1 ; RUN: opt %loadPolly -polly-print-scops -disable-output < %s | FileCheck %s
3 ; The assumed context should be empty since the <nsw> flags on the IV
4 ; increments already guarantee that there is no wrap in the loop trip
7 ; int jd(int *restrict A, int x, int N) {
8 ; for (int i = 1; i < N; i++)
9 ; for (int j = 3; j < N; j++)
14 ; CHECK: Assumed Context:
15 ; CHECK-NEXT: [N] -> { : }
18 ; CHECK-NEXT: Stmt_for_cond
19 ; CHECK-NEXT: Domain :=
20 ; CHECK-NEXT: [N] -> { Stmt_for_cond[i0] : 0 <= i0 < N; Stmt_for_cond[0] : N <= 0 };
21 ; CHECK-NEXT: Schedule :=
22 ; CHECK-NEXT: [N] -> { Stmt_for_cond[i0] -> [i0, 0, 0, 0] : i0 < N; Stmt_for_cond[0] -> [0, 0, 0, 0] : N <= 0 };
23 ; CHECK-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 1]
24 ; CHECK-NEXT: [N] -> { Stmt_for_cond[i0] -> MemRef_x_addr_0__phi[] };
25 ; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 1]
26 ; CHECK-NEXT: [N] -> { Stmt_for_cond[i0] -> MemRef_x_addr_0[] };
27 ; CHECK-NEXT: Stmt_for_body
28 ; CHECK-NEXT: Domain :=
29 ; CHECK-NEXT: [N] -> { Stmt_for_body[i0] : 0 <= i0 <= -2 + N };
30 ; CHECK-NEXT: Schedule :=
31 ; CHECK-NEXT: [N] -> { Stmt_for_body[i0] -> [i0, 1, 0, 0] };
32 ; CHECK-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 1]
33 ; CHECK-NEXT: [N] -> { Stmt_for_body[i0] -> MemRef_x_addr_0[] };
34 ; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 1]
35 ; CHECK-NEXT: [N] -> { Stmt_for_body[i0] -> MemRef_x_addr_1__phi[] };
36 ; CHECK-NEXT: Stmt_for_cond1
37 ; CHECK-NEXT: Domain :=
38 ; CHECK-NEXT: [N] -> { Stmt_for_cond1[i0, i1] : 0 <= i0 <= -2 + N and 0 <= i1 <= -3 + N };
39 ; CHECK-NEXT: Schedule :=
40 ; CHECK-NEXT: [N] -> { Stmt_for_cond1[i0, i1] -> [i0, 2, i1, 0] };
41 ; CHECK-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 1]
42 ; CHECK-NEXT: [N] -> { Stmt_for_cond1[i0, i1] -> MemRef_x_addr_1__phi[] };
43 ; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 1]
44 ; CHECK-NEXT: [N] -> { Stmt_for_cond1[i0, i1] -> MemRef_x_addr_1[] };
45 ; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 1]
46 ; CHECK-NEXT: [N] -> { Stmt_for_cond1[i0, i1] -> MemRef_x_addr_1_lcssa__phi[] };
47 ; CHECK-NEXT: Stmt_for_inc
48 ; CHECK-NEXT: Domain :=
49 ; CHECK-NEXT: [N] -> { Stmt_for_inc[i0, i1] : 0 <= i0 <= -2 + N and 0 <= i1 <= -4 + N };
50 ; CHECK-NEXT: Schedule :=
51 ; CHECK-NEXT: [N] -> { Stmt_for_inc[i0, i1] -> [i0, 2, i1, 1] };
52 ; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 1]
53 ; CHECK-NEXT: [N] -> { Stmt_for_inc[i0, i1] -> MemRef_x_addr_1__phi[] };
54 ; CHECK-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 0]
55 ; CHECK-NEXT: [N] -> { Stmt_for_inc[i0, i1] -> MemRef_A[1 + i0] };
56 ; CHECK-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 1]
57 ; CHECK-NEXT: [N] -> { Stmt_for_inc[i0, i1] -> MemRef_x_addr_1[] };
58 ; CHECK-NEXT: Stmt_for_end
59 ; CHECK-NEXT: Domain :=
60 ; CHECK-NEXT: [N] -> { Stmt_for_end[i0] : N >= 3 and 0 <= i0 <= -2 + N };
61 ; CHECK-NEXT: Schedule :=
62 ; CHECK-NEXT: [N] -> { Stmt_for_end[i0] -> [i0, 3, 0, 0] };
63 ; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 1]
64 ; CHECK-NEXT: [N] -> { Stmt_for_end[i0] -> MemRef_x_addr_1_lcssa[] };
65 ; CHECK-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 1]
66 ; CHECK-NEXT: [N] -> { Stmt_for_end[i0] -> MemRef_x_addr_1_lcssa__phi[] };
67 ; CHECK-NEXT: Stmt_for_inc4
68 ; CHECK-NEXT: Domain :=
69 ; CHECK-NEXT: [N] -> { Stmt_for_inc4[i0] : N >= 3 and 0 <= i0 <= -2 + N };
70 ; CHECK-NEXT: Schedule :=
71 ; CHECK-NEXT: [N] -> { Stmt_for_inc4[i0] -> [i0, 4, 0, 0] };
72 ; CHECK-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 1]
73 ; CHECK-NEXT: [N] -> { Stmt_for_inc4[i0] -> MemRef_x_addr_1_lcssa[] };
74 ; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 1]
75 ; CHECK-NEXT: [N] -> { Stmt_for_inc4[i0] -> MemRef_x_addr_0__phi[] };
78 target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
80 define i32 @jd(ptr noalias %A, i32 %x, i32 %N) {
82 %tmp = sext i32 %N to i64
85 for.cond: ; preds = %for.inc4, %entry
86 %indvars.iv = phi i64 [ %indvars.iv.next, %for.inc4 ], [ 1, %entry ]
87 %x.addr.0 = phi i32 [ %x, %entry ], [ %x.addr.1.lcssa, %for.inc4 ]
88 %cmp = icmp slt i64 %indvars.iv, %tmp
89 br i1 %cmp, label %for.body, label %for.end6
91 for.body: ; preds = %for.cond
94 for.cond1: ; preds = %for.inc, %for.body
95 %x.addr.1 = phi i32 [ %x.addr.0, %for.body ], [ %add, %for.inc ]
96 %j.0 = phi i32 [ 3, %for.body ], [ %inc, %for.inc ]
97 %exitcond = icmp ne i32 %j.0, %N
98 br i1 %exitcond, label %for.body3, label %for.end
100 for.body3: ; preds = %for.cond1
103 for.inc: ; preds = %for.body3
104 %arrayidx = getelementptr inbounds i32, ptr %A, i64 %indvars.iv
105 %tmp1 = load i32, ptr %arrayidx, align 4
106 %add = add nsw i32 %x.addr.1, %tmp1
107 %inc = add nsw i32 %j.0, 1
110 for.end: ; preds = %for.cond1
111 %x.addr.1.lcssa = phi i32 [ %x.addr.1, %for.cond1 ]
114 for.inc4: ; preds = %for.end
115 %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
118 for.end6: ; preds = %for.cond