[AMDGPU] Test codegen'ing True16 additions.
[llvm-project.git] / llvm / lib / Object / ELF.cpp
blob0d1862e573712f501de930c9079930511c694adb
1 //===- ELF.cpp - ELF object file implementation ---------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Object/ELF.h"
10 #include "llvm/ADT/StringExtras.h"
11 #include "llvm/BinaryFormat/ELF.h"
12 #include "llvm/Support/DataExtractor.h"
14 using namespace llvm;
15 using namespace object;
17 #define STRINGIFY_ENUM_CASE(ns, name) \
18 case ns::name: \
19 return #name;
21 #define ELF_RELOC(name, value) STRINGIFY_ENUM_CASE(ELF, name)
23 StringRef llvm::object::getELFRelocationTypeName(uint32_t Machine,
24 uint32_t Type) {
25 switch (Machine) {
26 case ELF::EM_68K:
27 switch (Type) {
28 #include "llvm/BinaryFormat/ELFRelocs/M68k.def"
29 default:
30 break;
32 break;
33 case ELF::EM_X86_64:
34 switch (Type) {
35 #include "llvm/BinaryFormat/ELFRelocs/x86_64.def"
36 default:
37 break;
39 break;
40 case ELF::EM_386:
41 case ELF::EM_IAMCU:
42 switch (Type) {
43 #include "llvm/BinaryFormat/ELFRelocs/i386.def"
44 default:
45 break;
47 break;
48 case ELF::EM_MIPS:
49 switch (Type) {
50 #include "llvm/BinaryFormat/ELFRelocs/Mips.def"
51 default:
52 break;
54 break;
55 case ELF::EM_AARCH64:
56 switch (Type) {
57 #include "llvm/BinaryFormat/ELFRelocs/AArch64.def"
58 default:
59 break;
61 break;
62 case ELF::EM_ARM:
63 switch (Type) {
64 #include "llvm/BinaryFormat/ELFRelocs/ARM.def"
65 default:
66 break;
68 break;
69 case ELF::EM_ARC_COMPACT:
70 case ELF::EM_ARC_COMPACT2:
71 switch (Type) {
72 #include "llvm/BinaryFormat/ELFRelocs/ARC.def"
73 default:
74 break;
76 break;
77 case ELF::EM_AVR:
78 switch (Type) {
79 #include "llvm/BinaryFormat/ELFRelocs/AVR.def"
80 default:
81 break;
83 break;
84 case ELF::EM_HEXAGON:
85 switch (Type) {
86 #include "llvm/BinaryFormat/ELFRelocs/Hexagon.def"
87 default:
88 break;
90 break;
91 case ELF::EM_LANAI:
92 switch (Type) {
93 #include "llvm/BinaryFormat/ELFRelocs/Lanai.def"
94 default:
95 break;
97 break;
98 case ELF::EM_PPC:
99 switch (Type) {
100 #include "llvm/BinaryFormat/ELFRelocs/PowerPC.def"
101 default:
102 break;
104 break;
105 case ELF::EM_PPC64:
106 switch (Type) {
107 #include "llvm/BinaryFormat/ELFRelocs/PowerPC64.def"
108 default:
109 break;
111 break;
112 case ELF::EM_RISCV:
113 switch (Type) {
114 #include "llvm/BinaryFormat/ELFRelocs/RISCV.def"
115 default:
116 break;
118 break;
119 case ELF::EM_S390:
120 switch (Type) {
121 #include "llvm/BinaryFormat/ELFRelocs/SystemZ.def"
122 default:
123 break;
125 break;
126 case ELF::EM_SPARC:
127 case ELF::EM_SPARC32PLUS:
128 case ELF::EM_SPARCV9:
129 switch (Type) {
130 #include "llvm/BinaryFormat/ELFRelocs/Sparc.def"
131 default:
132 break;
134 break;
135 case ELF::EM_AMDGPU:
136 switch (Type) {
137 #include "llvm/BinaryFormat/ELFRelocs/AMDGPU.def"
138 default:
139 break;
141 break;
142 case ELF::EM_BPF:
143 switch (Type) {
144 #include "llvm/BinaryFormat/ELFRelocs/BPF.def"
145 default:
146 break;
148 break;
149 case ELF::EM_MSP430:
150 switch (Type) {
151 #include "llvm/BinaryFormat/ELFRelocs/MSP430.def"
152 default:
153 break;
155 break;
156 case ELF::EM_VE:
