1 /*===-- blake3.c - BLAKE3 C Implementation ------------------------*- C -*-===*\
3 |* Released into the public domain with CC0 1.0 *|
4 |* See 'llvm/lib/Support/BLAKE3/LICENSE' for info. *|
5 |* SPDX-License-Identifier: CC0-1.0 *|
7 \*===----------------------------------------------------------------------===*/
13 #include "blake3_impl.h"
15 const char *llvm_blake3_version(void) { return BLAKE3_VERSION_STRING
; }
17 INLINE
void chunk_state_init(blake3_chunk_state
*self
, const uint32_t key
[8],
19 memcpy(self
->cv
, key
, BLAKE3_KEY_LEN
);
20 self
->chunk_counter
= 0;
21 memset(self
->buf
, 0, BLAKE3_BLOCK_LEN
);
23 self
->blocks_compressed
= 0;
27 INLINE
void chunk_state_reset(blake3_chunk_state
*self
, const uint32_t key
[8],
28 uint64_t chunk_counter
) {
29 memcpy(self
->cv
, key
, BLAKE3_KEY_LEN
);
30 self
->chunk_counter
= chunk_counter
;
31 self
->blocks_compressed
= 0;
32 memset(self
->buf
, 0, BLAKE3_BLOCK_LEN
);
36 INLINE
size_t chunk_state_len(const blake3_chunk_state
*self
) {
37 return (BLAKE3_BLOCK_LEN
* (size_t)self
->blocks_compressed
) +
38 ((size_t)self
->buf_len
);
41 INLINE
size_t chunk_state_fill_buf(blake3_chunk_state
*self
,
42 const uint8_t *input
, size_t input_len
) {
43 size_t take
= BLAKE3_BLOCK_LEN
- ((size_t)self
->buf_len
);
44 if (take
> input_len
) {
47 uint8_t *dest
= self
->buf
+ ((size_t)self
->buf_len
);
48 memcpy(dest
, input
, take
);
49 self
->buf_len
+= (uint8_t)take
;
53 INLINE
uint8_t chunk_state_maybe_start_flag(const blake3_chunk_state
*self
) {
54 if (self
->blocks_compressed
== 0) {
64 uint8_t block
[BLAKE3_BLOCK_LEN
];
69 INLINE output_t
make_output(const uint32_t input_cv
[8],
70 const uint8_t block
[BLAKE3_BLOCK_LEN
],
71 uint8_t block_len
, uint64_t counter
,
74 memcpy(ret
.input_cv
, input_cv
, 32);
75 memcpy(ret
.block
, block
, BLAKE3_BLOCK_LEN
);
76 ret
.block_len
= block_len
;
77 ret
.counter
= counter
;
82 // Chaining values within a given chunk (specifically the compress_in_place
83 // interface) are represented as words. This avoids unnecessary bytes<->words
84 // conversion overhead in the portable implementation. However, the hash_many
85 // interface handles both user input and parent node blocks, so it accepts
86 // bytes. For that reason, chaining values in the CV stack are represented as
88 INLINE
void output_chaining_value(const output_t
*self
, uint8_t cv
[32]) {
90 memcpy(cv_words
, self
->input_cv
, 32);
91 blake3_compress_in_place(cv_words
, self
->block
, self
->block_len
,
92 self
->counter
, self
->flags
);
93 store_cv_words(cv
, cv_words
);
96 INLINE
void output_root_bytes(const output_t
*self
, uint64_t seek
, uint8_t *out
,
98 uint64_t output_block_counter
= seek
/ 64;
99 size_t offset_within_block
= seek
% 64;
100 uint8_t wide_buf
[64];
101 while (out_len
> 0) {
102 blake3_compress_xof(self
->input_cv
, self
->block
, self
->block_len
,
103 output_block_counter
, self
->flags
| ROOT
, wide_buf
);
104 size_t available_bytes
= 64 - offset_within_block
;
106 if (out_len
> available_bytes
) {
107 memcpy_len
= available_bytes
;
109 memcpy_len
= out_len
;
111 memcpy(out
, wide_buf
+ offset_within_block
, memcpy_len
);
113 out_len
-= memcpy_len
;
114 output_block_counter
+= 1;
115 offset_within_block
= 0;
119 INLINE
void chunk_state_update(blake3_chunk_state
*self
, const uint8_t *input
,
121 if (self
->buf_len
> 0) {
122 size_t take
= chunk_state_fill_buf(self
, input
, input_len
);
126 blake3_compress_in_place(
127 self
->cv
, self
->buf
, BLAKE3_BLOCK_LEN
, self
->chunk_counter
,
128 self
->flags
