[AMDGPU] Test codegen'ing True16 additions.
[llvm-project.git] / llvm / lib / Transforms / AggressiveInstCombine / AggressiveInstCombine.cpp
bloba55d01645f10eb8543e9671c32f9ea38ec871669
1 //===- AggressiveInstCombine.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the aggressive expression pattern combiner classes.
10 // Currently, it handles expression patterns for:
11 // * Truncate instruction
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
16 #include "AggressiveInstCombineInternal.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/BasicAliasAnalysis.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Analysis/GlobalsModRef.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/Transforms/Utils/BuildLibCalls.h"
32 #include "llvm/Transforms/Utils/Local.h"
34 using namespace llvm;
35 using namespace PatternMatch;
37 #define DEBUG_TYPE "aggressive-instcombine"
39 STATISTIC(NumAnyOrAllBitsSet, "Number of any/all-bits-set patterns folded");
40 STATISTIC(NumGuardedRotates,
41 "Number of guarded rotates transformed into funnel shifts");
42 STATISTIC(NumGuardedFunnelShifts,
43 "Number of guarded funnel shifts transformed into funnel shifts");
44 STATISTIC(NumPopCountRecognized, "Number of popcount idioms recognized");
46 static cl::opt<unsigned> MaxInstrsToScan(
47 "aggressive-instcombine-max-scan-instrs", cl::init(64), cl::Hidden,
48 cl::desc("Max number of instructions to scan for aggressive instcombine."));
50 /// Match a pattern for a bitwise funnel/rotate operation that partially guards
51 /// against undefined behavior by branching around the funnel-shift/rotation
52 /// when the shift amount is 0.
53 static bool foldGuardedFunnelShift(Instruction &I, const DominatorTree &DT) {
54 if (I.getOpcode() != Instruction::PHI || I.getNumOperands() != 2)
55 return false;
57 // As with the one-use checks below, this is not strictly necessary, but we
58 // are being cautious to avoid potential perf regressions on targets that
59 // do not actually have a funnel/rotate instruction (where the funnel shift
60 // would be expanded back into math/shift/logic ops).
61 if (!isPowerOf2_32(I.getType()->getScalarSizeInBits()))
62 return false;
64 // Match V to funnel shift left/right and capture the source operands and
65 // shift amount.
66 auto matchFunnelShift = [](Value *V, Value *&ShVal0, Value *&ShVal1,
67 Value *&ShAmt) {
68 unsigned Width = V->getType()->getScalarSizeInBits();
70 // fshl(ShVal0, ShVal1, ShAmt)
71 // == (ShVal0 << ShAmt) | (ShVal1 >> (Width -ShAmt))
72 if (match(V, m_OneUse(m_c_Or(
73 m_Shl(m_Value(ShVal0), m_Value(ShAmt)),
74 m_LShr(m_Value(ShVal1),
75 m_Sub(m_SpecificInt(Width), m_Deferred(ShAmt))))))) {
76 return Intrinsic::fshl;
79 // fshr(ShVal0, ShVal1, ShAmt)
80 // == (ShVal0 >> ShAmt) | (ShVal1 << (Width - ShAmt))
81 if (match(V,
82 m_OneUse(m_c_Or(m_Shl(m_Value(ShVal0), m_Sub(m_SpecificInt(Width),
83 m_Value(ShAmt))),
84 m_LShr(m_Value(ShVal1), m_Deferred(ShAmt)))))) {
85 return Intrinsic::fshr;
88 return Intrinsic::not_intrinsic;
91 // One phi operand must be a funnel/rotate operation, and the other phi
92 // operand must be the source value of that funnel/rotate operation:
93 // phi [ rotate(RotSrc, ShAmt), FunnelBB ], [ RotSrc, GuardBB ]
94 // phi [ fshl(ShVal0, ShVal1, ShAmt), FunnelBB ], [ ShVal0, GuardBB ]
95 // phi [ fshr(ShVal0, ShVal1, ShAmt), FunnelBB ], [ ShVal1, GuardBB ]
96 PHINode &Phi = cast<PHINode>(I);
97 unsigned FunnelOp = 0, GuardOp = 1;
98 Value *P0 = Phi.getOperand(0), *P1 = Phi.getOperand(1);
99 Value *ShVal0, *ShVal1, *ShAmt;
100 Intrinsic::ID IID = matchFunnelShift(P0, ShVal0, ShVal1, ShAmt);
101 if (IID == Intrinsic::not_intrinsic ||
102 (IID == Intrinsic::fshl && ShVal0 != P1) ||
103 (IID == Intrinsic::fshr && ShVal1 != P1)) {
104 IID = matchFunnelShift(P1, ShVal0, ShVal1, ShAmt);
105 if (IID == Intrinsic::not_intrinsic ||
106 (IID == Intrinsic::fshl && ShVal0 != P0) ||
107 (IID == Intrinsic::fshr && ShVal1 != P0))
108 return false;
109 assert((IID == Intrinsic::fshl || IID == Intrinsic::fshr) &&
110 "Pattern must match funnel shift left or right");
111 std::swap(FunnelOp, GuardOp);
114 // The incoming block with our source operand must be the "guard" block.
115 // That must contain a cmp+branch to avoid the funnel/rotate when the shift
116 // amount is equal to 0. The other incoming block is the block with the
117 // funnel/rotate.
118 BasicBlock *GuardBB = Phi.getIncomingBlock(GuardOp);
119 BasicBlock *FunnelBB = Phi.getIncomingBlock(FunnelOp);
120 Instruction *TermI = GuardBB->getTerminator();
122 // Ensure that the shift values dominate each block.