157 switch (Type) {
158 #include "llvm/BinaryFormat/ELFRelocs/VE.def"
159 default:
160 break;
162 break;
163 case ELF::EM_CSKY:
164 switch (Type) {
165 #include "llvm/BinaryFormat/ELFRelocs/CSKY.def"
166 default:
167 break;
169 break;
170 case ELF::EM_LOONGARCH:
171 switch (Type) {
172 #include "llvm/BinaryFormat/ELFRelocs/LoongArch.def"
173 default:
174 break;
176 break;
177 case ELF::EM_XTENSA:
178 switch (Type) {
179 #include "llvm/BinaryFormat/ELFRelocs/Xtensa.def"
180 default:
181 break;
183 break;
184 default:
185 break;
187 return "Unknown";
190 #undef ELF_RELOC
192 uint32_t llvm::object::getELFRelativeRelocationType(uint32_t Machine) {
193 switch (Machine) {
194 case ELF::EM_X86_64:
195 return ELF::R_X86_64_RELATIVE;
196 case ELF::EM_386:
197 case ELF::EM_IAMCU:
198 return ELF::R_386_RELATIVE;
199 case ELF::EM_MIPS:
200 break;
201 case ELF::EM_AARCH64:
202 return ELF::R_AARCH64_RELATIVE;
203 case ELF::EM_ARM:
204 return ELF::R_ARM_RELATIVE;
205 case ELF::EM_ARC_COMPACT:
206 case ELF::EM_ARC_COMPACT2:
207 return ELF::R_ARC_RELATIVE;
208 case ELF::EM_AVR:
209 break;
210 case ELF::EM_HEXAGON:
211 return ELF::R_HEX_RELATIVE;
212 case ELF::EM_LANAI:
213 break;
214 case ELF::EM_PPC:
215 break;
216 case ELF::EM_PPC64:
217 return ELF::R_PPC64_RELATIVE;
218 case ELF::EM_RISCV:
219 return ELF::R_RISCV_RELATIVE;
220 case ELF::EM_S390:
221 return ELF::R_390_RELATIVE;
222 case ELF::EM_SPARC:
223 case ELF::EM_SPARC32PLUS:
224 case ELF::EM_SPARCV9:
225 return ELF::R_SPARC_RELATIVE;
226 case ELF::EM_CSKY:
227 return ELF::R_CKCORE_RELATIVE;
228 case ELF::EM_VE:
229 return ELF::R_VE_RELATIVE;
230 case ELF::EM_AMDGPU:
231 break;
232 case ELF::EM_BPF:
233 break;
234 case ELF::EM_LOONGARCH:
235 return ELF::R_LARCH_RELATIVE;
236 default:
237 break;
239 return 0;
242 StringRef llvm::object::getELFSectionTypeName(uint32_t Machine, unsigned Type) {
243 switch (Machine) {
244 case ELF::EM_ARM:
245 switch (Type) {
246 STRINGIFY_ENUM_CASE(ELF, SHT_ARM_EXIDX);
247 STRINGIFY_ENUM_CASE(ELF, SHT_ARM_PREEMPTMAP);
248 STRINGIFY_ENUM_CASE(ELF, SHT_ARM_ATTRIBUTES);
249 STRINGIFY_ENUM_CASE(ELF, SHT_ARM_DEBUGOVERLAY);
250 STRINGIFY_ENUM_CASE(ELF, SHT_ARM_OVERLAYSECTION);
252 break;
253 case ELF::EM_HEXAGON:
254 switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_HEX_ORDERED); }
255 break;
256 case ELF::EM_X86_64:
257 switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_X86_64_UNWIND); }
258 break;
259 case ELF::EM_MIPS:
260 case ELF::EM_MIPS_RS3_LE:
261 switch (Type) {
262 STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_REGINFO);
263 STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_OPTIONS);
264 STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_DWARF);
265 STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS);
267 break;
268 case ELF::EM_MSP430:
269 switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_MSP430_ATTRIBUTES); }
270 break;
271 case ELF::EM_RISCV:
272 switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_RISCV_ATTRIBUTES); }
273 break;
274 case ELF::EM_AARCH64:
275 switch (Type) {
276 STRINGIFY_ENUM_CASE(ELF, SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC);
