[AMDGPU] Test codegen'ing True16 additions.
[llvm-project.git] / llvm / lib / Transforms / IPO / DeadArgumentElimination.cpp
blob01834015f3fdd42c123b8f9ce6dc2cfe02d6f2e1
1 //===- DeadArgumentElimination.cpp - Eliminate dead arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass deletes dead arguments from internal functions. Dead argument
10 // elimination removes arguments which are directly dead, as well as arguments
11 // only passed into function calls as dead arguments of other functions. This
12 // pass also deletes dead return values in a similar way.
14 // This pass is often useful as a cleanup pass to run after aggressive
15 // interprocedural passes, which add possibly-dead arguments or return values.
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Transforms/IPO/DeadArgumentElimination.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AttributeMask.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DIBuilder.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/NoFolder.h"
37 #include "llvm/IR/PassManager.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Use.h"
40 #include "llvm/IR/User.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Transforms/IPO.h"
48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
49 #include <cassert>
50 #include <utility>
51 #include <vector>
53 using namespace llvm;
55 #define DEBUG_TYPE "deadargelim"
57 STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
58 STATISTIC(NumRetValsEliminated, "Number of unused return values removed");
59 STATISTIC(NumArgumentsReplacedWithPoison,
60 "Number of unread args replaced with poison");
62 namespace {
64 /// The dead argument elimination pass.
65 class DAE : public ModulePass {
66 protected:
67 // DAH uses this to specify a different ID.
68 explicit DAE(char &ID) : ModulePass(ID) {}
70 public:
71 static char ID; // Pass identification, replacement for typeid
73 DAE() : ModulePass(ID) {
74 initializeDAEPass(*PassRegistry::getPassRegistry());
77 bool runOnModule(Module &M) override {
78 if (skipModule(M))
79 return false;
80 DeadArgumentEliminationPass DAEP(shouldHackArguments());
81 ModuleAnalysisManager DummyMAM;
82 PreservedAnalyses PA = DAEP.run(M, DummyMAM);
83 return !PA.areAllPreserved();
86 virtual bool shouldHackArguments() const { return false; }
89 bool isMustTailCalleeAnalyzable(const CallBase &CB) {
90 assert(CB.isMustTailCall());
91 return CB.getCalledFunction() && !CB.getCalledFunction()->isDeclaration();
94 } // end anonymous namespace
96 char DAE::ID = 0;
98 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
100 namespace {
102 /// The DeadArgumentHacking pass, same as dead argument elimination, but deletes
103 /// arguments to functions which are external. This is only for use by bugpoint.
104 struct DAH : public DAE {
105 static char ID;
107 DAH() : DAE(ID) {}
109 bool shouldHackArguments() const override { return true; }
112 } // end anonymous namespace
114 char DAH::ID = 0;
116 INITIALIZE_PASS(DAH, "deadarghaX0r",
117 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)", false,
118 false)
120 /// This pass removes arguments from functions which are not used by the body of
121 /// the function.
122 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
124 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
126 /// If this is an function that takes a ... list, and if llvm.vastart is never
127 /// called, the varargs list is dead for the function.
128 bool DeadArgumentEliminationPass::deleteDeadVarargs(Function &F) {
129 assert(F.getFunctionType()->isVarArg() && "Function isn't varargs!");
130 if (F.isDeclaration() || !F.hasLocalLinkage())
131 return false;
133 // Ensure that the function is only directly called.
134 if (F.hasAddressTaken())
135 return false;
137 // Don't touch naked functions. The assembly might be using an argument, or
138 // otherwise rely on the frame layout in a way that this analysis will not
139 // see.
140 if (F.hasFnAttribute(Attribute::Naked)) {
141 return false;
144 // Okay, we know we can transform this function if safe. Scan its body
145 // looking for calls marked musttail or calls to llvm.vastart.
146 for (BasicBlock &BB : F) {
147 for (Instruction &I : BB) {
148 CallInst *CI = dyn_cast<CallInst>(&I);
149 if (!CI)
150 continue;
151 if (CI->isMustTailCall())
152 return false;
153 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
154 if (II->getIntrinsicID() == Intrinsic::vastart)
155 return false;
160 // If we get here, there are no calls to llvm.vastart in the function body,
161 // remove the "..." and adjust all the calls.
163 // Start by computing a new prototype for the function, which is the same as
164 // the old function, but doesn't have isVarArg set.
165 FunctionType *FTy = F.getFunctionType();
167 std::vector<Type *> Params(FTy->param_begin(), FTy->param_end());
168 FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), Params, false);
169 unsigned NumArgs = Params.size();
171 // Create the new function body and insert it into the module...
172 Function *NF = Function::Create(NFTy, F.getLinkage(), F.getAddressSpace());
173 NF->copyAttributesFrom(&F);
174 NF->setComdat(F.getComdat());
175 F.getParent()->getFunctionList().insert(F.getIterator(), NF);
176 NF->takeName(&F);
178 // Loop over all the callers of the function, transforming the call sites
179 // to pass in a smaller number of arguments into the new function.
181 std::vector<Value *> Args;
182 for (User *U : llvm::make_early_inc_range(F.users())) {
183 CallBase *CB = dyn_cast<CallBase>(U);
184 if (!CB)
185 continue;
187 // Pass all the same arguments.
188 Args.assign(CB->arg_begin(), CB->arg_begin() + NumArgs);
190 // Drop any attributes that were on the vararg arguments.