| chunk_state_maybe_start_flag(self
));
129 self
->blocks_compressed
+= 1;
131 memset(self
->buf
, 0, BLAKE3_BLOCK_LEN
);
135 while (input_len
> BLAKE3_BLOCK_LEN
) {
136 blake3_compress_in_place(self
->cv
, input
, BLAKE3_BLOCK_LEN
,
138 self
->flags
| chunk_state_maybe_start_flag(self
));
139 self
->blocks_compressed
+= 1;
140 input
+= BLAKE3_BLOCK_LEN
;
141 input_len
-= BLAKE3_BLOCK_LEN
;
144 size_t take
= chunk_state_fill_buf(self
, input
, input_len
);
149 INLINE output_t
chunk_state_output(const blake3_chunk_state
*self
) {
150 uint8_t block_flags
=
151 self
->flags
| chunk_state_maybe_start_flag(self
) | CHUNK_END
;
152 return make_output(self
->cv
, self
->buf
, self
->buf_len
, self
->chunk_counter
,
156 INLINE output_t
parent_output(const uint8_t block
[BLAKE3_BLOCK_LEN
],
157 const uint32_t key
[8], uint8_t flags
) {
158 return make_output(key
, block
, BLAKE3_BLOCK_LEN
, 0, flags
| PARENT
);
161 // Given some input larger than one chunk, return the number of bytes that
162 // should go in the left subtree. This is the largest power-of-2 number of
163 // chunks that leaves at least 1 byte for the right subtree.
164 INLINE
size_t left_len(size_t content_len
) {
165 // Subtract 1 to reserve at least one byte for the right side. content_len
166 // should always be greater than BLAKE3_CHUNK_LEN.
167 size_t full_chunks
= (content_len
- 1) / BLAKE3_CHUNK_LEN
;
168 return round_down_to_power_of_2(full_chunks
) * BLAKE3_CHUNK_LEN
;
171 // Use SIMD parallelism to hash up to MAX_SIMD_DEGREE chunks at the same time
172 // on a single thread. Write out the chunk chaining values and return the
173 // number of chunks hashed. These chunks are never the root and never empty;
174 // those cases use a different codepath.
175 INLINE
size_t compress_chunks_parallel(const uint8_t *input
, size_t input_len
,
176 const uint32_t key
[8],
177 uint64_t chunk_counter
, uint8_t flags
,
179 #if defined(BLAKE3_TESTING)
180 assert(0 < input_len
);
181 assert(input_len
<= MAX_SIMD_DEGREE
* BLAKE3_CHUNK_LEN
);
184 const uint8_t *chunks_array
[MAX_SIMD_DEGREE
];
185 size_t input_position
= 0;
186 size_t chunks_array_len
= 0;
187 while (input_len
- input_position
>= BLAKE3_CHUNK_LEN
) {
188 chunks_array
[chunks_array_len
] = &input
[input_position
];
189 input_position
+= BLAKE3_CHUNK_LEN
;
190 chunks_array_len
+= 1;
193 blake3_hash_many(chunks_array
, chunks_array_len
,
194 BLAKE3_CHUNK_LEN
/ BLAKE3_BLOCK_LEN
, key
, chunk_counter
,
195 true, flags
, CHUNK_START
, CHUNK_END
, out
);
197 // Hash the remaining partial chunk, if there is one. Note that the empty
198 // chunk (meaning the empty message) is a different codepath.
199 if (input_len
> input_position
) {
200 uint64_t counter
= chunk_counter
+ (uint64_t)chunks_array_len
;
201 blake3_chunk_state chunk_state
;
202 chunk_state_init(&chunk_state
, key
, flags
);
203 chunk_state
.chunk_counter
= counter
;
204 chunk_state_update(&chunk_state
, &input
[input_position
],
205 input_len
- input_position
);
206 output_t output
= chunk_state_output(&chunk_state
);
207 output_chaining_value(&output
, &out
[chunks_array_len
* BLAKE3_OUT_LEN
]);
208 return chunks_array_len
+ 1;
210 return chunks_array_len
;
214 // Use SIMD parallelism to hash up to MAX_SIMD_DEGREE parents at the same time
215 // on a single thread. Write out the parent chaining values and return the
216 // number of parents hashed. (If there's an odd input chaining value left over,
217 // return it as an additional output.) These parents are never the root and
218 // never empty; those cases use a different codepath.
