1 //===-- Value.cpp - Implement the Value class -----------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Value, ValueHandle, and User classes.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/IR/Value.h"
14 #include "LLVMContextImpl.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/IR/Constant.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/DebugInfo.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/DerivedUser.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/InstrTypes.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/TypedPointerType.h"
30 #include "llvm/IR/ValueHandle.h"
31 #include "llvm/IR/ValueSymbolTable.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
39 static cl::opt
<unsigned> UseDerefAtPointSemantics(
40 "use-dereferenceable-at-point-semantics", cl::Hidden
, cl::init(false),
41 cl::desc("Deref attributes and metadata infer facts at definition only"));
43 //===----------------------------------------------------------------------===//
45 //===----------------------------------------------------------------------===//
46 static inline Type
*checkType(Type
*Ty
) {
47 assert(Ty
&& "Value defined with a null type: Error!");
48 assert(!isa
<TypedPointerType
>(Ty
->getScalarType()) &&
49 "Cannot have values with typed pointer types");
53 Value::Value(Type
*ty
, unsigned scid
)
54 : VTy(checkType(ty
)), UseList(nullptr), SubclassID(scid
), HasValueHandle(0),
55 SubclassOptionalData(0), SubclassData(0), NumUserOperands(0),
56 IsUsedByMD(false), HasName(false), HasMetadata(false) {
57 static_assert(ConstantFirstVal
== 0, "!(SubclassID < ConstantFirstVal)");
58 // FIXME: Why isn't this in the subclass gunk??
59 // Note, we cannot call isa<CallInst> before the CallInst has been
62 if (SubclassID
>= InstructionVal
)
63 OpCode
= SubclassID
- InstructionVal
;
64 if (OpCode
== Instruction::Call
|| OpCode
== Instruction::Invoke
||
65 OpCode
== Instruction::CallBr
)
66 assert((VTy
->isFirstClassType() || VTy
->isVoidTy() || VTy
->isStructTy()) &&
67 "invalid CallBase type!");
68 else if (SubclassID
!= BasicBlockVal
&&
69 (/*SubclassID < ConstantFirstVal ||*/ SubclassID
> ConstantLastVal
))
70 assert((VTy
->isFirstClassType() || VTy
->isVoidTy()) &&
71 "Cannot create non-first-class values except for constants!");
72 static_assert(sizeof(Value
) == 2 * sizeof(void *) + 2 * sizeof(unsigned),
77 // Notify all ValueHandles (if present) that this value is going away.
79 ValueHandleBase::ValueIsDeleted(this);
80 if (isUsedByMetadata())
81 ValueAsMetadata::handleDeletion(this);
83 // Remove associated metadata from context.
87 #ifndef NDEBUG // Only in -g mode...
88 // Check to make sure that there are no uses of this value that are still
89 // around when the value is destroyed. If there are, then we have a dangling
90 // reference and something is wrong. This code is here to print out where
91 // the value is still being referenced.
93 // Note that use_empty() cannot be called here, as it eventually downcasts
94 // 'this' to GlobalValue (derived class of Value), but GlobalValue has already
95 // been destructed, so accessing it is UB.
97 if (!materialized_use_empty()) {
98 dbgs() << "While deleting: " << *VTy
<< " %" << getName() << "\n";
99 for (auto *U
: users())
100 dbgs() << "Use still stuck around after Def is destroyed:" << *U
<< "\n";
103 assert(materialized_use_empty() && "Uses remain when a value is destroyed!");
105 // If this value is named, destroy the name. This should not be in a symtab
110 void Value::deleteValue() {
111 switch (getValueID()) {
112 #define HANDLE_VALUE(Name) \
113 case Value::Name##Val: \
114 delete static_cast<Name *>(this); \
116 #define HANDLE_MEMORY_VALUE(Name) \
117 case Value::Name##Val: \
118 static_cast<DerivedUser *>(this)->DeleteValue( \
119 static_cast<DerivedUser *>(this)); \
121 #define HANDLE_CONSTANT(Name) \
122 case Value::Name##Val: \
123 llvm_unreachable("constants should be destroyed with destroyConstant"); \
125 #define HANDLE_INSTRUCTION(Name) /* nothing */
126 #include "llvm/IR/Value.def"
128 #define HANDLE_INST(N, OPC, CLASS) \
129 case Value::InstructionVal + Instruction::OPC: \
130 delete static_cast<CLASS *>(this); \
132 #define HANDLE_USER_INST(N, OPC, CLASS)
133 #include "llvm/IR/Instruction.def"
136 llvm_unreachable("attempting to delete unknown value kind");
140 void Value::destroyValueName() {
141 ValueName
*Name
= getValueName();
143 MallocAllocator Allocator
;
144 Name
->Destroy(Allocator
);
146 setValueName(nullptr);
149 bool Value::hasNUses(unsigned N
) const {
150 return hasNItems(use_begin(), use_end(), N
);
153 bool Value::hasNUsesOrMore(unsigned N
) const {
154 return hasNItemsOrMore(use_begin(), use_end(), N
);
157 bool Value::hasOneUser() const {
162 return std::equal(++user_begin(), user_end(), user_begin());
165 static bool isUnDroppableUser(const User
*U
) { return !U
->isDroppable(); }
167 Use
*Value::getSingleUndroppableUse() {
168 Use
*Result
= nullptr;
169 for (Use
&U
: uses()) {
170 if (!U
.getUser()->isDroppable()) {
179 User
*Value::getUniqueUndroppableUser() {
180 User
*Result
= nullptr;
181 for (auto *U
: users()) {
182 if (!U
->isDroppable()) {
183 if (Result
&& Result
!= U
)
191 bool Value::hasNUndroppableUses(unsigned int N
) const {
192 return hasNItems(user_begin(), user_end(), N
, isUnDroppableUser
);
195 bool Value::hasNUndroppableUsesOrMore(unsigned int N
) const {
196 return hasNItemsOrMore(user_begin(), user_end(), N
, isUnDroppableUser
);
199 void Value::dropDroppableUses(
200 llvm::function_ref
<bool(const Use
*)> ShouldDrop
) {
201 SmallVector
<Use
*, 8> ToBeEdited
;
202 for (Use
&U
: uses())
203 if (U
.getUser()->isDroppable() && ShouldDrop(&U
))
204 ToBeEdited
.push_back(&U
);
205 for (Use
*U
: ToBeEdited
)
206 dropDroppableUse(*U
);
209 void Value::dropDroppableUsesIn(User
&Usr
) {
210 assert(Usr
.isDroppable() && "Expected a droppable user!");
211 for (Use
&UsrOp
: Usr
.operands()) {
212 if (UsrOp
.get() == this)
213 dropDroppableUse(UsrOp
);
217 void Value::dropDroppableUse(Use
&U
) {
219 if (auto *Assume
= dyn_cast
<AssumeInst
>(U
.getUser())) {
220 unsigned OpNo
= U
.getOperandNo();
222 U
.set(ConstantInt::getTrue(Assume
->getContext()));
224 U
.set(UndefValue::get(U
.get()->getType()));
225 CallInst::BundleOpInfo
&BOI
= Assume
->getBundleOpInfoForOperand(OpNo
);
226 BOI
.Tag
= Assume
->getContext().pImpl
->getOrInsertBundleTag("ignore");
231 llvm_unreachable("unkown droppable use");
234 bool Value::isUsedInBasicBlock(const BasicBlock
*BB
) const {
235 // This can be computed either by scanning the instructions in BB, or by
236 // scanning the use list of this Value. Both lists can be very long, but
237 // usually one is quite short.
