1 //===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 // Implementation for the IROutliner which is used by the IROutliner Pass.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/IPO/IROutliner.h"
15 #include "llvm/Analysis/IRSimilarityIdentifier.h"
16 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/IR/Attributes.h"
19 #include "llvm/IR/DIBuilder.h"
20 #include "llvm/IR/DebugInfo.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Mangler.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Transforms/IPO.h"
30 #define DEBUG_TYPE "iroutliner"
33 using namespace IRSimilarity
;
35 // A command flag to be used for debugging to exclude branches from similarity
36 // matching and outlining.
38 extern cl::opt
<bool> DisableBranches
;
40 // A command flag to be used for debugging to indirect calls from similarity
41 // matching and outlining.
42 extern cl::opt
<bool> DisableIndirectCalls
;
44 // A command flag to be used for debugging to exclude intrinsics from similarity
45 // matching and outlining.
46 extern cl::opt
<bool> DisableIntrinsics
;
50 // Set to true if the user wants the ir outliner to run on linkonceodr linkage
51 // functions. This is false by default because the linker can dedupe linkonceodr
52 // functions. Since the outliner is confined to a single module (modulo LTO),
53 // this is off by default. It should, however, be the default behavior in
55 static cl::opt
<bool> EnableLinkOnceODRIROutlining(
56 "enable-linkonceodr-ir-outlining", cl::Hidden
,
57 cl::desc("Enable the IR outliner on linkonceodr functions"),
60 // This is a debug option to test small pieces of code to ensure that outlining
62 static cl::opt
<bool> NoCostModel(
63 "ir-outlining-no-cost", cl::init(false), cl::ReallyHidden
,
64 cl::desc("Debug option to outline greedily, without restriction that "
65 "calculated benefit outweighs cost"));
67 /// The OutlinableGroup holds all the overarching information for outlining
68 /// a set of regions that are structurally similar to one another, such as the
69 /// types of the overall function, the output blocks, the sets of stores needed
70 /// and a list of the different regions. This information is used in the
71 /// deduplication of extracted regions with the same structure.
72 struct OutlinableGroup
{
73 /// The sections that could be outlined
74 std::vector
<OutlinableRegion
*> Regions
;
76 /// The argument types for the function created as the overall function to
77 /// replace the extracted function for each region.
78 std::vector
<Type
*> ArgumentTypes
;
79 /// The FunctionType for the overall function.
80 FunctionType
*OutlinedFunctionType
= nullptr;
81 /// The Function for the collective overall function.
82 Function
*OutlinedFunction
= nullptr;
84 /// Flag for whether we should not consider this group of OutlinableRegions
86 bool IgnoreGroup
= false;
88 /// The return blocks for the overall function.
89 DenseMap
<Value
*, BasicBlock
*> EndBBs
;
91 /// The PHIBlocks with their corresponding return block based on the return
93 DenseMap
<Value
*, BasicBlock
*> PHIBlocks
;
95 /// A set containing the different GVN store sets needed. Each array contains
96 /// a sorted list of the different values that need to be stored into output
98 DenseSet
<ArrayRef
<unsigned>> OutputGVNCombinations
;
100 /// Flag for whether the \ref ArgumentTypes have been defined after the
101 /// extraction of the first region.
102 bool InputTypesSet
= false;
104 /// The number of input values in \ref ArgumentTypes. Anything after this
105 /// index in ArgumentTypes is an output argument.
106 unsigned NumAggregateInputs
= 0;
108 /// The mapping of the canonical numbering of the values in outlined sections
109 /// to specific arguments.
110 DenseMap
<unsigned, unsigned> CanonicalNumberToAggArg
;
112 /// The number of branches in the region target a basic block that is outside
114 unsigned BranchesToOutside
= 0;
116 /// Tracker counting backwards from the highest unsigned value possible to
117 /// avoid conflicting with the GVNs of assigned values. We start at -3 since
118 /// -2 and -1 are assigned by the DenseMap.
119 unsigned PHINodeGVNTracker
= -3;
122 std::pair
<std::pair
<unsigned, unsigned>, SmallVector
<unsigned, 2>>>
124 DenseMap
<hash_code
, unsigned> GVNsToPHINodeGVN
;
126 /// The number of instructions that will be outlined by extracting \ref
128 InstructionCost Benefit
= 0;
129 /// The number of added instructions needed for the outlining of the \ref
131 InstructionCost Cost
= 0;
133 /// The argument that needs to be marked with the swifterr attribute. If not
134 /// needed, there is no value.
135 std::optional
<unsigned> SwiftErrorArgument
;
137 /// For the \ref Regions, we look at every Value. If it is a constant,
138 /// we check whether it is the same in Region.
140 /// \param [in,out] NotSame contains the global value numbers where the
141 /// constant is not always the same, and must be passed in as an argument.
142 void findSameConstants(DenseSet
<unsigned> &NotSame
);
144 /// For the regions, look at each set of GVN stores needed and account for
145 /// each combination. Add an argument to the argument types if there is
146 /// more than one combination.
148 /// \param [in] M - The module we are outlining from.
149 void collectGVNStoreSets(Module
&M
);
152 /// Move the contents of \p SourceBB to before the last instruction of \p
154 /// \param SourceBB - the BasicBlock to pull Instructions from.
155 /// \param TargetBB - the BasicBlock to put Instruction into.
156 static void moveBBContents(BasicBlock
&SourceBB
, BasicBlock
&TargetBB
) {
157 for (Instruction
&I
: llvm::make_early_inc_range(SourceBB
))
158 I
.moveBeforePreserving(TargetBB
, TargetBB
.end());
161 /// A function to sort the keys of \p Map, which must be a mapping of constant
162 /// values to basic blocks and return it in \p SortedKeys
164 /// \param SortedKeys - The vector the keys will be return in and sorted.
165 /// \param Map - The DenseMap containing keys to sort.
166 static void getSortedConstantKeys(std::vector
<Value
*> &SortedKeys
,
167 DenseMap
<Value
*, BasicBlock
*> &Map
) {
168 for (auto &VtoBB
: Map
)
169 SortedKeys
.push_back(VtoBB
.first
);
171 // Here we expect to have either 1 value that is void (nullptr) or multiple
172 // values that are all constant integers.
173 if (SortedKeys
.size() == 1) {
174 assert(!SortedKeys
[0] && "Expected a single void value.");
178 stable_sort(SortedKeys
, [](const Value
*LHS
, const Value
*RHS
) {
179 assert(LHS
&& RHS
&& "Expected non void values.");
180 const ConstantInt
*LHSC
= cast
<ConstantInt
>(LHS
);
181 const ConstantInt
*RHSC
= cast
<ConstantInt
>(RHS
);
183 return LHSC
->getLimitedValue() < RHSC
->getLimitedValue();
187 Value
*OutlinableRegion::findCorrespondingValueIn(const OutlinableRegion
&Other
,
189 std::optional
<unsigned> GVN
= Candidate
->getGVN(V
);
190 assert(GVN
&& "No GVN for incoming value");
191 std::optional
<unsigned> CanonNum
= Candidate
->getCanonicalNum(*GVN
);
192 std::optional
<unsigned> FirstGVN
=
193 Other
.Candidate
->fromCanonicalNum(*CanonNum
);
194 std::optional
<Value
*> FoundValueOpt
= Other
.Candidate
->fromGVN(*FirstGVN
);
195 return FoundValueOpt
.value_or(nullptr);
199 OutlinableRegion::findCorrespondingBlockIn(const OutlinableRegion
&Other
,
201 Instruction
*FirstNonPHI
= BB
->getFirstNonPHI();
202 assert(FirstNonPHI
&& "block is empty?");
203 Value
*CorrespondingVal
= findCorrespondingValueIn(Other
, FirstNonPHI
);
204 if (!CorrespondingVal
)
206 BasicBlock
*CorrespondingBlock
=
207 cast
<Instruction
>(CorrespondingVal
)->getParent();
208 return CorrespondingBlock
;
211 /// Rewrite the BranchInsts in the incoming blocks to \p PHIBlock that are found
212 /// in \p Included to branch to BasicBlock \p Replace if they currently branch
213 /// to the BasicBlock \p Find. This is used to fix up the incoming basic blocks
214 /// when PHINodes are included in outlined regions.
216 /// \param PHIBlock - The BasicBlock containing the PHINodes that need to be
218 /// \param Find - The successor block to be replaced.
219 /// \param Replace - The new succesor block to branch to.
220 /// \param Included - The set of blocks about to be outlined.
221 static void replaceTargetsFromPHINode(BasicBlock
*PHIBlock
, BasicBlock
*Find
,
223 DenseSet
<BasicBlock
*> &Included
) {
224 for (PHINode
&PN
: PHIBlock
->phis()) {
225 for (unsigned Idx
= 0, PNEnd
= PN
.getNumIncomingValues(); Idx
!= PNEnd
;
227 // Check if the incoming block is included in the set of blocks being
229 BasicBlock
*Incoming
= PN
.getIncomingBlock(Idx
);
230 if (!Included
.contains(Incoming
))
233 BranchInst
*BI
= dyn_cast
<BranchInst
>(Incoming
->getTerminator());
234 assert(BI
&& "Not a branch instruction?");
235 // Look over the branching instructions into this block to see if we
236 // used to branch to Find in this outlined block.
237 for (unsigned Succ
= 0, End
= BI
->getNumSuccessors(); Succ
!= End
;
239 // If we have found the block to replace, we do so here.
240 if (BI
->getSuccessor(Succ
) != Find
)
242 BI
->setSuccessor(Succ
, Replace
);
249 void OutlinableRegion::splitCandidate() {
250 assert(!CandidateSplit
&& "Candidate already split!");
252 Instruction
*BackInst
= Candidate
->backInstruction();
254 Instruction
*EndInst
= nullptr;
255 // Check whether the last instruction is a terminator, if it is, we do
256 // not split on the following instruction. We leave the block as it is. We
257 // also check that this is not the last instruction in the Module, otherwise
258 // the check for whether the current following instruction matches the
259 // previously recorded instruction will be incorrect.
260 if (!BackInst
->isTerminator() ||
261 BackInst
->getParent() != &BackInst
->getFunction()->back()) {
262 EndInst
= Candidate
->end()->Inst
;
263 assert(EndInst
&& "Expected an end instruction?");
266 // We check if the current instruction following the last instruction in the
267 // region is the same as the recorded instruction following the last
268 // instruction. If they do not match, there could be problems in rewriting
269 // the program after outlining, so we ignore it.
270 if (!BackInst
->isTerminator() &&
271 EndInst
!= BackInst
->getNextNonDebugInstruction())
274 Instruction
*StartInst
= (*Candidate
->begin()).Inst
;
275 assert(StartInst
&& "Expected a start instruction?");
276 StartBB
= StartInst
->getParent();
279 DenseSet
<BasicBlock
*> BBSet
;
280 Candidate
->getBasicBlocks(BBSet
);
282 // We iterate over the instructions in the region, if we find a PHINode, we
283 // check if there are predecessors outside of the region, if there are,
284 // we ignore this region since we are unable to handle the severing of the
285 // phi node right now.
287 // TODO: Handle extraneous inputs for PHINodes through variable number of
288 // inputs, similar to how outputs are handled.
289 BasicBlock::iterator It
= StartInst
->getIterator();
290 EndBB
= BackInst
->getParent();
292 BasicBlock
*PHIPredBlock
= nullptr;
293 bool EndBBTermAndBackInstDifferent
= EndBB
->getTerminator() != BackInst
;
294 while (PHINode
*PN
= dyn_cast
<PHINode
>(&*It
)) {
295 unsigned NumPredsOutsideRegion
= 0;
296 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
297 if (!BBSet
.contains(PN
->getIncomingBlock(i
))) {
298 PHIPredBlock
= PN
->getIncomingBlock(i
);
299 ++NumPredsOutsideRegion
;
303 // We must consider the case there the incoming block to the PHINode is
304 // the same as the final block of the OutlinableRegion. If this is the
305 // case, the branch from this block must also be outlined to be valid.
306 IBlock
= PN
->getIncomingBlock(i
);
307 if (IBlock
== EndBB
&& EndBBTermAndBackInstDifferent
) {
308 PHIPredBlock
= PN
->getIncomingBlock(i
);
309 ++NumPredsOutsideRegion
;
313 if (NumPredsOutsideRegion
> 1)
319 // If the region starts with a PHINode, but is not the initial instruction of
320 // the BasicBlock, we ignore this region for now.
321 if (isa
<PHINode
>(StartInst
) && StartInst
!= &*StartBB
->begin())
324 // If the region ends with a PHINode, but does not contain all of the phi node
325 // instructions of the region, we ignore it for now.
326 if (isa
<PHINode
>(BackInst
) &&
327 BackInst
!= &*std::prev(EndBB
->getFirstInsertionPt()))
330 // The basic block gets split like so:
334 // region1 br block_to_outline
335 // region2 block_to_outline:
336 // region3 -> region1
340 // br block_after_outline
341 // block_after_outline:
345 std::string OriginalName
= PrevBB
->getName().str();
347 StartBB
= PrevBB
->splitBasicBlock(StartInst
, OriginalName
+ "_to_outline");
348 PrevBB
->replaceSuccessorsPhiUsesWith(PrevBB
, StartBB
);
349 // If there was a PHINode with an incoming block outside the region,
350 // make sure is correctly updated in the newly split block.
352 PrevBB
->replaceSuccessorsPhiUsesWith(PHIPredBlock
, PrevBB
);
354 CandidateSplit
= true;
355 if (!BackInst
->isTerminator()) {
356 EndBB
= EndInst
->getParent();
357 FollowBB
= EndBB
->splitBasicBlock(EndInst
, OriginalName
+ "_after_outline");
358 EndBB
->replaceSuccessorsPhiUsesWith(EndBB
, FollowBB
);
359 FollowBB
->replaceSuccessorsPhiUsesWith(PrevBB
, FollowBB
);
361 EndBB
= BackInst
->getParent();
366 // Refind the basic block set.
368 Candidate
->getBasicBlocks(BBSet
);
369 // For the phi nodes in the new starting basic block of the region, we
370 // reassign the targets of the basic blocks branching instructions.
371 replaceTargetsFromPHINode(StartBB
, PrevBB
, StartBB
, BBSet
);
373 replaceTargetsFromPHINode(FollowBB
, EndBB
, FollowBB
, BBSet
);
376 void OutlinableRegion::reattachCandidate() {
377 assert(CandidateSplit
&& "Candidate is not split!");
379 // The basic block gets reattached like so:
383 // br block_to_outline region1
384 // block_to_outline: -> region2
389 // br block_after_outline
390 // block_after_outline:
393 assert(StartBB
!= nullptr && "StartBB for Candidate is not defined!");
395 assert(PrevBB
->getTerminator() && "Terminator removed from PrevBB!");
396 // Make sure PHINode references to the block we are merging into are
397 // updated to be incoming blocks from the predecessor to the current block.
399 // NOTE: If this is updated such that the outlined block can have more than
400 // one incoming block to a PHINode, this logic will have to updated
401 // to handle multiple precessors instead.
403 // We only need to update this if the outlined section contains a PHINode, if
404 // it does not, then the incoming block was never changed in the first place.
405 // On the other hand, if PrevBB has no predecessors, it means that all
406 // incoming blocks to the first block are contained in the region, and there
407 // will be nothing to update.
408 Instruction
*StartInst
= (*Candidate
->begin()).Inst
;
409 if (isa
<PHINode
>(StartInst
) && !PrevBB
->hasNPredecessors(0)) {
410 assert(!PrevBB
->hasNPredecessorsOrMore(2) &&
411 "PrevBB has more than one predecessor. Should be 0 or 1.");
412 BasicBlock
*BeforePrevBB
= PrevBB
->getSinglePredecessor();
413 PrevBB
->replaceSuccessorsPhiUsesWith(PrevBB
, BeforePrevBB
);
415 PrevBB
->getTerminator()->eraseFromParent();
417 // If we reattaching after outlining, we iterate over the phi nodes to
418 // the initial block, and reassign the branch instructions of the incoming
419 // blocks to the block we are remerging into.
420 if (!ExtractedFunction
) {
421 DenseSet
<BasicBlock
*> BBSet
;
422 Candidate
->getBasicBlocks(BBSet
);
424 replaceTargetsFromPHINode(StartBB
, StartBB
, PrevBB
, BBSet
);
426 replaceTargetsFromPHINode(FollowBB
, FollowBB
, EndBB
, BBSet
);
429 moveBBContents(*StartBB
, *PrevBB
);
431 BasicBlock
*PlacementBB
= PrevBB
;
432 if (StartBB
!= EndBB
)
434 if (!EndsInBranch
&& PlacementBB
->getUniqueSuccessor() != nullptr) {
435 assert(FollowBB
!= nullptr && "FollowBB for Candidate is not defined!");
436 assert(PlacementBB
->getTerminator() && "Terminator removed from EndBB!");
437 PlacementBB
->getTerminator()->eraseFromParent();
438 moveBBContents(*FollowBB
, *PlacementBB
);
439 PlacementBB
->replaceSuccessorsPhiUsesWith(FollowBB
, PlacementBB
);
440 FollowBB
->eraseFromParent();
443 PrevBB
->replaceSuccessorsPhiUsesWith(StartBB
, PrevBB
);
444 StartBB
->eraseFromParent();
446 // Make sure to save changes back to the StartBB.
