1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass implements whole program optimization of virtual calls in cases
10 // where we know (via !type metadata) that the list of callees is fixed. This
11 // includes the following:
12 // - Single implementation devirtualization: if a virtual call has a single
13 // possible callee, replace all calls with a direct call to that callee.
14 // - Virtual constant propagation: if the virtual function's return type is an
15 // integer <=64 bits and all possible callees are readnone, for each class and
16 // each list of constant arguments: evaluate the function, store the return
17 // value alongside the virtual table, and rewrite each virtual call as a load
18 // from the virtual table.
19 // - Uniform return value optimization: if the conditions for virtual constant
20 // propagation hold and each function returns the same constant value, replace
21 // each virtual call with that constant.
22 // - Unique return value optimization for i1 return values: if the conditions
23 // for virtual constant propagation hold and a single vtable's function
24 // returns 0, or a single vtable's function returns 1, replace each virtual
25 // call with a comparison of the vptr against that vtable's address.
27 // This pass is intended to be used during the regular and thin LTO pipelines:
29 // During regular LTO, the pass determines the best optimization for each
30 // virtual call and applies the resolutions directly to virtual calls that are
31 // eligible for virtual call optimization (i.e. calls that use either of the
32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics).
34 // During hybrid Regular/ThinLTO, the pass operates in two phases:
35 // - Export phase: this is run during the thin link over a single merged module
36 // that contains all vtables with !type metadata that participate in the link.
37 // The pass computes a resolution for each virtual call and stores it in the
38 // type identifier summary.
39 // - Import phase: this is run during the thin backends over the individual
40 // modules. The pass applies the resolutions previously computed during the
41 // import phase to each eligible virtual call.
43 // During ThinLTO, the pass operates in two phases:
44 // - Export phase: this is run during the thin link over the index which
45 // contains a summary of all vtables with !type metadata that participate in
46 // the link. It computes a resolution for each virtual call and stores it in
47 // the type identifier summary. Only single implementation devirtualization
49 // - Import phase: (same as with hybrid case above).
51 //===----------------------------------------------------------------------===//
53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/DenseMap.h"
56 #include "llvm/ADT/DenseMapInfo.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/MapVector.h"
59 #include "llvm/ADT/SmallVector.h"
60 #include "llvm/ADT/Statistic.h"
61 #include "llvm/ADT/iterator_range.h"
62 #include "llvm/Analysis/AssumptionCache.h"
63 #include "llvm/Analysis/BasicAliasAnalysis.h"
64 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
65 #include "llvm/Analysis/TypeMetadataUtils.h"
66 #include "llvm/Bitcode/BitcodeReader.h"
67 #include "llvm/Bitcode/BitcodeWriter.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugLoc.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Dominators.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GlobalAlias.h"
75 #include "llvm/IR/GlobalVariable.h"
76 #include "llvm/IR/IRBuilder.h"
77 #include "llvm/IR/InstrTypes.h"
78 #include "llvm/IR/Instruction.h"
79 #include "llvm/IR/Instructions.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/MDBuilder.h"
83 #include "llvm/IR/Metadata.h"
84 #include "llvm/IR/Module.h"
85 #include "llvm/IR/ModuleSummaryIndexYAML.h"
86 #include "llvm/Support/Casting.h"
87 #include "llvm/Support/CommandLine.h"
88 #include "llvm/Support/Errc.h"
89 #include "llvm/Support/Error.h"
90 #include "llvm/Support/FileSystem.h"
91 #include "llvm/Support/GlobPattern.h"
92 #include "llvm/Support/MathExtras.h"
93 #include "llvm/TargetParser/Triple.h"
94 #include "llvm/Transforms/IPO.h"
95 #include "llvm/Transforms/IPO/FunctionAttrs.h"
96 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
97 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
98 #include "llvm/Transforms/Utils/Evaluator.h"
105 using namespace llvm
;
106 using namespace wholeprogramdevirt
;
108 #define DEBUG_TYPE "wholeprogramdevirt"
110 STATISTIC(NumDevirtTargets
, "Number of whole program devirtualization targets");
111 STATISTIC(NumSingleImpl
, "Number of single implementation devirtualizations");
112 STATISTIC(NumBranchFunnel
, "Number of branch funnels");
113 STATISTIC(NumUniformRetVal
, "Number of uniform return value optimizations");
114 STATISTIC(NumUniqueRetVal
, "Number of unique return value optimizations");
115 STATISTIC(NumVirtConstProp1Bit
,
116 "Number of 1 bit virtual constant propagations");
117 STATISTIC(NumVirtConstProp
, "Number of virtual constant propagations");
119 static cl::opt
<PassSummaryAction
> ClSummaryAction(
120 "wholeprogramdevirt-summary-action",
121 cl::desc("What to do with the summary when running this pass"),
122 cl::values(clEnumValN(PassSummaryAction::None
, "none", "Do nothing"),
123 clEnumValN(PassSummaryAction::Import
, "import",
124 "Import typeid resolutions from summary and globals"),
125 clEnumValN(PassSummaryAction::Export
, "export",
126 "Export typeid resolutions to summary and globals")),
129 static cl::opt
<std::string
> ClReadSummary(
130 "wholeprogramdevirt-read-summary",
132 "Read summary from given bitcode or YAML file before running pass"),
135 static cl::opt
<std::string
> ClWriteSummary(
136 "wholeprogramdevirt-write-summary",
137 cl::desc("Write summary to given bitcode or YAML file after running pass. "
138 "Output file format is deduced from extension: *.bc means writing "
139 "bitcode, otherwise YAML"),
142 static cl::opt
<unsigned>
143 ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden
,
145 cl::desc("Maximum number of call targets per "
146 "call site to enable branch funnels"));
149 PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden
,
150 cl::desc("Print index-based devirtualization messages"));
152 /// Provide a way to force enable whole program visibility in tests.
153 /// This is needed to support legacy tests that don't contain
154 /// !vcall_visibility metadata (the mere presense of type tests
155 /// previously implied hidden visibility).
157 WholeProgramVisibility("whole-program-visibility", cl::Hidden
,
158 cl::desc("Enable whole program visibility"));
160 /// Provide a way to force disable whole program for debugging or workarounds,
161 /// when enabled via the linker.
162 static cl::opt
<bool> DisableWholeProgramVisibility(
163 "disable-whole-program-visibility", cl::Hidden
,
164 cl::desc("Disable whole program visibility (overrides enabling options)"));
166 /// Provide way to prevent certain function from being devirtualized
167 static cl::list
<std::string
>
168 SkipFunctionNames("wholeprogramdevirt-skip",
169 cl::desc("Prevent function(s) from being devirtualized"),
170 cl::Hidden
, cl::CommaSeparated
);
172 /// Mechanism to add runtime checking of devirtualization decisions, optionally
173 /// trapping or falling back to indirect call on any that are not correct.
174 /// Trapping mode is useful for debugging undefined behavior leading to failures
175 /// with WPD. Fallback mode is useful for ensuring safety when whole program
176 /// visibility may be compromised.
177 enum WPDCheckMode
{ None
, Trap
, Fallback
};
178 static cl::opt
<WPDCheckMode
> DevirtCheckMode(
179 "wholeprogramdevirt-check", cl::Hidden
,
180 cl::desc("Type of checking for incorrect devirtualizations"),
181 cl::values(clEnumValN(WPDCheckMode::None
, "none", "No checking"),
182 clEnumValN(WPDCheckMode::Trap
, "trap", "Trap when incorrect"),
183 clEnumValN(WPDCheckMode::Fallback
, "fallback",
184 "Fallback to indirect when incorrect")));
188 std::vector
<GlobPattern
> Patterns
;
189 template <class T
> void init(const T
&StringList
) {
190 for (const auto &S
: StringList
)
191 if (Expected
<GlobPattern
> Pat
= GlobPattern::create(S
))
192 Patterns
.push_back(std::move(*Pat
));
194 bool match(StringRef S
) {
195 for (const GlobPattern
&P
: Patterns
)
203 // Find the minimum offset that we may store a value of size Size bits at. If
204 // IsAfter is set, look for an offset before the object, otherwise look for an
205 // offset after the object.
207 wholeprogramdevirt::findLowestOffset(ArrayRef
<VirtualCallTarget
> Targets
,
208 bool IsAfter
, uint64_t Size
) {
209 // Find a minimum offset taking into account only vtable sizes.
210 uint64_t MinByte
= 0;
211 for (const VirtualCallTarget
&Target
: Targets
) {
213 MinByte
= std::max(MinByte
, Target
.minAfterBytes());
215 MinByte
= std::max(MinByte
, Target
.minBeforeBytes());
218 // Build a vector of arrays of bytes covering, for each target, a slice of the
219 // used region (see AccumBitVector::BytesUsed in
220 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
221 // this aligns the used regions to start at MinByte.
223 // In this example, A, B and C are vtables, # is a byte already allocated for
224 // a virtual function pointer, AAAA... (etc.) are the used regions for the
225 // vtables and Offset(X) is the value computed for the Offset variable below
231 // A: ################AAAAAAAA|AAAAAAAA
232 // B: ########BBBBBBBBBBBBBBBB|BBBB
233 // C: ########################|CCCCCCCCCCCCCCCC
236 // This code produces the slices of A, B and C that appear after the divider
238 std::vector
<ArrayRef
<uint8_t>> Used
;
239 for (const VirtualCallTarget
&Target
: Targets
) {
240 ArrayRef
<uint8_t> VTUsed
= IsAfter
? Target
.TM
->Bits
->After
.BytesUsed
241 : Target
.TM
->Bits
->Before
.BytesUsed
;
242 uint64_t Offset
= IsAfter
? MinByte
- Target
.minAfterBytes()
243 : MinByte
- Target
.minBeforeBytes();
245 // Disregard used regions that are smaller than Offset. These are
246 // effectively all-free regions that do not need to be checked.
247 if (VTUsed
.size() > Offset
)
248 Used
.push_back(VTUsed
.slice(Offset
));
252 // Find a free bit in each member of Used.
253 for (unsigned I
= 0;; ++I
) {
254 uint8_t BitsUsed
= 0;
255 for (auto &&B
: Used
)
258 if (BitsUsed
!= 0xff)
259 return (MinByte
+ I
) * 8 + llvm::countr_zero(uint8_t(~BitsUsed
));
262 // Find a free (Size/8) byte region in each member of Used.
263 // FIXME: see if alignment helps.
264 for (unsigned I
= 0;; ++I
) {
265 for (auto &&B
: Used
) {
267 while ((I
+ Byte
) < B
.size() && Byte
< (Size
/ 8)) {
273 return (MinByte
+ I
) * 8;
279 void wholeprogramdevirt::setBeforeReturnValues(
280 MutableArrayRef
<VirtualCallTarget
> Targets
, uint64_t AllocBefore
,
281 unsigned BitWidth
, int64_t &OffsetByte
, uint64_t &OffsetBit
) {
283 OffsetByte
= -(AllocBefore
/ 8 + 1);
285 OffsetByte
= -((AllocBefore
+ 7) / 8 + (BitWidth
+ 7) / 8);
286 OffsetBit
= AllocBefore
% 8;
288 for (VirtualCallTarget
&Target
: Targets
) {
290 Target
.setBeforeBit(AllocBefore
);
292 Target
.setBeforeBytes(AllocBefore
, (BitWidth
+ 7) / 8);
296 void wholeprogramdevirt::setAfterReturnValues(
297 MutableArrayRef
<VirtualCallTarget
> Targets
, uint64_t AllocAfter
,
298 unsigned BitWidth
, int64_t &OffsetByte
, uint64_t &OffsetBit
) {
300 OffsetByte
= AllocAfter
/ 8;
302 OffsetByte
= (AllocAfter
+ 7) / 8;
303 OffsetBit
= AllocAfter
% 8;
305 for (VirtualCallTarget
&Target
: Targets
) {
307 Target
.setAfterBit(AllocAfter
);
309 Target
.setAfterBytes(AllocAfter
, (BitWidth
+ 7) / 8);
313 VirtualCallTarget::VirtualCallTarget(GlobalValue
*Fn
, const TypeMemberInfo
*TM
)
315 IsBigEndian(Fn
->getParent()->getDataLayout().isBigEndian()),
320 // A slot in a set of virtual tables. The TypeID identifies the set of virtual
321 // tables, and the ByteOffset is the offset in bytes from the address point to
322 // the virtual function pointer.
328 } // end anonymous namespace
332 template <> struct DenseMapInfo
<VTableSlot
> {
333 static VTableSlot
getEmptyKey() {
334 return {DenseMapInfo
<Metadata
*>::getEmptyKey(),
335 DenseMapInfo
<uint64_t>::getEmptyKey()};
337 static VTableSlot
getTombstoneKey() {
338 return {DenseMapInfo
<Metadata
*>::getTombstoneKey(),
339 DenseMapInfo
<uint64_t>::getTombstoneKey()};
341 static unsigned getHashValue(const VTableSlot
&I
) {
342 return DenseMapInfo
<Metadata
*>::getHashValue(I
.TypeID
) ^
343 DenseMapInfo
<uint64_t>::getHashValue(I
.ByteOffset
);
345 static bool isEqual(const VTableSlot
&LHS
,
346 const VTableSlot
&RHS
) {
347 return LHS
.TypeID
== RHS
.TypeID
&& LHS
.ByteOffset
== RHS
.ByteOffset
;
351 template <> struct DenseMapInfo
<VTableSlotSummary
> {
352 static VTableSlotSummary
getEmptyKey() {
353 return {DenseMapInfo
<StringRef
>::getEmptyKey(),
354 DenseMapInfo
<uint64_t>::getEmptyKey()};
356 static VTableSlotSummary
getTombstoneKey() {
357 return {DenseMapInfo
<StringRef
>::getTombstoneKey(),
358 DenseMapInfo
<uint64_t>::getTombstoneKey()};
360 static unsigned getHashValue(const VTableSlotSummary
&I
) {
361 return DenseMapInfo
<StringRef
>::getHashValue(I
.TypeID
) ^
362 DenseMapInfo
<uint64_t>::getHashValue(I
.ByteOffset
);
364 static bool isEqual(const VTableSlotSummary
&LHS
,
365 const VTableSlotSummary
&RHS
) {
366 return LHS
.TypeID
== RHS
.TypeID
&& LHS
.ByteOffset
== RHS
.ByteOffset
;
370 } // end namespace llvm
372 // Returns true if the function must be unreachable based on ValueInfo.
