataSize)
1292 report_fatal_error("Relocation data overflowed this object file.");
1295 void XCOFFWriter::finalizeSectionInfo() {
1296 for (auto *Section : Sections) {
1297 if (Section->Index == SectionEntry::UninitializedIndex)
1298 // Nothing to record for this Section.
1299 continue;
1301 uint64_t RelCount = 0;
1302 for (const auto *Group : Section->Groups) {
1303 if (Group->empty())
1304 continue;
1306 for (auto &Csect : *Group)
1307 RelCount += Csect.Relocations.size();
1309 finalizeRelocationInfo(Section, RelCount);
1312 for (auto &DwarfSection : DwarfSections)
1313 finalizeRelocationInfo(&DwarfSection,
1314 DwarfSection.DwarfSect->Relocations.size());
1316 // Calculate the RawPointer value for all headers.
1317 uint64_t RawPointer =
1318 (is64Bit() ? (XCOFF::FileHeaderSize64 +
1319 SectionCount * XCOFF::SectionHeaderSize64)
1320 : (XCOFF::FileHeaderSize32 +
1321 SectionCount * XCOFF::SectionHeaderSize32)) +
1322 auxiliaryHeaderSize();
1324 // Calculate the file offset to the section data.
1325 for (auto *Sec : Sections) {
1326 if (Sec->Index == SectionEntry::UninitializedIndex || Sec->IsVirtual)
1327 continue;
1329 RawPointer = Sec->advanceFileOffset(MaxRawDataSize, RawPointer);
1332 if (!DwarfSections.empty()) {
1333 RawPointer += PaddingsBeforeDwarf;
1334 for (auto &DwarfSection : DwarfSections) {
1335 RawPointer = DwarfSection.advanceFileOffset(MaxRawDataSize, RawPointer);
1339 if (hasExceptionSection())
1340 RawPointer = ExceptionSection.advanceFileOffset(MaxRawDataSize, RawPointer);
1342 if (CInfoSymSection.Entry)
1343 RawPointer = CInfoSymSection.advanceFileOffset(MaxRawDataSize, RawPointer);
1345 for (auto *Sec : Sections) {
1346 if (Sec->Index != SectionEntry::UninitializedIndex)
1347 calcOffsetToRelocations(Sec, RawPointer);
1350 for (auto &DwarfSec : DwarfSections)
1351 calcOffsetToRelocations(&DwarfSec, RawPointer);
1353 // TODO Error check that the number of symbol table entries fits in 32-bits
1354 // signed ...
1355 if (SymbolTableEntryCount)
1356 SymbolTableOffset = RawPointer;
1359 void XCOFFWriter::addExceptionEntry(const MCSymbol *Symbol,
1360 const MCSymbol *Trap, unsigned LanguageCode,
1361 unsigned ReasonCode, unsigned FunctionSize,
1362 bool hasDebug) {
1363 // If a module had debug info, debugging is enabled and XCOFF emits the
1364 // exception auxilliary entry.
1365 if (hasDebug)
1366 ExceptionSection.isDebugEnabled = true;
1367 auto Entry = ExceptionSection.ExceptionTable.find(Symbol->getName());
1368 if (Entry != ExceptionSection.ExceptionTable.end()) {
1369 Entry->second.Entries.push_back(
1370 ExceptionTableEntry(Trap, LanguageCode, ReasonCode));
1371 return;
1373 ExceptionInfo NewEntry;
1374 NewEntry.FunctionSymbol = Symbol;
1375 NewEntry.FunctionSize = FunctionSize;
1376 NewEntry.Entries.push_back(
1377 ExceptionTableEntry(Trap, LanguageCode, ReasonCode));
1378 ExceptionSection.ExceptionTable.insert(
1379 std::pair<const StringRef, ExceptionInfo>(Symbol->getName(), NewEntry));
1382 unsigned XCOFFWriter::getExceptionSectionSize() {
1383 unsigned EntryNum = 0;
1385 for (const auto &TableEntry : ExceptionSection.ExceptionTable)
1386 // The size() gets +1 to account for the initial entry containing the
1387 // symbol table index.