452 CandidateSplit
= false;
455 /// Find whether \p V matches the Constants previously found for the \p GVN.
457 /// \param V - The value to check for consistency.
458 /// \param GVN - The global value number assigned to \p V.
459 /// \param GVNToConstant - The mapping of global value number to Constants.
460 /// \returns true if the Value matches the Constant mapped to by V and false if
461 /// it \p V is a Constant but does not match.
462 /// \returns std::nullopt if \p V is not a Constant.
463 static std::optional
<bool>
464 constantMatches(Value
*V
, unsigned GVN
,
465 DenseMap
<unsigned, Constant
*> &GVNToConstant
) {
466 // See if we have a constants
467 Constant
*CST
= dyn_cast
<Constant
>(V
);
471 // Holds a mapping from a global value number to a Constant.
472 DenseMap
<unsigned, Constant
*>::iterator GVNToConstantIt
;
476 // If we have a constant, try to make a new entry in the GVNToConstant.
477 std::tie(GVNToConstantIt
, Inserted
) =
478 GVNToConstant
.insert(std::make_pair(GVN
, CST
));
479 // If it was found and is not equal, it is not the same. We do not
480 // handle this case yet, and exit early.
481 if (Inserted
|| (GVNToConstantIt
->second
== CST
))
487 InstructionCost
OutlinableRegion::getBenefit(TargetTransformInfo
&TTI
) {
488 InstructionCost Benefit
= 0;
490 // Estimate the benefit of outlining a specific sections of the program. We
491 // delegate mostly this task to the TargetTransformInfo so that if the target
492 // has specific changes, we can have a more accurate estimate.
494 // However, getInstructionCost delegates the code size calculation for
495 // arithmetic instructions to getArithmeticInstrCost in
496 // include/Analysis/TargetTransformImpl.h, where it always estimates that the
497 // code size for a division and remainder instruction to be equal to 4, and
498 // everything else to 1. This is not an accurate representation of the
499 // division instruction for targets that have a native division instruction.
500 // To be overly conservative, we only add 1 to the number of instructions for
501 // each division instruction.
502 for (IRInstructionData
&ID
: *Candidate
) {
503 Instruction
*I
= ID
.Inst
;
504 switch (I
->getOpcode()) {
505 case Instruction::FDiv
:
506 case Instruction::FRem
:
507 case Instruction::SDiv
:
508 case Instruction::SRem
:
509 case Instruction::UDiv
:
510 case Instruction::URem
:
514 Benefit
+= TTI
.getInstructionCost(I
, TargetTransformInfo::TCK_CodeSize
);
522 /// Check the \p OutputMappings structure for value \p Input, if it exists
523 /// it has been used as an output for outlining, and has been renamed, and we
524 /// return the new value, otherwise, we return the same value.
526 /// \param OutputMappings [in] - The mapping of values to their renamed value
527 /// after being used as an output for an outlined region.
528 /// \param Input [in] - The value to find the remapped value of, if it exists.
529 /// \return The remapped value if it has been renamed, and the same value if has
531 static Value
*findOutputMapping(const DenseMap
<Value
*, Value
*> OutputMappings
,
533 DenseMap
<Value
*, Value
*>::const_iterator OutputMapping
=
534 OutputMappings
.find(Input
);
535 if (OutputMapping
!= OutputMappings
.end())
536 return OutputMapping
->second
;
540 /// Find whether \p Region matches the global value numbering to Constant
541 /// mapping found so far.
543 /// \param Region - The OutlinableRegion we are checking for constants
544 /// \param GVNToConstant - The mapping of global value number to Constants.
545 /// \param NotSame - The set of global value numbers that do not have the same
546 /// constant in each region.
547 /// \returns true if all Constants are the same in every use of a Constant in \p
548 /// Region and false if not
550 collectRegionsConstants(OutlinableRegion
&Region
,
551 DenseMap
<unsigned, Constant
*> &GVNToConstant
,
552 DenseSet
<unsigned> &NotSame
) {
553 bool ConstantsTheSame
= true;
555 IRSimilarityCandidate
&C
= *Region
.Candidate
;
556 for (IRInstructionData
&ID
: C
) {
558 // Iterate over the operands in an instruction. If the global value number,
559 // assigned by the IRSimilarityCandidate, has been seen before, we check if
560 // the number has been found to be not the same value in each instance.
561 for (Value
*V
: ID
.OperVals
) {
562 std::optional
<unsigned> GVNOpt
= C
.getGVN(V
);
563 assert(GVNOpt
&& "Expected a GVN for operand?");
564 unsigned GVN
= *GVNOpt
;
566 // Check if this global value has been found to not be the same already.
567 if (NotSame
.contains(GVN
)) {
568 if (isa
<Constant
>(V
))
569 ConstantsTheSame
= false;
573 // If it has been the same so far, we check the value for if the
574 // associated Constant value match the previous instances of the same
575 // global value number. If the global value does not map to a Constant,
576 // it is considered to not be the same value.
577 std::optional
<bool> ConstantMatches
=
578 constantMatches(V
, GVN
, GVNToConstant
);
579 if (ConstantMatches
) {
580 if (*ConstantMatches
)
583 ConstantsTheSame
= false;
586 // While this value is a register, it might not have been previously,
587 // make sure we don't already have a constant mapped to this global value
589 if (GVNToConstant
.contains(GVN
))
590 ConstantsTheSame
= false;
596 return ConstantsTheSame
;
599 void OutlinableGroup::findSameConstants(DenseSet
<unsigned> &NotSame
) {
600 DenseMap
<unsigned, Constant
*> GVNToConstant
;
602 for (OutlinableRegion
*Region
: Regions
)
603 collectRegionsConstants(*Region
, GVNToConstant
, NotSame
);
606 void OutlinableGroup::collectGVNStoreSets(Module
&M
) {
607 for (OutlinableRegion
*OS
: Regions
)
608 OutputGVNCombinations
.insert(OS
->GVNStores
);
610 // We are adding an extracted argument to decide between which output path
611 // to use in the basic block. It is used in a switch statement and only
612 // needs to be an integer.
613 if (OutputGVNCombinations
.size() > 1)
614 ArgumentTypes
.push_back(Type::getInt32Ty(M
.getContext()));
617 /// Get the subprogram if it exists for one of the outlined regions.
619 /// \param [in] Group - The set of regions to find a subprogram for.
620 /// \returns the subprogram if it exists, or nullptr.
621 static DISubprogram
*getSubprogramOrNull(OutlinableGroup
&Group
) {
622 for (OutlinableRegion
*OS
: Group
.Regions
)
623 if (Function
*F
= OS
->Call
->getFunction())
624 if (DISubprogram
*SP
= F
->getSubprogram())
630 Function
*IROutliner::createFunction(Module
&M
, OutlinableGroup
&Group
,
631 unsigned FunctionNameSuffix
) {
632 assert(!Group
.OutlinedFunction
&& "Function is already defined!");
634 Type
*RetTy
= Type::getVoidTy(M
.getContext());
635 // All extracted functions _should_ have the same return type at this point
636 // since the similarity identifier ensures that all branches outside of the
637 // region occur in the same place.
639 // NOTE: Should we ever move to the model that uses a switch at every point
640 // needed, meaning that we could branch within the region or out, it is
641 // possible that we will need to switch to using the most general case all of
643 for (OutlinableRegion
*R
: Group
.Regions
) {
644 Type
*ExtractedFuncType
= R
->ExtractedFunction
->getReturnType();
645 if ((RetTy
->isVoidTy() && !ExtractedFuncType
->isVoidTy()) ||
646 (RetTy
->isIntegerTy(1) && ExtractedFuncType
->isIntegerTy(16)))
647 RetTy
= ExtractedFuncType
;
650 Group
.OutlinedFunctionType
= FunctionType::get(
651 RetTy
, Group
.ArgumentTypes
, false);
653 // These functions will only be called from within the same module, so
654 // we can set an internal linkage.
655 Group
.OutlinedFunction
= Function::Create(
656 Group
.OutlinedFunctionType
, GlobalValue::InternalLinkage
,
657 "outlined_ir_func_" + std::to_string(FunctionNameSuffix
), M
);
659 // Transfer the swifterr attribute to the correct function parameter.
660 if (Group
.SwiftErrorArgument
)
661 Group
.OutlinedFunction
->addParamAttr(*Group
.SwiftErrorArgument
,
662 Attribute::SwiftError
);
664 Group
.OutlinedFunction
->addFnAttr(Attribute::OptimizeForSize
);
665 Group
.OutlinedFunction
->addFnAttr(Attribute::MinSize
);
667 // If there's a DISubprogram associated with this outlined function, then
668 // emit debug info for the outlined function.
669 if (DISubprogram
*SP
= getSubprogramOrNull(Group
)) {
670 Function
*F
= Group
.OutlinedFunction
;
671 // We have a DISubprogram. Get its DICompileUnit.
672 DICompileUnit
*CU
= SP
->getUnit();
673 DIBuilder
DB(M
, true, CU
);
674 DIFile
*Unit
= SP
->getFile();
676 // Get the mangled name of the function for the linkage name.
678 llvm::raw_string_ostream
MangledNameStream(Dummy
);
679 Mg
.getNameWithPrefix(MangledNameStream
, F
, false);
681 DISubprogram
*OutlinedSP
= DB
.createFunction(
682 Unit
/* Context */, F
->getName(), MangledNameStream
.str(),
684 0 /* Line 0 is reserved for compiler-generated code. */,
685 DB
.createSubroutineType(
686 DB
.getOrCreateTypeArray(std::nullopt
)), /* void type */
687 0, /* Line 0 is reserved for compiler-generated code. */
688 DINode::DIFlags::FlagArtificial
/* Compiler-generated code. */,
689 /* Outlined code is optimized code by definition. */
690 DISubprogram::SPFlagDefinition
| DISubprogram::SPFlagOptimized
);
692 // Don't add any new variables to the subprogram.
693 DB
.finalizeSubprogram(OutlinedSP
);
695 // Attach subprogram to the function.
696 F
->setSubprogram(OutlinedSP
);
697 // We're done with the DIBuilder.
701 return Group
.OutlinedFunction
;
704 /// Move each BasicBlock in \p Old to \p New.
706 /// \param [in] Old - The function to move the basic blocks from.
707 /// \param [in] New - The function to move the basic blocks to.
708 /// \param [out] NewEnds - The return blocks of the new overall function.
709 static void moveFunctionData(Function
&Old
, Function
&New
,
710 DenseMap
<Value
*, BasicBlock
*> &NewEnds
) {
711 for (BasicBlock
&CurrBB
: llvm::make_early_inc_range(Old
)) {
712 CurrBB
.removeFromParent();
713 CurrBB
.insertInto(&New
);
714 Instruction
*I
= CurrBB
.getTerminator();
716 // For each block we find a return instruction is, it is a potential exit
717 // path for the function. We keep track of each block based on the return
719 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(I
))
720 NewEnds
.insert(std::make_pair(RI
->getReturnValue(), &CurrBB
));
722 std::vector
<Instruction
*> DebugInsts
;
724 for (Instruction
&Val
: CurrBB
) {
725 // We must handle the scoping of called functions differently than
726 // other outlined instructions.
727 if (!isa
<CallInst
>(&Val
)) {
728 // Remove the debug information for outlined functions.
729 Val
.setDebugLoc(DebugLoc());
731 // Loop info metadata may contain line locations. Update them to have no
732 // value in the new subprogram since the outlined code could be from
733 // several locations.
734 auto updateLoopInfoLoc
= [&New
](Metadata
*MD
) -> Metadata
* {
735 if (DISubprogram
*SP
= New
.getSubprogram())
736 if (auto *Loc
= dyn_cast_or_null
<DILocation
>(MD
))
737 return DILocation::get(New
.getContext(), Loc
->getLine(),
738 Loc
->getColumn(), SP
, nullptr);
741 updateLoopMetadataDebugLocations(Val
, updateLoopInfoLoc
);
745 // From this point we are only handling call instructions.
746 CallInst
*CI
= cast
<CallInst
>(&Val
);
748 // We add any debug statements here, to be removed after. Since the
749 // instructions originate from many different locations in the program,
750 // it will cause incorrect reporting from a debugger if we keep the
751 // same debug instructions.
752 if (isa
<DbgInfoIntrinsic
>(CI
)) {
753 DebugInsts
.push_back(&Val
);
757 // Edit the scope of called functions inside of outlined functions.
758 if (DISubprogram
*SP
= New
.getSubprogram()) {
759 DILocation
*DI
= DILocation::get(New
.getContext(), 0, 0, SP
);
764 for (Instruction
*I
: DebugInsts
)
765 I
->eraseFromParent();
769 /// Find the constants that will need to be lifted into arguments
770 /// as they are not the same in each instance of the region.
772 /// \param [in] C - The IRSimilarityCandidate containing the region we are
774 /// \param [in] NotSame - The set of global value numbers that do not have a
775 /// single Constant across all OutlinableRegions similar to \p C.
776 /// \param [out] Inputs - The list containing the global value numbers of the
777 /// arguments needed for the region of code.
778 static void findConstants(IRSimilarityCandidate
&C
, DenseSet
<unsigned> &NotSame
,
779 std::vector
<unsigned> &Inputs
) {
780 DenseSet
<unsigned> Seen
;
781 // Iterate over the instructions, and find what constants will need to be
782 // extracted into arguments.
783 for (IRInstructionDataList::iterator IDIt
= C
.begin(), EndIDIt
= C
.end();
784 IDIt
!= EndIDIt
; IDIt
++) {
785 for (Value
*V
: (*IDIt
).OperVals
) {
786 // Since these are stored before any outlining, they will be in the
787 // global value numbering.
788 unsigned GVN
= *C
.getGVN(V
);
789 if (isa
<Constant
>(V
))
790 if (NotSame
.contains(GVN
) && !Seen
.contains(GVN
)) {
791 Inputs
.push_back(GVN
);
798 /// Find the GVN for the inputs that have been found by the CodeExtractor.
800 /// \param [in] C - The IRSimilarityCandidate containing the region we are
802 /// \param [in] CurrentInputs - The set of inputs found by the
804 /// \param [in] OutputMappings - The mapping of values that have been replaced
805 /// by a new output value.
806 /// \param [out] EndInputNumbers - The global value numbers for the extracted
808 static void mapInputsToGVNs(IRSimilarityCandidate
&C
,
809 SetVector
<Value
*> &CurrentInputs
,
810 const DenseMap
<Value
*, Value
*> &OutputMappings
,
811 std::vector
<unsigned> &EndInputNumbers
) {
812 // Get the Global Value Number for each input. We check if the Value has been
813 // replaced by a different value at output, and use the original value before
815 for (Value
*Input
: CurrentInputs
) {
816 assert(Input
&& "Have a nullptr as an input");
817 if (OutputMappings
.contains(Input
))
818 Input
= OutputMappings
.find(Input
)->second
;
819 assert(C
.getGVN(Input
) && "Could not find a numbering for the given input");
820 EndInputNumbers
.push_back(*C
.getGVN(Input
));
824 /// Find the original value for the \p ArgInput values if any one of them was
825 /// replaced during a previous extraction.
827 /// \param [in] ArgInputs - The inputs to be extracted by the code extractor.
828 /// \param [in] OutputMappings - The mapping of values that have been replaced
829 /// by a new output value.
830 /// \param [out] RemappedArgInputs - The remapped values according to
831 /// \p OutputMappings that will be extracted.
833 remapExtractedInputs(const ArrayRef
<Value
*> ArgInputs
,
834 const DenseMap
<Value
*, Value
*> &OutputMappings
,
835 SetVector
<Value
*> &RemappedArgInputs
) {
836 // Get the global value number for each input that will be extracted as an
837 // argument by the code extractor, remapping if needed for reloaded values.
838 for (Value
*Input
: ArgInputs
) {
839 if (OutputMappings
.contains(Input
))
840 Input
= OutputMappings
.find(Input
)->second
;
841 RemappedArgInputs
.insert(Input
);
845 /// Find the input GVNs and the output values for a region of Instructions.
846 /// Using the code extractor, we collect the inputs to the extracted function.
848 /// The \p Region can be identified as needing to be ignored in this function.
849 /// It should be checked whether it should be ignored after a call to this
852 /// \param [in,out] Region - The region of code to be analyzed.
853 /// \param [out] InputGVNs - The global value numbers for the extracted
855 /// \param [in] NotSame - The global value numbers in the region that do not
856 /// have the same constant value in the regions structurally similar to
858 /// \param [in] OutputMappings - The mapping of values that have been replaced
859 /// by a new output value after extraction.
860 /// \param [out] ArgInputs - The values of the inputs to the extracted function.
