1 //===- Type.cpp - Implement the Type class --------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Type class for the IR library.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/IR/Type.h"
14 #include "LLVMContextImpl.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/IR/Constant.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Value.h"
24 #include "llvm/Support/Casting.h"
25 #include "llvm/Support/TypeSize.h"
26 #include "llvm/Support/raw_ostream.h"
32 //===----------------------------------------------------------------------===//
33 // Type Class Implementation
34 //===----------------------------------------------------------------------===//
36 Type
*Type::getPrimitiveType(LLVMContext
&C
, TypeID IDNumber
) {
38 case VoidTyID
: return getVoidTy(C
);
39 case HalfTyID
: return getHalfTy(C
);
40 case BFloatTyID
: return getBFloatTy(C
);
41 case FloatTyID
: return getFloatTy(C
);
42 case DoubleTyID
: return getDoubleTy(C
);
43 case X86_FP80TyID
: return getX86_FP80Ty(C
);
44 case FP128TyID
: return getFP128Ty(C
);
45 case PPC_FP128TyID
: return getPPC_FP128Ty(C
);
46 case LabelTyID
: return getLabelTy(C
);
47 case MetadataTyID
: return getMetadataTy(C
);
48 case X86_MMXTyID
: return getX86_MMXTy(C
);
49 case X86_AMXTyID
: return getX86_AMXTy(C
);
50 case TokenTyID
: return getTokenTy(C
);
56 bool Type::isIntegerTy(unsigned Bitwidth
) const {
57 return isIntegerTy() && cast
<IntegerType
>(this)->getBitWidth() == Bitwidth
;
60 bool Type::isScalableTy() const {
61 if (const auto *ATy
= dyn_cast
<ArrayType
>(this))
62 return ATy
->getElementType()->isScalableTy();
63 if (const auto *STy
= dyn_cast
<StructType
>(this)) {
64 SmallPtrSet
<Type
*, 4> Visited
;
65 return STy
->containsScalableVectorType(&Visited
);
67 return getTypeID() == ScalableVectorTyID
|| isScalableTargetExtTy();
70 const fltSemantics
&Type::getFltSemantics() const {
71 switch (getTypeID()) {
72 case HalfTyID
: return APFloat::IEEEhalf();
73 case BFloatTyID
: return APFloat::BFloat();
74 case FloatTyID
: return APFloat::IEEEsingle();
75 case DoubleTyID
: return APFloat::IEEEdouble();
76 case X86_FP80TyID
: return APFloat::x87DoubleExtended();
77 case FP128TyID
: return APFloat::IEEEquad();
78 case PPC_FP128TyID
: return APFloat::PPCDoubleDouble();
79 default: llvm_unreachable("Invalid floating type");
83 bool Type::isIEEE() const {
84 return APFloat::getZero(getFltSemantics()).isIEEE();
87 bool Type::isScalableTargetExtTy() const {
88 if (auto *TT
= dyn_cast
<TargetExtType
>(this))
89 return isa
<ScalableVectorType
>(TT
->getLayoutType());
93 Type
*Type::getFloatingPointTy(LLVMContext
&C
, const fltSemantics
&S
) {
95 if (&S
== &APFloat::IEEEhalf())
96 Ty
= Type::getHalfTy(C
);
97 else if (&S
== &APFloat::BFloat())
98 Ty
= Type::getBFloatTy(C
);
99 else if (&S
== &APFloat::IEEEsingle())
100 Ty
= Type::getFloatTy(C
);
101 else if (&S
== &APFloat::IEEEdouble())
102 Ty
= Type::getDoubleTy(C
);
103 else if (&S
== &APFloat::x87DoubleExtended())
104 Ty
= Type::getX86_FP80Ty(C
);
105 else if (&S
== &APFloat::IEEEquad())
106 Ty
= Type::getFP128Ty(C
);
108 assert(&S
== &APFloat::PPCDoubleDouble() && "Unknown FP format");
109 Ty
= Type::getPPC_FP128Ty(C
);
114 bool Type::canLosslesslyBitCastTo(Type
*Ty
) const {
115 // Identity cast means no change so return true
119 // They are not convertible unless they are at least first class types
120 if (!this->isFirstClassType() || !Ty
->isFirstClassType())
123 // Vector -> Vector conversions are always lossless if the two vector types
124 // have the same size, otherwise not.
125 if (isa
<VectorType
>(this) && isa
<VectorType
>(Ty
))
126 return getPrimitiveSizeInBits() == Ty
->getPrimitiveSizeInBits();
128 // 64-bit fixed width vector types can be losslessly converted to x86mmx.
