1 //===----------------- LoopRotationUtils.cpp -----------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file provides utilities to convert a loop into a loop with bottom test.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Transforms/Utils/LoopRotationUtils.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/AssumptionCache.h"
16 #include "llvm/Analysis/CodeMetrics.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/MemorySSA.h"
21 #include "llvm/Analysis/MemorySSAUpdater.h"
22 #include "llvm/Analysis/ScalarEvolution.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/DebugInfo.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/MDBuilder.h"
29 #include "llvm/IR/ProfDataUtils.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include "llvm/Transforms/Utils/Cloning.h"
35 #include "llvm/Transforms/Utils/Local.h"
36 #include "llvm/Transforms/Utils/SSAUpdater.h"
37 #include "llvm/Transforms/Utils/ValueMapper.h"
40 #define DEBUG_TYPE "loop-rotate"
42 STATISTIC(NumNotRotatedDueToHeaderSize
,
43 "Number of loops not rotated due to the header size");
44 STATISTIC(NumInstrsHoisted
,
45 "Number of instructions hoisted into loop preheader");
46 STATISTIC(NumInstrsDuplicated
,
47 "Number of instructions cloned into loop preheader");
48 STATISTIC(NumRotated
, "Number of loops rotated");
51 MultiRotate("loop-rotate-multi", cl::init(false), cl::Hidden
,
52 cl::desc("Allow loop rotation multiple times in order to reach "
53 "a better latch exit"));
55 // Probability that a rotated loop has zero trip count / is never entered.
56 static constexpr uint32_t ZeroTripCountWeights
[] = {1, 127};
59 /// A simple loop rotation transformation.
61 const unsigned MaxHeaderSize
;
63 const TargetTransformInfo
*TTI
;
67 MemorySSAUpdater
*MSSAU
;
68 const SimplifyQuery
&SQ
;
74 LoopRotate(unsigned MaxHeaderSize
, LoopInfo
*LI
,
75 const TargetTransformInfo
*TTI
, AssumptionCache
*AC
,
76 DominatorTree
*DT
, ScalarEvolution
*SE
, MemorySSAUpdater
*MSSAU
,
77 const SimplifyQuery
&SQ
, bool RotationOnly
, bool IsUtilMode
,
79 : MaxHeaderSize(MaxHeaderSize
), LI(LI
), TTI(TTI
), AC(AC
), DT(DT
), SE(SE
),
80 MSSAU(MSSAU
), SQ(SQ
), RotationOnly(RotationOnly
),
81 IsUtilMode(IsUtilMode
), PrepareForLTO(PrepareForLTO
) {}
82 bool processLoop(Loop
*L
);
85 bool rotateLoop(Loop
*L
, bool SimplifiedLatch
);
86 bool simplifyLoopLatch(Loop
*L
);
88 } // end anonymous namespace
90 /// Insert (K, V) pair into the ValueToValueMap, and verify the key did not
91 /// previously exist in the map, and the value was inserted.
92 static void InsertNewValueIntoMap(ValueToValueMapTy
&VM
, Value
*K
, Value
*V
) {
93 bool Inserted
= VM
.insert({K
, V
}).second
;
97 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
98 /// old header into the preheader. If there were uses of the values produced by
99 /// these instruction that were outside of the loop, we have to insert PHI nodes
100 /// to merge the two values. Do this now.
101 static void RewriteUsesOfClonedInstructions(BasicBlock
*OrigHeader
,
102 BasicBlock
*OrigPreheader
,
103 ValueToValueMapTy
&ValueMap
,
105 SmallVectorImpl
<PHINode
*> *InsertedPHIs
) {
106 // Remove PHI node entries that are no longer live.
107 BasicBlock::iterator I
, E
= OrigHeader
->end();
108 for (I
= OrigHeader
->begin(); PHINode
*PN
= dyn_cast
<PHINode
>(I
); ++I
)
109 PN
->removeIncomingValue(PN
->getBasicBlockIndex(OrigPreheader
));
111 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
113 SSAUpdater
SSA(InsertedPHIs
);
114 for (I
= OrigHeader
->begin(); I
!= E
; ++I
) {
115 Value
*OrigHeaderVal
= &*I
;
117 // If there are no uses of the value (e.g. because it returns void), there
118 // is nothing to rewrite.
119 if (OrigHeaderVal
->use_empty())
122 Value
*OrigPreHeaderVal
= ValueMap
.lookup(OrigHeaderVal
);
124 // The value now exits in two versions: the initial value in the preheader
125 // and the loop "next" value in the original header.
126 SSA
.Initialize(OrigHeaderVal
->getType(), OrigHeaderVal
->getName());
127 // Force re-computation of OrigHeaderVal, as some users now need to use the
130 SE
->forgetValue(OrigHeaderVal
);
131 SSA
.AddAvailableValue(OrigHeader
, OrigHeaderVal
);
132 SSA
.AddAvailableValue(OrigPreheader
, OrigPreHeaderVal
);
134 // Visit each use of the OrigHeader instruction.