861 /// \param [out] Outputs - The set of values extracted by the CodeExtractor
863 static void getCodeExtractorArguments(
864 OutlinableRegion
&Region
, std::vector
<unsigned> &InputGVNs
,
865 DenseSet
<unsigned> &NotSame
, DenseMap
<Value
*, Value
*> &OutputMappings
,
866 SetVector
<Value
*> &ArgInputs
, SetVector
<Value
*> &Outputs
) {
867 IRSimilarityCandidate
&C
= *Region
.Candidate
;
869 // OverallInputs are the inputs to the region found by the CodeExtractor,
870 // SinkCands and HoistCands are used by the CodeExtractor to find sunken
871 // allocas of values whose lifetimes are contained completely within the
872 // outlined region. PremappedInputs are the arguments found by the
873 // CodeExtractor, removing conditions such as sunken allocas, but that
874 // may need to be remapped due to the extracted output values replacing
875 // the original values. We use DummyOutputs for this first run of finding
876 // inputs and outputs since the outputs could change during findAllocas,
877 // the correct set of extracted outputs will be in the final Outputs ValueSet.
878 SetVector
<Value
*> OverallInputs
, PremappedInputs
, SinkCands
, HoistCands
,
881 // Use the code extractor to get the inputs and outputs, without sunken
882 // allocas or removing llvm.assumes.
883 CodeExtractor
*CE
= Region
.CE
;
884 CE
->findInputsOutputs(OverallInputs
, DummyOutputs
, SinkCands
);
885 assert(Region
.StartBB
&& "Region must have a start BasicBlock!");
886 Function
*OrigF
= Region
.StartBB
->getParent();
887 CodeExtractorAnalysisCache
CEAC(*OrigF
);
888 BasicBlock
*Dummy
= nullptr;
890 // The region may be ineligible due to VarArgs in the parent function. In this
891 // case we ignore the region.
892 if (!CE
->isEligible()) {
893 Region
.IgnoreRegion
= true;
897 // Find if any values are going to be sunk into the function when extracted
898 CE
->findAllocas(CEAC
, SinkCands
, HoistCands
, Dummy
);
899 CE
->findInputsOutputs(PremappedInputs
, Outputs
, SinkCands
);
901 // TODO: Support regions with sunken allocas: values whose lifetimes are
902 // contained completely within the outlined region. These are not guaranteed
903 // to be the same in every region, so we must elevate them all to arguments
904 // when they appear. If these values are not equal, it means there is some
905 // Input in OverallInputs that was removed for ArgInputs.
906 if (OverallInputs
.size() != PremappedInputs
.size()) {
907 Region
.IgnoreRegion
= true;
911 findConstants(C
, NotSame
, InputGVNs
);
913 mapInputsToGVNs(C
, OverallInputs
, OutputMappings
, InputGVNs
);
915 remapExtractedInputs(PremappedInputs
.getArrayRef(), OutputMappings
,
918 // Sort the GVNs, since we now have constants included in the \ref InputGVNs
919 // we need to make sure they are in a deterministic order.
920 stable_sort(InputGVNs
);
923 /// Look over the inputs and map each input argument to an argument in the
924 /// overall function for the OutlinableRegions. This creates a way to replace
925 /// the arguments of the extracted function with the arguments of the new
926 /// overall function.
928 /// \param [in,out] Region - The region of code to be analyzed.
929 /// \param [in] InputGVNs - The global value numbering of the input values
931 /// \param [in] ArgInputs - The values of the arguments to the extracted
934 findExtractedInputToOverallInputMapping(OutlinableRegion
&Region
,
935 std::vector
<unsigned> &InputGVNs
,
936 SetVector
<Value
*> &ArgInputs
) {
938 IRSimilarityCandidate
&C
= *Region
.Candidate
;
939 OutlinableGroup
&Group
= *Region
.Parent
;
941 // This counts the argument number in the overall function.
942 unsigned TypeIndex
= 0;
944 // This counts the argument number in the extracted function.
945 unsigned OriginalIndex
= 0;
947 // Find the mapping of the extracted arguments to the arguments for the
948 // overall function. Since there may be extra arguments in the overall
949 // function to account for the extracted constants, we have two different
950 // counters as we find extracted arguments, and as we come across overall
953 // Additionally, in our first pass, for the first extracted function,
954 // we find argument locations for the canonical value numbering. This
955 // numbering overrides any discovered location for the extracted code.
956 for (unsigned InputVal
: InputGVNs
) {
957 std::optional
<unsigned> CanonicalNumberOpt
= C
.getCanonicalNum(InputVal
);
958 assert(CanonicalNumberOpt
&& "Canonical number not found?");
959 unsigned CanonicalNumber
= *CanonicalNumberOpt
;
961 std::optional
<Value
*> InputOpt
= C
.fromGVN(InputVal
);
962 assert(InputOpt
&& "Global value number not found?");
963 Value
*Input
= *InputOpt
;
965 DenseMap
<unsigned, unsigned>::iterator AggArgIt
=
966 Group
.CanonicalNumberToAggArg
.find(CanonicalNumber
);
968 if (!Group
.InputTypesSet
) {
969 Group
.ArgumentTypes
.push_back(Input
->getType());
970 // If the input value has a swifterr attribute, make sure to mark the
971 // argument in the overall function.
972 if (Input
->isSwiftError()) {
974 !Group
.SwiftErrorArgument
&&
975 "Argument already marked with swifterr for this OutlinableGroup!");
976 Group
.SwiftErrorArgument
= TypeIndex
;
980 // Check if we have a constant. If we do add it to the overall argument
981 // number to Constant map for the region, and continue to the next input.
982 if (Constant
*CST
= dyn_cast
<Constant
>(Input
)) {
983 if (AggArgIt
!= Group
.CanonicalNumberToAggArg
.end())
984 Region
.AggArgToConstant
.insert(std::make_pair(AggArgIt
->second
, CST
));
986 Group
.CanonicalNumberToAggArg
.insert(
987 std::make_pair(CanonicalNumber
, TypeIndex
));
988 Region
.AggArgToConstant
.insert(std::make_pair(TypeIndex
, CST
));
994 // It is not a constant, we create the mapping from extracted argument list
995 // to the overall argument list, using the canonical location, if it exists.
996 assert(ArgInputs
.count(Input
) && "Input cannot be found!");
998 if (AggArgIt
!= Group
.CanonicalNumberToAggArg
.end()) {
999 if (OriginalIndex
!= AggArgIt
->second
)
1000 Region
.ChangedArgOrder
= true;
1001 Region
.ExtractedArgToAgg
.insert(
1002 std::make_pair(OriginalIndex
, AggArgIt
->second
));
1003 Region
.AggArgToExtracted
.insert(
1004 std::make_pair(AggArgIt
->second
, OriginalIndex
));
1006 Group
.CanonicalNumberToAggArg
.insert(
1007 std::make_pair(CanonicalNumber
, TypeIndex
));
1008 Region
.ExtractedArgToAgg
.insert(std::make_pair(OriginalIndex
, TypeIndex
));
1009 Region
.AggArgToExtracted
.insert(std::make_pair(TypeIndex
, OriginalIndex
));
1015 // If the function type definitions for the OutlinableGroup holding the region
1016 // have not been set, set the length of the inputs here. We should have the
1017 // same inputs for all of the different regions contained in the
1018 // OutlinableGroup since they are all structurally similar to one another.
1019 if (!Group
.InputTypesSet
) {
1020 Group
.NumAggregateInputs
= TypeIndex
;
1021 Group
.InputTypesSet
= true;
1024 Region
.NumExtractedInputs
= OriginalIndex
;
1027 /// Check if the \p V has any uses outside of the region other than \p PN.
1029 /// \param V [in] - The value to check.
1030 /// \param PHILoc [in] - The location in the PHINode of \p V.
1031 /// \param PN [in] - The PHINode using \p V.
1032 /// \param Exits [in] - The potential blocks we exit to from the outlined
1034 /// \param BlocksInRegion [in] - The basic blocks contained in the region.
1035 /// \returns true if \p V has any use soutside its region other than \p PN.
1036 static bool outputHasNonPHI(Value
*V
, unsigned PHILoc
, PHINode
&PN
,
1037 SmallPtrSet
<BasicBlock
*, 1> &Exits
,
1038 DenseSet
<BasicBlock
*> &BlocksInRegion
) {
1039 // We check to see if the value is used by the PHINode from some other
1040 // predecessor not included in the region. If it is, we make sure
1041 // to keep it as an output.
1042 if (any_of(llvm::seq
<unsigned>(0, PN
.getNumIncomingValues()),
1043 [PHILoc
, &PN
, V
, &BlocksInRegion
](unsigned Idx
) {
1044 return (Idx
!= PHILoc
&& V
== PN
.getIncomingValue(Idx
) &&
1045 !BlocksInRegion
.contains(PN
.getIncomingBlock(Idx
)));
1049 // Check if the value is used by any other instructions outside the region.
1050 return any_of(V
->users(), [&Exits
, &BlocksInRegion
](User
*U
) {
1051 Instruction
*I
= dyn_cast
<Instruction
>(U
);
1055 // If the use of the item is inside the region, we skip it. Uses
1056 // inside the region give us useful information about how the item could be
1057 // used as an output.
1058 BasicBlock
*Parent
= I
->getParent();
1059 if (BlocksInRegion
.contains(Parent
))
1062 // If it's not a PHINode then we definitely know the use matters. This
1063 // output value will not completely combined with another item in a PHINode
1064 // as it is directly reference by another non-phi instruction
1065 if (!isa
<PHINode
>(I
))
1068 // If we have a PHINode outside one of the exit locations, then it
1069 // can be considered an outside use as well. If there is a PHINode
1070 // contained in the Exit where this values use matters, it will be
1071 // caught when we analyze that PHINode.
1072 if (!Exits
.contains(Parent
))
1079 /// Test whether \p CurrentExitFromRegion contains any PhiNodes that should be
1080 /// considered outputs. A PHINodes is an output when more than one incoming
1081 /// value has been marked by the CodeExtractor as an output.
1083 /// \param CurrentExitFromRegion [in] - The block to analyze.
1084 /// \param PotentialExitsFromRegion [in] - The potential exit blocks from the
1086 /// \param RegionBlocks [in] - The basic blocks in the region.
1087 /// \param Outputs [in, out] - The existing outputs for the region, we may add
1088 /// PHINodes to this as we find that they replace output values.
1089 /// \param OutputsReplacedByPHINode [out] - A set containing outputs that are
1090 /// totally replaced by a PHINode.
1091 /// \param OutputsWithNonPhiUses [out] - A set containing outputs that are used
1092 /// in PHINodes, but have other uses, and should still be considered outputs.
1093 static void analyzeExitPHIsForOutputUses(
1094 BasicBlock
*CurrentExitFromRegion
,
1095 SmallPtrSet
<BasicBlock
*, 1> &PotentialExitsFromRegion
,
1096 DenseSet
<BasicBlock
*> &RegionBlocks
, SetVector
<Value
*> &Outputs
,
1097 DenseSet
<Value
*> &OutputsReplacedByPHINode
,
1098 DenseSet
<Value
*> &OutputsWithNonPhiUses
) {
1099 for (PHINode
&PN
: CurrentExitFromRegion
->phis()) {
1100 // Find all incoming values from the outlining region.
1101 SmallVector
<unsigned, 2> IncomingVals
;
1102 for (unsigned I
= 0, E
= PN
.getNumIncomingValues(); I
< E
; ++I
)
1103 if (RegionBlocks
.contains(PN
.getIncomingBlock(I
)))
1104 IncomingVals
.push_back(I
);
1106 // Do not process PHI if there are no predecessors from region.
1107 unsigned NumIncomingVals
= IncomingVals
.size();
1108 if (NumIncomingVals
== 0)
1111 // If there is one predecessor, we mark it as a value that needs to be kept
1113 if (NumIncomingVals
== 1) {
1114 Value
*V
= PN
.getIncomingValue(*IncomingVals
.begin());
1115 OutputsWithNonPhiUses
.insert(V
);
1116 OutputsReplacedByPHINode
.erase(V
);
1120 // This PHINode will be used as an output value, so we add it to our list.
1121 Outputs
.insert(&PN
);
1123 // Not all of the incoming values should be ignored as other inputs and
1124 // outputs may have uses in outlined region. If they have other uses
1125 // outside of the single PHINode we should not skip over it.
1126 for (unsigned Idx
: IncomingVals
) {
1127 Value
*V
= PN
.getIncomingValue(Idx
);
1128 if (outputHasNonPHI(V
, Idx
, PN
, PotentialExitsFromRegion
, RegionBlocks
)) {
1129 OutputsWithNonPhiUses
.insert(V
);
1130 OutputsReplacedByPHINode
.erase(V
);
1133 if (!OutputsWithNonPhiUses
.contains(V
))
1134 OutputsReplacedByPHINode
.insert(V
);
1139 // Represents the type for the unsigned number denoting the output number for
1140 // phi node, along with the canonical number for the exit block.
1141 using ArgLocWithBBCanon
= std::pair
<unsigned, unsigned>;
1142 // The list of canonical numbers for the incoming values to a PHINode.
1143 using CanonList
= SmallVector
<unsigned, 2>;
1144 // The pair type representing the set of canonical values being combined in the
1145 // PHINode, along with the location data for the PHINode.
1146 using PHINodeData
= std::pair
<ArgLocWithBBCanon
, CanonList
>;
1148 /// Encode \p PND as an integer for easy lookup based on the argument location,
1149 /// the parent BasicBlock canonical numbering, and the canonical numbering of
1150 /// the values stored in the PHINode.
1152 /// \param PND - The data to hash.
1153 /// \returns The hash code of \p PND.
1154 static hash_code
encodePHINodeData(PHINodeData
&PND
) {
1155 return llvm::hash_combine(
1156 llvm::hash_value(PND
.first
.first
), llvm::hash_value(PND
.first
.second
),
1157 llvm::hash_combine_range(PND
.second
.begin(), PND
.second
.end()));
1160 /// Create a special GVN for PHINodes that will be used outside of
1161 /// the region. We create a hash code based on the Canonical number of the
1162 /// parent BasicBlock, the canonical numbering of the values stored in the
1163 /// PHINode and the aggregate argument location. This is used to find whether
1164 /// this PHINode type has been given a canonical numbering already. If not, we
1165 /// assign it a value and store it for later use. The value is returned to
1166 /// identify different output schemes for the set of regions.
1168 /// \param Region - The region that \p PN is an output for.
1169 /// \param PN - The PHINode we are analyzing.
1170 /// \param Blocks - The blocks for the region we are analyzing.
1171 /// \param AggArgIdx - The argument \p PN will be stored into.
1172 /// \returns An optional holding the assigned canonical number, or std::nullopt
1173 /// if there is some attribute of the PHINode blocking it from being used.
1174 static std::optional
<unsigned> getGVNForPHINode(OutlinableRegion
&Region
,
1176 DenseSet
<BasicBlock
*> &Blocks
,
1177 unsigned AggArgIdx
) {
1178 OutlinableGroup
&Group
= *Region
.Parent
;
1179 IRSimilarityCandidate
&Cand
= *Region
.Candidate
;
1180 BasicBlock
*PHIBB
= PN
->getParent();
1183 BasicBlock
*IncomingBlock
;
1184 for (unsigned Idx
= 0, EIdx
= PN
->getNumIncomingValues(); Idx
< EIdx
; Idx
++) {
1185 Incoming
= PN
->getIncomingValue(Idx
);
1186 IncomingBlock
= PN
->getIncomingBlock(Idx
);
1187 // If we cannot find a GVN, and the incoming block is included in the region
1188 // this means that the input to the PHINode is not included in the region we
1189 // are trying to analyze, meaning, that if it was outlined, we would be
1190 // adding an extra input. We ignore this case for now, and so ignore the
1192 std::optional
<unsigned> OGVN
= Cand
.getGVN(Incoming
);
1193 if (!OGVN
&& Blocks
.contains(IncomingBlock
)) {
1194 Region
.IgnoreRegion
= true;
1195 return std::nullopt
;
1198 // If the incoming block isn't in the region, we don't have to worry about
1199 // this incoming value.
1200 if (!Blocks
.contains(IncomingBlock
))
1203 // Collect the canonical numbers of the values in the PHINode.
1204 unsigned GVN
= *OGVN
;
1205 OGVN
= Cand
.getCanonicalNum(GVN
);
1206 assert(OGVN
&& "No GVN found for incoming value?");
1207 PHIGVNs
.push_back(*OGVN
);
1209 // Find the incoming block and use the canonical numbering as well to define
1210 // the hash for the PHINode.
1211 OGVN
= Cand
.getGVN(IncomingBlock
);
1213 // If there is no number for the incoming block, it is because we have
1214 // split the candidate basic blocks. So we use the previous block that it
1215 // was split from to find the valid global value numbering for the PHINode.