123 if (!DT.dominates(ShVal0, TermI) || !DT.dominates(ShVal1, TermI))
124 return false;
126 ICmpInst::Predicate Pred;
127 BasicBlock *PhiBB = Phi.getParent();
128 if (!match(TermI, m_Br(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()),
129 m_SpecificBB(PhiBB), m_SpecificBB(FunnelBB))))
130 return false;
132 if (Pred != CmpInst::ICMP_EQ)
133 return false;
135 IRBuilder<> Builder(PhiBB, PhiBB->getFirstInsertionPt());
137 if (ShVal0 == ShVal1)
138 ++NumGuardedRotates;
139 else
140 ++NumGuardedFunnelShifts;
142 // If this is not a rotate then the select was blocking poison from the
143 // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it.
144 bool IsFshl = IID == Intrinsic::fshl;
145 if (ShVal0 != ShVal1) {
146 if (IsFshl && !llvm::isGuaranteedNotToBePoison(ShVal1))
147 ShVal1 = Builder.CreateFreeze(ShVal1);
148 else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(ShVal0))
149 ShVal0 = Builder.CreateFreeze(ShVal0);
152 // We matched a variation of this IR pattern:
153 // GuardBB:
154 // %cmp = icmp eq i32 %ShAmt, 0
155 // br i1 %cmp, label %PhiBB, label %FunnelBB
156 // FunnelBB:
157 // %sub = sub i32 32, %ShAmt
158 // %shr = lshr i32 %ShVal1, %sub
159 // %shl = shl i32 %ShVal0, %ShAmt
160 // %fsh = or i32 %shr, %shl
161 // br label %PhiBB
162 // PhiBB:
163 // %cond = phi i32 [ %fsh, %FunnelBB ], [ %ShVal0, %GuardBB ]
164 // -->
165 // llvm.fshl.i32(i32 %ShVal0, i32 %ShVal1, i32 %ShAmt)
166 Function *F = Intrinsic::getDeclaration(Phi.getModule(), IID, Phi.getType());
167 Phi.replaceAllUsesWith(Builder.CreateCall(F, {ShVal0, ShVal1, ShAmt}));
168 return true;
171 /// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and
172 /// the bit indexes (Mask) needed by a masked compare. If we're matching a chain
173 /// of 'and' ops, then we also need to capture the fact that we saw an
174 /// "and X, 1", so that's an extra return value for that case.
175 struct MaskOps {
176 Value *Root = nullptr;
177 APInt Mask;
178 bool MatchAndChain;
179 bool FoundAnd1 = false;
181 MaskOps(unsigned BitWidth, bool MatchAnds)
182 : Mask(APInt::getZero(BitWidth)), MatchAndChain(MatchAnds) {}
185 /// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a
186 /// chain of 'and' or 'or' instructions looking for shift ops of a common source
187 /// value. Examples:
188 /// or (or (or X, (X >> 3)), (X >> 5)), (X >> 8)
189 /// returns { X, 0x129 }
190 /// and (and (X >> 1), 1), (X >> 4)
191 /// returns { X, 0x12 }
192 static bool matchAndOrChain(Value *V, MaskOps &MOps) {
193 Value *Op0, *Op1;
194 if (MOps.MatchAndChain) {
195 // Recurse through a chain of 'and' operands. This requires an extra check
196 // vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere
197 // in the chain to know that all of the high bits are cleared.
198 if (match(V, m_And(m_Value(Op0), m_One()))) {
199 MOps.FoundAnd1 = true;
200 return matchAndOrChain(Op0, MOps);
202 if (match(V, m_And(m_Value(Op0), m_Value(Op1))))
203 return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
204 } else {
205 // Recurse through a chain of 'or' operands.
206 if (match(V, m_Or(m_Value(Op0), m_Value(Op1))))
207 return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
210 // We need a shift-right or a bare value representing a compare of bit 0 of
211 // the original source operand.
212 Value *Candidate;
213 const APInt *BitIndex = nullptr;
214 if (!match(V, m_LShr(m_Value(Candidate), m_APInt(BitIndex))))
215 Candidate = V;
217 // Initialize result source operand.
218 if (!MOps.Root)
219 MOps.Root = Candidate;
221 // The shift constant is out-of-range? This code hasn't been simplified.
222 if (BitIndex && BitIndex->uge(MOps.Mask.getBitWidth()))
223 return false;
225 // Fill in the mask bit derived from the shift constant.
226 MOps.Mask.setBit(BitIndex ? BitIndex->getZExtValue() : 0);
227 return MOps.Root == Candidate;
230 /// Match patterns that correspond to "any-bits-set" and "all-bits-set".
231 /// These will include a chain of 'or' or 'and'-shifted bits from a
232 /// common source value:
233 /// and (or (lshr X, C), ...), 1 --> (X & CMask) != 0
234 /// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask
235 /// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns
236 /// that differ only with a final 'not' of the result. We expect that final
237 /// 'not' to be folded with the compare that we create here (invert predicate).
238 static bool foldAnyOrAllBitsSet(Instruction &I) {
239 // The 'any-bits-set' ('or' chain) pattern is simpler to match because the
240 // final "and X, 1" instruction must be the final op in the sequence.
241 bool MatchAllBitsSet;
242 if (match(&I, m_c_And(m_OneUse(m_And(m_Value(), m_Value())), m_Value())))
243 MatchAllBitsSet = true;
244 else if (match(&I, m_And(m_OneUse(m_Or(m_Value(), m_Value())), m_One())))
245 MatchAllBitsSet = false;
246 else
247 return false;
249 MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet);
250 if (MatchAllBitsSet) {
251 if (!matchAndOrChain(cast<BinaryOperator>(&I), MOps) || !MOps.FoundAnd1)
252 return false;
253 } else {
254 if (!matchAndOrChain(cast<BinaryOperator>(&I)->getOperand(0), MOps))
255 return false;
258 // The pattern was found. Create a masked compare that replaces all of the
259 // shift and logic ops.