374 // In particular, identifies a function as unreachable in the following
376 // 1) All summaries are live.
377 // 2) All function summaries indicate it's unreachable
378 // 3) There is no non-function with the same GUID (which is rare)
379 static bool mustBeUnreachableFunction(ValueInfo TheFnVI
) {
380 if ((!TheFnVI
) || TheFnVI
.getSummaryList().empty()) {
381 // Returns false if ValueInfo is absent, or the summary list is empty
382 // (e.g., function declarations).
386 for (const auto &Summary
: TheFnVI
.getSummaryList()) {
387 // Conservatively returns false if any non-live functions are seen.
388 // In general either all summaries should be live or all should be dead.
389 if (!Summary
->isLive())
391 if (auto *FS
= dyn_cast
<FunctionSummary
>(Summary
->getBaseObject())) {
392 if (!FS
->fflags().MustBeUnreachable
)
395 // Be conservative if a non-function has the same GUID (which is rare).
399 // All function summaries are live and all of them agree that the function is
405 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
406 // the indirect virtual call.
407 struct VirtualCallSite
{
408 Value
*VTable
= nullptr;
411 // If non-null, this field points to the associated unsafe use count stored in
412 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
413 // of that field for details.
414 unsigned *NumUnsafeUses
= nullptr;
417 emitRemark(const StringRef OptName
, const StringRef TargetName
,
418 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
) {
419 Function
*F
= CB
.getCaller();
420 DebugLoc DLoc
= CB
.getDebugLoc();
421 BasicBlock
*Block
= CB
.getParent();
424 OREGetter(F
).emit(OptimizationRemark(DEBUG_TYPE
, OptName
, DLoc
, Block
)
425 << NV("Optimization", OptName
)
426 << ": devirtualized a call to "
427 << NV("FunctionName", TargetName
));
430 void replaceAndErase(
431 const StringRef OptName
, const StringRef TargetName
, bool RemarksEnabled
,
432 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
,
435 emitRemark(OptName
, TargetName
, OREGetter
);
436 CB
.replaceAllUsesWith(New
);
437 if (auto *II
= dyn_cast
<InvokeInst
>(&CB
)) {
438 BranchInst::Create(II
->getNormalDest(), &CB
);
439 II
->getUnwindDest()->removePredecessor(II
->getParent());
441 CB
.eraseFromParent();
442 // This use is no longer unsafe.
448 // Call site information collected for a specific VTableSlot and possibly a list
449 // of constant integer arguments. The grouping by arguments is handled by the
450 // VTableSlotInfo class.
451 struct CallSiteInfo
{
452 /// The set of call sites for this slot. Used during regular LTO and the
453 /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
454 /// call sites that appear in the merged module itself); in each of these
455 /// cases we are directly operating on the call sites at the IR level.
456 std::vector
<VirtualCallSite
> CallSites
;
458 /// Whether all call sites represented by this CallSiteInfo, including those
459 /// in summaries, have been devirtualized. This starts off as true because a
460 /// default constructed CallSiteInfo represents no call sites.
461 bool AllCallSitesDevirted
= true;
463 // These fields are used during the export phase of ThinLTO and reflect
464 // information collected from function summaries.
466 /// Whether any function summary contains an llvm.assume(llvm.type.test) for
468 bool SummaryHasTypeTestAssumeUsers
= false;
470 /// CFI-specific: a vector containing the list of function summaries that use
471 /// the llvm.type.checked.load intrinsic and therefore will require
472 /// resolutions for llvm.type.test in order to implement CFI checks if
473 /// devirtualization was unsuccessful. If devirtualization was successful, the
474 /// pass will clear this vector by calling markDevirt(). If at the end of the
475 /// pass the vector is non-empty, we will need to add a use of llvm.type.test
476 /// to each of the function summaries in the vector.
477 std::vector
<FunctionSummary
*> SummaryTypeCheckedLoadUsers
;
478 std::vector
<FunctionSummary
*> SummaryTypeTestAssumeUsers
;
480 bool isExported() const {
481 return SummaryHasTypeTestAssumeUsers
||
482 !SummaryTypeCheckedLoadUsers
.empty();
485 void addSummaryTypeCheckedLoadUser(FunctionSummary
*FS
) {
486 SummaryTypeCheckedLoadUsers
.push_back(FS
);
487 AllCallSitesDevirted
= false;
490 void addSummaryTypeTestAssumeUser(FunctionSummary
*FS
) {
491 SummaryTypeTestAssumeUsers
.push_back(FS
);
492 SummaryHasTypeTestAssumeUsers
= true;
493 AllCallSitesDevirted
= false;
497 AllCallSitesDevirted
= true;
499 // As explained in the comment for SummaryTypeCheckedLoadUsers.
500 SummaryTypeCheckedLoadUsers
.clear();
504 // Call site information collected for a specific VTableSlot.
505 struct VTableSlotInfo
{
506 // The set of call sites which do not have all constant integer arguments
507 // (excluding "this").
510 // The set of call sites with all constant integer arguments (excluding
511 // "this"), grouped by argument list.
512 std::map
<std::vector
<uint64_t>, CallSiteInfo
> ConstCSInfo
;
514 void addCallSite(Value
*VTable
, CallBase
&CB
, unsigned *NumUnsafeUses
);
517 CallSiteInfo
&findCallSiteInfo(CallBase
&CB
);
520 CallSiteInfo
&VTableSlotInfo::findCallSiteInfo(CallBase
&CB
) {
521 std::vector
<uint64_t> Args
;
522 auto *CBType
= dyn_cast
<IntegerType
>(CB
.getType());
523 if (!CBType
|| CBType
->getBitWidth() > 64 || CB
.arg_empty())
525 for (auto &&Arg
: drop_begin(CB
.args())) {
526 auto *CI
= dyn_cast
<ConstantInt
>(Arg
);
527 if (!CI
|| CI
->getBitWidth() > 64)
529 Args
.push_back(CI
->getZExtValue());
531 return ConstCSInfo
[Args
];
534 void VTableSlotInfo::addCallSite(Value
*VTable
, CallBase
&CB
,
535 unsigned *NumUnsafeUses
) {
536 auto &CSI
= findCallSiteInfo(CB
);
537 CSI
.AllCallSitesDevirted
= false;
538 CSI
.CallSites
.push_back({VTable
, CB
, NumUnsafeUses
});
541 struct DevirtModule
{
543 function_ref
<AAResults
&(Function
&)> AARGetter
;
544 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
;
546 ModuleSummaryIndex
*ExportSummary
;
547 const ModuleSummaryIndex
*ImportSummary
;
550 PointerType
*Int8PtrTy
;
551 IntegerType
*Int32Ty
;
552 IntegerType
*Int64Ty
;
553 IntegerType
*IntPtrTy
;
554 /// Sizeless array type, used for imported vtables. This provides a signal
555 /// to analyzers that these imports may alias, as they do for example
556 /// when multiple unique return values occur in the same vtable.
557 ArrayType
*Int8Arr0Ty
;
560 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
;
562 MapVector
<VTableSlot
, VTableSlotInfo
> CallSlots
;
564 // Calls that have already been optimized. We may add a call to multiple
565 // VTableSlotInfos if vtable loads are coalesced and need to make sure not to
566 // optimize a call more than once.
567 SmallPtrSet
<CallBase
*, 8> OptimizedCalls
;
569 // Store calls that had their ptrauth bundle removed. They are to be deleted
570 // at the end of the optimization.
571 SmallVector
<CallBase
*, 8> CallsWithPtrAuthBundleRemoved
;
573 // This map keeps track of the number of "unsafe" uses of a loaded function
574 // pointer. The key is the associated llvm.type.test intrinsic call generated
575 // by this pass. An unsafe use is one that calls the loaded function pointer
576 // directly. Every time we eliminate an unsafe use (for example, by
577 // devirtualizing it or by applying virtual constant propagation), we
578 // decrement the value stored in this map. If a value reaches zero, we can
579 // eliminate the type check by RAUWing the associated llvm.type.test call with
581 std::map
<CallInst
*, unsigned> NumUnsafeUsesForTypeTest
;
582 PatternList FunctionsToSkip
;
584 DevirtModule(Module
&M
, function_ref
<AAResults
&(Function
&)> AARGetter
,
585 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
,
586 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
,
587 ModuleSummaryIndex
*ExportSummary
,
588 const ModuleSummaryIndex
*ImportSummary
)
589 : M(M
), AARGetter(AARGetter
), LookupDomTree(LookupDomTree
),
590 ExportSummary(ExportSummary
), ImportSummary(ImportSummary
),
591 Int8Ty(Type::getInt8Ty(M
.getContext())),
592 Int8PtrTy(PointerType::getUnqual(M
.getContext())),
593 Int32Ty(Type::getInt32Ty(M
.getContext())),
594 Int64Ty(Type::getInt64Ty(M
.getContext())),
595 IntPtrTy(M
.getDataLayout().getIntPtrType(M
.getContext(), 0)),
596 Int8Arr0Ty(ArrayType::get(Type::getInt8Ty(M
.getContext()), 0)),
597 RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter
) {
598 assert(!(ExportSummary
&& ImportSummary
));
599 FunctionsToSkip
.init(SkipFunctionNames
);
602 bool areRemarksEnabled();
605 scanTypeTestUsers(Function
*TypeTestFunc
,
606 DenseMap
<Metadata
*, std::set
<TypeMemberInfo
>> &TypeIdMap
);
607 void scanTypeCheckedLoadUsers(Function
*TypeCheckedLoadFunc
);
609 void buildTypeIdentifierMap(
610 std::vector
<VTableBits
> &Bits
,
611 DenseMap
<Metadata
*, std::set
<TypeMemberInfo
>> &TypeIdMap
);
614 tryFindVirtualCallTargets(std::vector
<VirtualCallTarget
> &TargetsForSlot
,
615 const std::set
<TypeMemberInfo
> &TypeMemberInfos
,
617 ModuleSummaryIndex
*ExportSummary
);
619 void applySingleImplDevirt(VTableSlotInfo
&SlotInfo
, Constant
*TheFn
,
621 bool trySingleImplDevirt(ModuleSummaryIndex
*ExportSummary
,
622 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
623 VTableSlotInfo
&SlotInfo
,
624 WholeProgramDevirtResolution
*Res
);
626 void applyICallBranchFunnel(VTableSlotInfo
&SlotInfo
, Constant
*JT
,
628 void tryICallBranchFunnel(MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
629 VTableSlotInfo
&SlotInfo
,
630 WholeProgramDevirtResolution
*Res
, VTableSlot Slot
);
632 bool tryEvaluateFunctionsWithArgs(
633 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
634 ArrayRef
<uint64_t> Args
);
636 void applyUniformRetValOpt(CallSiteInfo
&CSInfo
, StringRef FnName
,
638 bool tryUniformRetValOpt(MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
639 CallSiteInfo
&CSInfo
,
640 WholeProgramDevirtResolution::ByArg
*Res
);
642 // Returns the global symbol name that is used to export information about the
643 // given vtable slot and list of arguments.
644 std::string
getGlobalName(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
647 bool shouldExportConstantsAsAbsoluteSymbols();
649 // This function is called during the export phase to create a symbol
650 // definition containing information about the given vtable slot and list of
652 void exportGlobal(VTableSlot Slot
, ArrayRef
<uint64_t> Args
, StringRef Name
,
654 void exportConstant(VTableSlot Slot
, ArrayRef
<uint64_t> Args
, StringRef Name
,
655 uint32_t Const
, uint32_t &Storage
);
657 // This function is called during the import phase to create a reference to
658 // the symbol definition created during the export phase.
659 Constant
*importGlobal(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
661 Constant
*importConstant(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
662 StringRef Name
, IntegerType
*IntTy
,
665 Constant
*getMemberAddr(const TypeMemberInfo
*M
);
667 void applyUniqueRetValOpt(CallSiteInfo
&CSInfo
, StringRef FnName
, bool IsOne
,
668 Constant
*UniqueMemberAddr
);
669 bool tryUniqueRetValOpt(unsigned BitWidth
,
670 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
671 CallSiteInfo
&CSInfo
,
672 WholeProgramDevirtResolution::ByArg
*Res
,
673 VTableSlot Slot
, ArrayRef
<uint64_t> Args
);
675 void applyVirtualConstProp(CallSiteInfo
&CSInfo
, StringRef FnName
,
676 Constant
*Byte
, Constant
*Bit
);
677 bool tryVirtualConstProp(MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
678 VTableSlotInfo
&SlotInfo
,
679 WholeProgramDevirtResolution
*Res
, VTableSlot Slot
);
681 void rebuildGlobal(VTableBits
&B
);
683 // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
684 void importResolution(VTableSlot Slot
, VTableSlotInfo
&SlotInfo
);
686 // If we were able to eliminate all unsafe uses for a type checked load,
687 // eliminate the associated type tests by replacing them with true.
688 void removeRedundantTypeTests();
692 // Look up the corresponding ValueInfo entry of `TheFn` in `ExportSummary`.
694 // Caller guarantees that `ExportSummary` is not nullptr.