135 for (Use
&U
: llvm::make_early_inc_range(OrigHeaderVal
->uses())) {
136 // SSAUpdater can't handle a non-PHI use in the same block as an
137 // earlier def. We can easily handle those cases manually.
138 Instruction
*UserInst
= cast
<Instruction
>(U
.getUser());
139 if (!isa
<PHINode
>(UserInst
)) {
140 BasicBlock
*UserBB
= UserInst
->getParent();
142 // The original users in the OrigHeader are already using the
143 // original definitions.
144 if (UserBB
== OrigHeader
)
147 // Users in the OrigPreHeader need to use the value to which the
148 // original definitions are mapped.
149 if (UserBB
== OrigPreheader
) {
150 U
= OrigPreHeaderVal
;
155 // Anything else can be handled by SSAUpdater.
159 // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
161 SmallVector
<DbgValueInst
*, 1> DbgValues
;
162 llvm::findDbgValues(DbgValues
, OrigHeaderVal
);
163 for (auto &DbgValue
: DbgValues
) {
164 // The original users in the OrigHeader are already using the original
166 BasicBlock
*UserBB
= DbgValue
->getParent();
167 if (UserBB
== OrigHeader
)
170 // Users in the OrigPreHeader need to use the value to which the
171 // original definitions are mapped and anything else can be handled by
172 // the SSAUpdater. To avoid adding PHINodes, check if the value is
173 // available in UserBB, if not substitute undef.
175 if (UserBB
== OrigPreheader
)
176 NewVal
= OrigPreHeaderVal
;
177 else if (SSA
.HasValueForBlock(UserBB
))
178 NewVal
= SSA
.GetValueInMiddleOfBlock(UserBB
);
180 NewVal
= UndefValue::get(OrigHeaderVal
->getType());
181 DbgValue
->replaceVariableLocationOp(OrigHeaderVal
, NewVal
);
186 // Assuming both header and latch are exiting, look for a phi which is only
187 // used outside the loop (via a LCSSA phi) in the exit from the header.
188 // This means that rotating the loop can remove the phi.
189 static bool profitableToRotateLoopExitingLatch(Loop
*L
) {
190 BasicBlock
*Header
= L
->getHeader();
191 BranchInst
*BI
= dyn_cast
<BranchInst
>(Header
->getTerminator());
192 assert(BI
&& BI
->isConditional() && "need header with conditional exit");
193 BasicBlock
*HeaderExit
= BI
->getSuccessor(0);
194 if (L
->contains(HeaderExit
))
195 HeaderExit
= BI
->getSuccessor(1);
197 for (auto &Phi
: Header
->phis()) {
198 // Look for uses of this phi in the loop/via exits other than the header.
199 if (llvm::any_of(Phi
.users(), [HeaderExit
](const User
*U
) {
200 return cast
<Instruction
>(U
)->getParent() != HeaderExit
;
208 // Check that latch exit is deoptimizing (which means - very unlikely to happen)
209 // and there is another exit from the loop which is non-deoptimizing.
210 // If we rotate latch to that exit our loop has a better chance of being fully
213 // It can give false positives in some rare cases.
214 static bool canRotateDeoptimizingLatchExit(Loop
*L
) {
215 BasicBlock
*Latch
= L
->getLoopLatch();
216 assert(Latch
&& "need latch");
217 BranchInst
*BI
= dyn_cast
<BranchInst
>(Latch
->getTerminator());
218 // Need normal exiting latch.
219 if (!BI
|| !BI
->isConditional())
222 BasicBlock
*Exit
= BI
->getSuccessor(1);
223 if (L
->contains(Exit
))
224 Exit
= BI
->getSuccessor(0);
226 // Latch exit is non-deoptimizing, no need to rotate.
227 if (!Exit
->getPostdominatingDeoptimizeCall())
230 SmallVector
<BasicBlock
*, 4> Exits
;
231 L
->getUniqueExitBlocks(Exits
);
232 if (!Exits
.empty()) {
233 // There is at least one non-deoptimizing exit.
235 // Note, that BasicBlock::getPostdominatingDeoptimizeCall is not exact,
236 // as it can conservatively return false for deoptimizing exits with
237 // complex enough control flow down to deoptimize call.
239 // That means here we can report success for a case where
240 // all exits are deoptimizing but one of them has complex enough
241 // control flow (e.g. with loops).
243 // That should be a very rare case and false positives for this function
244 // have compile-time effect only.
245 return any_of(Exits
, [](const BasicBlock
*BB
) {
246 return !BB
->getPostdominatingDeoptimizeCall();
252 static void updateBranchWeights(BranchInst
&PreHeaderBI
, BranchInst
&LoopBI
,
253 bool HasConditionalPreHeader
,
255 MDNode
*WeightMD
= getBranchWeightMDNode(PreHeaderBI
);
256 if (WeightMD
== nullptr)
259 // LoopBI should currently be a clone of PreHeaderBI with the same
260 // metadata. But we double check to make sure we don't have a degenerate case
261 // where instsimplify changed the instructions.
