1 //===- MemProfiler.cpp - memory allocation and access profiler ------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file is a part of MemProfiler. Memory accesses are instrumented
10 // to increment the access count held in a shadow memory location, or
11 // alternatively to call into the runtime. Memory intrinsic calls (memmove,
12 // memcpy, memset) are changed to call the memory profiling runtime version
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Transforms/Instrumentation/MemProfiler.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Analysis/MemoryBuiltins.h"
22 #include "llvm/Analysis/MemoryProfileInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DiagnosticInfo.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalValue.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/ProfileData/InstrProf.h"
36 #include "llvm/ProfileData/InstrProfReader.h"
37 #include "llvm/Support/BLAKE3.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/HashBuilder.h"
41 #include "llvm/Support/VirtualFileSystem.h"
42 #include "llvm/TargetParser/Triple.h"
43 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
44 #include "llvm/Transforms/Utils/ModuleUtils.h"
49 using namespace llvm::memprof
;
51 #define DEBUG_TYPE "memprof"
54 extern cl::opt
<bool> PGOWarnMissing
;
55 extern cl::opt
<bool> NoPGOWarnMismatch
;
56 extern cl::opt
<bool> NoPGOWarnMismatchComdatWeak
;
59 constexpr int LLVM_MEM_PROFILER_VERSION
= 1;
61 // Size of memory mapped to a single shadow location.
62 constexpr uint64_t DefaultShadowGranularity
= 64;
64 // Scale from granularity down to shadow size.
65 constexpr uint64_t DefaultShadowScale
= 3;
67 constexpr char MemProfModuleCtorName
[] = "memprof.module_ctor";
68 constexpr uint64_t MemProfCtorAndDtorPriority
= 1;
69 // On Emscripten, the system needs more than one priorities for constructors.
70 constexpr uint64_t MemProfEmscriptenCtorAndDtorPriority
= 50;
71 constexpr char MemProfInitName
[] = "__memprof_init";
72 constexpr char MemProfVersionCheckNamePrefix
[] =
73 "__memprof_version_mismatch_check_v";
75 constexpr char MemProfShadowMemoryDynamicAddress
[] =
76 "__memprof_shadow_memory_dynamic_address";
78 constexpr char MemProfFilenameVar
[] = "__memprof_profile_filename";
80 // Command-line flags.
82 static cl::opt
<bool> ClInsertVersionCheck(
83 "memprof-guard-against-version-mismatch",
84 cl::desc("Guard against compiler/runtime version mismatch."), cl::Hidden
,
87 // This flag may need to be replaced with -f[no-]memprof-reads.
88 static cl::opt
<bool> ClInstrumentReads("memprof-instrument-reads",
89 cl::desc("instrument read instructions"),
90 cl::Hidden
, cl::init(true));
93 ClInstrumentWrites("memprof-instrument-writes",
94 cl::desc("instrument write instructions"), cl::Hidden
,
97 static cl::opt
<bool> ClInstrumentAtomics(
98 "memprof-instrument-atomics",
99 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden
,
102 static cl::opt
<bool> ClUseCalls(
103 "memprof-use-callbacks",
104 cl::desc("Use callbacks instead of inline instrumentation sequences."),
105 cl::Hidden
, cl::init(false));
107 static cl::opt
<std::string
>
108 ClMemoryAccessCallbackPrefix("memprof-memory-access-callback-prefix",
109 cl::desc("Prefix for memory access callbacks"),
110 cl::Hidden
, cl::init("__memprof_"));
112 // These flags allow to change the shadow mapping.
113 // The shadow mapping looks like
114 // Shadow = ((Mem & mask) >> scale) + offset
116 static cl::opt
<int> ClMappingScale("memprof-mapping-scale",
117 cl::desc("scale of memprof shadow mapping"),
118 cl::Hidden
, cl::init(DefaultShadowScale
));
121 ClMappingGranularity("memprof-mapping-granularity",
122 cl::desc("granularity of memprof shadow mapping"),
123 cl::Hidden
, cl::init(DefaultShadowGranularity
));
125 static cl::opt
<bool> ClStack("memprof-instrument-stack",
126 cl::desc("Instrument scalar stack variables"),
127 cl::Hidden
, cl::init(false));
131 static cl::opt
<int> ClDebug("memprof-debug", cl::desc("debug"), cl::Hidden
,
134 static cl::opt
<std::string
> ClDebugFunc("memprof-debug-func", cl::Hidden
,
135 cl::desc("Debug func"));
137 static cl::opt
<int> ClDebugMin("memprof-debug-min", cl::desc("Debug min inst"),
138 cl::Hidden
, cl::init(-1));
140 static cl::opt
<int> ClDebugMax("memprof-debug-max", cl::desc("Debug max inst"),
141 cl::Hidden
, cl::init(-1));
143 STATISTIC(NumInstrumentedReads
, "Number of instrumented reads");
144 STATISTIC(NumInstrumentedWrites
, "Number of instrumented writes");
145 STATISTIC(NumSkippedStackReads
, "Number of non-instrumented stack reads");
146 STATISTIC(NumSkippedStackWrites
, "Number of non-instrumented stack writes");
147 STATISTIC(NumOfMemProfMissing
, "Number of functions without memory profile.");
151 /// This struct defines the shadow mapping using the rule:
152 /// shadow = ((mem & mask) >> Scale) ADD DynamicShadowOffset.