239 // Scan both lists simultaneously until one is exhausted. This limits the
240 // search to the shorter list.
241 BasicBlock::const_iterator BI
= BB
->begin(), BE
= BB
->end();
242 const_user_iterator UI
= user_begin(), UE
= user_end();
243 for (; BI
!= BE
&& UI
!= UE
; ++BI
, ++UI
) {
244 // Scan basic block: Check if this Value is used by the instruction at BI.
245 if (is_contained(BI
->operands(), this))
247 // Scan use list: Check if the use at UI is in BB.
248 const auto *User
= dyn_cast
<Instruction
>(*UI
);
249 if (User
&& User
->getParent() == BB
)
255 unsigned Value::getNumUses() const {
256 return (unsigned)std::distance(use_begin(), use_end());
259 static bool getSymTab(Value
*V
, ValueSymbolTable
*&ST
) {
261 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
262 if (BasicBlock
*P
= I
->getParent())
263 if (Function
*PP
= P
->getParent())
264 ST
= PP
->getValueSymbolTable();
265 } else if (BasicBlock
*BB
= dyn_cast
<BasicBlock
>(V
)) {
266 if (Function
*P
= BB
->getParent())
267 ST
= P
->getValueSymbolTable();
268 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
269 if (Module
*P
= GV
->getParent())
270 ST
= &P
->getValueSymbolTable();
271 } else if (Argument
*A
= dyn_cast
<Argument
>(V
)) {
272 if (Function
*P
= A
->getParent())
273 ST
= P
->getValueSymbolTable();
275 assert(isa
<Constant
>(V
) && "Unknown value type!");
276 return true; // no name is setable for this.
281 ValueName
*Value::getValueName() const {
282 if (!HasName
) return nullptr;
284 LLVMContext
&Ctx
= getContext();
285 auto I
= Ctx
.pImpl
->ValueNames
.find(this);
286 assert(I
!= Ctx
.pImpl
->ValueNames
.end() &&
287 "No name entry found!");
292 void Value::setValueName(ValueName
*VN
) {
293 LLVMContext
&Ctx
= getContext();
295 assert(HasName
== Ctx
.pImpl
->ValueNames
.count(this) &&
296 "HasName bit out of sync!");
300 Ctx
.pImpl
->ValueNames
.erase(this);
306 Ctx
.pImpl
->ValueNames
[this] = VN
;
309 StringRef
Value::getName() const {
310 // Make sure the empty string is still a C string. For historical reasons,
311 // some clients want to call .data() on the result and expect it to be null
314 return StringRef("", 0);
315 return getValueName()->getKey();
318 void Value::setNameImpl(const Twine
&NewName
) {
320 !getContext().shouldDiscardValueNames() || isa
<GlobalValue
>(this);
322 // Fast-path: LLVMContext can be set to strip out non-GlobalValue names
323 // and there is no need to delete the old name.
324 if (!NeedNewName
&& !hasName())
327 // Fast path for common IRBuilder case of setName("") when there is no name.
328 if (NewName
.isTriviallyEmpty() && !hasName())
331 SmallString
<256> NameData
;
332 StringRef NameRef
= NeedNewName
? NewName
.toStringRef(NameData
) : "";
333 assert(NameRef
.find_first_of(0) == StringRef::npos
&&
334 "Null bytes are not allowed in names");
336 // Name isn't changing?
337 if (getName() == NameRef
)
340 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
342 // Get the symbol table to update for this object.
343 ValueSymbolTable
*ST
;
344 if (getSymTab(this, ST
))
345 return; // Cannot set a name on this value (e.g. constant).
347 if (!ST
) { // No symbol table to update? Just do the change.
348 // NOTE: Could optimize for the case the name is shrinking to not deallocate
352 if (!NameRef
.empty()) {
353 // Create the new name.
355 MallocAllocator Allocator
;
356 setValueName(ValueName::create(NameRef
, Allocator
));
357 getValueName()->setValue(this);
362 // NOTE: Could optimize for the case the name is shrinking to not deallocate
366 ST
->removeValueName(getValueName());
373 // Name is changing to something new.