219 INLINE
size_t compress_parents_parallel(const uint8_t *child_chaining_values
,
220 size_t num_chaining_values
,
221 const uint32_t key
[8], uint8_t flags
,
223 #if defined(BLAKE3_TESTING)
224 assert(2 <= num_chaining_values
);
225 assert(num_chaining_values
<= 2 * MAX_SIMD_DEGREE_OR_2
);
228 const uint8_t *parents_array
[MAX_SIMD_DEGREE_OR_2
];
229 size_t parents_array_len
= 0;
230 while (num_chaining_values
- (2 * parents_array_len
) >= 2) {
231 parents_array
[parents_array_len
] =
232 &child_chaining_values
[2 * parents_array_len
* BLAKE3_OUT_LEN
];
233 parents_array_len
+= 1;
236 blake3_hash_many(parents_array
, parents_array_len
, 1, key
,
237 0, // Parents always use counter 0.
238 false, flags
| PARENT
,
239 0, // Parents have no start flags.
240 0, // Parents have no end flags.
243 // If there's an odd child left over, it becomes an output.
244 if (num_chaining_values
> 2 * parents_array_len
) {
245 memcpy(&out
[parents_array_len
* BLAKE3_OUT_LEN
],
246 &child_chaining_values
[2 * parents_array_len
* BLAKE3_OUT_LEN
],
248 return parents_array_len
+ 1;
250 return parents_array_len
;
254 // The wide helper function returns (writes out) an array of chaining values
255 // and returns the length of that array. The number of chaining values returned
256 // is the dyanmically detected SIMD degree, at most MAX_SIMD_DEGREE. Or fewer,
257 // if the input is shorter than that many chunks. The reason for maintaining a
258 // wide array of chaining values going back up the tree, is to allow the
259 // implementation to hash as many parents in parallel as possible.
261 // As a special case when the SIMD degree is 1, this function will still return
262 // at least 2 outputs. This guarantees that this function doesn't perform the
263 // root compression. (If it did, it would use the wrong flags, and also we
264 // wouldn't be able to implement exendable ouput.) Note that this function is
265 // not used when the whole input is only 1 chunk long; that's a different
268 // Why not just have the caller split the input on the first update(), instead
269 // of implementing this special rule? Because we don't want to limit SIMD or
270 // multi-threading parallelism for that update().
271 static size_t blake3_compress_subtree_wide(const uint8_t *input
,
273 const uint32_t key
[8],
274 uint64_t chunk_counter
,
275 uint8_t flags
, uint8_t *out
) {
276 // Note that the single chunk case does *not* bump the SIMD degree up to 2
277 // when it is 1. If this implementation adds multi-threading in the future,
278 // this gives us the option of multi-threading even the 2-chunk case, which
279 // can help performance on smaller platforms.
280 if (input_len
<= blake3_simd_degree() * BLAKE3_CHUNK_LEN
) {
281 return compress_chunks_parallel(input
, input_len
, key
, chunk_counter
, flags
,
285 // With more than simd_degree chunks, we need to recurse. Start by dividing
286 // the input into left and right subtrees. (Note that this is only optimal
287 // as long as the SIMD degree is a power of 2. If we ever get a SIMD degree
288 // of 3 or something, we'll need a more complicated strategy.)
289 size_t left_input_len
= left_len(input_len
);
290 size_t right_input_len
= input_len
- left_input_len
;
291 const uint8_t *right_input
= &input
[left_input_len
];
292 uint64_t right_chunk_counter
=
293 chunk_counter
+ (uint64_t)(left_input_len
/ BLAKE3_CHUNK_LEN
);
295 // Make space for the child outputs. Here we use MAX_SIMD_DEGREE_OR_2 to
296 // account for the special case of returning 2 outputs when the SIMD degree
298 uint8_t cv_array
[2 * MAX_SIMD_DEGREE_OR_2
* BLAKE3_OUT_LEN
];
299 size_t degree
= blake3_simd_degree();
300 if (left_input_len
> BLAKE3_CHUNK_LEN
&& degree
== 1) {
301 // The special case: We always use a degree of at least two, to make
302 // sure there are two outputs. Except, as noted above, at the chunk
303 // level, where we allow degree=1. (Note that the 1-chunk-input case is
304 // a different codepath.)