1388 EntryNum += TableEntry.second.Entries.size() + 1;
1390 return EntryNum * (is64Bit() ? XCOFF::ExceptionSectionEntrySize64
1391 : XCOFF::ExceptionSectionEntrySize32);
1394 unsigned XCOFFWriter::getExceptionOffset(const MCSymbol *Symbol) {
1395 unsigned EntryNum = 0;
1396 for (const auto &TableEntry : ExceptionSection.ExceptionTable) {
1397 if (Symbol == TableEntry.second.FunctionSymbol)
1398 break;
1399 EntryNum += TableEntry.second.Entries.size() + 1;
1401 return EntryNum * (is64Bit() ? XCOFF::ExceptionSectionEntrySize64
1402 : XCOFF::ExceptionSectionEntrySize32);
1405 void XCOFFWriter::addCInfoSymEntry(StringRef Name, StringRef Metadata) {
1406 assert(!CInfoSymSection.Entry && "Multiple entries are not supported");
1407 CInfoSymSection.addEntry(
1408 std::make_unique<CInfoSymInfo>(Name.str(), Metadata.str()));
1411 void XCOFFWriter::assignAddressesAndIndices(MCAssembler &Asm) {
1412 // The symbol table starts with all the C_FILE symbols. Each C_FILE symbol
1413 // requires 1 or 2 auxiliary entries.
1414 uint32_t SymbolTableIndex =
1415 (2 + (CompilerVersion.empty() ? 0 : 1)) * FileNames.size();
1417 if (CInfoSymSection.Entry)
1418 SymbolTableIndex++;
1420 // Calculate indices for undefined symbols.
1421 for (auto &Csect : UndefinedCsects) {
1422 Csect.Size = 0;
1423 Csect.Address = 0;
1424 Csect.SymbolTableIndex = SymbolTableIndex;
1425 SymbolIndexMap[Csect.MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex;
1426 // 1 main and 1 auxiliary symbol table entry for each contained symbol.
1427 SymbolTableIndex += 2;
1430 // The address corrresponds to the address of sections and symbols in the
1431 // object file. We place the shared address 0 immediately after the
1432 // section header table.
1433 uint64_t Address = 0;
1434 // Section indices are 1-based in XCOFF.
1435 int32_t SectionIndex = 1;
1436 bool HasTDataSection = false;
1438 for (auto *Section : Sections) {
1439 const bool IsEmpty =
1440 llvm::all_of(Section->Groups,
1441 [](const CsectGroup *Group) { return Group->empty(); });
1442 if (IsEmpty)
1443 continue;
1445 if (SectionIndex > MaxSectionIndex)
1446 report_fatal_error("Section index overflow!");
1447 Section->Index = SectionIndex++;
1448 SectionCount++;
1450 bool SectionAddressSet = false;
1451 // Reset the starting address to 0 for TData section.
1452 if (Section->Flags == XCOFF::STYP_TDATA) {
1453 Address = 0;
1454 HasTDataSection = true;
1456 // Reset the starting address to 0 for TBSS section if the object file does
1457 // not contain TData Section.
1458 if ((Section->Flags == XCOFF::STYP_TBSS) && !HasTDataSection)
1459 Address = 0;
1461 for (auto *Group : Section->Groups) {
1462 if (Group->empty())
1463 continue;
1465 for (auto &Csect : *Group) {
1466 const MCSectionXCOFF *MCSec = Csect.MCSec;
1467 Csect.Address = alignTo(Address, MCSec->getAlign());
1468 Csect.Size = Asm.getSectionAddressSize(*MCSec);
1469 Address = Csect.Address + Csect.Size;
1470 Csect.SymbolTableIndex = SymbolTableIndex;
1471 SymbolIndexMap[MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex;
1472 // 1 main and 1 auxiliary symbol table entry for the csect.