277 STRINGIFY_ENUM_CASE(ELF, SHT_AARCH64_MEMTAG_GLOBALS_STATIC);
279 default:
280 break;
283 switch (Type) {
284 STRINGIFY_ENUM_CASE(ELF, SHT_NULL);
285 STRINGIFY_ENUM_CASE(ELF, SHT_PROGBITS);
286 STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB);
287 STRINGIFY_ENUM_CASE(ELF, SHT_STRTAB);
288 STRINGIFY_ENUM_CASE(ELF, SHT_RELA);
289 STRINGIFY_ENUM_CASE(ELF, SHT_HASH);
290 STRINGIFY_ENUM_CASE(ELF, SHT_DYNAMIC);
291 STRINGIFY_ENUM_CASE(ELF, SHT_NOTE);
292 STRINGIFY_ENUM_CASE(ELF, SHT_NOBITS);
293 STRINGIFY_ENUM_CASE(ELF, SHT_REL);
294 STRINGIFY_ENUM_CASE(ELF, SHT_SHLIB);
295 STRINGIFY_ENUM_CASE(ELF, SHT_DYNSYM);
296 STRINGIFY_ENUM_CASE(ELF, SHT_INIT_ARRAY);
297 STRINGIFY_ENUM_CASE(ELF, SHT_FINI_ARRAY);
298 STRINGIFY_ENUM_CASE(ELF, SHT_PREINIT_ARRAY);
299 STRINGIFY_ENUM_CASE(ELF, SHT_GROUP);
300 STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX);
301 STRINGIFY_ENUM_CASE(ELF, SHT_RELR);
302 STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_REL);
303 STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELA);
304 STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELR);
305 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ODRTAB);
306 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_LINKER_OPTIONS);
307 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_CALL_GRAPH_PROFILE);
308 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ADDRSIG);
309 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_DEPENDENT_LIBRARIES);
310 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_SYMPART);
311 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_EHDR);
312 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_PHDR);
313 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_BB_ADDR_MAP_V0);
314 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_BB_ADDR_MAP);
315 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_OFFLOADING);
316 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_LTO);
317 STRINGIFY_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES);
318 STRINGIFY_ENUM_CASE(ELF, SHT_GNU_HASH);
319 STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verdef);
320 STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verneed);
321 STRINGIFY_ENUM_CASE(ELF, SHT_GNU_versym);
322 default:
323 return "Unknown";
327 template <class ELFT>
328 std::vector<typename ELFT::Rel>
329 ELFFile<ELFT>::decode_relrs(Elf_Relr_Range relrs) const {
330 // This function decodes the contents of an SHT_RELR packed relocation
331 // section.
333 // Proposal for adding SHT_RELR sections to generic-abi is here:
334 // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
336 // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
337 // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
339 // i.e. start with an address, followed by any number of bitmaps. The address
340 // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
341 // relocations each, at subsequent offsets following the last address entry.
343 // The bitmap entries must have 1 in the least significant bit. The assumption
344 // here is that an address cannot have 1 in lsb. Odd addresses are not
345 // supported.
