[AMDGPU] Test codegen'ing True16 additions.
[llvm-project.git] / llvm / lib / Transforms / Instrumentation / DataFlowSanitizer.cpp
blob2f237d051dbfbcb9eb859dd9b6d8da023815e11c
1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
11 /// analysis.
12 ///
13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific
14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow
15 /// analysis framework to be used by clients to help detect application-specific
16 /// issues within their own code.
17 ///
18 /// The analysis is based on automatic propagation of data flow labels (also
19 /// known as taint labels) through a program as it performs computation.
20 ///
21 /// Argument and return value labels are passed through TLS variables
22 /// __dfsan_arg_tls and __dfsan_retval_tls.
23 ///
24 /// Each byte of application memory is backed by a shadow memory byte. The
25 /// shadow byte can represent up to 8 labels. On Linux/x86_64, memory is then
26 /// laid out as follows:
27 ///
28 /// +--------------------+ 0x800000000000 (top of memory)
29 /// | application 3 |
30 /// +--------------------+ 0x700000000000
31 /// | invalid |
32 /// +--------------------+ 0x610000000000
33 /// | origin 1 |
34 /// +--------------------+ 0x600000000000
35 /// | application 2 |
36 /// +--------------------+ 0x510000000000
37 /// | shadow 1 |
38 /// +--------------------+ 0x500000000000
39 /// | invalid |
40 /// +--------------------+ 0x400000000000
41 /// | origin 3 |
42 /// +--------------------+ 0x300000000000
43 /// | shadow 3 |
44 /// +--------------------+ 0x200000000000
45 /// | origin 2 |
46 /// +--------------------+ 0x110000000000
47 /// | invalid |
48 /// +--------------------+ 0x100000000000
49 /// | shadow 2 |
50 /// +--------------------+ 0x010000000000
51 /// | application 1 |
52 /// +--------------------+ 0x000000000000
53 ///
54 /// MEM_TO_SHADOW(mem) = mem ^ 0x500000000000
55 /// SHADOW_TO_ORIGIN(shadow) = shadow + 0x100000000000
56 ///
57 /// For more information, please refer to the design document:
58 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html
60 //===----------------------------------------------------------------------===//
62 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DenseSet.h"
65 #include "llvm/ADT/DepthFirstIterator.h"
66 #include "llvm/ADT/SmallPtrSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/ADT/StringRef.h"
69 #include "llvm/ADT/StringSet.h"
70 #include "llvm/ADT/iterator.h"
71 #include "llvm/Analysis/DomTreeUpdater.h"
72 #include "llvm/Analysis/GlobalsModRef.h"
73 #include "llvm/Analysis/TargetLibraryInfo.h"
74 #include "llvm/Analysis/ValueTracking.h"
75 #include "llvm/IR/Argument.h"
76 #include "llvm/IR/AttributeMask.h"
77 #include "llvm/IR/Attributes.h"
78 #include "llvm/IR/BasicBlock.h"
79 #include "llvm/IR/Constant.h"
80 #include "llvm/IR/Constants.h"
81 #include "llvm/IR/DataLayout.h"
82 #include "llvm/IR/DerivedTypes.h"
83 #include "llvm/IR/Dominators.h"
84 #include "llvm/IR/Function.h"
85 #include "llvm/IR/GlobalAlias.h"
86 #include "llvm/IR/GlobalValue.h"
87 #include "llvm/IR/GlobalVariable.h"
88 #include "llvm/IR/IRBuilder.h"
89 #include "llvm/IR/InstVisitor.h"
90 #include "llvm/IR/InstrTypes.h"
91 #include "llvm/IR/Instruction.h"
92 #include "llvm/IR/Instructions.h"
93 #include "llvm/IR/IntrinsicInst.h"
94 #include "llvm/IR/MDBuilder.h"
95 #include "llvm/IR/Module.h"
96 #include "llvm/IR/PassManager.h"
97 #include "llvm/IR/Type.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/Support/Alignment.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/ErrorHandling.h"
104 #include "llvm/Support/SpecialCaseList.h"
105 #include "llvm/Support/VirtualFileSystem.h"
106 #include "llvm/TargetParser/Triple.h"
107 #include "llvm/Transforms/Instrumentation.h"
108 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
109 #include "llvm/Transforms/Utils/Local.h"
110 #include <algorithm>
111 #include <cassert>
112 #include <cstddef>
113 #include <cstdint>
114 #include <memory>
115 #include <set>
116 #include <string>
117 #include <utility>
118 #include <vector>
120 using namespace llvm;
122 // This must be consistent with ShadowWidthBits.
123 static const Align ShadowTLSAlignment = Align(2);
125 static const Align MinOriginAlignment = Align(4);
127 // The size of TLS variables. These constants must be kept in sync with the ones
128 // in dfsan.cpp.
129 static const unsigned ArgTLSSize = 800;
130 static const unsigned RetvalTLSSize = 800;
132 // The -dfsan-preserve-alignment flag controls whether this pass assumes that
133 // alignment requirements provided by the input IR are correct. For example,
134 // if the input IR contains a load with alignment 8, this flag will cause
135 // the shadow load to have alignment 16. This flag is disabled by default as
136 // we have unfortunately encountered too much code (including Clang itself;
137 // see PR14291) which performs misaligned access.
138 static cl::opt<bool> ClPreserveAlignment(
139 "dfsan-preserve-alignment",
140 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
141 cl::init(false));
143 // The ABI list files control how shadow parameters are passed. The pass treats
144 // every function labelled "uninstrumented" in the ABI list file as conforming
145 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains
146 // additional annotations for those functions, a call to one of those functions
147 // will produce a warning message, as the labelling behaviour of the function is
148 // unknown. The other supported annotations for uninstrumented functions are
149 // "functional" and "discard", which are described below under
150 // DataFlowSanitizer::WrapperKind.
151 // Functions will often be labelled with both "uninstrumented" and one of
152 // "functional" or "discard". This will leave the function unchanged by this
153 // pass, and create a wrapper function that will call the original.
155 // Instrumented functions can also be annotated as "force_zero_labels", which
156 // will make all shadow and return values set zero labels.
157 // Functions should never be labelled with both "force_zero_labels" and
158 // "uninstrumented" or any of the unistrumented wrapper kinds.
159 static cl::list<std::string> ClABIListFiles(
160 "dfsan-abilist",
161 cl::desc("File listing native ABI functions and how the pass treats them"),
162 cl::Hidden);
164 // Controls whether the pass includes or ignores the labels of pointers in load
165 // instructions.
166 static cl::opt<bool> ClCombinePointerLabelsOnLoad(
167 "dfsan-combine-pointer-labels-on-load",
168 cl::desc("Combine the label of the pointer with the label of the data when "
169 "loading from memory."),
170 cl::Hidden, cl::init(true));
172 // Controls whether the pass includes or ignores the labels of pointers in
173 // stores instructions.
174 static cl::opt<bool> ClCombinePointerLabelsOnStore(
175 "dfsan-combine-pointer-labels-on-store",
176 cl::desc("Combine the label of the pointer with the label of the data when "
177 "storing in memory."),
178 cl::Hidden, cl::init(false));
180 // Controls whether the pass propagates labels of offsets in GEP instructions.
181 static cl::opt<bool> ClCombineOffsetLabelsOnGEP(
182 "dfsan-combine-offset-labels-on-gep",
183 cl::desc(
184 "Combine the label of the offset with the label of the pointer when "
185 "doing pointer arithmetic."),
186 cl::Hidden, cl::init(true));
188 static cl::list<std::string> ClCombineTaintLookupTables(
189 "dfsan-combine-taint-lookup-table",
190 cl::desc(
191 "When dfsan-combine-offset-labels-on-gep and/or "
192 "dfsan-combine-pointer-labels-on-load are false, this flag can "
193 "be used to re-enable combining offset and/or pointer taint when "
194 "loading specific constant global variables (i.e. lookup tables)."),
195 cl::Hidden);
197 static cl::opt<bool> ClDebugNonzeroLabels(
198 "dfsan-debug-nonzero-labels",
199 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
200 "load or return with a nonzero label"),
201 cl::Hidden);
203 // Experimental feature that inserts callbacks for certain data events.
204 // Currently callbacks are only inserted for loads, stores, memory transfers
205 // (i.e. memcpy and memmove), and comparisons.
207 // If this flag is set to true, the user must provide definitions for the
208 // following callback functions:
209 // void __dfsan_load_callback(dfsan_label Label, void* addr);
210 // void __dfsan_store_callback(dfsan_label Label, void* addr);
211 // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len);
212 // void __dfsan_cmp_callback(dfsan_label CombinedLabel);
213 static cl::opt<bool> ClEventCallbacks(
214 "dfsan-event-callbacks",
215 cl::desc("Insert calls to __dfsan_*_callback functions on data events."),
216 cl::Hidden, cl::init(false));
218 // Experimental feature that inserts callbacks for conditionals, including:
219 // conditional branch, switch, select.
220 // This must be true for dfsan_set_conditional_callback() to have effect.
221 static cl::opt<bool> ClConditionalCallbacks(
222 "dfsan-conditional-callbacks",
223 cl::desc("Insert calls to callback functions on conditionals."), cl::Hidden,
224 cl::init(false));
226 // Experimental feature that inserts callbacks for data reaching a function,
227 // either via function arguments and loads.
228 // This must be true for dfsan_set_reaches_function_callback() to have effect.
229 static cl::opt<bool> ClReachesFunctionCallbacks(
230 "dfsan-reaches-function-callbacks",
231 cl::desc("Insert calls to callback functions on data reaching a function."),
232 cl::Hidden, cl::init(false));
234 // Controls whether the pass tracks the control flow of select instructions.
235 static cl::opt<bool> ClTrackSelectControlFlow(
236 "dfsan-track-select-control-flow",
237 cl::desc("Propagate labels from condition values of select instructions "
238 "to results."),
239 cl::Hidden, cl::init(true));
241 // TODO: This default value follows MSan. DFSan may use a different value.
242 static cl::opt<int> ClInstrumentWithCallThreshold(
243 "dfsan-instrument-with-call-threshold",
244 cl::desc("If the function being instrumented requires more than "
245 "this number of origin stores, use callbacks instead of "
246 "inline checks (-1 means never use callbacks)."),
247 cl::Hidden, cl::init(3500));
249 // Controls how to track origins.
250 // * 0: do not track origins.
251 // * 1: track origins at memory store operations.
252 // * 2: track origins at memory load and store operations.
253 // TODO: track callsites.
254 static cl::opt<int> ClTrackOrigins("dfsan-track-origins",
255 cl::desc("Track origins of labels"),
256 cl::Hidden, cl::init(0));
258 static cl::opt<bool> ClIgnorePersonalityRoutine(
259 "dfsan-ignore-personality-routine",
260 cl::desc("If a personality routine is marked uninstrumented from the ABI "
261 "list, do not create a wrapper for it."),
262 cl::Hidden, cl::init(false));
264 static StringRef getGlobalTypeString(const GlobalValue &G) {
265 // Types of GlobalVariables are always pointer types.
266 Type *GType = G.getValueType();
267 // For now we support excluding struct types only.
268 if (StructType *SGType = dyn_cast<StructType>(GType)) {
269 if (!SGType->isLiteral())
270 return SGType->getName();
272 return "<unknown type>";
275 namespace {
277 // Memory map parameters used in application-to-shadow address calculation.
278 // Offset = (Addr & ~AndMask) ^ XorMask
279 // Shadow = ShadowBase + Offset
280 // Origin = (OriginBase + Offset) & ~3ULL
281 struct MemoryMapParams {
282 uint64_t AndMask;
283 uint64_t XorMask;
284 uint64_t ShadowBase;
285 uint64_t OriginBase;
288 } // end anonymous namespace
290 // NOLINTBEGIN(readability-identifier-naming)
291 // aarch64 Linux
292 const MemoryMapParams Linux_AArch64_MemoryMapParams = {
293 0, // AndMask (not used)
294 0x0B00000000000, // XorMask
295 0, // ShadowBase (not used)
296 0x0200000000000, // OriginBase
299 // x86_64 Linux
300 const MemoryMapParams Linux_X86_64_MemoryMapParams = {
301 0, // AndMask (not used)
302 0x500000000000, // XorMask
303 0, // ShadowBase (not used)
304 0x100000000000, // OriginBase
306 // NOLINTEND(readability-identifier-naming)
308 // loongarch64 Linux
309 const MemoryMapParams Linux_LoongArch64_MemoryMapParams = {
310 0, // AndMask (not used)
311 0x500000000000, // XorMask
312 0, // ShadowBase (not used)
313 0x100000000000, // OriginBase
316 namespace {
318 class DFSanABIList {
319 std::unique_ptr<SpecialCaseList> SCL;
321 public:
322 DFSanABIList() = default;
324 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); }
326 /// Returns whether either this function or its source file are listed in the
327 /// given category.
328 bool isIn(const Function &F, StringRef Category) const {
329 return isIn(*F.getParent(), Category) ||
330 SCL->inSection("dataflow", "fun", F.getName(), Category);
333 /// Returns whether this global alias is listed in the given category.
335 /// If GA aliases a function, the alias's name is matched as a function name
336 /// would be. Similarly, aliases of globals are matched like globals.
337 bool isIn(const GlobalAlias &GA, StringRef Category) const {
338 if (isIn(*GA.getParent(), Category))
339 return true;
341 if (isa<FunctionType>(GA.getValueType()))
342 return SCL->inSection("dataflow", "fun", GA.getName(), Category);
344 return SCL->inSection("dataflow", "global", GA.getName(), Category) ||
345 SCL->inSection("dataflow", "type", getGlobalTypeString(GA),
346 Category);
349 /// Returns whether this module is listed in the given category.
350 bool isIn(const Module &M, StringRef Category) const {
351 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category);
355 /// TransformedFunction is used to express the result of transforming one
356 /// function type into another. This struct is immutable. It holds metadata
357 /// useful for updating calls of the old function to the new type.
358 struct TransformedFunction {
359 TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType,
360 std::vector<unsigned> ArgumentIndexMapping)
361 : OriginalType(OriginalType), TransformedType(TransformedType),
362 ArgumentIndexMapping(ArgumentIndexMapping) {}
364 // Disallow copies.
365 TransformedFunction(const TransformedFunction &) = delete;
366 TransformedFunction &operator=(const TransformedFunction &) = delete;
368 // Allow moves.
369 TransformedFunction(TransformedFunction &&) = default;
370 TransformedFunction &operator=(TransformedFunction &&) = default;
372 /// Type of the function before the transformation.
373 FunctionType *OriginalType;
375 /// Type of the function after the transformation.
376 FunctionType *TransformedType;
378 /// Transforming a function may change the position of arguments. This
379 /// member records the mapping from each argument's old position to its new
380 /// position. Argument positions are zero-indexed. If the transformation
381 /// from F to F' made the first argument of F into the third argument of F',
382 /// then ArgumentIndexMapping[0] will equal 2.
383 std::vector<unsigned> ArgumentIndexMapping;
386 /// Given function attributes from a call site for the original function,
387 /// return function attributes appropriate for a call to the transformed
388 /// function.
389 AttributeList
390 transformFunctionAttributes(const TransformedFunction &TransformedFunction,
391 LLVMContext &Ctx, AttributeList CallSiteAttrs) {
393 // Construct a vector of AttributeSet for each function argument.
394 std::vector<llvm::AttributeSet> ArgumentAttributes(
395 TransformedFunction.TransformedType->getNumParams());
397 // Copy attributes from the parameter of the original function to the
398 // transformed version. 'ArgumentIndexMapping' holds the mapping from
399 // old argument position to new.
400 for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size();
401 I < IE; ++I) {
402 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I];
403 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttrs(I);
406 // Copy annotations on varargs arguments.
407 for (unsigned I = TransformedFunction.OriginalType->getNumParams(),
408 IE = CallSiteAttrs.getNumAttrSets();
409 I < IE; ++I) {
410 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttrs(I));
413 return AttributeList::get(Ctx, CallSiteAttrs.getFnAttrs(),
414 CallSiteAttrs.getRetAttrs(),
415 llvm::ArrayRef(ArgumentAttributes));
418 class DataFlowSanitizer {
419 friend struct DFSanFunction;
420 friend class DFSanVisitor;
422 enum { ShadowWidthBits = 8, ShadowWidthBytes = ShadowWidthBits / 8 };
424 enum { OriginWidthBits = 32, OriginWidthBytes = OriginWidthBits / 8 };
426 /// How should calls to uninstrumented functions be handled?
427 enum WrapperKind {
428 /// This function is present in an uninstrumented form but we don't know
429 /// how it should be handled. Print a warning and call the function anyway.
430 /// Don't label the return value.
431 WK_Warning,
433 /// This function does not write to (user-accessible) memory, and its return
434 /// value is unlabelled.
435 WK_Discard,
437 /// This function does not write to (user-accessible) memory, and the label
438 /// of its return value is the union of the label of its arguments.
439 WK_Functional,
441 /// Instead of calling the function, a custom wrapper __dfsw_F is called,
442 /// where F is the name of the function. This function may wrap the
443 /// original function or provide its own implementation. WK_Custom uses an
444 /// extra pointer argument to return the shadow. This allows the wrapped
445 /// form of the function type to be expressed in C.