1217 assert(Cand
.getStartBB() == IncomingBlock
&&
1218 "Unknown basic block used in exit path PHINode.");
1220 BasicBlock
*PrevBlock
= nullptr;
1221 // Iterate over the predecessors to the incoming block of the
1222 // PHINode, when we find a block that is not contained in the region
1223 // we know that this is the first block that we split from, and should
1224 // have a valid global value numbering.
1225 for (BasicBlock
*Pred
: predecessors(IncomingBlock
))
1226 if (!Blocks
.contains(Pred
)) {
1230 assert(PrevBlock
&& "Expected a predecessor not in the reigon!");
1231 OGVN
= Cand
.getGVN(PrevBlock
);
1234 OGVN
= Cand
.getCanonicalNum(GVN
);
1235 assert(OGVN
&& "No GVN found for incoming block?");
1236 PHIGVNs
.push_back(*OGVN
);
1239 // Now that we have the GVNs for the incoming values, we are going to combine
1240 // them with the GVN of the incoming bock, and the output location of the
1241 // PHINode to generate a hash value representing this instance of the PHINode.
1242 DenseMap
<hash_code
, unsigned>::iterator GVNToPHIIt
;
1243 DenseMap
<unsigned, PHINodeData
>::iterator PHIToGVNIt
;
1244 std::optional
<unsigned> BBGVN
= Cand
.getGVN(PHIBB
);
1245 assert(BBGVN
&& "Could not find GVN for the incoming block!");
1247 BBGVN
= Cand
.getCanonicalNum(*BBGVN
);
1248 assert(BBGVN
&& "Could not find canonical number for the incoming block!");
1249 // Create a pair of the exit block canonical value, and the aggregate
1250 // argument location, connected to the canonical numbers stored in the
1252 PHINodeData TemporaryPair
=
1253 std::make_pair(std::make_pair(*BBGVN
, AggArgIdx
), PHIGVNs
);
1254 hash_code PHINodeDataHash
= encodePHINodeData(TemporaryPair
);
1256 // Look for and create a new entry in our connection between canonical
1257 // numbers for PHINodes, and the set of objects we just created.
1258 GVNToPHIIt
= Group
.GVNsToPHINodeGVN
.find(PHINodeDataHash
);
1259 if (GVNToPHIIt
== Group
.GVNsToPHINodeGVN
.end()) {
1260 bool Inserted
= false;
1261 std::tie(PHIToGVNIt
, Inserted
) = Group
.PHINodeGVNToGVNs
.insert(
1262 std::make_pair(Group
.PHINodeGVNTracker
, TemporaryPair
));
1263 std::tie(GVNToPHIIt
, Inserted
) = Group
.GVNsToPHINodeGVN
.insert(
1264 std::make_pair(PHINodeDataHash
, Group
.PHINodeGVNTracker
--));
1267 return GVNToPHIIt
->second
;
1270 /// Create a mapping of the output arguments for the \p Region to the output
1271 /// arguments of the overall outlined function.
1273 /// \param [in,out] Region - The region of code to be analyzed.
1274 /// \param [in] Outputs - The values found by the code extractor.
1276 findExtractedOutputToOverallOutputMapping(Module
&M
, OutlinableRegion
&Region
,
1277 SetVector
<Value
*> &Outputs
) {
1278 OutlinableGroup
&Group
= *Region
.Parent
;
1279 IRSimilarityCandidate
&C
= *Region
.Candidate
;
1281 SmallVector
<BasicBlock
*> BE
;
1282 DenseSet
<BasicBlock
*> BlocksInRegion
;
1283 C
.getBasicBlocks(BlocksInRegion
, BE
);
1285 // Find the exits to the region.
1286 SmallPtrSet
<BasicBlock
*, 1> Exits
;
1287 for (BasicBlock
*Block
: BE
)
1288 for (BasicBlock
*Succ
: successors(Block
))
1289 if (!BlocksInRegion
.contains(Succ
))
1292 // After determining which blocks exit to PHINodes, we add these PHINodes to
1293 // the set of outputs to be processed. We also check the incoming values of
1294 // the PHINodes for whether they should no longer be considered outputs.
1295 DenseSet
<Value
*> OutputsReplacedByPHINode
;
1296 DenseSet
<Value
*> OutputsWithNonPhiUses
;
1297 for (BasicBlock
*ExitBB
: Exits
)
1298 analyzeExitPHIsForOutputUses(ExitBB
, Exits
, BlocksInRegion
, Outputs
,
1299 OutputsReplacedByPHINode
,
1300 OutputsWithNonPhiUses
);
1302 // This counts the argument number in the extracted function.
1303 unsigned OriginalIndex
= Region
.NumExtractedInputs
;
1305 // This counts the argument number in the overall function.
1306 unsigned TypeIndex
= Group
.NumAggregateInputs
;
1308 DenseSet
<unsigned> AggArgsUsed
;
1310 // Iterate over the output types and identify if there is an aggregate pointer
1311 // type whose base type matches the current output type. If there is, we mark
1312 // that we will use this output register for this value. If not we add another
1313 // type to the overall argument type list. We also store the GVNs used for
1314 // stores to identify which values will need to be moved into an special
1315 // block that holds the stores to the output registers.
1316 for (Value
*Output
: Outputs
) {
1318 // We can do this since it is a result value, and will have a number
1319 // that is necessarily the same. BUT if in the future, the instructions
1320 // do not have to be in same order, but are functionally the same, we will
1321 // have to use a different scheme, as one-to-one correspondence is not
1323 unsigned ArgumentSize
= Group
.ArgumentTypes
.size();
1325 // If the output is combined in a PHINode, we make sure to skip over it.
1326 if (OutputsReplacedByPHINode
.contains(Output
))
1329 unsigned AggArgIdx
= 0;
1330 for (unsigned Jdx
= TypeIndex
; Jdx
< ArgumentSize
; Jdx
++) {
1331 if (!isa
<PointerType
>(Group
.ArgumentTypes
[Jdx
]))
1334 if (AggArgsUsed
.contains(Jdx
))
1338 AggArgsUsed
.insert(Jdx
);
1339 Region
.ExtractedArgToAgg
.insert(std::make_pair(OriginalIndex
, Jdx
));
1340 Region
.AggArgToExtracted
.insert(std::make_pair(Jdx
, OriginalIndex
));
1345 // We were unable to find an unused type in the output type set that matches
1346 // the output, so we add a pointer type to the argument types of the overall
1347 // function to handle this output and create a mapping to it.
1349 Group
.ArgumentTypes
.push_back(Output
->getType()->getPointerTo(
1350 M
.getDataLayout().getAllocaAddrSpace()));
1351 // Mark the new pointer type as the last value in the aggregate argument
1353 unsigned ArgTypeIdx
= Group
.ArgumentTypes
.size() - 1;
1354 AggArgsUsed
.insert(ArgTypeIdx
);
1355 Region
.ExtractedArgToAgg
.insert(
1356 std::make_pair(OriginalIndex
, ArgTypeIdx
));
1357 Region
.AggArgToExtracted
.insert(
1358 std::make_pair(ArgTypeIdx
, OriginalIndex
));
1359 AggArgIdx
= ArgTypeIdx
;
1362 // TODO: Adapt to the extra input from the PHINode.
1363 PHINode
*PN
= dyn_cast
<PHINode
>(Output
);
1365 std::optional
<unsigned> GVN
;
1366 if (PN
&& !BlocksInRegion
.contains(PN
->getParent())) {
1367 // Values outside the region can be combined into PHINode when we
1368 // have multiple exits. We collect both of these into a list to identify
1369 // which values are being used in the PHINode. Each list identifies a
1370 // different PHINode, and a different output. We store the PHINode as it's
1371 // own canonical value. These canonical values are also dependent on the
1372 // output argument it is saved to.
1374 // If two PHINodes have the same canonical values, but different aggregate
1375 // argument locations, then they will have distinct Canonical Values.
1376 GVN
= getGVNForPHINode(Region
, PN
, BlocksInRegion
, AggArgIdx
);
1380 // If we do not have a PHINode we use the global value numbering for the
1381 // output value, to find the canonical number to add to the set of stored
1383 GVN
= C
.getGVN(Output
);
1384 GVN
= C
.getCanonicalNum(*GVN
);
1387 // Each region has a potentially unique set of outputs. We save which
1388 // values are output in a list of canonical values so we can differentiate
1389 // among the different store schemes.
1390 Region
.GVNStores
.push_back(*GVN
);
1396 // We sort the stored values to make sure that we are not affected by analysis
1397 // order when determining what combination of items were stored.
1398 stable_sort(Region
.GVNStores
);
1401 void IROutliner::findAddInputsOutputs(Module
&M
, OutlinableRegion
&Region
,
1402 DenseSet
<unsigned> &NotSame
) {
1403 std::vector
<unsigned> Inputs
;
1404 SetVector
<Value
*> ArgInputs
, Outputs
;
1406 getCodeExtractorArguments(Region
, Inputs
, NotSame
, OutputMappings
, ArgInputs
,
1409 if (Region
.IgnoreRegion
)
1412 // Map the inputs found by the CodeExtractor to the arguments found for
1413 // the overall function.
1414 findExtractedInputToOverallInputMapping(Region
, Inputs
, ArgInputs
);
1416 // Map the outputs found by the CodeExtractor to the arguments found for
1417 // the overall function.
1418 findExtractedOutputToOverallOutputMapping(M
, Region
, Outputs
);
1421 /// Replace the extracted function in the Region with a call to the overall
1422 /// function constructed from the deduplicated similar regions, replacing and
1423 /// remapping the values passed to the extracted function as arguments to the
1424 /// new arguments of the overall function.
1426 /// \param [in] M - The module to outline from.
1427 /// \param [in] Region - The regions of extracted code to be replaced with a new
1429 /// \returns a call instruction with the replaced function.
1430 CallInst
*replaceCalledFunction(Module
&M
, OutlinableRegion
&Region
) {
1431 std::vector
<Value
*> NewCallArgs
;
1432 DenseMap
<unsigned, unsigned>::iterator ArgPair
;
1434 OutlinableGroup
&Group
= *Region
.Parent
;
1435 CallInst
*Call
= Region
.Call
;
1436 assert(Call
&& "Call to replace is nullptr?");
1437 Function
*AggFunc
= Group
.OutlinedFunction
;
1438 assert(AggFunc
&& "Function to replace with is nullptr?");
1440 // If the arguments are the same size, there are not values that need to be
1441 // made into an argument, the argument ordering has not been change, or
1442 // different output registers to handle. We can simply replace the called
1443 // function in this case.
1444 if (!Region
.ChangedArgOrder
&& AggFunc
->arg_size() == Call
->arg_size()) {
1445 LLVM_DEBUG(dbgs() << "Replace call to " << *Call
<< " with call to "
1446 << *AggFunc
<< " with same number of arguments\n");
1447 Call
->setCalledFunction(AggFunc
);
1451 // We have a different number of arguments than the new function, so
1452 // we need to use our previously mappings off extracted argument to overall
1453 // function argument, and constants to overall function argument to create the
1454 // new argument list.
1455 for (unsigned AggArgIdx
= 0; AggArgIdx
< AggFunc
->arg_size(); AggArgIdx
++) {
1457 if (AggArgIdx
== AggFunc
->arg_size() - 1 &&
1458 Group
.OutputGVNCombinations
.size() > 1) {
1459 // If we are on the last argument, and we need to differentiate between
1460 // output blocks, add an integer to the argument list to determine
1461 // what block to take
1462 LLVM_DEBUG(dbgs() << "Set switch block argument to "
1463 << Region
.OutputBlockNum
<< "\n");
1464 NewCallArgs
.push_back(ConstantInt::get(Type::getInt32Ty(M
.getContext()),
1465 Region
.OutputBlockNum
));
1469 ArgPair
= Region
.AggArgToExtracted
.find(AggArgIdx
);
1470 if (ArgPair
!= Region
.AggArgToExtracted
.end()) {
1471 Value
*ArgumentValue
= Call
->getArgOperand(ArgPair
->second
);
1472 // If we found the mapping from the extracted function to the overall
1473 // function, we simply add it to the argument list. We use the same
1474 // value, it just needs to honor the new order of arguments.
1475 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx
<< " to value "
1476 << *ArgumentValue
<< "\n");
1477 NewCallArgs
.push_back(ArgumentValue
);
1481 // If it is a constant, we simply add it to the argument list as a value.
1482 if (Region
.AggArgToConstant
.contains(AggArgIdx
)) {
1483 Constant
*CST
= Region
.AggArgToConstant
.find(AggArgIdx
)->second
;
1484 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx
<< " to value "
1486 NewCallArgs
.push_back(CST
);
1490 // Add a nullptr value if the argument is not found in the extracted
1491 // function. If we cannot find a value, it means it is not in use
1492 // for the region, so we should not pass anything to it.
1493 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx
<< " to nullptr\n");
1494 NewCallArgs
.push_back(ConstantPointerNull::get(
1495 static_cast<PointerType
*>(AggFunc
->getArg(AggArgIdx
)->getType())));
1498 LLVM_DEBUG(dbgs() << "Replace call to " << *Call
<< " with call to "
1499 << *AggFunc
<< " with new set of arguments\n");
1500 // Create the new call instruction and erase the old one.
1501 Call
= CallInst::Create(AggFunc
->getFunctionType(), AggFunc
, NewCallArgs
, "",
1504 // It is possible that the call to the outlined function is either the first
1505 // instruction is in the new block, the last instruction, or both. If either
1506 // of these is the case, we need to make sure that we replace the instruction
1507 // in the IRInstructionData struct with the new call.
1508 CallInst
*OldCall
= Region
.Call
;
1509 if (Region
.NewFront
->Inst
== OldCall
)
1510 Region
.NewFront
->Inst
= Call
;
1511 if (Region
.NewBack
->Inst
== OldCall
)
1512 Region
.NewBack
->Inst
= Call
;
1514 // Transfer any debug information.
1515 Call
->setDebugLoc(Region
.Call
->getDebugLoc());
1516 // Since our output may determine which branch we go to, we make sure to
1517 // propogate this new call value through the module.
1518 OldCall
->replaceAllUsesWith(Call
);
1520 // Remove the old instruction.
1521 OldCall
->eraseFromParent();
1524 // Make sure that the argument in the new function has the SwiftError
1526 if (Group
.SwiftErrorArgument
)
1527 Call
->addParamAttr(*Group
.SwiftErrorArgument
, Attribute::SwiftError
);
1532 /// Find or create a BasicBlock in the outlined function containing PhiBlocks
1535 /// \param Group - The OutlinableGroup containing the information about the
1536 /// overall outlined function.
1537 /// \param RetVal - The return value or exit option that we are currently
1539 /// \returns The found or newly created BasicBlock to contain the needed
1540 /// PHINodes to be used as outputs.
1541 static BasicBlock
*findOrCreatePHIBlock(OutlinableGroup
&Group
, Value
*RetVal
) {
1542 DenseMap
<Value
*, BasicBlock
*>::iterator PhiBlockForRetVal
,
1543 ReturnBlockForRetVal
;
1544 PhiBlockForRetVal
= Group
.PHIBlocks
.find(RetVal
);
1545 ReturnBlockForRetVal
= Group
.EndBBs
.find(RetVal
);
1546 assert(ReturnBlockForRetVal
!= Group
.EndBBs
.end() &&
1547 "Could not find output value!");
1548 BasicBlock
*ReturnBB
= ReturnBlockForRetVal
->second
;
1550 // Find if a PHIBlock exists for this return value already. If it is
1551 // the first time we are analyzing this, we will not, so we record it.
1552 PhiBlockForRetVal
= Group
.PHIBlocks
.find(RetVal
);
1553 if (PhiBlockForRetVal
!= Group
.PHIBlocks
.end())
1554 return PhiBlockForRetVal
->second
;
1556 // If we did not find a block, we create one, and insert it into the
1557 // overall function and record it.
1558 bool Inserted
= false;
1559 BasicBlock
*PHIBlock
= BasicBlock::Create(ReturnBB
->getContext(), "phi_block",
1560 ReturnBB
->getParent());
1561 std::tie(PhiBlockForRetVal
, Inserted
) =
1562 Group
.PHIBlocks
.insert(std::make_pair(RetVal
, PHIBlock
));
1564 // We find the predecessors of the return block in the newly created outlined
1565 // function in order to point them to the new PHIBlock rather than the already
1566 // existing return block.
1567 SmallVector
<BranchInst
*, 2> BranchesToChange
;
1568 for (BasicBlock
*Pred
: predecessors(ReturnBB
))
1569 BranchesToChange
.push_back(cast
<BranchInst
>(Pred
->getTerminator()));
1571 // Now we mark the branch instructions found, and change the references of the
1572 // return block to the newly created PHIBlock.