191 AttributeList PAL = CB->getAttributes();
192 if (!PAL.isEmpty()) {
193 SmallVector<AttributeSet, 8> ArgAttrs;
194 for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo)
195 ArgAttrs.push_back(PAL.getParamAttrs(ArgNo));
196 PAL = AttributeList::get(F.getContext(), PAL.getFnAttrs(),
197 PAL.getRetAttrs(), ArgAttrs);
200 SmallVector<OperandBundleDef, 1> OpBundles;
201 CB->getOperandBundlesAsDefs(OpBundles);
203 CallBase *NewCB = nullptr;
204 if (InvokeInst *II = dyn_cast<InvokeInst>(CB)) {
205 NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
206 Args, OpBundles, "", CB);
207 } else {
208 NewCB = CallInst::Create(NF, Args, OpBundles, "", CB);
209 cast<CallInst>(NewCB)->setTailCallKind(
210 cast<CallInst>(CB)->getTailCallKind());
212 NewCB->setCallingConv(CB->getCallingConv());
213 NewCB->setAttributes(PAL);
214 NewCB->copyMetadata(*CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
216 Args.clear();
218 if (!CB->use_empty())
219 CB->replaceAllUsesWith(NewCB);
221 NewCB->takeName(CB);
223 // Finally, remove the old call from the program, reducing the use-count of
224 // F.
225 CB->eraseFromParent();
228 // Since we have now created the new function, splice the body of the old
229 // function right into the new function, leaving the old rotting hulk of the
230 // function empty.
231 NF->splice(NF->begin(), &F);
233 // Loop over the argument list, transferring uses of the old arguments over to
234 // the new arguments, also transferring over the names as well. While we're
235 // at it, remove the dead arguments from the DeadArguments list.
236 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(),
237 I2 = NF->arg_begin();
238 I != E; ++I, ++I2) {
239 // Move the name and users over to the new version.
240 I->replaceAllUsesWith(&*I2);
241 I2->takeName(&*I);
244 // Clone metadata from the old function, including debug info descriptor.
245 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
246 F.getAllMetadata(MDs);
247 for (auto [KindID, Node] : MDs)
248 NF->addMetadata(KindID, *Node);
250 // Fix up any BlockAddresses that refer to the function.
251 F.replaceAllUsesWith(ConstantExpr::getBitCast(NF, F.getType()));
252 // Delete the bitcast that we just created, so that NF does not
253 // appear to be address-taken.
254 NF->removeDeadConstantUsers();
255 // Finally, nuke the old function.
256 F.eraseFromParent();
257 return true;
260 /// Checks if the given function has any arguments that are unused, and changes
261 /// the caller parameters to be poison instead.
262 bool DeadArgumentEliminationPass::removeDeadArgumentsFromCallers(Function &F) {
263 // We cannot change the arguments if this TU does not define the function or
264 // if the linker may choose a function body from another TU, even if the
265 // nominal linkage indicates that other copies of the function have the same
266 // semantics. In the below example, the dead load from %p may not have been
267 // eliminated from the linker-chosen copy of f, so replacing %p with poison
268 // in callers may introduce undefined behavior.
270 // define linkonce_odr void @f(i32* %p) {
271 // %v = load i32 %p
272 // ret void
273 // }
274 if (!F.hasExactDefinition())
275 return false;
277 // Functions with local linkage should already have been handled, except if
278 // they are fully alive (e.g., called indirectly) and except for the fragile
279 // (variadic) ones. In these cases, we may still be able to improve their
280 // statically known call sites.
281 if ((F.hasLocalLinkage() && !LiveFunctions.count(&F)) &&
282 !F.getFunctionType()->isVarArg())
283 return false;
285 // Don't touch naked functions. The assembly might be using an argument, or
286 // otherwise rely on the frame layout in a way that this analysis will not
287 // see.
288 if (F.hasFnAttribute(Attribute::Naked))
289 return false;
291 if (F.use_empty())
292 return false;
294 SmallVector<unsigned, 8> UnusedArgs;
295 bool Changed = false;
297 AttributeMask UBImplyingAttributes =
298 AttributeFuncs::getUBImplyingAttributes();
299 for (Argument &Arg : F.args()) {
300 if (!Arg.hasSwiftErrorAttr() && Arg.use_empty() &&
301 !Arg.hasPassPointeeByValueCopyAttr()) {
302 if (Arg.isUsedByMetadata()) {
303 Arg.replaceAllUsesWith(PoisonValue::get(Arg.getType()));
304 Changed = true;
306 UnusedArgs.push_back(Arg.getArgNo());
307 F.removeParamAttrs(Arg.getArgNo(), UBImplyingAttributes);
311 if (UnusedArgs.empty())
312 return false;
314 for (Use &U : F.uses()) {
315 CallBase *CB = dyn_cast<CallBase>(U.getUser());
316 if (!CB || !CB->isCallee(&U) ||
317 CB->getFunctionType() != F.getFunctionType())
318 continue;
320 // Now go through all unused args and replace them with poison.
321 for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
322 unsigned ArgNo = UnusedArgs[I];
324 Value *Arg = CB->getArgOperand(ArgNo);
325 CB->setArgOperand(ArgNo, PoisonValue::get(Arg->getType()));
326 CB->removeParamAttrs(ArgNo, UBImplyingAttributes);
328 ++NumArgumentsReplacedWithPoison;
329 Changed = true;
333 return Changed;
336 /// Convenience function that returns the number of return values. It returns 0
337 /// for void functions and 1 for functions not returning a struct. It returns
338 /// the number of struct elements for functions returning a struct.