260 IRBuilder<> Builder(&I);
261 Constant *Mask = ConstantInt::get(I.getType(), MOps.Mask);
262 Value *And = Builder.CreateAnd(MOps.Root, Mask);
263 Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(And, Mask)
264 : Builder.CreateIsNotNull(And);
265 Value *Zext = Builder.CreateZExt(Cmp, I.getType());
266 I.replaceAllUsesWith(Zext);
267 ++NumAnyOrAllBitsSet;
268 return true;
271 // Try to recognize below function as popcount intrinsic.
272 // This is the "best" algorithm from
273 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
274 // Also used in TargetLowering::expandCTPOP().
276 // int popcount(unsigned int i) {
277 // i = i - ((i >> 1) & 0x55555555);
278 // i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
279 // i = ((i + (i >> 4)) & 0x0F0F0F0F);
280 // return (i * 0x01010101) >> 24;
281 // }
282 static bool tryToRecognizePopCount(Instruction &I) {
283 if (I.getOpcode() != Instruction::LShr)
284 return false;
286 Type *Ty = I.getType();
287 if (!Ty->isIntOrIntVectorTy())
288 return false;
290 unsigned Len = Ty->getScalarSizeInBits();
291 // FIXME: fix Len == 8 and other irregular type lengths.
292 if (!(Len <= 128 && Len > 8 && Len % 8 == 0))
293 return false;
295 APInt Mask55 = APInt::getSplat(Len, APInt(8, 0x55));
296 APInt Mask33 = APInt::getSplat(Len, APInt(8, 0x33));
297 APInt Mask0F = APInt::getSplat(Len, APInt(8, 0x0F));
298 APInt Mask01 = APInt::getSplat(Len, APInt(8, 0x01));
299 APInt MaskShift = APInt(Len, Len - 8);
301 Value *Op0 = I.getOperand(0);
302 Value *Op1 = I.getOperand(1);
303 Value *MulOp0;
304 // Matching "(i * 0x01010101...) >> 24".
305 if ((match(Op0, m_Mul(m_Value(MulOp0), m_SpecificInt(Mask01)))) &&
306 match(Op1, m_SpecificInt(MaskShift))) {
307 Value *ShiftOp0;
308 // Matching "((i + (i >> 4)) & 0x0F0F0F0F...)".
309 if (match(MulOp0, m_And(m_c_Add(m_LShr(m_Value(ShiftOp0), m_SpecificInt(4)),
310 m_Deferred(ShiftOp0)),
311 m_SpecificInt(Mask0F)))) {
312 Value *AndOp0;
313 // Matching "(i & 0x33333333...) + ((i >> 2) & 0x33333333...)".
314 if (match(ShiftOp0,
315 m_c_Add(m_And(m_Value(AndOp0), m_SpecificInt(Mask33)),
316 m_And(m_LShr(m_Deferred(AndOp0), m_SpecificInt(2)),
317 m_SpecificInt(Mask33))))) {
318 Value *Root, *SubOp1;
319 // Matching "i - ((i >> 1) & 0x55555555...)".
320 if (match(AndOp0, m_Sub(m_Value(Root), m_Value(SubOp1))) &&
321 match(SubOp1, m_And(m_LShr(m_Specific(Root), m_SpecificInt(1)),
322 m_SpecificInt(Mask55)))) {
323 LLVM_DEBUG(dbgs() << "Recognized popcount intrinsic\n");
324 IRBuilder<> Builder(&I);
325 Function *Func = Intrinsic::getDeclaration(
326 I.getModule(), Intrinsic::ctpop, I.getType());
327 I.replaceAllUsesWith(Builder.CreateCall(Func, {Root}));
328 ++NumPopCountRecognized;
329 return true;
335 return false;
338 /// Fold smin(smax(fptosi(x), C1), C2) to llvm.fptosi.sat(x), providing C1 and
339 /// C2 saturate the value of the fp conversion. The transform is not reversable
340 /// as the fptosi.sat is more defined than the input - all values produce a
341 /// valid value for the fptosi.sat, where as some produce poison for original
342 /// that were out of range of the integer conversion. The reversed pattern may
343 /// use fmax and fmin instead. As we cannot directly reverse the transform, and
344 /// it is not always profitable, we make it conditional on the cost being
345 /// reported as lower by TTI.
346 static bool tryToFPToSat(Instruction &I, TargetTransformInfo &TTI) {
347 // Look for min(max(fptosi, converting to fptosi_sat.
348 Value *In;
349 const APInt *MinC, *MaxC;
350 if (!match(&I, m_SMax(m_OneUse(m_SMin(m_OneUse(m_FPToSI(m_Value(In))),
351 m_APInt(MinC))),
352 m_APInt(MaxC))) &&
353 !match(&I, m_SMin(m_OneUse(m_SMax(m_OneUse(m_FPToSI(m_Value(In))),
354 m_APInt(MaxC))),
355 m_APInt(MinC))))
356 return false;
358 // Check that the constants clamp a saturate.