1573 for (BranchInst
*BI
: BranchesToChange
)
1574 for (unsigned Succ
= 0, End
= BI
->getNumSuccessors(); Succ
< End
; Succ
++) {
1575 if (BI
->getSuccessor(Succ
) != ReturnBB
)
1577 BI
->setSuccessor(Succ
, PHIBlock
);
1580 BranchInst::Create(ReturnBB
, PHIBlock
);
1582 return PhiBlockForRetVal
->second
;
1585 /// For the function call now representing the \p Region, find the passed value
1586 /// to that call that represents Argument \p A at the call location if the
1587 /// call has already been replaced with a call to the overall, aggregate
1590 /// \param A - The Argument to get the passed value for.
1591 /// \param Region - The extracted Region corresponding to the outlined function.
1592 /// \returns The Value representing \p A at the call site.
1594 getPassedArgumentInAlreadyOutlinedFunction(const Argument
*A
,
1595 const OutlinableRegion
&Region
) {
1596 // If we don't need to adjust the argument number at all (since the call
1597 // has already been replaced by a call to the overall outlined function)
1598 // we can just get the specified argument.
1599 return Region
.Call
->getArgOperand(A
->getArgNo());
1602 /// For the function call now representing the \p Region, find the passed value
1603 /// to that call that represents Argument \p A at the call location if the
1604 /// call has only been replaced by the call to the aggregate function.
1606 /// \param A - The Argument to get the passed value for.
1607 /// \param Region - The extracted Region corresponding to the outlined function.
1608 /// \returns The Value representing \p A at the call site.
1610 getPassedArgumentAndAdjustArgumentLocation(const Argument
*A
,
1611 const OutlinableRegion
&Region
) {
1612 unsigned ArgNum
= A
->getArgNo();
1614 // If it is a constant, we can look at our mapping from when we created
1615 // the outputs to figure out what the constant value is.
1616 if (Region
.AggArgToConstant
.count(ArgNum
))
1617 return Region
.AggArgToConstant
.find(ArgNum
)->second
;
1619 // If it is not a constant, and we are not looking at the overall function, we
1620 // need to adjust which argument we are looking at.
1621 ArgNum
= Region
.AggArgToExtracted
.find(ArgNum
)->second
;
1622 return Region
.Call
->getArgOperand(ArgNum
);
1625 /// Find the canonical numbering for the incoming Values into the PHINode \p PN.
1627 /// \param PN [in] - The PHINode that we are finding the canonical numbers for.
1628 /// \param Region [in] - The OutlinableRegion containing \p PN.
1629 /// \param OutputMappings [in] - The mapping of output values from outlined
1630 /// region to their original values.
1631 /// \param CanonNums [out] - The canonical numbering for the incoming values to
1632 /// \p PN paired with their incoming block.
1633 /// \param ReplacedWithOutlinedCall - A flag to use the extracted function call
1634 /// of \p Region rather than the overall function's call.
1635 static void findCanonNumsForPHI(
1636 PHINode
*PN
, OutlinableRegion
&Region
,
1637 const DenseMap
<Value
*, Value
*> &OutputMappings
,
1638 SmallVector
<std::pair
<unsigned, BasicBlock
*>> &CanonNums
,
1639 bool ReplacedWithOutlinedCall
= true) {
1640 // Iterate over the incoming values.
1641 for (unsigned Idx
= 0, EIdx
= PN
->getNumIncomingValues(); Idx
< EIdx
; Idx
++) {
1642 Value
*IVal
= PN
->getIncomingValue(Idx
);
1643 BasicBlock
*IBlock
= PN
->getIncomingBlock(Idx
);
1644 // If we have an argument as incoming value, we need to grab the passed
1645 // value from the call itself.
1646 if (Argument
*A
= dyn_cast
<Argument
>(IVal
)) {
1647 if (ReplacedWithOutlinedCall
)
1648 IVal
= getPassedArgumentInAlreadyOutlinedFunction(A
, Region
);
1650 IVal
= getPassedArgumentAndAdjustArgumentLocation(A
, Region
);
1653 // Get the original value if it has been replaced by an output value.
1654 IVal
= findOutputMapping(OutputMappings
, IVal
);
1656 // Find and add the canonical number for the incoming value.
1657 std::optional
<unsigned> GVN
= Region
.Candidate
->getGVN(IVal
);
1658 assert(GVN
&& "No GVN for incoming value");
1659 std::optional
<unsigned> CanonNum
= Region
.Candidate
->getCanonicalNum(*GVN
);
1660 assert(CanonNum
&& "No Canonical Number for GVN");
1661 CanonNums
.push_back(std::make_pair(*CanonNum
, IBlock
));
1665 /// Find, or add PHINode \p PN to the combined PHINode Block \p OverallPHIBlock
1666 /// in order to condense the number of instructions added to the outlined
1669 /// \param PN [in] - The PHINode that we are finding the canonical numbers for.
1670 /// \param Region [in] - The OutlinableRegion containing \p PN.
1671 /// \param OverallPhiBlock [in] - The overall PHIBlock we are trying to find
1673 /// \param OutputMappings [in] - The mapping of output values from outlined
1674 /// region to their original values.
1675 /// \param UsedPHIs [in, out] - The PHINodes in the block that have already been
1677 /// \return the newly found or created PHINode in \p OverallPhiBlock.
1679 findOrCreatePHIInBlock(PHINode
&PN
, OutlinableRegion
&Region
,
1680 BasicBlock
*OverallPhiBlock
,
1681 const DenseMap
<Value
*, Value
*> &OutputMappings
,
1682 DenseSet
<PHINode
*> &UsedPHIs
) {
1683 OutlinableGroup
&Group
= *Region
.Parent
;
1686 // A list of the canonical numbering assigned to each incoming value, paired
1687 // with the incoming block for the PHINode passed into this function.
1688 SmallVector
<std::pair
<unsigned, BasicBlock
*>> PNCanonNums
;
1690 // We have to use the extracted function since we have merged this region into
1691 // the overall function yet. We make sure to reassign the argument numbering
1692 // since it is possible that the argument ordering is different between the
1694 findCanonNumsForPHI(&PN
, Region
, OutputMappings
, PNCanonNums
,
1695 /* ReplacedWithOutlinedCall = */ false);
1697 OutlinableRegion
*FirstRegion
= Group
.Regions
[0];
1699 // A list of the canonical numbering assigned to each incoming value, paired
1700 // with the incoming block for the PHINode that we are currently comparing
1701 // the passed PHINode to.
1702 SmallVector
<std::pair
<unsigned, BasicBlock
*>> CurrentCanonNums
;
1704 // Find the Canonical Numbering for each PHINode, if it matches, we replace
1705 // the uses of the PHINode we are searching for, with the found PHINode.
1706 for (PHINode
&CurrPN
: OverallPhiBlock
->phis()) {
1707 // If this PHINode has already been matched to another PHINode to be merged,
1709 if (UsedPHIs
.contains(&CurrPN
))
1712 CurrentCanonNums
.clear();
1713 findCanonNumsForPHI(&CurrPN
, *FirstRegion
, OutputMappings
, CurrentCanonNums
,
1714 /* ReplacedWithOutlinedCall = */ true);
1716 // If the list of incoming values is not the same length, then they cannot
1717 // match since there is not an analogue for each incoming value.
1718 if (PNCanonNums
.size() != CurrentCanonNums
.size())
1721 bool FoundMatch
= true;
1723 // We compare the canonical value for each incoming value in the passed
1724 // in PHINode to one already present in the outlined region. If the
1725 // incoming values do not match, then the PHINodes do not match.
1727 // We also check to make sure that the incoming block matches as well by
1728 // finding the corresponding incoming block in the combined outlined region
1729 // for the current outlined region.
1730 for (unsigned Idx
= 0, Edx
= PNCanonNums
.size(); Idx
< Edx
; ++Idx
) {
1731 std::pair
<unsigned, BasicBlock
*> ToCompareTo
= CurrentCanonNums
[Idx
];
1732 std::pair
<unsigned, BasicBlock
*> ToAdd
= PNCanonNums
[Idx
];
1733 if (ToCompareTo
.first
!= ToAdd
.first
) {
1738 BasicBlock
*CorrespondingBlock
=
1739 Region
.findCorrespondingBlockIn(*FirstRegion
, ToAdd
.second
);
1740 assert(CorrespondingBlock
&& "Found block is nullptr");
1741 if (CorrespondingBlock
!= ToCompareTo
.second
) {
1747 // If all incoming values and branches matched, then we can merge
1748 // into the found PHINode.
1750 UsedPHIs
.insert(&CurrPN
);
1755 // If we've made it here, it means we weren't able to replace the PHINode, so
1756 // we must insert it ourselves.
1757 PHINode
*NewPN
= cast
<PHINode
>(PN
.clone());
1758 NewPN
->insertBefore(&*OverallPhiBlock
->begin());
1759 for (unsigned Idx
= 0, Edx
= NewPN
->getNumIncomingValues(); Idx
< Edx
;
1761 Value
*IncomingVal
= NewPN
->getIncomingValue(Idx
);
1762 BasicBlock
*IncomingBlock
= NewPN
->getIncomingBlock(Idx
);
1764 // Find corresponding basic block in the overall function for the incoming
1766 BasicBlock
*BlockToUse
=
1767 Region
.findCorrespondingBlockIn(*FirstRegion
, IncomingBlock
);
1768 NewPN
->setIncomingBlock(Idx
, BlockToUse
);
1770 // If we have an argument we make sure we replace using the argument from
1771 // the correct function.
1772 if (Argument
*A
= dyn_cast
<Argument
>(IncomingVal
)) {
1773 Value
*Val
= Group
.OutlinedFunction
->getArg(A
->getArgNo());
1774 NewPN
->setIncomingValue(Idx
, Val
);
1778 // Find the corresponding value in the overall function.
1779 IncomingVal
= findOutputMapping(OutputMappings
, IncomingVal
);
1780 Value
*Val
= Region
.findCorrespondingValueIn(*FirstRegion
, IncomingVal
);
1781 assert(Val
&& "Value is nullptr?");
1782 DenseMap
<Value
*, Value
*>::iterator RemappedIt
=
1783 FirstRegion
->RemappedArguments
.find(Val
);
1784 if (RemappedIt
!= FirstRegion
->RemappedArguments
.end())
1785 Val
= RemappedIt
->second
;
1786 NewPN
->setIncomingValue(Idx
, Val
);
1791 // Within an extracted function, replace the argument uses of the extracted
1792 // region with the arguments of the function for an OutlinableGroup.
1794 /// \param [in] Region - The region of extracted code to be changed.
1795 /// \param [in,out] OutputBBs - The BasicBlock for the output stores for this
1797 /// \param [in] FirstFunction - A flag to indicate whether we are using this
1798 /// function to define the overall outlined function for all the regions, or
1799 /// if we are operating on one of the following regions.
1801 replaceArgumentUses(OutlinableRegion
&Region
,
1802 DenseMap
<Value
*, BasicBlock
*> &OutputBBs
,
1803 const DenseMap
<Value
*, Value
*> &OutputMappings
,
1804 bool FirstFunction
= false) {
1805 OutlinableGroup
&Group
= *Region
.Parent
;
1806 assert(Region
.ExtractedFunction
&& "Region has no extracted function?");
1808 Function
*DominatingFunction
= Region
.ExtractedFunction
;
1810 DominatingFunction
= Group
.OutlinedFunction
;
1811 DominatorTree
DT(*DominatingFunction
);
1812 DenseSet
<PHINode
*> UsedPHIs
;
1814 for (unsigned ArgIdx
= 0; ArgIdx
< Region
.ExtractedFunction
->arg_size();
1816 assert(Region
.ExtractedArgToAgg
.contains(ArgIdx
) &&
1817 "No mapping from extracted to outlined?");
1818 unsigned AggArgIdx
= Region
.ExtractedArgToAgg
.find(ArgIdx
)->second
;
1819 Argument
*AggArg
= Group
.OutlinedFunction
->getArg(AggArgIdx
);
1820 Argument
*Arg
= Region
.ExtractedFunction
->getArg(ArgIdx
);
1821 // The argument is an input, so we can simply replace it with the overall
1823 if (ArgIdx
< Region
.NumExtractedInputs
) {
1824 LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg
<< " in function "
1825 << *Region
.ExtractedFunction
<< " with " << *AggArg
1826 << " in function " << *Group
.OutlinedFunction
<< "\n");
1827 Arg
->replaceAllUsesWith(AggArg
);
1828 Value
*V
= Region
.Call
->getArgOperand(ArgIdx
);
1829 Region
.RemappedArguments
.insert(std::make_pair(V
, AggArg
));
1833 // If we are replacing an output, we place the store value in its own
1834 // block inside the overall function before replacing the use of the output
1836 assert(Arg
->hasOneUse() && "Output argument can only have one use");
1837 User
*InstAsUser
= Arg
->user_back();
1838 assert(InstAsUser
&& "User is nullptr!");
1840 Instruction
*I
= cast
<Instruction
>(InstAsUser
);
1841 BasicBlock
*BB
= I
->getParent();
1842 SmallVector
<BasicBlock
*, 4> Descendants
;
1843 DT
.getDescendants(BB
, Descendants
);
1844 bool EdgeAdded
= false;
1845 if (Descendants
.size() == 0) {
1847 DT
.insertEdge(&DominatingFunction
->getEntryBlock(), BB
);
1848 DT
.getDescendants(BB
, Descendants
);
1851 // Iterate over the following blocks, looking for return instructions,
1852 // if we find one, find the corresponding output block for the return value
1853 // and move our store instruction there.
1854 for (BasicBlock
*DescendBB
: Descendants
) {
1855 ReturnInst
*RI
= dyn_cast
<ReturnInst
>(DescendBB
->getTerminator());
1858 Value
*RetVal
= RI
->getReturnValue();
1859 auto VBBIt
= OutputBBs
.find(RetVal
);
1860 assert(VBBIt
!= OutputBBs
.end() && "Could not find output value!");
1862 // If this is storing a PHINode, we must make sure it is included in the
1863 // overall function.
1864 StoreInst
*SI
= cast
<StoreInst
>(I
);
1866 Value
*ValueOperand
= SI
->getValueOperand();
1868 StoreInst
*NewI
= cast
<StoreInst
>(I
->clone());
1869 NewI
->setDebugLoc(DebugLoc());
1870 BasicBlock
*OutputBB
= VBBIt
->second
;
1871 NewI
->insertInto(OutputBB
, OutputBB
->end());
1872 LLVM_DEBUG(dbgs() << "Move store for instruction " << *I
<< " to "
1873 << *OutputBB
<< "\n");
1875 // If this is storing a PHINode, we must make sure it is included in the
1876 // overall function.
1877 if (!isa
<PHINode
>(ValueOperand
) ||
1878 Region
.Candidate
->getGVN(ValueOperand
).has_value()) {
1882 Region
.findCorrespondingValueIn(*Group
.Regions
[0], ValueOperand
);
1883 assert(CorrVal
&& "Value is nullptr?");
1884 NewI
->setOperand(0, CorrVal
);
1887 PHINode
*PN
= cast
<PHINode
>(SI
->getValueOperand());
1888 // If it has a value, it was not split by the code extractor, which
1889 // is what we are looking for.
1890 if (Region
.Candidate
->getGVN(PN
))
1893 // We record the parent block for the PHINode in the Region so that
1894 // we can exclude it from checks later on.
1895 Region
.PHIBlocks
.insert(std::make_pair(RetVal
, PN
->getParent()));
1897 // If this is the first function, we do not need to worry about mergiing
1898 // this with any other block in the overall outlined function, so we can
1900 if (FirstFunction
) {
1901 BasicBlock
*PHIBlock
= PN
->getParent();
1902 Group
.PHIBlocks
.insert(std::make_pair(RetVal
, PHIBlock
));
1906 // We look for the aggregate block that contains the PHINodes leading into
1907 // this exit path. If we can't find one, we create one.
1908 BasicBlock
*OverallPhiBlock
= findOrCreatePHIBlock(Group
, RetVal
);
1910 // For our PHINode, we find the combined canonical numbering, and
1911 // attempt to find a matching PHINode in the overall PHIBlock. If we
1912 // cannot, we copy the PHINode and move it into this new block.
1913 PHINode
*NewPN
= findOrCreatePHIInBlock(*PN
, Region
, OverallPhiBlock
,
1914 OutputMappings
, UsedPHIs
);
1915 NewI
->setOperand(0, NewPN
);
1918 // If we added an edge for basic blocks without a predecessor, we remove it
1921 DT
.deleteEdge(&DominatingFunction
->getEntryBlock(), BB
);
1922 I
->eraseFromParent();
1924 LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg
<< " in function "
1925 << *Region
.ExtractedFunction
<< " with " << *AggArg
1926 << " in function " << *Group
.OutlinedFunction
<< "\n");
1927 Arg
->replaceAllUsesWith(AggArg
);
1931 /// Within an extracted function, replace the constants that need to be lifted
1932 /// into arguments with the actual argument.
1934 /// \param Region [in] - The region of extracted code to be changed.