347 // Excluding the least significant bit in the bitmap, each non-zero bit in
348 // the bitmap represents a relocation to be applied to a corresponding machine
349 // word that follows the base address word. The second least significant bit
350 // represents the machine word immediately following the initial address, and
351 // each bit that follows represents the next word, in linear order. As such,
352 // a single bitmap can encode up to 31 relocations in a 32-bit object, and
353 // 63 relocations in a 64-bit object.
355 // This encoding has a couple of interesting properties:
356 // 1. Looking at any entry, it is clear whether it's an address or a bitmap:
357 // even means address, odd means bitmap.
358 // 2. Just a simple list of addresses is a valid encoding.
360 Elf_Rel Rel;
361 Rel.r_info = 0;
362 Rel.setType(getRelativeRelocationType(), false);
363 std::vector<Elf_Rel> Relocs;
365 // Word type: uint32_t for Elf32, and uint64_t for Elf64.
366 using Addr = typename ELFT::uint;
368 Addr Base = 0;
369 for (Elf_Relr R : relrs) {
370 typename ELFT::uint Entry = R;
371 if ((Entry & 1) == 0) {
372 // Even entry: encodes the offset for next relocation.
373 Rel.r_offset = Entry;
374 Relocs.push_back(Rel);
375 // Set base offset for subsequent bitmap entries.
376 Base = Entry + sizeof(Addr);
377 } else {
378 // Odd entry: encodes bitmap for relocations starting at base.
379 for (Addr Offset = Base; (Entry >>= 1) != 0; Offset += sizeof(Addr))
380 if ((Entry & 1) != 0) {
381 Rel.r_offset = Offset;
382 Relocs.push_back(Rel);
384 Base += (CHAR_BIT * sizeof(Entry) - 1) * sizeof(Addr);
388 return Relocs;
391 template <class ELFT>
392 Expected<std::vector<typename ELFT::Rela>>
393 ELFFile<ELFT>::android_relas(const Elf_Shdr &Sec) const {
394 // This function reads relocations in Android's packed relocation format,
395 // which is based on SLEB128 and delta encoding.
396 Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec);
397 if (!ContentsOrErr)
398 return ContentsOrErr.takeError();
399 ArrayRef<uint8_t> Content = *ContentsOrErr;
400 if (Content.size() < 4 || Content[0] != 'A' || Content[1] != 'P' ||
401 Content[2] != 'S' || Content[3] != '2')
402 return createError("invalid packed relocation header");
403 DataExtractor Data(Content, isLE(), ELFT::Is64Bits ? 8 : 4);
404 DataExtractor::Cursor Cur(/*Offset=*/4);
406 uint64_t NumRelocs = Data.getSLEB128(Cur);
407 uint64_t Offset = Data.getSLEB128(Cur);
408 uint64_t Addend = 0;
410 if (!Cur)
411 return std::move(Cur.takeError());
413 std::vector<Elf_Rela> Relocs;
414 Relocs.reserve(NumRelocs);
415 while (NumRelocs) {
416 uint64_t NumRelocsInGroup = Data.getSLEB128(Cur);
417 if (!Cur)
418 return std::move(Cur.takeError());
419 if (NumRelocsInGroup > NumRelocs)
420 return createError("relocation group unexpectedly large");
421 NumRelocs -= NumRelocsInGroup;
423 uint64_t GroupFlags = Data.getSLEB128(Cur);
424 bool GroupedByInfo = GroupFlags & ELF::RELOCATION_GROUPED_BY_INFO_FLAG;
425 bool GroupedByOffsetDelta = GroupFlags & ELF::RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG;
426 bool GroupedByAddend = GroupFlags & ELF::RELOCATION_GROUPED_BY_ADDEND_FLAG;
427 bool GroupHasAddend = GroupFlags & ELF::RELOCATION_GROUP_HAS_ADDEND_FLAG;
429 uint64_t GroupOffsetDelta;
430 if (GroupedByOffsetDelta)
431 GroupOffsetDelta = Data.getSLEB128(Cur);
433 uint64_t GroupRInfo;
434 if (GroupedByInfo)
435 GroupRInfo = Data.getSLEB128(Cur);
437 if (GroupedByAddend && GroupHasAddend)
438 Addend += Data.getSLEB128(Cur);
440 if (!GroupHasAddend)
441 Addend = 0;
443 for (uint64_t I = 0; Cur && I != NumRelocsInGroup; ++I) {