262 if (WeightMD
!= getBranchWeightMDNode(LoopBI
))
265 SmallVector
<uint32_t, 2> Weights
;
266 extractFromBranchWeightMD(WeightMD
, Weights
);
267 if (Weights
.size() != 2)
269 uint32_t OrigLoopExitWeight
= Weights
[0];
270 uint32_t OrigLoopBackedgeWeight
= Weights
[1];
273 std::swap(OrigLoopExitWeight
, OrigLoopBackedgeWeight
);
275 // Update branch weights. Consider the following edge-counts:
279 // Br i1 ... | Br i1 ...
281 // x| y| | becomes: | y0| |-----
283 // Exit Loop | | Loop |
290 // The following must hold:
291 // - x == x0 + x1 # counts to "exit" must stay the same.
292 // - y0 == x - x0 == x1 # how often loop was entered at all.
293 // - y1 == y - y0 # How often loop was repeated (after first iter.).
295 // We cannot generally deduce how often we had a zero-trip count loop so we
296 // have to make a guess for how to distribute x among the new x0 and x1.
298 uint32_t ExitWeight0
; // aka x0
299 uint32_t ExitWeight1
; // aka x1
300 uint32_t EnterWeight
; // aka y0
301 uint32_t LoopBackWeight
; // aka y1
302 if (OrigLoopExitWeight
> 0 && OrigLoopBackedgeWeight
> 0) {
304 if (HasConditionalPreHeader
) {
305 // Here we cannot know how many 0-trip count loops we have, so we guess:
306 if (OrigLoopBackedgeWeight
>= OrigLoopExitWeight
) {
307 // If the loop count is bigger than the exit count then we set
308 // probabilities as if 0-trip count nearly never happens.
309 ExitWeight0
= ZeroTripCountWeights
[0];
310 // Scale up counts if necessary so we can match `ZeroTripCountWeights`
311 // for the `ExitWeight0`:`ExitWeight1` (aka `x0`:`x1` ratio`) ratio.
312 while (OrigLoopExitWeight
< ZeroTripCountWeights
[1] + ExitWeight0
) {
313 // ... but don't overflow.
314 uint32_t const HighBit
= uint32_t{1} << (sizeof(uint32_t) * 8 - 1);
315 if ((OrigLoopBackedgeWeight
& HighBit
) != 0 ||
316 (OrigLoopExitWeight
& HighBit
) != 0)
318 OrigLoopBackedgeWeight
<<= 1;
319 OrigLoopExitWeight
<<= 1;
322 // If there's a higher exit-count than backedge-count then we set
323 // probabilities as if there are only 0-trip and 1-trip cases.
324 ExitWeight0
= OrigLoopExitWeight
- OrigLoopBackedgeWeight
;
327 ExitWeight1
= OrigLoopExitWeight
- ExitWeight0
;
328 EnterWeight
= ExitWeight1
;
329 LoopBackWeight
= OrigLoopBackedgeWeight
- EnterWeight
;
330 } else if (OrigLoopExitWeight
== 0) {
331 if (OrigLoopBackedgeWeight
== 0) {
332 // degenerate case... keep everything zero...
338 // Special case "LoopExitWeight == 0" weights which behaves like an
339 // endless where we don't want loop-enttry (y0) to be the same as
344 LoopBackWeight
= OrigLoopBackedgeWeight
;
347 // loop is never entered.
348 assert(OrigLoopBackedgeWeight
== 0 && "remaining case is backedge zero");
355 MDBuilder
MDB(LoopBI
.getContext());
356 MDNode
*LoopWeightMD
=
357 MDB
.createBranchWeights(SuccsSwapped
? LoopBackWeight
: ExitWeight1
,
358 SuccsSwapped
? ExitWeight1
: LoopBackWeight
);
359 LoopBI
.setMetadata(LLVMContext::MD_prof
, LoopWeightMD
);
360 if (HasConditionalPreHeader
) {
361 MDNode
*PreHeaderWeightMD
=
362 MDB
.createBranchWeights(SuccsSwapped
? EnterWeight
: ExitWeight0
,
363 SuccsSwapped
? ExitWeight0
: EnterWeight
);
364 PreHeaderBI
.setMetadata(LLVMContext::MD_prof
, PreHeaderWeightMD
);
368 /// Rotate loop LP. Return true if the loop is rotated.
370 /// \param SimplifiedLatch is true if the latch was just folded into the final
371 /// loop exit. In this case we may want to rotate even though the new latch is
372 /// now an exiting branch. This rotation would have happened had the latch not
373 /// been simplified. However, if SimplifiedLatch is false, then we avoid
374 /// rotating loops in which the latch exits to avoid excessive or endless
375 /// rotation. LoopRotate should be repeatable and converge to a canonical
376 /// form. This property is satisfied because simplifying the loop latch can only
377 /// happen once across multiple invocations of the LoopRotate pass.
379 /// If -loop-rotate-multi is enabled we can do multiple rotations in one go
380 /// so to reach a suitable (non-deoptimizing) exit.