1473 SymbolTableIndex += 2;
1475 for (auto &Sym : Csect.Syms) {
1476 bool hasExceptEntry = false;
1477 auto Entry =
1478 ExceptionSection.ExceptionTable.find(Sym.MCSym->getName());
1479 if (Entry != ExceptionSection.ExceptionTable.end()) {
1480 hasExceptEntry = true;
1481 for (auto &TrapEntry : Entry->second.Entries) {
1482 TrapEntry.TrapAddress = Asm.getSymbolOffset(*(Sym.MCSym)) +
1483 TrapEntry.Trap->getOffset();
1486 Sym.SymbolTableIndex = SymbolTableIndex;
1487 SymbolIndexMap[Sym.MCSym] = Sym.SymbolTableIndex;
1488 // 1 main and 1 auxiliary symbol table entry for each contained
1489 // symbol. For symbols with exception section entries, a function
1490 // auxilliary entry is needed, and on 64-bit XCOFF with debugging
1491 // enabled, an additional exception auxilliary entry is needed.
1492 SymbolTableIndex += 2;
1493 if (hasExceptionSection() && hasExceptEntry) {
1494 if (is64Bit() && ExceptionSection.isDebugEnabled)
1495 SymbolTableIndex += 2;
1496 else
1497 SymbolTableIndex += 1;
1502 if (!SectionAddressSet) {
1503 Section->Address = Group->front().Address;
1504 SectionAddressSet = true;
1508 // Make sure the address of the next section aligned to
1509 // DefaultSectionAlign.
1510 Address = alignTo(Address, DefaultSectionAlign);
1511 Section->Size = Address - Section->Address;
1514 // Start to generate DWARF sections. Sections other than DWARF section use
1515 // DefaultSectionAlign as the default alignment, while DWARF sections have
1516 // their own alignments. If these two alignments are not the same, we need
1517 // some paddings here and record the paddings bytes for FileOffsetToData
1518 // calculation.
1519 if (!DwarfSections.empty())
1520 PaddingsBeforeDwarf =
1521 alignTo(Address,
1522 (*DwarfSections.begin()).DwarfSect->MCSec->getAlign()) -
1523 Address;
1525 DwarfSectionEntry *LastDwarfSection = nullptr;
1526 for (auto &DwarfSection : DwarfSections) {
1527 assert((SectionIndex <= MaxSectionIndex) && "Section index overflow!");
1529 XCOFFSection &DwarfSect = *DwarfSection.DwarfSect;
1530 const MCSectionXCOFF *MCSec = DwarfSect.MCSec;
1532 // Section index.
1533 DwarfSection.Index = SectionIndex++;
1534 SectionCount++;
1536 // Symbol index.
1537 DwarfSect.SymbolTableIndex = SymbolTableIndex;
1538 SymbolIndexMap[MCSec->getQualNameSymbol()] = DwarfSect.SymbolTableIndex;
1539 // 1 main and 1 auxiliary symbol table entry for the csect.
1540 SymbolTableIndex += 2;
1542 // Section address. Make it align to section alignment.
1543 // We use address 0 for DWARF sections' Physical and Virtual Addresses.
1544 // This address is used to tell where is the section in the final object.
1545 // See writeSectionForDwarfSectionEntry().
1546 DwarfSection.Address = DwarfSect.Address =
1547 alignTo(Address, MCSec->getAlign());
1549 // Section size.
1550 // For DWARF section, we must use the real size which may be not aligned.
1551 DwarfSection.Size = DwarfSect.Size = Asm.getSectionAddressSize(*MCSec);
1553 Address = DwarfSection.Address + DwarfSection.Size;
1555 if (LastDwarfSection)
1556 LastDwarfSection->MemorySize =
1557 DwarfSection.Address - LastDwarfSection->Address;
1558 LastDwarfSection = &DwarfSection;
1560 if (LastDwarfSection) {
1561 // Make the final DWARF section address align to the default section
1562 // alignment for follow contents.
