[AMDGPU] Test codegen'ing True16 additions.
[llvm-project.git] / llvm / lib / Transforms / Utils / BreakCriticalEdges.cpp
blobcd3ef42f8f29c2d2bb385ebb09f14b40b1900504
1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
10 // inserting a dummy basic block. This pass may be "required" by passes that
11 // cannot deal with critical edges. For this usage, the structure type is
12 // forward declared. This pass obviously invalidates the CFG, but can update
13 // dominator trees.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Transforms/Utils/BreakCriticalEdges.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/BlockFrequencyInfo.h"
22 #include "llvm/Analysis/BranchProbabilityInfo.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/MemorySSAUpdater.h"
26 #include "llvm/Analysis/PostDominators.h"
27 #include "llvm/IR/CFG.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/InitializePasses.h"
31 #include "llvm/Transforms/Utils.h"
32 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
33 #include "llvm/Transforms/Utils/Cloning.h"
34 #include "llvm/Transforms/Utils/ValueMapper.h"
35 using namespace llvm;
37 #define DEBUG_TYPE "break-crit-edges"
39 STATISTIC(NumBroken, "Number of blocks inserted");
41 namespace {
42 struct BreakCriticalEdges : public FunctionPass {
43 static char ID; // Pass identification, replacement for typeid
44 BreakCriticalEdges() : FunctionPass(ID) {
45 initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
48 bool runOnFunction(Function &F) override {
49 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
50 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
52 auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
53 auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
55 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
56 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
57 unsigned N =
58 SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI, nullptr, PDT));
59 NumBroken += N;
60 return N > 0;
63 void getAnalysisUsage(AnalysisUsage &AU) const override {
64 AU.addPreserved<DominatorTreeWrapperPass>();
65 AU.addPreserved<LoopInfoWrapperPass>();
67 // No loop canonicalization guarantees are broken by this pass.
68 AU.addPreservedID(LoopSimplifyID);
73 char BreakCriticalEdges::ID = 0;
74 INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
75 "Break critical edges in CFG", false, false)
77 // Publicly exposed interface to pass...
78 char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
79 FunctionPass *llvm::createBreakCriticalEdgesPass() {
80 return new BreakCriticalEdges();
83 PreservedAnalyses BreakCriticalEdgesPass::run(Function &F,
84 FunctionAnalysisManager &AM) {
85 auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
86 auto *LI = AM.getCachedResult<LoopAnalysis>(F);
87 unsigned N = SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
88 NumBroken += N;
89 if (N == 0)
90 return PreservedAnalyses::all();
91 PreservedAnalyses PA;
92 PA.preserve<DominatorTreeAnalysis>();
93 PA.preserve<LoopAnalysis>();
94 return PA;
97 //===----------------------------------------------------------------------===//
98 // Implementation of the external critical edge manipulation functions
99 //===----------------------------------------------------------------------===//
101 BasicBlock *llvm::SplitCriticalEdge(Instruction *TI, unsigned SuccNum,
102 const CriticalEdgeSplittingOptions &Options,
103 const Twine &BBName) {
104 if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges))
105 return nullptr;
107 return SplitKnownCriticalEdge(TI, SuccNum, Options, BBName);
110 BasicBlock *
111 llvm::SplitKnownCriticalEdge(Instruction *TI, unsigned SuccNum,
112 const CriticalEdgeSplittingOptions &Options,
113 const Twine &BBName) {
114 assert(!isa<IndirectBrInst>(TI) &&
115 "Cannot split critical edge from IndirectBrInst");
117 BasicBlock *TIBB = TI->getParent();
118 BasicBlock *DestBB = TI->getSuccessor(SuccNum);
120 // Splitting the critical edge to a pad block is non-trivial. Don't do
121 // it in this generic function.
122 if (DestBB->isEHPad()) return nullptr;
124 if (Options.IgnoreUnreachableDests &&
125 isa<UnreachableInst>(DestBB->getFirstNonPHIOrDbgOrLifetime()))
126 return nullptr;
128 auto *LI = Options.LI;
129 SmallVector<BasicBlock *, 4> LoopPreds;
130 // Check if extra modifications will be required to preserve loop-simplify
131 // form after splitting. If it would require splitting blocks with IndirectBr
132 // terminators, bail out if preserving loop-simplify form is requested.