129 if (((isa
<FixedVectorType
>(this)) && Ty
->isX86_MMXTy()) &&
130 getPrimitiveSizeInBits().getFixedValue() == 64)
132 if ((isX86_MMXTy() && isa
<FixedVectorType
>(Ty
)) &&
133 Ty
->getPrimitiveSizeInBits().getFixedValue() == 64)
136 // 8192-bit fixed width vector types can be losslessly converted to x86amx.
137 if (((isa
<FixedVectorType
>(this)) && Ty
->isX86_AMXTy()) &&
138 getPrimitiveSizeInBits().getFixedValue() == 8192)
140 if ((isX86_AMXTy() && isa
<FixedVectorType
>(Ty
)) &&
141 Ty
->getPrimitiveSizeInBits().getFixedValue() == 8192)
144 // At this point we have only various mismatches of the first class types
145 // remaining and ptr->ptr. Just select the lossless conversions. Everything
146 // else is not lossless. Conservatively assume we can't losslessly convert
147 // between pointers with different address spaces.
148 if (auto *PTy
= dyn_cast
<PointerType
>(this)) {
149 if (auto *OtherPTy
= dyn_cast
<PointerType
>(Ty
))
150 return PTy
->getAddressSpace() == OtherPTy
->getAddressSpace();
153 return false; // Other types have no identity values
156 bool Type::isEmptyTy() const {
157 if (auto *ATy
= dyn_cast
<ArrayType
>(this)) {
158 unsigned NumElements
= ATy
->getNumElements();
159 return NumElements
== 0 || ATy
->getElementType()->isEmptyTy();
162 if (auto *STy
= dyn_cast
<StructType
>(this)) {
163 unsigned NumElements
= STy
->getNumElements();
164 for (unsigned i
= 0; i
< NumElements
; ++i
)
165 if (!STy
->getElementType(i
)->isEmptyTy())
173 TypeSize
Type::getPrimitiveSizeInBits() const {
174 switch (getTypeID()) {
175 case Type::HalfTyID
: return TypeSize::Fixed(16);
176 case Type::BFloatTyID
: return TypeSize::Fixed(16);
177 case Type::FloatTyID
: return TypeSize::Fixed(32);
178 case Type::DoubleTyID
: return TypeSize::Fixed(64);
179 case Type::X86_FP80TyID
: return TypeSize::Fixed(80);
180 case Type::FP128TyID
: return TypeSize::Fixed(128);
181 case Type::PPC_FP128TyID
: return TypeSize::Fixed(128);
182 case Type::X86_MMXTyID
: return TypeSize::Fixed(64);
183 case Type::X86_AMXTyID
: return TypeSize::Fixed(8192);
184 case Type::IntegerTyID
:
185 return TypeSize::Fixed(cast
<IntegerType
>(this)->getBitWidth());
186 case Type::FixedVectorTyID
:
187 case Type::ScalableVectorTyID
: {
188 const VectorType
*VTy
= cast
<VectorType
>(this);
189 ElementCount EC
= VTy
->getElementCount();
190 TypeSize ETS
= VTy
->getElementType()->getPrimitiveSizeInBits();
191 assert(!ETS
.isScalable() && "Vector type should have fixed-width elements");
192 return {ETS
.getFixedValue() * EC
.getKnownMinValue(), EC
.isScalable()};
194 default: return TypeSize::Fixed(0);
198 unsigned Type::getScalarSizeInBits() const {
199 // It is safe to assume that the scalar types have a fixed size.