695 static ValueInfo
lookUpFunctionValueInfo(Function
*TheFn
,
696 ModuleSummaryIndex
*ExportSummary
);
698 // Returns true if the function definition must be unreachable.
700 // Note if this helper function returns true, `F` is guaranteed
701 // to be unreachable; if it returns false, `F` might still
702 // be unreachable but not covered by this helper function.
704 // Implementation-wise, if function definition is present, IR is analyzed; if
705 // not, look up function flags from ExportSummary as a fallback.
706 static bool mustBeUnreachableFunction(Function
*const F
,
707 ModuleSummaryIndex
*ExportSummary
);
709 // Lower the module using the action and summary passed as command line
710 // arguments. For testing purposes only.
712 runForTesting(Module
&M
, function_ref
<AAResults
&(Function
&)> AARGetter
,
713 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
,
714 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
);
718 ModuleSummaryIndex
&ExportSummary
;
719 // The set in which to record GUIDs exported from their module by
720 // devirtualization, used by client to ensure they are not internalized.
721 std::set
<GlobalValue::GUID
> &ExportedGUIDs
;
722 // A map in which to record the information necessary to locate the WPD
723 // resolution for local targets in case they are exported by cross module
725 std::map
<ValueInfo
, std::vector
<VTableSlotSummary
>> &LocalWPDTargetsMap
;
727 MapVector
<VTableSlotSummary
, VTableSlotInfo
> CallSlots
;
729 PatternList FunctionsToSkip
;
732 ModuleSummaryIndex
&ExportSummary
,
733 std::set
<GlobalValue::GUID
> &ExportedGUIDs
,
734 std::map
<ValueInfo
, std::vector
<VTableSlotSummary
>> &LocalWPDTargetsMap
)
735 : ExportSummary(ExportSummary
), ExportedGUIDs(ExportedGUIDs
),
736 LocalWPDTargetsMap(LocalWPDTargetsMap
) {
737 FunctionsToSkip
.init(SkipFunctionNames
);
740 bool tryFindVirtualCallTargets(std::vector
<ValueInfo
> &TargetsForSlot
,
741 const TypeIdCompatibleVtableInfo TIdInfo
,
742 uint64_t ByteOffset
);
744 bool trySingleImplDevirt(MutableArrayRef
<ValueInfo
> TargetsForSlot
,
745 VTableSlotSummary
&SlotSummary
,
746 VTableSlotInfo
&SlotInfo
,
747 WholeProgramDevirtResolution
*Res
,
748 std::set
<ValueInfo
> &DevirtTargets
);
752 } // end anonymous namespace
754 PreservedAnalyses
WholeProgramDevirtPass::run(Module
&M
,
755 ModuleAnalysisManager
&AM
) {
756 auto &FAM
= AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
).getManager();
757 auto AARGetter
= [&](Function
&F
) -> AAResults
& {
758 return FAM
.getResult
<AAManager
>(F
);
760 auto OREGetter
= [&](Function
*F
) -> OptimizationRemarkEmitter
& {
761 return FAM
.getResult
<OptimizationRemarkEmitterAnalysis
>(*F
);
763 auto LookupDomTree
= [&FAM
](Function
&F
) -> DominatorTree
& {
764 return FAM
.getResult
<DominatorTreeAnalysis
>(F
);
766 if (UseCommandLine
) {
767 if (!DevirtModule::runForTesting(M
, AARGetter
, OREGetter
, LookupDomTree
))
768 return PreservedAnalyses::all();
769 return PreservedAnalyses::none();
771 if (!DevirtModule(M
, AARGetter
, OREGetter
, LookupDomTree
, ExportSummary
,
774 return PreservedAnalyses::all();
775 return PreservedAnalyses::none();
778 // Enable whole program visibility if enabled by client (e.g. linker) or
779 // internal option, and not force disabled.
780 bool llvm::hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO
) {
781 return (WholeProgramVisibilityEnabledInLTO
|| WholeProgramVisibility
) &&
782 !DisableWholeProgramVisibility
;
786 typeIDVisibleToRegularObj(StringRef TypeID
,
787 function_ref
<bool(StringRef
)> IsVisibleToRegularObj
) {
788 // TypeID for member function pointer type is an internal construct
789 // and won't exist in IsVisibleToRegularObj. The full TypeID
790 // will be present and participate in invalidation.
791 if (TypeID
.ends_with(".virtual"))
794 // TypeID that doesn't start with Itanium mangling (_ZTS) will be
795 // non-externally visible types which cannot interact with
796 // external native files. See CodeGenModule::CreateMetadataIdentifierImpl.
797 if (!TypeID
.consume_front("_ZTS"))
800 // TypeID is keyed off the type name symbol (_ZTS). However, the native
801 // object may not contain this symbol if it does not contain a key
802 // function for the base type and thus only contains a reference to the
803 // type info (_ZTI). To catch this case we query using the type info
804 // symbol corresponding to the TypeID.
805 std::string typeInfo
= ("_ZTI" + TypeID
).str();
806 return IsVisibleToRegularObj(typeInfo
);
810 skipUpdateDueToValidation(GlobalVariable
&GV
,
811 function_ref
<bool(StringRef
)> IsVisibleToRegularObj
) {
812 SmallVector
<MDNode
*, 2> Types
;
813 GV
.getMetadata(LLVMContext::MD_type
, Types
);
815 for (auto Type
: Types
)
816 if (auto *TypeID
= dyn_cast
<MDString
>(Type
->getOperand(1).get()))
817 return typeIDVisibleToRegularObj(TypeID
->getString(),
818 IsVisibleToRegularObj
);
823 /// If whole program visibility asserted, then upgrade all public vcall
824 /// visibility metadata on vtable definitions to linkage unit visibility in
825 /// Module IR (for regular or hybrid LTO).
826 void llvm::updateVCallVisibilityInModule(
827 Module
&M
, bool WholeProgramVisibilityEnabledInLTO
,
828 const DenseSet
<GlobalValue::GUID
> &DynamicExportSymbols
,
829 bool ValidateAllVtablesHaveTypeInfos
,
830 function_ref
<bool(StringRef
)> IsVisibleToRegularObj
) {
831 if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO
))
833 for (GlobalVariable
&GV
: M
.globals()) {
834 // Add linkage unit visibility to any variable with type metadata, which are
835 // the vtable definitions. We won't have an existing vcall_visibility
836 // metadata on vtable definitions with public visibility.
837 if (GV
.hasMetadata(LLVMContext::MD_type
) &&
838 GV
.getVCallVisibility() == GlobalObject::VCallVisibilityPublic
&&
839 // Don't upgrade the visibility for symbols exported to the dynamic
840 // linker, as we have no information on their eventual use.
841 !DynamicExportSymbols
.count(GV
.getGUID()) &&
842 // With validation enabled, we want to exclude symbols visible to
843 // regular objects. Local symbols will be in this group due to the
844 // current implementation but those with VCallVisibilityTranslationUnit
845 // will have already been marked in clang so are unaffected.
846 !(ValidateAllVtablesHaveTypeInfos
&&
847 skipUpdateDueToValidation(GV
, IsVisibleToRegularObj
)))
848 GV
.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit
);
852 void llvm::updatePublicTypeTestCalls(Module
&M
,
853 bool WholeProgramVisibilityEnabledInLTO
) {
854 Function
*PublicTypeTestFunc
=
855 M
.getFunction(Intrinsic::getName(Intrinsic::public_type_test
));
856 if (!PublicTypeTestFunc
)
858 if (hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO
)) {
859 Function
*TypeTestFunc
=
860 Intrinsic::getDeclaration(&M
, Intrinsic::type_test
);
861 for (Use
&U
: make_early_inc_range(PublicTypeTestFunc
->uses())) {
862 auto *CI
= cast
<CallInst
>(U
.getUser());
863 auto *NewCI
= CallInst::Create(
864 TypeTestFunc
, {CI
->getArgOperand(0), CI
->getArgOperand(1)},
865 std::nullopt
, "", CI
);
866 CI
->replaceAllUsesWith(NewCI
);
867 CI
->eraseFromParent();
870 auto *True
= ConstantInt::getTrue(M
.getContext());
871 for (Use
&U
: make_early_inc_range(PublicTypeTestFunc
->uses())) {
872 auto *CI
= cast
<CallInst
>(U
.getUser());
873 CI
->replaceAllUsesWith(True
);
874 CI
->eraseFromParent();
879 /// Based on typeID string, get all associated vtable GUIDS that are
880 /// visible to regular objects.
881 void llvm::getVisibleToRegularObjVtableGUIDs(
882 ModuleSummaryIndex
&Index
,
883 DenseSet
<GlobalValue::GUID
> &VisibleToRegularObjSymbols
,
884 function_ref
<bool(StringRef
)> IsVisibleToRegularObj
) {
885 for (const auto &typeID
: Index
.typeIdCompatibleVtableMap()) {
886 if (typeIDVisibleToRegularObj(typeID
.first
, IsVisibleToRegularObj
))
887 for (const TypeIdOffsetVtableInfo
&P
: typeID
.second
)
888 VisibleToRegularObjSymbols
.insert(P
.VTableVI
.getGUID());
892 /// If whole program visibility asserted, then upgrade all public vcall
893 /// visibility metadata on vtable definition summaries to linkage unit
894 /// visibility in Module summary index (for ThinLTO).
895 void llvm::updateVCallVisibilityInIndex(
896 ModuleSummaryIndex
&Index
, bool WholeProgramVisibilityEnabledInLTO
,
897 const DenseSet
<GlobalValue::GUID
> &DynamicExportSymbols
,
898 const DenseSet
<GlobalValue::GUID
> &VisibleToRegularObjSymbols
) {
899 if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO
))
901 for (auto &P
: Index
) {
902 // Don't upgrade the visibility for symbols exported to the dynamic
903 // linker, as we have no information on their eventual use.
904 if (DynamicExportSymbols
.count(P
.first
))
906 for (auto &S
: P
.second
.SummaryList
) {
907 auto *GVar
= dyn_cast
<GlobalVarSummary
>(S
.get());
909 GVar
->getVCallVisibility() != GlobalObject::VCallVisibilityPublic
)
911 // With validation enabled, we want to exclude symbols visible to regular
912 // objects. Local symbols will be in this group due to the current
913 // implementation but those with VCallVisibilityTranslationUnit will have
914 // already been marked in clang so are unaffected.
915 if (VisibleToRegularObjSymbols
.count(P
.first
))
917 GVar
->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit
);
922 void llvm::runWholeProgramDevirtOnIndex(
923 ModuleSummaryIndex
&Summary
, std::set
<GlobalValue::GUID
> &ExportedGUIDs
,
924 std::map
<ValueInfo
, std::vector
<VTableSlotSummary
>> &LocalWPDTargetsMap
) {
925 DevirtIndex(Summary
, ExportedGUIDs
, LocalWPDTargetsMap
).run();
928 void llvm::updateIndexWPDForExports(
929 ModuleSummaryIndex
&Summary
,
930 function_ref
<bool(StringRef
, ValueInfo
)> isExported
,
931 std::map
<ValueInfo
, std::vector
<VTableSlotSummary
>> &LocalWPDTargetsMap
) {
932 for (auto &T
: LocalWPDTargetsMap
) {
934 // This was enforced earlier during trySingleImplDevirt.
935 assert(VI
.getSummaryList().size() == 1 &&
936 "Devirt of local target has more than one copy");
937 auto &S
= VI
.getSummaryList()[0];
938 if (!isExported(S
->modulePath(), VI
))
941 // It's been exported by a cross module import.
942 for (auto &SlotSummary
: T
.second
) {
943 auto *TIdSum
= Summary
.getTypeIdSummary(SlotSummary
.TypeID
);
945 auto WPDRes
= TIdSum
->WPDRes
.find(SlotSummary
.ByteOffset
);
946 assert(WPDRes
!= TIdSum
->WPDRes
.end());
947 WPDRes
->second
.SingleImplName
= ModuleSummaryIndex::getGlobalNameForLocal(
948 WPDRes
->second
.SingleImplName
,
949 Summary
.getModuleHash(S
->modulePath()));
954 static Error
checkCombinedSummaryForTesting(ModuleSummaryIndex
*Summary
) {
955 // Check that summary index contains regular LTO module when performing
956 // export to prevent occasional use of index from pure ThinLTO compilation
957 // (-fno-split-lto-module). This kind of summary index is passed to
958 // DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting.
959 const auto &ModPaths
= Summary
->modulePaths();
960 if (ClSummaryAction
!= PassSummaryAction::Import
&&
961 !ModPaths
.contains(ModuleSummaryIndex::getRegularLTOModuleName()))
962 return createStringError(
963 errc::invalid_argument
,
964 "combined summary should contain Regular LTO module");
965 return ErrorSuccess();
968 bool DevirtModule::runForTesting(
969 Module
&M
, function_ref
<AAResults
&(Function
&)> AARGetter
,
970 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
,
971 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
) {
972 std::unique_ptr
<ModuleSummaryIndex
> Summary
=
973 std::make_unique
<ModuleSummaryIndex
>(/*HaveGVs=*/false);
975 // Handle the command-line summary arguments. This code is for testing
976 // purposes only, so we handle errors directly.
977 if (!ClReadSummary
.empty()) {
978 ExitOnError
ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary
+
980 auto ReadSummaryFile
=
981 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary
)));
982 if (Expected
<std::unique_ptr
<ModuleSummaryIndex
>> SummaryOrErr
=
983 getModuleSummaryIndex(*ReadSummaryFile
)) {
984 Summary
= std::move(*SummaryOrErr
);
985 ExitOnErr(checkCombinedSummaryForTesting(Summary
.get()));
987 // Try YAML if we've failed with bitcode.