1935 void replaceConstants(OutlinableRegion
&Region
) {
1936 OutlinableGroup
&Group
= *Region
.Parent
;
1937 // Iterate over the constants that need to be elevated into arguments
1938 for (std::pair
<unsigned, Constant
*> &Const
: Region
.AggArgToConstant
) {
1939 unsigned AggArgIdx
= Const
.first
;
1940 Function
*OutlinedFunction
= Group
.OutlinedFunction
;
1941 assert(OutlinedFunction
&& "Overall Function is not defined?");
1942 Constant
*CST
= Const
.second
;
1943 Argument
*Arg
= Group
.OutlinedFunction
->getArg(AggArgIdx
);
1944 // Identify the argument it will be elevated to, and replace instances of
1945 // that constant in the function.
1947 // TODO: If in the future constants do not have one global value number,
1948 // i.e. a constant 1 could be mapped to several values, this check will
1949 // have to be more strict. It cannot be using only replaceUsesWithIf.
1951 LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST
1952 << " in function " << *OutlinedFunction
<< " with "
1954 CST
->replaceUsesWithIf(Arg
, [OutlinedFunction
](Use
&U
) {
1955 if (Instruction
*I
= dyn_cast
<Instruction
>(U
.getUser()))
1956 return I
->getFunction() == OutlinedFunction
;
1962 /// It is possible that there is a basic block that already performs the same
1963 /// stores. This returns a duplicate block, if it exists
1965 /// \param OutputBBs [in] the blocks we are looking for a duplicate of.
1966 /// \param OutputStoreBBs [in] The existing output blocks.
1967 /// \returns an optional value with the number output block if there is a match.
1968 std::optional
<unsigned> findDuplicateOutputBlock(
1969 DenseMap
<Value
*, BasicBlock
*> &OutputBBs
,
1970 std::vector
<DenseMap
<Value
*, BasicBlock
*>> &OutputStoreBBs
) {
1972 bool Mismatch
= false;
1973 unsigned MatchingNum
= 0;
1974 // We compare the new set output blocks to the other sets of output blocks.
1975 // If they are the same number, and have identical instructions, they are
1976 // considered to be the same.
1977 for (DenseMap
<Value
*, BasicBlock
*> &CompBBs
: OutputStoreBBs
) {
1979 for (std::pair
<Value
*, BasicBlock
*> &VToB
: CompBBs
) {
1980 DenseMap
<Value
*, BasicBlock
*>::iterator OutputBBIt
=
1981 OutputBBs
.find(VToB
.first
);
1982 if (OutputBBIt
== OutputBBs
.end()) {
1987 BasicBlock
*CompBB
= VToB
.second
;
1988 BasicBlock
*OutputBB
= OutputBBIt
->second
;
1989 if (CompBB
->size() - 1 != OutputBB
->size()) {
1994 BasicBlock::iterator NIt
= OutputBB
->begin();
1995 for (Instruction
&I
: *CompBB
) {
1996 if (isa
<BranchInst
>(&I
))
1999 if (!I
.isIdenticalTo(&(*NIt
))) {
2014 return std::nullopt
;
2017 /// Remove empty output blocks from the outlined region.
2019 /// \param BlocksToPrune - Mapping of return values output blocks for the \p
2021 /// \param Region - The OutlinableRegion we are analyzing.
2023 analyzeAndPruneOutputBlocks(DenseMap
<Value
*, BasicBlock
*> &BlocksToPrune
,
2024 OutlinableRegion
&Region
) {
2025 bool AllRemoved
= true;
2026 Value
*RetValueForBB
;
2028 SmallVector
<Value
*, 4> ToRemove
;
2029 // Iterate over the output blocks created in the outlined section.
2030 for (std::pair
<Value
*, BasicBlock
*> &VtoBB
: BlocksToPrune
) {
2031 RetValueForBB
= VtoBB
.first
;
2032 NewBB
= VtoBB
.second
;
2034 // If there are no instructions, we remove it from the module, and also
2035 // mark the value for removal from the return value to output block mapping.
2036 if (NewBB
->size() == 0) {
2037 NewBB
->eraseFromParent();
2038 ToRemove
.push_back(RetValueForBB
);
2042 // Mark that we could not remove all the blocks since they were not all
2047 // Remove the return value from the mapping.
2048 for (Value
*V
: ToRemove
)
2049 BlocksToPrune
.erase(V
);
2051 // Mark the region as having the no output scheme.
2053 Region
.OutputBlockNum
= -1;
2058 /// For the outlined section, move needed the StoreInsts for the output
2059 /// registers into their own block. Then, determine if there is a duplicate
2060 /// output block already created.
2062 /// \param [in] OG - The OutlinableGroup of regions to be outlined.
2063 /// \param [in] Region - The OutlinableRegion that is being analyzed.
2064 /// \param [in,out] OutputBBs - the blocks that stores for this region will be
2066 /// \param [in] EndBBs - the final blocks of the extracted function.
2067 /// \param [in] OutputMappings - OutputMappings the mapping of values that have
2068 /// been replaced by a new output value.
2069 /// \param [in,out] OutputStoreBBs - The existing output blocks.
2070 static void alignOutputBlockWithAggFunc(
2071 OutlinableGroup
&OG
, OutlinableRegion
&Region
,
2072 DenseMap
<Value
*, BasicBlock
*> &OutputBBs
,
2073 DenseMap
<Value
*, BasicBlock
*> &EndBBs
,
2074 const DenseMap
<Value
*, Value
*> &OutputMappings
,
2075 std::vector
<DenseMap
<Value
*, BasicBlock
*>> &OutputStoreBBs
) {
2076 // If none of the output blocks have any instructions, this means that we do
2077 // not have to determine if it matches any of the other output schemes, and we
2078 // don't have to do anything else.
2079 if (analyzeAndPruneOutputBlocks(OutputBBs
, Region
))
2082 // Determine is there is a duplicate set of blocks.
2083 std::optional
<unsigned> MatchingBB
=
2084 findDuplicateOutputBlock(OutputBBs
, OutputStoreBBs
);
2086 // If there is, we remove the new output blocks. If it does not,
2087 // we add it to our list of sets of output blocks.
2089 LLVM_DEBUG(dbgs() << "Set output block for region in function"
2090 << Region
.ExtractedFunction
<< " to " << *MatchingBB
);
2092 Region
.OutputBlockNum
= *MatchingBB
;
2093 for (std::pair
<Value
*, BasicBlock
*> &VtoBB
: OutputBBs
)
2094 VtoBB
.second
->eraseFromParent();
2098 Region
.OutputBlockNum
= OutputStoreBBs
.size();
2100 Value
*RetValueForBB
;
2102 OutputStoreBBs
.push_back(DenseMap
<Value
*, BasicBlock
*>());
2103 for (std::pair
<Value
*, BasicBlock
*> &VtoBB
: OutputBBs
) {
2104 RetValueForBB
= VtoBB
.first
;
2105 NewBB
= VtoBB
.second
;
2106 DenseMap
<Value
*, BasicBlock
*>::iterator VBBIt
=
2107 EndBBs
.find(RetValueForBB
);
2108 LLVM_DEBUG(dbgs() << "Create output block for region in"
2109 << Region
.ExtractedFunction
<< " to "
2111 BranchInst::Create(VBBIt
->second
, NewBB
);
2112 OutputStoreBBs
.back().insert(std::make_pair(RetValueForBB
, NewBB
));
2116 /// Takes in a mapping, \p OldMap of ConstantValues to BasicBlocks, sorts keys,
2117 /// before creating a basic block for each \p NewMap, and inserting into the new
2118 /// block. Each BasicBlock is named with the scheme "<basename>_<key_idx>".
2120 /// \param OldMap [in] - The mapping to base the new mapping off of.
2121 /// \param NewMap [out] - The output mapping using the keys of \p OldMap.
2122 /// \param ParentFunc [in] - The function to put the new basic block in.
2123 /// \param BaseName [in] - The start of the BasicBlock names to be appended to
2124 /// by an index value.
2125 static void createAndInsertBasicBlocks(DenseMap
<Value
*, BasicBlock
*> &OldMap
,
2126 DenseMap
<Value
*, BasicBlock
*> &NewMap
,
2127 Function
*ParentFunc
, Twine BaseName
) {
2129 std::vector
<Value
*> SortedKeys
;
2131 getSortedConstantKeys(SortedKeys
, OldMap
);
2133 for (Value
*RetVal
: SortedKeys
) {
2134 BasicBlock
*NewBB
= BasicBlock::Create(
2135 ParentFunc
->getContext(),
2136 Twine(BaseName
) + Twine("_") + Twine(static_cast<unsigned>(Idx
++)),
2138 NewMap
.insert(std::make_pair(RetVal
, NewBB
));
2142 /// Create the switch statement for outlined function to differentiate between
2143 /// all the output blocks.
2145 /// For the outlined section, determine if an outlined block already exists that
2146 /// matches the needed stores for the extracted section.
2147 /// \param [in] M - The module we are outlining from.
2148 /// \param [in] OG - The group of regions to be outlined.
2149 /// \param [in] EndBBs - The final blocks of the extracted function.
2150 /// \param [in,out] OutputStoreBBs - The existing output blocks.
2151 void createSwitchStatement(
2152 Module
&M
, OutlinableGroup
&OG
, DenseMap
<Value
*, BasicBlock
*> &EndBBs
,
2153 std::vector
<DenseMap
<Value
*, BasicBlock
*>> &OutputStoreBBs
) {
2154 // We only need the switch statement if there is more than one store
2155 // combination, or there is more than one set of output blocks. The first
2156 // will occur when we store different sets of values for two different
2157 // regions. The second will occur when we have two outputs that are combined
2158 // in a PHINode outside of the region in one outlined instance, and are used
2159 // seaparately in another. This will create the same set of OutputGVNs, but
2160 // will generate two different output schemes.
2161 if (OG
.OutputGVNCombinations
.size() > 1) {
2162 Function
*AggFunc
= OG
.OutlinedFunction
;
2163 // Create a final block for each different return block.
2164 DenseMap
<Value
*, BasicBlock
*> ReturnBBs
;
2165 createAndInsertBasicBlocks(OG
.EndBBs
, ReturnBBs
, AggFunc
, "final_block");
2167 for (std::pair
<Value
*, BasicBlock
*> &RetBlockPair
: ReturnBBs
) {
2168 std::pair
<Value
*, BasicBlock
*> &OutputBlock
=
2169 *OG
.EndBBs
.find(RetBlockPair
.first
);
2170 BasicBlock
*ReturnBlock
= RetBlockPair
.second
;
2171 BasicBlock
*EndBB
= OutputBlock
.second
;
2172 Instruction
*Term
= EndBB
->getTerminator();
2173 // Move the return value to the final block instead of the original exit
2175 Term
->moveBefore(*ReturnBlock
, ReturnBlock
->end());
2176 // Put the switch statement in the old end basic block for the function
2177 // with a fall through to the new return block.
2178 LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc
<< " for "
2179 << OutputStoreBBs
.size() << "\n");
2180 SwitchInst
*SwitchI
=
2181 SwitchInst::Create(AggFunc
->getArg(AggFunc
->arg_size() - 1),
2182 ReturnBlock
, OutputStoreBBs
.size(), EndBB
);
2185 for (DenseMap
<Value
*, BasicBlock
*> &OutputStoreBB
: OutputStoreBBs
) {
2186 DenseMap
<Value
*, BasicBlock
*>::iterator OSBBIt
=
2187 OutputStoreBB
.find(OutputBlock
.first
);
2189 if (OSBBIt
== OutputStoreBB
.end())
2192 BasicBlock
*BB
= OSBBIt
->second
;
2194 ConstantInt::get(Type::getInt32Ty(M
.getContext()), Idx
), BB
);
2195 Term
= BB
->getTerminator();
2196 Term
->setSuccessor(0, ReturnBlock
);
2203 assert(OutputStoreBBs
.size() < 2 && "Different store sets not handled!");
2205 // If there needs to be stores, move them from the output blocks to their
2206 // corresponding ending block. We do not check that the OutputGVNCombinations
2207 // is equal to 1 here since that could just been the case where there are 0
2208 // outputs. Instead, we check whether there is more than one set of output
2209 // blocks since this is the only case where we would have to move the
2210 // stores, and erase the extraneous blocks.
2211 if (OutputStoreBBs
.size() == 1) {
2212 LLVM_DEBUG(dbgs() << "Move store instructions to the end block in "
2213 << *OG
.OutlinedFunction
<< "\n");
2214 DenseMap
<Value
*, BasicBlock
*> OutputBlocks
= OutputStoreBBs
[0];
2215 for (std::pair
<Value
*, BasicBlock
*> &VBPair
: OutputBlocks
) {
2216 DenseMap
<Value
*, BasicBlock
*>::iterator EndBBIt
=
2217 EndBBs
.find(VBPair
.first
);
2218 assert(EndBBIt
!= EndBBs
.end() && "Could not find end block");
2219 BasicBlock
*EndBB
= EndBBIt
->second
;
2220 BasicBlock
*OutputBB
= VBPair
.second
;
2221 Instruction
*Term
= OutputBB
->getTerminator();
2222 Term
->eraseFromParent();
2223 Term
= EndBB
->getTerminator();
2224 moveBBContents(*OutputBB
, *EndBB
);
2225 Term
->moveBefore(*EndBB
, EndBB
->end());
2226 OutputBB
->eraseFromParent();
2231 /// Fill the new function that will serve as the replacement function for all of
2232 /// the extracted regions of a certain structure from the first region in the
2233 /// list of regions. Replace this first region's extracted function with the
2234 /// new overall function.
2236 /// \param [in] M - The module we are outlining from.
2237 /// \param [in] CurrentGroup - The group of regions to be outlined.
2238 /// \param [in,out] OutputStoreBBs - The output blocks for each different
2239 /// set of stores needed for the different functions.
2240 /// \param [in,out] FuncsToRemove - Extracted functions to erase from module
2241 /// once outlining is complete.
2242 /// \param [in] OutputMappings - Extracted functions to erase from module
2243 /// once outlining is complete.
2244 static void fillOverallFunction(
2245 Module
&M
, OutlinableGroup
&CurrentGroup
,
2246 std::vector
<DenseMap
<Value
*, BasicBlock
*>> &OutputStoreBBs
,
2247 std::vector
<Function
*> &FuncsToRemove
,
2248 const DenseMap
<Value
*, Value
*> &OutputMappings
) {
2249 OutlinableRegion
*CurrentOS
= CurrentGroup
.Regions
[0];
2251 // Move first extracted function's instructions into new function.
2252 LLVM_DEBUG(dbgs() << "Move instructions from "
2253 << *CurrentOS
->ExtractedFunction
<< " to instruction "
2254 << *CurrentGroup
.OutlinedFunction
<< "\n");
2255 moveFunctionData(*CurrentOS
->ExtractedFunction
,
2256 *CurrentGroup
.OutlinedFunction
, CurrentGroup
.EndBBs
);
2258 // Transfer the attributes from the function to the new function.
2259 for (Attribute A
: CurrentOS
->ExtractedFunction
->getAttributes().getFnAttrs())
2260 CurrentGroup
.OutlinedFunction
->addFnAttr(A
);
2262 // Create a new set of output blocks for the first extracted function.
2263 DenseMap
<Value
*, BasicBlock
*> NewBBs
;
2264 createAndInsertBasicBlocks(CurrentGroup
.EndBBs
, NewBBs
,
2265 CurrentGroup
.OutlinedFunction
, "output_block_0");
2266 CurrentOS
->OutputBlockNum
= 0;
2268 replaceArgumentUses(*CurrentOS
, NewBBs
, OutputMappings
, true);
2269 replaceConstants(*CurrentOS
);
2271 // We first identify if any output blocks are empty, if they are we remove
2272 // them. We then create a branch instruction to the basic block to the return
2273 // block for the function for each non empty output block.
2274 if (!analyzeAndPruneOutputBlocks(NewBBs
, *CurrentOS
)) {
2275 OutputStoreBBs
.push_back(DenseMap
<Value
*, BasicBlock
*>());
2276 for (std::pair
<Value
*, BasicBlock
*> &VToBB
: NewBBs
) {
2277 DenseMap
<Value
*, BasicBlock
*>::iterator VBBIt
=
2278 CurrentGroup
.EndBBs
.find(VToBB
.first
);
2279 BasicBlock
*EndBB
= VBBIt
->second
;
2280 BranchInst::Create(EndBB
, VToBB
.second
);
2281 OutputStoreBBs
.back().insert(VToBB
);
2285 // Replace the call to the extracted function with the outlined function.
2286 CurrentOS
->Call
= replaceCalledFunction(M
, *CurrentOS
);
2288 // We only delete the extracted functions at the end since we may need to
2289 // reference instructions contained in them for mapping purposes.