375 setValueName(ST
->createValueName(NameRef
, this));
378 void Value::setName(const Twine
&NewName
) {
379 setNameImpl(NewName
);
380 if (Function
*F
= dyn_cast
<Function
>(this))
381 F
->recalculateIntrinsicID();
384 void Value::takeName(Value
*V
) {
385 assert(V
!= this && "Illegal call to this->takeName(this)!");
386 ValueSymbolTable
*ST
= nullptr;
387 // If this value has a name, drop it.
389 // Get the symtab this is in.
390 if (getSymTab(this, ST
)) {
391 // We can't set a name on this value, but we need to clear V's name if
393 if (V
->hasName()) V
->setName("");
394 return; // Cannot set a name on this value (e.g. constant).
399 ST
->removeValueName(getValueName());
403 // Now we know that this has no name.
405 // If V has no name either, we're done.
406 if (!V
->hasName()) return;
408 // Get this's symtab if we didn't before.
410 if (getSymTab(this, ST
)) {
413 return; // Cannot set a name on this value (e.g. constant).
417 // Get V's ST, this should always succeed, because V has a name.
418 ValueSymbolTable
*VST
;
419 bool Failure
= getSymTab(V
, VST
);
420 assert(!Failure
&& "V has a name, so it should have a ST!"); (void)Failure
;
422 // If these values are both in the same symtab, we can do this very fast.
423 // This works even if both values have no symtab yet.
426 setValueName(V
->getValueName());
427 V
->setValueName(nullptr);
428 getValueName()->setValue(this);
432 // Otherwise, things are slightly more complex. Remove V's name from VST and
433 // then reinsert it into ST.
436 VST
->removeValueName(V
->getValueName());
437 setValueName(V
->getValueName());
438 V
->setValueName(nullptr);
439 getValueName()->setValue(this);
442 ST
->reinsertValue(this);
446 std::string
Value::getNameOrAsOperand() const {
447 if (!getName().empty())
448 return std::string(getName());
451 raw_string_ostream
OS(BBName
);
452 printAsOperand(OS
, false);
457 void Value::assertModuleIsMaterializedImpl() const {
459 const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(this);
462 const Module
*M
= GV
->getParent();
465 assert(M
->isMaterialized());
470 static bool contains(SmallPtrSetImpl
<ConstantExpr
*> &Cache
, ConstantExpr
*Expr
,
472 if (!Cache
.insert(Expr
).second
)
475 for (auto &O
: Expr
->operands()) {
478 auto *CE
= dyn_cast
<ConstantExpr
>(O
);
481 if (contains(Cache
, CE
, C
))
487 static bool contains(Value
*Expr
, Value
*V
) {
491 auto *C
= dyn_cast
<Constant
>(V
);
495 auto *CE
= dyn_cast
<ConstantExpr
>(Expr
);
499 SmallPtrSet
<ConstantExpr
*, 4> Cache
;
500 return contains(Cache
, CE
, C
);
504 void Value::doRAUW(Value
*New
, ReplaceMetadataUses ReplaceMetaUses
) {
505 assert(New
&& "Value::replaceAllUsesWith(<null>) is invalid!");
506 assert(!contains(New
, this) &&
507 "this->replaceAllUsesWith(expr(this)) is NOT valid!");
508 assert(New
->getType() == getType() &&
509 "replaceAllUses of value with new value of different type!");
511 // Notify all ValueHandles (if present) that this value is going away.
513 ValueHandleBase::ValueIsRAUWd(this, New
);
514 if (ReplaceMetaUses
== ReplaceMetadataUses::Yes
&& isUsedByMetadata())
515 ValueAsMetadata::handleRAUW(this, New
);
517 while (!materialized_use_empty()) {
519 // Must handle Constants specially, we cannot call replaceUsesOfWith on a
520 // constant because they are uniqued.
521 if (auto *C
= dyn_cast
<Constant
>(U
.getUser())) {
522 if (!isa
<GlobalValue
>(C
)) {
523 C
->handleOperandChange(this, New
);
531 if (BasicBlock
*BB
= dyn_cast
<BasicBlock
>(this))
532 BB
->replaceSuccessorsPhiUsesWith(cast
<BasicBlock
>(New
));
535 void Value::replaceAllUsesWith(Value
*New
) {
536 doRAUW(New
, ReplaceMetadataUses::Yes
);
539 void Value::replaceNonMetadataUsesWith(Value
*New
) {
540 doRAUW(New
, ReplaceMetadataUses::No
);
543 void Value::replaceUsesWithIf(Value
*New
,
544 llvm::function_ref
<bool(Use
&U
)> ShouldReplace
) {
545 assert(New
&& "Value::replaceUsesWithIf(<null>) is invalid!");
546 assert(New
->getType() == getType() &&
547 "replaceUses of value with new value of different type!");
549 SmallVector
<TrackingVH
<Constant
>, 8> Consts
;
550 SmallPtrSet
<Constant
*, 8> Visited
;
552 for (Use
&U
: llvm::make_early_inc_range(uses())) {
553 if (!ShouldReplace(U
))
555 // Must handle Constants specially, we cannot call replaceUsesOfWith on a
556 // constant because they are uniqued.
557 if (auto *C
= dyn_cast
<Constant
>(U
.getUser())) {
558 if (!isa
<GlobalValue
>(C
)) {
559 if (Visited
.insert(C
).second
)
560 Consts
.push_back(TrackingVH
<Constant
>(C
));
567 while (!Consts
.empty()) {
568 // FIXME: handleOperandChange() updates all the uses in a given Constant,
569 // not just the one passed to ShouldReplace
570 Consts
.pop_back_val()->handleOperandChange(this, New
);
574 /// Replace llvm.dbg.* uses of MetadataAsValue(ValueAsMetadata(V)) outside BB
576 static void replaceDbgUsesOutsideBlock(Value
*V
, Value
*New
, BasicBlock
*BB
) {
577 SmallVector
<DbgVariableIntrinsic
*> DbgUsers
;
578 findDbgUsers(DbgUsers
, V
);
579 for (auto *DVI
: DbgUsers
) {
580 if (DVI
->getParent() != BB
)
581 DVI
->replaceVariableLocationOp(V
, New
);
585 // Like replaceAllUsesWith except it does not handle constants or basic blocks.