381 bool LoopRotate::rotateLoop(Loop
*L
, bool SimplifiedLatch
) {
382 // If the loop has only one block then there is not much to rotate.
383 if (L
->getBlocks().size() == 1)
386 bool Rotated
= false;
388 BasicBlock
*OrigHeader
= L
->getHeader();
389 BasicBlock
*OrigLatch
= L
->getLoopLatch();
391 BranchInst
*BI
= dyn_cast
<BranchInst
>(OrigHeader
->getTerminator());
392 if (!BI
|| BI
->isUnconditional())
395 // If the loop header is not one of the loop exiting blocks then
396 // either this loop is already rotated or it is not
397 // suitable for loop rotation transformations.
398 if (!L
->isLoopExiting(OrigHeader
))
401 // If the loop latch already contains a branch that leaves the loop then the
402 // loop is already rotated.
406 // Rotate if either the loop latch does *not* exit the loop, or if the loop
407 // latch was just simplified. Or if we think it will be profitable.
408 if (L
->isLoopExiting(OrigLatch
) && !SimplifiedLatch
&& IsUtilMode
== false &&
409 !profitableToRotateLoopExitingLatch(L
) &&
410 !canRotateDeoptimizingLatchExit(L
))
413 // Check size of original header and reject loop if it is very big or we can't
414 // duplicate blocks inside it.
416 SmallPtrSet
<const Value
*, 32> EphValues
;
417 CodeMetrics::collectEphemeralValues(L
, AC
, EphValues
);
420 Metrics
.analyzeBasicBlock(OrigHeader
, *TTI
, EphValues
, PrepareForLTO
);
421 if (Metrics
.notDuplicatable
) {
423 dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
424 << " instructions: ";
428 if (Metrics
.convergent
) {
429 LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
434 if (!Metrics
.NumInsts
.isValid()) {
435 LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains instructions"
436 " with invalid cost: ";
440 if (Metrics
.NumInsts
> MaxHeaderSize
) {
441 LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains "
443 << " instructions, which is more than the threshold ("
444 << MaxHeaderSize
<< " instructions): ";
446 ++NumNotRotatedDueToHeaderSize
;
450 // When preparing for LTO, avoid rotating loops with calls that could be
451 // inlined during the LTO stage.
452 if (PrepareForLTO
&& Metrics
.NumInlineCandidates
> 0)
456 // Now, this loop is suitable for rotation.
457 BasicBlock
*OrigPreheader
= L
->getLoopPreheader();
459 // If the loop could not be converted to canonical form, it must have an
460 // indirectbr in it, just give up.
461 if (!OrigPreheader
|| !L
->hasDedicatedExits())
464 // Anything ScalarEvolution may know about this loop or the PHI nodes
465 // in its header will soon be invalidated. We should also invalidate
466 // all outer loops because insertion and deletion of blocks that happens
467 // during the rotation may violate invariants related to backedge taken
470 SE
->forgetTopmostLoop(L
);
471 // We may hoist some instructions out of loop. In case if they were cached
472 // as "loop variant" or "loop computable", these caches must be dropped.
473 // We also may fold basic blocks, so cached block dispositions also need
475 SE
->forgetBlockAndLoopDispositions();
478 LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L
->dump());
479 if (MSSAU
&& VerifyMemorySSA
)
480 MSSAU
->getMemorySSA()->verifyMemorySSA();
482 // Find new Loop header. NewHeader is a Header's one and only successor
483 // that is inside loop. Header's other successor is outside the
484 // loop. Otherwise loop is not suitable for rotation.
485 BasicBlock
*Exit
= BI
->getSuccessor(0);
486 BasicBlock
*NewHeader
= BI
->getSuccessor(1);
487 bool BISuccsSwapped
= L
->contains(Exit
);
489 std::swap(Exit
, NewHeader
);
490 assert(NewHeader
&& "Unable to determine new loop header");
491 assert(L
->contains(NewHeader
) && !L
->contains(Exit
) &&
492 "Unable to determine loop header and exit blocks");
494 // This code assumes that the new header has exactly one predecessor.
495 // Remove any single-entry PHI nodes in it.
496 assert(NewHeader
->getSinglePredecessor() &&
497 "New header doesn't have one pred!");
498 FoldSingleEntryPHINodes(NewHeader
);
500 // Begin by walking OrigHeader and populating ValueMap with an entry for
502 BasicBlock::iterator I
= OrigHeader
->begin(), E
= OrigHeader
->end();
503 ValueToValueMapTy ValueMap
, ValueMapMSSA
;
505 // For PHI nodes, the value available in OldPreHeader is just the
506 // incoming value from OldPreHeader.
507 for (; PHINode
*PN
= dyn_cast
<PHINode
>(I
); ++I
)
508 InsertNewValueIntoMap(ValueMap
, PN
,
509 PN
->getIncomingValueForBlock(OrigPreheader
));
511 // For the rest of the instructions, either hoist to the OrigPreheader if
512 // possible or create a clone in the OldPreHeader if not.