2290 FuncsToRemove
.push_back(CurrentOS
->ExtractedFunction
);
2293 void IROutliner::deduplicateExtractedSections(
2294 Module
&M
, OutlinableGroup
&CurrentGroup
,
2295 std::vector
<Function
*> &FuncsToRemove
, unsigned &OutlinedFunctionNum
) {
2296 createFunction(M
, CurrentGroup
, OutlinedFunctionNum
);
2298 std::vector
<DenseMap
<Value
*, BasicBlock
*>> OutputStoreBBs
;
2300 OutlinableRegion
*CurrentOS
;
2302 fillOverallFunction(M
, CurrentGroup
, OutputStoreBBs
, FuncsToRemove
,
2305 std::vector
<Value
*> SortedKeys
;
2306 for (unsigned Idx
= 1; Idx
< CurrentGroup
.Regions
.size(); Idx
++) {
2307 CurrentOS
= CurrentGroup
.Regions
[Idx
];
2308 AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup
.OutlinedFunction
,
2309 *CurrentOS
->ExtractedFunction
);
2311 // Create a set of BasicBlocks, one for each return block, to hold the
2312 // needed store instructions.
2313 DenseMap
<Value
*, BasicBlock
*> NewBBs
;
2314 createAndInsertBasicBlocks(
2315 CurrentGroup
.EndBBs
, NewBBs
, CurrentGroup
.OutlinedFunction
,
2316 "output_block_" + Twine(static_cast<unsigned>(Idx
)));
2317 replaceArgumentUses(*CurrentOS
, NewBBs
, OutputMappings
);
2318 alignOutputBlockWithAggFunc(CurrentGroup
, *CurrentOS
, NewBBs
,
2319 CurrentGroup
.EndBBs
, OutputMappings
,
2322 CurrentOS
->Call
= replaceCalledFunction(M
, *CurrentOS
);
2323 FuncsToRemove
.push_back(CurrentOS
->ExtractedFunction
);
2326 // Create a switch statement to handle the different output schemes.
2327 createSwitchStatement(M
, CurrentGroup
, CurrentGroup
.EndBBs
, OutputStoreBBs
);
2329 OutlinedFunctionNum
++;
2332 /// Checks that the next instruction in the InstructionDataList matches the
2333 /// next instruction in the module. If they do not, there could be the
2334 /// possibility that extra code has been inserted, and we must ignore it.
2336 /// \param ID - The IRInstructionData to check the next instruction of.
2337 /// \returns true if the InstructionDataList and actual instruction match.
2338 static bool nextIRInstructionDataMatchesNextInst(IRInstructionData
&ID
) {
2339 // We check if there is a discrepancy between the InstructionDataList
2340 // and the actual next instruction in the module. If there is, it means
2341 // that an extra instruction was added, likely by the CodeExtractor.
2343 // Since we do not have any similarity data about this particular
2344 // instruction, we cannot confidently outline it, and must discard this
2346 IRInstructionDataList::iterator NextIDIt
= std::next(ID
.getIterator());
2347 Instruction
*NextIDLInst
= NextIDIt
->Inst
;
2348 Instruction
*NextModuleInst
= nullptr;
2349 if (!ID
.Inst
->isTerminator())
2350 NextModuleInst
= ID
.Inst
->getNextNonDebugInstruction();
2351 else if (NextIDLInst
!= nullptr)
2353 &*NextIDIt
->Inst
->getParent()->instructionsWithoutDebug().begin();
2355 if (NextIDLInst
&& NextIDLInst
!= NextModuleInst
)
2361 bool IROutliner::isCompatibleWithAlreadyOutlinedCode(
2362 const OutlinableRegion
&Region
) {
2363 IRSimilarityCandidate
*IRSC
= Region
.Candidate
;
2364 unsigned StartIdx
= IRSC
->getStartIdx();
2365 unsigned EndIdx
= IRSC
->getEndIdx();
2367 // A check to make sure that we are not about to attempt to outline something
2368 // that has already been outlined.
2369 for (unsigned Idx
= StartIdx
; Idx
<= EndIdx
; Idx
++)
2370 if (Outlined
.contains(Idx
))
2373 // We check if the recorded instruction matches the actual next instruction,
2374 // if it does not, we fix it in the InstructionDataList.
2375 if (!Region
.Candidate
->backInstruction()->isTerminator()) {
2376 Instruction
*NewEndInst
=
2377 Region
.Candidate
->backInstruction()->getNextNonDebugInstruction();
2378 assert(NewEndInst
&& "Next instruction is a nullptr?");
2379 if (Region
.Candidate
->end()->Inst
!= NewEndInst
) {
2380 IRInstructionDataList
*IDL
= Region
.Candidate
->front()->IDL
;
2381 IRInstructionData
*NewEndIRID
= new (InstDataAllocator
.Allocate())
2382 IRInstructionData(*NewEndInst
,
2383 InstructionClassifier
.visit(*NewEndInst
), *IDL
);
2385 // Insert the first IRInstructionData of the new region after the
2386 // last IRInstructionData of the IRSimilarityCandidate.
2387 IDL
->insert(Region
.Candidate
->end(), *NewEndIRID
);
2391 return none_of(*IRSC
, [this](IRInstructionData
&ID
) {
2392 if (!nextIRInstructionDataMatchesNextInst(ID
))
2395 return !this->InstructionClassifier
.visit(ID
.Inst
);
2399 void IROutliner::pruneIncompatibleRegions(
2400 std::vector
<IRSimilarityCandidate
> &CandidateVec
,
2401 OutlinableGroup
&CurrentGroup
) {
2402 bool PreviouslyOutlined
;
2404 // Sort from beginning to end, so the IRSimilarityCandidates are in order.
2405 stable_sort(CandidateVec
, [](const IRSimilarityCandidate
&LHS
,
2406 const IRSimilarityCandidate
&RHS
) {
2407 return LHS
.getStartIdx() < RHS
.getStartIdx();
2410 IRSimilarityCandidate
&FirstCandidate
= CandidateVec
[0];
2411 // Since outlining a call and a branch instruction will be the same as only
2412 // outlinining a call instruction, we ignore it as a space saving.
2413 if (FirstCandidate
.getLength() == 2) {
2414 if (isa
<CallInst
>(FirstCandidate
.front()->Inst
) &&
2415 isa
<BranchInst
>(FirstCandidate
.back()->Inst
))
2419 unsigned CurrentEndIdx
= 0;
2420 for (IRSimilarityCandidate
&IRSC
: CandidateVec
) {
2421 PreviouslyOutlined
= false;
2422 unsigned StartIdx
= IRSC
.getStartIdx();
2423 unsigned EndIdx
= IRSC
.getEndIdx();
2424 const Function
&FnForCurrCand
= *IRSC
.getFunction();
2426 for (unsigned Idx
= StartIdx
; Idx
<= EndIdx
; Idx
++)
2427 if (Outlined
.contains(Idx
)) {
2428 PreviouslyOutlined
= true;
2432 if (PreviouslyOutlined
)
2435 // Check over the instructions, and if the basic block has its address
2436 // taken for use somewhere else, we do not outline that block.
2437 bool BBHasAddressTaken
= any_of(IRSC
, [](IRInstructionData
&ID
){
2438 return ID
.Inst
->getParent()->hasAddressTaken();
2441 if (BBHasAddressTaken
)
2444 if (FnForCurrCand
.hasOptNone())
2447 if (FnForCurrCand
.hasFnAttribute("nooutline")) {
2449 dbgs() << "... Skipping function with nooutline attribute: "
2450 << FnForCurrCand
.getName() << "\n";
2455 if (IRSC
.front()->Inst
->getFunction()->hasLinkOnceODRLinkage() &&
2456 !OutlineFromLinkODRs
)
2459 // Greedily prune out any regions that will overlap with already chosen
2461 if (CurrentEndIdx
!= 0 && StartIdx
<= CurrentEndIdx
)
2464 bool BadInst
= any_of(IRSC
, [this](IRInstructionData
&ID
) {
2465 if (!nextIRInstructionDataMatchesNextInst(ID
))
2468 return !this->InstructionClassifier
.visit(ID
.Inst
);
2474 OutlinableRegion
*OS
= new (RegionAllocator
.Allocate())
2475 OutlinableRegion(IRSC
, CurrentGroup
);
2476 CurrentGroup
.Regions
.push_back(OS
);
2478 CurrentEndIdx
= EndIdx
;
2483 IROutliner::findBenefitFromAllRegions(OutlinableGroup
&CurrentGroup
) {
2484 InstructionCost RegionBenefit
= 0;
2485 for (OutlinableRegion
*Region
: CurrentGroup
.Regions
) {
2486 TargetTransformInfo
&TTI
= getTTI(*Region
->StartBB
->getParent());
2487 // We add the number of instructions in the region to the benefit as an
2488 // estimate as to how much will be removed.
2489 RegionBenefit
+= Region
->getBenefit(TTI
);
2490 LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit
2491 << " saved instructions to overfall benefit.\n");
2494 return RegionBenefit
;
2497 /// For the \p OutputCanon number passed in find the value represented by this
2498 /// canonical number. If it is from a PHINode, we pick the first incoming
2499 /// value and return that Value instead.
2501 /// \param Region - The OutlinableRegion to get the Value from.
2502 /// \param OutputCanon - The canonical number to find the Value from.
2503 /// \returns The Value represented by a canonical number \p OutputCanon in \p
2505 static Value
*findOutputValueInRegion(OutlinableRegion
&Region
,
2506 unsigned OutputCanon
) {
2507 OutlinableGroup
&CurrentGroup
= *Region
.Parent
;
2508 // If the value is greater than the value in the tracker, we have a
2509 // PHINode and will instead use one of the incoming values to find the
2511 if (OutputCanon
> CurrentGroup
.PHINodeGVNTracker
) {
2512 auto It
= CurrentGroup
.PHINodeGVNToGVNs
.find(OutputCanon
);
2513 assert(It
!= CurrentGroup
.PHINodeGVNToGVNs
.end() &&
2514 "Could not find GVN set for PHINode number!");
2515 assert(It
->second
.second
.size() > 0 && "PHINode does not have any values!");
2516 OutputCanon
= *It
->second
.second
.begin();
2518 std::optional
<unsigned> OGVN
=
2519 Region
.Candidate
->fromCanonicalNum(OutputCanon
);
2520 assert(OGVN
&& "Could not find GVN for Canonical Number?");
2521 std::optional
<Value
*> OV
= Region
.Candidate
->fromGVN(*OGVN
);
2522 assert(OV
&& "Could not find value for GVN?");
2527 IROutliner::findCostOutputReloads(OutlinableGroup
&CurrentGroup
) {
2528 InstructionCost OverallCost
= 0;
2529 for (OutlinableRegion
*Region
: CurrentGroup
.Regions
) {
2530 TargetTransformInfo
&TTI
= getTTI(*Region
->StartBB
->getParent());
2532 // Each output incurs a load after the call, so we add that to the cost.
2533 for (unsigned OutputCanon
: Region
->GVNStores
) {
2534 Value
*V
= findOutputValueInRegion(*Region
, OutputCanon
);
2535 InstructionCost LoadCost
=
2536 TTI
.getMemoryOpCost(Instruction::Load
, V
->getType(), Align(1), 0,
2537 TargetTransformInfo::TCK_CodeSize
);
2539 LLVM_DEBUG(dbgs() << "Adding: " << LoadCost
2540 << " instructions to cost for output of type "
2541 << *V
->getType() << "\n");
2542 OverallCost
+= LoadCost
;
2549 /// Find the extra instructions needed to handle any output values for the
2552 /// \param [in] M - The Module to outline from.
2553 /// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze.
2554 /// \param [in] TTI - The TargetTransformInfo used to collect information for
2555 /// new instruction costs.
2556 /// \returns the additional cost to handle the outputs.
2557 static InstructionCost
findCostForOutputBlocks(Module
&M
,
2558 OutlinableGroup
&CurrentGroup
,
2559 TargetTransformInfo
&TTI
) {
2560 InstructionCost OutputCost
= 0;
2561 unsigned NumOutputBranches
= 0;
2563 OutlinableRegion
&FirstRegion
= *CurrentGroup
.Regions
[0];
2564 IRSimilarityCandidate
&Candidate
= *CurrentGroup
.Regions
[0]->Candidate
;
2565 DenseSet
<BasicBlock
*> CandidateBlocks
;
2566 Candidate
.getBasicBlocks(CandidateBlocks
);
2568 // Count the number of different output branches that point to blocks outside
2570 DenseSet
<BasicBlock
*> FoundBlocks
;
2571 for (IRInstructionData
&ID
: Candidate
) {
2572 if (!isa
<BranchInst
>(ID
.Inst
))
2575 for (Value
*V
: ID
.OperVals
) {
2576 BasicBlock
*BB
= static_cast<BasicBlock
*>(V
);
2577 if (!CandidateBlocks
.contains(BB
) && FoundBlocks
.insert(BB
).second
)
2578 NumOutputBranches
++;
2582 CurrentGroup
.BranchesToOutside
= NumOutputBranches
;
2584 for (const ArrayRef
<unsigned> &OutputUse
:
2585 CurrentGroup
.OutputGVNCombinations
) {
2586 for (unsigned OutputCanon
: OutputUse
) {
2587 Value
*V
= findOutputValueInRegion(FirstRegion
, OutputCanon
);
2588 InstructionCost StoreCost
=
2589 TTI
.getMemoryOpCost(Instruction::Load
, V
->getType(), Align(1), 0,
2590 TargetTransformInfo::TCK_CodeSize
);
2592 // An instruction cost is added for each store set that needs to occur for
2593 // various output combinations inside the function, plus a branch to
2594 // return to the exit block.
2595 LLVM_DEBUG(dbgs() << "Adding: " << StoreCost
2596 << " instructions to cost for output of type "
2597 << *V
->getType() << "\n");
2598 OutputCost
+= StoreCost
* NumOutputBranches
;
2601 InstructionCost BranchCost
=
2602 TTI
.getCFInstrCost(Instruction::Br
, TargetTransformInfo::TCK_CodeSize
);
2603 LLVM_DEBUG(dbgs() << "Adding " << BranchCost
<< " to the current cost for"
2604 << " a branch instruction\n");
2605 OutputCost
+= BranchCost
* NumOutputBranches
;
2608 // If there is more than one output scheme, we must have a comparison and
2609 // branch for each different item in the switch statement.
2610 if (CurrentGroup
.OutputGVNCombinations
.size() > 1) {
2611 InstructionCost ComparisonCost
= TTI
.getCmpSelInstrCost(
2612 Instruction::ICmp
, Type::getInt32Ty(M
.getContext()),
2613 Type::getInt32Ty(M
.getContext()), CmpInst::BAD_ICMP_PREDICATE
,
2614 TargetTransformInfo::TCK_CodeSize
);
2615 InstructionCost BranchCost
=
2616 TTI
.getCFInstrCost(Instruction::Br
, TargetTransformInfo::TCK_CodeSize
);
2618 unsigned DifferentBlocks
= CurrentGroup
.OutputGVNCombinations
.size();
2619 InstructionCost TotalCost
= ComparisonCost
* BranchCost
* DifferentBlocks
;
2621 LLVM_DEBUG(dbgs() << "Adding: " << TotalCost
2622 << " instructions for each switch case for each different"
2623 << " output path in a function\n");
2624 OutputCost
+= TotalCost
* NumOutputBranches
;
2630 void IROutliner::findCostBenefit(Module
&M
, OutlinableGroup
&CurrentGroup
) {
2631 InstructionCost RegionBenefit
= findBenefitFromAllRegions(CurrentGroup
);
2632 CurrentGroup
.Benefit
+= RegionBenefit
;
2633 LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup
.Benefit
<< "\n");
2635 InstructionCost OutputReloadCost
= findCostOutputReloads(CurrentGroup
);
2636 CurrentGroup
.Cost
+= OutputReloadCost
;
2637 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup
.Cost
<< "\n");
2639 InstructionCost AverageRegionBenefit
=
2640 RegionBenefit
/ CurrentGroup
.Regions
.size();
2641 unsigned OverallArgumentNum
= CurrentGroup
.ArgumentTypes
.size();
2642 unsigned NumRegions
= CurrentGroup
.Regions
.size();
2643 TargetTransformInfo
&TTI
=
2644 getTTI(*CurrentGroup
.Regions
[0]->Candidate
->getFunction());
2646 // We add one region to the cost once, to account for the instructions added
2647 // inside of the newly created function.
2648 LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit
2649 << " instructions to cost for body of new function.\n");
2650 CurrentGroup
.Cost
+= AverageRegionBenefit
;
2651 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup
.Cost
<< "\n");
2653 // For each argument, we must add an instruction for loading the argument
2654 // out of the register and into a value inside of the newly outlined function.
2655 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
2656 << " instructions to cost for each argument in the new"
2658 CurrentGroup
.Cost
+=
2659 OverallArgumentNum
* TargetTransformInfo::TCC_Basic
;
2660 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup
.Cost
<< "\n");
2662 // Each argument needs to either be loaded into a register or onto the stack.
2663 // Some arguments will only be loaded into the stack once the argument
2664 // registers are filled.