446 WK_Custom
449 Module *Mod;
450 LLVMContext *Ctx;
451 Type *Int8Ptr;
452 IntegerType *OriginTy;
453 PointerType *OriginPtrTy;
454 ConstantInt *ZeroOrigin;
455 /// The shadow type for all primitive types and vector types.
456 IntegerType *PrimitiveShadowTy;
457 PointerType *PrimitiveShadowPtrTy;
458 IntegerType *IntptrTy;
459 ConstantInt *ZeroPrimitiveShadow;
460 Constant *ArgTLS;
461 ArrayType *ArgOriginTLSTy;
462 Constant *ArgOriginTLS;
463 Constant *RetvalTLS;
464 Constant *RetvalOriginTLS;
465 FunctionType *DFSanUnionLoadFnTy;
466 FunctionType *DFSanLoadLabelAndOriginFnTy;
467 FunctionType *DFSanUnimplementedFnTy;
468 FunctionType *DFSanWrapperExternWeakNullFnTy;
469 FunctionType *DFSanSetLabelFnTy;
470 FunctionType *DFSanNonzeroLabelFnTy;
471 FunctionType *DFSanVarargWrapperFnTy;
472 FunctionType *DFSanConditionalCallbackFnTy;
473 FunctionType *DFSanConditionalCallbackOriginFnTy;
474 FunctionType *DFSanReachesFunctionCallbackFnTy;
475 FunctionType *DFSanReachesFunctionCallbackOriginFnTy;
476 FunctionType *DFSanCmpCallbackFnTy;
477 FunctionType *DFSanLoadStoreCallbackFnTy;
478 FunctionType *DFSanMemTransferCallbackFnTy;
479 FunctionType *DFSanChainOriginFnTy;
480 FunctionType *DFSanChainOriginIfTaintedFnTy;
481 FunctionType *DFSanMemOriginTransferFnTy;
482 FunctionType *DFSanMemShadowOriginTransferFnTy;
483 FunctionType *DFSanMemShadowOriginConditionalExchangeFnTy;
484 FunctionType *DFSanMaybeStoreOriginFnTy;
485 FunctionCallee DFSanUnionLoadFn;
486 FunctionCallee DFSanLoadLabelAndOriginFn;
487 FunctionCallee DFSanUnimplementedFn;
488 FunctionCallee DFSanWrapperExternWeakNullFn;
489 FunctionCallee DFSanSetLabelFn;
490 FunctionCallee DFSanNonzeroLabelFn;
491 FunctionCallee DFSanVarargWrapperFn;
492 FunctionCallee DFSanLoadCallbackFn;
493 FunctionCallee DFSanStoreCallbackFn;
494 FunctionCallee DFSanMemTransferCallbackFn;
495 FunctionCallee DFSanConditionalCallbackFn;
496 FunctionCallee DFSanConditionalCallbackOriginFn;
497 FunctionCallee DFSanReachesFunctionCallbackFn;
498 FunctionCallee DFSanReachesFunctionCallbackOriginFn;
499 FunctionCallee DFSanCmpCallbackFn;
500 FunctionCallee DFSanChainOriginFn;
501 FunctionCallee DFSanChainOriginIfTaintedFn;
502 FunctionCallee DFSanMemOriginTransferFn;
503 FunctionCallee DFSanMemShadowOriginTransferFn;
504 FunctionCallee DFSanMemShadowOriginConditionalExchangeFn;
505 FunctionCallee DFSanMaybeStoreOriginFn;
506 SmallPtrSet<Value *, 16> DFSanRuntimeFunctions;
507 MDNode *ColdCallWeights;
508 MDNode *OriginStoreWeights;
509 DFSanABIList ABIList;
510 DenseMap<Value *, Function *> UnwrappedFnMap;
511 AttributeMask ReadOnlyNoneAttrs;
512 StringSet<> CombineTaintLookupTableNames;
514 /// Memory map parameters used in calculation mapping application addresses
515 /// to shadow addresses and origin addresses.
516 const MemoryMapParams *MapParams;
518 Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB);
519 Value *getShadowAddress(Value *Addr, Instruction *Pos);
520 Value *getShadowAddress(Value *Addr, Instruction *Pos, Value *ShadowOffset);
521 std::pair<Value *, Value *>
522 getShadowOriginAddress(Value *Addr, Align InstAlignment, Instruction *Pos);
523 bool isInstrumented(const Function *F);
524 bool isInstrumented(const GlobalAlias *GA);
525 bool isForceZeroLabels(const Function *F);
526 TransformedFunction getCustomFunctionType(FunctionType *T);
527 WrapperKind getWrapperKind(Function *F);
528 void addGlobalNameSuffix(GlobalValue *GV);
529 void buildExternWeakCheckIfNeeded(IRBuilder<> &IRB, Function *F);
530 Function *buildWrapperFunction(Function *F, StringRef NewFName,
531 GlobalValue::LinkageTypes NewFLink,
532 FunctionType *NewFT);
533 void initializeCallbackFunctions(Module &M);
534 void initializeRuntimeFunctions(Module &M);
535 bool initializeModule(Module &M);
537 /// Advances \p OriginAddr to point to the next 32-bit origin and then loads
538 /// from it. Returns the origin's loaded value.
539 Value *loadNextOrigin(Instruction *Pos, Align OriginAlign,
540 Value **OriginAddr);
542 /// Returns whether the given load byte size is amenable to inlined
543 /// optimization patterns.
544 bool hasLoadSizeForFastPath(uint64_t Size);
546 /// Returns whether the pass tracks origins. Supports only TLS ABI mode.
547 bool shouldTrackOrigins();
549 /// Returns a zero constant with the shadow type of OrigTy.
551 /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...}
552 /// getZeroShadow([n x T]) = [n x getZeroShadow(T)]
553 /// getZeroShadow(other type) = i16(0)
554 Constant *getZeroShadow(Type *OrigTy);
555 /// Returns a zero constant with the shadow type of V's type.
556 Constant *getZeroShadow(Value *V);
558 /// Checks if V is a zero shadow.
559 bool isZeroShadow(Value *V);
561 /// Returns the shadow type of OrigTy.
563 /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...}
564 /// getShadowTy([n x T]) = [n x getShadowTy(T)]
565 /// getShadowTy(other type) = i16
566 Type *getShadowTy(Type *OrigTy);
567 /// Returns the shadow type of V's type.
568 Type *getShadowTy(Value *V);
570 const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes;
572 public:
573 DataFlowSanitizer(const std::vector<std::string> &ABIListFiles);
575 bool runImpl(Module &M,
576 llvm::function_ref<TargetLibraryInfo &(Function &)> GetTLI);
579 struct DFSanFunction {
580 DataFlowSanitizer &DFS;
581 Function *F;
582 DominatorTree DT;
583 bool IsNativeABI;
584 bool IsForceZeroLabels;
585 TargetLibraryInfo &TLI;
586 AllocaInst *LabelReturnAlloca = nullptr;
587 AllocaInst *OriginReturnAlloca = nullptr;
588 DenseMap<Value *, Value *> ValShadowMap;
589 DenseMap<Value *, Value *> ValOriginMap;
590 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
591 DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap;
593 struct PHIFixupElement {
594 PHINode *Phi;
595 PHINode *ShadowPhi;
596 PHINode *OriginPhi;
598 std::vector<PHIFixupElement> PHIFixups;
600 DenseSet<Instruction *> SkipInsts;
601 std::vector<Value *> NonZeroChecks;
603 struct CachedShadow {
604 BasicBlock *Block; // The block where Shadow is defined.
605 Value *Shadow;
607 /// Maps a value to its latest shadow value in terms of domination tree.
608 DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows;
609 /// Maps a value to its latest collapsed shadow value it was converted to in
610 /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is
611 /// used at a post process where CFG blocks are split. So it does not cache
612 /// BasicBlock like CachedShadows, but uses domination between values.
613 DenseMap<Value *, Value *> CachedCollapsedShadows;
614 DenseMap<Value *, std::set<Value *>> ShadowElements;
616 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI,
617 bool IsForceZeroLabels, TargetLibraryInfo &TLI)
618 : DFS(DFS), F(F), IsNativeABI(IsNativeABI),
619 IsForceZeroLabels(IsForceZeroLabels), TLI(TLI) {
620 DT.recalculate(*F);
623 /// Computes the shadow address for a given function argument.
625 /// Shadow = ArgTLS+ArgOffset.
626 Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB);
628 /// Computes the shadow address for a return value.
629 Value *getRetvalTLS(Type *T, IRBuilder<> &IRB);
631 /// Computes the origin address for a given function argument.
633 /// Origin = ArgOriginTLS[ArgNo].
634 Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB);
636 /// Computes the origin address for a return value.
637 Value *getRetvalOriginTLS();
639 Value *getOrigin(Value *V);
640 void setOrigin(Instruction *I, Value *Origin);
641 /// Generates IR to compute the origin of the last operand with a taint label.
642 Value *combineOperandOrigins(Instruction *Inst);
643 /// Before the instruction Pos, generates IR to compute the last origin with a
644 /// taint label. Labels and origins are from vectors Shadows and Origins
645 /// correspondingly. The generated IR is like
646 /// Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0
647 /// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be
648 /// zeros with other bitwidths.
649 Value *combineOrigins(const std::vector<Value *> &Shadows,
650 const std::vector<Value *> &Origins, Instruction *Pos,
651 ConstantInt *Zero = nullptr);
653 Value *getShadow(Value *V);
654 void setShadow(Instruction *I, Value *Shadow);
655 /// Generates IR to compute the union of the two given shadows, inserting it
656 /// before Pos. The combined value is with primitive type.
657 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
658 /// Combines the shadow values of V1 and V2, then converts the combined value
659 /// with primitive type into a shadow value with the original type T.
660 Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2,
661 Instruction *Pos);
662 Value *combineOperandShadows(Instruction *Inst);
664 /// Generates IR to load shadow and origin corresponding to bytes [\p
665 /// Addr, \p Addr + \p Size), where addr has alignment \p
666 /// InstAlignment, and take the union of each of those shadows. The returned
667 /// shadow always has primitive type.
669 /// When tracking loads is enabled, the returned origin is a chain at the
670 /// current stack if the returned shadow is tainted.
671 std::pair<Value *, Value *> loadShadowOrigin(Value *Addr, uint64_t Size,
672 Align InstAlignment,
673 Instruction *Pos);
675 void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size,
676 Align InstAlignment, Value *PrimitiveShadow,
677 Value *Origin, Instruction *Pos);
678 /// Applies PrimitiveShadow to all primitive subtypes of T, returning
679 /// the expanded shadow value.
681 /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...}
682 /// EFP([n x T], PS) = [n x EFP(T,PS)]
683 /// EFP(other types, PS) = PS
684 Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow,
685 Instruction *Pos);
686 /// Collapses Shadow into a single primitive shadow value, unioning all
687 /// primitive shadow values in the process. Returns the final primitive
688 /// shadow value.
690 /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...)
691 /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...)
692 /// CTP(other types, PS) = PS
693 Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos);
695 void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign,
696 Instruction *Pos);
698 Align getShadowAlign(Align InstAlignment);
700 // If ClConditionalCallbacks is enabled, insert a callback after a given
701 // branch instruction using the given conditional expression.
702 void addConditionalCallbacksIfEnabled(Instruction &I, Value *Condition);
704 // If ClReachesFunctionCallbacks is enabled, insert a callback for each
705 // argument and load instruction.
706 void addReachesFunctionCallbacksIfEnabled(IRBuilder<> &IRB, Instruction &I,
707 Value *Data);
709 bool isLookupTableConstant(Value *P);
711 private:
712 /// Collapses the shadow with aggregate type into a single primitive shadow
713 /// value.
714 template <class AggregateType>
715 Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow,
716 IRBuilder<> &IRB);
718 Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB);
720 /// Returns the shadow value of an argument A.
721 Value *getShadowForTLSArgument(Argument *A);
723 /// The fast path of loading shadows.
724 std::pair<Value *, Value *>
725 loadShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size,
726 Align ShadowAlign, Align OriginAlign, Value *FirstOrigin,
727 Instruction *Pos);
729 Align getOriginAlign(Align InstAlignment);
731 /// Because 4 contiguous bytes share one 4-byte origin, the most accurate load
732 /// is __dfsan_load_label_and_origin. This function returns the union of all
733 /// labels and the origin of the first taint label. However this is an
734 /// additional call with many instructions. To ensure common cases are fast,
735 /// checks if it is possible to load labels and origins without using the
736 /// callback function.
738 /// When enabling tracking load instructions, we always use
739 /// __dfsan_load_label_and_origin to reduce code size.
740 bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment);
742 /// Returns a chain at the current stack with previous origin V.
743 Value *updateOrigin(Value *V, IRBuilder<> &IRB);
745 /// Returns a chain at the current stack with previous origin V if Shadow is
746 /// tainted.
747 Value *updateOriginIfTainted(Value *Shadow, Value *Origin, IRBuilder<> &IRB);
749 /// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns
750 /// Origin otherwise.
751 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin);
753 /// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr +
754 /// Size).
755 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr,
756 uint64_t StoreOriginSize, Align Alignment);
758 /// Stores Origin in terms of its Shadow value.
759 /// * Do not write origins for zero shadows because we do not trace origins
760 /// for untainted sinks.
761 /// * Use __dfsan_maybe_store_origin if there are too many origin store
762 /// instrumentations.
763 void storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, Value *Shadow,
764 Value *Origin, Value *StoreOriginAddr, Align InstAlignment);
766 /// Convert a scalar value to an i1 by comparing with 0.
767 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = "");
769 bool shouldInstrumentWithCall();
771 /// Generates IR to load shadow and origin corresponding to bytes [\p
772 /// Addr, \p Addr + \p Size), where addr has alignment \p
773 /// InstAlignment, and take the union of each of those shadows. The returned
774 /// shadow always has primitive type.
775 std::pair<Value *, Value *>
776 loadShadowOriginSansLoadTracking(Value *Addr, uint64_t Size,
777 Align InstAlignment, Instruction *Pos);
778 int NumOriginStores = 0;
781 class DFSanVisitor : public InstVisitor<DFSanVisitor> {
782 public:
783 DFSanFunction &DFSF;
785 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
787 const DataLayout &getDataLayout() const {
788 return DFSF.F->getParent()->getDataLayout();
791 // Combines shadow values and origins for all of I's operands.
792 void visitInstOperands(Instruction &I);
794 void visitUnaryOperator(UnaryOperator &UO);
795 void visitBinaryOperator(BinaryOperator &BO);
796 void visitBitCastInst(BitCastInst &BCI);
797 void visitCastInst(CastInst &CI);
798 void visitCmpInst(CmpInst &CI);
799 void visitLandingPadInst(LandingPadInst &LPI);
800 void visitGetElementPtrInst(GetElementPtrInst &GEPI);
801 void visitLoadInst(LoadInst &LI);
802 void visitStoreInst(StoreInst &SI);
803 void visitAtomicRMWInst(AtomicRMWInst &I);
804 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I);
805 void visitReturnInst(ReturnInst &RI);
806 void visitLibAtomicLoad(CallBase &CB);
807 void visitLibAtomicStore(CallBase &CB);
808 void visitLibAtomicExchange(CallBase &CB);
809 void visitLibAtomicCompareExchange(CallBase &CB);
810 void visitCallBase(CallBase &CB);
811 void visitPHINode(PHINode &PN);
812 void visitExtractElementInst(ExtractElementInst &I);
813 void visitInsertElementInst(InsertElementInst &I);
814 void visitShuffleVectorInst(ShuffleVectorInst &I);
815 void visitExtractValueInst(ExtractValueInst &I);
816 void visitInsertValueInst(InsertValueInst &I);
817 void visitAllocaInst(AllocaInst &I);
818 void visitSelectInst(SelectInst &I);
819 void visitMemSetInst(MemSetInst &I);
820 void visitMemTransferInst(MemTransferInst &I);
821 void visitBranchInst(BranchInst &BR);
822 void visitSwitchInst(SwitchInst &SW);
824 private:
825 void visitCASOrRMW(Align InstAlignment, Instruction &I);
827 // Returns false when this is an invoke of a custom function.
828 bool visitWrappedCallBase(Function &F, CallBase &CB);
830 // Combines origins for all of I's operands.
831 void visitInstOperandOrigins(Instruction &I);
833 void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args,
834 IRBuilder<> &IRB);
836 void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args,
837 IRBuilder<> &IRB);
839 Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB);
840 Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB);
843 bool LibAtomicFunction(const Function &F) {
844 // This is a bit of a hack because TargetLibraryInfo is a function pass.
845 // The DFSan pass would need to be refactored to be function pass oriented
846 // (like MSan is) in order to fit together nicely with TargetLibraryInfo.
847 // We need this check to prevent them from being instrumented, or wrapped.
848 // Match on name and number of arguments.
849 if (!F.hasName() || F.isVarArg())
850 return false;
851 switch (F.arg_size()) {
852 case 4:
853 return F.getName() == "__atomic_load" || F.getName() == "__atomic_store";
854 case 5:
855 return F.getName() == "__atomic_exchange";
856 case 6:
857 return F.getName() == "__atomic_compare_exchange";
858 default:
859 return false;
863 } // end anonymous namespace
865 DataFlowSanitizer::DataFlowSanitizer(
866 const std::vector<std::string> &ABIListFiles) {
867 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles));
868 llvm::append_range(AllABIListFiles, ClABIListFiles);
869 // FIXME: should we propagate vfs::FileSystem to this constructor?