988 consumeError(SummaryOrErr
.takeError());
989 yaml::Input
In(ReadSummaryFile
->getBuffer());
991 ExitOnErr(errorCodeToError(In
.error()));
996 DevirtModule(M
, AARGetter
, OREGetter
, LookupDomTree
,
997 ClSummaryAction
== PassSummaryAction::Export
? Summary
.get()
999 ClSummaryAction
== PassSummaryAction::Import
? Summary
.get()
1003 if (!ClWriteSummary
.empty()) {
1004 ExitOnError
ExitOnErr(
1005 "-wholeprogramdevirt-write-summary: " + ClWriteSummary
+ ": ");
1007 if (StringRef(ClWriteSummary
).endswith(".bc")) {
1008 raw_fd_ostream
OS(ClWriteSummary
, EC
, sys::fs::OF_None
);
1009 ExitOnErr(errorCodeToError(EC
));
1010 writeIndexToFile(*Summary
, OS
);
1012 raw_fd_ostream
OS(ClWriteSummary
, EC
, sys::fs::OF_TextWithCRLF
);
1013 ExitOnErr(errorCodeToError(EC
));
1014 yaml::Output
Out(OS
);
1022 void DevirtModule::buildTypeIdentifierMap(
1023 std::vector
<VTableBits
> &Bits
,
1024 DenseMap
<Metadata
*, std::set
<TypeMemberInfo
>> &TypeIdMap
) {
1025 DenseMap
<GlobalVariable
*, VTableBits
*> GVToBits
;
1026 Bits
.reserve(M
.global_size());
1027 SmallVector
<MDNode
*, 2> Types
;
1028 for (GlobalVariable
&GV
: M
.globals()) {
1030 GV
.getMetadata(LLVMContext::MD_type
, Types
);
1031 if (GV
.isDeclaration() || Types
.empty())
1034 VTableBits
*&BitsPtr
= GVToBits
[&GV
];
1036 Bits
.emplace_back();
1037 Bits
.back().GV
= &GV
;
1038 Bits
.back().ObjectSize
=
1039 M
.getDataLayout().getTypeAllocSize(GV
.getInitializer()->getType());
1040 BitsPtr
= &Bits
.back();
1043 for (MDNode
*Type
: Types
) {
1044 auto TypeID
= Type
->getOperand(1).get();
1048 cast
<ConstantAsMetadata
>(Type
->getOperand(0))->getValue())
1051 TypeIdMap
[TypeID
].insert({BitsPtr
, Offset
});
1056 bool DevirtModule::tryFindVirtualCallTargets(
1057 std::vector
<VirtualCallTarget
> &TargetsForSlot
,
1058 const std::set
<TypeMemberInfo
> &TypeMemberInfos
, uint64_t ByteOffset
,
1059 ModuleSummaryIndex
*ExportSummary
) {
1060 for (const TypeMemberInfo
&TM
: TypeMemberInfos
) {
1061 if (!TM
.Bits
->GV
->isConstant())
1064 // We cannot perform whole program devirtualization analysis on a vtable
1065 // with public LTO visibility.
1066 if (TM
.Bits
->GV
->getVCallVisibility() ==
1067 GlobalObject::VCallVisibilityPublic
)
1070 Constant
*Ptr
= getPointerAtOffset(TM
.Bits
->GV
->getInitializer(),
1071 TM
.Offset
+ ByteOffset
, M
, TM
.Bits
->GV
);
1075 auto C
= Ptr
->stripPointerCasts();
1076 // Make sure this is a function or alias to a function.
1077 auto Fn
= dyn_cast
<Function
>(C
);
1078 auto A
= dyn_cast
<GlobalAlias
>(C
);
1080 Fn
= dyn_cast
<Function
>(A
->getAliasee());
1085 if (FunctionsToSkip
.match(Fn
->getName()))
1088 // We can disregard __cxa_pure_virtual as a possible call target, as
1089 // calls to pure virtuals are UB.
1090 if (Fn
->getName() == "__cxa_pure_virtual")
1093 // We can disregard unreachable functions as possible call targets, as
1094 // unreachable functions shouldn't be called.
1095 if (mustBeUnreachableFunction(Fn
, ExportSummary
))
1098 // Save the symbol used in the vtable to use as the devirtualization
1100 auto GV
= dyn_cast
<GlobalValue
>(C
);
1102 TargetsForSlot
.push_back({GV
, &TM
});
1105 // Give up if we couldn't find any targets.
1106 return !TargetsForSlot
.empty();
1109 bool DevirtIndex::tryFindVirtualCallTargets(
1110 std::vector
<ValueInfo
> &TargetsForSlot
,
1111 const TypeIdCompatibleVtableInfo TIdInfo
, uint64_t ByteOffset
) {
1112 for (const TypeIdOffsetVtableInfo
&P
: TIdInfo
) {
1113 // Find a representative copy of the vtable initializer.
1114 // We can have multiple available_externally, linkonce_odr and weak_odr
1115 // vtable initializers. We can also have multiple external vtable
1116 // initializers in the case of comdats, which we cannot check here.
1117 // The linker should give an error in this case.
1119 // Also, handle the case of same-named local Vtables with the same path
1120 // and therefore the same GUID. This can happen if there isn't enough
1121 // distinguishing path when compiling the source file. In that case we
1122 // conservatively return false early.
1123 const GlobalVarSummary
*VS
= nullptr;
1124 bool LocalFound
= false;
1125 for (const auto &S
: P
.VTableVI
.getSummaryList()) {
1126 if (GlobalValue::isLocalLinkage(S
->linkage())) {
1131 auto *CurVS
= cast
<GlobalVarSummary
>(S
->getBaseObject());
1132 if (!CurVS
->vTableFuncs().empty() ||
1133 // Previously clang did not attach the necessary type metadata to
1134 // available_externally vtables, in which case there would not
1135 // be any vtable functions listed in the summary and we need
1136 // to treat this case conservatively (in case the bitcode is old).
1137 // However, we will also not have any vtable functions in the
1138 // case of a pure virtual base class. In that case we do want
1139 // to set VS to avoid treating it conservatively.
1140 !GlobalValue::isAvailableExternallyLinkage(S
->linkage())) {
1142 // We cannot perform whole program devirtualization analysis on a vtable
1143 // with public LTO visibility.
1144 if (VS
->getVCallVisibility() == GlobalObject::VCallVisibilityPublic
)
1148 // There will be no VS if all copies are available_externally having no
1149 // type metadata. In that case we can't safely perform WPD.
1154 for (auto VTP
: VS
->vTableFuncs()) {
1155 if (VTP
.VTableOffset
!= P
.AddressPointOffset
+ ByteOffset
)
1158 if (mustBeUnreachableFunction(VTP
.FuncVI
))
1161 TargetsForSlot
.push_back(VTP
.FuncVI
);
1165 // Give up if we couldn't find any targets.
1166 return !TargetsForSlot
.empty();
1169 void DevirtModule::applySingleImplDevirt(VTableSlotInfo
&SlotInfo
,
1170 Constant
*TheFn
, bool &IsExported
) {
1171 // Don't devirtualize function if we're told to skip it
1172 // in -wholeprogramdevirt-skip.
1173 if (FunctionsToSkip
.match(TheFn
->stripPointerCasts()->getName()))
1175 auto Apply
= [&](CallSiteInfo
&CSInfo
) {
1176 for (auto &&VCallSite
: CSInfo
.CallSites
) {
1177 if (!OptimizedCalls
.insert(&VCallSite
.CB
).second
)
1181 VCallSite
.emitRemark("single-impl",
1182 TheFn
->stripPointerCasts()->getName(), OREGetter
);
1184 auto &CB
= VCallSite
.CB
;
1185 assert(!CB
.getCalledFunction() && "devirtualizing direct call?");
1186 IRBuilder
<> Builder(&CB
);
1188 Builder
.CreateBitCast(TheFn
, CB
.getCalledOperand()->getType());
1190 // If trap checking is enabled, add support to compare the virtual
1191 // function pointer to the devirtualized target. In case of a mismatch,
1192 // perform a debug trap.
1193 if (DevirtCheckMode
== WPDCheckMode::Trap
) {
1194 auto *Cond
= Builder
.CreateICmpNE(CB
.getCalledOperand(), Callee
);
1195 Instruction
*ThenTerm
=
1196 SplitBlockAndInsertIfThen(Cond
, &CB
, /*Unreachable=*/false);
1197 Builder
.SetInsertPoint(ThenTerm
);
1198 Function
*TrapFn
= Intrinsic::getDeclaration(&M
, Intrinsic::debugtrap
);
1199 auto *CallTrap
= Builder
.CreateCall(TrapFn
);
1200 CallTrap
->setDebugLoc(CB
.getDebugLoc());
1203 // If fallback checking is enabled, add support to compare the virtual
1204 // function pointer to the devirtualized target. In case of a mismatch,
1205 // fall back to indirect call.
1206 if (DevirtCheckMode
== WPDCheckMode::Fallback
) {
1208 MDBuilder(M
.getContext()).createBranchWeights((1U << 20) - 1, 1);
1209 // Version the indirect call site. If the called value is equal to the
1210 // given callee, 'NewInst' will be executed, otherwise the original call
1211 // site will be executed.
1212 CallBase
&NewInst
= versionCallSite(CB
, Callee
, Weights
);
1213 NewInst
.setCalledOperand(Callee
);
1214 // Since the new call site is direct, we must clear metadata that
1215 // is only appropriate for indirect calls. This includes !prof and
1216 // !callees metadata.
1217 NewInst
.setMetadata(LLVMContext::MD_prof
, nullptr);
1218 NewInst
.setMetadata(LLVMContext::MD_callees
, nullptr);
1219 // Additionally, we should remove them from the fallback indirect call,
1220 // so that we don't attempt to perform indirect call promotion later.
1221 CB
.setMetadata(LLVMContext::MD_prof
, nullptr);
1222 CB
.setMetadata(LLVMContext::MD_callees
, nullptr);
1225 // In either trapping or non-checking mode, devirtualize original call.
1227 // Devirtualize unconditionally.
1228 CB
.setCalledOperand(Callee
);
1229 // Since the call site is now direct, we must clear metadata that
1230 // is only appropriate for indirect calls. This includes !prof and
1231 // !callees metadata.
1232 CB
.setMetadata(LLVMContext::MD_prof
, nullptr);
1233 CB
.setMetadata(LLVMContext::MD_callees
, nullptr);
1234 if (CB
.getCalledOperand() &&
1235 CB
.getOperandBundle(LLVMContext::OB_ptrauth
)) {
1237 CallBase::removeOperandBundle(&CB
, LLVMContext::OB_ptrauth
, &CB
);
1238 CB
.replaceAllUsesWith(NewCS
);
1239 // Schedule for deletion at the end of pass run.
1240 CallsWithPtrAuthBundleRemoved
.push_back(&CB
);
1244 // This use is no longer unsafe.
1245 if (VCallSite
.NumUnsafeUses
)
1246 --*VCallSite
.NumUnsafeUses
;
1248 if (CSInfo
.isExported())
1250 CSInfo
.markDevirt();
1252 Apply(SlotInfo
.CSInfo
);
1253 for (auto &P
: SlotInfo
.ConstCSInfo
)
1257 static bool AddCalls(VTableSlotInfo
&SlotInfo
, const ValueInfo
&Callee
) {
1258 // We can't add calls if we haven't seen a definition
1259 if (Callee
.getSummaryList().empty())
1262 // Insert calls into the summary index so that the devirtualized targets
1263 // are eligible for import.
1264 // FIXME: Annotate type tests with hotness. For now, mark these as hot
1265 // to better ensure we have the opportunity to inline them.
1266 bool IsExported
= false;
1267 auto &S
= Callee
.getSummaryList()[0];
1268 CalleeInfo
CI(CalleeInfo::HotnessType::Hot
, /* RelBF = */ 0);
1269 auto AddCalls
= [&](CallSiteInfo
&CSInfo
) {
1270 for (auto *FS
: CSInfo
.SummaryTypeCheckedLoadUsers
) {
1271 FS
->addCall({Callee
, CI
});
1272 IsExported
|= S
->modulePath() != FS
->modulePath();
1274 for (auto *FS
: CSInfo
.SummaryTypeTestAssumeUsers
) {
1275 FS
->addCall({Callee
, CI
});
1276 IsExported
|= S
->modulePath() != FS
->modulePath();
1279 AddCalls(SlotInfo
.CSInfo
);
1280 for (auto &P
: SlotInfo
.ConstCSInfo
)
1285 bool DevirtModule::trySingleImplDevirt(
1286 ModuleSummaryIndex
*ExportSummary
,
1287 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
, VTableSlotInfo
&SlotInfo
,
1288 WholeProgramDevirtResolution
*Res
) {
1289 // See if the program contains a single implementation of this virtual
1291 auto *TheFn
= TargetsForSlot
[0].Fn
;
1292 for (auto &&Target
: TargetsForSlot
)
1293 if (TheFn
!= Target
.Fn
)
1296 // If so, update each call site to call that implementation directly.
1297 if (RemarksEnabled
|| AreStatisticsEnabled())
1298 TargetsForSlot
[0].WasDevirt
= true;
1300 bool IsExported
= false;
1301 applySingleImplDevirt(SlotInfo
, TheFn
, IsExported
);
1305 // If the only implementation has local linkage, we must promote to external
1306 // to make it visible to thin LTO objects. We can only get here during the
1307 // ThinLTO export phase.
1308 if (TheFn
->hasLocalLinkage()) {
1309 std::string NewName
= (TheFn
->getName() + ".llvm.merged").str();
1311 // Since we are renaming the function, any comdats with the same name must
1312 // also be renamed. This is required when targeting COFF, as the comdat name
1313 // must match one of the names of the symbols in the comdat.