339 static unsigned numRetVals(const Function *F) {
340 Type *RetTy = F->getReturnType();
341 if (RetTy->isVoidTy())
342 return 0;
343 if (StructType *STy = dyn_cast<StructType>(RetTy))
344 return STy->getNumElements();
345 if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
346 return ATy->getNumElements();
347 return 1;
350 /// Returns the sub-type a function will return at a given Idx. Should
351 /// correspond to the result type of an ExtractValue instruction executed with
352 /// just that one Idx (i.e. only top-level structure is considered).
353 static Type *getRetComponentType(const Function *F, unsigned Idx) {
354 Type *RetTy = F->getReturnType();
355 assert(!RetTy->isVoidTy() && "void type has no subtype");
357 if (StructType *STy = dyn_cast<StructType>(RetTy))
358 return STy->getElementType(Idx);
359 if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
360 return ATy->getElementType();
361 return RetTy;
364 /// Checks Use for liveness in LiveValues. If Use is not live, it adds Use to
365 /// the MaybeLiveUses argument. Returns the determined liveness of Use.
366 DeadArgumentEliminationPass::Liveness
367 DeadArgumentEliminationPass::markIfNotLive(RetOrArg Use,
368 UseVector &MaybeLiveUses) {
369 // We're live if our use or its Function is already marked as live.
370 if (isLive(Use))
371 return Live;
373 // We're maybe live otherwise, but remember that we must become live if
374 // Use becomes live.
375 MaybeLiveUses.push_back(Use);
376 return MaybeLive;
379 /// Looks at a single use of an argument or return value and determines if it
380 /// should be alive or not. Adds this use to MaybeLiveUses if it causes the
381 /// used value to become MaybeLive.
383 /// RetValNum is the return value number to use when this use is used in a
384 /// return instruction. This is used in the recursion, you should always leave
385 /// it at 0.
386 DeadArgumentEliminationPass::Liveness
387 DeadArgumentEliminationPass::surveyUse(const Use *U, UseVector &MaybeLiveUses,
388 unsigned RetValNum) {
389 const User *V = U->getUser();
390 if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
391 // The value is returned from a function. It's only live when the
392 // function's return value is live. We use RetValNum here, for the case
393 // that U is really a use of an insertvalue instruction that uses the
394 // original Use.
395 const Function *F = RI->getParent()->getParent();
396 if (RetValNum != -1U) {
397 RetOrArg Use = createRet(F, RetValNum);
398 // We might be live, depending on the liveness of Use.
399 return markIfNotLive(Use, MaybeLiveUses);
402 DeadArgumentEliminationPass::Liveness Result = MaybeLive;
403 for (unsigned Ri = 0; Ri < numRetVals(F); ++Ri) {
404 RetOrArg Use = createRet(F, Ri);
405 // We might be live, depending on the liveness of Use. If any
406 // sub-value is live, then the entire value is considered live. This
407 // is a conservative choice, and better tracking is possible.
408 DeadArgumentEliminationPass::Liveness SubResult =
409 markIfNotLive(Use, MaybeLiveUses);
410 if (Result != Live)
411 Result = SubResult;
413 return Result;
416 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
417 if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex() &&
418 IV->hasIndices())
419 // The use we are examining is inserted into an aggregate. Our liveness
420 // depends on all uses of that aggregate, but if it is used as a return
421 // value, only index at which we were inserted counts.
422 RetValNum = *IV->idx_begin();
424 // Note that if we are used as the aggregate operand to the insertvalue,
425 // we don't change RetValNum, but do survey all our uses.
427 Liveness Result = MaybeLive;
428 for (const Use &UU : IV->uses()) {
429 Result = surveyUse(&UU, MaybeLiveUses, RetValNum);
430 if (Result == Live)
431 break;
433 return Result;
436 if (const auto *CB = dyn_cast<CallBase>(V)) {
437 const Function *F = CB->getCalledFunction();
438 if (F) {
439 // Used in a direct call.
441 // The function argument is live if it is used as a bundle operand.
442 if (CB->isBundleOperand(U))
443 return Live;
445 // Find the argument number. We know for sure that this use is an
446 // argument, since if it was the function argument this would be an
447 // indirect call and that we know can't be looking at a value of the
448 // label type (for the invoke instruction).
449 unsigned ArgNo = CB->getArgOperandNo(U);
451 if (ArgNo >= F->getFunctionType()->getNumParams())
452 // The value is passed in through a vararg! Must be live.
453 return Live;
455 assert(CB->getArgOperand(ArgNo) == CB->getOperand(U->getOperandNo()) &&
456 "Argument is not where we expected it");
458 // Value passed to a normal call. It's only live when the corresponding
459 // argument to the called function turns out live.
460 RetOrArg Use = createArg(F, ArgNo);
461 return markIfNotLive(Use, MaybeLiveUses);
464 // Used in any other way? Value must be live.
465 return Live;
468 /// Looks at all the uses of the given value
469 /// Returns the Liveness deduced from the uses of this value.
471 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
472 /// the result is Live, MaybeLiveUses might be modified but its content should
473 /// be ignored (since it might not be complete).