586 // This routine leaves uses within BB.
587 void Value::replaceUsesOutsideBlock(Value
*New
, BasicBlock
*BB
) {
588 assert(New
&& "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
589 assert(!contains(New
, this) &&
590 "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
591 assert(New
->getType() == getType() &&
592 "replaceUses of value with new value of different type!");
593 assert(BB
&& "Basic block that may contain a use of 'New' must be defined\n");
595 replaceDbgUsesOutsideBlock(this, New
, BB
);
596 replaceUsesWithIf(New
, [BB
](Use
&U
) {
597 auto *I
= dyn_cast
<Instruction
>(U
.getUser());
598 // Don't replace if it's an instruction in the BB basic block.
599 return !I
|| I
->getParent() != BB
;
604 // Various metrics for how much to strip off of pointers.
605 enum PointerStripKind
{
607 PSK_ZeroIndicesAndAliases
,
608 PSK_ZeroIndicesSameRepresentation
,
609 PSK_ForAliasAnalysis
,
610 PSK_InBoundsConstantIndices
,
614 template <PointerStripKind StripKind
> static void NoopCallback(const Value
*) {}
616 template <PointerStripKind StripKind
>
617 static const Value
*stripPointerCastsAndOffsets(
619 function_ref
<void(const Value
*)> Func
= NoopCallback
<StripKind
>) {
620 if (!V
->getType()->isPointerTy())
623 // Even though we don't look through PHI nodes, we could be called on an
624 // instruction in an unreachable block, which may be on a cycle.
625 SmallPtrSet
<const Value
*, 4> Visited
;
630 if (auto *GEP
= dyn_cast
<GEPOperator
>(V
)) {
632 case PSK_ZeroIndices
:
633 case PSK_ZeroIndicesAndAliases
:
634 case PSK_ZeroIndicesSameRepresentation
:
635 case PSK_ForAliasAnalysis
:
636 if (!GEP
->hasAllZeroIndices())
639 case PSK_InBoundsConstantIndices
:
640 if (!GEP
->hasAllConstantIndices())
644 if (!GEP
->isInBounds())
648 V
= GEP
->getPointerOperand();
649 } else if (Operator::getOpcode(V
) == Instruction::BitCast
) {
650 V
= cast
<Operator
>(V
)->getOperand(0);
651 if (!V
->getType()->isPointerTy())
653 } else if (StripKind
!= PSK_ZeroIndicesSameRepresentation
&&
654 Operator::getOpcode(V
) == Instruction::AddrSpaceCast
) {
655 // TODO: If we know an address space cast will not change the
656 // representation we could look through it here as well.
657 V
= cast
<Operator
>(V
)->getOperand(0);
658 } else if (StripKind
== PSK_ZeroIndicesAndAliases
&& isa
<GlobalAlias
>(V
)) {
659 V
= cast
<GlobalAlias
>(V
)->getAliasee();
660 } else if (StripKind
== PSK_ForAliasAnalysis
&& isa
<PHINode
>(V
) &&
661 cast
<PHINode
>(V
)->getNumIncomingValues() == 1) {
662 V
= cast
<PHINode
>(V
)->getIncomingValue(0);
664 if (const auto *Call
= dyn_cast
<CallBase
>(V
)) {
665 if (const Value
*RV
= Call
->getReturnedArgOperand()) {
669 // The result of launder.invariant.group must alias it's argument,
670 // but it can't be marked with returned attribute, that's why it needs
672 if (StripKind
== PSK_ForAliasAnalysis
&&
673 (Call
->getIntrinsicID() == Intrinsic::launder_invariant_group
||
674 Call
->getIntrinsicID() == Intrinsic::strip_invariant_group
)) {
675 V
= Call
->getArgOperand(0);
681 assert(V
->getType()->isPointerTy() && "Unexpected operand type!");
682 } while (Visited
.insert(V
).second
);
686 } // end anonymous namespace
688 const Value
*Value::stripPointerCasts() const {
689 return stripPointerCastsAndOffsets
<PSK_ZeroIndices
>(this);
692 const Value
*Value::stripPointerCastsAndAliases() const {
693 return stripPointerCastsAndOffsets
<PSK_ZeroIndicesAndAliases
>(this);
696 const Value
*Value::stripPointerCastsSameRepresentation() const {
697 return stripPointerCastsAndOffsets
<PSK_ZeroIndicesSameRepresentation
>(this);
700 const Value
*Value::stripInBoundsConstantOffsets() const {
701 return stripPointerCastsAndOffsets
<PSK_InBoundsConstantIndices
>(this);
704 const Value
*Value::stripPointerCastsForAliasAnalysis() const {
705 return stripPointerCastsAndOffsets
<PSK_ForAliasAnalysis
>(this);
708 const Value
*Value::stripAndAccumulateConstantOffsets(
709 const DataLayout
&DL
, APInt
&Offset
, bool AllowNonInbounds
,
710 bool AllowInvariantGroup
,
711 function_ref
<bool(Value
&, APInt
&)> ExternalAnalysis
) const {
712 if (!getType()->isPtrOrPtrVectorTy())
715 unsigned BitWidth
= Offset
.getBitWidth();
716 assert(BitWidth
== DL
.getIndexTypeSizeInBits(getType()) &&
717 "The offset bit width does not match the DL specification.");
719 // Even though we don't look through PHI nodes, we could be called on an
720 // instruction in an unreachable block, which may be on a cycle.
721 SmallPtrSet
<const Value
*, 4> Visited
;
722 Visited
.insert(this);
723 const Value
*V
= this;
725 if (auto *GEP
= dyn_cast
<GEPOperator
>(V
)) {
726 // If in-bounds was requested, we do not strip non-in-bounds GEPs.