1314 if (Comdat
*C
= TheFn
->getComdat()) {
1315 if (C
->getName() == TheFn
->getName()) {
1316 Comdat
*NewC
= M
.getOrInsertComdat(NewName
);
1317 NewC
->setSelectionKind(C
->getSelectionKind());
1318 for (GlobalObject
&GO
: M
.global_objects())
1319 if (GO
.getComdat() == C
)
1324 TheFn
->setLinkage(GlobalValue::ExternalLinkage
);
1325 TheFn
->setVisibility(GlobalValue::HiddenVisibility
);
1326 TheFn
->setName(NewName
);
1328 if (ValueInfo TheFnVI
= ExportSummary
->getValueInfo(TheFn
->getGUID()))
1329 // Any needed promotion of 'TheFn' has already been done during
1330 // LTO unit split, so we can ignore return value of AddCalls.
1331 AddCalls(SlotInfo
, TheFnVI
);
1333 Res
->TheKind
= WholeProgramDevirtResolution::SingleImpl
;
1334 Res
->SingleImplName
= std::string(TheFn
->getName());
1339 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef
<ValueInfo
> TargetsForSlot
,
1340 VTableSlotSummary
&SlotSummary
,
1341 VTableSlotInfo
&SlotInfo
,
1342 WholeProgramDevirtResolution
*Res
,
1343 std::set
<ValueInfo
> &DevirtTargets
) {
1344 // See if the program contains a single implementation of this virtual
1346 auto TheFn
= TargetsForSlot
[0];
1347 for (auto &&Target
: TargetsForSlot
)
1348 if (TheFn
!= Target
)
1351 // Don't devirtualize if we don't have target definition.
1352 auto Size
= TheFn
.getSummaryList().size();
1356 // Don't devirtualize function if we're told to skip it
1357 // in -wholeprogramdevirt-skip.
1358 if (FunctionsToSkip
.match(TheFn
.name()))
1361 // If the summary list contains multiple summaries where at least one is
1362 // a local, give up, as we won't know which (possibly promoted) name to use.
1363 for (const auto &S
: TheFn
.getSummaryList())
1364 if (GlobalValue::isLocalLinkage(S
->linkage()) && Size
> 1)
1367 // Collect functions devirtualized at least for one call site for stats.
1368 if (PrintSummaryDevirt
|| AreStatisticsEnabled())
1369 DevirtTargets
.insert(TheFn
);
1371 auto &S
= TheFn
.getSummaryList()[0];
1372 bool IsExported
= AddCalls(SlotInfo
, TheFn
);
1374 ExportedGUIDs
.insert(TheFn
.getGUID());
1376 // Record in summary for use in devirtualization during the ThinLTO import
1378 Res
->TheKind
= WholeProgramDevirtResolution::SingleImpl
;
1379 if (GlobalValue::isLocalLinkage(S
->linkage())) {
1381 // If target is a local function and we are exporting it by
1382 // devirtualizing a call in another module, we need to record the
1384 Res
->SingleImplName
= ModuleSummaryIndex::getGlobalNameForLocal(
1385 TheFn
.name(), ExportSummary
.getModuleHash(S
->modulePath()));
1387 LocalWPDTargetsMap
[TheFn
].push_back(SlotSummary
);
1388 Res
->SingleImplName
= std::string(TheFn
.name());
1391 Res
->SingleImplName
= std::string(TheFn
.name());
1393 // Name will be empty if this thin link driven off of serialized combined
1394 // index (e.g. llvm-lto). However, WPD is not supported/invoked for the
1395 // legacy LTO API anyway.
1396 assert(!Res
->SingleImplName
.empty());
1401 void DevirtModule::tryICallBranchFunnel(
1402 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
, VTableSlotInfo
&SlotInfo
,
1403 WholeProgramDevirtResolution
*Res
, VTableSlot Slot
) {
1404 Triple
T(M
.getTargetTriple());
1405 if (T
.getArch() != Triple::x86_64
)
1408 if (TargetsForSlot
.size() > ClThreshold
)
1411 bool HasNonDevirt
= !SlotInfo
.CSInfo
.AllCallSitesDevirted
;
1413 for (auto &P
: SlotInfo
.ConstCSInfo
)
1414 if (!P
.second
.AllCallSitesDevirted
) {
1415 HasNonDevirt
= true;
1423 FunctionType::get(Type::getVoidTy(M
.getContext()), {Int8PtrTy
}, true);
1425 if (isa
<MDString
>(Slot
.TypeID
)) {
1426 JT
= Function::Create(FT
, Function::ExternalLinkage
,
1427 M
.getDataLayout().getProgramAddressSpace(),
1428 getGlobalName(Slot
, {}, "branch_funnel"), &M
);
1429 JT
->setVisibility(GlobalValue::HiddenVisibility
);
1431 JT
= Function::Create(FT
, Function::InternalLinkage
,
1432 M
.getDataLayout().getProgramAddressSpace(),
1433 "branch_funnel", &M
);
1435 JT
->addParamAttr(0, Attribute::Nest
);
1437 std::vector
<Value
*> JTArgs
;
1438 JTArgs
.push_back(JT
->arg_begin());
1439 for (auto &T
: TargetsForSlot
) {
1440 JTArgs
.push_back(getMemberAddr(T
.TM
));
1441 JTArgs
.push_back(T
.Fn
);
1444 BasicBlock
*BB
= BasicBlock::Create(M
.getContext(), "", JT
, nullptr);
1446 Intrinsic::getDeclaration(&M
, llvm::Intrinsic::icall_branch_funnel
, {});
1448 auto *CI
= CallInst::Create(Intr
, JTArgs
, "", BB
);
1449 CI
->setTailCallKind(CallInst::TCK_MustTail
);
1450 ReturnInst::Create(M
.getContext(), nullptr, BB
);
1452 bool IsExported
= false;
1453 applyICallBranchFunnel(SlotInfo
, JT
, IsExported
);
1455 Res
->TheKind
= WholeProgramDevirtResolution::BranchFunnel
;
1458 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo
&SlotInfo
,
1459 Constant
*JT
, bool &IsExported
) {
1460 auto Apply
= [&](CallSiteInfo
&CSInfo
) {
1461 if (CSInfo
.isExported())
1463 if (CSInfo
.AllCallSitesDevirted
)
1466 std::map
<CallBase
*, CallBase
*> CallBases
;
1467 for (auto &&VCallSite
: CSInfo
.CallSites
) {
1468 CallBase
&CB
= VCallSite
.CB
;
1470 if (CallBases
.find(&CB
) != CallBases
.end()) {
1471 // When finding devirtualizable calls, it's possible to find the same
1472 // vtable passed to multiple llvm.type.test or llvm.type.checked.load
1473 // calls, which can cause duplicate call sites to be recorded in
1474 // [Const]CallSites. If we've already found one of these
1475 // call instances, just ignore it. It will be replaced later.
1479 // Jump tables are only profitable if the retpoline mitigation is enabled.
1480 Attribute FSAttr
= CB
.getCaller()->getFnAttribute("target-features");
1481 if (!FSAttr
.isValid() ||
1482 !FSAttr
.getValueAsString().contains("+retpoline"))
1487 VCallSite
.emitRemark("branch-funnel",
1488 JT
->stripPointerCasts()->getName(), OREGetter
);
1490 // Pass the address of the vtable in the nest register, which is r10 on
1492 std::vector
<Type
*> NewArgs
;
1493 NewArgs
.push_back(Int8PtrTy
);
1494 append_range(NewArgs
, CB
.getFunctionType()->params());
1495 FunctionType
*NewFT
=
1496 FunctionType::get(CB
.getFunctionType()->getReturnType(), NewArgs
,
1497 CB
.getFunctionType()->isVarArg());
1498 PointerType
*NewFTPtr
= PointerType::getUnqual(NewFT
);
1500 IRBuilder
<> IRB(&CB
);
1501 std::vector
<Value
*> Args
;
1502 Args
.push_back(VCallSite
.VTable
);
1503 llvm::append_range(Args
, CB
.args());
1505 CallBase
*NewCS
= nullptr;
1506 if (isa
<CallInst
>(CB
))
1507 NewCS
= IRB
.CreateCall(NewFT
, IRB
.CreateBitCast(JT
, NewFTPtr
), Args
);
1509 NewCS
= IRB
.CreateInvoke(NewFT
, IRB
.CreateBitCast(JT
, NewFTPtr
),
1510 cast
<InvokeInst
>(CB
).getNormalDest(),
1511 cast
<InvokeInst
>(CB
).getUnwindDest(), Args
);
1512 NewCS
->setCallingConv(CB
.getCallingConv());
1514 AttributeList Attrs
= CB
.getAttributes();
1515 std::vector
<AttributeSet
> NewArgAttrs
;
1516 NewArgAttrs
.push_back(AttributeSet::get(
1517 M
.getContext(), ArrayRef
<Attribute
>{Attribute::get(
1518 M
.getContext(), Attribute::Nest
)}));
1519 for (unsigned I
= 0; I
+ 2 < Attrs
.getNumAttrSets(); ++I
)
1520 NewArgAttrs
.push_back(Attrs
.getParamAttrs(I
));
1521 NewCS
->setAttributes(
1522 AttributeList::get(M
.getContext(), Attrs
.getFnAttrs(),
1523 Attrs
.getRetAttrs(), NewArgAttrs
));
1525 CallBases
[&CB
] = NewCS
;
1527 // This use is no longer unsafe.
1528 if (VCallSite
.NumUnsafeUses
)
1529 --*VCallSite
.NumUnsafeUses
;
1531 // Don't mark as devirtualized because there may be callers compiled without
1532 // retpoline mitigation, which would mean that they are lowered to
1533 // llvm.type.test and therefore require an llvm.type.test resolution for the
1536 for (auto &[Old
, New
] : CallBases
) {
1537 Old
->replaceAllUsesWith(New
);
1538 Old
->eraseFromParent();
1541 Apply(SlotInfo
.CSInfo
);
1542 for (auto &P
: SlotInfo
.ConstCSInfo
)
1546 bool DevirtModule::tryEvaluateFunctionsWithArgs(
1547 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
1548 ArrayRef
<uint64_t> Args
) {
1549 // Evaluate each function and store the result in each target's RetVal
1551 for (VirtualCallTarget
&Target
: TargetsForSlot
) {
1552 // TODO: Skip for now if the vtable symbol was an alias to a function,
1553 // need to evaluate whether it would be correct to analyze the aliasee
1554 // function for this optimization.
1555 auto Fn
= dyn_cast
<Function
>(Target
.Fn
);
1559 if (Fn
->arg_size() != Args
.size() + 1)
1562 Evaluator
Eval(M
.getDataLayout(), nullptr);
1563 SmallVector
<Constant
*, 2> EvalArgs
;
1565 Constant::getNullValue(Fn
->getFunctionType()->getParamType(0)));
1566 for (unsigned I
= 0; I
!= Args
.size(); ++I
) {
1568 dyn_cast
<IntegerType
>(Fn
->getFunctionType()->getParamType(I
+ 1));
1571 EvalArgs
.push_back(ConstantInt::get(ArgTy
, Args
[I
]));
1575 if (!Eval
.EvaluateFunction(Fn
, RetVal
, EvalArgs
) ||
1576 !isa
<ConstantInt
>(RetVal
))
1578 Target
.RetVal
= cast
<ConstantInt
>(RetVal
)->getZExtValue();
1583 void DevirtModule::applyUniformRetValOpt(CallSiteInfo
&CSInfo
, StringRef FnName
,
1584 uint64_t TheRetVal
) {
1585 for (auto Call
: CSInfo
.CallSites
) {
1586 if (!OptimizedCalls
.insert(&Call
.CB
).second
)
1589 Call
.replaceAndErase(
1590 "uniform-ret-val", FnName
, RemarksEnabled
, OREGetter
,
1591 ConstantInt::get(cast
<IntegerType
>(Call
.CB
.getType()), TheRetVal
));
1593 CSInfo
.markDevirt();
1596 bool DevirtModule::tryUniformRetValOpt(
1597 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
, CallSiteInfo
&CSInfo
,
1598 WholeProgramDevirtResolution::ByArg
*Res
) {
1599 // Uniform return value optimization. If all functions return the same
1600 // constant, replace all calls with that constant.
1601 uint64_t TheRetVal
= TargetsForSlot
[0].RetVal
;
1602 for (const VirtualCallTarget
&Target
: TargetsForSlot
)
1603 if (Target
.RetVal
!= TheRetVal
)
1606 if (CSInfo
.isExported()) {
1607 Res
->TheKind
= WholeProgramDevirtResolution::ByArg::UniformRetVal
;
1608 Res
->Info
= TheRetVal
;
1611 applyUniformRetValOpt(CSInfo
, TargetsForSlot
[0].Fn
->getName(), TheRetVal
);
1612 if (RemarksEnabled
|| AreStatisticsEnabled())
1613 for (auto &&Target
: TargetsForSlot
)
1614 Target
.WasDevirt
= true;
1618 std::string
DevirtModule::getGlobalName(VTableSlot Slot
,
1619 ArrayRef
<uint64_t> Args
,
1621 std::string FullName
= "__typeid_";
1622 raw_string_ostream
OS(FullName
);
1623 OS
<< cast
<MDString
>(Slot
.TypeID
)->getString() << '_' << Slot
.ByteOffset
;
1624 for (uint64_t Arg
: Args
)
1630 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
1631 Triple
T(M
.getTargetTriple());
1632 return T
.isX86() && T
.getObjectFormat() == Triple::ELF
;
1635 void DevirtModule::exportGlobal(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
1636 StringRef Name
, Constant
*C
) {
1637 GlobalAlias
*GA
= GlobalAlias::create(Int8Ty
, 0, GlobalValue::ExternalLinkage
,
1638 getGlobalName(Slot
, Args
, Name
), C
, &M
);
1639 GA
->setVisibility(GlobalValue::HiddenVisibility
);
1642 void DevirtModule::exportConstant(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
1643 StringRef Name
, uint32_t Const
,
1644 uint32_t &Storage
) {
1645 if (shouldExportConstantsAsAbsoluteSymbols()) {
1648 ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty
, Const
), Int8PtrTy
));
1655 Constant
*DevirtModule::importGlobal(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
1658 M
.getOrInsertGlobal(getGlobalName(Slot
, Args
, Name
), Int8Arr0Ty
);
1659 auto *GV
= dyn_cast
<GlobalVariable
>(C
);
1661 GV
->setVisibility(GlobalValue::HiddenVisibility
);
1665 Constant
*DevirtModule::importConstant(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
1666 StringRef Name
, IntegerType
*IntTy
,
1668 if (!shouldExportConstantsAsAbsoluteSymbols())
1669 return ConstantInt::get(IntTy
, Storage
);
1671 Constant
*C
= importGlobal(Slot
, Args
, Name
);
1672 auto *GV
= cast
<GlobalVariable
>(C
->stripPointerCasts());
1673 C
= ConstantExpr::getPtrToInt(C
, IntTy
);
1675 // We only need to set metadata if the global is newly created, in which
1676 // case it would not have hidden visibility.