200 return getScalarType()->getPrimitiveSizeInBits().getFixedValue();
203 int Type::getFPMantissaWidth() const {
204 if (auto *VTy
= dyn_cast
<VectorType
>(this))
205 return VTy
->getElementType()->getFPMantissaWidth();
206 assert(isFloatingPointTy() && "Not a floating point type!");
207 if (getTypeID() == HalfTyID
) return 11;
208 if (getTypeID() == BFloatTyID
) return 8;
209 if (getTypeID() == FloatTyID
) return 24;
210 if (getTypeID() == DoubleTyID
) return 53;
211 if (getTypeID() == X86_FP80TyID
) return 64;
212 if (getTypeID() == FP128TyID
) return 113;
213 assert(getTypeID() == PPC_FP128TyID
&& "unknown fp type");
217 bool Type::isSizedDerivedType(SmallPtrSetImpl
<Type
*> *Visited
) const {
218 if (auto *ATy
= dyn_cast
<ArrayType
>(this))
219 return ATy
->getElementType()->isSized(Visited
);
221 if (auto *VTy
= dyn_cast
<VectorType
>(this))
222 return VTy
->getElementType()->isSized(Visited
);
224 if (auto *TTy
= dyn_cast
<TargetExtType
>(this))
225 return TTy
->getLayoutType()->isSized(Visited
);
227 return cast
<StructType
>(this)->isSized(Visited
);
230 //===----------------------------------------------------------------------===//
231 // Primitive 'Type' data
232 //===----------------------------------------------------------------------===//
234 Type
*Type::getVoidTy(LLVMContext
&C
) { return &C
.pImpl
->VoidTy
; }
235 Type
*Type::getLabelTy(LLVMContext
&C
) { return &C
.pImpl
->LabelTy
; }
236 Type
*Type::getHalfTy(LLVMContext
&C
) { return &C
.pImpl
->HalfTy
; }
237 Type
*Type::getBFloatTy(LLVMContext
&C
) { return &C
.pImpl
->BFloatTy
; }
238 Type
*Type::getFloatTy(LLVMContext
&C
) { return &C
.pImpl
->FloatTy
; }
239 Type
*Type::getDoubleTy(LLVMContext
&C
) { return &C
.pImpl
->DoubleTy
; }
240 Type
*Type::getMetadataTy(LLVMContext
&C
) { return &C
.pImpl
->MetadataTy
; }
241 Type
*Type::getTokenTy(LLVMContext
&C
) { return &C
.pImpl
->TokenTy
; }
242 Type
*Type::getX86_FP80Ty(LLVMContext
&C
) { return &C
.pImpl
->X86_FP80Ty
; }
243 Type
*Type::getFP128Ty(LLVMContext
&C
) { return &C
.pImpl
->FP128Ty
; }
244 Type
*Type::getPPC_FP128Ty(LLVMContext
&C
) { return &C
.pImpl
->PPC_FP128Ty
; }
245 Type
*Type::getX86_MMXTy(LLVMContext
&C
) { return &C
.pImpl
->X86_MMXTy
; }
246 Type
*Type::getX86_AMXTy(LLVMContext
&C
) { return &C
.pImpl
->X86_AMXTy
; }
248 IntegerType
*Type::getInt1Ty(LLVMContext
&C
) { return &C
.pImpl
->Int1Ty
; }
249 IntegerType
*Type::getInt8Ty(LLVMContext
&C
) { return &C
.pImpl
->Int8Ty
; }
250 IntegerType
*Type::getInt16Ty(LLVMContext
&C
) { return &C
.pImpl
->Int16Ty
; }
251 IntegerType
*Type::getInt32Ty(LLVMContext
&C
) { return &C
.pImpl
->Int32Ty
; }
252 IntegerType
*Type::getInt64Ty(LLVMContext
&C
) { return &C
.pImpl
->Int64Ty
; }
253 IntegerType
*Type::getInt128Ty(LLVMContext
&C
) { return &C
.pImpl
->Int128Ty
; }
255 IntegerType
*Type::getIntNTy(LLVMContext
&C
, unsigned N
) {
256 return IntegerType::get(C
, N
);
259 PointerType
*Type::getInt8PtrTy(LLVMContext
&C
, unsigned AS
) {
260 return PointerType::get(C
, AS
);
263 Type
*Type::getWasm_ExternrefTy(LLVMContext
&C
) {
264 // opaque pointer in addrspace(10)
265 static PointerType
*Ty
= PointerType::get(C
, 10);
269 Type
*Type::getWasm_FuncrefTy(LLVMContext
&C
) {
270 // opaque pointer in addrspace(20)
271 static PointerType
*Ty
= PointerType::get(C
, 20);
275 //===----------------------------------------------------------------------===//
276 // IntegerType Implementation
277 //===----------------------------------------------------------------------===//
279 IntegerType
*IntegerType::get(LLVMContext
&C
, unsigned NumBits
) {
280 assert(NumBits
>= MIN_INT_BITS
&& "bitwidth too small");
281 assert(NumBits
<= MAX_INT_BITS
&& "bitwidth too large");
283 // Check for the built-in integer types
285 case 1: return cast
<IntegerType
>(Type::getInt1Ty(C
));
286 case 8: return cast
<IntegerType
>(Type::getInt8Ty(C
));
287 case 16: return cast
<IntegerType