870 ABIList.set(
871 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem()));
873 for (StringRef v : ClCombineTaintLookupTables)
874 CombineTaintLookupTableNames.insert(v);
877 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
878 SmallVector<Type *, 4> ArgTypes;
880 // Some parameters of the custom function being constructed are
881 // parameters of T. Record the mapping from parameters of T to
882 // parameters of the custom function, so that parameter attributes
883 // at call sites can be updated.
884 std::vector<unsigned> ArgumentIndexMapping;
885 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) {
886 Type *ParamType = T->getParamType(I);
887 ArgumentIndexMapping.push_back(ArgTypes.size());
888 ArgTypes.push_back(ParamType);
890 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I)
891 ArgTypes.push_back(PrimitiveShadowTy);
892 if (T->isVarArg())
893 ArgTypes.push_back(PrimitiveShadowPtrTy);
894 Type *RetType = T->getReturnType();
895 if (!RetType->isVoidTy())
896 ArgTypes.push_back(PrimitiveShadowPtrTy);
898 if (shouldTrackOrigins()) {
899 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I)
900 ArgTypes.push_back(OriginTy);
901 if (T->isVarArg())
902 ArgTypes.push_back(OriginPtrTy);
903 if (!RetType->isVoidTy())
904 ArgTypes.push_back(OriginPtrTy);
907 return TransformedFunction(
908 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()),
909 ArgumentIndexMapping);
912 bool DataFlowSanitizer::isZeroShadow(Value *V) {
913 Type *T = V->getType();
914 if (!isa<ArrayType>(T) && !isa<StructType>(T)) {
915 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
916 return CI->isZero();
917 return false;
920 return isa<ConstantAggregateZero>(V);
923 bool DataFlowSanitizer::hasLoadSizeForFastPath(uint64_t Size) {
924 uint64_t ShadowSize = Size * ShadowWidthBytes;
925 return ShadowSize % 8 == 0 || ShadowSize == 4;
928 bool DataFlowSanitizer::shouldTrackOrigins() {
929 static const bool ShouldTrackOrigins = ClTrackOrigins;
930 return ShouldTrackOrigins;
933 Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) {
934 if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy))
935 return ZeroPrimitiveShadow;
936 Type *ShadowTy = getShadowTy(OrigTy);
937 return ConstantAggregateZero::get(ShadowTy);
940 Constant *DataFlowSanitizer::getZeroShadow(Value *V) {
941 return getZeroShadow(V->getType());
944 static Value *expandFromPrimitiveShadowRecursive(
945 Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy,
946 Value *PrimitiveShadow, IRBuilder<> &IRB) {
947 if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy))
948 return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices);
950 if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) {
951 for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) {
952 Indices.push_back(Idx);
953 Shadow = expandFromPrimitiveShadowRecursive(
954 Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB);
955 Indices.pop_back();
957 return Shadow;
960 if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) {
961 for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) {
962 Indices.push_back(Idx);
963 Shadow = expandFromPrimitiveShadowRecursive(
964 Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB);
965 Indices.pop_back();
967 return Shadow;
969 llvm_unreachable("Unexpected shadow type");
972 bool DFSanFunction::shouldInstrumentWithCall() {
973 return ClInstrumentWithCallThreshold >= 0 &&
974 NumOriginStores >= ClInstrumentWithCallThreshold;
977 Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow,
978 Instruction *Pos) {
979 Type *ShadowTy = DFS.getShadowTy(T);
981 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
982 return PrimitiveShadow;
984 if (DFS.isZeroShadow(PrimitiveShadow))
985 return DFS.getZeroShadow(ShadowTy);
987 IRBuilder<> IRB(Pos);
988 SmallVector<unsigned, 4> Indices;
989 Value *Shadow = UndefValue::get(ShadowTy);
990 Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy,
991 PrimitiveShadow, IRB);
993 // Caches the primitive shadow value that built the shadow value.
994 CachedCollapsedShadows[Shadow] = PrimitiveShadow;
995 return Shadow;
998 template <class AggregateType>
999 Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow,
1000 IRBuilder<> &IRB) {
1001 if (!AT->getNumElements())
1002 return DFS.ZeroPrimitiveShadow;
1004 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0);
1005 Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB);
1007 for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) {
1008 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx);
1009 Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB);
1010 Aggregator = IRB.CreateOr(Aggregator, ShadowInner);
1012 return Aggregator;
1015 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow,
1016 IRBuilder<> &IRB) {
1017 Type *ShadowTy = Shadow->getType();
1018 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
1019 return Shadow;
1020 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy))
1021 return collapseAggregateShadow<>(AT, Shadow, IRB);
1022 if (StructType *ST = dyn_cast<StructType>(ShadowTy))
1023 return collapseAggregateShadow<>(ST, Shadow, IRB);
1024 llvm_unreachable("Unexpected shadow type");
1027 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow,
1028 Instruction *Pos) {
1029 Type *ShadowTy = Shadow->getType();
1030 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
1031 return Shadow;
1033 // Checks if the cached collapsed shadow value dominates Pos.
1034 Value *&CS = CachedCollapsedShadows[Shadow];
1035 if (CS && DT.dominates(CS, Pos))
1036 return CS;
1038 IRBuilder<> IRB(Pos);
1039 Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB);
1040 // Caches the converted primitive shadow value.
1041 CS = PrimitiveShadow;
1042 return PrimitiveShadow;
1045 void DFSanFunction::addConditionalCallbacksIfEnabled(Instruction &I,
1046 Value *Condition) {
1047 if (!ClConditionalCallbacks) {
1048 return;
1050 IRBuilder<> IRB(&I);
1051 Value *CondShadow = getShadow(Condition);
1052 CallInst *CI;
1053 if (DFS.shouldTrackOrigins()) {
1054 Value *CondOrigin = getOrigin(Condition);
1055 CI = IRB.CreateCall(DFS.DFSanConditionalCallbackOriginFn,
1056 {CondShadow, CondOrigin});
1057 } else {
1058 CI = IRB.CreateCall(DFS.DFSanConditionalCallbackFn, {CondShadow});
1060 CI->addParamAttr(0, Attribute::ZExt);
1063 void DFSanFunction::addReachesFunctionCallbacksIfEnabled(IRBuilder<> &IRB,
1064 Instruction &I,
1065 Value *Data) {
1066 if (!ClReachesFunctionCallbacks) {
1067 return;
1069 const DebugLoc &dbgloc = I.getDebugLoc();
1070 Value *DataShadow = collapseToPrimitiveShadow(getShadow(Data), IRB);
1071 ConstantInt *CILine;
1072 llvm::Value *FilePathPtr;
1074 if (dbgloc.get() == nullptr) {
1075 CILine = llvm::ConstantInt::get(I.getContext(), llvm::APInt(32, 0));
1076 FilePathPtr = IRB.CreateGlobalStringPtr(
1077 I.getFunction()->getParent()->getSourceFileName());
1078 } else {
1079 CILine = llvm::ConstantInt::get(I.getContext(),
1080 llvm::APInt(32, dbgloc.getLine()));
1081 FilePathPtr =
1082 IRB.CreateGlobalStringPtr(dbgloc->getFilename());
1085 llvm::Value *FunctionNamePtr =
1086 IRB.CreateGlobalStringPtr(I.getFunction()->getName());
1088 CallInst *CB;
1089 std::vector<Value *> args;
1091 if (DFS.shouldTrackOrigins()) {
1092 Value *DataOrigin = getOrigin(Data);
1093 args = { DataShadow, DataOrigin, FilePathPtr, CILine, FunctionNamePtr };
1094 CB = IRB.CreateCall(DFS.DFSanReachesFunctionCallbackOriginFn, args);
1095 } else {
1096 args = { DataShadow, FilePathPtr, CILine, FunctionNamePtr };
1097 CB = IRB.CreateCall(DFS.DFSanReachesFunctionCallbackFn, args);
1099 CB->addParamAttr(0, Attribute::ZExt);
1100 CB->setDebugLoc(dbgloc);
1103 Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) {
1104 if (!OrigTy->isSized())
1105 return PrimitiveShadowTy;
1106 if (isa<IntegerType>(OrigTy))
1107 return PrimitiveShadowTy;
1108 if (isa<VectorType>(OrigTy))
1109 return PrimitiveShadowTy;
1110 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy))
1111 return ArrayType::get(getShadowTy(AT->getElementType()),
1112 AT->getNumElements());
1113 if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
1114 SmallVector<Type *, 4> Elements;
1115 for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I)
1116 Elements.push_back(getShadowTy(ST->getElementType(I)));
1117 return StructType::get(*Ctx, Elements);
1119 return PrimitiveShadowTy;
1122 Type *DataFlowSanitizer::getShadowTy(Value *V) {
1123 return getShadowTy(V->getType());
1126 bool DataFlowSanitizer::initializeModule(Module &M) {
1127 Triple TargetTriple(M.getTargetTriple());
1128 const DataLayout &DL = M.getDataLayout();
1130 if (TargetTriple.getOS() != Triple::Linux)
1131 report_fatal_error("unsupported operating system");
1132 switch (TargetTriple.getArch()) {
1133 case Triple::aarch64:
1134 MapParams = &Linux_AArch64_MemoryMapParams;
1135 break;
1136 case Triple::x86_64:
1137 MapParams = &Linux_X86_64_MemoryMapParams;
1138 break;
1139 case Triple::loongarch64:
1140 MapParams = &Linux_LoongArch64_MemoryMapParams;
1141 break;
1142 default:
1143 report_fatal_error("unsupported architecture");
1146 Mod = &M;
1147 Ctx = &M.getContext();
1148 Int8Ptr = Type::getInt8PtrTy(*Ctx);
1149 OriginTy = IntegerType::get(*Ctx, OriginWidthBits);
1150 OriginPtrTy = PointerType::getUnqual(OriginTy);
1151 PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits);
1152 PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy);
1153 IntptrTy = DL.getIntPtrType(*Ctx);
1154 ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0);
1155 ZeroOrigin = ConstantInt::getSigned(OriginTy, 0);
1157 Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy};
1158 DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs,
1159 /*isVarArg=*/false);
1160 Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy};
1161 DFSanLoadLabelAndOriginFnTy =
1162 FunctionType::get(IntegerType::get(*Ctx, 64), DFSanLoadLabelAndOriginArgs,
1163 /*isVarArg=*/false);
1164 DFSanUnimplementedFnTy = FunctionType::get(
1165 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
1166 Type *DFSanWrapperExternWeakNullArgs[2] = {Int8Ptr, Int8Ptr};
1167 DFSanWrapperExternWeakNullFnTy =
1168 FunctionType::get(Type::getVoidTy(*Ctx), DFSanWrapperExternWeakNullArgs,
1169 /*isVarArg=*/false);
1170 Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy,
1171 Type::getInt8PtrTy(*Ctx), IntptrTy};
1172 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
1173 DFSanSetLabelArgs, /*isVarArg=*/false);
1174 DFSanNonzeroLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), std::nullopt,
1175 /*isVarArg=*/false);
1176 DFSanVarargWrapperFnTy = FunctionType::get(
1177 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
1178 DFSanConditionalCallbackFnTy =
1179 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy,
1180 /*isVarArg=*/false);
1181 Type *DFSanConditionalCallbackOriginArgs[2] = {PrimitiveShadowTy, OriginTy};
1182 DFSanConditionalCallbackOriginFnTy = FunctionType::get(
1183 Type::getVoidTy(*Ctx), DFSanConditionalCallbackOriginArgs,
1184 /*isVarArg=*/false);
1185 Type *DFSanReachesFunctionCallbackArgs[4] = {PrimitiveShadowTy, Int8Ptr,
1186 OriginTy, Int8Ptr};
1187 DFSanReachesFunctionCallbackFnTy =
1188 FunctionType::get(Type::getVoidTy(*Ctx), DFSanReachesFunctionCallbackArgs,
1189 /*isVarArg=*/false);
1190 Type *DFSanReachesFunctionCallbackOriginArgs[5] = {
1191 PrimitiveShadowTy, OriginTy, Int8Ptr, OriginTy, Int8Ptr};
1192 DFSanReachesFunctionCallbackOriginFnTy = FunctionType::get(
1193 Type::getVoidTy(*Ctx), DFSanReachesFunctionCallbackOriginArgs,
1194 /*isVarArg=*/false);
1195 DFSanCmpCallbackFnTy =
1196 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy,
1197 /*isVarArg=*/false);
1198 DFSanChainOriginFnTy =
1199 FunctionType::get(OriginTy, OriginTy, /*isVarArg=*/false);
1200 Type *DFSanChainOriginIfTaintedArgs[2] = {PrimitiveShadowTy, OriginTy};
1201 DFSanChainOriginIfTaintedFnTy = FunctionType::get(
1202 OriginTy, DFSanChainOriginIfTaintedArgs, /*isVarArg=*/false);
1203 Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(*Ctx, ShadowWidthBits),
1204 Int8Ptr, IntptrTy, OriginTy};
1205 DFSanMaybeStoreOriginFnTy = FunctionType::get(
1206 Type::getVoidTy(*Ctx), DFSanMaybeStoreOriginArgs, /*isVarArg=*/false);
1207 Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy};
1208 DFSanMemOriginTransferFnTy = FunctionType::get(
1209 Type::getVoidTy(*Ctx), DFSanMemOriginTransferArgs, /*isVarArg=*/false);
1210 Type *DFSanMemShadowOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy};
1211 DFSanMemShadowOriginTransferFnTy =
1212 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemShadowOriginTransferArgs,
1213 /*isVarArg=*/false);
1214 Type *DFSanMemShadowOriginConditionalExchangeArgs[5] = {
1215 IntegerType::get(*Ctx, 8), Int8Ptr, Int8Ptr, Int8Ptr, IntptrTy};
1216 DFSanMemShadowOriginConditionalExchangeFnTy = FunctionType::get(
1217 Type::getVoidTy(*Ctx), DFSanMemShadowOriginConditionalExchangeArgs,
1218 /*isVarArg=*/false);
1219 Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr};
1220 DFSanLoadStoreCallbackFnTy =
1221 FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs,
1222 /*isVarArg=*/false);
1223 Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy};
1224 DFSanMemTransferCallbackFnTy =
1225 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs,
1226 /*isVarArg=*/false);
1228 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
1229 OriginStoreWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
1230 return true;
1233 bool DataFlowSanitizer::isInstrumented(const Function *F) {
1234 return !ABIList.isIn(*F, "uninstrumented");
1237 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
1238 return !ABIList.isIn(*GA, "uninstrumented");
1241 bool DataFlowSanitizer::isForceZeroLabels(const Function *F) {
1242 return ABIList.isIn(*F, "force_zero_labels");
1245 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
1246 if (ABIList.isIn(*F, "functional"))
1247 return WK_Functional;
1248 if (ABIList.isIn(*F, "discard"))
1249 return WK_Discard;
1250 if (ABIList.isIn(*F, "custom"))
1251 return WK_Custom;
1253 return WK_Warning;
1256 void DataFlowSanitizer::addGlobalNameSuffix(GlobalValue *GV) {
1257 std::string GVName = std::string(GV->getName()), Suffix = ".dfsan";
1258 GV->setName(GVName + Suffix);
1260 // Try to change the name of the function in module inline asm. We only do
1261 // this for specific asm directives, currently only ".symver", to try to avoid
1262 // corrupting asm which happens to contain the symbol name as a substring.
1263 // Note that the substitution for .symver assumes that the versioned symbol
1264 // also has an instrumented name.
1265 std::string Asm = GV->getParent()->getModuleInlineAsm();
1266 std::string SearchStr = ".symver " + GVName + ",";
1267 size_t Pos = Asm.find(SearchStr);
1268 if (Pos != std::string::npos) {
1269 Asm.replace(Pos, SearchStr.size(), ".symver " + GVName + Suffix + ",");
1270 Pos = Asm.find('@');
1272 if (Pos == std::string::npos)
1273 report_fatal_error(Twine("unsupported .symver: ", Asm));
1275 Asm.replace(Pos, 1, Suffix + "@");
1276 GV->getParent()->setModuleInlineAsm(Asm);
1280 void DataFlowSanitizer::buildExternWeakCheckIfNeeded(IRBuilder<> &IRB,
1281 Function *F) {
1282 // If the function we are wrapping was ExternWeak, it may be null.
1283 // The original code before calling this wrapper may have checked for null,
1284 // but replacing with a known-to-not-be-null wrapper can break this check.
1285 // When replacing uses of the extern weak function with the wrapper we try
1286 // to avoid replacing uses in conditionals, but this is not perfect.
1287 // In the case where we fail, and accidentally optimize out a null check
1288 // for a extern weak function, add a check here to help identify the issue.