444 Elf_Rela R;
445 Offset += GroupedByOffsetDelta ? GroupOffsetDelta : Data.getSLEB128(Cur);
446 R.r_offset = Offset;
447 R.r_info = GroupedByInfo ? GroupRInfo : Data.getSLEB128(Cur);
448 if (GroupHasAddend && !GroupedByAddend)
449 Addend += Data.getSLEB128(Cur);
450 R.r_addend = Addend;
451 Relocs.push_back(R);
453 if (!Cur)
454 return std::move(Cur.takeError());
457 return Relocs;
460 template <class ELFT>
461 std::string ELFFile<ELFT>::getDynamicTagAsString(unsigned Arch,
462 uint64_t Type) const {
463 #define DYNAMIC_STRINGIFY_ENUM(tag, value) \
464 case value: \
465 return #tag;
467 #define DYNAMIC_TAG(n, v)
468 switch (Arch) {
469 case ELF::EM_AARCH64:
470 switch (Type) {
471 #define AARCH64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
472 #include "llvm/BinaryFormat/DynamicTags.def"
473 #undef AARCH64_DYNAMIC_TAG
475 break;
477 case ELF::EM_HEXAGON:
478 switch (Type) {
479 #define HEXAGON_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
480 #include "llvm/BinaryFormat/DynamicTags.def"
481 #undef HEXAGON_DYNAMIC_TAG
483 break;
485 case ELF::EM_MIPS:
486 switch (Type) {
487 #define MIPS_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
488 #include "llvm/BinaryFormat/DynamicTags.def"
489 #undef MIPS_DYNAMIC_TAG
491 break;
493 case ELF::EM_PPC:
494 switch (Type) {
495 #define PPC_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
496 #include "llvm/BinaryFormat/DynamicTags.def"
497 #undef PPC_DYNAMIC_TAG
499 break;
501 case ELF::EM_PPC64:
502 switch (Type) {
503 #define PPC64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
504 #include "llvm/BinaryFormat/DynamicTags.def"
505 #undef PPC64_DYNAMIC_TAG
507 break;
509 case ELF::EM_RISCV:
510 switch (Type) {
511 #define RISCV_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
512 #include "llvm/BinaryFormat/DynamicTags.def"
513 #undef RISCV_DYNAMIC_TAG
515 break;
517 #undef DYNAMIC_TAG
518 switch (Type) {
519 // Now handle all dynamic tags except the architecture specific ones
520 #define AARCH64_DYNAMIC_TAG(name, value)
521 #define MIPS_DYNAMIC_TAG(name, value)
522 #define HEXAGON_DYNAMIC_TAG(name, value)
523 #define PPC_DYNAMIC_TAG(name, value)
524 #define PPC64_DYNAMIC_TAG(name, value)
525 #define RISCV_DYNAMIC_TAG(name, value)
526 // Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
527 #define DYNAMIC_TAG_MARKER(name, value)
528 #define DYNAMIC_TAG(name, value) case value: return #name;
529 #include "llvm/BinaryFormat/DynamicTags.def"
530 #undef DYNAMIC_TAG
531 #undef AARCH64_DYNAMIC_TAG
532 #undef MIPS_DYNAMIC_TAG
533 #undef HEXAGON_DYNAMIC_TAG
534 #undef PPC_DYNAMIC_TAG
535 #undef PPC64_DYNAMIC_TAG
536 #undef RISCV_DYNAMIC_TAG
537 #undef DYNAMIC_TAG_MARKER
538 #undef DYNAMIC_STRINGIFY_ENUM
539 default:
540 return "<unknown:>0x" + utohexstr(Type, true);
544 template <class ELFT>
545 std::string ELFFile<ELFT>::getDynamicTagAsString(uint64_t Type) const {
546 return getDynamicTagAsString(getHeader().e_machine, Type);
549 template <class ELFT>
550 Expected<typename ELFT::DynRange> ELFFile<ELFT>::dynamicEntries() const {
551 ArrayRef<Elf_Dyn> Dyn;
553 auto ProgramHeadersOrError = program_headers();
554 if (!ProgramHeadersOrError)
555 return ProgramHeadersOrError.takeError();
557 for (const Elf_Phdr &Phdr : *ProgramHeadersOrError) {
558 if (Phdr.p_type == ELF::PT_DYNAMIC) {
559 Dyn = ArrayRef(reinterpret_cast<const Elf_Dyn *>(base() + Phdr.p_offset),
560 Phdr.p_filesz / sizeof(Elf_Dyn));
561 break;
565 // If we can't find the dynamic section in the program headers, we just fall
566 // back on the sections.