>(Type::getInt16Ty(C
));
288 case 32: return cast
<IntegerType
>(Type::getInt32Ty(C
));
289 case 64: return cast
<IntegerType
>(Type::getInt64Ty(C
));
290 case 128: return cast
<IntegerType
>(Type::getInt128Ty(C
));
295 IntegerType
*&Entry
= C
.pImpl
->IntegerTypes
[NumBits
];
298 Entry
= new (C
.pImpl
->Alloc
) IntegerType(C
, NumBits
);
303 APInt
IntegerType::getMask() const { return APInt::getAllOnes(getBitWidth()); }
305 //===----------------------------------------------------------------------===//
306 // FunctionType Implementation
307 //===----------------------------------------------------------------------===//
309 FunctionType::FunctionType(Type
*Result
, ArrayRef
<Type
*> Params
,
311 : Type(Result
->getContext(), FunctionTyID
) {
312 Type
**SubTys
= reinterpret_cast<Type
**>(this+1);
313 assert(isValidReturnType(Result
) && "invalid return type for function");
314 setSubclassData(IsVarArgs
);
318 for (unsigned i
= 0, e
= Params
.size(); i
!= e
; ++i
) {
319 assert(isValidArgumentType(Params
[i
]) &&
320 "Not a valid type for function argument!");
321 SubTys
[i
+1] = Params
[i
];
324 ContainedTys
= SubTys
;
325 NumContainedTys
= Params
.size() + 1; // + 1 for result type
328 // This is the factory function for the FunctionType class.
329 FunctionType
*FunctionType::get(Type
*ReturnType
,
330 ArrayRef
<Type
*> Params
, bool isVarArg
) {
331 LLVMContextImpl
*pImpl
= ReturnType
->getContext().pImpl
;
332 const FunctionTypeKeyInfo::KeyTy
Key(ReturnType
, Params
, isVarArg
);
334 // Since we only want to allocate a fresh function type in case none is found
335 // and we don't want to perform two lookups (one for checking if existent and
336 // one for inserting the newly allocated one), here we instead lookup based on
337 // Key and update the reference to the function type in-place to a newly
338 // allocated one if not found.
339 auto Insertion
= pImpl
->FunctionTypes
.insert_as(nullptr, Key
);
340 if (Insertion
.second
) {
341 // The function type was not found. Allocate one and update FunctionTypes
343 FT
= (FunctionType
*)pImpl
->Alloc
.Allocate(
344 sizeof(FunctionType
) + sizeof(Type
*) * (Params
.size() + 1),
345 alignof(FunctionType
));
346 new (FT
) FunctionType(ReturnType
, Params
, isVarArg
);
347 *Insertion
.first
= FT
;
349 // The function type was found. Just return it.
350 FT
= *Insertion
.first
;
355 FunctionType
*FunctionType::get(Type
*Result
, bool isVarArg
) {
356 return get(Result
, std::nullopt
, isVarArg
);
359 bool FunctionType::isValidReturnType(Type
*RetTy
) {
360 return !RetTy
->isFunctionTy() && !RetTy
->isLabelTy() &&
361 !RetTy
->isMetadataTy();
364 bool FunctionType::isValidArgumentType(Type
*ArgTy
) {
365 return ArgTy
->isFirstClassType();
368 //===----------------------------------------------------------------------===//
369 // StructType Implementation
370 //===----------------------------------------------------------------------===//
372 // Primitive Constructors.
374 StructType
*StructType::get(LLVMContext
&Context
, ArrayRef
<Type
*> ETypes
,
376 LLVMContextImpl
*pImpl
= Context
.pImpl
;
377 const AnonStructTypeKeyInfo::KeyTy
Key(ETypes
, isPacked
);
380 // Since we only want to allocate a fresh struct type in case none is found
381 // and we don't want to perform two lookups (one for checking if existent and
382 // one for inserting the newly allocated one), here we instead lookup based on
383 // Key and update the reference to the struct type in-place to a newly
384 // allocated one if not found.
385 auto Insertion
= pImpl
->AnonStructTypes
.insert_as(nullptr, Key
);
386 if (Insertion
.second
) {
387 // The struct type was not found. Allocate one and update AnonStructTypes
389 ST
= new (Context
.pImpl
->Alloc
) StructType(Context
);
390 ST
->setSubclassData(SCDB_IsLiteral
); // Literal struct.
391 ST
->setBody(ETypes
, isPacked
);
392 *Insertion
.first
= ST
;
394 // The struct type was found. Just return it.