513 Instruction
*LoopEntryBranch
= OrigPreheader
->getTerminator();
515 // Record all debug intrinsics preceding LoopEntryBranch to avoid
517 using DbgIntrinsicHash
=
518 std::pair
<std::pair
<hash_code
, DILocalVariable
*>, DIExpression
*>;
519 auto makeHash
= [](DbgVariableIntrinsic
*D
) -> DbgIntrinsicHash
{
520 auto VarLocOps
= D
->location_ops();
521 return {{hash_combine_range(VarLocOps
.begin(), VarLocOps
.end()),
525 SmallDenseSet
<DbgIntrinsicHash
, 8> DbgIntrinsics
;
526 for (Instruction
&I
: llvm::drop_begin(llvm::reverse(*OrigPreheader
))) {
527 if (auto *DII
= dyn_cast
<DbgVariableIntrinsic
>(&I
))
528 DbgIntrinsics
.insert(makeHash(DII
));
533 // Remember the local noalias scope declarations in the header. After the
534 // rotation, they must be duplicated and the scope must be cloned. This
535 // avoids unwanted interaction across iterations.
536 SmallVector
<NoAliasScopeDeclInst
*, 6> NoAliasDeclInstructions
;
537 for (Instruction
&I
: *OrigHeader
)
538 if (auto *Decl
= dyn_cast
<NoAliasScopeDeclInst
>(&I
))
539 NoAliasDeclInstructions
.push_back(Decl
);
542 Instruction
*Inst
= &*I
++;
544 // If the instruction's operands are invariant and it doesn't read or write
545 // memory, then it is safe to hoist. Doing this doesn't change the order of
546 // execution in the preheader, but does prevent the instruction from
547 // executing in each iteration of the loop. This means it is safe to hoist
548 // something that might trap, but isn't safe to hoist something that reads
549 // memory (without proving that the loop doesn't write).
550 if (L
->hasLoopInvariantOperands(Inst
) && !Inst
->mayReadFromMemory() &&
551 !Inst
->mayWriteToMemory() && !Inst
->isTerminator() &&
552 !isa
<DbgInfoIntrinsic
>(Inst
) && !isa
<AllocaInst
>(Inst
)) {
553 Inst
->moveBefore(LoopEntryBranch
);
558 // Otherwise, create a duplicate of the instruction.
559 Instruction
*C
= Inst
->clone();
560 C
->insertBefore(LoopEntryBranch
);
562 ++NumInstrsDuplicated
;
564 // Eagerly remap the operands of the instruction.
565 RemapInstruction(C
, ValueMap
,
566 RF_NoModuleLevelChanges
| RF_IgnoreMissingLocals
);
568 // Avoid inserting the same intrinsic twice.
569 if (auto *DII
= dyn_cast
<DbgVariableIntrinsic
>(C
))
570 if (DbgIntrinsics
.count(makeHash(DII
))) {
571 C
->eraseFromParent();
575 // With the operands remapped, see if the instruction constant folds or is
576 // otherwise simplifyable. This commonly occurs because the entry from PHI
577 // nodes allows icmps and other instructions to fold.
578 Value
*V
= simplifyInstruction(C
, SQ
);
579 if (V
&& LI
->replacementPreservesLCSSAForm(C
, V
)) {
580 // If so, then delete the temporary instruction and stick the folded value
582 InsertNewValueIntoMap(ValueMap
, Inst
, V
);
583 if (!C
->mayHaveSideEffects()) {
584 C
->eraseFromParent();
588 InsertNewValueIntoMap(ValueMap
, Inst
, C
);
591 // Otherwise, stick the new instruction into the new block!
592 C
->setName(Inst
->getName());
594 if (auto *II
= dyn_cast
<AssumeInst
>(C
))
595 AC
->registerAssumption(II
);
596 // MemorySSA cares whether the cloned instruction was inserted or not, and
597 // not whether it can be remapped to a simplified value.
599 InsertNewValueIntoMap(ValueMapMSSA
, Inst
, C
);
603 if (!NoAliasDeclInstructions
.empty()) {
604 // There are noalias scope declarations:
606 // Original: OrigPre { OrigHeader NewHeader ... Latch }
607 // after: (OrigPre+OrigHeader') { NewHeader ... Latch OrigHeader }
609 // with D: llvm.experimental.noalias.scope.decl,
610 // U: !noalias or !alias.scope depending on D
611 // ... { D U1 U2 } can transform into:
612 // (0) : ... { D U1 U2 } // no relevant rotation for this part
613 // (1) : ... D' { U1 U2 D } // D is part of OrigHeader
614 // (2) : ... D' U1' { U2 D U1 } // D, U1 are part of OrigHeader
616 // We now want to transform:
617 // (1) -> : ... D' { D U1 U2 D'' }
618 // (2) -> : ... D' U1' { D U2 D'' U1'' }
619 // D: original llvm.experimental.noalias.scope.decl
620 // D', U1': duplicate with replaced scopes
621 // D'', U1'': different duplicate with replaced scopes
622 // This ensures a safe fallback to 'may_alias' introduced by the rotate,
623 // as U1'' and U1' scopes will not be compatible wrt to the local restrict
625 // Clone the llvm.experimental.noalias.decl again for the NewHeader.
