[AMDGPU] Test codegen'ing True16 additions.
[llvm-project.git] / llvm / lib / Transforms / Utils / LowerMemIntrinsics.cpp
blob906eb71fc2d98637e8e70c970107592a6abb7b9d
1 //===- LowerMemIntrinsics.cpp ----------------------------------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Transforms/Utils/LowerMemIntrinsics.h"
10 #include "llvm/Analysis/ScalarEvolution.h"
11 #include "llvm/Analysis/TargetTransformInfo.h"
12 #include "llvm/IR/IRBuilder.h"
13 #include "llvm/IR/IntrinsicInst.h"
14 #include "llvm/IR/MDBuilder.h"
15 #include "llvm/Support/Debug.h"
16 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
17 #include <optional>
19 #define DEBUG_TYPE "lower-mem-intrinsics"
21 using namespace llvm;
23 void llvm::createMemCpyLoopKnownSize(
24 Instruction *InsertBefore, Value *SrcAddr, Value *DstAddr,
25 ConstantInt *CopyLen, Align SrcAlign, Align DstAlign, bool SrcIsVolatile,
26 bool DstIsVolatile, bool CanOverlap, const TargetTransformInfo &TTI,
27 std::optional<uint32_t> AtomicElementSize) {
28 // No need to expand zero length copies.
29 if (CopyLen->isZero())
30 return;
32 BasicBlock *PreLoopBB = InsertBefore->getParent();
33 BasicBlock *PostLoopBB = nullptr;
34 Function *ParentFunc = PreLoopBB->getParent();
35 LLVMContext &Ctx = PreLoopBB->getContext();
36 const DataLayout &DL = ParentFunc->getParent()->getDataLayout();
37 MDBuilder MDB(Ctx);
38 MDNode *NewDomain = MDB.createAnonymousAliasScopeDomain("MemCopyDomain");
39 StringRef Name = "MemCopyAliasScope";
40 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
42 unsigned SrcAS = cast<PointerType>(SrcAddr->getType())->getAddressSpace();
43 unsigned DstAS = cast<PointerType>(DstAddr->getType())->getAddressSpace();
45 Type *TypeOfCopyLen = CopyLen->getType();
46 Type *LoopOpType = TTI.getMemcpyLoopLoweringType(
47 Ctx, CopyLen, SrcAS, DstAS, SrcAlign.value(), DstAlign.value(),
48 AtomicElementSize);
49 assert((!AtomicElementSize || !LoopOpType->isVectorTy()) &&
50 "Atomic memcpy lowering is not supported for vector operand type");
52 unsigned LoopOpSize = DL.getTypeStoreSize(LoopOpType);
53 assert((!AtomicElementSize || LoopOpSize % *AtomicElementSize == 0) &&
54 "Atomic memcpy lowering is not supported for selected operand size");
56 uint64_t LoopEndCount = CopyLen->getZExtValue() / LoopOpSize;
58 if (LoopEndCount != 0) {
59 // Split
60 PostLoopBB = PreLoopBB->splitBasicBlock(InsertBefore, "memcpy-split");
61 BasicBlock *LoopBB =
62 BasicBlock::Create(Ctx, "load-store-loop", ParentFunc, PostLoopBB);
63 PreLoopBB->getTerminator()->setSuccessor(0, LoopBB);
65 IRBuilder<> PLBuilder(PreLoopBB->getTerminator());
67 // Cast the Src and Dst pointers to pointers to the loop operand type (if
68 // needed).
69 PointerType *SrcOpType = PointerType::get(LoopOpType, SrcAS);
70 PointerType *DstOpType = PointerType::get(LoopOpType, DstAS);
71 if (SrcAddr->getType() != SrcOpType) {
72 SrcAddr = PLBuilder.CreateBitCast(SrcAddr, SrcOpType);
74 if (DstAddr->getType() != DstOpType) {
75 DstAddr = PLBuilder.CreateBitCast(DstAddr, DstOpType);
78 Align PartDstAlign(commonAlignment(DstAlign, LoopOpSize));
79 Align PartSrcAlign(commonAlignment(SrcAlign, LoopOpSize));
81 IRBuilder<> LoopBuilder(LoopBB);
82 PHINode *LoopIndex = LoopBuilder.CreatePHI(TypeOfCopyLen, 2, "loop-index");
83 LoopIndex->addIncoming(ConstantInt::get(TypeOfCopyLen, 0U), PreLoopBB);
84 // Loop Body
85 Value *SrcGEP =
86 LoopBuilder.CreateInBoundsGEP(LoopOpType, SrcAddr, LoopIndex);
87 LoadInst *Load = LoopBuilder.CreateAlignedLoad(LoopOpType, SrcGEP,
88 PartSrcAlign, SrcIsVolatile);
89 if (!CanOverlap) {
90 // Set alias scope for loads.