2665 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
2666 << " instructions to cost for each argument in the new"
2667 << " function " << NumRegions
<< " times for the "
2668 << "needed argument handling at the call site.\n");
2669 CurrentGroup
.Cost
+=
2670 2 * OverallArgumentNum
* TargetTransformInfo::TCC_Basic
* NumRegions
;
2671 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup
.Cost
<< "\n");
2673 CurrentGroup
.Cost
+= findCostForOutputBlocks(M
, CurrentGroup
, TTI
);
2674 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup
.Cost
<< "\n");
2677 void IROutliner::updateOutputMapping(OutlinableRegion
&Region
,
2678 ArrayRef
<Value
*> Outputs
,
2680 // For and load instructions following the call
2681 Value
*Operand
= LI
->getPointerOperand();
2682 std::optional
<unsigned> OutputIdx
;
2683 // Find if the operand it is an output register.
2684 for (unsigned ArgIdx
= Region
.NumExtractedInputs
;
2685 ArgIdx
< Region
.Call
->arg_size(); ArgIdx
++) {
2686 if (Operand
== Region
.Call
->getArgOperand(ArgIdx
)) {
2687 OutputIdx
= ArgIdx
- Region
.NumExtractedInputs
;
2692 // If we found an output register, place a mapping of the new value
2693 // to the original in the mapping.
2697 if (!OutputMappings
.contains(Outputs
[*OutputIdx
])) {
2698 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI
<< " to "
2699 << *Outputs
[*OutputIdx
] << "\n");
2700 OutputMappings
.insert(std::make_pair(LI
, Outputs
[*OutputIdx
]));
2702 Value
*Orig
= OutputMappings
.find(Outputs
[*OutputIdx
])->second
;
2703 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig
<< " to "
2704 << *Outputs
[*OutputIdx
] << "\n");
2705 OutputMappings
.insert(std::make_pair(LI
, Orig
));
2709 bool IROutliner::extractSection(OutlinableRegion
&Region
) {
2710 SetVector
<Value
*> ArgInputs
, Outputs
, SinkCands
;
2711 assert(Region
.StartBB
&& "StartBB for the OutlinableRegion is nullptr!");
2712 BasicBlock
*InitialStart
= Region
.StartBB
;
2713 Function
*OrigF
= Region
.StartBB
->getParent();
2714 CodeExtractorAnalysisCache
CEAC(*OrigF
);
2715 Region
.ExtractedFunction
=
2716 Region
.CE
->extractCodeRegion(CEAC
, ArgInputs
, Outputs
);
2718 // If the extraction was successful, find the BasicBlock, and reassign the
2719 // OutlinableRegion blocks
2720 if (!Region
.ExtractedFunction
) {
2721 LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region
.StartBB
2723 Region
.reattachCandidate();
2727 // Get the block containing the called branch, and reassign the blocks as
2728 // necessary. If the original block still exists, it is because we ended on
2729 // a branch instruction, and so we move the contents into the block before
2730 // and assign the previous block correctly.
2731 User
*InstAsUser
= Region
.ExtractedFunction
->user_back();
2732 BasicBlock
*RewrittenBB
= cast
<Instruction
>(InstAsUser
)->getParent();
2733 Region
.PrevBB
= RewrittenBB
->getSinglePredecessor();
2734 assert(Region
.PrevBB
&& "PrevBB is nullptr?");
2735 if (Region
.PrevBB
== InitialStart
) {
2736 BasicBlock
*NewPrev
= InitialStart
->getSinglePredecessor();
2737 Instruction
*BI
= NewPrev
->getTerminator();
2738 BI
->eraseFromParent();
2739 moveBBContents(*InitialStart
, *NewPrev
);
2740 Region
.PrevBB
= NewPrev
;
2741 InitialStart
->eraseFromParent();
2744 Region
.StartBB
= RewrittenBB
;
2745 Region
.EndBB
= RewrittenBB
;
2747 // The sequences of outlinable regions has now changed. We must fix the
2748 // IRInstructionDataList for consistency. Although they may not be illegal
2749 // instructions, they should not be compared with anything else as they
2750 // should not be outlined in this round. So marking these as illegal is
2752 IRInstructionDataList
*IDL
= Region
.Candidate
->front()->IDL
;
2753 Instruction
*BeginRewritten
= &*RewrittenBB
->begin();
2754 Instruction
*EndRewritten
= &*RewrittenBB
->begin();
2755 Region
.NewFront
= new (InstDataAllocator
.Allocate()) IRInstructionData(
2756 *BeginRewritten
, InstructionClassifier
.visit(*BeginRewritten
), *IDL
);
2757 Region
.NewBack
= new (InstDataAllocator
.Allocate()) IRInstructionData(
2758 *EndRewritten
, InstructionClassifier
.visit(*EndRewritten
), *IDL
);
2760 // Insert the first IRInstructionData of the new region in front of the
2761 // first IRInstructionData of the IRSimilarityCandidate.
2762 IDL
->insert(Region
.Candidate
->begin(), *Region
.NewFront
);
2763 // Insert the first IRInstructionData of the new region after the
2764 // last IRInstructionData of the IRSimilarityCandidate.
2765 IDL
->insert(Region
.Candidate
->end(), *Region
.NewBack
);
2766 // Remove the IRInstructionData from the IRSimilarityCandidate.
2767 IDL
->erase(Region
.Candidate
->begin(), std::prev(Region
.Candidate
->end()));
2769 assert(RewrittenBB
!= nullptr &&
2770 "Could not find a predecessor after extraction!");
2772 // Iterate over the new set of instructions to find the new call
2774 for (Instruction
&I
: *RewrittenBB
)
2775 if (CallInst
*CI
= dyn_cast
<CallInst
>(&I
)) {
2776 if (Region
.ExtractedFunction
== CI
->getCalledFunction())
2778 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(&I
))
2779 updateOutputMapping(Region
, Outputs
.getArrayRef(), LI
);
2780 Region
.reattachCandidate();
2784 unsigned IROutliner::doOutline(Module
&M
) {
2785 // Find the possible similarity sections.
2786 InstructionClassifier
.EnableBranches
= !DisableBranches
;
2787 InstructionClassifier
.EnableIndirectCalls
= !DisableIndirectCalls
;
2788 InstructionClassifier
.EnableIntrinsics
= !DisableIntrinsics
;
2790 IRSimilarityIdentifier
&Identifier
= getIRSI(M
);
2791 SimilarityGroupList
&SimilarityCandidates
= *Identifier
.getSimilarity();
2793 // Sort them by size of extracted sections
2794 unsigned OutlinedFunctionNum
= 0;
2795 // If we only have one SimilarityGroup in SimilarityCandidates, we do not have
2796 // to sort them by the potential number of instructions to be outlined
2797 if (SimilarityCandidates
.size() > 1)
2798 llvm::stable_sort(SimilarityCandidates
,
2799 [](const std::vector
<IRSimilarityCandidate
> &LHS
,
2800 const std::vector
<IRSimilarityCandidate
> &RHS
) {
2801 return LHS
[0].getLength() * LHS
.size() >
2802 RHS
[0].getLength() * RHS
.size();
2804 // Creating OutlinableGroups for each SimilarityCandidate to be used in
2805 // each of the following for loops to avoid making an allocator.
2806 std::vector
<OutlinableGroup
> PotentialGroups(SimilarityCandidates
.size());
2808 DenseSet
<unsigned> NotSame
;
2809 std::vector
<OutlinableGroup
*> NegativeCostGroups
;
2810 std::vector
<OutlinableRegion
*> OutlinedRegions
;
2811 // Iterate over the possible sets of similarity.
2812 unsigned PotentialGroupIdx
= 0;
2813 for (SimilarityGroup
&CandidateVec
: SimilarityCandidates
) {
2814 OutlinableGroup
&CurrentGroup
= PotentialGroups
[PotentialGroupIdx
++];
2816 // Remove entries that were previously outlined
2817 pruneIncompatibleRegions(CandidateVec
, CurrentGroup
);
2819 // We pruned the number of regions to 0 to 1, meaning that it's not worth
2820 // trying to outlined since there is no compatible similar instance of this
2822 if (CurrentGroup
.Regions
.size() < 2)
2825 // Determine if there are any values that are the same constant throughout
2826 // each section in the set.
2828 CurrentGroup
.findSameConstants(NotSame
);
2830 if (CurrentGroup
.IgnoreGroup
)
2833 // Create a CodeExtractor for each outlinable region. Identify inputs and
2834 // outputs for each section using the code extractor and create the argument
2835 // types for the Aggregate Outlining Function.
2836 OutlinedRegions
.clear();
2837 for (OutlinableRegion
*OS
: CurrentGroup
.Regions
) {
2838 // Break the outlinable region out of its parent BasicBlock into its own
2839 // BasicBlocks (see function implementation).
2840 OS
->splitCandidate();
2842 // There's a chance that when the region is split, extra instructions are
2843 // added to the region. This makes the region no longer viable
2844 // to be split, so we ignore it for outlining.
2845 if (!OS
->CandidateSplit
)
2848 SmallVector
<BasicBlock
*> BE
;
2849 DenseSet
<BasicBlock
*> BlocksInRegion
;
2850 OS
->Candidate
->getBasicBlocks(BlocksInRegion
, BE
);
2851 OS
->CE
= new (ExtractorAllocator
.Allocate())
2852 CodeExtractor(BE
, nullptr, false, nullptr, nullptr, nullptr, false,
2853 false, nullptr, "outlined");
2854 findAddInputsOutputs(M
, *OS
, NotSame
);
2855 if (!OS
->IgnoreRegion
)
2856 OutlinedRegions
.push_back(OS
);
2858 // We recombine the blocks together now that we have gathered all the
2859 // needed information.
2860 OS
->reattachCandidate();
2863 CurrentGroup
.Regions
= std::move(OutlinedRegions
);
2865 if (CurrentGroup
.Regions
.empty())
2868 CurrentGroup
.collectGVNStoreSets(M
);
2871 findCostBenefit(M
, CurrentGroup
);
2873 // If we are adhering to the cost model, skip those groups where the cost
2874 // outweighs the benefits.
2875 if (CurrentGroup
.Cost
>= CurrentGroup
.Benefit
&& CostModel
) {
2876 OptimizationRemarkEmitter
&ORE
=
2877 getORE(*CurrentGroup
.Regions
[0]->Candidate
->getFunction());
2879 IRSimilarityCandidate
*C
= CurrentGroup
.Regions
[0]->Candidate
;
2880 OptimizationRemarkMissed
R(DEBUG_TYPE
, "WouldNotDecreaseSize",
2881 C
->frontInstruction());
2882 R
<< "did not outline "
2883 << ore::NV(std::to_string(CurrentGroup
.Regions
.size()))
2884 << " regions due to estimated increase of "
2885 << ore::NV("InstructionIncrease",
2886 CurrentGroup
.Cost
- CurrentGroup
.Benefit
)
2887 << " instructions at locations ";
2889 CurrentGroup
.Regions
.begin(), CurrentGroup
.Regions
.end(),
2890 [&R
](OutlinableRegion
*Region
) {
2893 Region
->Candidate
->frontInstruction()->getDebugLoc());
2895 [&R
]() { R
<< " "; });
2901 NegativeCostGroups
.push_back(&CurrentGroup
);
2904 ExtractorAllocator
.DestroyAll();
2906 if (NegativeCostGroups
.size() > 1)
2907 stable_sort(NegativeCostGroups
,
2908 [](const OutlinableGroup
*LHS
, const OutlinableGroup
*RHS
) {
2909 return LHS
->Benefit
- LHS
->Cost
> RHS
->Benefit
- RHS
->Cost
;
2912 std::vector
<Function
*> FuncsToRemove
;
2913 for (OutlinableGroup
*CG
: NegativeCostGroups
) {
2914 OutlinableGroup
&CurrentGroup
= *CG
;
2916 OutlinedRegions
.clear();
2917 for (OutlinableRegion
*Region
: CurrentGroup
.Regions
) {
2918 // We check whether our region is compatible with what has already been
2919 // outlined, and whether we need to ignore this item.
2920 if (!isCompatibleWithAlreadyOutlinedCode(*Region
))
2922 OutlinedRegions
.push_back(Region
);
2925 if (OutlinedRegions
.size() < 2)
2928 // Reestimate the cost and benefit of the OutlinableGroup. Continue only if
2929 // we are still outlining enough regions to make up for the added cost.
2930 CurrentGroup
.Regions
= std::move(OutlinedRegions
);
2932 CurrentGroup
.Benefit
= 0;
2933 CurrentGroup
.Cost
= 0;
2934 findCostBenefit(M
, CurrentGroup
);
2935 if (CurrentGroup
.Cost
>= CurrentGroup
.Benefit
)
2938 OutlinedRegions
.clear();
2939 for (OutlinableRegion
*Region
: CurrentGroup
.Regions
) {
2940 Region
->splitCandidate();
2941 if (!Region
->CandidateSplit
)
2943 OutlinedRegions
.push_back(Region
);
2946 CurrentGroup
.Regions
= std::move(OutlinedRegions
);
2947 if (CurrentGroup
.Regions
.size() < 2) {
2948 for (OutlinableRegion
*R
: CurrentGroup
.Regions
)
2949 R
->reattachCandidate();
2953 LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup
.Cost
2954 << " and benefit " << CurrentGroup
.Benefit
<< "\n");
2956 // Create functions out of all the sections, and mark them as outlined.
2957 OutlinedRegions
.clear();
2958 for (OutlinableRegion
*OS
: CurrentGroup
.Regions
) {
2959 SmallVector
<BasicBlock
*> BE
;
2960 DenseSet
<BasicBlock
*> BlocksInRegion
;
2961 OS
->Candidate
->getBasicBlocks(BlocksInRegion
, BE
);
2962 OS
->CE
= new (ExtractorAllocator
.Allocate())
2963 CodeExtractor(BE
, nullptr, false, nullptr, nullptr, nullptr, false,
2964 false, nullptr, "outlined");
2965 bool FunctionOutlined
= extractSection(*OS
);
2966 if (FunctionOutlined
) {
2967 unsigned StartIdx
= OS
->Candidate
->getStartIdx();
2968 unsigned EndIdx
= OS
->Candidate
->getEndIdx();
2969 for (unsigned Idx
= StartIdx
; Idx
<= EndIdx
; Idx
++)
2970 Outlined
.insert(Idx
);
2972 OutlinedRegions
.push_back(OS
);
2976 LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions
.size()
2977 << " with benefit " << CurrentGroup
.Benefit
2978 << " and cost " << CurrentGroup
.Cost
<< "\n");
2980 CurrentGroup
.Regions
= std::move(OutlinedRegions
);
2982 if (CurrentGroup
.Regions
.empty())
2985 OptimizationRemarkEmitter
&ORE
=
2986 getORE(*CurrentGroup
.Regions
[0]->Call
->getFunction());
2988 IRSimilarityCandidate
*C
= CurrentGroup
.Regions
[0]->Candidate
;
2989 OptimizationRemark
R(DEBUG_TYPE
, "Outlined", C
->front()->Inst
);
2990 R
<< "outlined " << ore::NV(std::to_string(CurrentGroup
.Regions
.size()))
2991 << " regions with decrease of "
2992 << ore::NV("Benefit", CurrentGroup
.Benefit
- CurrentGroup
.Cost
)
2993 << " instructions at locations ";
2995 CurrentGroup
.Regions
.begin(), CurrentGroup
.Regions
.end(),
2996 [&R
](OutlinableRegion
*Region
) {
2997 R
<< ore::NV("DebugLoc",
2998 Region
->Candidate
->frontInstruction()->getDebugLoc());
3000 [&R
]() { R
<< " "; });
3004 deduplicateExtractedSections(M
, CurrentGroup
, FuncsToRemove
,
3005 OutlinedFunctionNum
);
3008 for (Function
*F
: FuncsToRemove
)
3009 F
->eraseFromParent();
3011 return OutlinedFunctionNum
;
3014 bool IROutliner::run(Module
&M
) {
3015 CostModel
= !NoCostModel
;
3016 OutlineFromLinkODRs
= EnableLinkOnceODRIROutlining
;
3018 return doOutline(M
) > 0;
3021 PreservedAnalyses
IROutlinerPass::run(Module
&M
, ModuleAnalysisManager
&AM
) {
3022 auto &FAM
= AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
).getManager();
3024 std::function
<TargetTransformInfo
&(Function
&)> GTTI
=
3025 [&FAM
](Function
&F
) -> TargetTransformInfo
& {
3026 return FAM
.getResult
<TargetIRAnalysis
>(F
);
3029 std::function
<IRSimilarityIdentifier
&(Module
&)> GIRSI
=
3030 [&AM
](Module
&M
) -> IRSimilarityIdentifier
& {
3031 return AM
.getResult
<IRSimilarityAnalysis
>(M
);
3034 std::unique_ptr
<OptimizationRemarkEmitter
> ORE
;
3035 std::function
<OptimizationRemarkEmitter
&(Function
&)> GORE
=
3036 [&ORE
](Function
&F
) -> OptimizationRemarkEmitter
& {
3037 ORE
.reset(new OptimizationRemarkEmitter(&F
));
3041 if (IROutliner(GTTI
, GIRSI
, GORE
).run(M
))
3042 return PreservedAnalyses::none();
3043 return PreservedAnalyses::all();