1289 if (GlobalValue::isExternalWeakLinkage(F->getLinkage())) {
1290 std::vector<Value *> Args;
1291 Args.push_back(IRB.CreatePointerCast(F, IRB.getInt8PtrTy()));
1292 Args.push_back(IRB.CreateGlobalStringPtr(F->getName()));
1293 IRB.CreateCall(DFSanWrapperExternWeakNullFn, Args);
1297 Function *
1298 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
1299 GlobalValue::LinkageTypes NewFLink,
1300 FunctionType *NewFT) {
1301 FunctionType *FT = F->getFunctionType();
1302 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(),
1303 NewFName, F->getParent());
1304 NewF->copyAttributesFrom(F);
1305 NewF->removeRetAttrs(
1306 AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
1308 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
1309 if (F->isVarArg()) {
1310 NewF->removeFnAttr("split-stack");
1311 CallInst::Create(DFSanVarargWrapperFn,
1312 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "",
1313 BB);
1314 new UnreachableInst(*Ctx, BB);
1315 } else {
1316 auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin());
1317 std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams());
1319 CallInst *CI = CallInst::Create(F, Args, "", BB);
1320 if (FT->getReturnType()->isVoidTy())
1321 ReturnInst::Create(*Ctx, BB);
1322 else
1323 ReturnInst::Create(*Ctx, CI, BB);
1326 return NewF;
1329 // Initialize DataFlowSanitizer runtime functions and declare them in the module
1330 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) {
1331 LLVMContext &C = M.getContext();
1333 AttributeList AL;
1334 AL = AL.addFnAttribute(C, Attribute::NoUnwind);
1335 AL = AL.addFnAttribute(
1336 C, Attribute::getWithMemoryEffects(C, MemoryEffects::readOnly()));
1337 AL = AL.addRetAttribute(C, Attribute::ZExt);
1338 DFSanUnionLoadFn =
1339 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL);
1342 AttributeList AL;
1343 AL = AL.addFnAttribute(C, Attribute::NoUnwind);
1344 AL = AL.addFnAttribute(
1345 C, Attribute::getWithMemoryEffects(C, MemoryEffects::readOnly()));
1346 AL = AL.addRetAttribute(C, Attribute::ZExt);
1347 DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction(
1348 "__dfsan_load_label_and_origin", DFSanLoadLabelAndOriginFnTy, AL);
1350 DFSanUnimplementedFn =
1351 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
1352 DFSanWrapperExternWeakNullFn = Mod->getOrInsertFunction(
1353 "__dfsan_wrapper_extern_weak_null", DFSanWrapperExternWeakNullFnTy);
1355 AttributeList AL;
1356 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1357 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
1358 DFSanSetLabelFn =
1359 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL);
1361 DFSanNonzeroLabelFn =
1362 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
1363 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper",
1364 DFSanVarargWrapperFnTy);
1366 AttributeList AL;
1367 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1368 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt);
1369 DFSanChainOriginFn = Mod->getOrInsertFunction("__dfsan_chain_origin",
1370 DFSanChainOriginFnTy, AL);
1373 AttributeList AL;
1374 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1375 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
1376 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt);
1377 DFSanChainOriginIfTaintedFn = Mod->getOrInsertFunction(
1378 "__dfsan_chain_origin_if_tainted", DFSanChainOriginIfTaintedFnTy, AL);
1380 DFSanMemOriginTransferFn = Mod->getOrInsertFunction(
1381 "__dfsan_mem_origin_transfer", DFSanMemOriginTransferFnTy);
1383 DFSanMemShadowOriginTransferFn = Mod->getOrInsertFunction(
1384 "__dfsan_mem_shadow_origin_transfer", DFSanMemShadowOriginTransferFnTy);
1386 DFSanMemShadowOriginConditionalExchangeFn =
1387 Mod->getOrInsertFunction("__dfsan_mem_shadow_origin_conditional_exchange",
1388 DFSanMemShadowOriginConditionalExchangeFnTy);
1391 AttributeList AL;
1392 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1393 AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt);
1394 DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction(
1395 "__dfsan_maybe_store_origin", DFSanMaybeStoreOriginFnTy, AL);
1398 DFSanRuntimeFunctions.insert(
1399 DFSanUnionLoadFn.getCallee()->stripPointerCasts());
1400 DFSanRuntimeFunctions.insert(
1401 DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts());
1402 DFSanRuntimeFunctions.insert(
1403 DFSanUnimplementedFn.getCallee()->stripPointerCasts());
1404 DFSanRuntimeFunctions.insert(
1405 DFSanWrapperExternWeakNullFn.getCallee()->stripPointerCasts());
1406 DFSanRuntimeFunctions.insert(
1407 DFSanSetLabelFn.getCallee()->stripPointerCasts());
1408 DFSanRuntimeFunctions.insert(
1409 DFSanNonzeroLabelFn.getCallee()->stripPointerCasts());
1410 DFSanRuntimeFunctions.insert(
1411 DFSanVarargWrapperFn.getCallee()->stripPointerCasts());
1412 DFSanRuntimeFunctions.insert(
1413 DFSanLoadCallbackFn.getCallee()->stripPointerCasts());
1414 DFSanRuntimeFunctions.insert(
1415 DFSanStoreCallbackFn.getCallee()->stripPointerCasts());
1416 DFSanRuntimeFunctions.insert(
1417 DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts());
1418 DFSanRuntimeFunctions.insert(
1419 DFSanConditionalCallbackFn.getCallee()->stripPointerCasts());
1420 DFSanRuntimeFunctions.insert(
1421 DFSanConditionalCallbackOriginFn.getCallee()->stripPointerCasts());
1422 DFSanRuntimeFunctions.insert(
1423 DFSanReachesFunctionCallbackFn.getCallee()->stripPointerCasts());
1424 DFSanRuntimeFunctions.insert(
1425 DFSanReachesFunctionCallbackOriginFn.getCallee()->stripPointerCasts());
1426 DFSanRuntimeFunctions.insert(
1427 DFSanCmpCallbackFn.getCallee()->stripPointerCasts());
1428 DFSanRuntimeFunctions.insert(
1429 DFSanChainOriginFn.getCallee()->stripPointerCasts());
1430 DFSanRuntimeFunctions.insert(
1431 DFSanChainOriginIfTaintedFn.getCallee()->stripPointerCasts());
1432 DFSanRuntimeFunctions.insert(
1433 DFSanMemOriginTransferFn.getCallee()->stripPointerCasts());
1434 DFSanRuntimeFunctions.insert(
1435 DFSanMemShadowOriginTransferFn.getCallee()->stripPointerCasts());
1436 DFSanRuntimeFunctions.insert(
1437 DFSanMemShadowOriginConditionalExchangeFn.getCallee()
1438 ->stripPointerCasts());
1439 DFSanRuntimeFunctions.insert(
1440 DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts());
1443 // Initializes event callback functions and declare them in the module
1444 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) {
1446 AttributeList AL;
1447 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1448 DFSanLoadCallbackFn = Mod->getOrInsertFunction(
1449 "__dfsan_load_callback", DFSanLoadStoreCallbackFnTy, AL);
1452 AttributeList AL;
1453 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1454 DFSanStoreCallbackFn = Mod->getOrInsertFunction(
1455 "__dfsan_store_callback", DFSanLoadStoreCallbackFnTy, AL);
1457 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction(
1458 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy);
1460 AttributeList AL;
1461 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1462 DFSanCmpCallbackFn = Mod->getOrInsertFunction("__dfsan_cmp_callback",
1463 DFSanCmpCallbackFnTy, AL);
1466 AttributeList AL;
1467 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1468 DFSanConditionalCallbackFn = Mod->getOrInsertFunction(
1469 "__dfsan_conditional_callback", DFSanConditionalCallbackFnTy, AL);
1472 AttributeList AL;
1473 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1474 DFSanConditionalCallbackOriginFn =
1475 Mod->getOrInsertFunction("__dfsan_conditional_callback_origin",
1476 DFSanConditionalCallbackOriginFnTy, AL);
1479 AttributeList AL;
1480 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1481 DFSanReachesFunctionCallbackFn =
1482 Mod->getOrInsertFunction("__dfsan_reaches_function_callback",
1483 DFSanReachesFunctionCallbackFnTy, AL);
1486 AttributeList AL;
1487 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1488 DFSanReachesFunctionCallbackOriginFn =
1489 Mod->getOrInsertFunction("__dfsan_reaches_function_callback_origin",
1490 DFSanReachesFunctionCallbackOriginFnTy, AL);
1494 bool DataFlowSanitizer::runImpl(
1495 Module &M, llvm::function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
1496 initializeModule(M);
1498 if (ABIList.isIn(M, "skip"))
1499 return false;
1501 const unsigned InitialGlobalSize = M.global_size();
1502 const unsigned InitialModuleSize = M.size();
1504 bool Changed = false;
1506 auto GetOrInsertGlobal = [this, &Changed](StringRef Name,
1507 Type *Ty) -> Constant * {
1508 Constant *C = Mod->getOrInsertGlobal(Name, Ty);
1509 if (GlobalVariable *G = dyn_cast<GlobalVariable>(C)) {
1510 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel;
1511 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
1513 return C;
1516 // These globals must be kept in sync with the ones in dfsan.cpp.
1517 ArgTLS =
1518 GetOrInsertGlobal("__dfsan_arg_tls",
1519 ArrayType::get(Type::getInt64Ty(*Ctx), ArgTLSSize / 8));
1520 RetvalTLS = GetOrInsertGlobal(
1521 "__dfsan_retval_tls",
1522 ArrayType::get(Type::getInt64Ty(*Ctx), RetvalTLSSize / 8));
1523 ArgOriginTLSTy = ArrayType::get(OriginTy, NumOfElementsInArgOrgTLS);
1524 ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls", ArgOriginTLSTy);
1525 RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls", OriginTy);
1527 (void)Mod->getOrInsertGlobal("__dfsan_track_origins", OriginTy, [&] {
1528 Changed = true;
1529 return new GlobalVariable(
1530 M, OriginTy, true, GlobalValue::WeakODRLinkage,
1531 ConstantInt::getSigned(OriginTy,
1532 shouldTrackOrigins() ? ClTrackOrigins : 0),
1533 "__dfsan_track_origins");
1536 initializeCallbackFunctions(M);
1537 initializeRuntimeFunctions(M);
1539 std::vector<Function *> FnsToInstrument;
1540 SmallPtrSet<Function *, 2> FnsWithNativeABI;
1541 SmallPtrSet<Function *, 2> FnsWithForceZeroLabel;
1542 SmallPtrSet<Constant *, 1> PersonalityFns;
1543 for (Function &F : M)
1544 if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(&F) &&
1545 !LibAtomicFunction(F)) {
1546 FnsToInstrument.push_back(&F);
1547 if (F.hasPersonalityFn())
1548 PersonalityFns.insert(F.getPersonalityFn()->stripPointerCasts());
1551 if (ClIgnorePersonalityRoutine) {
1552 for (auto *C : PersonalityFns) {
1553 assert(isa<Function>(C) && "Personality routine is not a function!");
1554 Function *F = cast<Function>(C);
1555 if (!isInstrumented(F))
1556 llvm::erase_value(FnsToInstrument, F);
1560 // Give function aliases prefixes when necessary, and build wrappers where the
1561 // instrumentedness is inconsistent.
1562 for (GlobalAlias &GA : llvm::make_early_inc_range(M.aliases())) {
1563 // Don't stop on weak. We assume people aren't playing games with the
1564 // instrumentedness of overridden weak aliases.
1565 auto *F = dyn_cast<Function>(GA.getAliaseeObject());
1566 if (!F)
1567 continue;
1569 bool GAInst = isInstrumented(&GA), FInst = isInstrumented(F);
1570 if (GAInst && FInst) {
1571 addGlobalNameSuffix(&GA);
1572 } else if (GAInst != FInst) {
1573 // Non-instrumented alias of an instrumented function, or vice versa.
1574 // Replace the alias with a native-ABI wrapper of the aliasee. The pass
1575 // below will take care of instrumenting it.
1576 Function *NewF =
1577 buildWrapperFunction(F, "", GA.getLinkage(), F->getFunctionType());
1578 GA.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA.getType()));
1579 NewF->takeName(&GA);
1580 GA.eraseFromParent();
1581 FnsToInstrument.push_back(NewF);
1585 // TODO: This could be more precise.
1586 ReadOnlyNoneAttrs.addAttribute(Attribute::Memory);
1588 // First, change the ABI of every function in the module. ABI-listed
1589 // functions keep their original ABI and get a wrapper function.
1590 for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(),
1591 FE = FnsToInstrument.end();
1592 FI != FE; ++FI) {
1593 Function &F = **FI;
1594 FunctionType *FT = F.getFunctionType();
1596 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
1597 FT->getReturnType()->isVoidTy());
1599 if (isInstrumented(&F)) {
1600 if (isForceZeroLabels(&F))
1601 FnsWithForceZeroLabel.insert(&F);
1603 // Instrumented functions get a '.dfsan' suffix. This allows us to more
1604 // easily identify cases of mismatching ABIs. This naming scheme is
1605 // mangling-compatible (see Itanium ABI), using a vendor-specific suffix.
1606 addGlobalNameSuffix(&F);
1607 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
1608 // Build a wrapper function for F. The wrapper simply calls F, and is
1609 // added to FnsToInstrument so that any instrumentation according to its
1610 // WrapperKind is done in the second pass below.
1612 // If the function being wrapped has local linkage, then preserve the
1613 // function's linkage in the wrapper function.
1614 GlobalValue::LinkageTypes WrapperLinkage =
1615 F.hasLocalLinkage() ? F.getLinkage()
1616 : GlobalValue::LinkOnceODRLinkage;
1618 Function *NewF = buildWrapperFunction(
1620 (shouldTrackOrigins() ? std::string("dfso$") : std::string("dfsw$")) +
1621 std::string(F.getName()),
1622 WrapperLinkage, FT);
1623 NewF->removeFnAttrs(ReadOnlyNoneAttrs);
1625 Value *WrappedFnCst =
1626 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
1628 // Extern weak functions can sometimes be null at execution time.
1629 // Code will sometimes check if an extern weak function is null.
1630 // This could look something like:
1631 // declare extern_weak i8 @my_func(i8)
1632 // br i1 icmp ne (i8 (i8)* @my_func, i8 (i8)* null), label %use_my_func,
1633 // label %avoid_my_func
1634 // The @"dfsw$my_func" wrapper is never null, so if we replace this use
1635 // in the comparison, the icmp will simplify to false and we have
1636 // accidentally optimized away a null check that is necessary.
1637 // This can lead to a crash when the null extern_weak my_func is called.
1639 // To prevent (the most common pattern of) this problem,
1640 // do not replace uses in comparisons with the wrapper.
1641 // We definitely want to replace uses in call instructions.
1642 // Other uses (e.g. store the function address somewhere) might be
1643 // called or compared or both - this case may not be handled correctly.
1644 // We will default to replacing with wrapper in cases we are unsure.
1645 auto IsNotCmpUse = [](Use &U) -> bool {
1646 User *Usr = U.getUser();
1647 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) {
1648 // This is the most common case for icmp ne null
1649 if (CE->getOpcode() == Instruction::ICmp) {
1650 return false;
1653 if (Instruction *I = dyn_cast<Instruction>(Usr)) {
1654 if (I->getOpcode() == Instruction::ICmp) {
1655 return false;
1658 return true;
1660 F.replaceUsesWithIf(WrappedFnCst, IsNotCmpUse);
1662 UnwrappedFnMap[WrappedFnCst] = &F;
1663 *FI = NewF;
1665 if (!F.isDeclaration()) {
1666 // This function is probably defining an interposition of an
1667 // uninstrumented function and hence needs to keep the original ABI.
1668 // But any functions it may call need to use the instrumented ABI, so
1669 // we instrument it in a mode which preserves the original ABI.
1670 FnsWithNativeABI.insert(&F);
1672 // This code needs to rebuild the iterators, as they may be invalidated
1673 // by the push_back, taking care that the new range does not include
1674 // any functions added by this code.
1675 size_t N = FI - FnsToInstrument.begin(),
1676 Count = FE - FnsToInstrument.begin();
1677 FnsToInstrument.push_back(&F);
1678 FI = FnsToInstrument.begin() + N;
1679 FE = FnsToInstrument.begin() + Count;
1681 // Hopefully, nobody will try to indirectly call a vararg
1682 // function... yet.
1683 } else if (FT->isVarArg()) {
1684 UnwrappedFnMap[&F] = &F;
1685 *FI = nullptr;
1689 for (Function *F : FnsToInstrument) {
1690 if (!F || F->isDeclaration())
1691 continue;
1693 removeUnreachableBlocks(*F);
1695 DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(F),
1696 FnsWithForceZeroLabel.count(F), GetTLI(*F));
1698 if (ClReachesFunctionCallbacks) {
1699 // Add callback for arguments reaching this function.
1700 for (auto &FArg : F->args()) {
1701 Instruction *Next = &F->getEntryBlock().front();
1702 Value *FArgShadow = DFSF.getShadow(&FArg);
1703 if (isZeroShadow(FArgShadow))
1704 continue;
1705 if (Instruction *FArgShadowInst = dyn_cast<Instruction>(FArgShadow)) {
1706 Next = FArgShadowInst->getNextNode();
1708 if (shouldTrackOrigins()) {
1709 if (Instruction *Origin =
1710 dyn_cast<Instruction>(DFSF.getOrigin(&FArg))) {
1711 // Ensure IRB insertion point is after loads for shadow and origin.
1712 Instruction *OriginNext = Origin->getNextNode();
1713 if (Next->comesBefore(OriginNext)) {
1714 Next = OriginNext;
1718 IRBuilder<> IRB(Next);
1719 DFSF.addReachesFunctionCallbacksIfEnabled(IRB, *Next, &FArg);
1723 // DFSanVisitor may create new basic blocks, which confuses df_iterator.
1724 // Build a copy of the list before iterating over it.