474 DeadArgumentEliminationPass::Liveness
475 DeadArgumentEliminationPass::surveyUses(const Value *V,
476 UseVector &MaybeLiveUses) {
477 // Assume it's dead (which will only hold if there are no uses at all..).
478 Liveness Result = MaybeLive;
479 // Check each use.
480 for (const Use &U : V->uses()) {
481 Result = surveyUse(&U, MaybeLiveUses);
482 if (Result == Live)
483 break;
485 return Result;
488 /// Performs the initial survey of the specified function, checking out whether
489 /// it uses any of its incoming arguments or whether any callers use the return
490 /// value. This fills in the LiveValues set and Uses map.
492 /// We consider arguments of non-internal functions to be intrinsically alive as
493 /// well as arguments to functions which have their "address taken".
494 void DeadArgumentEliminationPass::surveyFunction(const Function &F) {
495 // Functions with inalloca/preallocated parameters are expecting args in a
496 // particular register and memory layout.
497 if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
498 F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
499 markLive(F);
500 return;
503 // Don't touch naked functions. The assembly might be using an argument, or
504 // otherwise rely on the frame layout in a way that this analysis will not
505 // see.
506 if (F.hasFnAttribute(Attribute::Naked)) {
507 markLive(F);
508 return;
511 unsigned RetCount = numRetVals(&F);
513 // Assume all return values are dead
514 using RetVals = SmallVector<Liveness, 5>;
516 RetVals RetValLiveness(RetCount, MaybeLive);
518 using RetUses = SmallVector<UseVector, 5>;
520 // These vectors map each return value to the uses that make it MaybeLive, so
521 // we can add those to the Uses map if the return value really turns out to be
522 // MaybeLive. Initialized to a list of RetCount empty lists.
523 RetUses MaybeLiveRetUses(RetCount);
525 bool HasMustTailCalls = false;
526 for (const BasicBlock &BB : F) {
527 // If we have any returns of `musttail` results - the signature can't
528 // change
529 if (const auto *TC = BB.getTerminatingMustTailCall()) {
530 HasMustTailCalls = true;
531 // In addition, if the called function is not locally defined (or unknown,
532 // if this is an indirect call), we can't change the callsite and thus
533 // can't change this function's signature either.
534 if (!isMustTailCalleeAnalyzable(*TC)) {
535 markLive(F);
536 return;
541 if (HasMustTailCalls) {
542 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
543 << " has musttail calls\n");
546 if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) {
547 markLive(F);
548 return;
551 LLVM_DEBUG(
552 dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: "
553 << F.getName() << "\n");
554 // Keep track of the number of live retvals, so we can skip checks once all
555 // of them turn out to be live.
556 unsigned NumLiveRetVals = 0;
558 bool HasMustTailCallers = false;
560 // Loop all uses of the function.
561 for (const Use &U : F.uses()) {
562 // If the function is PASSED IN as an argument, its address has been
563 // taken.
564 const auto *CB = dyn_cast<CallBase>(U.getUser());
565 if (!CB || !CB->isCallee(&U) ||
566 CB->getFunctionType() != F.getFunctionType()) {
567 markLive(F);
568 return;
571 // The number of arguments for `musttail` call must match the number of
572 // arguments of the caller
573 if (CB->isMustTailCall())
574 HasMustTailCallers = true;
576 // If we end up here, we are looking at a direct call to our function.
578 // Now, check how our return value(s) is/are used in this caller. Don't
579 // bother checking return values if all of them are live already.
580 if (NumLiveRetVals == RetCount)
581 continue;
583 // Check all uses of the return value.
584 for (const Use &UU : CB->uses()) {
585 if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(UU.getUser())) {
586 // This use uses a part of our return value, survey the uses of
587 // that part and store the results for this index only.
588 unsigned Idx = *Ext->idx_begin();
589 if (RetValLiveness[Idx] != Live) {
590 RetValLiveness[Idx] = surveyUses(Ext, MaybeLiveRetUses[Idx]);
591 if (RetValLiveness[Idx] == Live)
592 NumLiveRetVals++;
594 } else {
595 // Used by something else than extractvalue. Survey, but assume that the
596 // result applies to all sub-values.
597 UseVector MaybeLiveAggregateUses;
598 if (surveyUse(&UU, MaybeLiveAggregateUses) == Live) {
599 NumLiveRetVals = RetCount;
600 RetValLiveness.assign(RetCount, Live);
601 break;
604 for (unsigned Ri = 0; Ri != RetCount; ++Ri) {
605 if (RetValLiveness[Ri] != Live)
606 MaybeLiveRetUses[Ri].append(MaybeLiveAggregateUses.begin(),
607 MaybeLiveAggregateUses.end());
613 if (HasMustTailCallers) {
614 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
615 << " has musttail callers\n");
618 // Now we've inspected all callers, record the liveness of our return values.
619 for (unsigned Ri = 0; Ri != RetCount; ++Ri)
620 markValue(createRet(&F, Ri), RetValLiveness[Ri], MaybeLiveRetUses[Ri]);
622 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: "
623 << F.getName() << "\n");
625 // Now, check all of our arguments.