153 struct ShadowMapping
{
155 Scale
= ClMappingScale
;
156 Granularity
= ClMappingGranularity
;
157 Mask
= ~(Granularity
- 1);
162 uint64_t Mask
; // Computed as ~(Granularity-1)
165 static uint64_t getCtorAndDtorPriority(Triple
&TargetTriple
) {
166 return TargetTriple
.isOSEmscripten() ? MemProfEmscriptenCtorAndDtorPriority
167 : MemProfCtorAndDtorPriority
;
170 struct InterestingMemoryAccess
{
171 Value
*Addr
= nullptr;
175 Value
*MaybeMask
= nullptr;
178 /// Instrument the code in module to profile memory accesses.
181 MemProfiler(Module
&M
) {
182 C
= &(M
.getContext());
183 LongSize
= M
.getDataLayout().getPointerSizeInBits();
184 IntptrTy
= Type::getIntNTy(*C
, LongSize
);
187 /// If it is an interesting memory access, populate information
188 /// about the access and return a InterestingMemoryAccess struct.
189 /// Otherwise return std::nullopt.
190 std::optional
<InterestingMemoryAccess
>
191 isInterestingMemoryAccess(Instruction
*I
) const;
193 void instrumentMop(Instruction
*I
, const DataLayout
&DL
,
194 InterestingMemoryAccess
&Access
);
195 void instrumentAddress(Instruction
*OrigIns
, Instruction
*InsertBefore
,
196 Value
*Addr
, uint32_t TypeSize
, bool IsWrite
);
197 void instrumentMaskedLoadOrStore(const DataLayout
&DL
, Value
*Mask
,
198 Instruction
*I
, Value
*Addr
, Type
*AccessTy
,
200 void instrumentMemIntrinsic(MemIntrinsic
*MI
);
201 Value
*memToShadow(Value
*Shadow
, IRBuilder
<> &IRB
);
202 bool instrumentFunction(Function
&F
);
203 bool maybeInsertMemProfInitAtFunctionEntry(Function
&F
);
204 bool insertDynamicShadowAtFunctionEntry(Function
&F
);
207 void initializeCallbacks(Module
&M
);
212 ShadowMapping Mapping
;
214 // These arrays is indexed by AccessIsWrite
215 FunctionCallee MemProfMemoryAccessCallback
[2];
216 FunctionCallee MemProfMemoryAccessCallbackSized
[2];
218 FunctionCallee MemProfMemmove
, MemProfMemcpy
, MemProfMemset
;
219 Value
*DynamicShadowOffset
= nullptr;
222 class ModuleMemProfiler
{
224 ModuleMemProfiler(Module
&M
) { TargetTriple
= Triple(M
.getTargetTriple()); }
226 bool instrumentModule(Module
&);
230 ShadowMapping Mapping
;
231 Function
*MemProfCtorFunction
= nullptr;
234 } // end anonymous namespace
236 MemProfilerPass::MemProfilerPass() = default;
238 PreservedAnalyses
MemProfilerPass::run(Function
&F
,
239 AnalysisManager
<Function
> &AM
) {
240 Module
&M
= *F
.getParent();
241 MemProfiler
Profiler(M
);
242 if (Profiler
.instrumentFunction(F
))
243 return PreservedAnalyses::none();
244 return PreservedAnalyses::all();
247 ModuleMemProfilerPass::ModuleMemProfilerPass() = default;
249 PreservedAnalyses
ModuleMemProfilerPass::run(Module
&M
,
250 AnalysisManager
<Module
> &AM
) {
251 ModuleMemProfiler
Profiler(M
);
252 if (Profiler
.instrumentModule(M
))
253 return PreservedAnalyses::none();
254 return PreservedAnalyses::all();
257 Value
*MemProfiler::memToShadow(Value
*Shadow
, IRBuilder
<> &IRB
) {
258 // (Shadow & mask) >> scale
259 Shadow
= IRB
.CreateAnd(Shadow
, Mapping
.Mask
);
260 Shadow
= IRB
.CreateLShr(Shadow
, Mapping
.Scale
);
261 // (Shadow >> scale) | offset
262 assert(DynamicShadowOffset
);
263 return IRB
.CreateAdd(Shadow
, DynamicShadowOffset
);
266 // Instrument memset/memmove/memcpy
267 void MemProfiler::instrumentMemIntrinsic(MemIntrinsic
*MI
) {
269 if (isa
<MemTransferInst
>(MI
)) {
271 isa
<MemMoveInst
>(MI
) ? MemProfMemmove
: MemProfMemcpy
,
272 {IRB
.CreatePointerCast(MI
->getOperand(0), IRB
.getInt8PtrTy()),
273 IRB
.CreatePointerCast(MI
->getOperand(1), IRB
.getInt8PtrTy()),
274 IRB
.CreateIntCast(MI
->getOperand(2), IntptrTy
, false)});
275 } else if (isa
<MemSetInst
>(MI
)) {
278 {IRB
.CreatePointerCast(MI
->getOperand(0), IRB
.getInt8PtrTy()),
279 IRB
.CreateIntCast(MI
->getOperand(1), IRB
.getInt32Ty(), false),
280 IRB
.CreateIntCast(MI
->getOperand(2), IntptrTy
, false)});
282 MI
->eraseFromParent();
285 std::optional
<InterestingMemoryAccess
>
286 MemProfiler::isInterestingMemoryAccess(Instruction
*I
) const {
287 // Do not instrument the load fetching the dynamic shadow address.