626 Instruction
*NewHeaderInsertionPoint
= &(*NewHeader
->getFirstNonPHI());
627 for (NoAliasScopeDeclInst
*NAD
: NoAliasDeclInstructions
) {
628 LLVM_DEBUG(dbgs() << " Cloning llvm.experimental.noalias.scope.decl:"
630 Instruction
*NewNAD
= NAD
->clone();
631 NewNAD
->insertBefore(NewHeaderInsertionPoint
);
634 // Scopes must now be duplicated, once for OrigHeader and once for
637 auto &Context
= NewHeader
->getContext();
639 SmallVector
<MDNode
*, 8> NoAliasDeclScopes
;
640 for (NoAliasScopeDeclInst
*NAD
: NoAliasDeclInstructions
)
641 NoAliasDeclScopes
.push_back(NAD
->getScopeList());
643 LLVM_DEBUG(dbgs() << " Updating OrigHeader scopes\n");
644 cloneAndAdaptNoAliasScopes(NoAliasDeclScopes
, {OrigHeader
}, Context
,
646 LLVM_DEBUG(OrigHeader
->dump());
648 // Keep the compile time impact low by only adapting the inserted block
649 // of instructions in the OrigPreHeader. This might result in slightly
650 // more aliasing between these instructions and those that were already
651 // present, but it will be much faster when the original PreHeader is
653 LLVM_DEBUG(dbgs() << " Updating part of OrigPreheader scopes\n");
655 cast
<Instruction
>(ValueMap
[*NoAliasDeclInstructions
.begin()]);
656 auto *LastInst
= &OrigPreheader
->back();
657 cloneAndAdaptNoAliasScopes(NoAliasDeclScopes
, FirstDecl
, LastInst
,
659 LLVM_DEBUG(OrigPreheader
->dump());
661 LLVM_DEBUG(dbgs() << " Updated NewHeader:\n");
662 LLVM_DEBUG(NewHeader
->dump());
666 // Along with all the other instructions, we just cloned OrigHeader's
667 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
668 // successors by duplicating their incoming values for OrigHeader.
669 for (BasicBlock
*SuccBB
: successors(OrigHeader
))
670 for (BasicBlock::iterator BI
= SuccBB
->begin();
671 PHINode
*PN
= dyn_cast
<PHINode
>(BI
); ++BI
)
672 PN
->addIncoming(PN
->getIncomingValueForBlock(OrigHeader
), OrigPreheader
);
674 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
675 // OrigPreHeader's old terminator (the original branch into the loop), and
676 // remove the corresponding incoming values from the PHI nodes in OrigHeader.
677 LoopEntryBranch
->eraseFromParent();
679 // Update MemorySSA before the rewrite call below changes the 1:1
680 // instruction:cloned_instruction_or_value mapping.
682 InsertNewValueIntoMap(ValueMapMSSA
, OrigHeader
, OrigPreheader
);
683 MSSAU
->updateForClonedBlockIntoPred(OrigHeader
, OrigPreheader
,
687 SmallVector
<PHINode
*, 2> InsertedPHIs
;
688 // If there were any uses of instructions in the duplicated block outside the
689 // loop, update them, inserting PHI nodes as required
690 RewriteUsesOfClonedInstructions(OrigHeader
, OrigPreheader
, ValueMap
, SE
,
693 // Attach dbg.value intrinsics to the new phis if that phi uses a value that
694 // previously had debug metadata attached. This keeps the debug info
695 // up-to-date in the loop body.
696 if (!InsertedPHIs
.empty())
697 insertDebugValuesForPHIs(OrigHeader
, InsertedPHIs
);
699 // NewHeader is now the header of the loop.
700 L
->moveToHeader(NewHeader
);
701 assert(L
->getHeader() == NewHeader
&& "Latch block is our new header");
703 // Inform DT about changes to the CFG.
705 // The OrigPreheader branches to the NewHeader and Exit now. Then, inform
706 // the DT about the removed edge to the OrigHeader (that got removed).
707 SmallVector
<DominatorTree::UpdateType
, 3> Updates
;
708 Updates
.push_back({DominatorTree::Insert
, OrigPreheader
, Exit
});
709 Updates
.push_back({DominatorTree::Insert
, OrigPreheader
, NewHeader
});
710 Updates
.push_back({DominatorTree::Delete
, OrigPreheader
, OrigHeader
});
713 MSSAU
->applyUpdates(Updates
, *DT
, /*UpdateDT=*/true);
715 MSSAU
->getMemorySSA()->verifyMemorySSA();
717 DT
->applyUpdates(Updates
);
721 // At this point, we've finished our major CFG changes. As part of cloning
722 // the loop into the preheader we've simplified instructions and the
723 // duplicated conditional branch may now be branching on a constant. If it is
724 // branching on a constant and if that constant means that we enter the loop,
725 // then we fold away the cond branch to an uncond branch. This simplifies the
726 // loop in cases important for nested loops, and it also means we don't have
727 // to split as many edges.