1725 SmallVector<BasicBlock *, 4> BBList(depth_first(&F->getEntryBlock()));
1727 for (BasicBlock *BB : BBList) {
1728 Instruction *Inst = &BB->front();
1729 while (true) {
1730 // DFSanVisitor may split the current basic block, changing the current
1731 // instruction's next pointer and moving the next instruction to the
1732 // tail block from which we should continue.
1733 Instruction *Next = Inst->getNextNode();
1734 // DFSanVisitor may delete Inst, so keep track of whether it was a
1735 // terminator.
1736 bool IsTerminator = Inst->isTerminator();
1737 if (!DFSF.SkipInsts.count(Inst))
1738 DFSanVisitor(DFSF).visit(Inst);
1739 if (IsTerminator)
1740 break;
1741 Inst = Next;
1745 // We will not necessarily be able to compute the shadow for every phi node
1746 // until we have visited every block. Therefore, the code that handles phi
1747 // nodes adds them to the PHIFixups list so that they can be properly
1748 // handled here.
1749 for (DFSanFunction::PHIFixupElement &P : DFSF.PHIFixups) {
1750 for (unsigned Val = 0, N = P.Phi->getNumIncomingValues(); Val != N;
1751 ++Val) {
1752 P.ShadowPhi->setIncomingValue(
1753 Val, DFSF.getShadow(P.Phi->getIncomingValue(Val)));
1754 if (P.OriginPhi)
1755 P.OriginPhi->setIncomingValue(
1756 Val, DFSF.getOrigin(P.Phi->getIncomingValue(Val)));
1760 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
1761 // places (i.e. instructions in basic blocks we haven't even begun visiting
1762 // yet). To make our life easier, do this work in a pass after the main
1763 // instrumentation.
1764 if (ClDebugNonzeroLabels) {
1765 for (Value *V : DFSF.NonZeroChecks) {
1766 Instruction *Pos;
1767 if (Instruction *I = dyn_cast<Instruction>(V))
1768 Pos = I->getNextNode();
1769 else
1770 Pos = &DFSF.F->getEntryBlock().front();
1771 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
1772 Pos = Pos->getNextNode();
1773 IRBuilder<> IRB(Pos);
1774 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos);
1775 Value *Ne =
1776 IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow);
1777 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
1778 Ne, Pos, /*Unreachable=*/false, ColdCallWeights));
1779 IRBuilder<> ThenIRB(BI);
1780 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {});
1785 return Changed || !FnsToInstrument.empty() ||
1786 M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize;
1789 Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) {
1790 Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy);
1791 if (ArgOffset)
1792 Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset));
1793 return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0),
1794 "_dfsarg");
1797 Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) {
1798 return IRB.CreatePointerCast(
1799 DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret");
1802 Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; }
1804 Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) {
1805 return IRB.CreateConstGEP2_64(DFS.ArgOriginTLSTy, DFS.ArgOriginTLS, 0, ArgNo,
1806 "_dfsarg_o");
1809 Value *DFSanFunction::getOrigin(Value *V) {
1810 assert(DFS.shouldTrackOrigins());
1811 if (!isa<Argument>(V) && !isa<Instruction>(V))
1812 return DFS.ZeroOrigin;
1813 Value *&Origin = ValOriginMap[V];
1814 if (!Origin) {
1815 if (Argument *A = dyn_cast<Argument>(V)) {
1816 if (IsNativeABI)
1817 return DFS.ZeroOrigin;
1818 if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) {
1819 Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin();
1820 IRBuilder<> IRB(ArgOriginTLSPos);
1821 Value *ArgOriginPtr = getArgOriginTLS(A->getArgNo(), IRB);
1822 Origin = IRB.CreateLoad(DFS.OriginTy, ArgOriginPtr);
1823 } else {
1824 // Overflow
1825 Origin = DFS.ZeroOrigin;
1827 } else {
1828 Origin = DFS.ZeroOrigin;
1831 return Origin;
1834 void DFSanFunction::setOrigin(Instruction *I, Value *Origin) {
1835 if (!DFS.shouldTrackOrigins())
1836 return;
1837 assert(!ValOriginMap.count(I));
1838 assert(Origin->getType() == DFS.OriginTy);
1839 ValOriginMap[I] = Origin;
1842 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) {
1843 unsigned ArgOffset = 0;
1844 const DataLayout &DL = F->getParent()->getDataLayout();
1845 for (auto &FArg : F->args()) {
1846 if (!FArg.getType()->isSized()) {
1847 if (A == &FArg)
1848 break;
1849 continue;
1852 unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg));
1853 if (A != &FArg) {
1854 ArgOffset += alignTo(Size, ShadowTLSAlignment);
1855 if (ArgOffset > ArgTLSSize)
1856 break; // ArgTLS overflows, uses a zero shadow.
1857 continue;
1860 if (ArgOffset + Size > ArgTLSSize)
1861 break; // ArgTLS overflows, uses a zero shadow.
1863 Instruction *ArgTLSPos = &*F->getEntryBlock().begin();
1864 IRBuilder<> IRB(ArgTLSPos);
1865 Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB);
1866 return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr,
1867 ShadowTLSAlignment);
1870 return DFS.getZeroShadow(A);
1873 Value *DFSanFunction::getShadow(Value *V) {
1874 if (!isa<Argument>(V) && !isa<Instruction>(V))
1875 return DFS.getZeroShadow(V);
1876 if (IsForceZeroLabels)
1877 return DFS.getZeroShadow(V);
1878 Value *&Shadow = ValShadowMap[V];
1879 if (!Shadow) {
1880 if (Argument *A = dyn_cast<Argument>(V)) {
1881 if (IsNativeABI)
1882 return DFS.getZeroShadow(V);
1883 Shadow = getShadowForTLSArgument(A);
1884 NonZeroChecks.push_back(Shadow);
1885 } else {
1886 Shadow = DFS.getZeroShadow(V);
1889 return Shadow;
1892 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
1893 assert(!ValShadowMap.count(I));
1894 ValShadowMap[I] = Shadow;
1897 /// Compute the integer shadow offset that corresponds to a given
1898 /// application address.
1900 /// Offset = (Addr & ~AndMask) ^ XorMask
1901 Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) {
1902 assert(Addr != RetvalTLS && "Reinstrumenting?");
1903 Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy);
1905 uint64_t AndMask = MapParams->AndMask;
1906 if (AndMask)
1907 OffsetLong =
1908 IRB.CreateAnd(OffsetLong, ConstantInt::get(IntptrTy, ~AndMask));
1910 uint64_t XorMask = MapParams->XorMask;
1911 if (XorMask)
1912 OffsetLong = IRB.CreateXor(OffsetLong, ConstantInt::get(IntptrTy, XorMask));
1913 return OffsetLong;
1916 std::pair<Value *, Value *>
1917 DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment,
1918 Instruction *Pos) {
1919 // Returns ((Addr & shadow_mask) + origin_base - shadow_base) & ~4UL
1920 IRBuilder<> IRB(Pos);
1921 Value *ShadowOffset = getShadowOffset(Addr, IRB);
1922 Value *ShadowLong = ShadowOffset;
1923 uint64_t ShadowBase = MapParams->ShadowBase;
1924 if (ShadowBase != 0) {
1925 ShadowLong =
1926 IRB.CreateAdd(ShadowLong, ConstantInt::get(IntptrTy, ShadowBase));
1928 IntegerType *ShadowTy = IntegerType::get(*Ctx, ShadowWidthBits);
1929 Value *ShadowPtr =
1930 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
1931 Value *OriginPtr = nullptr;
1932 if (shouldTrackOrigins()) {
1933 Value *OriginLong = ShadowOffset;
1934 uint64_t OriginBase = MapParams->OriginBase;
1935 if (OriginBase != 0)
1936 OriginLong =
1937 IRB.CreateAdd(OriginLong, ConstantInt::get(IntptrTy, OriginBase));
1938 const Align Alignment = llvm::assumeAligned(InstAlignment.value());
1939 // When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB.
1940 // So Mask is unnecessary.
1941 if (Alignment < MinOriginAlignment) {
1942 uint64_t Mask = MinOriginAlignment.value() - 1;
1943 OriginLong = IRB.CreateAnd(OriginLong, ConstantInt::get(IntptrTy, ~Mask));
1945 OriginPtr = IRB.CreateIntToPtr(OriginLong, OriginPtrTy);
1947 return std::make_pair(ShadowPtr, OriginPtr);
1950 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos,
1951 Value *ShadowOffset) {
1952 IRBuilder<> IRB(Pos);
1953 return IRB.CreateIntToPtr(ShadowOffset, PrimitiveShadowPtrTy);
1956 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) {
1957 IRBuilder<> IRB(Pos);
1958 Value *ShadowOffset = getShadowOffset(Addr, IRB);
1959 return getShadowAddress(Addr, Pos, ShadowOffset);
1962 Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2,
1963 Instruction *Pos) {
1964 Value *PrimitiveValue = combineShadows(V1, V2, Pos);
1965 return expandFromPrimitiveShadow(T, PrimitiveValue, Pos);
1968 // Generates IR to compute the union of the two given shadows, inserting it
1969 // before Pos. The combined value is with primitive type.
1970 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) {
1971 if (DFS.isZeroShadow(V1))
1972 return collapseToPrimitiveShadow(V2, Pos);
1973 if (DFS.isZeroShadow(V2))
1974 return collapseToPrimitiveShadow(V1, Pos);
1975 if (V1 == V2)
1976 return collapseToPrimitiveShadow(V1, Pos);
1978 auto V1Elems = ShadowElements.find(V1);
1979 auto V2Elems = ShadowElements.find(V2);
1980 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) {
1981 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(),
1982 V2Elems->second.begin(), V2Elems->second.end())) {
1983 return collapseToPrimitiveShadow(V1, Pos);
1985 if (std::includes(V2Elems->second.begin(), V2Elems->second.end(),
1986 V1Elems->second.begin(), V1Elems->second.end())) {
1987 return collapseToPrimitiveShadow(V2, Pos);
1989 } else if (V1Elems != ShadowElements.end()) {
1990 if (V1Elems->second.count(V2))
1991 return collapseToPrimitiveShadow(V1, Pos);
1992 } else if (V2Elems != ShadowElements.end()) {
1993 if (V2Elems->second.count(V1))
1994 return collapseToPrimitiveShadow(V2, Pos);
1997 auto Key = std::make_pair(V1, V2);
1998 if (V1 > V2)
1999 std::swap(Key.first, Key.second);
2000 CachedShadow &CCS = CachedShadows[Key];
2001 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent()))
2002 return CCS.Shadow;
2004 // Converts inputs shadows to shadows with primitive types.
2005 Value *PV1 = collapseToPrimitiveShadow(V1, Pos);
2006 Value *PV2 = collapseToPrimitiveShadow(V2, Pos);
2008 IRBuilder<> IRB(Pos);
2009 CCS.Block = Pos->getParent();
2010 CCS.Shadow = IRB.CreateOr(PV1, PV2);
2012 std::set<Value *> UnionElems;
2013 if (V1Elems != ShadowElements.end()) {
2014 UnionElems = V1Elems->second;
2015 } else {
2016 UnionElems.insert(V1);
2018 if (V2Elems != ShadowElements.end()) {
2019 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end());
2020 } else {
2021 UnionElems.insert(V2);
2023 ShadowElements[CCS.Shadow] = std::move(UnionElems);
2025 return CCS.Shadow;
2028 // A convenience function which folds the shadows of each of the operands
2029 // of the provided instruction Inst, inserting the IR before Inst. Returns
2030 // the computed union Value.
2031 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
2032 if (Inst->getNumOperands() == 0)
2033 return DFS.getZeroShadow(Inst);
2035 Value *Shadow = getShadow(Inst->getOperand(0));
2036 for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I)
2037 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(I)), Inst);
2039 return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst);
2042 void DFSanVisitor::visitInstOperands(Instruction &I) {
2043 Value *CombinedShadow = DFSF.combineOperandShadows(&I);
2044 DFSF.setShadow(&I, CombinedShadow);
2045 visitInstOperandOrigins(I);
2048 Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows,
2049 const std::vector<Value *> &Origins,
2050 Instruction *Pos, ConstantInt *Zero) {
2051 assert(Shadows.size() == Origins.size());
2052 size_t Size = Origins.size();
2053 if (Size == 0)
2054 return DFS.ZeroOrigin;
2055 Value *Origin = nullptr;
2056 if (!Zero)
2057 Zero = DFS.ZeroPrimitiveShadow;
2058 for (size_t I = 0; I != Size; ++I) {
2059 Value *OpOrigin = Origins[I];
2060 Constant *ConstOpOrigin = dyn_cast<Constant>(OpOrigin);
2061 if (ConstOpOrigin && ConstOpOrigin->isNullValue())
2062 continue;
2063 if (!Origin) {
2064 Origin = OpOrigin;
2065 continue;
2067 Value *OpShadow = Shadows[I];
2068 Value *PrimitiveShadow = collapseToPrimitiveShadow(OpShadow, Pos);
2069 IRBuilder<> IRB(Pos);
2070 Value *Cond = IRB.CreateICmpNE(PrimitiveShadow, Zero);
2071 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
2073 return Origin ? Origin : DFS.ZeroOrigin;
2076 Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) {
2077 size_t Size = Inst->getNumOperands();
2078 std::vector<Value *> Shadows(Size);
2079 std::vector<Value *> Origins(Size);
2080 for (unsigned I = 0; I != Size; ++I) {
2081 Shadows[I] = getShadow(Inst->getOperand(I));
2082 Origins[I] = getOrigin(Inst->getOperand(I));
2084 return combineOrigins(Shadows, Origins, Inst);
2087 void DFSanVisitor::visitInstOperandOrigins(Instruction &I) {
2088 if (!DFSF.DFS.shouldTrackOrigins())
2089 return;
2090 Value *CombinedOrigin = DFSF.combineOperandOrigins(&I);
2091 DFSF.setOrigin(&I, CombinedOrigin);
2094 Align DFSanFunction::getShadowAlign(Align InstAlignment) {
2095 const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1);
2096 return Align(Alignment.value() * DFS.ShadowWidthBytes);
2099 Align DFSanFunction::getOriginAlign(Align InstAlignment) {
2100 const Align Alignment = llvm::assumeAligned(InstAlignment.value());
2101 return Align(std::max(MinOriginAlignment, Alignment));
2104 bool DFSanFunction::isLookupTableConstant(Value *P) {
2105 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P->stripPointerCasts()))
2106 if (GV->isConstant() && GV->hasName())
2107 return DFS.CombineTaintLookupTableNames.count(GV->getName());
2109 return false;
2112 bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size,
2113 Align InstAlignment) {
2114 // When enabling tracking load instructions, we always use
2115 // __dfsan_load_label_and_origin to reduce code size.
2116 if (ClTrackOrigins == 2)
2117 return true;
2119 assert(Size != 0);
2120 // * if Size == 1, it is sufficient to load its origin aligned at 4.
2121 // * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to
2122 // load its origin aligned at 4. If not, although origins may be lost, it
2123 // should not happen very often.
2124 // * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When
2125 // Size % 4 == 0, it is more efficient to load origins without callbacks.
2126 // * Otherwise we use __dfsan_load_label_and_origin.
2127 // This should ensure that common cases run efficiently.
2128 if (Size <= 2)
2129 return false;
2131 const Align Alignment = llvm::assumeAligned(InstAlignment.value());
2132 return Alignment < MinOriginAlignment || !DFS.hasLoadSizeForFastPath(Size);
2135 Value *DataFlowSanitizer::loadNextOrigin(Instruction *Pos, Align OriginAlign,
2136 Value **OriginAddr) {
2137 IRBuilder<> IRB(Pos);
2138 *OriginAddr =
2139 IRB.CreateGEP(OriginTy, *OriginAddr, ConstantInt::get(IntptrTy, 1));
2140 return IRB.CreateAlignedLoad(OriginTy, *OriginAddr, OriginAlign);
2143 std::pair<Value *, Value *> DFSanFunction::loadShadowFast(
2144 Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign,
2145 Align OriginAlign, Value *FirstOrigin, Instruction *Pos) {
2146 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins();
2147 const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes;
2149 assert(Size >= 4 && "Not large enough load size for fast path!");
2151 // Used for origin tracking.
2152 std::vector<Value *> Shadows;
2153 std::vector<Value *> Origins;
2155 // Load instructions in LLVM can have arbitrary byte sizes (e.g., 3, 12, 20)
2156 // but this function is only used in a subset of cases that make it possible
2157 // to optimize the instrumentation.
2159 // Specifically, when the shadow size in bytes (i.e., loaded bytes x shadow
2160 // per byte) is either:
2161 // - a multiple of 8 (common)
2162 // - equal to 4 (only for load32)
2164 // For the second case, we can fit the wide shadow in a 32-bit integer. In all
2165 // other cases, we use a 64-bit integer to hold the wide shadow.
2166 Type *WideShadowTy =
2167 ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx);
2169 IRBuilder<> IRB(Pos);
2170 Value *CombinedWideShadow =
2171 IRB.CreateAlignedLoad(WideShadowTy, ShadowAddr, ShadowAlign);
2173 unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth();
2174 const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits;
2176 auto AppendWideShadowAndOrigin = [&](Value *WideShadow, Value *Origin) {
2177 if (BytesPerWideShadow > 4) {
2178 assert(BytesPerWideShadow == 8);
2179 // The wide shadow relates to two origin pointers: one for the first four
2180 // application bytes, and one for the latest four. We use a left shift to
2181 // get just the shadow bytes that correspond to the first origin pointer,
2182 // and then the entire shadow for the second origin pointer (which will be
2183 // chosen by combineOrigins() iff the least-significant half of the wide
2184 // shadow was empty but the other half was not).