288 if (DynamicShadowOffset
== I
)
291 InterestingMemoryAccess Access
;
293 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
294 if (!ClInstrumentReads
)
296 Access
.IsWrite
= false;
297 Access
.AccessTy
= LI
->getType();
298 Access
.Addr
= LI
->getPointerOperand();
299 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
300 if (!ClInstrumentWrites
)
302 Access
.IsWrite
= true;
303 Access
.AccessTy
= SI
->getValueOperand()->getType();
304 Access
.Addr
= SI
->getPointerOperand();
305 } else if (AtomicRMWInst
*RMW
= dyn_cast
<AtomicRMWInst
>(I
)) {
306 if (!ClInstrumentAtomics
)
308 Access
.IsWrite
= true;
309 Access
.AccessTy
= RMW
->getValOperand()->getType();
310 Access
.Addr
= RMW
->getPointerOperand();
311 } else if (AtomicCmpXchgInst
*XCHG
= dyn_cast
<AtomicCmpXchgInst
>(I
)) {
312 if (!ClInstrumentAtomics
)
314 Access
.IsWrite
= true;
315 Access
.AccessTy
= XCHG
->getCompareOperand()->getType();
316 Access
.Addr
= XCHG
->getPointerOperand();
317 } else if (auto *CI
= dyn_cast
<CallInst
>(I
)) {
318 auto *F
= CI
->getCalledFunction();
319 if (F
&& (F
->getIntrinsicID() == Intrinsic::masked_load
||
320 F
->getIntrinsicID() == Intrinsic::masked_store
)) {
321 unsigned OpOffset
= 0;
322 if (F
->getIntrinsicID() == Intrinsic::masked_store
) {
323 if (!ClInstrumentWrites
)
325 // Masked store has an initial operand for the value.
327 Access
.AccessTy
= CI
->getArgOperand(0)->getType();
328 Access
.IsWrite
= true;
330 if (!ClInstrumentReads
)
332 Access
.AccessTy
= CI
->getType();
333 Access
.IsWrite
= false;
336 auto *BasePtr
= CI
->getOperand(0 + OpOffset
);
337 Access
.MaybeMask
= CI
->getOperand(2 + OpOffset
);
338 Access
.Addr
= BasePtr
;
345 // Do not instrument accesses from different address spaces; we cannot deal
347 Type
*PtrTy
= cast
<PointerType
>(Access
.Addr
->getType()->getScalarType());
348 if (PtrTy
->getPointerAddressSpace() != 0)
351 // Ignore swifterror addresses.
352 // swifterror memory addresses are mem2reg promoted by instruction
353 // selection. As such they cannot have regular uses like an instrumentation
354 // function and it makes no sense to track them as memory.
355 if (Access
.Addr
->isSwiftError())
358 // Peel off GEPs and BitCasts.
359 auto *Addr
= Access
.Addr
->stripInBoundsOffsets();
361 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(Addr
)) {
362 // Do not instrument PGO counter updates.
363 if (GV
->hasSection()) {
364 StringRef SectionName
= GV
->getSection();
365 // Check if the global is in the PGO counters section.
366 auto OF
= Triple(I
->getModule()->getTargetTriple()).getObjectFormat();
367 if (SectionName
.endswith(
368 getInstrProfSectionName(IPSK_cnts
, OF
, /*AddSegmentInfo=*/false)))
372 // Do not instrument accesses to LLVM internal variables.