359 if (!(*MinC + 1).isPowerOf2() || -*MaxC != *MinC + 1)
360 return false;
362 Type *IntTy = I.getType();
363 Type *FpTy = In->getType();
364 Type *SatTy =
365 IntegerType::get(IntTy->getContext(), (*MinC + 1).exactLogBase2() + 1);
366 if (auto *VecTy = dyn_cast<VectorType>(IntTy))
367 SatTy = VectorType::get(SatTy, VecTy->getElementCount());
369 // Get the cost of the intrinsic, and check that against the cost of
370 // fptosi+smin+smax
371 InstructionCost SatCost = TTI.getIntrinsicInstrCost(
372 IntrinsicCostAttributes(Intrinsic::fptosi_sat, SatTy, {In}, {FpTy}),
373 TTI::TCK_RecipThroughput);
374 SatCost += TTI.getCastInstrCost(Instruction::SExt, IntTy, SatTy,
375 TTI::CastContextHint::None,
376 TTI::TCK_RecipThroughput);
378 InstructionCost MinMaxCost = TTI.getCastInstrCost(
379 Instruction::FPToSI, IntTy, FpTy, TTI::CastContextHint::None,
380 TTI::TCK_RecipThroughput);
381 MinMaxCost += TTI.getIntrinsicInstrCost(
382 IntrinsicCostAttributes(Intrinsic::smin, IntTy, {IntTy}),
383 TTI::TCK_RecipThroughput);
384 MinMaxCost += TTI.getIntrinsicInstrCost(
385 IntrinsicCostAttributes(Intrinsic::smax, IntTy, {IntTy}),
386 TTI::TCK_RecipThroughput);
388 if (SatCost >= MinMaxCost)
389 return false;
391 IRBuilder<> Builder(&I);
392 Function *Fn = Intrinsic::getDeclaration(I.getModule(), Intrinsic::fptosi_sat,
393 {SatTy, FpTy});
394 Value *Sat = Builder.CreateCall(Fn, In);
395 I.replaceAllUsesWith(Builder.CreateSExt(Sat, IntTy));
396 return true;
399 /// Try to replace a mathlib call to sqrt with the LLVM intrinsic. This avoids
400 /// pessimistic codegen that has to account for setting errno and can enable
401 /// vectorization.
402 static bool foldSqrt(Instruction &I, TargetTransformInfo &TTI,
403 TargetLibraryInfo &TLI, AssumptionCache &AC,
404 DominatorTree &DT) {
405 // Match a call to sqrt mathlib function.
406 auto *Call = dyn_cast<CallInst>(&I);
407 if (!Call)
408 return false;
410 Module *M = Call->getModule();
411 LibFunc Func;
412 if (!TLI.getLibFunc(*Call, Func) || !isLibFuncEmittable(M, &TLI, Func))
413 return false;
415 if (Func != LibFunc_sqrt && Func != LibFunc_sqrtf && Func != LibFunc_sqrtl)
416 return false;
418 // If (1) this is a sqrt libcall, (2) we can assume that NAN is not created
419 // (because NNAN or the operand arg must not be less than -0.0) and (2) we
420 // would not end up lowering to a libcall anyway (which could change the value
421 // of errno), then:
422 // (1) errno won't be set.
423 // (2) it is safe to convert this to an intrinsic call.
424 Type *Ty = Call->getType();
425 Value *Arg = Call->getArgOperand(0);
426 if (TTI.haveFastSqrt(Ty) &&
427 (Call->hasNoNaNs() ||
428 cannotBeOrderedLessThanZero(Arg, M->getDataLayout(), &TLI, 0, &AC, &I,
429 &DT))) {
430 IRBuilder<> Builder(&I);
431 IRBuilderBase::FastMathFlagGuard Guard(Builder);
432 Builder.setFastMathFlags(Call->getFastMathFlags());
434 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, Ty);
435 Value *NewSqrt = Builder.CreateCall(Sqrt, Arg, "sqrt");
436 I.replaceAllUsesWith(NewSqrt);
438 // Explicitly erase the old call because a call with side effects is not
439 // trivially dead.
440 I.eraseFromParent();
441 return true;
444 return false;
447 // Check if this array of constants represents a cttz table.
448 // Iterate over the elements from \p Table by trying to find/match all
449 // the numbers from 0 to \p InputBits that should represent cttz results.
450 static bool isCTTZTable(const ConstantDataArray &Table, uint64_t Mul,
451 uint64_t Shift, uint64_t InputBits) {
452 unsigned Length = Table.getNumElements();
453 if (Length < InputBits || Length > InputBits * 2)
454 return false;
456 APInt Mask = APInt::getBitsSetFrom(InputBits, Shift);
457 unsigned Matched = 0;
459 for (unsigned i = 0; i < Length; i++) {
460 uint64_t Element = Table.getElementAsInteger(i);
461 if (Element >= InputBits)
462 continue;
464 // Check if \p Element matches a concrete answer. It could fail for some
465 // elements that are never accessed, so we keep iterating over each element
466 // from the table. The number of matched elements should be equal to the
467 // number of potential right answers which is \p InputBits actually.
468 if ((((Mul << Element) & Mask.getZExtValue()) >> Shift) == i)
469 Matched++;
472 return Matched == InputBits;
475 // Try to recognize table-based ctz implementation.
476 // E.g., an example in C (for more cases please see the llvm/tests):
477 // int f(unsigned x) {
478 // static const char table[32] =
479 // {0, 1, 28, 2, 29, 14, 24, 3, 30,
480 // 22, 20, 15, 25, 17, 4, 8, 31, 27,
481 // 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9};
482 // return table[((unsigned)((x & -x) * 0x077CB531U)) >> 27];
483 // }
484 // this can be lowered to `cttz` instruction.
485 // There is also a special case when the element is 0.