567 if (Dyn.empty()) {
568 auto SectionsOrError = sections();
569 if (!SectionsOrError)
570 return SectionsOrError.takeError();
572 for (const Elf_Shdr &Sec : *SectionsOrError) {
573 if (Sec.sh_type == ELF::SHT_DYNAMIC) {
574 Expected<ArrayRef<Elf_Dyn>> DynOrError =
575 getSectionContentsAsArray<Elf_Dyn>(Sec);
576 if (!DynOrError)
577 return DynOrError.takeError();
578 Dyn = *DynOrError;
579 break;
583 if (!Dyn.data())
584 return ArrayRef<Elf_Dyn>();
587 if (Dyn.empty())
588 return createError("invalid empty dynamic section");
590 if (Dyn.back().d_tag != ELF::DT_NULL)
591 return createError("dynamic sections must be DT_NULL terminated");
593 return Dyn;
596 template <class ELFT>
597 Expected<const uint8_t *>
598 ELFFile<ELFT>::toMappedAddr(uint64_t VAddr, WarningHandler WarnHandler) const {
599 auto ProgramHeadersOrError = program_headers();
600 if (!ProgramHeadersOrError)
601 return ProgramHeadersOrError.takeError();
603 llvm::SmallVector<Elf_Phdr *, 4> LoadSegments;
605 for (const Elf_Phdr &Phdr : *ProgramHeadersOrError)
606 if (Phdr.p_type == ELF::PT_LOAD)
607 LoadSegments.push_back(const_cast<Elf_Phdr *>(&Phdr));
609 auto SortPred = [](const Elf_Phdr_Impl<ELFT> *A,
610 const Elf_Phdr_Impl<ELFT> *B) {
611 return A->p_vaddr < B->p_vaddr;
613 if (!llvm::is_sorted(LoadSegments, SortPred)) {
614 if (Error E =
615 WarnHandler("loadable segments are unsorted by virtual address"))
616 return std::move(E);
617 llvm::stable_sort(LoadSegments, SortPred);
620 const Elf_Phdr *const *I = llvm::upper_bound(
621 LoadSegments, VAddr, [](uint64_t VAddr, const Elf_Phdr_Impl<ELFT> *Phdr) {
622 return VAddr < Phdr->p_vaddr;
625 if (I == LoadSegments.begin())
626 return createError("virtual address is not in any segment: 0x" +
627 Twine::utohexstr(VAddr));
628 --I;
629 const Elf_Phdr &Phdr = **I;
630 uint64_t Delta = VAddr - Phdr.p_vaddr;
631 if (Delta >= Phdr.p_filesz)
632 return createError("virtual address is not in any segment: 0x" +
633 Twine::utohexstr(VAddr));
635 uint64_t Offset = Phdr.p_offset + Delta;
636 if (Offset >= getBufSize())
637 return createError("can't map virtual address 0x" +
638 Twine::utohexstr(VAddr) + " to the segment with index " +
639 Twine(&Phdr - (*ProgramHeadersOrError).data() + 1) +
640 ": the segment ends at 0x" +
641 Twine::utohexstr(Phdr.p_offset + Phdr.p_filesz) +
642 ", which is greater than the file size (0x" +
643 Twine::utohexstr(getBufSize()) + ")");
645 return base() + Offset;
648 template <class ELFT>
649 Expected<std::vector<BBAddrMap>>
650 ELFFile<ELFT>::decodeBBAddrMap(const Elf_Shdr &Sec,
651 const Elf_Shdr *RelaSec) const {
652 bool IsRelocatable = getHeader().e_type == ELF::ET_REL;
654 // This DenseMap maps the offset of each function (the location of the
655 // reference to the function in the SHT_LLVM_BB_ADDR_MAP section) to the
656 // addend (the location of the function in the text section).
