2 // RUN: --sparsification --sparse-tensor-conversion \
3 // RUN: --linalg-bufferize --convert-linalg-to-loops \
4 // RUN: --convert-vector-to-scf --convert-scf-to-std \
5 // RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \
6 // RUN: --std-bufferize --finalizing-bufferize --lower-affine \
7 // RUN: --convert-vector-to-llvm --convert-memref-to-llvm --convert-math-to-llvm \
8 // RUN: --convert-std-to-llvm --reconcile-unrealized-casts | \
9 // RUN: mlir-cpu-runner \
10 // RUN: -e entry -entry-point-result=void \
11 // RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
14 #SparseMatrix = #sparse_tensor.encoding<{
15 dimLevelType = [ "compressed", "compressed" ]
18 #SparseTensor = #sparse_tensor.encoding<{
19 dimLevelType = [ "compressed", "compressed", "compressed" ]
24 affine_map<(i,j,k) -> (i,j,k)>, // A
25 affine_map<(i,j,k) -> (i,j,k)>, // B
26 affine_map<(i,j,k) -> (i,j)> // X (out)
28 iterator_types = ["parallel", "parallel", "reduction"],
29 doc = "X(i,j) = SUM_k A(i,j,k) * B(i,j,k)"
33 func @redsum(%arga: tensor<?x?x?xi32, #SparseTensor>,
34 %argb: tensor<?x?x?xi32, #SparseTensor>)
35 -> tensor<?x?xi32, #SparseMatrix> {
36 %c0 = arith.constant 0 : index
37 %c1 = arith.constant 1 : index
38 %d0 = tensor.dim %arga, %c0 : tensor<?x?x?xi32, #SparseTensor>
39 %d1 = tensor.dim %arga, %c1 : tensor<?x?x?xi32, #SparseTensor>
40 %xinit = sparse_tensor.init [%d0, %d1] : tensor<?x?xi32, #SparseMatrix>
41 %0 = linalg.generic #redsum
42 ins(%arga, %argb: tensor<?x?x?xi32, #SparseTensor>,
43 tensor<?x?x?xi32, #SparseTensor>)
44 outs(%xinit: tensor<?x?xi32, #SparseMatrix>) {
45 ^bb(%a: i32, %b: i32, %x: i32):
46 %0 = arith.muli %a, %b : i32
47 %1 = arith.addi %x, %0 : i32
49 } -> tensor<?x?xi32, #SparseMatrix>
50 return %0 : tensor<?x?xi32, #SparseMatrix>
53 // Driver method to call and verify tensor kernel.
55 %c0 = arith.constant 0 : index
56 %i0 = arith.constant -1 : i32
58 // Setup very sparse 3-d tensors.
59 %t1 = arith.constant sparse<
60 [ [1,1,3], [2,0,0], [2,2,1], [2,2,2], [2,2,3] ], [ 1, 2, 3, 4, 5 ]
62 %t2 = arith.constant sparse<
63 [ [1,0,0], [1,1,3], [2,2,1], [2,2,3] ], [ 6, 7, 8, 9 ]
65 %st1 = sparse_tensor.convert %t1
66 : tensor<3x3x4xi32> to tensor<?x?x?xi32, #SparseTensor>
67 %st2 = sparse_tensor.convert %t2
68 : tensor<3x3x4xi32> to tensor<?x?x?xi32, #SparseTensor>
71 %0 = call @redsum(%st1, %st2)
72 : (tensor<?x?x?xi32, #SparseTensor>,
73 tensor<?x?x?xi32, #SparseTensor>) -> tensor<?x?xi32, #SparseMatrix>
76 // Verify results. Only two entries stored in result. Correct structure.
78 // CHECK: ( 7, 69, -1, -1 )
79 // CHECK-NEXT: ( ( 0, 0, 0 ), ( 0, 7, 0 ), ( 0, 0, 69 ) )
81 %val = sparse_tensor.values %0
82 : tensor<?x?xi32, #SparseMatrix> to memref<?xi32>
83 %vv = vector.transfer_read %val[%c0], %i0: memref<?xi32>, vector<4xi32>
84 vector.print %vv : vector<4xi32>
85 %dm = sparse_tensor.convert %0
86 : tensor<?x?xi32, #SparseMatrix> to tensor<?x?xi32>
87 %db = bufferization.to_memref %dm : memref<?x?xi32>
88 %vm = vector.transfer_read %db[%c0, %c0], %i0: memref<?x?xi32>, vector<3x3xi32>
89 vector.print %vm : vector<3x3xi32>
91 // Release the resources.
92 sparse_tensor.release %st1 : tensor<?x?x?xi32, #SparseTensor>
93 sparse_tensor.release %st2 : tensor<?x?x?xi32, #SparseTensor>
94 sparse_tensor.release %0 : tensor<?x?xi32, #SparseMatrix>
95 memref.dealloc %db : memref<?x?xi32>