133 if (LI) {
134 if (Loop *TIL = LI->getLoopFor(TIBB)) {
136 // The only way that we can break LoopSimplify form by splitting a
137 // critical edge is if after the split there exists some edge from TIL to
138 // DestBB *and* the only edge into DestBB from outside of TIL is that of
139 // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB
140 // is the new exit block and it has no non-loop predecessors. If the
141 // second isn't true, then DestBB was not in LoopSimplify form prior to
142 // the split as it had a non-loop predecessor. In both of these cases,
143 // the predecessor must be directly in TIL, not in a subloop, or again
144 // LoopSimplify doesn't hold.
145 for (BasicBlock *P : predecessors(DestBB)) {
146 if (P == TIBB)
147 continue; // The new block is known.
148 if (LI->getLoopFor(P) != TIL) {
149 // No need to re-simplify, it wasn't to start with.
150 LoopPreds.clear();
151 break;
153 LoopPreds.push_back(P);
155 // Loop-simplify form can be preserved, if we can split all in-loop
156 // predecessors.
157 if (any_of(LoopPreds, [](BasicBlock *Pred) {
158 return isa<IndirectBrInst>(Pred->getTerminator());
159 })) {
160 if (Options.PreserveLoopSimplify)
161 return nullptr;
162 LoopPreds.clear();
167 // Create a new basic block, linking it into the CFG.
168 BasicBlock *NewBB = nullptr;
169 if (BBName.str() != "")
170 NewBB = BasicBlock::Create(TI->getContext(), BBName);
171 else
172 NewBB = BasicBlock::Create(TI->getContext(), TIBB->getName() + "." +
173 DestBB->getName() +
174 "_crit_edge");
175 // Create our unconditional branch.
176 BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
177 NewBI->setDebugLoc(TI->getDebugLoc());
179 // Insert the block into the function... right after the block TI lives in.
180 Function &F = *TIBB->getParent();
181 Function::iterator FBBI = TIBB->getIterator();
182 F.insert(++FBBI, NewBB);
184 // Branch to the new block, breaking the edge.
185 TI->setSuccessor(SuccNum, NewBB);
187 // If there are any PHI nodes in DestBB, we need to update them so that they
188 // merge incoming values from NewBB instead of from TIBB.
190 unsigned BBIdx = 0;
191 for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
192 // We no longer enter through TIBB, now we come in through NewBB.
193 // Revector exactly one entry in the PHI node that used to come from
194 // TIBB to come from NewBB.
195 PHINode *PN = cast<PHINode>(I);
197 // Reuse the previous value of BBIdx if it lines up. In cases where we
198 // have multiple phi nodes with *lots* of predecessors, this is a speed
199 // win because we don't have to scan the PHI looking for TIBB. This
200 // happens because the BB list of PHI nodes are usually in the same
201 // order.
202 if (PN->getIncomingBlock(BBIdx) != TIBB)
203 BBIdx = PN->getBasicBlockIndex(TIBB);
204 PN->setIncomingBlock(BBIdx, NewBB);
208 // If there are any other edges from TIBB to DestBB, update those to go
209 // through the split block, making those edges non-critical as well (and
210 // reducing the number of phi entries in the DestBB if relevant).
211 if (Options.MergeIdenticalEdges) {
212 for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
213 if (TI->getSuccessor(i) != DestBB) continue;
215 // Remove an entry for TIBB from DestBB phi nodes.
216 DestBB->removePredecessor(TIBB, Options.KeepOneInputPHIs);
218 // We found another edge to DestBB, go to NewBB instead.
219 TI->setSuccessor(i, NewBB);
223 // If we have nothing to update, just return.
224 auto *DT = Options.DT;
225 auto *PDT = Options.PDT;
226 auto *MSSAU = Options.MSSAU;
227 if (MSSAU)
228 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
229 DestBB, NewBB, {TIBB}, Options.MergeIdenticalEdges);
231 if (!DT && !PDT && !LI)
232 return NewBB;
234 if (DT || PDT) {
235 // Update the DominatorTree.
236 // ---> NewBB -----\
237 // / V
238 // TIBB -------\\------> DestBB
240 // First, inform the DT about the new path from TIBB to DestBB via NewBB,
241 // then delete the old edge from TIBB to DestBB. By doing this in that order
242 // DestBB stays reachable in the DT the whole time and its subtree doesn't
243 // get disconnected.