657 llvm::DenseMap<uint64_t, uint64_t> FunctionOffsetTranslations;
658 if (IsRelocatable && RelaSec) {
659 assert(RelaSec &&
660 "Can't read a SHT_LLVM_BB_ADDR_MAP section in a relocatable "
661 "object file without providing a relocation section.");
662 Expected<Elf_Rela_Range> Relas = this->relas(*RelaSec);
663 if (!Relas)
664 return createError("unable to read relocations for section " +
665 describe(*this, Sec) + ": " +
666 toString(Relas.takeError()));
667 for (Elf_Rela Rela : *Relas)
668 FunctionOffsetTranslations[Rela.r_offset] = Rela.r_addend;
670 Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec);
671 if (!ContentsOrErr)
672 return ContentsOrErr.takeError();
673 ArrayRef<uint8_t> Content = *ContentsOrErr;
674 DataExtractor Data(Content, isLE(), ELFT::Is64Bits ? 8 : 4);
675 std::vector<BBAddrMap> FunctionEntries;
677 DataExtractor::Cursor Cur(0);
678 Error ULEBSizeErr = Error::success();
679 Error MetadataDecodeErr = Error::success();
680 // Helper to extract and decode the next ULEB128 value as uint32_t.
681 // Returns zero and sets ULEBSizeErr if the ULEB128 value exceeds the uint32_t
682 // limit.
683 // Also returns zero if ULEBSizeErr is already in an error state.
684 auto ReadULEB128AsUInt32 = [&Data, &Cur, &ULEBSizeErr]() -> uint32_t {
685 // Bail out and do not extract data if ULEBSizeErr is already set.
686 if (ULEBSizeErr)
687 return 0;
688 uint64_t Offset = Cur.tell();
689 uint64_t Value = Data.getULEB128(Cur);
690 if (Value > UINT32_MAX) {
691 ULEBSizeErr = createError(
692 "ULEB128 value at offset 0x" + Twine::utohexstr(Offset) +
693 " exceeds UINT32_MAX (0x" + Twine::utohexstr(Value) + ")");
694 return 0;
696 return static_cast<uint32_t>(Value);
699 uint8_t Version = 0;
700 while (!ULEBSizeErr && !MetadataDecodeErr && Cur &&
701 Cur.tell() < Content.size()) {
702 if (Sec.sh_type == ELF::SHT_LLVM_BB_ADDR_MAP) {
703 Version = Data.getU8(Cur);
704 if (!Cur)
705 break;
706 if (Version > 2)
707 return createError("unsupported SHT_LLVM_BB_ADDR_MAP version: " +
708 Twine(static_cast<int>(Version)));
709 Data.getU8(Cur); // Feature byte
711 uint64_t SectionOffset = Cur.tell();
712 uintX_t Address = static_cast<uintX_t>(Data.getAddress(Cur));
713 if (!Cur)
714 return Cur.takeError();
715 if (IsRelocatable) {
716 assert(Address == 0);
717 auto FOTIterator = FunctionOffsetTranslations.find(SectionOffset);
718 if (FOTIterator == FunctionOffsetTranslations.end()) {
719 return createError("failed to get relocation data for offset: " +
720 Twine::utohexstr(SectionOffset) + " in section " +
721 describe(*this, Sec));
723 Address = FOTIterator->second;
725 uint32_t NumBlocks = ReadULEB128AsUInt32();
726 std::vector<BBAddrMap::BBEntry> BBEntries;
727 uint32_t PrevBBEndOffset = 0;
728 for (uint32_t BlockIndex = 0;
729 !MetadataDecodeErr && !ULEBSizeErr && Cur && (BlockIndex < NumBlocks);
730 ++BlockIndex) {
731 uint32_t ID = Version >= 2 ? ReadULEB128AsUInt32() : BlockIndex;
732 uint32_t Offset = ReadULEB128AsUInt32();
733 uint32_t Size = ReadULEB128AsUInt32();
734 uint32_t MD = ReadULEB128AsUInt32();
735 if (Version >= 1) {
736 // Offset is calculated relative to the end of the previous BB.