2185 Value *WideShadowLo = IRB.CreateShl(
2186 WideShadow, ConstantInt::get(WideShadowTy, WideShadowBitWidth / 2));
2187 Shadows.push_back(WideShadow);
2188 Origins.push_back(DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr));
2190 Shadows.push_back(WideShadowLo);
2191 Origins.push_back(Origin);
2192 } else {
2193 Shadows.push_back(WideShadow);
2194 Origins.push_back(Origin);
2198 if (ShouldTrackOrigins)
2199 AppendWideShadowAndOrigin(CombinedWideShadow, FirstOrigin);
2201 // First OR all the WideShadows (i.e., 64bit or 32bit shadow chunks) linearly;
2202 // then OR individual shadows within the combined WideShadow by binary ORing.
2203 // This is fewer instructions than ORing shadows individually, since it
2204 // needs logN shift/or instructions (N being the bytes of the combined wide
2205 // shadow).
2206 for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size;
2207 ByteOfs += BytesPerWideShadow) {
2208 ShadowAddr = IRB.CreateGEP(WideShadowTy, ShadowAddr,
2209 ConstantInt::get(DFS.IntptrTy, 1));
2210 Value *NextWideShadow =
2211 IRB.CreateAlignedLoad(WideShadowTy, ShadowAddr, ShadowAlign);
2212 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow);
2213 if (ShouldTrackOrigins) {
2214 Value *NextOrigin = DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr);
2215 AppendWideShadowAndOrigin(NextWideShadow, NextOrigin);
2218 for (unsigned Width = WideShadowBitWidth / 2; Width >= DFS.ShadowWidthBits;
2219 Width >>= 1) {
2220 Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width);
2221 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow);
2223 return {IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy),
2224 ShouldTrackOrigins
2225 ? combineOrigins(Shadows, Origins, Pos,
2226 ConstantInt::getSigned(IRB.getInt64Ty(), 0))
2227 : DFS.ZeroOrigin};
2230 std::pair<Value *, Value *> DFSanFunction::loadShadowOriginSansLoadTracking(
2231 Value *Addr, uint64_t Size, Align InstAlignment, Instruction *Pos) {
2232 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins();
2234 // Non-escaped loads.
2235 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
2236 const auto SI = AllocaShadowMap.find(AI);
2237 if (SI != AllocaShadowMap.end()) {
2238 IRBuilder<> IRB(Pos);
2239 Value *ShadowLI = IRB.CreateLoad(DFS.PrimitiveShadowTy, SI->second);
2240 const auto OI = AllocaOriginMap.find(AI);
2241 assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end());
2242 return {ShadowLI, ShouldTrackOrigins
2243 ? IRB.CreateLoad(DFS.OriginTy, OI->second)
2244 : nullptr};
2248 // Load from constant addresses.
2249 SmallVector<const Value *, 2> Objs;
2250 getUnderlyingObjects(Addr, Objs);
2251 bool AllConstants = true;
2252 for (const Value *Obj : Objs) {
2253 if (isa<Function>(Obj) || isa<BlockAddress>(Obj))
2254 continue;
2255 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant())
2256 continue;
2258 AllConstants = false;
2259 break;
2261 if (AllConstants)
2262 return {DFS.ZeroPrimitiveShadow,
2263 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr};
2265 if (Size == 0)
2266 return {DFS.ZeroPrimitiveShadow,
2267 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr};
2269 // Use callback to load if this is not an optimizable case for origin
2270 // tracking.
2271 if (ShouldTrackOrigins &&
2272 useCallbackLoadLabelAndOrigin(Size, InstAlignment)) {
2273 IRBuilder<> IRB(Pos);
2274 CallInst *Call =
2275 IRB.CreateCall(DFS.DFSanLoadLabelAndOriginFn,
2276 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
2277 ConstantInt::get(DFS.IntptrTy, Size)});
2278 Call->addRetAttr(Attribute::ZExt);
2279 return {IRB.CreateTrunc(IRB.CreateLShr(Call, DFS.OriginWidthBits),
2280 DFS.PrimitiveShadowTy),
2281 IRB.CreateTrunc(Call, DFS.OriginTy)};
2284 // Other cases that support loading shadows or origins in a fast way.
2285 Value *ShadowAddr, *OriginAddr;
2286 std::tie(ShadowAddr, OriginAddr) =
2287 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos);
2289 const Align ShadowAlign = getShadowAlign(InstAlignment);
2290 const Align OriginAlign = getOriginAlign(InstAlignment);
2291 Value *Origin = nullptr;
2292 if (ShouldTrackOrigins) {
2293 IRBuilder<> IRB(Pos);
2294 Origin = IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign);
2297 // When the byte size is small enough, we can load the shadow directly with
2298 // just a few instructions.
2299 switch (Size) {
2300 case 1: {
2301 LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos);
2302 LI->setAlignment(ShadowAlign);
2303 return {LI, Origin};
2305 case 2: {
2306 IRBuilder<> IRB(Pos);
2307 Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr,
2308 ConstantInt::get(DFS.IntptrTy, 1));
2309 Value *Load =
2310 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign);
2311 Value *Load1 =
2312 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign);
2313 return {combineShadows(Load, Load1, Pos), Origin};
2316 bool HasSizeForFastPath = DFS.hasLoadSizeForFastPath(Size);
2318 if (HasSizeForFastPath)
2319 return loadShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign,
2320 OriginAlign, Origin, Pos);
2322 IRBuilder<> IRB(Pos);
2323 CallInst *FallbackCall = IRB.CreateCall(
2324 DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
2325 FallbackCall->addRetAttr(Attribute::ZExt);
2326 return {FallbackCall, Origin};
2329 std::pair<Value *, Value *> DFSanFunction::loadShadowOrigin(Value *Addr,
2330 uint64_t Size,
2331 Align InstAlignment,
2332 Instruction *Pos) {
2333 Value *PrimitiveShadow, *Origin;
2334 std::tie(PrimitiveShadow, Origin) =
2335 loadShadowOriginSansLoadTracking(Addr, Size, InstAlignment, Pos);
2336 if (DFS.shouldTrackOrigins()) {
2337 if (ClTrackOrigins == 2) {
2338 IRBuilder<> IRB(Pos);
2339 auto *ConstantShadow = dyn_cast<Constant>(PrimitiveShadow);
2340 if (!ConstantShadow || !ConstantShadow->isZeroValue())
2341 Origin = updateOriginIfTainted(PrimitiveShadow, Origin, IRB);
2344 return {PrimitiveShadow, Origin};
2347 static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) {
2348 switch (AO) {
2349 case AtomicOrdering::NotAtomic:
2350 return AtomicOrdering::NotAtomic;
2351 case AtomicOrdering::Unordered:
2352 case AtomicOrdering::Monotonic:
2353 case AtomicOrdering::Acquire:
2354 return AtomicOrdering::Acquire;
2355 case AtomicOrdering::Release:
2356 case AtomicOrdering::AcquireRelease:
2357 return AtomicOrdering::AcquireRelease;
2358 case AtomicOrdering::SequentiallyConsistent:
2359 return AtomicOrdering::SequentiallyConsistent;
2361 llvm_unreachable("Unknown ordering");
2364 Value *StripPointerGEPsAndCasts(Value *V) {
2365 if (!V->getType()->isPointerTy())
2366 return V;
2368 // DFSan pass should be running on valid IR, but we'll
2369 // keep a seen set to ensure there are no issues.
2370 SmallPtrSet<const Value *, 4> Visited;
2371 Visited.insert(V);
2372 do {
2373 if (auto *GEP = dyn_cast<GEPOperator>(V)) {
2374 V = GEP->getPointerOperand();
2375 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
2376 V = cast<Operator>(V)->getOperand(0);
2377 if (!V->getType()->isPointerTy())
2378 return V;
2379 } else if (isa<GlobalAlias>(V)) {
2380 V = cast<GlobalAlias>(V)->getAliasee();
2382 } while (Visited.insert(V).second);
2384 return V;
2387 void DFSanVisitor::visitLoadInst(LoadInst &LI) {
2388 auto &DL = LI.getModule()->getDataLayout();
2389 uint64_t Size = DL.getTypeStoreSize(LI.getType());
2390 if (Size == 0) {
2391 DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI));
2392 DFSF.setOrigin(&LI, DFSF.DFS.ZeroOrigin);
2393 return;
2396 // When an application load is atomic, increase atomic ordering between
2397 // atomic application loads and stores to ensure happen-before order; load
2398 // shadow data after application data; store zero shadow data before
2399 // application data. This ensure shadow loads return either labels of the
2400 // initial application data or zeros.
2401 if (LI.isAtomic())
2402 LI.setOrdering(addAcquireOrdering(LI.getOrdering()));
2404 Instruction *AfterLi = LI.getNextNode();
2405 Instruction *Pos = LI.isAtomic() ? LI.getNextNode() : &LI;
2406 std::vector<Value *> Shadows;
2407 std::vector<Value *> Origins;
2408 Value *PrimitiveShadow, *Origin;
2409 std::tie(PrimitiveShadow, Origin) =
2410 DFSF.loadShadowOrigin(LI.getPointerOperand(), Size, LI.getAlign(), Pos);
2411 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
2412 if (ShouldTrackOrigins) {
2413 Shadows.push_back(PrimitiveShadow);
2414 Origins.push_back(Origin);
2416 if (ClCombinePointerLabelsOnLoad ||
2417 DFSF.isLookupTableConstant(
2418 StripPointerGEPsAndCasts(LI.getPointerOperand()))) {
2419 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
2420 PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, Pos);
2421 if (ShouldTrackOrigins) {
2422 Shadows.push_back(PtrShadow);
2423 Origins.push_back(DFSF.getOrigin(LI.getPointerOperand()));
2426 if (!DFSF.DFS.isZeroShadow(PrimitiveShadow))
2427 DFSF.NonZeroChecks.push_back(PrimitiveShadow);
2429 Value *Shadow =
2430 DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, Pos);
2431 DFSF.setShadow(&LI, Shadow);
2433 if (ShouldTrackOrigins) {
2434 DFSF.setOrigin(&LI, DFSF.combineOrigins(Shadows, Origins, Pos));
2437 if (ClEventCallbacks) {
2438 IRBuilder<> IRB(Pos);
2439 Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr);
2440 CallInst *CI =
2441 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr8});
2442 CI->addParamAttr(0, Attribute::ZExt);
2445 IRBuilder<> IRB(AfterLi);
2446 DFSF.addReachesFunctionCallbacksIfEnabled(IRB, LI, &LI);
2449 Value *DFSanFunction::updateOriginIfTainted(Value *Shadow, Value *Origin,
2450 IRBuilder<> &IRB) {
2451 assert(DFS.shouldTrackOrigins());
2452 return IRB.CreateCall(DFS.DFSanChainOriginIfTaintedFn, {Shadow, Origin});
2455 Value *DFSanFunction::updateOrigin(Value *V, IRBuilder<> &IRB) {
2456 if (!DFS.shouldTrackOrigins())
2457 return V;
2458 return IRB.CreateCall(DFS.DFSanChainOriginFn, V);
2461 Value *DFSanFunction::originToIntptr(IRBuilder<> &IRB, Value *Origin) {
2462 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes;
2463 const DataLayout &DL = F->getParent()->getDataLayout();
2464 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy);
2465 if (IntptrSize == OriginSize)
2466 return Origin;
2467 assert(IntptrSize == OriginSize * 2);
2468 Origin = IRB.CreateIntCast(Origin, DFS.IntptrTy, /* isSigned */ false);
2469 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, OriginSize * 8));
2472 void DFSanFunction::paintOrigin(IRBuilder<> &IRB, Value *Origin,
2473 Value *StoreOriginAddr,
2474 uint64_t StoreOriginSize, Align Alignment) {
2475 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes;
2476 const DataLayout &DL = F->getParent()->getDataLayout();
2477 const Align IntptrAlignment = DL.getABITypeAlign(DFS.IntptrTy);
2478 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy);
2479 assert(IntptrAlignment >= MinOriginAlignment);
2480 assert(IntptrSize >= OriginSize);
2482 unsigned Ofs = 0;
2483 Align CurrentAlignment = Alignment;
2484 if (Alignment >= IntptrAlignment && IntptrSize > OriginSize) {
2485 Value *IntptrOrigin = originToIntptr(IRB, Origin);
2486 Value *IntptrStoreOriginPtr = IRB.CreatePointerCast(
2487 StoreOriginAddr, PointerType::get(DFS.IntptrTy, 0));
2488 for (unsigned I = 0; I < StoreOriginSize / IntptrSize; ++I) {
2489 Value *Ptr =
2490 I ? IRB.CreateConstGEP1_32(DFS.IntptrTy, IntptrStoreOriginPtr, I)
2491 : IntptrStoreOriginPtr;
2492 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
2493 Ofs += IntptrSize / OriginSize;
2494 CurrentAlignment = IntptrAlignment;
2498 for (unsigned I = Ofs; I < (StoreOriginSize + OriginSize - 1) / OriginSize;
2499 ++I) {
2500 Value *GEP = I ? IRB.CreateConstGEP1_32(DFS.OriginTy, StoreOriginAddr, I)
2501 : StoreOriginAddr;
2502 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
2503 CurrentAlignment = MinOriginAlignment;
2507 Value *DFSanFunction::convertToBool(Value *V, IRBuilder<> &IRB,
2508 const Twine &Name) {
2509 Type *VTy = V->getType();
2510 assert(VTy->isIntegerTy());
2511 if (VTy->getIntegerBitWidth() == 1)
2512 // Just converting a bool to a bool, so do nothing.
2513 return V;
2514 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), Name);
2517 void DFSanFunction::storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size,
2518 Value *Shadow, Value *Origin,
2519 Value *StoreOriginAddr, Align InstAlignment) {
2520 // Do not write origins for zero shadows because we do not trace origins for
2521 // untainted sinks.
2522 const Align OriginAlignment = getOriginAlign(InstAlignment);
2523 Value *CollapsedShadow = collapseToPrimitiveShadow(Shadow, Pos);
2524 IRBuilder<> IRB(Pos);
2525 if (auto *ConstantShadow = dyn_cast<Constant>(CollapsedShadow)) {
2526 if (!ConstantShadow->isZeroValue())
2527 paintOrigin(IRB, updateOrigin(Origin, IRB), StoreOriginAddr, Size,
2528 OriginAlignment);
2529 return;
2532 if (shouldInstrumentWithCall()) {
2533 IRB.CreateCall(DFS.DFSanMaybeStoreOriginFn,
2534 {CollapsedShadow,
2535 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
2536 ConstantInt::get(DFS.IntptrTy, Size), Origin});
2537 } else {
2538 Value *Cmp = convertToBool(CollapsedShadow, IRB, "_dfscmp");
2539 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
2540 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
2541 Cmp, &*IRB.GetInsertPoint(), false, DFS.OriginStoreWeights, &DTU);
2542 IRBuilder<> IRBNew(CheckTerm);
2543 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), StoreOriginAddr, Size,
2544 OriginAlignment);
2545 ++NumOriginStores;
2549 void DFSanFunction::storeZeroPrimitiveShadow(Value *Addr, uint64_t Size,
2550 Align ShadowAlign,
2551 Instruction *Pos) {
2552 IRBuilder<> IRB(Pos);
2553 IntegerType *ShadowTy =
2554 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits);
2555 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0);
2556 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
2557 Value *ExtShadowAddr =
2558 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy));
2559 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign);
2560 // Do not write origins for 0 shadows because we do not trace origins for
2561 // untainted sinks.
2564 void DFSanFunction::storePrimitiveShadowOrigin(Value *Addr, uint64_t Size,
2565 Align InstAlignment,
2566 Value *PrimitiveShadow,
2567 Value *Origin,
2568 Instruction *Pos) {
2569 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins() && Origin;
2571 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
2572 const auto SI = AllocaShadowMap.find(AI);
2573 if (SI != AllocaShadowMap.end()) {
2574 IRBuilder<> IRB(Pos);
2575 IRB.CreateStore(PrimitiveShadow, SI->second);
2577 // Do not write origins for 0 shadows because we do not trace origins for
2578 // untainted sinks.