626 unsigned ArgI = 0;
627 UseVector MaybeLiveArgUses;
628 for (Function::const_arg_iterator AI = F.arg_begin(), E = F.arg_end();
629 AI != E; ++AI, ++ArgI) {
630 Liveness Result;
631 if (F.getFunctionType()->isVarArg() || HasMustTailCallers ||
632 HasMustTailCalls) {
633 // Variadic functions will already have a va_arg function expanded inside
634 // them, making them potentially very sensitive to ABI changes resulting
635 // from removing arguments entirely, so don't. For example AArch64 handles
636 // register and stack HFAs very differently, and this is reflected in the
637 // IR which has already been generated.
639 // `musttail` calls to this function restrict argument removal attempts.
640 // The signature of the caller must match the signature of the function.
642 // `musttail` calls in this function prevents us from changing its
643 // signature
644 Result = Live;
645 } else {
646 // See what the effect of this use is (recording any uses that cause
647 // MaybeLive in MaybeLiveArgUses).
648 Result = surveyUses(&*AI, MaybeLiveArgUses);
651 // Mark the result.
652 markValue(createArg(&F, ArgI), Result, MaybeLiveArgUses);
653 // Clear the vector again for the next iteration.
654 MaybeLiveArgUses.clear();
658 /// Marks the liveness of RA depending on L. If L is MaybeLive, it also takes
659 /// all uses in MaybeLiveUses and records them in Uses, such that RA will be
660 /// marked live if any use in MaybeLiveUses gets marked live later on.
661 void DeadArgumentEliminationPass::markValue(const RetOrArg &RA, Liveness L,
662 const UseVector &MaybeLiveUses) {
663 switch (L) {
664 case Live:
665 markLive(RA);
666 break;
667 case MaybeLive:
668 assert(!isLive(RA) && "Use is already live!");
669 for (const auto &MaybeLiveUse : MaybeLiveUses) {
670 if (isLive(MaybeLiveUse)) {
671 // A use is live, so this value is live.
672 markLive(RA);
673 break;
675 // Note any uses of this value, so this value can be
676 // marked live whenever one of the uses becomes live.
677 Uses.emplace(MaybeLiveUse, RA);
679 break;
683 /// Mark the given Function as alive, meaning that it cannot be changed in any
684 /// way. Additionally, mark any values that are used as this function's
685 /// parameters or by its return values (according to Uses) live as well.
686 void DeadArgumentEliminationPass::markLive(const Function &F) {
687 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: "
688 << F.getName() << "\n");
689 // Mark the function as live.
690 LiveFunctions.insert(&F);
691 // Mark all arguments as live.
692 for (unsigned ArgI = 0, E = F.arg_size(); ArgI != E; ++ArgI)
693 propagateLiveness(createArg(&F, ArgI));
694 // Mark all return values as live.
695 for (unsigned Ri = 0, E = numRetVals(&F); Ri != E; ++Ri)
696 propagateLiveness(createRet(&F, Ri));
699 /// Mark the given return value or argument as live. Additionally, mark any
700 /// values that are used by this value (according to Uses) live as well.
701 void DeadArgumentEliminationPass::markLive(const RetOrArg &RA) {
702 if (isLive(RA))
703 return; // Already marked Live.
705 LiveValues.insert(RA);
707 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking "
708 << RA.getDescription() << " live\n");
709 propagateLiveness(RA);
712 bool DeadArgumentEliminationPass::isLive(const RetOrArg &RA) {
713 return LiveFunctions.count(RA.F) || LiveValues.count(RA);
716 /// Given that RA is a live value, propagate it's liveness to any other values
717 /// it uses (according to Uses).
718 void DeadArgumentEliminationPass::propagateLiveness(const RetOrArg &RA) {
719 // We don't use upper_bound (or equal_range) here, because our recursive call
720 // to ourselves is likely to cause the upper_bound (which is the first value
721 // not belonging to RA) to become erased and the iterator invalidated.
722 UseMap::iterator Begin = Uses.lower_bound(RA);
723 UseMap::iterator E = Uses.end();
724 UseMap::iterator I;
725 for (I = Begin; I != E && I->first == RA; ++I)
726 markLive(I->second);
728 // Erase RA from the Uses map (from the lower bound to wherever we ended up
729 // after the loop).
730 Uses.erase(Begin, I);
733 /// Remove any arguments and return values from F that are not in LiveValues.
734 /// Transform the function and all the callees of the function to not have these
735 /// arguments and return values.
736 bool DeadArgumentEliminationPass::removeDeadStuffFromFunction(Function *F) {
737 // Don't modify fully live functions
738 if (LiveFunctions.count(F))
739 return false;
741 // Start by computing a new prototype for the function, which is the same as
742 // the old function, but has fewer arguments and a different return type.
743 FunctionType *FTy = F->getFunctionType();
744 std::vector<Type *> Params;
746 // Keep track of if we have a live 'returned' argument
747 bool HasLiveReturnedArg = false;
749 // Set up to build a new list of parameter attributes.
750 SmallVector<AttributeSet, 8> ArgAttrVec;
751 const AttributeList &PAL = F->getAttributes();
753 // Remember which arguments are still alive.
754 SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
755 // Construct the new parameter list from non-dead arguments. Also construct
756 // a new set of parameter attributes to correspond. Skip the first parameter
757 // attribute, since that belongs to the return value.