307 uint8_t *right_cvs
= &cv_array
[degree
* BLAKE3_OUT_LEN
];
309 // Recurse! If this implementation adds multi-threading support in the
310 // future, this is where it will go.
311 size_t left_n
= blake3_compress_subtree_wide(input
, left_input_len
, key
,
312 chunk_counter
, flags
, cv_array
);
313 size_t right_n
= blake3_compress_subtree_wide(
314 right_input
, right_input_len
, key
, right_chunk_counter
, flags
, right_cvs
);
316 // The special case again. If simd_degree=1, then we'll have left_n=1 and
317 // right_n=1. Rather than compressing them into a single output, return
318 // them directly, to make sure we always have at least two outputs.
320 memcpy(out
, cv_array
, 2 * BLAKE3_OUT_LEN
);
324 // Otherwise, do one layer of parent node compression.
325 size_t num_chaining_values
= left_n
+ right_n
;
326 return compress_parents_parallel(cv_array
, num_chaining_values
, key
, flags
,
330 // Hash a subtree with compress_subtree_wide(), and then condense the resulting
331 // list of chaining values down to a single parent node. Don't compress that
332 // last parent node, however. Instead, return its message bytes (the
333 // concatenated chaining values of its children). This is necessary when the
334 // first call to update() supplies a complete subtree, because the topmost
335 // parent node of that subtree could end up being the root. It's also necessary
336 // for extended output in the general case.
338 // As with compress_subtree_wide(), this function is not used on inputs of 1
339 // chunk or less. That's a different codepath.
340 INLINE
void compress_subtree_to_parent_node(
341 const uint8_t *input
, size_t input_len
, const uint32_t key
[8],
342 uint64_t chunk_counter
, uint8_t flags
, uint8_t out
[2 * BLAKE3_OUT_LEN
]) {
343 #if defined(BLAKE3_TESTING)
344 assert(input_len
> BLAKE3_CHUNK_LEN
);
347 uint8_t cv_array
[MAX_SIMD_DEGREE_OR_2
* BLAKE3_OUT_LEN
];
348 size_t num_cvs
= blake3_compress_subtree_wide(input
, input_len
, key
,
349 chunk_counter
, flags
, cv_array
);
350 assert(num_cvs
<= MAX_SIMD_DEGREE_OR_2
);
352 // If MAX_SIMD_DEGREE is greater than 2 and there's enough input,
353 // compress_subtree_wide() returns more than 2 chaining values. Condense
354 // them into 2 by forming parent nodes repeatedly.
355 uint8_t out_array
[MAX_SIMD_DEGREE_OR_2
* BLAKE3_OUT_LEN
/ 2];
356 // The second half of this loop condition is always true, and we just
357 // asserted it above. But GCC can't tell that it's always true, and if NDEBUG
358 // is set on platforms where MAX_SIMD_DEGREE_OR_2 == 2, GCC emits spurious
359 // warnings here. GCC 8.5 is particularly sensitive, so if you're changing
360 // this code, test it against that version.