1677 if (GV
->hasMetadata(LLVMContext::MD_absolute_symbol
))
1680 auto SetAbsRange
= [&](uint64_t Min
, uint64_t Max
) {
1681 auto *MinC
= ConstantAsMetadata::get(ConstantInt::get(IntPtrTy
, Min
));
1682 auto *MaxC
= ConstantAsMetadata::get(ConstantInt::get(IntPtrTy
, Max
));
1683 GV
->setMetadata(LLVMContext::MD_absolute_symbol
,
1684 MDNode::get(M
.getContext(), {MinC
, MaxC
}));
1686 unsigned AbsWidth
= IntTy
->getBitWidth();
1687 if (AbsWidth
== IntPtrTy
->getBitWidth())
1688 SetAbsRange(~0ull, ~0ull); // Full set.
1690 SetAbsRange(0, 1ull << AbsWidth
);
1694 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo
&CSInfo
, StringRef FnName
,
1696 Constant
*UniqueMemberAddr
) {
1697 for (auto &&Call
: CSInfo
.CallSites
) {
1698 if (!OptimizedCalls
.insert(&Call
.CB
).second
)
1700 IRBuilder
<> B(&Call
.CB
);
1702 B
.CreateICmp(IsOne
? ICmpInst::ICMP_EQ
: ICmpInst::ICMP_NE
, Call
.VTable
,
1703 B
.CreateBitCast(UniqueMemberAddr
, Call
.VTable
->getType()));
1704 Cmp
= B
.CreateZExt(Cmp
, Call
.CB
.getType());
1706 Call
.replaceAndErase("unique-ret-val", FnName
, RemarksEnabled
, OREGetter
,
1709 CSInfo
.markDevirt();
1712 Constant
*DevirtModule::getMemberAddr(const TypeMemberInfo
*M
) {
1713 Constant
*C
= ConstantExpr::getBitCast(M
->Bits
->GV
, Int8PtrTy
);
1714 return ConstantExpr::getGetElementPtr(Int8Ty
, C
,
1715 ConstantInt::get(Int64Ty
, M
->Offset
));
1718 bool DevirtModule::tryUniqueRetValOpt(
1719 unsigned BitWidth
, MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
1720 CallSiteInfo
&CSInfo
, WholeProgramDevirtResolution::ByArg
*Res
,
1721 VTableSlot Slot
, ArrayRef
<uint64_t> Args
) {
1722 // IsOne controls whether we look for a 0 or a 1.
1723 auto tryUniqueRetValOptFor
= [&](bool IsOne
) {
1724 const TypeMemberInfo
*UniqueMember
= nullptr;
1725 for (const VirtualCallTarget
&Target
: TargetsForSlot
) {
1726 if (Target
.RetVal
== (IsOne
? 1 : 0)) {
1729 UniqueMember
= Target
.TM
;
1733 // We should have found a unique member or bailed out by now. We already
1734 // checked for a uniform return value in tryUniformRetValOpt.
1735 assert(UniqueMember
);
1737 Constant
*UniqueMemberAddr
= getMemberAddr(UniqueMember
);
1738 if (CSInfo
.isExported()) {
1739 Res
->TheKind
= WholeProgramDevirtResolution::ByArg::UniqueRetVal
;
1742 exportGlobal(Slot
, Args
, "unique_member", UniqueMemberAddr
);
1745 // Replace each call with the comparison.
1746 applyUniqueRetValOpt(CSInfo
, TargetsForSlot
[0].Fn
->getName(), IsOne
,
1749 // Update devirtualization statistics for targets.
1750 if (RemarksEnabled
|| AreStatisticsEnabled())
1751 for (auto &&Target
: TargetsForSlot
)
1752 Target
.WasDevirt
= true;
1757 if (BitWidth
== 1) {
1758 if (tryUniqueRetValOptFor(true))
1760 if (tryUniqueRetValOptFor(false))
1766 void DevirtModule::applyVirtualConstProp(CallSiteInfo
&CSInfo
, StringRef FnName
,
1767 Constant
*Byte
, Constant
*Bit
) {
1768 for (auto Call
: CSInfo
.CallSites
) {
1769 if (!OptimizedCalls
.insert(&Call
.CB
).second
)
1771 auto *RetType
= cast
<IntegerType
>(Call
.CB
.getType());
1772 IRBuilder
<> B(&Call
.CB
);
1773 Value
*Addr
= B
.CreateGEP(Int8Ty
, Call
.VTable
, Byte
);
1774 if (RetType
->getBitWidth() == 1) {
1775 Value
*Bits
= B
.CreateLoad(Int8Ty
, Addr
);
1776 Value
*BitsAndBit
= B
.CreateAnd(Bits
, Bit
);
1777 auto IsBitSet
= B
.CreateICmpNE(BitsAndBit
, ConstantInt::get(Int8Ty
, 0));
1778 NumVirtConstProp1Bit
++;
1779 Call
.replaceAndErase("virtual-const-prop-1-bit", FnName
, RemarksEnabled
,
1780 OREGetter
, IsBitSet
);
1782 Value
*Val
= B
.CreateLoad(RetType
, Addr
);
1784 Call
.replaceAndErase("virtual-const-prop", FnName
, RemarksEnabled
,
1788 CSInfo
.markDevirt();
1791 bool DevirtModule::tryVirtualConstProp(
1792 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
, VTableSlotInfo
&SlotInfo
,
1793 WholeProgramDevirtResolution
*Res
, VTableSlot Slot
) {
1794 // TODO: Skip for now if the vtable symbol was an alias to a function,
1795 // need to evaluate whether it would be correct to analyze the aliasee
1796 // function for this optimization.
1797 auto Fn
= dyn_cast
<Function
>(TargetsForSlot
[0].Fn
);
1800 // This only works if the function returns an integer.
1801 auto RetType
= dyn_cast
<IntegerType
>(Fn
->getReturnType());
1804 unsigned BitWidth
= RetType
->getBitWidth();
1808 // Make sure that each function is defined, does not access memory, takes at
1809 // least one argument, does not use its first argument (which we assume is
1810 // 'this'), and has the same return type.
1812 // Note that we test whether this copy of the function is readnone, rather
1813 // than testing function attributes, which must hold for any copy of the
1814 // function, even a less optimized version substituted at link time. This is
1815 // sound because the virtual constant propagation optimizations effectively
1816 // inline all implementations of the virtual function into each call site,
1817 // rather than using function attributes to perform local optimization.
1818 for (VirtualCallTarget
&Target
: TargetsForSlot
) {
1819 // TODO: Skip for now if the vtable symbol was an alias to a function,
1820 // need to evaluate whether it would be correct to analyze the aliasee
1821 // function for this optimization.
1822 auto Fn
= dyn_cast
<Function
>(Target
.Fn
);
1826 if (Fn
->isDeclaration() ||
1827 !computeFunctionBodyMemoryAccess(*Fn
, AARGetter(*Fn
))
1828 .doesNotAccessMemory() ||
1829 Fn
->arg_empty() || !Fn
->arg_begin()->use_empty() ||
1830 Fn
->getReturnType() != RetType
)
1834 for (auto &&CSByConstantArg
: SlotInfo
.ConstCSInfo
) {
1835 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot
, CSByConstantArg
.first
))
1838 WholeProgramDevirtResolution::ByArg
*ResByArg
= nullptr;
1840 ResByArg
= &Res
->ResByArg
[CSByConstantArg
.first
];
1842 if (tryUniformRetValOpt(TargetsForSlot
, CSByConstantArg
.second
, ResByArg
))
1845 if (tryUniqueRetValOpt(BitWidth
, TargetsForSlot
, CSByConstantArg
.second
,
1846 ResByArg
, Slot
, CSByConstantArg
.first
))
1849 // Find an allocation offset in bits in all vtables associated with the
1851 uint64_t AllocBefore
=
1852 findLowestOffset(TargetsForSlot
, /*IsAfter=*/false, BitWidth
);
1853 uint64_t AllocAfter
=
1854 findLowestOffset(TargetsForSlot
, /*IsAfter=*/true, BitWidth
);
1856 // Calculate the total amount of padding needed to store a value at both
1857 // ends of the object.
1858 uint64_t TotalPaddingBefore
= 0, TotalPaddingAfter
= 0;
1859 for (auto &&Target
: TargetsForSlot
) {
1860 TotalPaddingBefore
+= std::max
<int64_t>(
1861 (AllocBefore
+ 7) / 8 - Target
.allocatedBeforeBytes() - 1, 0);
1862 TotalPaddingAfter
+= std::max
<int64_t>(
1863 (AllocAfter
+ 7) / 8 - Target
.allocatedAfterBytes() - 1, 0);
1866 // If the amount of padding is too large, give up.
1867 // FIXME: do something smarter here.
1868 if (std::min(TotalPaddingBefore
, TotalPaddingAfter
) > 128)
1871 // Calculate the offset to the value as a (possibly negative) byte offset
1872 // and (if applicable) a bit offset, and store the values in the targets.
1875 if (TotalPaddingBefore
<= TotalPaddingAfter
)
1876 setBeforeReturnValues(TargetsForSlot
, AllocBefore
, BitWidth
, OffsetByte
,
1879 setAfterReturnValues(TargetsForSlot
, AllocAfter
, BitWidth
, OffsetByte
,
1882 if (RemarksEnabled
|| AreStatisticsEnabled())
1883 for (auto &&Target
: TargetsForSlot
)
1884 Target
.WasDevirt
= true;
1887 if (CSByConstantArg
.second
.isExported()) {
1888 ResByArg
->TheKind
= WholeProgramDevirtResolution::ByArg::VirtualConstProp
;
1889 exportConstant(Slot
, CSByConstantArg
.first
, "byte", OffsetByte
,
1891 exportConstant(Slot
, CSByConstantArg
.first
, "bit", 1ULL << OffsetBit
,
1895 // Rewrite each call to a load from OffsetByte/OffsetBit.
1896 Constant
*ByteConst
= ConstantInt::get(Int32Ty
, OffsetByte
);
1897 Constant
*BitConst
= ConstantInt::get(Int8Ty
, 1ULL << OffsetBit
);
1898 applyVirtualConstProp(CSByConstantArg
.second
,
1899 TargetsForSlot
[0].Fn
->getName(), ByteConst
, BitConst
);
1904 void DevirtModule::rebuildGlobal(VTableBits
&B
) {
1905 if (B
.Before
.Bytes
.empty() && B
.After
.Bytes
.empty())
1908 // Align the before byte array to the global's minimum alignment so that we
1909 // don't break any alignment requirements on the global.
1910 Align Alignment
= M
.getDataLayout().getValueOrABITypeAlignment(
1911 B
.GV
->getAlign(), B
.GV
->getValueType());
1912 B
.Before
.Bytes
.resize(alignTo(B
.Before
.Bytes
.size(), Alignment
));
1914 // Before was stored in reverse order; flip it now.
1915 for (size_t I
= 0, Size
= B
.Before
.Bytes
.size(); I
!= Size
/ 2; ++I
)
1916 std::swap(B
.Before
.Bytes
[I
], B
.Before
.Bytes
[Size
- 1 - I
]);
1918 // Build an anonymous global containing the before bytes, followed by the
1919 // original initializer, followed by the after bytes.
1920 auto NewInit
= ConstantStruct::getAnon(
1921 {ConstantDataArray::get(M
.getContext(), B
.Before
.Bytes
),
1922 B
.GV
->getInitializer(),
1923 ConstantDataArray::get(M
.getContext(), B
.After
.Bytes
)});
1925 new GlobalVariable(M
, NewInit
->getType(), B
.GV
->isConstant(),
1926 GlobalVariable::PrivateLinkage
, NewInit
, "", B
.GV
);
1927 NewGV
->setSection(B
.GV
->getSection());
1928 NewGV
->setComdat(B
.GV
->getComdat());
1929 NewGV
->setAlignment(B
.GV
->getAlign());
1931 // Copy the original vtable's metadata to the anonymous global, adjusting
1932 // offsets as required.
1933 NewGV
->copyMetadata(B
.GV
, B
.Before
.Bytes
.size());
1935 // Build an alias named after the original global, pointing at the second
1936 // element (the original initializer).