91 Load->setMetadata(LLVMContext::MD_alias_scope,
92 MDNode::get(Ctx, NewScope));
94 Value *DstGEP =
95 LoopBuilder.CreateInBoundsGEP(LoopOpType, DstAddr, LoopIndex);
96 StoreInst *Store = LoopBuilder.CreateAlignedStore(
97 Load, DstGEP, PartDstAlign, DstIsVolatile);
98 if (!CanOverlap) {
99 // Indicate that stores don't overlap loads.
100 Store->setMetadata(LLVMContext::MD_noalias, MDNode::get(Ctx, NewScope));
102 if (AtomicElementSize) {
103 Load->setAtomic(AtomicOrdering::Unordered);
104 Store->setAtomic(AtomicOrdering::Unordered);
106 Value *NewIndex =
107 LoopBuilder.CreateAdd(LoopIndex, ConstantInt::get(TypeOfCopyLen, 1U));
108 LoopIndex->addIncoming(NewIndex, LoopBB);
110 // Create the loop branch condition.
111 Constant *LoopEndCI = ConstantInt::get(TypeOfCopyLen, LoopEndCount);
112 LoopBuilder.CreateCondBr(LoopBuilder.CreateICmpULT(NewIndex, LoopEndCI),
113 LoopBB, PostLoopBB);
116 uint64_t BytesCopied = LoopEndCount * LoopOpSize;
117 uint64_t RemainingBytes = CopyLen->getZExtValue() - BytesCopied;
118 if (RemainingBytes) {
119 IRBuilder<> RBuilder(PostLoopBB ? PostLoopBB->getFirstNonPHI()
120 : InsertBefore);
122 SmallVector<Type *, 5> RemainingOps;
123 TTI.getMemcpyLoopResidualLoweringType(RemainingOps, Ctx, RemainingBytes,
124 SrcAS, DstAS, SrcAlign.value(),
125 DstAlign.value(), AtomicElementSize);
127 for (auto *OpTy : RemainingOps) {
128 Align PartSrcAlign(commonAlignment(SrcAlign, BytesCopied));
129 Align PartDstAlign(commonAlignment(DstAlign, BytesCopied));
131 // Calculate the new index
132 unsigned OperandSize = DL.getTypeStoreSize(OpTy);
133 assert(
134 (!AtomicElementSize || OperandSize % *AtomicElementSize == 0) &&
135 "Atomic memcpy lowering is not supported for selected operand size");
137 uint64_t GepIndex = BytesCopied / OperandSize;
138 assert(GepIndex * OperandSize == BytesCopied &&
139 "Division should have no Remainder!");
140 // Cast source to operand type and load
141 PointerType *SrcPtrType = PointerType::get(OpTy, SrcAS);
142 Value *CastedSrc = SrcAddr->getType() == SrcPtrType
143 ? SrcAddr
144 : RBuilder.CreateBitCast(SrcAddr, SrcPtrType);
145 Value *SrcGEP = RBuilder.CreateInBoundsGEP(
146 OpTy, CastedSrc, ConstantInt::get(TypeOfCopyLen, GepIndex));
147 LoadInst *Load =
148 RBuilder.CreateAlignedLoad(OpTy, SrcGEP, PartSrcAlign, SrcIsVolatile);
149 if (!CanOverlap) {
150 // Set alias scope for loads.
151 Load->setMetadata(LLVMContext::MD_alias_scope,
152 MDNode::get(Ctx, NewScope));
154 // Cast destination to operand type and store.
155 PointerType *DstPtrType = PointerType::get(OpTy, DstAS);
156 Value *CastedDst = DstAddr->getType() == DstPtrType
157 ? DstAddr
158 : RBuilder.CreateBitCast(DstAddr, DstPtrType);
159 Value *DstGEP = RBuilder.CreateInBoundsGEP(
160 OpTy, CastedDst, ConstantInt::get(TypeOfCopyLen, GepIndex));
161 StoreInst *Store = RBuilder.CreateAlignedStore(Load, DstGEP, PartDstAlign,
162 DstIsVolatile);
163 if (!CanOverlap) {
164 // Indicate that stores don't overlap loads.