244 SmallVector<DominatorTree::UpdateType, 3> Updates;
245 Updates.push_back({DominatorTree::Insert, TIBB, NewBB});
246 Updates.push_back({DominatorTree::Insert, NewBB, DestBB});
247 if (!llvm::is_contained(successors(TIBB), DestBB))
248 Updates.push_back({DominatorTree::Delete, TIBB, DestBB});
250 if (DT)
251 DT->applyUpdates(Updates);
252 if (PDT)
253 PDT->applyUpdates(Updates);
256 // Update LoopInfo if it is around.
257 if (LI) {
258 if (Loop *TIL = LI->getLoopFor(TIBB)) {
259 // If one or the other blocks were not in a loop, the new block is not
260 // either, and thus LI doesn't need to be updated.
261 if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
262 if (TIL == DestLoop) {
263 // Both in the same loop, the NewBB joins loop.
264 DestLoop->addBasicBlockToLoop(NewBB, *LI);
265 } else if (TIL->contains(DestLoop)) {
266 // Edge from an outer loop to an inner loop. Add to the outer loop.
267 TIL->addBasicBlockToLoop(NewBB, *LI);
268 } else if (DestLoop->contains(TIL)) {
269 // Edge from an inner loop to an outer loop. Add to the outer loop.
270 DestLoop->addBasicBlockToLoop(NewBB, *LI);
271 } else {
272 // Edge from two loops with no containment relation. Because these
273 // are natural loops, we know that the destination block must be the
274 // header of its loop (adding a branch into a loop elsewhere would
275 // create an irreducible loop).
276 assert(DestLoop->getHeader() == DestBB &&
277 "Should not create irreducible loops!");
278 if (Loop *P = DestLoop->getParentLoop())
279 P->addBasicBlockToLoop(NewBB, *LI);
283 // If TIBB is in a loop and DestBB is outside of that loop, we may need
284 // to update LoopSimplify form and LCSSA form.
285 if (!TIL->contains(DestBB)) {
286 assert(!TIL->contains(NewBB) &&
287 "Split point for loop exit is contained in loop!");
289 // Update LCSSA form in the newly created exit block.
290 if (Options.PreserveLCSSA) {
291 createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
294 if (!LoopPreds.empty()) {
295 assert(!DestBB->isEHPad() && "We don't split edges to EH pads!");
296 BasicBlock *NewExitBB = SplitBlockPredecessors(
297 DestBB, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
298 if (Options.PreserveLCSSA)
299 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB);
305 return NewBB;
308 // Return the unique indirectbr predecessor of a block. This may return null
309 // even if such a predecessor exists, if it's not useful for splitting.
310 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr)
311 // predecessors of BB.
312 static BasicBlock *
313 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) {
314 // Verify we have exactly one IBR predecessor.
315 // Conservatively bail out if one of the other predecessors is not a "regular"
316 // terminator (that is, not a switch or a br).
317 BasicBlock *IBB = nullptr;
318 for (BasicBlock *PredBB : predecessors(BB)) {
319 Instruction *PredTerm = PredBB->getTerminator();
320 switch (PredTerm->getOpcode()) {
321 case Instruction::IndirectBr:
322 if (IBB)
323 return nullptr;
324 IBB = PredBB;
325 break;
326 case Instruction::Br:
327 case Instruction::Switch:
328 OtherPreds.push_back(PredBB);
329 continue;
330 default:
331 return nullptr;
335 return IBB;
338 bool llvm::SplitIndirectBrCriticalEdges(Function &F,
339 bool IgnoreBlocksWithoutPHI,
340 BranchProbabilityInfo *BPI,
341 BlockFrequencyInfo *BFI) {
342 // Check whether the function has any indirectbrs, and collect which blocks
343 // they may jump to. Since most functions don't have indirect branches,
344 // this lowers the common case's overhead to O(Blocks) instead of O(Edges).
345 SmallSetVector<BasicBlock *, 16> Targets;
346 for (auto &BB : F) {
347 auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator());
348 if (!IBI)
349 continue;
351 for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ)
352 Targets.insert(IBI->getSuccessor(Succ));
355 if (Targets.empty())
356 return false;
358 bool ShouldUpdateAnalysis = BPI && BFI;
359 bool Changed = false;
360 for (BasicBlock *Target : Targets) {
361 if (IgnoreBlocksWithoutPHI && Target->phis().empty())
362 continue;
364 SmallVector<BasicBlock *, 16> OtherPreds;
365 BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds);
366 // If we did not found an indirectbr, or the indirectbr is the only
367 // incoming edge, this isn't the kind of edge we're looking for.