361 while (num_cvs
> 2 && num_cvs
<= MAX_SIMD_DEGREE_OR_2
) {
363 compress_parents_parallel(cv_array
, num_cvs
, key
, flags
, out_array
);
364 memcpy(cv_array
, out_array
, num_cvs
* BLAKE3_OUT_LEN
);
366 memcpy(out
, cv_array
, 2 * BLAKE3_OUT_LEN
);
369 INLINE
void hasher_init_base(blake3_hasher
*self
, const uint32_t key
[8],
371 memcpy(self
->key
, key
, BLAKE3_KEY_LEN
);
372 chunk_state_init(&self
->chunk
, key
, flags
);
373 self
->cv_stack_len
= 0;
376 void llvm_blake3_hasher_init(blake3_hasher
*self
) { hasher_init_base(self
, IV
, 0); }
378 void llvm_blake3_hasher_init_keyed(blake3_hasher
*self
,
379 const uint8_t key
[BLAKE3_KEY_LEN
]) {
380 uint32_t key_words
[8];
381 load_key_words(key
, key_words
);
382 hasher_init_base(self
, key_words
, KEYED_HASH
);
385 void llvm_blake3_hasher_init_derive_key_raw(blake3_hasher
*self
, const void *context
,
386 size_t context_len
) {
387 blake3_hasher context_hasher
;
388 hasher_init_base(&context_hasher
, IV
, DERIVE_KEY_CONTEXT
);
389 llvm_blake3_hasher_update(&context_hasher
, context
, context_len
);
390 uint8_t context_key
[BLAKE3_KEY_LEN
];
391 llvm_blake3_hasher_finalize(&context_hasher
, context_key
, BLAKE3_KEY_LEN
);
392 uint32_t context_key_words
[8];
393 load_key_words(context_key
, context_key_words
);
394 hasher_init_base(self
, context_key_words
, DERIVE_KEY_MATERIAL
);
397 void llvm_blake3_hasher_init_derive_key(blake3_hasher
*self
, const char *context
) {
398 llvm_blake3_hasher_init_derive_key_raw(self
, context
, strlen(context
));
401 // As described in hasher_push_cv() below, we do "lazy merging", delaying
402 // merges until right before the next CV is about to be added. This is
403 // different from the reference implementation. Another difference is that we
404 // aren't always merging 1 chunk at a time. Instead, each CV might represent
405 // any power-of-two number of chunks, as long as the smaller-above-larger stack
406 // order is maintained. Instead of the "count the trailing 0-bits" algorithm
407 // described in the spec, we use a "count the total number of 1-bits" variant
408 // that doesn't require us to retain the subtree size of the CV on top of the
409 // stack. The principle is the same: each CV that should remain in the stack is
410 // represented by a 1-bit in the total number of chunks (or bytes) so far.
411 INLINE
void hasher_merge_cv_stack(blake3_hasher
*self
, uint64_t total_len
) {
412 size_t post_merge_stack_len
= (size_t)popcnt(total_len
);
413 while (self
->cv_stack_len
> post_merge_stack_len
) {
414 uint8_t *parent_node
=
415 &self
->cv_stack
[(self
->cv_stack_len
- 2) * BLAKE3_OUT_LEN
];
416 output_t output
= parent_output(parent_node
, self
->key
, self
->chunk
.flags
);
417 output_chaining_value(&output
, parent_node
);
418 self
->cv_stack_len
-= 1;
422 // In reference_impl.rs, we merge the new CV with existing CVs from the stack
423 // before pushing it. We can do that because we know more input is coming, so
424 // we know none of the merges are root.
426 // This setting is different. We want to feed as much input as possible to
427 // compress_subtree_wide(), without setting aside anything for the chunk_state.
428 // If the user gives us 64 KiB, we want to parallelize over all 64 KiB at once
429 // as a single subtree, if at all possible.
431 // This leads to two problems:
432 // 1) This 64 KiB input might be the only call that ever gets made to update.
433 // In this case, the root node of the 64 KiB subtree would be the root node
434 // of the whole tree, and it would need to be ROOT finalized. We can't
435 // compress it until we know.
436 // 2) This 64 KiB input might complete a larger tree, whose root node is
437 // similarly going to be the the root of the whole tree. For example, maybe
438 // we have 196 KiB (that is, 128 + 64) hashed so far. We can't compress the
439 // node at the root of the 256 KiB subtree until we know how to finalize it.
441 // The second problem is solved with "lazy merging". That is, when we're about
442 // to add a CV to the stack, we don't merge it with anything first, as the
443 // reference impl does. Instead we do merges using the *previous* CV that was
444 // added, which is sitting on top of the stack, and we put the new CV
445 // (unmerged) on top of the stack afterwards. This guarantees that we never
446 // merge the root node until finalize().
448 // Solving the first problem requires an additional tool,
449 // compress_subtree_to_parent_node(). That function always returns the top
450 // *two* chaining values of the subtree it's compressing. We then do lazy
451 // merging with each of them separately, so that the second CV will always
452 // remain unmerged. (That also helps us support extendable output when we're
453 // hashing an input all-at-once.)