1937 auto Alias
= GlobalAlias::create(
1938 B
.GV
->getInitializer()->getType(), 0, B
.GV
->getLinkage(), "",
1939 ConstantExpr::getGetElementPtr(
1940 NewInit
->getType(), NewGV
,
1941 ArrayRef
<Constant
*>{ConstantInt::get(Int32Ty
, 0),
1942 ConstantInt::get(Int32Ty
, 1)}),
1944 Alias
->setVisibility(B
.GV
->getVisibility());
1945 Alias
->takeName(B
.GV
);
1947 B
.GV
->replaceAllUsesWith(Alias
);
1948 B
.GV
->eraseFromParent();
1951 bool DevirtModule::areRemarksEnabled() {
1952 const auto &FL
= M
.getFunctionList();
1953 for (const Function
&Fn
: FL
) {
1956 auto DI
= OptimizationRemark(DEBUG_TYPE
, "", DebugLoc(), &Fn
.front());
1957 return DI
.isEnabled();
1962 void DevirtModule::scanTypeTestUsers(
1963 Function
*TypeTestFunc
,
1964 DenseMap
<Metadata
*, std::set
<TypeMemberInfo
>> &TypeIdMap
) {
1965 // Find all virtual calls via a virtual table pointer %p under an assumption
1966 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1967 // points to a member of the type identifier %md. Group calls by (type ID,
1968 // offset) pair (effectively the identity of the virtual function) and store
1970 for (Use
&U
: llvm::make_early_inc_range(TypeTestFunc
->uses())) {
1971 auto *CI
= dyn_cast
<CallInst
>(U
.getUser());
1975 // Search for virtual calls based on %p and add them to DevirtCalls.
1976 SmallVector
<DevirtCallSite
, 1> DevirtCalls
;
1977 SmallVector
<CallInst
*, 1> Assumes
;
1978 auto &DT
= LookupDomTree(*CI
->getFunction());
1979 findDevirtualizableCallsForTypeTest(DevirtCalls
, Assumes
, CI
, DT
);
1982 cast
<MetadataAsValue
>(CI
->getArgOperand(1))->getMetadata();
1983 // If we found any, add them to CallSlots.
1984 if (!Assumes
.empty()) {
1985 Value
*Ptr
= CI
->getArgOperand(0)->stripPointerCasts();
1986 for (DevirtCallSite Call
: DevirtCalls
)
1987 CallSlots
[{TypeId
, Call
.Offset
}].addCallSite(Ptr
, Call
.CB
, nullptr);
1990 auto RemoveTypeTestAssumes
= [&]() {
1991 // We no longer need the assumes or the type test.
1992 for (auto *Assume
: Assumes
)
1993 Assume
->eraseFromParent();
1994 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1995 // may use the vtable argument later.
1996 if (CI
->use_empty())
1997 CI
->eraseFromParent();
2000 // At this point we could remove all type test assume sequences, as they
2001 // were originally inserted for WPD. However, we can keep these in the
2002 // code stream for later analysis (e.g. to help drive more efficient ICP
2003 // sequences). They will eventually be removed by a second LowerTypeTests
2004 // invocation that cleans them up. In order to do this correctly, the first
2005 // LowerTypeTests invocation needs to know that they have "Unknown" type
2006 // test resolution, so that they aren't treated as Unsat and lowered to
2007 // False, which will break any uses on assumes. Below we remove any type
2008 // test assumes that will not be treated as Unknown by LTT.
2010 // The type test assumes will be treated by LTT as Unsat if the type id is
2011 // not used on a global (in which case it has no entry in the TypeIdMap).
2012 if (!TypeIdMap
.count(TypeId
))
2013 RemoveTypeTestAssumes();
2015 // For ThinLTO importing, we need to remove the type test assumes if this is
2016 // an MDString type id without a corresponding TypeIdSummary. Any
2017 // non-MDString type ids are ignored and treated as Unknown by LTT, so their
2018 // type test assumes can be kept. If the MDString type id is missing a
2019 // TypeIdSummary (e.g. because there was no use on a vcall, preventing the
2020 // exporting phase of WPD from analyzing it), then it would be treated as
2021 // Unsat by LTT and we need to remove its type test assumes here. If not
2022 // used on a vcall we don't need them for later optimization use in any
2024 else if (ImportSummary
&& isa
<MDString
>(TypeId
)) {
2025 const TypeIdSummary
*TidSummary
=
2026 ImportSummary
->getTypeIdSummary(cast
<MDString
>(TypeId
)->getString());
2028 RemoveTypeTestAssumes();
2030 // If one was created it should not be Unsat, because if we reached here
2031 // the type id was used on a global.
2032 assert(TidSummary
->TTRes
.TheKind
!= TypeTestResolution::Unsat
);
2037 void DevirtModule::scanTypeCheckedLoadUsers(Function
*TypeCheckedLoadFunc
) {
2038 Function
*TypeTestFunc
= Intrinsic::getDeclaration(&M
, Intrinsic::type_test
);
2040 for (Use
&U
: llvm::make_early_inc_range(TypeCheckedLoadFunc
->uses())) {
2041 auto *CI
= dyn_cast
<CallInst
>(U
.getUser());
2045 Value
*Ptr
= CI
->getArgOperand(0);
2046 Value
*Offset
= CI
->getArgOperand(1);
2047 Value
*TypeIdValue
= CI
->getArgOperand(2);
2048 Metadata
*TypeId
= cast
<MetadataAsValue
>(TypeIdValue
)->getMetadata();
2050 SmallVector
<DevirtCallSite
, 1> DevirtCalls
;
2051 SmallVector
<Instruction
*, 1> LoadedPtrs
;
2052 SmallVector
<Instruction
*, 1> Preds
;
2053 bool HasNonCallUses
= false;
2054 auto &DT
= LookupDomTree(*CI
->getFunction());
2055 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls
, LoadedPtrs
, Preds
,
2056 HasNonCallUses
, CI
, DT
);
2058 // Start by generating "pessimistic" code that explicitly loads the function
2059 // pointer from the vtable and performs the type check. If possible, we will
2060 // eliminate the load and the type check later.
2062 // If possible, only generate the load at the point where it is used.
2063 // This helps avoid unnecessary spills.
2065 (LoadedPtrs
.size() == 1 && !HasNonCallUses
) ? LoadedPtrs
[0] : CI
);
2067 Value
*LoadedValue
= nullptr;
2068 if (TypeCheckedLoadFunc
->getIntrinsicID() ==
2069 Intrinsic::type_checked_load_relative
) {
2070 Value
*GEP
= LoadB
.CreateGEP(Int8Ty
, Ptr
, Offset
);
2071 LoadedValue
= LoadB
.CreateLoad(Int32Ty
, GEP
);
2072 LoadedValue
= LoadB
.CreateSExt(LoadedValue
, IntPtrTy
);
2073 GEP
= LoadB
.CreatePtrToInt(GEP
, IntPtrTy
);
2074 LoadedValue
= LoadB
.CreateAdd(GEP
, LoadedValue
);
2075 LoadedValue
= LoadB
.CreateIntToPtr(LoadedValue
, Int8PtrTy
);
2077 Value
*GEP
= LoadB
.CreateGEP(Int8Ty
, Ptr
, Offset
);
2078 LoadedValue
= LoadB
.CreateLoad(Int8PtrTy
, GEP
);
2081 for (Instruction
*LoadedPtr
: LoadedPtrs
) {
2082 LoadedPtr
->replaceAllUsesWith(LoadedValue
);
2083 LoadedPtr
->eraseFromParent();
2086 // Likewise for the type test.
2087 IRBuilder
<> CallB((Preds
.size() == 1 && !HasNonCallUses
) ? Preds
[0] : CI
);
2088 CallInst
*TypeTestCall
= CallB
.CreateCall(TypeTestFunc
, {Ptr
, TypeIdValue
});
2090 for (Instruction
*Pred
: Preds
) {
2091 Pred
->replaceAllUsesWith(TypeTestCall
);
2092 Pred
->eraseFromParent();
2095 // We have already erased any extractvalue instructions that refer to the
2096 // intrinsic call, but the intrinsic may have other non-extractvalue uses
2097 // (although this is unlikely). In that case, explicitly build a pair and
2099 if (!CI
->use_empty()) {
2100 Value
*Pair
= PoisonValue::get(CI
->getType());
2102 Pair
= B
.CreateInsertValue(Pair
, LoadedValue
, {0});
2103 Pair
= B
.CreateInsertValue(Pair
, TypeTestCall
, {1});
2104 CI
->replaceAllUsesWith(Pair
);
2107 // The number of unsafe uses is initially the number of uses.
2108 auto &NumUnsafeUses
= NumUnsafeUsesForTypeTest
[TypeTestCall
];
2109 NumUnsafeUses
= DevirtCalls
.size();
2111 // If the function pointer has a non-call user, we cannot eliminate the type
2112 // check, as one of those users may eventually call the pointer. Increment
2113 // the unsafe use count to make sure it cannot reach zero.
2116 for (DevirtCallSite Call
: DevirtCalls
) {
2117 CallSlots
[{TypeId
, Call
.Offset
}].addCallSite(Ptr
, Call
.CB
,
2121 CI
->eraseFromParent();
2125 void DevirtModule::importResolution(VTableSlot Slot
, VTableSlotInfo
&SlotInfo
) {
2126 auto *TypeId
= dyn_cast
<MDString
>(Slot
.TypeID
);
2129 const TypeIdSummary
*TidSummary
=
2130 ImportSummary
->getTypeIdSummary(TypeId
->getString());
2133 auto ResI
= TidSummary
->WPDRes
.find(Slot
.ByteOffset
);
2134 if (ResI
== TidSummary
->WPDRes
.end())
2136 const WholeProgramDevirtResolution
&Res
= ResI
->second
;
2138 if (Res
.TheKind
== WholeProgramDevirtResolution::SingleImpl
) {
2139 assert(!Res
.SingleImplName
.empty());
2140 // The type of the function in the declaration is irrelevant because every
2141 // call site will cast it to the correct type.
2142 Constant
*SingleImpl
=
2143 cast
<Constant
>(M
.getOrInsertFunction(Res
.SingleImplName
,
2144 Type::getVoidTy(M
.getContext()))
2147 // This is the import phase so we should not be exporting anything.
2148 bool IsExported
= false;
2149 applySingleImplDevirt(SlotInfo
, SingleImpl
, IsExported
);
2150 assert(!IsExported
);
2153 for (auto &CSByConstantArg
: SlotInfo
.ConstCSInfo
) {
2154 auto I
= Res
.ResByArg
.find(CSByConstantArg
.first
);
2155 if (I
== Res
.ResByArg
.end())
2157 auto &ResByArg
= I
->second
;
2158 // FIXME: We should figure out what to do about the "function name" argument
2159 // to the apply* functions, as the function names are unavailable during the
2160 // importing phase. For now we just pass the empty string. This does not
2161 // impact correctness because the function names are just used for remarks.
2162 switch (ResByArg
.TheKind
) {
2163 case WholeProgramDevirtResolution::ByArg::UniformRetVal
:
2164 applyUniformRetValOpt(CSByConstantArg
.second
, "", ResByArg
.Info
);
2166 case WholeProgramDevirtResolution::ByArg::UniqueRetVal
: {
2167 Constant
*UniqueMemberAddr
=
2168 importGlobal(Slot
, CSByConstantArg
.first
, "unique_member");
2169 applyUniqueRetValOpt(CSByConstantArg
.second
, "", ResByArg
.Info
,
2173 case WholeProgramDevirtResolution::ByArg::VirtualConstProp
: {
2174 Constant
*Byte
= importConstant(Slot
, CSByConstantArg
.first
, "byte",
2175 Int32Ty
, ResByArg
.Byte
);
2176 Constant
*Bit
= importConstant(Slot
, CSByConstantArg
.first
, "bit", Int8Ty
,
2178 applyVirtualConstProp(CSByConstantArg
.second
, "", Byte
, Bit
);
2186 if (Res
.TheKind
== WholeProgramDevirtResolution::BranchFunnel
) {
2187 // The type of the function is irrelevant, because it's bitcast at calls
2189 Constant
*JT
= cast
<Constant
>(
2190 M
.getOrInsertFunction(getGlobalName(Slot
, {}, "branch_funnel"),
2191 Type::getVoidTy(M
.getContext()))
2193 bool IsExported
= false;
2194 applyICallBranchFunnel(SlotInfo
, JT
, IsExported
);
2195 assert(!IsExported
);
2199 void DevirtModule::removeRedundantTypeTests() {
2200 auto True
= ConstantInt::getTrue(M
.getContext());
2201 for (auto &&U
: NumUnsafeUsesForTypeTest
) {
2202 if (U
.second
== 0) {
2203 U
.first
->replaceAllUsesWith(True
);
2204 U
.first
->eraseFromParent();
2210 DevirtModule::lookUpFunctionValueInfo(Function
*TheFn
,
2211 ModuleSummaryIndex
*ExportSummary
) {
2212 assert((ExportSummary
!= nullptr) &&
2213 "Caller guarantees ExportSummary is not nullptr");
2215 const auto TheFnGUID
= TheFn
->getGUID();
2216 const auto TheFnGUIDWithExportedName
= GlobalValue::getGUID(TheFn
->getName());
2217 // Look up ValueInfo with the GUID in the current linkage.
2218 ValueInfo TheFnVI
= ExportSummary
->getValueInfo(TheFnGUID
);
2219 // If no entry is found and GUID is different from GUID computed using
2220 // exported name, look up ValueInfo with the exported name unconditionally.
2221 // This is a fallback.
2223 // The reason to have a fallback:
2224 // 1. LTO could enable global value internalization via
2225 // `enable-lto-internalization`.
2226 // 2. The GUID in ExportedSummary is computed using exported name.
2227 if ((!TheFnVI
) && (TheFnGUID
!= TheFnGUIDWithExportedName
)) {
2228 TheFnVI
= ExportSummary
->getValueInfo(TheFnGUIDWithExportedName
);
2233 bool DevirtModule::mustBeUnreachableFunction(
2234 Function
*const F
, ModuleSummaryIndex
*ExportSummary
) {
2235 // First, learn unreachability by analyzing function IR.