487 // Here are some examples or LLVM IR for a 64-bit target:
489 // CASE 1:
490 // %sub = sub i32 0, %x
491 // %and = and i32 %sub, %x
492 // %mul = mul i32 %and, 125613361
493 // %shr = lshr i32 %mul, 27
494 // %idxprom = zext i32 %shr to i64
495 // %arrayidx = getelementptr inbounds [32 x i8], [32 x i8]* @ctz1.table, i64 0,
496 // i64 %idxprom
497 // %0 = load i8, i8* %arrayidx, align 1, !tbaa !8
499 // CASE 2:
500 // %sub = sub i32 0, %x
501 // %and = and i32 %sub, %x
502 // %mul = mul i32 %and, 72416175
503 // %shr = lshr i32 %mul, 26
504 // %idxprom = zext i32 %shr to i64
505 // %arrayidx = getelementptr inbounds [64 x i16], [64 x i16]* @ctz2.table,
506 // i64 0, i64 %idxprom
507 // %0 = load i16, i16* %arrayidx, align 2, !tbaa !8
509 // CASE 3:
510 // %sub = sub i32 0, %x
511 // %and = and i32 %sub, %x
512 // %mul = mul i32 %and, 81224991
513 // %shr = lshr i32 %mul, 27
514 // %idxprom = zext i32 %shr to i64
515 // %arrayidx = getelementptr inbounds [32 x i32], [32 x i32]* @ctz3.table,
516 // i64 0, i64 %idxprom
517 // %0 = load i32, i32* %arrayidx, align 4, !tbaa !8
519 // CASE 4:
520 // %sub = sub i64 0, %x
521 // %and = and i64 %sub, %x
522 // %mul = mul i64 %and, 283881067100198605
523 // %shr = lshr i64 %mul, 58
524 // %arrayidx = getelementptr inbounds [64 x i8], [64 x i8]* @table, i64 0,
525 // i64 %shr
526 // %0 = load i8, i8* %arrayidx, align 1, !tbaa !8
528 // All this can be lowered to @llvm.cttz.i32/64 intrinsic.
529 static bool tryToRecognizeTableBasedCttz(Instruction &I) {
530 LoadInst *LI = dyn_cast<LoadInst>(&I);
531 if (!LI)
532 return false;
534 Type *AccessType = LI->getType();
535 if (!AccessType->isIntegerTy())
536 return false;
538 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getPointerOperand());
539 if (!GEP || !GEP->isInBounds() || GEP->getNumIndices() != 2)
540 return false;
542 if (!GEP->getSourceElementType()->isArrayTy())
543 return false;
545 uint64_t ArraySize = GEP->getSourceElementType()->getArrayNumElements();
546 if (ArraySize != 32 && ArraySize != 64)
547 return false;
549 GlobalVariable *GVTable = dyn_cast<GlobalVariable>(GEP->getPointerOperand());
550 if (!GVTable || !GVTable->hasInitializer() || !GVTable->isConstant())
551 return false;
553 ConstantDataArray *ConstData =
554 dyn_cast<ConstantDataArray>(GVTable->getInitializer());
555 if (!ConstData)
556 return false;
558 if (!match(GEP->idx_begin()->get(), m_ZeroInt()))
559 return false;
561 Value *Idx2 = std::next(GEP->idx_begin())->get();
562 Value *X1;
563 uint64_t MulConst, ShiftConst;
564 // FIXME: 64-bit targets have `i64` type for the GEP index, so this match will
565 // probably fail for other (e.g. 32-bit) targets.
566 if (!match(Idx2, m_ZExtOrSelf(
567 m_LShr(m_Mul(m_c_And(m_Neg(m_Value(X1)), m_Deferred(X1)),
568 m_ConstantInt(MulConst)),
569 m_ConstantInt(ShiftConst)))))
570 return false;
572 unsigned InputBits = X1->getType()->getScalarSizeInBits();
573 if (InputBits != 32 && InputBits != 64)
574 return false;
576 // Shift should extract top 5..7 bits.
577 if (InputBits - Log2_32(InputBits) != ShiftConst &&
578 InputBits - Log2_32(InputBits) - 1 != ShiftConst)
579 return false;
581 if (!isCTTZTable(*ConstData, MulConst, ShiftConst, InputBits))
582 return false;
584 auto ZeroTableElem = ConstData->getElementAsInteger(0);
585 bool DefinedForZero = ZeroTableElem == InputBits;
587 IRBuilder<> B(LI);
588 ConstantInt *BoolConst = B.getInt1(!DefinedForZero);
589 Type *XType = X1->getType();
590 auto Cttz = B.CreateIntrinsic(Intrinsic::cttz, {XType}, {X1, BoolConst});
591 Value *ZExtOrTrunc = nullptr;
593 if (DefinedForZero) {
594 ZExtOrTrunc = B.CreateZExtOrTrunc(Cttz, AccessType);
595 } else {
596 // If the value in elem 0 isn't the same as InputBits, we still want to
597 // produce the value from the table.
598 auto Cmp = B.CreateICmpEQ(X1, ConstantInt::get(XType, 0));
599 auto Select =
600 B.CreateSelect(Cmp, ConstantInt::get(XType, ZeroTableElem), Cttz);
602 // NOTE: If the table[0] is 0, but the cttz(0) is defined by the Target
603 // it should be handled as: `cttz(x) & (typeSize - 1)`.
605 ZExtOrTrunc = B.CreateZExtOrTrunc(Select, AccessType);
608 LI->replaceAllUsesWith(ZExtOrTrunc);
610 return true;
613 /// This is used by foldLoadsRecursive() to capture a Root Load node which is
614 /// of type or(load, load) and recursively build the wide load. Also capture the
615 /// shift amount, zero extend type and loadSize.