454 INLINE
void hasher_push_cv(blake3_hasher
*self
, uint8_t new_cv
[BLAKE3_OUT_LEN
],
455 uint64_t chunk_counter
) {
456 hasher_merge_cv_stack(self
, chunk_counter
);
457 memcpy(&self
->cv_stack
[self
->cv_stack_len
* BLAKE3_OUT_LEN
], new_cv
,
459 self
->cv_stack_len
+= 1;
462 void llvm_blake3_hasher_update(blake3_hasher
*self
, const void *input
,
464 // Explicitly checking for zero avoids causing UB by passing a null pointer
465 // to memcpy. This comes up in practice with things like:
466 // std::vector<uint8_t> v;
467 // blake3_hasher_update(&hasher, v.data(), v.size());
468 if (input_len
== 0) {
472 const uint8_t *input_bytes
= (const uint8_t *)input
;
474 // If we have some partial chunk bytes in the internal chunk_state, we need
475 // to finish that chunk first.
476 if (chunk_state_len(&self
->chunk
) > 0) {
477 size_t take
= BLAKE3_CHUNK_LEN
- chunk_state_len(&self
->chunk
);
478 if (take
> input_len
) {
481 chunk_state_update(&self
->chunk
, input_bytes
, take
);
484 // If we've filled the current chunk and there's more coming, finalize this
485 // chunk and proceed. In this case we know it's not the root.
487 output_t output
= chunk_state_output(&self
->chunk
);
488 uint8_t chunk_cv
[32];
489 output_chaining_value(&output
, chunk_cv
);
490 hasher_push_cv(self
, chunk_cv
, self
->chunk
.chunk_counter
);
491 chunk_state_reset(&self
->chunk
, self
->key
, self
->chunk
.chunk_counter
+ 1);
497 // Now the chunk_state is clear, and we have more input. If there's more than
498 // a single chunk (so, definitely not the root chunk), hash the largest whole
499 // subtree we can, with the full benefits of SIMD (and maybe in the future,
500 // multi-threading) parallelism. Two restrictions:
501 // - The subtree has to be a power-of-2 number of chunks. Only subtrees along
502 // the right edge can be incomplete, and we don't know where the right edge
503 // is going to be until we get to finalize().
504 // - The subtree must evenly divide the total number of chunks up until this
505 // point (if total is not 0). If the current incomplete subtree is only
506 // waiting for 1 more chunk, we can't hash a subtree of 4 chunks. We have
507 // to complete the current subtree first.
508 // Because we might need to break up the input to form powers of 2, or to
509 // evenly divide what we already have, this part runs in a loop.
510 while (input_len
> BLAKE3_CHUNK_LEN
) {
511 size_t subtree_len
= round_down_to_power_of_2(input_len
);
512 uint64_t count_so_far
= self
->chunk
.chunk_counter
* BLAKE3_CHUNK_LEN
;
513 // Shrink the subtree_len until it evenly divides the count so far. We know
514 // that subtree_len itself is a power of 2, so we can use a bitmasking
515 // trick instead of an actual remainder operation. (Note that if the caller
516 // consistently passes power-of-2 inputs of the same size, as is hopefully
517 // typical, this loop condition will always fail, and subtree_len will
518 // always be the full length of the input.)
520 // An aside: We don't have to shrink subtree_len quite this much. For
521 // example, if count_so_far is 1, we could pass 2 chunks to
522 // compress_subtree_to_parent_node. Since we'll get 2 CVs back, we'll still
523 // get the right answer in the end, and we might get to use 2-way SIMD
524 // parallelism. The problem with this optimization, is that it gets us
525 // stuck always hashing 2 chunks. The total number of chunks will remain
526 // odd, and we'll never graduate to higher degrees of parallelism. See
527 // https://github.com/BLAKE3-team/BLAKE3/issues/69.
528 while ((((uint64_t)(subtree_len
- 1)) & count_so_far
) != 0) {
531 // The shrunken subtree_len might now be 1 chunk long. If so, hash that one
532 // chunk by itself. Otherwise, compress the subtree into a pair of CVs.