2236 if (!F
->isDeclaration()) {
2237 // A function must be unreachable if its entry block ends with an
2239 return isa
<UnreachableInst
>(F
->getEntryBlock().getTerminator());
2241 // Learn unreachability from ExportSummary if ExportSummary is present.
2242 return ExportSummary
&&
2243 ::mustBeUnreachableFunction(
2244 DevirtModule::lookUpFunctionValueInfo(F
, ExportSummary
));
2247 bool DevirtModule::run() {
2248 // If only some of the modules were split, we cannot correctly perform
2249 // this transformation. We already checked for the presense of type tests
2250 // with partially split modules during the thin link, and would have emitted
2251 // an error if any were found, so here we can simply return.
2252 if ((ExportSummary
&& ExportSummary
->partiallySplitLTOUnits()) ||
2253 (ImportSummary
&& ImportSummary
->partiallySplitLTOUnits()))
2256 Function
*TypeTestFunc
=
2257 M
.getFunction(Intrinsic::getName(Intrinsic::type_test
));
2258 Function
*TypeCheckedLoadFunc
=
2259 M
.getFunction(Intrinsic::getName(Intrinsic::type_checked_load
));
2260 Function
*TypeCheckedLoadRelativeFunc
=
2261 M
.getFunction(Intrinsic::getName(Intrinsic::type_checked_load_relative
));
2262 Function
*AssumeFunc
= M
.getFunction(Intrinsic::getName(Intrinsic::assume
));
2264 // Normally if there are no users of the devirtualization intrinsics in the
2265 // module, this pass has nothing to do. But if we are exporting, we also need
2266 // to handle any users that appear only in the function summaries.
2267 if (!ExportSummary
&&
2268 (!TypeTestFunc
|| TypeTestFunc
->use_empty() || !AssumeFunc
||
2269 AssumeFunc
->use_empty()) &&
2270 (!TypeCheckedLoadFunc
|| TypeCheckedLoadFunc
->use_empty()) &&
2271 (!TypeCheckedLoadRelativeFunc
||
2272 TypeCheckedLoadRelativeFunc
->use_empty()))
2275 // Rebuild type metadata into a map for easy lookup.
2276 std::vector
<VTableBits
> Bits
;
2277 DenseMap
<Metadata
*, std::set
<TypeMemberInfo
>> TypeIdMap
;
2278 buildTypeIdentifierMap(Bits
, TypeIdMap
);
2280 if (TypeTestFunc
&& AssumeFunc
)
2281 scanTypeTestUsers(TypeTestFunc
, TypeIdMap
);
2283 if (TypeCheckedLoadFunc
)
2284 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc
);
2286 if (TypeCheckedLoadRelativeFunc
)
2287 scanTypeCheckedLoadUsers(TypeCheckedLoadRelativeFunc
);
2289 if (ImportSummary
) {
2290 for (auto &S
: CallSlots
)
2291 importResolution(S
.first
, S
.second
);
2293 removeRedundantTypeTests();
2295 // We have lowered or deleted the type intrinsics, so we will no longer have
2296 // enough information to reason about the liveness of virtual function
2297 // pointers in GlobalDCE.
2298 for (GlobalVariable
&GV
: M
.globals())
2299 GV
.eraseMetadata(LLVMContext::MD_vcall_visibility
);
2301 // The rest of the code is only necessary when exporting or during regular
2302 // LTO, so we are done.
2306 if (TypeIdMap
.empty())
2309 // Collect information from summary about which calls to try to devirtualize.
2310 if (ExportSummary
) {
2311 DenseMap
<GlobalValue::GUID
, TinyPtrVector
<Metadata
*>> MetadataByGUID
;
2312 for (auto &P
: TypeIdMap
) {
2313 if (auto *TypeId
= dyn_cast
<MDString
>(P
.first
))
2314 MetadataByGUID
[GlobalValue::getGUID(TypeId
->getString())].push_back(
2318 for (auto &P
: *ExportSummary
) {
2319 for (auto &S
: P
.second
.SummaryList
) {
2320 auto *FS
= dyn_cast
<FunctionSummary
>(S
.get());
2323 // FIXME: Only add live functions.
2324 for (FunctionSummary::VFuncId VF
: FS
->type_test_assume_vcalls()) {
2325 for (Metadata
*MD
: MetadataByGUID
[VF
.GUID
]) {
2326 CallSlots
[{MD
, VF
.Offset
}].CSInfo
.addSummaryTypeTestAssumeUser(FS
);
2329 for (FunctionSummary::VFuncId VF
: FS
->type_checked_load_vcalls()) {
2330 for (Metadata
*MD
: MetadataByGUID
[VF
.GUID
]) {
2331 CallSlots
[{MD
, VF
.Offset
}].CSInfo
.addSummaryTypeCheckedLoadUser(FS
);
2334 for (const FunctionSummary::ConstVCall
&VC
:
2335 FS
->type_test_assume_const_vcalls()) {
2336 for (Metadata
*MD
: MetadataByGUID
[VC
.VFunc
.GUID
]) {
2337 CallSlots
[{MD
, VC
.VFunc
.Offset
}]
2338 .ConstCSInfo
[VC
.Args
]
2339 .addSummaryTypeTestAssumeUser(FS
);
2342 for (const FunctionSummary::ConstVCall
&VC
:
2343 FS
->type_checked_load_const_vcalls()) {
2344 for (Metadata
*MD
: MetadataByGUID
[VC
.VFunc
.GUID
]) {
2345 CallSlots
[{MD
, VC
.VFunc
.Offset
}]
2346 .ConstCSInfo
[VC
.Args
]
2347 .addSummaryTypeCheckedLoadUser(FS
);
2354 // For each (type, offset) pair:
2355 bool DidVirtualConstProp
= false;
2356 std::map
<std::string
, GlobalValue
*> DevirtTargets
;
2357 for (auto &S
: CallSlots
) {
2358 // Search each of the members of the type identifier for the virtual
2359 // function implementation at offset S.first.ByteOffset, and add to
2361 std::vector
<VirtualCallTarget
> TargetsForSlot
;
2362 WholeProgramDevirtResolution
*Res
= nullptr;
2363 const std::set
<TypeMemberInfo
> &TypeMemberInfos
= TypeIdMap
[S
.first
.TypeID
];
2364 if (ExportSummary
&& isa
<MDString
>(S
.first
.TypeID
) &&
2365 TypeMemberInfos
.size())
2366 // For any type id used on a global's type metadata, create the type id
2367 // summary resolution regardless of whether we can devirtualize, so that
2368 // lower type tests knows the type id is not Unsat. If it was not used on
2369 // a global's type metadata, the TypeIdMap entry set will be empty, and
2370 // we don't want to create an entry (with the default Unknown type
2371 // resolution), which can prevent detection of the Unsat.
2372 Res
= &ExportSummary
2373 ->getOrInsertTypeIdSummary(
2374 cast
<MDString
>(S
.first
.TypeID
)->getString())
2375 .WPDRes
[S
.first
.ByteOffset
];
2376 if (tryFindVirtualCallTargets(TargetsForSlot
, TypeMemberInfos
,
2377 S
.first
.ByteOffset
, ExportSummary
)) {
2379 if (!trySingleImplDevirt(ExportSummary
, TargetsForSlot
, S
.second
, Res
)) {
2380 DidVirtualConstProp
|=
2381 tryVirtualConstProp(TargetsForSlot
, S
.second
, Res
, S
.first
);
2383 tryICallBranchFunnel(TargetsForSlot
, S
.second
, Res
, S
.first
);
2386 // Collect functions devirtualized at least for one call site for stats.
2387 if (RemarksEnabled
|| AreStatisticsEnabled())
2388 for (const auto &T
: TargetsForSlot
)
2390 DevirtTargets
[std::string(T
.Fn
->getName())] = T
.Fn
;
2393 // CFI-specific: if we are exporting and any llvm.type.checked.load
2394 // intrinsics were *not* devirtualized, we need to add the resulting
2395 // llvm.type.test intrinsics to the function summaries so that the
2396 // LowerTypeTests pass will export them.
2397 if (ExportSummary
&& isa
<MDString
>(S
.first
.TypeID
)) {
2399 GlobalValue::getGUID(cast
<MDString
>(S
.first
.TypeID
)->getString());
2400 for (auto *FS
: S
.second
.CSInfo
.SummaryTypeCheckedLoadUsers
)
2401 FS
->addTypeTest(GUID
);
2402 for (auto &CCS
: S
.second
.ConstCSInfo
)
2403 for (auto *FS
: CCS
.second
.SummaryTypeCheckedLoadUsers
)
2404 FS
->addTypeTest(GUID
);
2408 if (RemarksEnabled
) {
2409 // Generate remarks for each devirtualized function.
2410 for (const auto &DT
: DevirtTargets
) {
2411 GlobalValue
*GV
= DT
.second
;
2412 auto F
= dyn_cast
<Function
>(GV
);
2414 auto A
= dyn_cast
<GlobalAlias
>(GV
);
2415 assert(A
&& isa
<Function
>(A
->getAliasee()));
2416 F
= dyn_cast
<Function
>(A
->getAliasee());
2420 using namespace ore
;
2421 OREGetter(F
).emit(OptimizationRemark(DEBUG_TYPE
, "Devirtualized", F
)
2423 << NV("FunctionName", DT
.first
));
2427 NumDevirtTargets
+= DevirtTargets
.size();
2429 removeRedundantTypeTests();
2431 // Rebuild each global we touched as part of virtual constant propagation to
2432 // include the before and after bytes.
2433 if (DidVirtualConstProp
)
2434 for (VTableBits
&B
: Bits
)
2437 // We have lowered or deleted the type intrinsics, so we will no longer have
2438 // enough information to reason about the liveness of virtual function
2439 // pointers in GlobalDCE.
2440 for (GlobalVariable
&GV
: M
.globals())
2441 GV
.eraseMetadata(LLVMContext::MD_vcall_visibility
);
2443 for (auto *CI
: CallsWithPtrAuthBundleRemoved
)
2444 CI
->eraseFromParent();
2449 void DevirtIndex::run() {
2450 if (ExportSummary
.typeIdCompatibleVtableMap().empty())
2453 DenseMap
<GlobalValue::GUID
, std::vector
<StringRef
>> NameByGUID
;
2454 for (const auto &P
: ExportSummary
.typeIdCompatibleVtableMap()) {
2455 NameByGUID
[GlobalValue::getGUID(P
.first
)].push_back(P
.first
);
2456 // Create the type id summary resolution regardlness of whether we can
2457 // devirtualize, so that lower type tests knows the type id is used on
2458 // a global and not Unsat. We do this here rather than in the loop over the
2459 // CallSlots, since that handling will only see type tests that directly
2460 // feed assumes, and we would miss any that aren't currently handled by WPD
2461 // (such as type tests that feed assumes via phis).
2462 ExportSummary
.getOrInsertTypeIdSummary(P
.first
);
2465 // Collect information from summary about which calls to try to devirtualize.
2466 for (auto &P
: ExportSummary
) {
2467 for (auto &S
: P
.second
.SummaryList
) {
2468 auto *FS
= dyn_cast
<FunctionSummary
>(S
.get());
2471 // FIXME: Only add live functions.
2472 for (FunctionSummary::VFuncId VF
: FS
->type_test_assume_vcalls()) {
2473 for (StringRef Name
: NameByGUID
[VF
.GUID
]) {
2474 CallSlots
[{Name
, VF
.Offset
}].CSInfo
.addSummaryTypeTestAssumeUser(FS
);
2477 for (FunctionSummary::VFuncId VF
: FS
->type_checked_load_vcalls()) {
2478 for (StringRef Name
: NameByGUID
[VF
.GUID
]) {
2479 CallSlots
[{Name
, VF
.Offset
}].CSInfo
.addSummaryTypeCheckedLoadUser(FS
);
2482 for (const FunctionSummary::ConstVCall
&VC
:
2483 FS
->type_test_assume_const_vcalls()) {
2484 for (StringRef Name
: NameByGUID
[VC
.VFunc
.GUID
]) {
2485 CallSlots
[{Name
, VC
.VFunc
.Offset
}]
2486 .ConstCSInfo
[VC
.Args
]
2487 .addSummaryTypeTestAssumeUser(FS
);
2490 for (const FunctionSummary::ConstVCall
&VC
:
2491 FS
->type_checked_load_const_vcalls()) {
2492 for (StringRef Name
: NameByGUID
[VC
.VFunc
.GUID
]) {
2493 CallSlots
[{Name
, VC
.VFunc
.Offset
}]
2494 .ConstCSInfo
[VC
.Args
]
2495 .addSummaryTypeCheckedLoadUser(FS
);
2501 std::set
<ValueInfo
> DevirtTargets
;
2502 // For each (type, offset) pair:
2503 for (auto &S
: CallSlots
) {
2504 // Search each of the members of the type identifier for the virtual
2505 // function implementation at offset S.first.ByteOffset, and add to
2507 std::vector
<ValueInfo
> TargetsForSlot
;
2508 auto TidSummary
= ExportSummary
.getTypeIdCompatibleVtableSummary(S
.first
.TypeID
);
2510 // The type id summary would have been created while building the NameByGUID
2512 WholeProgramDevirtResolution
*Res
=
2513 &ExportSummary
.getTypeIdSummary(S
.first
.TypeID
)
2514 ->WPDRes
[S
.first
.ByteOffset
];
2515 if (tryFindVirtualCallTargets(TargetsForSlot
, *TidSummary
,
2516 S
.first
.ByteOffset
)) {
2518 if (!trySingleImplDevirt(TargetsForSlot
, S
.first
, S
.second
, Res
,
2524 // Optionally have the thin link print message for each devirtualized
2526 if (PrintSummaryDevirt
)
2527 for (const auto &DT
: DevirtTargets
)
2528 errs() << "Devirtualized call to " << DT
<< "\n";
2530 NumDevirtTargets
+= DevirtTargets
.size();