727 if (!AllowNonInbounds
&& !GEP
->isInBounds())
730 // If one of the values we have visited is an addrspacecast, then
731 // the pointer type of this GEP may be different from the type
732 // of the Ptr parameter which was passed to this function. This
733 // means when we construct GEPOffset, we need to use the size
734 // of GEP's pointer type rather than the size of the original
736 APInt
GEPOffset(DL
.getIndexTypeSizeInBits(V
->getType()), 0);
737 if (!GEP
->accumulateConstantOffset(DL
, GEPOffset
, ExternalAnalysis
))
740 // Stop traversal if the pointer offset wouldn't fit in the bit-width
741 // provided by the Offset argument. This can happen due to AddrSpaceCast
743 if (GEPOffset
.getSignificantBits() > BitWidth
)
746 // External Analysis can return a result higher/lower than the value
747 // represents. We need to detect overflow/underflow.
748 APInt GEPOffsetST
= GEPOffset
.sextOrTrunc(BitWidth
);
749 if (!ExternalAnalysis
) {
750 Offset
+= GEPOffsetST
;
752 bool Overflow
= false;
753 APInt OldOffset
= Offset
;
754 Offset
= Offset
.sadd_ov(GEPOffsetST
, Overflow
);
760 V
= GEP
->getPointerOperand();
761 } else if (Operator::getOpcode(V
) == Instruction::BitCast
||
762 Operator::getOpcode(V
) == Instruction::AddrSpaceCast
) {
763 V
= cast
<Operator
>(V
)->getOperand(0);
764 } else if (auto *GA
= dyn_cast
<GlobalAlias
>(V
)) {
765 if (!GA
->isInterposable())
766 V
= GA
->getAliasee();
767 } else if (const auto *Call
= dyn_cast
<CallBase
>(V
)) {
768 if (const Value
*RV
= Call
->getReturnedArgOperand())
770 if (AllowInvariantGroup
&& Call
->isLaunderOrStripInvariantGroup())
771 V
= Call
->getArgOperand(0);
773 assert(V
->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
774 } while (Visited
.insert(V
).second
);
780 Value::stripInBoundsOffsets(function_ref
<void(const Value
*)> Func
) const {
781 return stripPointerCastsAndOffsets
<PSK_InBounds
>(this, Func
);
784 bool Value::canBeFreed() const {
785 assert(getType()->isPointerTy());
787 // Cases that can simply never be deallocated
788 // *) Constants aren't allocated per se, thus not deallocated either.
789 if (isa
<Constant
>(this))
792 // Handle byval/byref/sret/inalloca/preallocated arguments. The storage
793 // lifetime is guaranteed to be longer than the callee's lifetime.
794 if (auto *A
= dyn_cast
<Argument
>(this)) {
795 if (A
->hasPointeeInMemoryValueAttr())
797 // A pointer to an object in a function which neither frees, nor can arrange
798 // for another thread to free on its behalf, can not be freed in the scope
799 // of the function. Note that this logic is restricted to memory
800 // allocations in existance before the call; a nofree function *is* allowed
801 // to free memory it allocated.
802 const Function
*F
= A
->getParent();
803 if (F
->doesNotFreeMemory() && F
->hasNoSync())
807 const Function
*F
= nullptr;
808 if (auto *I
= dyn_cast
<Instruction
>(this))
809 F
= I
->getFunction();
810 if (auto *A
= dyn_cast
<Argument
>(this))
816 // With garbage collection, deallocation typically occurs solely at or after
817 // safepoints. If we're compiling for a collector which uses the
818 // gc.statepoint infrastructure, safepoints aren't explicitly present
819 // in the IR until after lowering from abstract to physical machine model.
820 // The collector could chose to mix explicit deallocation and gc'd objects
821 // which is why we need the explicit opt in on a per collector basis.
825 const auto &GCName
= F
->getGC();
826 if (GCName
== "statepoint-example") {
827 auto *PT
= cast
<PointerType
>(this->getType());
828 if (PT
->getAddressSpace() != 1)
829 // For the sake of this example GC, we arbitrarily pick addrspace(1) as
830 // our GC managed heap. This must match the same check in
831 // RewriteStatepointsForGC (and probably needs better factored.)
834 // It is cheaper to scan for a declaration than to scan for a use in this
835 // function. Note that gc.statepoint is a type overloaded function so the
836 // usual trick of requesting declaration of the intrinsic from the module
838 for (auto &Fn
: *F
->getParent())
839 if (Fn
.getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)
846 uint64_t Value::getPointerDereferenceableBytes(const DataLayout
&DL
,
848 bool &CanBeFreed
) const {
849 assert(getType()->isPointerTy() && "must be pointer");
851 uint64_t DerefBytes
= 0;
853 CanBeFreed
= UseDerefAtPointSemantics
&& canBeFreed();
854 if (const Argument
*A
= dyn_cast
<Argument
>(this)) {
855 DerefBytes
= A
->getDereferenceableBytes();
856 if (DerefBytes
== 0) {
857 // Handle byval/byref/inalloca/preallocated arguments
858 if (Type
*ArgMemTy
= A
->getPointeeInMemoryValueType()) {
859 if (ArgMemTy
->isSized()) {
860 // FIXME: Why isn't this the type alloc size?