395 ST
= *Insertion
.first
;
401 bool StructType::containsScalableVectorType(
402 SmallPtrSetImpl
<Type
*> *Visited
) const {
403 if ((getSubclassData() & SCDB_ContainsScalableVector
) != 0)
406 if ((getSubclassData() & SCDB_NotContainsScalableVector
) != 0)
409 if (Visited
&& !Visited
->insert(const_cast<StructType
*>(this)).second
)
412 for (Type
*Ty
: elements()) {
413 if (isa
<ScalableVectorType
>(Ty
)) {
414 const_cast<StructType
*>(this)->setSubclassData(
415 getSubclassData() | SCDB_ContainsScalableVector
);
418 if (auto *STy
= dyn_cast
<StructType
>(Ty
)) {
419 if (STy
->containsScalableVectorType(Visited
)) {
420 const_cast<StructType
*>(this)->setSubclassData(
421 getSubclassData() | SCDB_ContainsScalableVector
);
427 // For structures that are opaque, return false but do not set the
428 // SCDB_NotContainsScalableVector flag since it may gain scalable vector type
429 // when it becomes non-opaque.
431 const_cast<StructType
*>(this)->setSubclassData(
432 getSubclassData() | SCDB_NotContainsScalableVector
);
436 bool StructType::containsHomogeneousScalableVectorTypes() const {
437 Type
*FirstTy
= getNumElements() > 0 ? elements()[0] : nullptr;
438 if (!FirstTy
|| !isa
<ScalableVectorType
>(FirstTy
))
440 for (Type
*Ty
: elements())
446 void StructType::setBody(ArrayRef
<Type
*> Elements
, bool isPacked
) {
447 assert(isOpaque() && "Struct body already set!");
449 setSubclassData(getSubclassData() | SCDB_HasBody
);
451 setSubclassData(getSubclassData() | SCDB_Packed
);
453 NumContainedTys
= Elements
.size();
455 if (Elements
.empty()) {
456 ContainedTys
= nullptr;
460 ContainedTys
= Elements
.copy(getContext().pImpl
->Alloc
).data();
463 void StructType::setName(StringRef Name
) {
464 if (Name
== getName()) return;
466 StringMap
<StructType
*> &SymbolTable
= getContext().pImpl
->NamedStructTypes
;
468 using EntryTy
= StringMap
<StructType
*>::MapEntryTy
;
470 // If this struct already had a name, remove its symbol table entry. Don't
471 // delete the data yet because it may be part of the new name.
472 if (SymbolTableEntry
)
473 SymbolTable
.remove((EntryTy
*)SymbolTableEntry
);
475 // If this is just removing the name, we're done.
477 if (SymbolTableEntry
) {
478 // Delete the old string data.
479 ((EntryTy
*)SymbolTableEntry
)->Destroy(SymbolTable
.getAllocator());
480 SymbolTableEntry
= nullptr;
485 // Look up the entry for the name.
487 getContext().pImpl
->NamedStructTypes
.insert(std::make_pair(Name
, this));
489 // While we have a name collision, try a random rename.
490 if (!IterBool
.second
) {
491 SmallString
<64> TempStr(Name
);
492 TempStr
.push_back('.');
493 raw_svector_ostream
TmpStream(TempStr
);
494 unsigned NameSize
= Name
.size();
497 TempStr
.resize(NameSize
+ 1);
498 TmpStream
<< getContext().pImpl
->NamedStructTypesUniqueID
++;
500 IterBool
= getContext().pImpl
->NamedStructTypes
.insert(
501 std::make_pair(TmpStream
.str(), this));
502 } while (!IterBool
.second
);
505 // Delete the old string data.
506 if (SymbolTableEntry
)
507 ((EntryTy
*)SymbolTableEntry
)->Destroy(SymbolTable
.getAllocator());
508 SymbolTableEntry
= &*IterBool
.first
;
511 //===----------------------------------------------------------------------===//
512 // StructType Helper functions.