1563 Address = alignTo(LastDwarfSection->Address + LastDwarfSection->Size,
1564 DefaultSectionAlign);
1565 LastDwarfSection->MemorySize = Address - LastDwarfSection->Address;
1567 if (hasExceptionSection()) {
1568 ExceptionSection.Index = SectionIndex++;
1569 SectionCount++;
1570 ExceptionSection.Address = 0;
1571 ExceptionSection.Size = getExceptionSectionSize();
1572 Address += ExceptionSection.Size;
1573 Address = alignTo(Address, DefaultSectionAlign);
1576 if (CInfoSymSection.Entry) {
1577 CInfoSymSection.Index = SectionIndex++;
1578 SectionCount++;
1579 CInfoSymSection.Address = 0;
1580 Address += CInfoSymSection.Size;
1581 Address = alignTo(Address, DefaultSectionAlign);
1584 SymbolTableEntryCount = SymbolTableIndex;
1587 void XCOFFWriter::writeSectionForControlSectionEntry(
1588 const MCAssembler &Asm, const CsectSectionEntry &CsectEntry,
1589 uint64_t &CurrentAddressLocation) {
1590 // Nothing to write for this Section.
1591 if (CsectEntry.Index == SectionEntry::UninitializedIndex)
1592 return;
1594 // There could be a gap (without corresponding zero padding) between
1595 // sections.
1596 // There could be a gap (without corresponding zero padding) between
1597 // sections.
1598 assert(((CurrentAddressLocation <= CsectEntry.Address) ||
1599 (CsectEntry.Flags == XCOFF::STYP_TDATA) ||
1600 (CsectEntry.Flags == XCOFF::STYP_TBSS)) &&
1601 "CurrentAddressLocation should be less than or equal to section "
1602 "address if the section is not TData or TBSS.");
1604 CurrentAddressLocation = CsectEntry.Address;
1606 // For virtual sections, nothing to write. But need to increase
1607 // CurrentAddressLocation for later sections like DWARF section has a correct
1608 // writing location.
1609 if (CsectEntry.IsVirtual) {
1610 CurrentAddressLocation += CsectEntry.Size;
1611 return;
1614 for (const auto &Group : CsectEntry.Groups) {
1615 for (const auto &Csect : *Group) {
1616 if (uint32_t PaddingSize = Csect.Address - CurrentAddressLocation)
1617 W.OS.write_zeros(PaddingSize);
1618 if (Csect.Size)
1619 Asm.writeSectionData(W.OS, Csect.MCSec);
1620 CurrentAddressLocation = Csect.Address + Csect.Size;
1624 // The size of the tail padding in a section is the end virtual address of
1625 // the current section minus the end virtual address of the last csect
1626 // in that section.
1627 if (uint64_t PaddingSize =
1628 CsectEntry.Address + CsectEntry.Size - CurrentAddressLocation) {
1629 W.OS.write_zeros(PaddingSize);
1630 CurrentAddressLocation += PaddingSize;
1634 void XCOFFWriter::writeSectionForDwarfSectionEntry(
1635 const MCAssembler &Asm, const DwarfSectionEntry &DwarfEntry,
1636 uint64_t &CurrentAddressLocation) {
1637 // There could be a gap (without corresponding zero padding) between
1638 // sections. For example DWARF section alignment is bigger than
1639 // DefaultSectionAlign.
1640 assert(CurrentAddressLocation <= DwarfEntry.Address &&
1641 "CurrentAddressLocation should be less than or equal to section "
1642 "address.");
1644 if (uint64_t PaddingSize = DwarfEntry.Address - CurrentAddressLocation)
1645 W.OS.write_zeros(PaddingSize);
1647 if (DwarfEntry.Size)
1648 Asm.writeSectionData(W.OS, DwarfEntry.DwarfSect->MCSec);
1650 CurrentAddressLocation = DwarfEntry.Address + DwarfEntry.Size;
1652 // DWARF section size is not aligned to DefaultSectionAlign.