758 unsigned ArgI = 0;
759 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
760 ++I, ++ArgI) {
761 RetOrArg Arg = createArg(F, ArgI);
762 if (LiveValues.erase(Arg)) {
763 Params.push_back(I->getType());
764 ArgAlive[ArgI] = true;
765 ArgAttrVec.push_back(PAL.getParamAttrs(ArgI));
766 HasLiveReturnedArg |= PAL.hasParamAttr(ArgI, Attribute::Returned);
767 } else {
768 ++NumArgumentsEliminated;
769 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument "
770 << ArgI << " (" << I->getName() << ") from "
771 << F->getName() << "\n");
775 // Find out the new return value.
776 Type *RetTy = FTy->getReturnType();
777 Type *NRetTy = nullptr;
778 unsigned RetCount = numRetVals(F);
780 // -1 means unused, other numbers are the new index
781 SmallVector<int, 5> NewRetIdxs(RetCount, -1);
782 std::vector<Type *> RetTypes;
784 // If there is a function with a live 'returned' argument but a dead return
785 // value, then there are two possible actions:
786 // 1) Eliminate the return value and take off the 'returned' attribute on the
787 // argument.
788 // 2) Retain the 'returned' attribute and treat the return value (but not the
789 // entire function) as live so that it is not eliminated.
791 // It's not clear in the general case which option is more profitable because,
792 // even in the absence of explicit uses of the return value, code generation
793 // is free to use the 'returned' attribute to do things like eliding
794 // save/restores of registers across calls. Whether this happens is target and
795 // ABI-specific as well as depending on the amount of register pressure, so
796 // there's no good way for an IR-level pass to figure this out.
798 // Fortunately, the only places where 'returned' is currently generated by
799 // the FE are places where 'returned' is basically free and almost always a
800 // performance win, so the second option can just be used always for now.
802 // This should be revisited if 'returned' is ever applied more liberally.
803 if (RetTy->isVoidTy() || HasLiveReturnedArg) {
804 NRetTy = RetTy;
805 } else {
806 // Look at each of the original return values individually.
807 for (unsigned Ri = 0; Ri != RetCount; ++Ri) {
808 RetOrArg Ret = createRet(F, Ri);
809 if (LiveValues.erase(Ret)) {
810 RetTypes.push_back(getRetComponentType(F, Ri));
811 NewRetIdxs[Ri] = RetTypes.size() - 1;
812 } else {
813 ++NumRetValsEliminated;
814 LLVM_DEBUG(
815 dbgs() << "DeadArgumentEliminationPass - Removing return value "
816 << Ri << " from " << F->getName() << "\n");
819 if (RetTypes.size() > 1) {
820 // More than one return type? Reduce it down to size.
821 if (StructType *STy = dyn_cast<StructType>(RetTy)) {
822 // Make the new struct packed if we used to return a packed struct
823 // already.
824 NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
825 } else {
826 assert(isa<ArrayType>(RetTy) && "unexpected multi-value return");
827 NRetTy = ArrayType::get(RetTypes[0], RetTypes.size());
829 } else if (RetTypes.size() == 1)
830 // One return type? Just a simple value then, but only if we didn't use to
831 // return a struct with that simple value before.
832 NRetTy = RetTypes.front();
833 else if (RetTypes.empty())
834 // No return types? Make it void, but only if we didn't use to return {}.
835 NRetTy = Type::getVoidTy(F->getContext());
838 assert(NRetTy && "No new return type found?");
840 // The existing function return attributes.
841 AttrBuilder RAttrs(F->getContext(), PAL.getRetAttrs());
843 // Remove any incompatible attributes, but only if we removed all return
844 // values. Otherwise, ensure that we don't have any conflicting attributes
845 // here. Currently, this should not be possible, but special handling might be
846 // required when new return value attributes are added.
847 if (NRetTy->isVoidTy())
848 RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
849 else
850 assert(!RAttrs.overlaps(AttributeFuncs::typeIncompatible(NRetTy)) &&
851 "Return attributes no longer compatible?");
853 AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
855 // Strip allocsize attributes. They might refer to the deleted arguments.
856 AttributeSet FnAttrs =
857 PAL.getFnAttrs().removeAttribute(F->getContext(), Attribute::AllocSize);
859 // Reconstruct the AttributesList based on the vector we constructed.
860 assert(ArgAttrVec.size() == Params.size());
861 AttributeList NewPAL =
862 AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
864 // Create the new function type based on the recomputed parameters.
865 FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
867 // No change?
868 if (NFTy == FTy)
869 return false;
871 // Create the new function body and insert it into the module...
872 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace());
873 NF->copyAttributesFrom(F);
874 NF->setComdat(F->getComdat());
875 NF->setAttributes(NewPAL);
876 // Insert the new function before the old function, so we won't be processing
877 // it again.
878 F->getParent()->getFunctionList().insert(F->getIterator(), NF);
879 NF->takeName(F);
881 // Loop over all the callers of the function, transforming the call sites to
882 // pass in a smaller number of arguments into the new function.
883 std::vector<Value *> Args;
884 while (!F->use_empty()) {
885 CallBase &CB = cast<CallBase>(*F->user_back());
887 ArgAttrVec.clear();
888 const AttributeList &CallPAL = CB.getAttributes();
890 // Adjust the call return attributes in case the function was changed to
891 // return void.
892 AttrBuilder RAttrs(F->getContext(), CallPAL.getRetAttrs());
893 RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
894 AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
896 // Declare these outside of the loops, so we can reuse them for the second
897 // loop, which loops the varargs.