616 struct LoadOps {
617 LoadInst *Root = nullptr;
618 LoadInst *RootInsert = nullptr;
619 bool FoundRoot = false;
620 uint64_t LoadSize = 0;
621 const APInt *Shift = nullptr;
622 Type *ZextType;
623 AAMDNodes AATags;
626 // Identify and Merge consecutive loads recursively which is of the form
627 // (ZExt(L1) << shift1) | (ZExt(L2) << shift2) -> ZExt(L3) << shift1
628 // (ZExt(L1) << shift1) | ZExt(L2) -> ZExt(L3)
629 static bool foldLoadsRecursive(Value *V, LoadOps &LOps, const DataLayout &DL,
630 AliasAnalysis &AA) {
631 const APInt *ShAmt2 = nullptr;
632 Value *X;
633 Instruction *L1, *L2;
635 // Go to the last node with loads.
636 if (match(V, m_OneUse(m_c_Or(
637 m_Value(X),
638 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_OneUse(m_Instruction(L2)))),
639 m_APInt(ShAmt2)))))) ||
640 match(V, m_OneUse(m_Or(m_Value(X),
641 m_OneUse(m_ZExt(m_OneUse(m_Instruction(L2)))))))) {
642 if (!foldLoadsRecursive(X, LOps, DL, AA) && LOps.FoundRoot)
643 // Avoid Partial chain merge.
644 return false;
645 } else
646 return false;
648 // Check if the pattern has loads
649 LoadInst *LI1 = LOps.Root;
650 const APInt *ShAmt1 = LOps.Shift;
651 if (LOps.FoundRoot == false &&
652 (match(X, m_OneUse(m_ZExt(m_Instruction(L1)))) ||
653 match(X, m_OneUse(m_Shl(m_OneUse(m_ZExt(m_OneUse(m_Instruction(L1)))),
654 m_APInt(ShAmt1)))))) {
655 LI1 = dyn_cast<LoadInst>(L1);
657 LoadInst *LI2 = dyn_cast<LoadInst>(L2);
659 // Check if loads are same, atomic, volatile and having same address space.
660 if (LI1 == LI2 || !LI1 || !LI2 || !LI1->isSimple() || !LI2->isSimple() ||
661 LI1->getPointerAddressSpace() != LI2->getPointerAddressSpace())
662 return false;
664 // Check if Loads come from same BB.
665 if (LI1->getParent() != LI2->getParent())
666 return false;
668 // Find the data layout
669 bool IsBigEndian = DL.isBigEndian();
671 // Check if loads are consecutive and same size.
672 Value *Load1Ptr = LI1->getPointerOperand();
673 APInt Offset1(DL.getIndexTypeSizeInBits(Load1Ptr->getType()), 0);
674 Load1Ptr =
675 Load1Ptr->stripAndAccumulateConstantOffsets(DL, Offset1,
676 /* AllowNonInbounds */ true);
678 Value *Load2Ptr = LI2->getPointerOperand();
679 APInt Offset2(DL.getIndexTypeSizeInBits(Load2Ptr->getType()), 0);
680 Load2Ptr =
681 Load2Ptr->stripAndAccumulateConstantOffsets(DL, Offset2,
682 /* AllowNonInbounds */ true);
684 // Verify if both loads have same base pointers and load sizes are same.
685 uint64_t LoadSize1 = LI1->getType()->getPrimitiveSizeInBits();
686 uint64_t LoadSize2 = LI2->getType()->getPrimitiveSizeInBits();
687 if (Load1Ptr != Load2Ptr || LoadSize1 != LoadSize2)
688 return false;
690 // Support Loadsizes greater or equal to 8bits and only power of 2.
691 if (LoadSize1 < 8 || !isPowerOf2_64(LoadSize1))
692 return false;
694 // Alias Analysis to check for stores b/w the loads.
695 LoadInst *Start = LOps.FoundRoot ? LOps.RootInsert : LI1, *End = LI2;
696 MemoryLocation Loc;
697 if (!Start->comesBefore(End)) {
698 std::swap(Start, End);
699 Loc = MemoryLocation::get(End);
700 if (LOps.FoundRoot)
701 Loc = Loc.getWithNewSize(LOps.LoadSize);
702 } else
703 Loc = MemoryLocation::get(End);
704 unsigned NumScanned = 0;
705 for (Instruction &Inst :
706 make_range(Start->getIterator(), End->getIterator())) {
707 if (Inst.mayWriteToMemory() && isModSet(AA.getModRefInfo(&Inst, Loc)))
708 return false;
709 if (++NumScanned > MaxInstrsToScan)
710 return false;
713 // Make sure Load with lower Offset is at LI1
714 bool Reverse = false;
715 if (Offset2.slt(Offset1)) {
716 std::swap(LI1, LI2);
717 std::swap(ShAmt1, ShAmt2);
718 std::swap(Offset1, Offset2);
719 std::swap(Load1Ptr, Load2Ptr);
720 std::swap(LoadSize1, LoadSize2);
721 Reverse = true;
724 // Big endian swap the shifts
725 if (IsBigEndian)
726 std::swap(ShAmt1, ShAmt2);
728 // Find Shifts values.
729 uint64_t Shift1 = 0, Shift2 = 0;
730 if (ShAmt1)
731 Shift1 = ShAmt1->getZExtValue();
732 if (ShAmt2)
733 Shift2 = ShAmt2->getZExtValue();
735 // First load is always LI1. This is where we put the new load.
736 // Use the merged load size available from LI1 for forward loads.