368 if (!IBRPred || OtherPreds.empty())
369 continue;
371 // Don't even think about ehpads/landingpads.
372 Instruction *FirstNonPHI = Target->getFirstNonPHI();
373 if (FirstNonPHI->isEHPad() || Target->isLandingPad())
374 continue;
376 // Remember edge probabilities if needed.
377 SmallVector<BranchProbability, 4> EdgeProbabilities;
378 if (ShouldUpdateAnalysis) {
379 EdgeProbabilities.reserve(Target->getTerminator()->getNumSuccessors());
380 for (unsigned I = 0, E = Target->getTerminator()->getNumSuccessors();
381 I < E; ++I)
382 EdgeProbabilities.emplace_back(BPI->getEdgeProbability(Target, I));
383 BPI->eraseBlock(Target);
386 BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split");
387 if (ShouldUpdateAnalysis) {
388 // Copy the BFI/BPI from Target to BodyBlock.
389 BPI->setEdgeProbability(BodyBlock, EdgeProbabilities);
390 BFI->setBlockFreq(BodyBlock, BFI->getBlockFreq(Target).getFrequency());
392 // It's possible Target was its own successor through an indirectbr.
393 // In this case, the indirectbr now comes from BodyBlock.
394 if (IBRPred == Target)
395 IBRPred = BodyBlock;
397 // At this point Target only has PHIs, and BodyBlock has the rest of the
398 // block's body. Create a copy of Target that will be used by the "direct"
399 // preds.
400 ValueToValueMapTy VMap;
401 BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F);
403 BlockFrequency BlockFreqForDirectSucc;
404 for (BasicBlock *Pred : OtherPreds) {
405 // If the target is a loop to itself, then the terminator of the split
406 // block (BodyBlock) needs to be updated.
407 BasicBlock *Src = Pred != Target ? Pred : BodyBlock;
408 Src->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
409 if (ShouldUpdateAnalysis)
410 BlockFreqForDirectSucc += BFI->getBlockFreq(Src) *
411 BPI->getEdgeProbability(Src, DirectSucc);
413 if (ShouldUpdateAnalysis) {
414 BFI->setBlockFreq(DirectSucc, BlockFreqForDirectSucc.getFrequency());
415 BlockFrequency NewBlockFreqForTarget =
416 BFI->getBlockFreq(Target) - BlockFreqForDirectSucc;
417 BFI->setBlockFreq(Target, NewBlockFreqForTarget.getFrequency());
420 // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that
421 // they are clones, so the number of PHIs are the same.
422 // (a) Remove the edge coming from IBRPred from the "Direct" PHI
423 // (b) Leave that as the only edge in the "Indirect" PHI.
424 // (c) Merge the two in the body block.
425 BasicBlock::iterator Indirect = Target->begin(),
426 End = Target->getFirstNonPHI()->getIterator();
427 BasicBlock::iterator Direct = DirectSucc->begin();
428 BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt();
430 assert(&*End == Target->getTerminator() &&
431 "Block was expected to only contain PHIs");
433 while (Indirect != End) {
434 PHINode *DirPHI = cast<PHINode>(Direct);
435 PHINode *IndPHI = cast<PHINode>(Indirect);
437 // Now, clean up - the direct block shouldn't get the indirect value,
438 // and vice versa.
439 DirPHI->removeIncomingValue(IBRPred);
440 Direct++;
442 // Advance the pointer here, to avoid invalidation issues when the old
443 // PHI is erased.
444 Indirect++;
446 PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI);
447 NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred),
448 IBRPred);
450 // Create a PHI in the body block, to merge the direct and indirect
451 // predecessors.
452 PHINode *MergePHI = PHINode::Create(IndPHI->getType(), 2, "merge");
453 MergePHI->insertBefore(MergeInsert);
454 MergePHI->addIncoming(NewIndPHI, Target);
455 MergePHI->addIncoming(DirPHI, DirectSucc);
457 IndPHI->replaceAllUsesWith(MergePHI);
458 IndPHI->eraseFromParent();
461 Changed = true;
464 return Changed;