898 auto *I = CB.arg_begin();
899 unsigned Pi = 0;
900 // Loop over those operands, corresponding to the normal arguments to the
901 // original function, and add those that are still alive.
902 for (unsigned E = FTy->getNumParams(); Pi != E; ++I, ++Pi)
903 if (ArgAlive[Pi]) {
904 Args.push_back(*I);
905 // Get original parameter attributes, but skip return attributes.
906 AttributeSet Attrs = CallPAL.getParamAttrs(Pi);
907 if (NRetTy != RetTy && Attrs.hasAttribute(Attribute::Returned)) {
908 // If the return type has changed, then get rid of 'returned' on the
909 // call site. The alternative is to make all 'returned' attributes on
910 // call sites keep the return value alive just like 'returned'
911 // attributes on function declaration, but it's less clearly a win and
912 // this is not an expected case anyway
913 ArgAttrVec.push_back(AttributeSet::get(
914 F->getContext(), AttrBuilder(F->getContext(), Attrs)
915 .removeAttribute(Attribute::Returned)));
916 } else {
917 // Otherwise, use the original attributes.
918 ArgAttrVec.push_back(Attrs);
922 // Push any varargs arguments on the list. Don't forget their attributes.
923 for (auto *E = CB.arg_end(); I != E; ++I, ++Pi) {
924 Args.push_back(*I);
925 ArgAttrVec.push_back(CallPAL.getParamAttrs(Pi));
928 // Reconstruct the AttributesList based on the vector we constructed.
929 assert(ArgAttrVec.size() == Args.size());
931 // Again, be sure to remove any allocsize attributes, since their indices
932 // may now be incorrect.
933 AttributeSet FnAttrs = CallPAL.getFnAttrs().removeAttribute(
934 F->getContext(), Attribute::AllocSize);
936 AttributeList NewCallPAL =
937 AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
939 SmallVector<OperandBundleDef, 1> OpBundles;
940 CB.getOperandBundlesAsDefs(OpBundles);
942 CallBase *NewCB = nullptr;
943 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
944 NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
945 Args, OpBundles, "", CB.getParent());
946 } else {
947 NewCB = CallInst::Create(NFTy, NF, Args, OpBundles, "", &CB);
948 cast<CallInst>(NewCB)->setTailCallKind(
949 cast<CallInst>(&CB)->getTailCallKind());
951 NewCB->setCallingConv(CB.getCallingConv());
952 NewCB->setAttributes(NewCallPAL);
953 NewCB->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
954 Args.clear();
955 ArgAttrVec.clear();
957 if (!CB.use_empty() || CB.isUsedByMetadata()) {
958 if (NewCB->getType() == CB.getType()) {
959 // Return type not changed? Just replace users then.
960 CB.replaceAllUsesWith(NewCB);
961 NewCB->takeName(&CB);
962 } else if (NewCB->getType()->isVoidTy()) {
963 // If the return value is dead, replace any uses of it with poison
964 // (any non-debug value uses will get removed later on).
965 if (!CB.getType()->isX86_MMXTy())
966 CB.replaceAllUsesWith(PoisonValue::get(CB.getType()));
967 } else {
968 assert((RetTy->isStructTy() || RetTy->isArrayTy()) &&
969 "Return type changed, but not into a void. The old return type"
970 " must have been a struct or an array!");
971 Instruction *InsertPt = &CB;
972 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
973 BasicBlock *NewEdge =
974 SplitEdge(NewCB->getParent(), II->getNormalDest());
975 InsertPt = &*NewEdge->getFirstInsertionPt();
978 // We used to return a struct or array. Instead of doing smart stuff
979 // with all the uses, we will just rebuild it using extract/insertvalue
980 // chaining and let instcombine clean that up.
982 // Start out building up our return value from poison
983 Value *RetVal = PoisonValue::get(RetTy);
984 for (unsigned Ri = 0; Ri != RetCount; ++Ri)
985 if (NewRetIdxs[Ri] != -1) {
986 Value *V;
987 IRBuilder<NoFolder> IRB(InsertPt);
988 if (RetTypes.size() > 1)
989 // We are still returning a struct, so extract the value from our
990 // return value
991 V = IRB.CreateExtractValue(NewCB, NewRetIdxs[Ri], "newret");
992 else
993 // We are now returning a single element, so just insert that
994 V = NewCB;
995 // Insert the value at the old position
996 RetVal = IRB.CreateInsertValue(RetVal, V, Ri, "oldret");
998 // Now, replace all uses of the old call instruction with the return
999 // struct we built
1000 CB.replaceAllUsesWith(RetVal);
1001 NewCB->takeName(&CB);
1005 // Finally, remove the old call from the program, reducing the use-count of
1006 // F.
1007 CB.eraseFromParent();
1010 // Since we have now created the new function, splice the body of the old
1011 // function right into the new function, leaving the old rotting hulk of the
1012 // function empty.
1013 NF->splice(NF->begin(), F);
1015 // Loop over the argument list, transferring uses of the old arguments over to
1016 // the new arguments, also transferring over the names as well.
1017 ArgI = 0;
1018 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
1019 I2 = NF->arg_begin();
1020 I != E; ++I, ++ArgI)
1021 if (ArgAlive[ArgI]) {
1022 // If this is a live argument, move the name and users over to the new
1023 // version.
1024 I->replaceAllUsesWith(&*I2);
1025 I2->takeName(&*I);
1026 ++I2;
1027 } else {
1028 // If this argument is dead, replace any uses of it with poison
1029 // (any non-debug value uses will get removed later on).