737 if (LOps.FoundRoot) {
738 if (!Reverse)
739 LoadSize1 = LOps.LoadSize;
740 else
741 LoadSize2 = LOps.LoadSize;
744 // Verify if shift amount and load index aligns and verifies that loads
745 // are consecutive.
746 uint64_t ShiftDiff = IsBigEndian ? LoadSize2 : LoadSize1;
747 uint64_t PrevSize =
748 DL.getTypeStoreSize(IntegerType::get(LI1->getContext(), LoadSize1));
749 if ((Shift2 - Shift1) != ShiftDiff || (Offset2 - Offset1) != PrevSize)
750 return false;
752 // Update LOps
753 AAMDNodes AATags1 = LOps.AATags;
754 AAMDNodes AATags2 = LI2->getAAMetadata();
755 if (LOps.FoundRoot == false) {
756 LOps.FoundRoot = true;
757 AATags1 = LI1->getAAMetadata();
759 LOps.LoadSize = LoadSize1 + LoadSize2;
760 LOps.RootInsert = Start;
762 // Concatenate the AATags of the Merged Loads.
763 LOps.AATags = AATags1.concat(AATags2);
765 LOps.Root = LI1;
766 LOps.Shift = ShAmt1;
767 LOps.ZextType = X->getType();
768 return true;
771 // For a given BB instruction, evaluate all loads in the chain that form a
772 // pattern which suggests that the loads can be combined. The one and only use
773 // of the loads is to form a wider load.
774 static bool foldConsecutiveLoads(Instruction &I, const DataLayout &DL,
775 TargetTransformInfo &TTI, AliasAnalysis &AA,
776 const DominatorTree &DT) {
777 // Only consider load chains of scalar values.
778 if (isa<VectorType>(I.getType()))
779 return false;
781 LoadOps LOps;
782 if (!foldLoadsRecursive(&I, LOps, DL, AA) || !LOps.FoundRoot)
783 return false;
785 IRBuilder<> Builder(&I);
786 LoadInst *NewLoad = nullptr, *LI1 = LOps.Root;
788 IntegerType *WiderType = IntegerType::get(I.getContext(), LOps.LoadSize);
789 // TTI based checks if we want to proceed with wider load
790 bool Allowed = TTI.isTypeLegal(WiderType);
791 if (!Allowed)
792 return false;
794 unsigned AS = LI1->getPointerAddressSpace();
795 unsigned Fast = 0;
796 Allowed = TTI.allowsMisalignedMemoryAccesses(I.getContext(), LOps.LoadSize,
797 AS, LI1->getAlign(), &Fast);
798 if (!Allowed || !Fast)
799 return false;
801 // Get the Index and Ptr for the new GEP.
802 Value *Load1Ptr = LI1->getPointerOperand();
803 Builder.SetInsertPoint(LOps.RootInsert);
804 if (!DT.dominates(Load1Ptr, LOps.RootInsert)) {
805 APInt Offset1(DL.getIndexTypeSizeInBits(Load1Ptr->getType()), 0);
806 Load1Ptr = Load1Ptr->stripAndAccumulateConstantOffsets(
807 DL, Offset1, /* AllowNonInbounds */ true);
808 Load1Ptr = Builder.CreateGEP(Builder.getInt8Ty(), Load1Ptr,
809 Builder.getInt32(Offset1.getZExtValue()));
811 // Generate wider load.
812 NewLoad = Builder.CreateAlignedLoad(WiderType, Load1Ptr, LI1->getAlign(),
813 LI1->isVolatile(), "");
814 NewLoad->takeName(LI1);
815 // Set the New Load AATags Metadata.
816 if (LOps.AATags)
817 NewLoad->setAAMetadata(LOps.AATags);
819 Value *NewOp = NewLoad;
820 // Check if zero extend needed.
821 if (LOps.ZextType)
822 NewOp = Builder.CreateZExt(NewOp, LOps.ZextType);
824 // Check if shift needed. We need to shift with the amount of load1
825 // shift if not zero.
826 if (LOps.Shift)
827 NewOp = Builder.CreateShl(NewOp, ConstantInt::get(I.getContext(), *LOps.Shift));
828 I.replaceAllUsesWith(NewOp);
830 return true;
833 // Calculate GEP Stride and accumulated const ModOffset. Return Stride and
834 // ModOffset
835 static std::pair<APInt, APInt>
836 getStrideAndModOffsetOfGEP(Value *PtrOp, const DataLayout &DL) {
837 unsigned BW = DL.getIndexTypeSizeInBits(PtrOp->getType());
838 std::optional<APInt> Stride;
839 APInt ModOffset(BW, 0);
840 // Return a minimum gep stride, greatest common divisor of consective gep
841 // index scales(c.f. Bézout's identity).
842 while (auto *GEP = dyn_cast<GEPOperator>(PtrOp)) {
843 MapVector<Value *, APInt> VarOffsets;
844 if (!GEP->collectOffset(DL, BW, VarOffsets, ModOffset))
845 break;
847 for (auto [V, Scale] : VarOffsets) {
848 // Only keep a power of two factor for non-inbounds
849 if (!GEP->isInBounds())
850 Scale = APInt::getOneBitSet(Scale.getBitWidth(), Scale.countr_zero());
852 if (!Stride)
853 Stride = Scale;
854 else
855 Stride = APIntOps::GreatestCommonDivisor(*Stride, Scale);
858 PtrOp = GEP->getPointerOperand();
861 // Check whether pointer arrives back at Global Variable via at least one GEP.
862 // Even if it doesn't, we can check by alignment.