514 StructType
*StructType::create(LLVMContext
&Context
, StringRef Name
) {
515 StructType
*ST
= new (Context
.pImpl
->Alloc
) StructType(Context
);
521 StructType
*StructType::get(LLVMContext
&Context
, bool isPacked
) {
522 return get(Context
, std::nullopt
, isPacked
);
525 StructType
*StructType::create(LLVMContext
&Context
, ArrayRef
<Type
*> Elements
,
526 StringRef Name
, bool isPacked
) {
527 StructType
*ST
= create(Context
, Name
);
528 ST
->setBody(Elements
, isPacked
);
532 StructType
*StructType::create(LLVMContext
&Context
, ArrayRef
<Type
*> Elements
) {
533 return create(Context
, Elements
, StringRef());
536 StructType
*StructType::create(LLVMContext
&Context
) {
537 return create(Context
, StringRef());
540 StructType
*StructType::create(ArrayRef
<Type
*> Elements
, StringRef Name
,
542 assert(!Elements
.empty() &&
543 "This method may not be invoked with an empty list");
544 return create(Elements
[0]->getContext(), Elements
, Name
, isPacked
);
547 StructType
*StructType::create(ArrayRef
<Type
*> Elements
) {
548 assert(!Elements
.empty() &&
549 "This method may not be invoked with an empty list");
550 return create(Elements
[0]->getContext(), Elements
, StringRef());
553 bool StructType::isSized(SmallPtrSetImpl
<Type
*> *Visited
) const {
554 if ((getSubclassData() & SCDB_IsSized
) != 0)
559 if (Visited
&& !Visited
->insert(const_cast<StructType
*>(this)).second
)
562 // Okay, our struct is sized if all of the elements are, but if one of the
563 // elements is opaque, the struct isn't sized *yet*, but may become sized in
564 // the future, so just bail out without caching.
565 // The ONLY special case inside a struct that is considered sized is when the
566 // elements are homogeneous of a scalable vector type.
567 if (containsHomogeneousScalableVectorTypes()) {
568 const_cast<StructType
*>(this)->setSubclassData(getSubclassData() |
572 for (Type
*Ty
: elements()) {
573 // If the struct contains a scalable vector type, don't consider it sized.
574 // This prevents it from being used in loads/stores/allocas/GEPs. The ONLY
575 // special case right now is a structure of homogenous scalable vector
576 // types and is handled by the if-statement before this for-loop.
577 if (Ty
->isScalableTy())
579 if (!Ty
->isSized(Visited
))
583 // Here we cheat a bit and cast away const-ness. The goal is to memoize when
584 // we find a sized type, as types can only move from opaque to sized, not the
586 const_cast<StructType
*>(this)->setSubclassData(
587 getSubclassData() | SCDB_IsSized
);
591 StringRef
StructType::getName() const {
592 assert(!isLiteral() && "Literal structs never have names");
593 if (!SymbolTableEntry
) return StringRef();
595 return ((StringMapEntry
<StructType
*> *)SymbolTableEntry
)->getKey();
598 bool StructType::isValidElementType(Type
*ElemTy
) {
599 return !ElemTy
->isVoidTy() && !ElemTy
->isLabelTy() &&
600 !ElemTy
->isMetadataTy() && !ElemTy
->isFunctionTy() &&
601 !ElemTy
->isTokenTy();
604 bool StructType::isLayoutIdentical(StructType
*Other
) const {
605 if (this == Other
) return true;
607 if (isPacked() != Other
->isPacked())
610 return elements() == Other
->elements();
613 Type
*StructType::getTypeAtIndex(const Value
*V
) const {
614 unsigned Idx
= (unsigned)cast
<Constant
>(V
)->getUniqueInteger().getZExtValue();
615 assert(indexValid(Idx
) && "Invalid structure index!");
616 return getElementType(Idx
);
619 bool StructType::indexValid(const Value
*V
) const {
620 // Structure indexes require (vectors of) 32-bit integer constants. In the
621 // vector case all of the indices must be equal.