373 if (GV
->getName().startswith("__llvm"))
377 const DataLayout
&DL
= I
->getModule()->getDataLayout();
378 Access
.TypeSize
= DL
.getTypeStoreSizeInBits(Access
.AccessTy
);
382 void MemProfiler::instrumentMaskedLoadOrStore(const DataLayout
&DL
, Value
*Mask
,
383 Instruction
*I
, Value
*Addr
,
384 Type
*AccessTy
, bool IsWrite
) {
385 auto *VTy
= cast
<FixedVectorType
>(AccessTy
);
386 uint64_t ElemTypeSize
= DL
.getTypeStoreSizeInBits(VTy
->getScalarType());
387 unsigned Num
= VTy
->getNumElements();
388 auto *Zero
= ConstantInt::get(IntptrTy
, 0);
389 for (unsigned Idx
= 0; Idx
< Num
; ++Idx
) {
390 Value
*InstrumentedAddress
= nullptr;
391 Instruction
*InsertBefore
= I
;
392 if (auto *Vector
= dyn_cast
<ConstantVector
>(Mask
)) {
393 // dyn_cast as we might get UndefValue
394 if (auto *Masked
= dyn_cast
<ConstantInt
>(Vector
->getOperand(Idx
))) {
395 if (Masked
->isZero())
396 // Mask is constant false, so no instrumentation needed.
398 // If we have a true or undef value, fall through to instrumentAddress.
399 // with InsertBefore == I
403 Value
*MaskElem
= IRB
.CreateExtractElement(Mask
, Idx
);
404 Instruction
*ThenTerm
= SplitBlockAndInsertIfThen(MaskElem
, I
, false);
405 InsertBefore
= ThenTerm
;
408 IRBuilder
<> IRB(InsertBefore
);
409 InstrumentedAddress
=
410 IRB
.CreateGEP(VTy
, Addr
, {Zero
, ConstantInt::get(IntptrTy
, Idx
)});
411 instrumentAddress(I
, InsertBefore
, InstrumentedAddress
, ElemTypeSize
,
416 void MemProfiler::instrumentMop(Instruction
*I
, const DataLayout
&DL
,
417 InterestingMemoryAccess
&Access
) {
418 // Skip instrumentation of stack accesses unless requested.
419 if (!ClStack
&& isa
<AllocaInst
>(getUnderlyingObject(Access
.Addr
))) {
421 ++NumSkippedStackWrites
;
423 ++NumSkippedStackReads
;
428 NumInstrumentedWrites
++;
430 NumInstrumentedReads
++;
432 if (Access
.MaybeMask
) {
433 instrumentMaskedLoadOrStore(DL
, Access
.MaybeMask
, I
, Access
.Addr
,
434 Access
.AccessTy
, Access
.IsWrite
);
436 // Since the access counts will be accumulated across the entire allocation,
437 // we only update the shadow access count for the first location and thus
438 // don't need to worry about alignment and type size.
439 instrumentAddress(I
, I
, Access
.Addr
, Access
.TypeSize
, Access
.IsWrite
);
443 void MemProfiler::instrumentAddress(Instruction
*OrigIns
,
444 Instruction
*InsertBefore
, Value
*Addr
,
445 uint32_t TypeSize
, bool IsWrite
) {
446 IRBuilder
<> IRB(InsertBefore
);
447 Value
*AddrLong
= IRB
.CreatePointerCast(Addr
, IntptrTy
);
450 IRB
.CreateCall(MemProfMemoryAccessCallback
[IsWrite
], AddrLong
);
454 // Create an inline sequence to compute shadow location, and increment the
456 Type
*ShadowTy
= Type::getInt64Ty(*C
);
457 Type
*ShadowPtrTy
= PointerType::get(ShadowTy
, 0);
458 Value
*ShadowPtr
= memToShadow(AddrLong
, IRB
);
459 Value
*ShadowAddr
= IRB
.CreateIntToPtr(ShadowPtr
, ShadowPtrTy
);
460 Value
*ShadowValue
= IRB
.CreateLoad(ShadowTy
, ShadowAddr
);
461 Value
*Inc
= ConstantInt::get(Type::getInt64Ty(*C
), 1);
462 ShadowValue
= IRB
.CreateAdd(ShadowValue
, Inc
);
463 IRB
.CreateStore(ShadowValue
, ShadowAddr
);
466 // Create the variable for the profile file name.
467 void createProfileFileNameVar(Module
&M
) {
468 const MDString
*MemProfFilename
=
469 dyn_cast_or_null
<MDString
>(M
.getModuleFlag("MemProfProfileFilename"));
470 if (!MemProfFilename
)
472 assert(!MemProfFilename
->getString().empty() &&
473 "Unexpected MemProfProfileFilename metadata with empty string");
474 Constant
*ProfileNameConst
= ConstantDataArray::getString(
475 M
.getContext(), MemProfFilename
->getString(), true);
476 GlobalVariable
*ProfileNameVar
= new GlobalVariable(
477 M
, ProfileNameConst
->getType(), /*isConstant=*/true,
478 GlobalValue::WeakAnyLinkage
, ProfileNameConst
, MemProfFilenameVar
);
479 Triple
TT(M
.getTargetTriple());
480 if (TT
.supportsCOMDAT()) {
481 ProfileNameVar
->setLinkage(GlobalValue::ExternalLinkage
);
482 ProfileNameVar
->setComdat(M
.getOrInsertComdat(MemProfFilenameVar
));
486 bool ModuleMemProfiler::instrumentModule(Module
&M
) {
487 // Create a module constructor.