861 DerefBytes
= DL
.getTypeStoreSize(ArgMemTy
).getKnownMinValue();
866 if (DerefBytes
== 0) {
867 DerefBytes
= A
->getDereferenceableOrNullBytes();
870 } else if (const auto *Call
= dyn_cast
<CallBase
>(this)) {
871 DerefBytes
= Call
->getRetDereferenceableBytes();
872 if (DerefBytes
== 0) {
873 DerefBytes
= Call
->getRetDereferenceableOrNullBytes();
876 } else if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(this)) {
877 if (MDNode
*MD
= LI
->getMetadata(LLVMContext::MD_dereferenceable
)) {
878 ConstantInt
*CI
= mdconst::extract
<ConstantInt
>(MD
->getOperand(0));
879 DerefBytes
= CI
->getLimitedValue();
881 if (DerefBytes
== 0) {
883 LI
->getMetadata(LLVMContext::MD_dereferenceable_or_null
)) {
884 ConstantInt
*CI
= mdconst::extract
<ConstantInt
>(MD
->getOperand(0));
885 DerefBytes
= CI
->getLimitedValue();
889 } else if (auto *IP
= dyn_cast
<IntToPtrInst
>(this)) {
890 if (MDNode
*MD
= IP
->getMetadata(LLVMContext::MD_dereferenceable
)) {
891 ConstantInt
*CI
= mdconst::extract
<ConstantInt
>(MD
->getOperand(0));
892 DerefBytes
= CI
->getLimitedValue();
894 if (DerefBytes
== 0) {
896 IP
->getMetadata(LLVMContext::MD_dereferenceable_or_null
)) {
897 ConstantInt
*CI
= mdconst::extract
<ConstantInt
>(MD
->getOperand(0));
898 DerefBytes
= CI
->getLimitedValue();
902 } else if (auto *AI
= dyn_cast
<AllocaInst
>(this)) {
903 if (!AI
->isArrayAllocation()) {
905 DL
.getTypeStoreSize(AI
->getAllocatedType()).getKnownMinValue();
909 } else if (auto *GV
= dyn_cast
<GlobalVariable
>(this)) {
910 if (GV
->getValueType()->isSized() && !GV
->hasExternalWeakLinkage()) {
911 // TODO: Don't outright reject hasExternalWeakLinkage but set the
913 DerefBytes
= DL
.getTypeStoreSize(GV
->getValueType()).getFixedValue();
921 Align
Value::getPointerAlignment(const DataLayout
&DL
) const {
922 assert(getType()->isPointerTy() && "must be pointer");
923 if (auto *GO
= dyn_cast
<GlobalObject
>(this)) {
924 if (isa
<Function
>(GO
)) {
925 Align FunctionPtrAlign
= DL
.getFunctionPtrAlign().valueOrOne();
926 switch (DL
.getFunctionPtrAlignType()) {
927 case DataLayout::FunctionPtrAlignType::Independent
:
928 return FunctionPtrAlign
;
929 case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign
:
930 return std::max(FunctionPtrAlign
, GO
->getAlign().valueOrOne());
932 llvm_unreachable("Unhandled FunctionPtrAlignType");
934 const MaybeAlign
Alignment(GO
->getAlign());
936 if (auto *GVar
= dyn_cast
<GlobalVariable
>(GO
)) {
937 Type
*ObjectType
= GVar
->getValueType();
938 if (ObjectType
->isSized()) {
939 // If the object is defined in the current Module, we'll be giving
940 // it the preferred alignment. Otherwise, we have to assume that it
941 // may only have the minimum ABI alignment.
942 if (GVar
->isStrongDefinitionForLinker())
943 return DL
.getPreferredAlign(GVar
);
945 return DL
.getABITypeAlign(ObjectType
);
949 return Alignment
.valueOrOne();
950 } else if (const Argument
*A
= dyn_cast
<Argument
>(this)) {
951 const MaybeAlign Alignment
= A
->getParamAlign();
952 if (!Alignment
&& A
->hasStructRetAttr()) {
953 // An sret parameter has at least the ABI alignment of the return type.
954 Type
*EltTy
= A
->getParamStructRetType();
955 if (EltTy
->isSized())
956 return DL
.getABITypeAlign(EltTy
);
958 return Alignment
.valueOrOne();
959 } else if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(this)) {
960 return AI
->getAlign();
961 } else if (const auto *Call
= dyn_cast
<CallBase
>(this)) {
962 MaybeAlign Alignment
= Call
->getRetAlign();
963 if (!Alignment
&& Call
->getCalledFunction())
964 Alignment
= Call
->getCalledFunction()->getAttributes().getRetAlignment();
965 return Alignment
.valueOrOne();
966 } else if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(this)) {
967 if (MDNode
*MD
= LI
->getMetadata(LLVMContext::MD_align
)) {
968 ConstantInt
*CI
= mdconst::extract
<ConstantInt
>(MD
->getOperand(0));
969 return Align(CI
->getLimitedValue());
971 } else if (auto *CstPtr
= dyn_cast
<Constant
>(this)) {
972 // Strip pointer casts to avoid creating unnecessary ptrtoint expression
973 // if the only "reduction" is combining a bitcast + ptrtoint.
974 CstPtr
= CstPtr
->stripPointerCasts();
975 if (auto *CstInt
= dyn_cast_or_null
<ConstantInt
>(ConstantExpr::getPtrToInt(
976 const_cast<Constant
*>(CstPtr
), DL
.getIntPtrType(getType()),
977 /*OnlyIfReduced=*/true))) {
978 size_t TrailingZeros
= CstInt
->getValue().countr_zero();
979 // While the actual alignment may be large, elsewhere we have
980 // an arbitrary upper alignmet limit, so let's clamp to it.
981 return Align(TrailingZeros
< Value::MaxAlignmentExponent
982 ? uint64_t(1) << TrailingZeros
983 : Value::MaximumAlignment
);
989 static std::optional
<int64_t>
990 getOffsetFromIndex(const GEPOperator
*GEP
, unsigned Idx
, const DataLayout
&DL
) {
991 // Skip over the first indices.
992 gep_type_iterator GTI
= gep_type_begin(GEP
);
993 for (unsigned i
= 1; i
!= Idx
; ++i
, ++GTI
)
996 // Compute the offset implied by the rest of the indices.
998 for (unsigned i
= Idx
, e
= GEP
->getNumOperands(); i
!= e
; ++i
, ++GTI
) {
999 ConstantInt
*OpC
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
));
1001 return std::nullopt
;
1003 continue; // No offset.
1005 // Handle struct indices, which add their field offset to the pointer.
1006 if (StructType
*STy
= GTI
.getStructTypeOrNull()) {
1007 Offset
+= DL
.getStructLayout(STy
)->getElementOffset(OpC
->getZExtValue());
1011 // Otherwise, we have a sequential type like an array or fixed-length
1012 // vector. Multiply the index by the ElementSize.