622 if (!V
->getType()->isIntOrIntVectorTy(32))
624 if (isa
<ScalableVectorType
>(V
->getType()))
626 const Constant
*C
= dyn_cast
<Constant
>(V
);
627 if (C
&& V
->getType()->isVectorTy())
628 C
= C
->getSplatValue();
629 const ConstantInt
*CU
= dyn_cast_or_null
<ConstantInt
>(C
);
630 return CU
&& CU
->getZExtValue() < getNumElements();
633 StructType
*StructType::getTypeByName(LLVMContext
&C
, StringRef Name
) {
634 return C
.pImpl
->NamedStructTypes
.lookup(Name
);
637 //===----------------------------------------------------------------------===//
638 // ArrayType Implementation
639 //===----------------------------------------------------------------------===//
641 ArrayType::ArrayType(Type
*ElType
, uint64_t NumEl
)
642 : Type(ElType
->getContext(), ArrayTyID
), ContainedType(ElType
),
644 ContainedTys
= &ContainedType
;
648 ArrayType
*ArrayType::get(Type
*ElementType
, uint64_t NumElements
) {
649 assert(isValidElementType(ElementType
) && "Invalid type for array element!");
651 LLVMContextImpl
*pImpl
= ElementType
->getContext().pImpl
;
653 pImpl
->ArrayTypes
[std::make_pair(ElementType
, NumElements
)];
656 Entry
= new (pImpl
->Alloc
) ArrayType(ElementType
, NumElements
);
660 bool ArrayType::isValidElementType(Type
*ElemTy
) {
661 return !ElemTy
->isVoidTy() && !ElemTy
->isLabelTy() &&
662 !ElemTy
->isMetadataTy() && !ElemTy
->isFunctionTy() &&
663 !ElemTy
->isTokenTy() && !ElemTy
->isX86_AMXTy();
666 //===----------------------------------------------------------------------===//
667 // VectorType Implementation
668 //===----------------------------------------------------------------------===//
670 VectorType::VectorType(Type
*ElType
, unsigned EQ
, Type::TypeID TID
)
671 : Type(ElType
->getContext(), TID
), ContainedType(ElType
),
672 ElementQuantity(EQ
) {
673 ContainedTys
= &ContainedType
;
677 VectorType
*VectorType::get(Type
*ElementType
, ElementCount EC
) {
679 return ScalableVectorType::get(ElementType
, EC
.getKnownMinValue());
681 return FixedVectorType::get(ElementType
, EC
.getKnownMinValue());
684 bool VectorType::isValidElementType(Type
*ElemTy
) {
685 return ElemTy
->isIntegerTy() || ElemTy
->isFloatingPointTy() ||
686 ElemTy
->isPointerTy() || ElemTy
->getTypeID() == TypedPointerTyID
;
689 //===----------------------------------------------------------------------===//
690 // FixedVectorType Implementation
691 //===----------------------------------------------------------------------===//
693 FixedVectorType
*FixedVectorType::get(Type
*ElementType
, unsigned NumElts
) {
694 assert(NumElts
> 0 && "#Elements of a VectorType must be greater than 0");
695 assert(isValidElementType(ElementType
) && "Element type of a VectorType must "
696 "be an integer, floating point, or "
699 auto EC
= ElementCount::getFixed(NumElts
);
701 LLVMContextImpl
*pImpl
= ElementType
->getContext().pImpl
;
702 VectorType
*&Entry
= ElementType
->getContext()
703 .pImpl
->VectorTypes
[std::make_pair(ElementType
, EC
)];
706 Entry
= new (pImpl
->Alloc
) FixedVectorType(ElementType
, NumElts
);
707 return cast
<FixedVectorType
>(Entry
);
710 //===----------------------------------------------------------------------===//
711 // ScalableVectorType Implementation
712 //===----------------------------------------------------------------------===//
714 ScalableVectorType
*ScalableVectorType::get(Type
*ElementType
,
715 unsigned MinNumElts
) {
716 assert(MinNumElts
> 0 && "#Elements of a VectorType must be greater than 0");
717 assert(isValidElementType(ElementType
) && "Element type of a VectorType must "
718 "be an integer, floating point, or "
721 auto EC
= ElementCount::getScalable(MinNumElts
);
723 LLVMContextImpl
*pImpl
= ElementType
->getContext().pImpl
;
724 VectorType
*&Entry
= ElementType
->getContext()
725 .pImpl
->VectorTypes
[std::make_pair(ElementType
, EC
)];
728 Entry
= new (pImpl
->Alloc
) ScalableVectorType(ElementType
, MinNumElts
);
729 return cast
<ScalableVectorType
>(Entry
);
732 //===----------------------------------------------------------------------===//
733 // PointerType Implementation
734 //===----------------------------------------------------------------------===//
736 PointerType
*PointerType::get(Type
*EltTy
, unsigned AddressSpace
) {
737 assert(EltTy
&& "Can't get a pointer to <null> type!");
738 assert(isValidElementType(EltTy
) && "Invalid type for pointer element!");
740 // Automatically convert typed pointers to opaque pointers.
741 return get(EltTy
->getContext(), AddressSpace
);
744 PointerType
*PointerType::get(LLVMContext
&C
, unsigned AddressSpace
) {
745 LLVMContextImpl
*CImpl
= C
.pImpl
;
747 // Since AddressSpace #0 is the common case, we special case it.