488 std::string MemProfVersion
= std::to_string(LLVM_MEM_PROFILER_VERSION
);
489 std::string VersionCheckName
=
490 ClInsertVersionCheck
? (MemProfVersionCheckNamePrefix
+ MemProfVersion
)
492 std::tie(MemProfCtorFunction
, std::ignore
) =
493 createSanitizerCtorAndInitFunctions(M
, MemProfModuleCtorName
,
494 MemProfInitName
, /*InitArgTypes=*/{},
495 /*InitArgs=*/{}, VersionCheckName
);
497 const uint64_t Priority
= getCtorAndDtorPriority(TargetTriple
);
498 appendToGlobalCtors(M
, MemProfCtorFunction
, Priority
);
500 createProfileFileNameVar(M
);
505 void MemProfiler::initializeCallbacks(Module
&M
) {
508 for (size_t AccessIsWrite
= 0; AccessIsWrite
<= 1; AccessIsWrite
++) {
509 const std::string TypeStr
= AccessIsWrite
? "store" : "load";
511 SmallVector
<Type
*, 3> Args2
= {IntptrTy
, IntptrTy
};
512 SmallVector
<Type
*, 2> Args1
{1, IntptrTy
};
513 MemProfMemoryAccessCallbackSized
[AccessIsWrite
] =
514 M
.getOrInsertFunction(ClMemoryAccessCallbackPrefix
+ TypeStr
+ "N",
515 FunctionType::get(IRB
.getVoidTy(), Args2
, false));
517 MemProfMemoryAccessCallback
[AccessIsWrite
] =
518 M
.getOrInsertFunction(ClMemoryAccessCallbackPrefix
+ TypeStr
,
519 FunctionType::get(IRB
.getVoidTy(), Args1
, false));
521 MemProfMemmove
= M
.getOrInsertFunction(
522 ClMemoryAccessCallbackPrefix
+ "memmove", IRB
.getInt8PtrTy(),
523 IRB
.getInt8PtrTy(), IRB
.getInt8PtrTy(), IntptrTy
);
524 MemProfMemcpy
= M
.getOrInsertFunction(ClMemoryAccessCallbackPrefix
+ "memcpy",
525 IRB
.getInt8PtrTy(), IRB
.getInt8PtrTy(),
526 IRB
.getInt8PtrTy(), IntptrTy
);
527 MemProfMemset
= M
.getOrInsertFunction(ClMemoryAccessCallbackPrefix
+ "memset",
528 IRB
.getInt8PtrTy(), IRB
.getInt8PtrTy(),
529 IRB
.getInt32Ty(), IntptrTy
);
532 bool MemProfiler::maybeInsertMemProfInitAtFunctionEntry(Function
&F
) {
533 // For each NSObject descendant having a +load method, this method is invoked
534 // by the ObjC runtime before any of the static constructors is called.
535 // Therefore we need to instrument such methods with a call to __memprof_init
536 // at the beginning in order to initialize our runtime before any access to
537 // the shadow memory.
538 // We cannot just ignore these methods, because they may call other
539 // instrumented functions.
540 if (F
.getName().find(" load]") != std::string::npos
) {
541 FunctionCallee MemProfInitFunction
=
542 declareSanitizerInitFunction(*F
.getParent(), MemProfInitName
, {});
543 IRBuilder
<> IRB(&F
.front(), F
.front().begin());
544 IRB
.CreateCall(MemProfInitFunction
, {});
550 bool MemProfiler::insertDynamicShadowAtFunctionEntry(Function
&F
) {
551 IRBuilder
<> IRB(&F
.front().front());
552 Value
*GlobalDynamicAddress
= F
.getParent()->getOrInsertGlobal(
553 MemProfShadowMemoryDynamicAddress
, IntptrTy
);
554 if (F
.getParent()->getPICLevel() == PICLevel::NotPIC
)
555 cast
<GlobalVariable
>(GlobalDynamicAddress
)->setDSOLocal(true);
556 DynamicShadowOffset
= IRB
.CreateLoad(IntptrTy
, GlobalDynamicAddress
);
560 bool MemProfiler::instrumentFunction(Function
&F
) {
561 if (F
.getLinkage() == GlobalValue::AvailableExternallyLinkage
)
563 if (ClDebugFunc
== F
.getName())
565 if (F
.getName().startswith("__memprof_"))
568 bool FunctionModified
= false;
570 // If needed, insert __memprof_init.
571 // This function needs to be called even if the function body is not
573 if (maybeInsertMemProfInitAtFunctionEntry(F
))
574 FunctionModified
= true;
576 LLVM_DEBUG(dbgs() << "MEMPROF instrumenting:\n" << F
<< "\n");
578 initializeCallbacks(*F
.getParent());
580 SmallVector
<Instruction
*, 16> ToInstrument
;
582 // Fill the set of memory operations to instrument.