533 uint64_t subtree_chunks
= subtree_len
/ BLAKE3_CHUNK_LEN
;
534 if (subtree_len
<= BLAKE3_CHUNK_LEN
) {
535 blake3_chunk_state chunk_state
;
536 chunk_state_init(&chunk_state
, self
->key
, self
->chunk
.flags
);
537 chunk_state
.chunk_counter
= self
->chunk
.chunk_counter
;
538 chunk_state_update(&chunk_state
, input_bytes
, subtree_len
);
539 output_t output
= chunk_state_output(&chunk_state
);
540 uint8_t cv
[BLAKE3_OUT_LEN
];
541 output_chaining_value(&output
, cv
);
542 hasher_push_cv(self
, cv
, chunk_state
.chunk_counter
);
544 // This is the high-performance happy path, though getting here depends
545 // on the caller giving us a long enough input.
546 uint8_t cv_pair
[2 * BLAKE3_OUT_LEN
];
547 compress_subtree_to_parent_node(input_bytes
, subtree_len
, self
->key
,
548 self
->chunk
.chunk_counter
,
549 self
->chunk
.flags
, cv_pair
);
550 hasher_push_cv(self
, cv_pair
, self
->chunk
.chunk_counter
);
551 hasher_push_cv(self
, &cv_pair
[BLAKE3_OUT_LEN
],
552 self
->chunk
.chunk_counter
+ (subtree_chunks
/ 2));
554 self
->chunk
.chunk_counter
+= subtree_chunks
;
555 input_bytes
+= subtree_len
;
556 input_len
-= subtree_len
;
559 // If there's any remaining input less than a full chunk, add it to the chunk
560 // state. In that case, also do a final merge loop to make sure the subtree
561 // stack doesn't contain any unmerged pairs. The remaining input means we
562 // know these merges are non-root. This merge loop isn't strictly necessary
563 // here, because hasher_push_chunk_cv already does its own merge loop, but it
564 // simplifies blake3_hasher_finalize below.
566 chunk_state_update(&self
->chunk
, input_bytes
, input_len
);
567 hasher_merge_cv_stack(self
, self
->chunk
.chunk_counter
);
571 void llvm_blake3_hasher_finalize(const blake3_hasher
*self
, uint8_t *out
,
573 llvm_blake3_hasher_finalize_seek(self
, 0, out
, out_len
);
574 #if LLVM_MEMORY_SANITIZER_BUILD
575 // Avoid false positives due to uninstrumented assembly code.
576 __msan_unpoison(out
, out_len
);
580 void llvm_blake3_hasher_finalize_seek(const blake3_hasher
*self
, uint64_t seek
,
581 uint8_t *out
, size_t out_len
) {
582 // Explicitly checking for zero avoids causing UB by passing a null pointer
583 // to memcpy. This comes up in practice with things like:
584 // std::vector<uint8_t> v;
585 // blake3_hasher_finalize(&hasher, v.data(), v.size());
590 // If the subtree stack is empty, then the current chunk is the root.
591 if (self
->cv_stack_len
== 0) {
592 output_t output
= chunk_state_output(&self
->chunk
);
593 output_root_bytes(&output
, seek
, out
, out_len
);
596 // If there are any bytes in the chunk state, finalize that chunk and do a
597 // roll-up merge between that chunk hash and every subtree in the stack. In
598 // this case, the extra merge loop at the end of blake3_hasher_update
599 // guarantees that none of the subtrees in the stack need to be merged with
600 // each other first. Otherwise, if there are no bytes in the chunk state,
601 // then the top of the stack is a chunk hash, and we start the merge from
604 size_t cvs_remaining
;
605 if (chunk_state_len(&self
->chunk
) > 0) {
606 cvs_remaining
= self
->cv_stack_len
;
607 output
= chunk_state_output(&self
->chunk
);
609 // There are always at least 2 CVs in the stack in this case.
610 cvs_remaining
= self
->cv_stack_len
- 2;
611 output
= parent_output(&self
->cv_stack
[cvs_remaining
* 32], self
->key
,
614 while (cvs_remaining
> 0) {
616 uint8_t parent_block
[BLAKE3_BLOCK_LEN
];
617 memcpy(parent_block
, &self
->cv_stack
[cvs_remaining
* 32], 32);
618 output_chaining_value(&output
, &parent_block
[32]);
619 output
= parent_output(parent_block
, self
->key
, self
->chunk
.flags
);
621 output_root_bytes(&output
, seek
, out
, out_len
);
624 void llvm_blake3_hasher_reset(blake3_hasher
*self
) {
625 chunk_state_reset(&self
->chunk
, self
->key
, 0);
626 self
->cv_stack_len
= 0;