2579 if (ShouldTrackOrigins && !DFS.isZeroShadow(PrimitiveShadow)) {
2580 const auto OI = AllocaOriginMap.find(AI);
2581 assert(OI != AllocaOriginMap.end() && Origin);
2582 IRB.CreateStore(Origin, OI->second);
2584 return;
2588 const Align ShadowAlign = getShadowAlign(InstAlignment);
2589 if (DFS.isZeroShadow(PrimitiveShadow)) {
2590 storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos);
2591 return;
2594 IRBuilder<> IRB(Pos);
2595 Value *ShadowAddr, *OriginAddr;
2596 std::tie(ShadowAddr, OriginAddr) =
2597 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos);
2599 const unsigned ShadowVecSize = 8;
2600 assert(ShadowVecSize * DFS.ShadowWidthBits <= 128 &&
2601 "Shadow vector is too large!");
2603 uint64_t Offset = 0;
2604 uint64_t LeftSize = Size;
2605 if (LeftSize >= ShadowVecSize) {
2606 auto *ShadowVecTy =
2607 FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize);
2608 Value *ShadowVec = PoisonValue::get(ShadowVecTy);
2609 for (unsigned I = 0; I != ShadowVecSize; ++I) {
2610 ShadowVec = IRB.CreateInsertElement(
2611 ShadowVec, PrimitiveShadow,
2612 ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), I));
2614 Value *ShadowVecAddr =
2615 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy));
2616 do {
2617 Value *CurShadowVecAddr =
2618 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset);
2619 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign);
2620 LeftSize -= ShadowVecSize;
2621 ++Offset;
2622 } while (LeftSize >= ShadowVecSize);
2623 Offset *= ShadowVecSize;
2625 while (LeftSize > 0) {
2626 Value *CurShadowAddr =
2627 IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset);
2628 IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign);
2629 --LeftSize;
2630 ++Offset;
2633 if (ShouldTrackOrigins) {
2634 storeOrigin(Pos, Addr, Size, PrimitiveShadow, Origin, OriginAddr,
2635 InstAlignment);
2639 static AtomicOrdering addReleaseOrdering(AtomicOrdering AO) {
2640 switch (AO) {
2641 case AtomicOrdering::NotAtomic:
2642 return AtomicOrdering::NotAtomic;
2643 case AtomicOrdering::Unordered:
2644 case AtomicOrdering::Monotonic:
2645 case AtomicOrdering::Release:
2646 return AtomicOrdering::Release;
2647 case AtomicOrdering::Acquire:
2648 case AtomicOrdering::AcquireRelease:
2649 return AtomicOrdering::AcquireRelease;
2650 case AtomicOrdering::SequentiallyConsistent:
2651 return AtomicOrdering::SequentiallyConsistent;
2653 llvm_unreachable("Unknown ordering");
2656 void DFSanVisitor::visitStoreInst(StoreInst &SI) {
2657 auto &DL = SI.getModule()->getDataLayout();
2658 Value *Val = SI.getValueOperand();
2659 uint64_t Size = DL.getTypeStoreSize(Val->getType());
2660 if (Size == 0)
2661 return;
2663 // When an application store is atomic, increase atomic ordering between
2664 // atomic application loads and stores to ensure happen-before order; load
2665 // shadow data after application data; store zero shadow data before
2666 // application data. This ensure shadow loads return either labels of the
2667 // initial application data or zeros.
2668 if (SI.isAtomic())
2669 SI.setOrdering(addReleaseOrdering(SI.getOrdering()));
2671 const bool ShouldTrackOrigins =
2672 DFSF.DFS.shouldTrackOrigins() && !SI.isAtomic();
2673 std::vector<Value *> Shadows;
2674 std::vector<Value *> Origins;
2676 Value *Shadow =
2677 SI.isAtomic() ? DFSF.DFS.getZeroShadow(Val) : DFSF.getShadow(Val);
2679 if (ShouldTrackOrigins) {
2680 Shadows.push_back(Shadow);
2681 Origins.push_back(DFSF.getOrigin(Val));
2684 Value *PrimitiveShadow;
2685 if (ClCombinePointerLabelsOnStore) {
2686 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
2687 if (ShouldTrackOrigins) {
2688 Shadows.push_back(PtrShadow);
2689 Origins.push_back(DFSF.getOrigin(SI.getPointerOperand()));
2691 PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI);
2692 } else {
2693 PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI);
2695 Value *Origin = nullptr;
2696 if (ShouldTrackOrigins)
2697 Origin = DFSF.combineOrigins(Shadows, Origins, &SI);
2698 DFSF.storePrimitiveShadowOrigin(SI.getPointerOperand(), Size, SI.getAlign(),
2699 PrimitiveShadow, Origin, &SI);
2700 if (ClEventCallbacks) {
2701 IRBuilder<> IRB(&SI);
2702 Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr);
2703 CallInst *CI =
2704 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr8});
2705 CI->addParamAttr(0, Attribute::ZExt);
2709 void DFSanVisitor::visitCASOrRMW(Align InstAlignment, Instruction &I) {
2710 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
2712 Value *Val = I.getOperand(1);
2713 const auto &DL = I.getModule()->getDataLayout();
2714 uint64_t Size = DL.getTypeStoreSize(Val->getType());
2715 if (Size == 0)
2716 return;
2718 // Conservatively set data at stored addresses and return with zero shadow to
2719 // prevent shadow data races.
2720 IRBuilder<> IRB(&I);
2721 Value *Addr = I.getOperand(0);
2722 const Align ShadowAlign = DFSF.getShadowAlign(InstAlignment);
2723 DFSF.storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, &I);
2724 DFSF.setShadow(&I, DFSF.DFS.getZeroShadow(&I));
2725 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin);
2728 void DFSanVisitor::visitAtomicRMWInst(AtomicRMWInst &I) {
2729 visitCASOrRMW(I.getAlign(), I);
2730 // TODO: The ordering change follows MSan. It is possible not to change
2731 // ordering because we always set and use 0 shadows.
2732 I.setOrdering(addReleaseOrdering(I.getOrdering()));
2735 void DFSanVisitor::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
2736 visitCASOrRMW(I.getAlign(), I);
2737 // TODO: The ordering change follows MSan. It is possible not to change
2738 // ordering because we always set and use 0 shadows.
2739 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
2742 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) {
2743 visitInstOperands(UO);
2746 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) {
2747 visitInstOperands(BO);
2750 void DFSanVisitor::visitBitCastInst(BitCastInst &BCI) {
2751 // Special case: if this is the bitcast (there is exactly 1 allowed) between
2752 // a musttail call and a ret, don't instrument. New instructions are not
2753 // allowed after a musttail call.
2754 if (auto *CI = dyn_cast<CallInst>(BCI.getOperand(0)))
2755 if (CI->isMustTailCall())
2756 return;
2757 visitInstOperands(BCI);
2760 void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(CI); }
2762 void DFSanVisitor::visitCmpInst(CmpInst &CI) {
2763 visitInstOperands(CI);
2764 if (ClEventCallbacks) {
2765 IRBuilder<> IRB(&CI);
2766 Value *CombinedShadow = DFSF.getShadow(&CI);
2767 CallInst *CallI =
2768 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow);
2769 CallI->addParamAttr(0, Attribute::ZExt);
2773 void DFSanVisitor::visitLandingPadInst(LandingPadInst &LPI) {
2774 // We do not need to track data through LandingPadInst.
2776 // For the C++ exceptions, if a value is thrown, this value will be stored
2777 // in a memory location provided by __cxa_allocate_exception(...) (on the
2778 // throw side) or __cxa_begin_catch(...) (on the catch side).
2779 // This memory will have a shadow, so with the loads and stores we will be
2780 // able to propagate labels on data thrown through exceptions, without any
2781 // special handling of the LandingPadInst.
2783 // The second element in the pair result of the LandingPadInst is a
2784 // register value, but it is for a type ID and should never be tainted.
2785 DFSF.setShadow(&LPI, DFSF.DFS.getZeroShadow(&LPI));
2786 DFSF.setOrigin(&LPI, DFSF.DFS.ZeroOrigin);
2789 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
2790 if (ClCombineOffsetLabelsOnGEP ||
2791 DFSF.isLookupTableConstant(
2792 StripPointerGEPsAndCasts(GEPI.getPointerOperand()))) {
2793 visitInstOperands(GEPI);
2794 return;
2797 // Only propagate shadow/origin of base pointer value but ignore those of
2798 // offset operands.
2799 Value *BasePointer = GEPI.getPointerOperand();
2800 DFSF.setShadow(&GEPI, DFSF.getShadow(BasePointer));
2801 if (DFSF.DFS.shouldTrackOrigins())
2802 DFSF.setOrigin(&GEPI, DFSF.getOrigin(BasePointer));
2805 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) {
2806 visitInstOperands(I);
2809 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) {
2810 visitInstOperands(I);
2813 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) {
2814 visitInstOperands(I);
2817 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) {
2818 IRBuilder<> IRB(&I);
2819 Value *Agg = I.getAggregateOperand();
2820 Value *AggShadow = DFSF.getShadow(Agg);
2821 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
2822 DFSF.setShadow(&I, ResShadow);
2823 visitInstOperandOrigins(I);
2826 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) {
2827 IRBuilder<> IRB(&I);
2828 Value *AggShadow = DFSF.getShadow(I.getAggregateOperand());
2829 Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand());
2830 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
2831 DFSF.setShadow(&I, Res);
2832 visitInstOperandOrigins(I);
2835 void DFSanVisitor::visitAllocaInst(AllocaInst &I) {
2836 bool AllLoadsStores = true;
2837 for (User *U : I.users()) {
2838 if (isa<LoadInst>(U))
2839 continue;
2841 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
2842 if (SI->getPointerOperand() == &I)
2843 continue;
2846 AllLoadsStores = false;
2847 break;
2849 if (AllLoadsStores) {
2850 IRBuilder<> IRB(&I);
2851 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy);
2852 if (DFSF.DFS.shouldTrackOrigins()) {
2853 DFSF.AllocaOriginMap[&I] =
2854 IRB.CreateAlloca(DFSF.DFS.OriginTy, nullptr, "_dfsa");
2857 DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow);
2858 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin);
2861 void DFSanVisitor::visitSelectInst(SelectInst &I) {
2862 Value *CondShadow = DFSF.getShadow(I.getCondition());
2863 Value *TrueShadow = DFSF.getShadow(I.getTrueValue());
2864 Value *FalseShadow = DFSF.getShadow(I.getFalseValue());
2865 Value *ShadowSel = nullptr;
2866 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
2867 std::vector<Value *> Shadows;
2868 std::vector<Value *> Origins;
2869 Value *TrueOrigin =
2870 ShouldTrackOrigins ? DFSF.getOrigin(I.getTrueValue()) : nullptr;
2871 Value *FalseOrigin =
2872 ShouldTrackOrigins ? DFSF.getOrigin(I.getFalseValue()) : nullptr;
2874 DFSF.addConditionalCallbacksIfEnabled(I, I.getCondition());
2876 if (isa<VectorType>(I.getCondition()->getType())) {
2877 ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow,
2878 FalseShadow, &I);
2879 if (ShouldTrackOrigins) {
2880 Shadows.push_back(TrueShadow);
2881 Shadows.push_back(FalseShadow);
2882 Origins.push_back(TrueOrigin);
2883 Origins.push_back(FalseOrigin);
2885 } else {
2886 if (TrueShadow == FalseShadow) {
2887 ShadowSel = TrueShadow;
2888 if (ShouldTrackOrigins) {
2889 Shadows.push_back(TrueShadow);
2890 Origins.push_back(TrueOrigin);
2892 } else {
2893 ShadowSel =
2894 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I);
2895 if (ShouldTrackOrigins) {
2896 Shadows.push_back(ShadowSel);
2897 Origins.push_back(SelectInst::Create(I.getCondition(), TrueOrigin,
2898 FalseOrigin, "", &I));
2902 DFSF.setShadow(&I, ClTrackSelectControlFlow
2903 ? DFSF.combineShadowsThenConvert(
2904 I.getType(), CondShadow, ShadowSel, &I)
2905 : ShadowSel);
2906 if (ShouldTrackOrigins) {
2907 if (ClTrackSelectControlFlow) {
2908 Shadows.push_back(CondShadow);
2909 Origins.push_back(DFSF.getOrigin(I.getCondition()));
2911 DFSF.setOrigin(&I, DFSF.combineOrigins(Shadows, Origins, &I));
2915 void DFSanVisitor::visitMemSetInst(MemSetInst &I) {
2916 IRBuilder<> IRB(&I);
2917 Value *ValShadow = DFSF.getShadow(I.getValue());
2918 Value *ValOrigin = DFSF.DFS.shouldTrackOrigins()
2919 ? DFSF.getOrigin(I.getValue())
2920 : DFSF.DFS.ZeroOrigin;
2921 IRB.CreateCall(
2922 DFSF.DFS.DFSanSetLabelFn,
2923 {ValShadow, ValOrigin,
2924 IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)),
2925 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
2928 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
2929 IRBuilder<> IRB(&I);
2931 // CopyOrMoveOrigin transfers origins by refering to their shadows. So we
2932 // need to move origins before moving shadows.
2933 if (DFSF.DFS.shouldTrackOrigins()) {
2934 IRB.CreateCall(
2935 DFSF.DFS.DFSanMemOriginTransferFn,
2936 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2937 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
2938 IRB.CreateIntCast(I.getArgOperand(2), DFSF.DFS.IntptrTy, false)});
2941 Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I);
2942 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I);
2943 Value *LenShadow =
2944 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(),
2945 DFSF.DFS.ShadowWidthBytes));
2946 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx);
2947 Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr);
2948 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr);
2949 auto *MTI = cast<MemTransferInst>(
2950 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(),
2951 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()}));
2952 MTI->setDestAlignment(DFSF.getShadowAlign(I.getDestAlign().valueOrOne()));
2953 MTI->setSourceAlignment(DFSF.getShadowAlign(I.getSourceAlign().valueOrOne()));
2954 if (ClEventCallbacks) {
2955 IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn,
2956 {RawDestShadow,
2957 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
2961 void DFSanVisitor::visitBranchInst(BranchInst &BR) {
2962 if (!BR.isConditional())
2963 return;
2965 DFSF.addConditionalCallbacksIfEnabled(BR, BR.getCondition());
2968 void DFSanVisitor::visitSwitchInst(SwitchInst &SW) {
2969 DFSF.addConditionalCallbacksIfEnabled(SW, SW.getCondition());
2972 static bool isAMustTailRetVal(Value *RetVal) {
2973 // Tail call may have a bitcast between return.
2974 if (auto *I = dyn_cast<BitCastInst>(RetVal)) {
2975 RetVal = I->getOperand(0);
2977 if (auto *I = dyn_cast<CallInst>(RetVal)) {
2978 return I->isMustTailCall();
2980 return false;
2983 void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
2984 if (!DFSF.IsNativeABI && RI.getReturnValue()) {
2985 // Don't emit the instrumentation for musttail call returns.
2986 if (isAMustTailRetVal(RI.getReturnValue()))
2987 return;
2989 Value *S = DFSF.getShadow(RI.getReturnValue());
2990 IRBuilder<> IRB(&RI);
2991 Type *RT = DFSF.F->getFunctionType()->getReturnType();
2992 unsigned Size = getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT));
2993 if (Size <= RetvalTLSSize) {
2994 // If the size overflows, stores nothing. At callsite, oversized return
2995 // shadows are set to zero.
2996 IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB), ShadowTLSAlignment);
2998 if (DFSF.DFS.shouldTrackOrigins()) {
2999 Value *O = DFSF.getOrigin(RI.getReturnValue());
3000 IRB.CreateStore(O, DFSF.getRetvalOriginTLS());
3005 void DFSanVisitor::addShadowArguments(Function &F, CallBase &CB,
3006 std::vector<Value *> &Args,
3007 IRBuilder<> &IRB) {
3008 FunctionType *FT = F.getFunctionType();
3010 auto *I = CB.arg_begin();
3012 // Adds non-variable argument shadows.
3013 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N)
3014 Args.push_back(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB));
3016 // Adds variable argument shadows.
3017 if (FT->isVarArg()) {
3018 auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy,
3019 CB.arg_size() - FT->getNumParams());
3020 auto *LabelVAAlloca =
3021 new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(),
3022 "labelva", &DFSF.F->getEntryBlock().front());
3024 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) {
3025 auto *LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, N);
3026 IRB.CreateStore(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB),
3027 LabelVAPtr);
3030 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0));
3033 // Adds the return value shadow.
3034 if (!FT->getReturnType()->isVoidTy()) {
3035 if (!DFSF.LabelReturnAlloca) {
3036 DFSF.LabelReturnAlloca = new AllocaInst(
3037 DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(),
3038 "labelreturn", &DFSF.F->getEntryBlock().front());
3040 Args.push_back(DFSF.LabelReturnAlloca);
3044 void DFSanVisitor::addOriginArguments(Function &F, CallBase &CB,
3045 std::vector<Value *> &Args,
3046 IRBuilder<> &IRB) {
3047 FunctionType *FT = F.getFunctionType();
3049 auto *I = CB.arg_begin();
3051 // Add non-variable argument origins.
3052 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N)
3053 Args.push_back(DFSF.getOrigin(*I));
3055 // Add variable argument origins.
3056 if (FT->isVarArg()) {
3057 auto *OriginVATy =
3058 ArrayType::get(DFSF.DFS.OriginTy, CB.arg_size() - FT->getNumParams());
3059 auto *OriginVAAlloca =
3060 new AllocaInst(OriginVATy, getDataLayout().getAllocaAddrSpace(),
3061 "originva", &DFSF.F->getEntryBlock().front());
3063 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) {
3064 auto *OriginVAPtr = IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, N);
3065 IRB.CreateStore(DFSF.getOrigin(*I), OriginVAPtr);
3068 Args.push_back(IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, 0));
3071 // Add the return value origin.