584 for (auto &Inst
: BB
) {
585 if (isInterestingMemoryAccess(&Inst
) || isa
<MemIntrinsic
>(Inst
))
586 ToInstrument
.push_back(&Inst
);
590 if (ToInstrument
.empty()) {
591 LLVM_DEBUG(dbgs() << "MEMPROF done instrumenting: " << FunctionModified
592 << " " << F
<< "\n");
594 return FunctionModified
;
597 FunctionModified
|= insertDynamicShadowAtFunctionEntry(F
);
599 int NumInstrumented
= 0;
600 for (auto *Inst
: ToInstrument
) {
601 if (ClDebugMin
< 0 || ClDebugMax
< 0 ||
602 (NumInstrumented
>= ClDebugMin
&& NumInstrumented
<= ClDebugMax
)) {
603 std::optional
<InterestingMemoryAccess
> Access
=
604 isInterestingMemoryAccess(Inst
);
606 instrumentMop(Inst
, F
.getParent()->getDataLayout(), *Access
);
608 instrumentMemIntrinsic(cast
<MemIntrinsic
>(Inst
));
613 if (NumInstrumented
> 0)
614 FunctionModified
= true;
616 LLVM_DEBUG(dbgs() << "MEMPROF done instrumenting: " << FunctionModified
<< " "
619 return FunctionModified
;
622 static void addCallsiteMetadata(Instruction
&I
,
623 std::vector
<uint64_t> &InlinedCallStack
,
625 I
.setMetadata(LLVMContext::MD_callsite
,
626 buildCallstackMetadata(InlinedCallStack
, Ctx
));
629 static uint64_t computeStackId(GlobalValue::GUID Function
, uint32_t LineOffset
,
631 llvm::HashBuilder
<llvm::TruncatedBLAKE3
<8>, llvm::support::endianness::little
>
633 HashBuilder
.add(Function
, LineOffset
, Column
);
634 llvm::BLAKE3Result
<8> Hash
= HashBuilder
.final();
636 std::memcpy(&Id
, Hash
.data(), sizeof(Hash
));
640 static uint64_t computeStackId(const memprof::Frame
&Frame
) {
641 return computeStackId(Frame
.Function
, Frame
.LineOffset
, Frame
.Column
);
644 static void addCallStack(CallStackTrie
&AllocTrie
,
645 const AllocationInfo
*AllocInfo
) {
646 SmallVector
<uint64_t> StackIds
;
647 for (const auto &StackFrame
: AllocInfo
->CallStack
)
648 StackIds
.push_back(computeStackId(StackFrame
));
649 auto AllocType
= getAllocType(AllocInfo
->Info
.getTotalLifetimeAccessDensity(),
650 AllocInfo
->Info
.getAllocCount(),
651 AllocInfo
->Info
.getTotalLifetime());
652 AllocTrie
.addCallStack(AllocType
, StackIds
);
655 // Helper to compare the InlinedCallStack computed from an instruction's debug
656 // info to a list of Frames from profile data (either the allocation data or a
657 // callsite). For callsites, the StartIndex to use in the Frame array may be
660 stackFrameIncludesInlinedCallStack(ArrayRef
<Frame
> ProfileCallStack
,
661 ArrayRef
<uint64_t> InlinedCallStack
,
662 unsigned StartIndex
= 0) {
663 auto StackFrame
= ProfileCallStack
.begin() + StartIndex
;
664 auto InlCallStackIter
= InlinedCallStack
.begin();
665 for (; StackFrame
!= ProfileCallStack
.end() &&
666 InlCallStackIter
!= InlinedCallStack
.end();
667 ++StackFrame
, ++InlCallStackIter
) {
668 uint64_t StackId
= computeStackId(*StackFrame
);
669 if (StackId
!= *InlCallStackIter
)
672 // Return true if we found and matched all stack ids from the call
674 return InlCallStackIter
== InlinedCallStack
.end();
677 static void readMemprof(Module
&M
, Function
&F
,
678 IndexedInstrProfReader
*MemProfReader
,
679 const TargetLibraryInfo
&TLI
) {
680 auto &Ctx
= M
.getContext();
682 auto FuncName
= getIRPGOFuncName(F
);
683 auto FuncGUID
= Function::getGUID(FuncName
);
684 std::optional
<memprof::MemProfRecord
> MemProfRec
;
685 auto Err
= MemProfReader
->getMemProfRecord(FuncGUID
).moveInto(MemProfRec
);
687 // If we don't find getIRPGOFuncName(), try getPGOFuncName() to handle
688 // profiles built by older compilers
689 Err
= handleErrors(std::move(Err
), [&](const InstrProfError
&IE
) -> Error
{
690 if (IE
.get() != instrprof_error::unknown_function
)
691 return make_error
<InstrProfError
>(IE
);
692 auto FuncName
= getPGOFuncName(F
);
693 auto FuncGUID
= Function::getGUID(FuncName
);
695 MemProfReader
->getMemProfRecord(FuncGUID
).moveInto(MemProfRec
))
697 return Error::success();
701 handleAllErrors(std::move(Err
), [&](const InstrProfError
&IPE
) {
702 auto Err
= IPE
.get();
703 bool SkipWarning
= false;
704 LLVM_DEBUG(dbgs() << "Error in reading profile for Func " << FuncName
706 if (Err
== instrprof_error::unknown_function
) {
707 NumOfMemProfMissing
++;
708 SkipWarning
= !PGOWarnMissing
;
709 LLVM_DEBUG(dbgs() << "unknown function");
710 } else if (Err
== instrprof_error::hash_mismatch
) {
713 (NoPGOWarnMismatchComdatWeak
&&
715 F
.getLinkage() == GlobalValue::AvailableExternallyLinkage
));
716 LLVM_DEBUG(dbgs() << "hash mismatch (skip=" << SkipWarning
<< ")");
722 std::string Msg
= (IPE
.message() + Twine(" ") + F
.getName().str() +
723 Twine(" Hash = ") + std::to_string(FuncGUID
))
727 DiagnosticInfoPGOProfile(M
.getName().data(), Msg
, DS_Warning
));
732 // Build maps of the location hash to all profile data with that leaf location
733 // (allocation info and the callsites).