1030 if (!I->getType()->isX86_MMXTy())
1031 I->replaceAllUsesWith(PoisonValue::get(I->getType()));
1034 // If we change the return value of the function we must rewrite any return
1035 // instructions. Check this now.
1036 if (F->getReturnType() != NF->getReturnType())
1037 for (BasicBlock &BB : *NF)
1038 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
1039 IRBuilder<NoFolder> IRB(RI);
1040 Value *RetVal = nullptr;
1042 if (!NFTy->getReturnType()->isVoidTy()) {
1043 assert(RetTy->isStructTy() || RetTy->isArrayTy());
1044 // The original return value was a struct or array, insert
1045 // extractvalue/insertvalue chains to extract only the values we need
1046 // to return and insert them into our new result.
1047 // This does generate messy code, but we'll let it to instcombine to
1048 // clean that up.
1049 Value *OldRet = RI->getOperand(0);
1050 // Start out building up our return value from poison
1051 RetVal = PoisonValue::get(NRetTy);
1052 for (unsigned RetI = 0; RetI != RetCount; ++RetI)
1053 if (NewRetIdxs[RetI] != -1) {
1054 Value *EV = IRB.CreateExtractValue(OldRet, RetI, "oldret");
1056 if (RetTypes.size() > 1) {
1057 // We're still returning a struct, so reinsert the value into
1058 // our new return value at the new index
1060 RetVal = IRB.CreateInsertValue(RetVal, EV, NewRetIdxs[RetI],
1061 "newret");
1062 } else {
1063 // We are now only returning a simple value, so just return the
1064 // extracted value.
1065 RetVal = EV;
1069 // Replace the return instruction with one returning the new return
1070 // value (possibly 0 if we became void).
1071 auto *NewRet = ReturnInst::Create(F->getContext(), RetVal, RI);
1072 NewRet->setDebugLoc(RI->getDebugLoc());
1073 RI->eraseFromParent();
1076 // Clone metadata from the old function, including debug info descriptor.
1077 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1078 F->getAllMetadata(MDs);
1079 for (auto [KindID, Node] : MDs)
1080 NF->addMetadata(KindID, *Node);
1082 // If either the return value(s) or argument(s) are removed, then probably the
1083 // function does not follow standard calling conventions anymore. Hence, add
1084 // DW_CC_nocall to DISubroutineType to inform debugger that it may not be safe
1085 // to call this function or try to interpret the return value.
1086 if (NFTy != FTy && NF->getSubprogram()) {
1087 DISubprogram *SP = NF->getSubprogram();
1088 auto Temp = SP->getType()->cloneWithCC(llvm::dwarf::DW_CC_nocall);
1089 SP->replaceType(MDNode::replaceWithPermanent(std::move(Temp)));
1092 // Now that the old function is dead, delete it.
1093 F->eraseFromParent();
1095 return true;
1098 void DeadArgumentEliminationPass::propagateVirtMustcallLiveness(
1099 const Module &M) {
1100 // If a function was marked "live", and it has musttail callers, they in turn
1101 // can't change either.
1102 LiveFuncSet NewLiveFuncs(LiveFunctions);
1103 while (!NewLiveFuncs.empty()) {
1104 LiveFuncSet Temp;
1105 for (const auto *F : NewLiveFuncs)
1106 for (const auto *U : F->users())
1107 if (const auto *CB = dyn_cast<CallBase>(U))
1108 if (CB->isMustTailCall())
1109 if (!LiveFunctions.count(CB->getParent()->getParent()))
1110 Temp.insert(CB->getParent()->getParent());
1111 NewLiveFuncs.clear();
1112 NewLiveFuncs.insert(Temp.begin(), Temp.end());
1113 for (const auto *F : Temp)
1114 markLive(*F);
1118 PreservedAnalyses DeadArgumentEliminationPass::run(Module &M,
1119 ModuleAnalysisManager &) {
1120 bool Changed = false;
1122 // First pass: Do a simple check to see if any functions can have their "..."
1123 // removed. We can do this if they never call va_start. This loop cannot be
1124 // fused with the next loop, because deleting a function invalidates
1125 // information computed while surveying other functions.
1126 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n");
1127 for (Function &F : llvm::make_early_inc_range(M))
1128 if (F.getFunctionType()->isVarArg())
1129 Changed |= deleteDeadVarargs(F);
1131 // Second phase: Loop through the module, determining which arguments are
1132 // live. We assume all arguments are dead unless proven otherwise (allowing us
1133 // to determine that dead arguments passed into recursive functions are dead).
1134 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n");
1135 for (auto &F : M)
1136 surveyFunction(F);
1138 propagateVirtMustcallLiveness(M);
1140 // Now, remove all dead arguments and return values from each function in
1141 // turn. We use make_early_inc_range here because functions will probably get
1142 // removed (i.e. replaced by new ones).
1143 for (Function &F : llvm::make_early_inc_range(M))
1144 Changed |= removeDeadStuffFromFunction(&F);
1146 // Finally, look for any unused parameters in functions with non-local
1147 // linkage and replace the passed in parameters with poison.
1148 for (auto &F : M)
1149 Changed |= removeDeadArgumentsFromCallers(F);
1151 if (!Changed)
1152 return PreservedAnalyses::all();
1153 return PreservedAnalyses::none();