3072 if (!FT->getReturnType()->isVoidTy()) {
3073 if (!DFSF.OriginReturnAlloca) {
3074 DFSF.OriginReturnAlloca = new AllocaInst(
3075 DFSF.DFS.OriginTy, getDataLayout().getAllocaAddrSpace(),
3076 "originreturn", &DFSF.F->getEntryBlock().front());
3078 Args.push_back(DFSF.OriginReturnAlloca);
3082 bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) {
3083 IRBuilder<> IRB(&CB);
3084 switch (DFSF.DFS.getWrapperKind(&F)) {
3085 case DataFlowSanitizer::WK_Warning:
3086 CB.setCalledFunction(&F);
3087 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
3088 IRB.CreateGlobalStringPtr(F.getName()));
3089 DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, &F);
3090 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
3091 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin);
3092 return true;
3093 case DataFlowSanitizer::WK_Discard:
3094 CB.setCalledFunction(&F);
3095 DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, &F);
3096 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
3097 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin);
3098 return true;
3099 case DataFlowSanitizer::WK_Functional:
3100 CB.setCalledFunction(&F);
3101 DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, &F);
3102 visitInstOperands(CB);
3103 return true;
3104 case DataFlowSanitizer::WK_Custom:
3105 // Don't try to handle invokes of custom functions, it's too complicated.
3106 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
3107 // wrapper.
3108 CallInst *CI = dyn_cast<CallInst>(&CB);
3109 if (!CI)
3110 return false;
3112 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
3113 FunctionType *FT = F.getFunctionType();
3114 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT);
3115 std::string CustomFName = ShouldTrackOrigins ? "__dfso_" : "__dfsw_";
3116 CustomFName += F.getName();
3117 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction(
3118 CustomFName, CustomFn.TransformedType);
3119 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) {
3120 CustomFn->copyAttributesFrom(&F);
3122 // Custom functions returning non-void will write to the return label.
3123 if (!FT->getReturnType()->isVoidTy()) {
3124 CustomFn->removeFnAttrs(DFSF.DFS.ReadOnlyNoneAttrs);
3128 std::vector<Value *> Args;
3130 // Adds non-variable arguments.
3131 auto *I = CB.arg_begin();
3132 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) {
3133 Args.push_back(*I);
3136 // Adds shadow arguments.
3137 const unsigned ShadowArgStart = Args.size();
3138 addShadowArguments(F, CB, Args, IRB);
3140 // Adds origin arguments.
3141 const unsigned OriginArgStart = Args.size();
3142 if (ShouldTrackOrigins)
3143 addOriginArguments(F, CB, Args, IRB);
3145 // Adds variable arguments.
3146 append_range(Args, drop_begin(CB.args(), FT->getNumParams()));
3148 CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
3149 CustomCI->setCallingConv(CI->getCallingConv());
3150 CustomCI->setAttributes(transformFunctionAttributes(
3151 CustomFn, CI->getContext(), CI->getAttributes()));
3153 // Update the parameter attributes of the custom call instruction to
3154 // zero extend the shadow parameters. This is required for targets
3155 // which consider PrimitiveShadowTy an illegal type.
3156 for (unsigned N = 0; N < FT->getNumParams(); N++) {
3157 const unsigned ArgNo = ShadowArgStart + N;
3158 if (CustomCI->getArgOperand(ArgNo)->getType() ==
3159 DFSF.DFS.PrimitiveShadowTy)
3160 CustomCI->addParamAttr(ArgNo, Attribute::ZExt);
3161 if (ShouldTrackOrigins) {
3162 const unsigned OriginArgNo = OriginArgStart + N;
3163 if (CustomCI->getArgOperand(OriginArgNo)->getType() ==
3164 DFSF.DFS.OriginTy)
3165 CustomCI->addParamAttr(OriginArgNo, Attribute::ZExt);
3169 // Loads the return value shadow and origin.
3170 if (!FT->getReturnType()->isVoidTy()) {
3171 LoadInst *LabelLoad =
3172 IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.LabelReturnAlloca);
3173 DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow(
3174 FT->getReturnType(), LabelLoad, &CB));
3175 if (ShouldTrackOrigins) {
3176 LoadInst *OriginLoad =
3177 IRB.CreateLoad(DFSF.DFS.OriginTy, DFSF.OriginReturnAlloca);
3178 DFSF.setOrigin(CustomCI, OriginLoad);
3182 CI->replaceAllUsesWith(CustomCI);
3183 CI->eraseFromParent();
3184 return true;
3186 return false;
3189 Value *DFSanVisitor::makeAddAcquireOrderingTable(IRBuilder<> &IRB) {
3190 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1;
3191 uint32_t OrderingTable[NumOrderings] = {};
3193 OrderingTable[(int)AtomicOrderingCABI::relaxed] =
3194 OrderingTable[(int)AtomicOrderingCABI::acquire] =
3195 OrderingTable[(int)AtomicOrderingCABI::consume] =
3196 (int)AtomicOrderingCABI::acquire;
3197 OrderingTable[(int)AtomicOrderingCABI::release] =
3198 OrderingTable[(int)AtomicOrderingCABI::acq_rel] =
3199 (int)AtomicOrderingCABI::acq_rel;
3200 OrderingTable[(int)AtomicOrderingCABI::seq_cst] =
3201 (int)AtomicOrderingCABI::seq_cst;
3203 return ConstantDataVector::get(IRB.getContext(),
3204 ArrayRef(OrderingTable, NumOrderings));
3207 void DFSanVisitor::visitLibAtomicLoad(CallBase &CB) {
3208 // Since we use getNextNode here, we can't have CB terminate the BB.
3209 assert(isa<CallInst>(CB));
3211 IRBuilder<> IRB(&CB);
3212 Value *Size = CB.getArgOperand(0);
3213 Value *SrcPtr = CB.getArgOperand(1);
3214 Value *DstPtr = CB.getArgOperand(2);
3215 Value *Ordering = CB.getArgOperand(3);
3216 // Convert the call to have at least Acquire ordering to make sure
3217 // the shadow operations aren't reordered before it.
3218 Value *NewOrdering =
3219 IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering);
3220 CB.setArgOperand(3, NewOrdering);
3222 IRBuilder<> NextIRB(CB.getNextNode());
3223 NextIRB.SetCurrentDebugLocation(CB.getDebugLoc());
3225 // TODO: Support ClCombinePointerLabelsOnLoad
3226 // TODO: Support ClEventCallbacks
3228 NextIRB.CreateCall(DFSF.DFS.DFSanMemShadowOriginTransferFn,
3229 {NextIRB.CreatePointerCast(DstPtr, NextIRB.getInt8PtrTy()),
3230 NextIRB.CreatePointerCast(SrcPtr, NextIRB.getInt8PtrTy()),
3231 NextIRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)});
3234 Value *DFSanVisitor::makeAddReleaseOrderingTable(IRBuilder<> &IRB) {
3235 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1;
3236 uint32_t OrderingTable[NumOrderings] = {};
3238 OrderingTable[(int)AtomicOrderingCABI::relaxed] =
3239 OrderingTable[(int)AtomicOrderingCABI::release] =
3240 (int)AtomicOrderingCABI::release;
3241 OrderingTable[(int)AtomicOrderingCABI::consume] =
3242 OrderingTable[(int)AtomicOrderingCABI::acquire] =
3243 OrderingTable[(int)AtomicOrderingCABI::acq_rel] =
3244 (int)AtomicOrderingCABI::acq_rel;
3245 OrderingTable[(int)AtomicOrderingCABI::seq_cst] =
3246 (int)AtomicOrderingCABI::seq_cst;
3248 return ConstantDataVector::get(IRB.getContext(),
3249 ArrayRef(OrderingTable, NumOrderings));
3252 void DFSanVisitor::visitLibAtomicStore(CallBase &CB) {
3253 IRBuilder<> IRB(&CB);
3254 Value *Size = CB.getArgOperand(0);
3255 Value *SrcPtr = CB.getArgOperand(1);
3256 Value *DstPtr = CB.getArgOperand(2);
3257 Value *Ordering = CB.getArgOperand(3);
3258 // Convert the call to have at least Release ordering to make sure
3259 // the shadow operations aren't reordered after it.
3260 Value *NewOrdering =
3261 IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering);
3262 CB.setArgOperand(3, NewOrdering);
3264 // TODO: Support ClCombinePointerLabelsOnStore
3265 // TODO: Support ClEventCallbacks
3267 IRB.CreateCall(DFSF.DFS.DFSanMemShadowOriginTransferFn,
3268 {IRB.CreatePointerCast(DstPtr, IRB.getInt8PtrTy()),
3269 IRB.CreatePointerCast(SrcPtr, IRB.getInt8PtrTy()),
3270 IRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)});
3273 void DFSanVisitor::visitLibAtomicExchange(CallBase &CB) {
3274 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, int
3275 // ordering)
3276 IRBuilder<> IRB(&CB);
3277 Value *Size = CB.getArgOperand(0);
3278 Value *TargetPtr = CB.getArgOperand(1);
3279 Value *SrcPtr = CB.getArgOperand(2);
3280 Value *DstPtr = CB.getArgOperand(3);
3282 // This operation is not atomic for the shadow and origin memory.
3283 // This could result in DFSan false positives or false negatives.
3284 // For now we will assume these operations are rare, and
3285 // the additional complexity to address this is not warrented.
3287 // Current Target to Dest
3288 IRB.CreateCall(DFSF.DFS.DFSanMemShadowOriginTransferFn,
3289 {IRB.CreatePointerCast(DstPtr, IRB.getInt8PtrTy()),
3290 IRB.CreatePointerCast(TargetPtr, IRB.getInt8PtrTy()),
3291 IRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)});
3293 // Current Src to Target (overriding)
3294 IRB.CreateCall(DFSF.DFS.DFSanMemShadowOriginTransferFn,
3295 {IRB.CreatePointerCast(TargetPtr, IRB.getInt8PtrTy()),
3296 IRB.CreatePointerCast(SrcPtr, IRB.getInt8PtrTy()),
3297 IRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)});
3300 void DFSanVisitor::visitLibAtomicCompareExchange(CallBase &CB) {
3301 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, void
3302 // *desired, int success_order, int failure_order)
3303 Value *Size = CB.getArgOperand(0);
3304 Value *TargetPtr = CB.getArgOperand(1);
3305 Value *ExpectedPtr = CB.getArgOperand(2);
3306 Value *DesiredPtr = CB.getArgOperand(3);
3308 // This operation is not atomic for the shadow and origin memory.
3309 // This could result in DFSan false positives or false negatives.
3310 // For now we will assume these operations are rare, and
3311 // the additional complexity to address this is not warrented.
3313 IRBuilder<> NextIRB(CB.getNextNode());
3314 NextIRB.SetCurrentDebugLocation(CB.getDebugLoc());
3316 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
3318 // If original call returned true, copy Desired to Target.
3319 // If original call returned false, copy Target to Expected.
3320 NextIRB.CreateCall(
3321 DFSF.DFS.DFSanMemShadowOriginConditionalExchangeFn,
3322 {NextIRB.CreateIntCast(&CB, NextIRB.getInt8Ty(), false),
3323 NextIRB.CreatePointerCast(TargetPtr, NextIRB.getInt8PtrTy()),
3324 NextIRB.CreatePointerCast(ExpectedPtr, NextIRB.getInt8PtrTy()),
3325 NextIRB.CreatePointerCast(DesiredPtr, NextIRB.getInt8PtrTy()),
3326 NextIRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)});
3329 void DFSanVisitor::visitCallBase(CallBase &CB) {
3330 Function *F = CB.getCalledFunction();
3331 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) {
3332 visitInstOperands(CB);
3333 return;
3336 // Calls to this function are synthesized in wrappers, and we shouldn't
3337 // instrument them.
3338 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts())
3339 return;
3341 LibFunc LF;
3342 if (DFSF.TLI.getLibFunc(CB, LF)) {
3343 // libatomic.a functions need to have special handling because there isn't
3344 // a good way to intercept them or compile the library with
3345 // instrumentation.
3346 switch (LF) {
3347 case LibFunc_atomic_load:
3348 if (!isa<CallInst>(CB)) {
3349 llvm::errs() << "DFSAN -- cannot instrument invoke of libatomic load. "
3350 "Ignoring!\n";
3351 break;
3353 visitLibAtomicLoad(CB);
3354 return;
3355 case LibFunc_atomic_store:
3356 visitLibAtomicStore(CB);
3357 return;
3358 default:
3359 break;
3363 // TODO: These are not supported by TLI? They are not in the enum.
3364 if (F && F->hasName() && !F->isVarArg()) {
3365 if (F->getName() == "__atomic_exchange") {
3366 visitLibAtomicExchange(CB);
3367 return;
3369 if (F->getName() == "__atomic_compare_exchange") {
3370 visitLibAtomicCompareExchange(CB);
3371 return;
3375 DenseMap<Value *, Function *>::iterator UnwrappedFnIt =
3376 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand());
3377 if (UnwrappedFnIt != DFSF.DFS.UnwrappedFnMap.end())
3378 if (visitWrappedCallBase(*UnwrappedFnIt->second, CB))
3379 return;
3381 IRBuilder<> IRB(&CB);
3383 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
3384 FunctionType *FT = CB.getFunctionType();
3385 const DataLayout &DL = getDataLayout();
3387 // Stores argument shadows.
3388 unsigned ArgOffset = 0;
3389 for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) {
3390 if (ShouldTrackOrigins) {
3391 // Ignore overflowed origins
3392 Value *ArgShadow = DFSF.getShadow(CB.getArgOperand(I));
3393 if (I < DFSF.DFS.NumOfElementsInArgOrgTLS &&
3394 !DFSF.DFS.isZeroShadow(ArgShadow))
3395 IRB.CreateStore(DFSF.getOrigin(CB.getArgOperand(I)),
3396 DFSF.getArgOriginTLS(I, IRB));
3399 unsigned Size =
3400 DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I)));
3401 // Stop storing if arguments' size overflows. Inside a function, arguments
3402 // after overflow have zero shadow values.
3403 if (ArgOffset + Size > ArgTLSSize)
3404 break;
3405 IRB.CreateAlignedStore(DFSF.getShadow(CB.getArgOperand(I)),
3406 DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB),
3407 ShadowTLSAlignment);
3408 ArgOffset += alignTo(Size, ShadowTLSAlignment);
3411 Instruction *Next = nullptr;
3412 if (!CB.getType()->isVoidTy()) {
3413 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
3414 if (II->getNormalDest()->getSinglePredecessor()) {
3415 Next = &II->getNormalDest()->front();
3416 } else {
3417 BasicBlock *NewBB =
3418 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT);
3419 Next = &NewBB->front();
3421 } else {
3422 assert(CB.getIterator() != CB.getParent()->end());
3423 Next = CB.getNextNode();
3426 // Don't emit the epilogue for musttail call returns.
3427 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall())
3428 return;
3430 // Loads the return value shadow.
3431 IRBuilder<> NextIRB(Next);
3432 unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB));
3433 if (Size > RetvalTLSSize) {
3434 // Set overflowed return shadow to be zero.
3435 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
3436 } else {
3437 LoadInst *LI = NextIRB.CreateAlignedLoad(
3438 DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB),
3439 ShadowTLSAlignment, "_dfsret");
3440 DFSF.SkipInsts.insert(LI);
3441 DFSF.setShadow(&CB, LI);
3442 DFSF.NonZeroChecks.push_back(LI);
3445 if (ShouldTrackOrigins) {
3446 LoadInst *LI = NextIRB.CreateLoad(DFSF.DFS.OriginTy,
3447 DFSF.getRetvalOriginTLS(), "_dfsret_o");
3448 DFSF.SkipInsts.insert(LI);
3449 DFSF.setOrigin(&CB, LI);
3452 DFSF.addReachesFunctionCallbacksIfEnabled(NextIRB, CB, &CB);
3456 void DFSanVisitor::visitPHINode(PHINode &PN) {
3457 Type *ShadowTy = DFSF.DFS.getShadowTy(&PN);
3458 PHINode *ShadowPN =
3459 PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN);
3461 // Give the shadow phi node valid predecessors to fool SplitEdge into working.
3462 Value *UndefShadow = UndefValue::get(ShadowTy);
3463 for (BasicBlock *BB : PN.blocks())
3464 ShadowPN->addIncoming(UndefShadow, BB);
3466 DFSF.setShadow(&PN, ShadowPN);
3468 PHINode *OriginPN = nullptr;
3469 if (DFSF.DFS.shouldTrackOrigins()) {
3470 OriginPN =
3471 PHINode::Create(DFSF.DFS.OriginTy, PN.getNumIncomingValues(), "", &PN);
3472 Value *UndefOrigin = UndefValue::get(DFSF.DFS.OriginTy);
3473 for (BasicBlock *BB : PN.blocks())
3474 OriginPN->addIncoming(UndefOrigin, BB);
3475 DFSF.setOrigin(&PN, OriginPN);
3478 DFSF.PHIFixups.push_back({&PN, ShadowPN, OriginPN});
3481 PreservedAnalyses DataFlowSanitizerPass::run(Module &M,
3482 ModuleAnalysisManager &AM) {
3483 auto GetTLI = [&](Function &F) -> TargetLibraryInfo & {
3484 auto &FAM =
3485 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
3486 return FAM.getResult<TargetLibraryAnalysis>(F);
3488 if (!DataFlowSanitizer(ABIListFiles).runImpl(M, GetTLI))
3489 return PreservedAnalyses::all();
3491 PreservedAnalyses PA = PreservedAnalyses::none();
3492 // GlobalsAA is considered stateless and does not get invalidated unless
3493 // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers
3494 // make changes that require GlobalsAA to be invalidated.
3495 PA.abandon<GlobalsAA>();
3496 return PA;