734 std::map
<uint64_t, std::set
<const AllocationInfo
*>> LocHashToAllocInfo
;
735 // For the callsites we need to record the index of the associated frame in
736 // the frame array (see comments below where the map entries are added).
737 std::map
<uint64_t, std::set
<std::pair
<const SmallVector
<Frame
> *, unsigned>>>
739 for (auto &AI
: MemProfRec
->AllocSites
) {
740 // Associate the allocation info with the leaf frame. The later matching
741 // code will match any inlined call sequences in the IR with a longer prefix
742 // of call stack frames.
743 uint64_t StackId
= computeStackId(AI
.CallStack
[0]);
744 LocHashToAllocInfo
[StackId
].insert(&AI
);
746 for (auto &CS
: MemProfRec
->CallSites
) {
747 // Need to record all frames from leaf up to and including this function,
748 // as any of these may or may not have been inlined at this point.
750 for (auto &StackFrame
: CS
) {
751 uint64_t StackId
= computeStackId(StackFrame
);
752 LocHashToCallSites
[StackId
].insert(std::make_pair(&CS
, Idx
++));
753 // Once we find this function, we can stop recording.
754 if (StackFrame
.Function
== FuncGUID
)
757 assert(Idx
<= CS
.size() && CS
[Idx
- 1].Function
== FuncGUID
);
760 auto GetOffset
= [](const DILocation
*DIL
) {
761 return (DIL
->getLine() - DIL
->getScope()->getSubprogram()->getLine()) &
765 // Now walk the instructions, looking up the associated profile data using
769 if (I
.isDebugOrPseudoInst())
771 // We are only interested in calls (allocation or interior call stack
773 auto *CI
= dyn_cast
<CallBase
>(&I
);
776 auto *CalledFunction
= CI
->getCalledFunction();
777 if (CalledFunction
&& CalledFunction
->isIntrinsic())
779 // List of call stack ids computed from the location hashes on debug
780 // locations (leaf to inlined at root).
781 std::vector
<uint64_t> InlinedCallStack
;
782 // Was the leaf location found in one of the profile maps?
783 bool LeafFound
= false;
784 // If leaf was found in a map, iterators pointing to its location in both
785 // of the maps. It might exist in neither, one, or both (the latter case
786 // can happen because we don't currently have discriminators to
787 // distinguish the case when a single line/col maps to both an allocation
788 // and another callsite).
789 std::map
<uint64_t, std::set
<const AllocationInfo
*>>::iterator
791 std::map
<uint64_t, std::set
<std::pair
<const SmallVector
<Frame
> *,
792 unsigned>>>::iterator CallSitesIter
;
793 for (const DILocation
*DIL
= I
.getDebugLoc(); DIL
!= nullptr;
794 DIL
= DIL
->getInlinedAt()) {
795 // Use C++ linkage name if possible. Need to compile with
796 // -fdebug-info-for-profiling to get linkage name.
797 StringRef Name
= DIL
->getScope()->getSubprogram()->getLinkageName();
799 Name
= DIL
->getScope()->getSubprogram()->getName();
800 auto CalleeGUID
= Function::getGUID(Name
);
802 computeStackId(CalleeGUID
, GetOffset(DIL
), DIL
->getColumn());
803 // LeafFound will only be false on the first iteration, since we either
804 // set it true or break out of the loop below.
806 AllocInfoIter
= LocHashToAllocInfo
.find(StackId
);
807 CallSitesIter
= LocHashToCallSites
.find(StackId
);
808 // Check if the leaf is in one of the maps. If not, no need to look
809 // further at this call.