1013 TypeSize Size
= DL
.getTypeAllocSize(GTI
.getIndexedType());
1014 if (Size
.isScalable())
1015 return std::nullopt
;
1016 Offset
+= Size
.getFixedValue() * OpC
->getSExtValue();
1022 std::optional
<int64_t> Value::getPointerOffsetFrom(const Value
*Other
,
1023 const DataLayout
&DL
) const {
1024 const Value
*Ptr1
= Other
;
1025 const Value
*Ptr2
= this;
1026 APInt
Offset1(DL
.getIndexTypeSizeInBits(Ptr1
->getType()), 0);
1027 APInt
Offset2(DL
.getIndexTypeSizeInBits(Ptr2
->getType()), 0);
1028 Ptr1
= Ptr1
->stripAndAccumulateConstantOffsets(DL
, Offset1
, true);
1029 Ptr2
= Ptr2
->stripAndAccumulateConstantOffsets(DL
, Offset2
, true);
1031 // Handle the trivial case first.
1033 return Offset2
.getSExtValue() - Offset1
.getSExtValue();
1035 const GEPOperator
*GEP1
= dyn_cast
<GEPOperator
>(Ptr1
);
1036 const GEPOperator
*GEP2
= dyn_cast
<GEPOperator
>(Ptr2
);
1038 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
1039 // base. After that base, they may have some number of common (and
1040 // potentially variable) indices. After that they handle some constant
1041 // offset, which determines their offset from each other. At this point, we
1042 // handle no other case.
1043 if (!GEP1
|| !GEP2
|| GEP1
->getOperand(0) != GEP2
->getOperand(0) ||
1044 GEP1
->getSourceElementType() != GEP2
->getSourceElementType())
1045 return std::nullopt
;
1047 // Skip any common indices and track the GEP types.
1049 for (; Idx
!= GEP1
->getNumOperands() && Idx
!= GEP2
->getNumOperands(); ++Idx
)
1050 if (GEP1
->getOperand(Idx
) != GEP2
->getOperand(Idx
))
1053 auto IOffset1
= getOffsetFromIndex(GEP1
, Idx
, DL
);
1054 auto IOffset2
= getOffsetFromIndex(GEP2
, Idx
, DL
);
1055 if (!IOffset1
|| !IOffset2
)
1056 return std::nullopt
;
1057 return *IOffset2
- *IOffset1
+ Offset2
.getSExtValue() -
1058 Offset1
.getSExtValue();
1061 const Value
*Value::DoPHITranslation(const BasicBlock
*CurBB
,
1062 const BasicBlock
*PredBB
) const {
1063 auto *PN
= dyn_cast
<PHINode
>(this);
1064 if (PN
&& PN
->getParent() == CurBB
)
1065 return PN
->getIncomingValueForBlock(PredBB
);
1069 LLVMContext
&Value::getContext() const { return VTy
->getContext(); }
1071 void Value::reverseUseList() {
1072 if (!UseList
|| !UseList
->Next
)
1073 // No need to reverse 0 or 1 uses.
1076 Use
*Head
= UseList
;
1077 Use
*Current
= UseList
->Next
;
1078 Head
->Next
= nullptr;
1080 Use
*Next
= Current
->Next
;
1081 Current
->Next
= Head
;
1082 Head
->Prev
= &Current
->Next
;
1087 Head
->Prev
= &UseList
;
1090 bool Value::isSwiftError() const {
1091 auto *Arg
= dyn_cast
<Argument
>(this);
1093 return Arg
->hasSwiftErrorAttr();
1094 auto *Alloca
= dyn_cast
<AllocaInst
>(this);
1097 return Alloca
->isSwiftError();
1100 //===----------------------------------------------------------------------===//
1101 // ValueHandleBase Class
1102 //===----------------------------------------------------------------------===//
1104 void ValueHandleBase::AddToExistingUseList(ValueHandleBase
**List
) {
1105 assert(List
&& "Handle list is null?");
1107 // Splice ourselves into the list.
1112 Next
->setPrevPtr(&Next
);
1113 assert(getValPtr() == Next
->getValPtr() && "Added to wrong list?");
1117 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase
*List
) {
1118 assert(List
&& "Must insert after existing node");
1121 setPrevPtr(&List
->Next
);
1124 Next
->setPrevPtr(&Next
);
1127 void ValueHandleBase::AddToUseList() {
1128 assert(getValPtr() && "Null pointer doesn't have a use list!");
1130 LLVMContextImpl
*pImpl
= getValPtr()->getContext().pImpl
;
1132 if (getValPtr()->HasValueHandle
) {
1133 // If this value already has a ValueHandle, then it must be in the
1134 // ValueHandles map already.
1135 ValueHandleBase
*&Entry
= pImpl
->ValueHandles
[getValPtr()];
1136 assert(Entry
&& "Value doesn't have any handles?");
1137 AddToExistingUseList(&Entry
);
1141 // Ok, it doesn't have any handles yet, so we must insert it into the
1142 // DenseMap. However, doing this insertion could cause the DenseMap to
1143 // reallocate itself, which would invalidate all of the PrevP pointers that
1144 // point into the old table. Handle this by checking for reallocation and
1145 // updating the stale pointers only if needed.
1146 DenseMap
<Value
*, ValueHandleBase
*> &Handles
= pImpl
->ValueHandles
;
1147 const void *OldBucketPtr
= Handles
.getPointerIntoBucketsArray();
1149 ValueHandleBase
*&Entry
= Handles
[getValPtr()];
1150 assert(!Entry
&& "Value really did already have handles?");
1151 AddToExistingUseList(&Entry
);
1152 getValPtr()->HasValueHandle
= true;
1154 // If reallocation didn't happen or if this was the first insertion, don't
1156 if (Handles
.isPointerIntoBucketsArray(OldBucketPtr
) ||
1157 Handles
.size() == 1) {
1161 // Okay, reallocation did happen. Fix the Prev Pointers.