737 Offset += PrevBBEndOffset;
738 PrevBBEndOffset = Offset + Size;
740 Expected<BBAddrMap::BBEntry::Metadata> MetadataOrErr =
741 BBAddrMap::BBEntry::Metadata::decode(MD);
742 if (!MetadataOrErr) {
743 MetadataDecodeErr = MetadataOrErr.takeError();
744 break;
746 BBEntries.push_back({ID, Offset, Size, *MetadataOrErr});
748 FunctionEntries.push_back({Address, std::move(BBEntries)});
750 // Either Cur is in the error state, or we have an error in ULEBSizeErr or
751 // MetadataDecodeErr (but not both), but we join all errors here to be safe.
752 if (!Cur || ULEBSizeErr || MetadataDecodeErr)
753 return joinErrors(joinErrors(Cur.takeError(), std::move(ULEBSizeErr)),
754 std::move(MetadataDecodeErr));
755 return FunctionEntries;
758 template <class ELFT>
759 Expected<
760 MapVector<const typename ELFT::Shdr *, const typename ELFT::Shdr *>>
761 ELFFile<ELFT>::getSectionAndRelocations(
762 std::function<Expected<bool>(const Elf_Shdr &)> IsMatch) const {
763 MapVector<const Elf_Shdr *, const Elf_Shdr *> SecToRelocMap;
764 Error Errors = Error::success();
765 for (const Elf_Shdr &Sec : cantFail(this->sections())) {
766 Expected<bool> DoesSectionMatch = IsMatch(Sec);
767 if (!DoesSectionMatch) {
768 Errors = joinErrors(std::move(Errors), DoesSectionMatch.takeError());
769 continue;
771 if (*DoesSectionMatch) {
772 if (SecToRelocMap.insert(std::make_pair(&Sec, (const Elf_Shdr *)nullptr))
773 .second)
774 continue;
777 if (Sec.sh_type != ELF::SHT_RELA && Sec.sh_type != ELF::SHT_REL)
778 continue;
780 Expected<const Elf_Shdr *> RelSecOrErr = this->getSection(Sec.sh_info);
781 if (!RelSecOrErr) {
782 Errors = joinErrors(std::move(Errors),
783 createError(describe(*this, Sec) +
784 ": failed to get a relocated section: " +
785 toString(RelSecOrErr.takeError())));
786 continue;
788 const Elf_Shdr *ContentsSec = *RelSecOrErr;
789 Expected<bool> DoesRelTargetMatch = IsMatch(*ContentsSec);
790 if (!DoesRelTargetMatch) {
791 Errors = joinErrors(std::move(Errors), DoesRelTargetMatch.takeError());
792 continue;
794 if (*DoesRelTargetMatch)
795 SecToRelocMap[ContentsSec] = &Sec;
797 if(Errors)
798 return std::move(Errors);
799 return SecToRelocMap;
802 template class llvm::object::ELFFile<ELF32LE>;
803 template class llvm::object::ELFFile<ELF32BE>;
804 template class llvm::object::ELFFile<ELF64LE>;
805 template class llvm::object::ELFFile<ELF64BE>;