863 if (!isa<GlobalVariable>(PtrOp) || !Stride)
864 return {APInt(BW, 1), APInt(BW, 0)};
866 // In consideration of signed GEP indices, non-negligible offset become
867 // remainder of division by minimum GEP stride.
868 ModOffset = ModOffset.srem(*Stride);
869 if (ModOffset.isNegative())
870 ModOffset += *Stride;
872 return {*Stride, ModOffset};
875 /// If C is a constant patterned array and all valid loaded results for given
876 /// alignment are same to a constant, return that constant.
877 static bool foldPatternedLoads(Instruction &I, const DataLayout &DL) {
878 auto *LI = dyn_cast<LoadInst>(&I);
879 if (!LI || LI->isVolatile())
880 return false;
882 // We can only fold the load if it is from a constant global with definitive
883 // initializer. Skip expensive logic if this is not the case.
884 auto *PtrOp = LI->getPointerOperand();
885 auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(PtrOp));
886 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
887 return false;
889 // Bail for large initializers in excess of 4K to avoid too many scans.
890 Constant *C = GV->getInitializer();
891 uint64_t GVSize = DL.getTypeAllocSize(C->getType());
892 if (!GVSize || 4096 < GVSize)
893 return false;
895 Type *LoadTy = LI->getType();
896 unsigned BW = DL.getIndexTypeSizeInBits(PtrOp->getType());
897 auto [Stride, ConstOffset] = getStrideAndModOffsetOfGEP(PtrOp, DL);
899 // Any possible offset could be multiple of GEP stride. And any valid
900 // offset is multiple of load alignment, so checking only multiples of bigger
901 // one is sufficient to say results' equality.
902 if (auto LA = LI->getAlign();
903 LA <= GV->getAlign().valueOrOne() && Stride.getZExtValue() < LA.value()) {
904 ConstOffset = APInt(BW, 0);
905 Stride = APInt(BW, LA.value());
908 Constant *Ca = ConstantFoldLoadFromConst(C, LoadTy, ConstOffset, DL);
909 if (!Ca)
910 return false;
912 unsigned E = GVSize - DL.getTypeStoreSize(LoadTy);
913 for (; ConstOffset.getZExtValue() <= E; ConstOffset += Stride)
914 if (Ca != ConstantFoldLoadFromConst(C, LoadTy, ConstOffset, DL))
915 return false;
917 I.replaceAllUsesWith(Ca);
919 return true;
922 /// This is the entry point for folds that could be implemented in regular
923 /// InstCombine, but they are separated because they are not expected to
924 /// occur frequently and/or have more than a constant-length pattern match.
925 static bool foldUnusualPatterns(Function &F, DominatorTree &DT,
926 TargetTransformInfo &TTI,
927 TargetLibraryInfo &TLI, AliasAnalysis &AA,
928 AssumptionCache &AC) {
929 bool MadeChange = false;
930 for (BasicBlock &BB : F) {
931 // Ignore unreachable basic blocks.
932 if (!DT.isReachableFromEntry(&BB))
933 continue;
935 const DataLayout &DL = F.getParent()->getDataLayout();
937 // Walk the block backwards for efficiency. We're matching a chain of
938 // use->defs, so we're more likely to succeed by starting from the bottom.
939 // Also, we want to avoid matching partial patterns.
940 // TODO: It would be more efficient if we removed dead instructions
941 // iteratively in this loop rather than waiting until the end.
942 for (Instruction &I : make_early_inc_range(llvm::reverse(BB))) {
943 MadeChange |= foldAnyOrAllBitsSet(I);
944 MadeChange |= foldGuardedFunnelShift(I, DT);
945 MadeChange |= tryToRecognizePopCount(I);
946 MadeChange |= tryToFPToSat(I, TTI);
947 MadeChange |= tryToRecognizeTableBasedCttz(I);
948 MadeChange |= foldConsecutiveLoads(I, DL, TTI, AA, DT);
949 MadeChange |= foldPatternedLoads(I, DL);
950 // NOTE: This function introduces erasing of the instruction `I`, so it
951 // needs to be called at the end of this sequence, otherwise we may make
952 // bugs.
953 MadeChange |= foldSqrt(I, TTI, TLI, AC, DT);
957 // We're done with transforms, so remove dead instructions.
958 if (MadeChange)
959 for (BasicBlock &BB : F)
960 SimplifyInstructionsInBlock(&BB);
962 return MadeChange;
965 /// This is the entry point for all transforms. Pass manager differences are
966 /// handled in the callers of this function.
967 static bool runImpl(Function &F, AssumptionCache &AC, TargetTransformInfo &TTI,
968 TargetLibraryInfo &TLI, DominatorTree &DT,
969 AliasAnalysis &AA) {
970 bool MadeChange = false;
971 const DataLayout &DL = F.getParent()->getDataLayout();
972 TruncInstCombine TIC(AC, TLI, DL, DT);
973 MadeChange |= TIC.run(F);
974 MadeChange |= foldUnusualPatterns(F, DT, TTI, TLI, AA, AC);
975 return MadeChange;
978 PreservedAnalyses AggressiveInstCombinePass::run(Function &F,
979 FunctionAnalysisManager &AM) {
980 auto &AC = AM.getResult<AssumptionAnalysis>(F);
981 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
982 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
983 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
984 auto &AA = AM.getResult<AAManager>(F);
985 if (!runImpl(F, AC, TTI, TLI, DT, AA)) {
986 // No changes, all analyses are preserved.
987 return PreservedAnalyses::all();
989 // Mark all the analyses that instcombine updates as preserved.
990 PreservedAnalyses PA;
991 PA.preserveSet<CFGAnalyses>();
992 return PA;