1162 for (DenseMap
<Value
*, ValueHandleBase
*>::iterator I
= Handles
.begin(),
1163 E
= Handles
.end(); I
!= E
; ++I
) {
1164 assert(I
->second
&& I
->first
== I
->second
->getValPtr() &&
1165 "List invariant broken!");
1166 I
->second
->setPrevPtr(&I
->second
);
1170 void ValueHandleBase::RemoveFromUseList() {
1171 assert(getValPtr() && getValPtr()->HasValueHandle
&&
1172 "Pointer doesn't have a use list!");
1174 // Unlink this from its use list.
1175 ValueHandleBase
**PrevPtr
= getPrevPtr();
1176 assert(*PrevPtr
== this && "List invariant broken");
1180 assert(Next
->getPrevPtr() == &Next
&& "List invariant broken");
1181 Next
->setPrevPtr(PrevPtr
);
1185 // If the Next pointer was null, then it is possible that this was the last
1186 // ValueHandle watching VP. If so, delete its entry from the ValueHandles
1188 LLVMContextImpl
*pImpl
= getValPtr()->getContext().pImpl
;
1189 DenseMap
<Value
*, ValueHandleBase
*> &Handles
= pImpl
->ValueHandles
;
1190 if (Handles
.isPointerIntoBucketsArray(PrevPtr
)) {
1191 Handles
.erase(getValPtr());
1192 getValPtr()->HasValueHandle
= false;
1196 void ValueHandleBase::ValueIsDeleted(Value
*V
) {
1197 assert(V
->HasValueHandle
&& "Should only be called if ValueHandles present");
1199 // Get the linked list base, which is guaranteed to exist since the
1200 // HasValueHandle flag is set.
1201 LLVMContextImpl
*pImpl
= V
->getContext().pImpl
;
1202 ValueHandleBase
*Entry
= pImpl
->ValueHandles
[V
];
1203 assert(Entry
&& "Value bit set but no entries exist");
1205 // We use a local ValueHandleBase as an iterator so that ValueHandles can add
1206 // and remove themselves from the list without breaking our iteration. This
1207 // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
1208 // Note that we deliberately do not the support the case when dropping a value
1209 // handle results in a new value handle being permanently added to the list
1210 // (as might occur in theory for CallbackVH's): the new value handle will not
1211 // be processed and the checking code will mete out righteous punishment if
1212 // the handle is still present once we have finished processing all the other
1213 // value handles (it is fine to momentarily add then remove a value handle).
1214 for (ValueHandleBase
Iterator(Assert
, *Entry
); Entry
; Entry
= Iterator
.Next
) {
1215 Iterator
.RemoveFromUseList();
1216 Iterator
.AddToExistingUseListAfter(Entry
);
1217 assert(Entry
->Next
== &Iterator
&& "Loop invariant broken.");
1219 switch (Entry
->getKind()) {
1224 // WeakTracking and Weak just go to null, which unlinks them
1226 Entry
->operator=(nullptr);
1229 // Forward to the subclass's implementation.
1230 static_cast<CallbackVH
*>(Entry
)->deleted();
1235 // All callbacks, weak references, and assertingVHs should be dropped by now.
1236 if (V
->HasValueHandle
) {
1237 #ifndef NDEBUG // Only in +Asserts mode...
1238 dbgs() << "While deleting: " << *V
->getType() << " %" << V
->getName()
1240 if (pImpl
->ValueHandles
[V
]->getKind() == Assert
)
1241 llvm_unreachable("An asserting value handle still pointed to this"
1245 llvm_unreachable("All references to V were not removed?");
1249 void ValueHandleBase::ValueIsRAUWd(Value
*Old
, Value
*New
) {
1250 assert(Old
->HasValueHandle
&&"Should only be called if ValueHandles present");
1251 assert(Old
!= New
&& "Changing value into itself!");
1252 assert(Old
->getType() == New
->getType() &&
1253 "replaceAllUses of value with new value of different type!");
1255 // Get the linked list base, which is guaranteed to exist since the
1256 // HasValueHandle flag is set.
1257 LLVMContextImpl
*pImpl
= Old
->getContext().pImpl
;
1258 ValueHandleBase
*Entry
= pImpl
->ValueHandles
[Old
];
1260 assert(Entry
&& "Value bit set but no entries exist");
1262 // We use a local ValueHandleBase as an iterator so that
1263 // ValueHandles can add and remove themselves from the list without
1264 // breaking our iteration. This is not really an AssertingVH; we
1265 // just have to give ValueHandleBase some kind.
1266 for (ValueHandleBase
Iterator(Assert
, *Entry
); Entry
; Entry
= Iterator
.Next
) {
1267 Iterator
.RemoveFromUseList();
1268 Iterator
.AddToExistingUseListAfter(Entry
);
1269 assert(Entry
->Next
== &Iterator
&& "Loop invariant broken.");
1271 switch (Entry
->getKind()) {
1274 // Asserting and Weak handles do not follow RAUW implicitly.
1277 // Weak goes to the new value, which will unlink it from Old's list.
1278 Entry
->operator=(New
);
1281 // Forward to the subclass's implementation.
1282 static_cast<CallbackVH
*>(Entry
)->allUsesReplacedWith(New
);
1288 // If any new weak value handles were added while processing the
1289 // list, then complain about it now.
1290 if (Old
->HasValueHandle
)
1291 for (Entry
= pImpl
->ValueHandles
[Old
]; Entry
; Entry
= Entry
->Next
)
1292 switch (Entry
->getKind()) {
1294 dbgs() << "After RAUW from " << *Old
->getType() << " %"
1295 << Old
->getName() << " to " << *New
->getType() << " %"
1296 << New
->getName() << "\n";
1298 "A weak tracking value handle still pointed to the old value!\n");
1305 // Pin the vtable to this file.
1306 void CallbackVH::anchor() {}