810 if (AllocInfoIter
== LocHashToAllocInfo
.end() &&
811 CallSitesIter
== LocHashToCallSites
.end())
815 InlinedCallStack
.push_back(StackId
);
817 // If leaf not in either of the maps, skip inst.
821 // First add !memprof metadata from allocation info, if we found the
822 // instruction's leaf location in that map, and if the rest of the
823 // instruction's locations match the prefix Frame locations on an
824 // allocation context with the same leaf.
825 if (AllocInfoIter
!= LocHashToAllocInfo
.end()) {
826 // Only consider allocations via new, to reduce unnecessary metadata,
827 // since those are the only allocations that will be targeted initially.
828 if (!isNewLikeFn(CI
, &TLI
))
830 // We may match this instruction's location list to multiple MIB
831 // contexts. Add them to a Trie specialized for trimming the contexts to
832 // the minimal needed to disambiguate contexts with unique behavior.
833 CallStackTrie AllocTrie
;
834 for (auto *AllocInfo
: AllocInfoIter
->second
) {
835 // Check the full inlined call stack against this one.
836 // If we found and thus matched all frames on the call, include
838 if (stackFrameIncludesInlinedCallStack(AllocInfo
->CallStack
,
840 addCallStack(AllocTrie
, AllocInfo
);
842 // We might not have matched any to the full inlined call stack.
843 // But if we did, create and attach metadata, or a function attribute if
844 // all contexts have identical profiled behavior.
845 if (!AllocTrie
.empty()) {
846 // MemprofMDAttached will be false if a function attribute was
848 bool MemprofMDAttached
= AllocTrie
.buildAndAttachMIBMetadata(CI
);
849 assert(MemprofMDAttached
== I
.hasMetadata(LLVMContext::MD_memprof
));
850 if (MemprofMDAttached
) {
851 // Add callsite metadata for the instruction's location list so that
852 // it simpler later on to identify which part of the MIB contexts
853 // are from this particular instruction (including during inlining,
854 // when the callsite metdata will be updated appropriately).
855 // FIXME: can this be changed to strip out the matching stack
856 // context ids from the MIB contexts and not add any callsite
857 // metadata here to save space?
858 addCallsiteMetadata(I
, InlinedCallStack
, Ctx
);
864 // Otherwise, add callsite metadata. If we reach here then we found the
865 // instruction's leaf location in the callsites map and not the allocation
867 assert(CallSitesIter
!= LocHashToCallSites
.end());
868 for (auto CallStackIdx
: CallSitesIter
->second
) {
869 // If we found and thus matched all frames on the call, create and
870 // attach call stack metadata.
871 if (stackFrameIncludesInlinedCallStack(
872 *CallStackIdx
.first
, InlinedCallStack
, CallStackIdx
.second
)) {
873 addCallsiteMetadata(I
, InlinedCallStack
, Ctx
);
874 // Only need to find one with a matching call stack and add a single
875 // callsite metadata.
883 MemProfUsePass::MemProfUsePass(std::string MemoryProfileFile
,
884 IntrusiveRefCntPtr
<vfs::FileSystem
> FS
)
885 : MemoryProfileFileName(MemoryProfileFile
), FS(FS
) {
887 this->FS
= vfs::getRealFileSystem();
890 PreservedAnalyses
MemProfUsePass::run(Module
&M
, ModuleAnalysisManager
&AM
) {
891 LLVM_DEBUG(dbgs() << "Read in memory profile:");
892 auto &Ctx
= M
.getContext();
893 auto ReaderOrErr
= IndexedInstrProfReader::create(MemoryProfileFileName
, *FS
);
894 if (Error E
= ReaderOrErr
.takeError()) {
895 handleAllErrors(std::move(E
), [&](const ErrorInfoBase
&EI
) {
897 DiagnosticInfoPGOProfile(MemoryProfileFileName
.data(), EI
.message()));
899 return PreservedAnalyses::all();
902 std::unique_ptr
<IndexedInstrProfReader
> MemProfReader
=
903 std::move(ReaderOrErr
.get());
904 if (!MemProfReader
) {
905 Ctx
.diagnose(DiagnosticInfoPGOProfile(
906 MemoryProfileFileName
.data(), StringRef("Cannot get MemProfReader")));
907 return PreservedAnalyses::all();
910 if (!MemProfReader
->hasMemoryProfile()) {
911 Ctx
.diagnose(DiagnosticInfoPGOProfile(MemoryProfileFileName
.data(),
912 "Not a memory profile"));
913 return PreservedAnalyses::all();
916 auto &FAM
= AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
).getManager();
919 if (F
.isDeclaration())
922 const TargetLibraryInfo
&TLI
= FAM
.getResult
<TargetLibraryAnalysis
>(F
);
923 readMemprof(M
, F
, MemProfReader
.get(), TLI
);
926 return PreservedAnalyses::none();