728 BranchInst
*PHBI
= cast
<BranchInst
>(OrigPreheader
->getTerminator());
729 assert(PHBI
->isConditional() && "Should be clone of BI condbr!");
730 const Value
*Cond
= PHBI
->getCondition();
731 const bool HasConditionalPreHeader
=
732 !isa
<ConstantInt
>(Cond
) ||
733 PHBI
->getSuccessor(cast
<ConstantInt
>(Cond
)->isZero()) != NewHeader
;
735 updateBranchWeights(*PHBI
, *BI
, HasConditionalPreHeader
, BISuccsSwapped
);
737 if (HasConditionalPreHeader
) {
738 // The conditional branch can't be folded, handle the general case.
739 // Split edges as necessary to preserve LoopSimplify form.
741 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
742 // thus is not a preheader anymore.
743 // Split the edge to form a real preheader.
744 BasicBlock
*NewPH
= SplitCriticalEdge(
745 OrigPreheader
, NewHeader
,
746 CriticalEdgeSplittingOptions(DT
, LI
, MSSAU
).setPreserveLCSSA());
747 NewPH
->setName(NewHeader
->getName() + ".lr.ph");
749 // Preserve canonical loop form, which means that 'Exit' should have only
750 // one predecessor. Note that Exit could be an exit block for multiple
751 // nested loops, causing both of the edges to now be critical and need to
753 SmallVector
<BasicBlock
*, 4> ExitPreds(predecessors(Exit
));
754 bool SplitLatchEdge
= false;
755 for (BasicBlock
*ExitPred
: ExitPreds
) {
756 // We only need to split loop exit edges.
757 Loop
*PredLoop
= LI
->getLoopFor(ExitPred
);
758 if (!PredLoop
|| PredLoop
->contains(Exit
) ||
759 isa
<IndirectBrInst
>(ExitPred
->getTerminator()))
761 SplitLatchEdge
|= L
->getLoopLatch() == ExitPred
;
762 BasicBlock
*ExitSplit
= SplitCriticalEdge(
764 CriticalEdgeSplittingOptions(DT
, LI
, MSSAU
).setPreserveLCSSA());
765 ExitSplit
->moveBefore(Exit
);
767 assert(SplitLatchEdge
&&
768 "Despite splitting all preds, failed to split latch exit?");
769 (void)SplitLatchEdge
;
771 // We can fold the conditional branch in the preheader, this makes things
772 // simpler. The first step is to remove the extra edge to the Exit block.
773 Exit
->removePredecessor(OrigPreheader
, true /*preserve LCSSA*/);
774 BranchInst
*NewBI
= BranchInst::Create(NewHeader
, PHBI
);
775 NewBI
->setDebugLoc(PHBI
->getDebugLoc());
776 PHBI
->eraseFromParent();
778 // With our CFG finalized, update DomTree if it is available.
779 if (DT
) DT
->deleteEdge(OrigPreheader
, Exit
);
781 // Update MSSA too, if available.
783 MSSAU
->removeEdge(OrigPreheader
, Exit
);
786 assert(L
->getLoopPreheader() && "Invalid loop preheader after loop rotation");
787 assert(L
->getLoopLatch() && "Invalid loop latch after loop rotation");
789 if (MSSAU
&& VerifyMemorySSA
)
790 MSSAU
->getMemorySSA()->verifyMemorySSA();
792 // Now that the CFG and DomTree are in a consistent state again, try to merge
793 // the OrigHeader block into OrigLatch. This will succeed if they are
794 // connected by an unconditional branch. This is just a cleanup so the
795 // emitted code isn't too gross in this common case.
796 DomTreeUpdater
DTU(DT
, DomTreeUpdater::UpdateStrategy::Eager
);
797 BasicBlock
*PredBB
= OrigHeader
->getUniquePredecessor();
798 bool DidMerge
= MergeBlockIntoPredecessor(OrigHeader
, &DTU
, LI
, MSSAU
);
800 RemoveRedundantDbgInstrs(PredBB
);
802 if (MSSAU
&& VerifyMemorySSA
)
803 MSSAU
->getMemorySSA()->verifyMemorySSA();
805 LLVM_DEBUG(dbgs() << "LoopRotation: into "; L
->dump());
810 SimplifiedLatch
= false;
812 // Check that new latch is a deoptimizing exit and then repeat rotation if possible.
813 // Deoptimizing latch exit is not a generally typical case, so we just loop over.
814 // TODO: if it becomes a performance bottleneck extend rotation algorithm
815 // to handle multiple rotations in one go.
816 } while (MultiRotate
&& canRotateDeoptimizingLatchExit(L
));
822 /// Determine whether the instructions in this range may be safely and cheaply
823 /// speculated. This is not an important enough situation to develop complex
824 /// heuristics. We handle a single arithmetic instruction along with any type
826 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin
,
827 BasicBlock::iterator End
, Loop
*L
) {
828 bool seenIncrement
= false;
829 bool MultiExitLoop
= false;
831 if (!L
->getExitingBlock())
832 MultiExitLoop
= true;
834 for (BasicBlock::iterator I
= Begin
; I
!= End
; ++I
) {
836 if (!isSafeToSpeculativelyExecute(&*I
))
839 if (isa
<DbgInfoIntrinsic
>(I
))
842 switch (I
->getOpcode()) {
845 case Instruction::GetElementPtr
:
846 // GEPs are cheap if all indices are constant.