748 PointerType
*&Entry
= AddressSpace
== 0 ? CImpl
->AS0PointerType
749 : CImpl
->PointerTypes
[AddressSpace
];
752 Entry
= new (CImpl
->Alloc
) PointerType(C
, AddressSpace
);
756 PointerType::PointerType(LLVMContext
&C
, unsigned AddrSpace
)
757 : Type(C
, PointerTyID
) {
758 setSubclassData(AddrSpace
);
761 PointerType
*Type::getPointerTo(unsigned AddrSpace
) const {
762 return PointerType::get(const_cast<Type
*>(this), AddrSpace
);
765 bool PointerType::isValidElementType(Type
*ElemTy
) {
766 return !ElemTy
->isVoidTy() && !ElemTy
->isLabelTy() &&
767 !ElemTy
->isMetadataTy() && !ElemTy
->isTokenTy() &&
768 !ElemTy
->isX86_AMXTy();
771 bool PointerType::isLoadableOrStorableType(Type
*ElemTy
) {
772 return isValidElementType(ElemTy
) && !ElemTy
->isFunctionTy();
775 //===----------------------------------------------------------------------===//
776 // TargetExtType Implementation
777 //===----------------------------------------------------------------------===//
779 TargetExtType::TargetExtType(LLVMContext
&C
, StringRef Name
,
780 ArrayRef
<Type
*> Types
, ArrayRef
<unsigned> Ints
)
781 : Type(C
, TargetExtTyID
), Name(C
.pImpl
->Saver
.save(Name
)) {
782 NumContainedTys
= Types
.size();
784 // Parameter storage immediately follows the class in allocation.
785 Type
**Params
= reinterpret_cast<Type
**>(this + 1);
786 ContainedTys
= Params
;
787 for (Type
*T
: Types
)
790 setSubclassData(Ints
.size());
791 unsigned *IntParamSpace
= reinterpret_cast<unsigned *>(Params
);
792 IntParams
= IntParamSpace
;
793 for (unsigned IntParam
: Ints
)
794 *IntParamSpace
++ = IntParam
;
797 TargetExtType
*TargetExtType::get(LLVMContext
&C
, StringRef Name
,
798 ArrayRef
<Type
*> Types
,
799 ArrayRef
<unsigned> Ints
) {
800 const TargetExtTypeKeyInfo::KeyTy
Key(Name
, Types
, Ints
);
802 // Since we only want to allocate a fresh target type in case none is found
803 // and we don't want to perform two lookups (one for checking if existent and
804 // one for inserting the newly allocated one), here we instead lookup based on
805 // Key and update the reference to the target type in-place to a newly
806 // allocated one if not found.
807 auto Insertion
= C
.pImpl
->TargetExtTypes
.insert_as(nullptr, Key
);
808 if (Insertion
.second
) {
809 // The target type was not found. Allocate one and update TargetExtTypes
811 TT
= (TargetExtType
*)C
.pImpl
->Alloc
.Allocate(
812 sizeof(TargetExtType
) + sizeof(Type
*) * Types
.size() +
813 sizeof(unsigned) * Ints
.size(),
814 alignof(TargetExtType
));
815 new (TT
) TargetExtType(C
, Name
, Types
, Ints
);
816 *Insertion
.first
= TT
;
818 // The target type was found. Just return it.
819 TT
= *Insertion
.first
;
825 struct TargetTypeInfo
{
829 template <typename
... ArgTys
>
830 TargetTypeInfo(Type
*LayoutType
, ArgTys
... Properties
)
831 : LayoutType(LayoutType
), Properties((0 | ... | Properties
)) {}
833 } // anonymous namespace
835 static TargetTypeInfo
getTargetTypeInfo(const TargetExtType
*Ty
) {
836 LLVMContext
&C
= Ty
->getContext();
837 StringRef Name
= Ty
->getName();
838 if (Name
.startswith("spirv."))
839 return TargetTypeInfo(PointerType::get(C
, 0), TargetExtType::HasZeroInit
,
840 TargetExtType::CanBeGlobal
);
842 // Opaque types in the AArch64 name space.
843 if (Name
== "aarch64.svcount")
844 return TargetTypeInfo(ScalableVectorType::get(Type::getInt1Ty(C
), 16));
846 return TargetTypeInfo(Type::getVoidTy(C
));
849 Type
*TargetExtType::getLayoutType() const {
850 return getTargetTypeInfo(this).LayoutType
;
853 bool TargetExtType::hasProperty(Property Prop
) const {
854 uint64_t Properties
= getTargetTypeInfo(this).Properties
;
855 return (Properties
& Prop
) == Prop
;