1653 // Make sure CurrentAddressLocation is aligned to DefaultSectionAlign.
1654 uint32_t Mod = CurrentAddressLocation % DefaultSectionAlign;
1655 uint32_t TailPaddingSize = Mod ? DefaultSectionAlign - Mod : 0;
1656 if (TailPaddingSize)
1657 W.OS.write_zeros(TailPaddingSize);
1659 CurrentAddressLocation += TailPaddingSize;
1662 void XCOFFWriter::writeSectionForExceptionSectionEntry(
1663 const MCAssembler &Asm, ExceptionSectionEntry &ExceptionEntry,
1664 uint64_t &CurrentAddressLocation) {
1665 for (const auto &TableEntry : ExceptionEntry.ExceptionTable) {
1666 // For every symbol that has exception entries, you must start the entries
1667 // with an initial symbol table index entry
1668 W.write<uint32_t>(SymbolIndexMap[TableEntry.second.FunctionSymbol]);
1669 if (is64Bit()) {
1670 // 4-byte padding on 64-bit.
1671 W.OS.write_zeros(4);
1673 W.OS.write_zeros(2);
1674 for (auto &TrapEntry : TableEntry.second.Entries) {
1675 writeWord(TrapEntry.TrapAddress);
1676 W.write<uint8_t>(TrapEntry.Lang);
1677 W.write<uint8_t>(TrapEntry.Reason);
1681 CurrentAddressLocation += getExceptionSectionSize();
1684 void XCOFFWriter::writeSectionForCInfoSymSectionEntry(
1685 const MCAssembler &Asm, CInfoSymSectionEntry &CInfoSymEntry,
1686 uint64_t &CurrentAddressLocation) {
1687 if (!CInfoSymSection.Entry)
1688 return;
1690 constexpr int WordSize = sizeof(uint32_t);
1691 std::unique_ptr<CInfoSymInfo> &CISI = CInfoSymEntry.Entry;
1692 const std::string &Metadata = CISI->Metadata;
1694 // Emit the 4-byte length of the metadata.
1695 W.write<uint32_t>(Metadata.size());
1697 if (Metadata.size() == 0)
1698 return;
1700 // Write out the payload one word at a time.
1701 size_t Index = 0;
1702 while (Index + WordSize <= Metadata.size()) {
1703 uint32_t NextWord =
1704 llvm::support::endian::read32be(Metadata.data() + Index);
1705 W.write<uint32_t>(NextWord);
1706 Index += WordSize;
1709 // If there is padding, we have at least one byte of payload left to emit.
1710 if (CISI->paddingSize()) {
1711 std::array<uint8_t, WordSize> LastWord = {0};
1712 ::memcpy(LastWord.data(), Metadata.data() + Index, Metadata.size() - Index);
1713 W.write<uint32_t>(llvm::support::endian::read32be(LastWord.data()));
1716 CurrentAddressLocation += CISI->size();
1719 // Takes the log base 2 of the alignment and shifts the result into the 5 most
1720 // significant bits of a byte, then or's in the csect type into the least
1721 // significant 3 bits.
1722 uint8_t getEncodedType(const MCSectionXCOFF *Sec) {
1723 unsigned Log2Align = Log2(Sec->getAlign());
1724 // Result is a number in the range [0, 31] which fits in the 5 least
1725 // significant bits. Shift this value into the 5 most significant bits, and
1726 // bitwise-or in the csect type.
1727 uint8_t EncodedAlign = Log2Align << 3;
1728 return EncodedAlign | Sec->getCSectType();
1731 } // end anonymous namespace
1733 std::unique_ptr<MCObjectWriter>
1734 llvm::createXCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
1735 raw_pwrite_stream &OS) {
1736 return std::make_unique<XCOFFWriter>(std::move(MOTW), OS);