847 if (!cast
<GEPOperator
>(I
)->hasAllConstantIndices())
849 // fall-thru to increment case
851 case Instruction::Add
:
852 case Instruction::Sub
:
853 case Instruction::And
:
854 case Instruction::Or
:
855 case Instruction::Xor
:
856 case Instruction::Shl
:
857 case Instruction::LShr
:
858 case Instruction::AShr
: {
860 !isa
<Constant
>(I
->getOperand(0))
862 : !isa
<Constant
>(I
->getOperand(1)) ? I
->getOperand(1) : nullptr;
866 // If increment operand is used outside of the loop, this speculation
867 // could cause extra live range interference.
869 for (User
*UseI
: IVOpnd
->users()) {
870 auto *UserInst
= cast
<Instruction
>(UseI
);
871 if (!L
->contains(UserInst
))
878 seenIncrement
= true;
881 case Instruction::Trunc
:
882 case Instruction::ZExt
:
883 case Instruction::SExt
:
884 // ignore type conversions
891 /// Fold the loop tail into the loop exit by speculating the loop tail
892 /// instructions. Typically, this is a single post-increment. In the case of a
893 /// simple 2-block loop, hoisting the increment can be much better than
894 /// duplicating the entire loop header. In the case of loops with early exits,
895 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
896 /// canonical form so downstream passes can handle it.
898 /// I don't believe this invalidates SCEV.
899 bool LoopRotate::simplifyLoopLatch(Loop
*L
) {
900 BasicBlock
*Latch
= L
->getLoopLatch();
901 if (!Latch
|| Latch
->hasAddressTaken())
904 BranchInst
*Jmp
= dyn_cast
<BranchInst
>(Latch
->getTerminator());
905 if (!Jmp
|| !Jmp
->isUnconditional())
908 BasicBlock
*LastExit
= Latch
->getSinglePredecessor();
909 if (!LastExit
|| !L
->isLoopExiting(LastExit
))
912 BranchInst
*BI
= dyn_cast
<BranchInst
>(LastExit
->getTerminator());
916 if (!shouldSpeculateInstrs(Latch
->begin(), Jmp
->getIterator(), L
))
919 LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch
->getName() << " into "
920 << LastExit
->getName() << "\n");
922 DomTreeUpdater
DTU(DT
, DomTreeUpdater::UpdateStrategy::Eager
);
923 MergeBlockIntoPredecessor(Latch
, &DTU
, LI
, MSSAU
, nullptr,
924 /*PredecessorWithTwoSuccessors=*/true);
927 // Merging blocks may remove blocks reference in the block disposition cache. Clear the cache.
928 SE
->forgetBlockAndLoopDispositions();
931 if (MSSAU
&& VerifyMemorySSA
)
932 MSSAU
->getMemorySSA()->verifyMemorySSA();
937 /// Rotate \c L, and return true if any modification was made.
938 bool LoopRotate::processLoop(Loop
*L
) {
939 // Save the loop metadata.
940 MDNode
*LoopMD
= L
->getLoopID();
942 bool SimplifiedLatch
= false;
944 // Simplify the loop latch before attempting to rotate the header
945 // upward. Rotation may not be needed if the loop tail can be folded into the
948 SimplifiedLatch
= simplifyLoopLatch(L
);
950 bool MadeChange
= rotateLoop(L
, SimplifiedLatch
);
951 assert((!MadeChange
|| L
->isLoopExiting(L
->getLoopLatch())) &&
952 "Loop latch should be exiting after loop-rotate.");
954 // Restore the loop metadata.
955 // NB! We presume LoopRotation DOESN'T ADD its own metadata.
956 if ((MadeChange
|| SimplifiedLatch
) && LoopMD
)
957 L
->setLoopID(LoopMD
);
959 return MadeChange
|| SimplifiedLatch
;
963 /// The utility to convert a loop into a loop with bottom test.
964 bool llvm::LoopRotation(Loop
*L
, LoopInfo
*LI
, const TargetTransformInfo
*TTI
,
965 AssumptionCache
*AC
, DominatorTree
*DT
,
966 ScalarEvolution
*SE
, MemorySSAUpdater
*MSSAU
,
967 const SimplifyQuery
&SQ
, bool RotationOnly
= true,
968 unsigned Threshold
= unsigned(-1),
969 bool IsUtilMode
= true, bool PrepareForLTO
) {
970 LoopRotate
LR(Threshold
, LI
, TTI
, AC
, DT
, SE
, MSSAU
, SQ
, RotationOnly
,
971 IsUtilMode
, PrepareForLTO
);
972 return LR
.processLoop(L
);