165 Store->setMetadata(LLVMContext::MD_noalias, MDNode::get(Ctx, NewScope));
167 if (AtomicElementSize) {
168 Load->setAtomic(AtomicOrdering::Unordered);
169 Store->setAtomic(AtomicOrdering::Unordered);
171 BytesCopied += OperandSize;
174 assert(BytesCopied == CopyLen->getZExtValue() &&
175 "Bytes copied should match size in the call!");
178 void llvm::createMemCpyLoopUnknownSize(
179 Instruction *InsertBefore, Value *SrcAddr, Value *DstAddr, Value *CopyLen,
180 Align SrcAlign, Align DstAlign, bool SrcIsVolatile, bool DstIsVolatile,
181 bool CanOverlap, const TargetTransformInfo &TTI,
182 std::optional<uint32_t> AtomicElementSize) {
183 BasicBlock *PreLoopBB = InsertBefore->getParent();
184 BasicBlock *PostLoopBB =
185 PreLoopBB->splitBasicBlock(InsertBefore, "post-loop-memcpy-expansion");
187 Function *ParentFunc = PreLoopBB->getParent();
188 const DataLayout &DL = ParentFunc->getParent()->getDataLayout();
189 LLVMContext &Ctx = PreLoopBB->getContext();
190 MDBuilder MDB(Ctx);
191 MDNode *NewDomain = MDB.createAnonymousAliasScopeDomain("MemCopyDomain");
192 StringRef Name = "MemCopyAliasScope";
193 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
195 unsigned SrcAS = cast<PointerType>(SrcAddr->getType())->getAddressSpace();
196 unsigned DstAS = cast<PointerType>(DstAddr->getType())->getAddressSpace();
198 Type *LoopOpType = TTI.getMemcpyLoopLoweringType(
199 Ctx, CopyLen, SrcAS, DstAS, SrcAlign.value(), DstAlign.value(),
200 AtomicElementSize);
201 assert((!AtomicElementSize || !LoopOpType->isVectorTy()) &&
202 "Atomic memcpy lowering is not supported for vector operand type");
203 unsigned LoopOpSize = DL.getTypeStoreSize(LoopOpType);
204 assert((!AtomicElementSize || LoopOpSize % *AtomicElementSize == 0) &&
205 "Atomic memcpy lowering is not supported for selected operand size");
207 IRBuilder<> PLBuilder(PreLoopBB->getTerminator());
209 PointerType *SrcOpType = PointerType::get(LoopOpType, SrcAS);
210 PointerType *DstOpType = PointerType::get(LoopOpType, DstAS);
211 if (SrcAddr->getType() != SrcOpType) {
212 SrcAddr = PLBuilder.CreateBitCast(SrcAddr, SrcOpType);
214 if (DstAddr->getType() != DstOpType) {
215 DstAddr = PLBuilder.CreateBitCast(DstAddr, DstOpType);
218 // Calculate the loop trip count, and remaining bytes to copy after the loop.
219 Type *CopyLenType = CopyLen->getType();
220 IntegerType *ILengthType = dyn_cast<IntegerType>(CopyLenType);
221 assert(ILengthType &&
222 "expected size argument to memcpy to be an integer type!");
223 Type *Int8Type = Type::getInt8Ty(Ctx);
224 bool LoopOpIsInt8 = LoopOpType == Int8Type;
225 ConstantInt *CILoopOpSize = ConstantInt::get(ILengthType, LoopOpSize);
226 Value *RuntimeLoopCount = LoopOpIsInt8 ?
227 CopyLen :
228 PLBuilder.CreateUDiv(CopyLen, CILoopOpSize);
229 BasicBlock *LoopBB =
230 BasicBlock::Create(Ctx, "loop-memcpy-expansion", ParentFunc, PostLoopBB);
231 IRBuilder<> LoopBuilder(LoopBB);
233 Align PartSrcAlign(commonAlignment(SrcAlign, LoopOpSize));
234 Align PartDstAlign(commonAlignment(DstAlign, LoopOpSize));
236 PHINode *LoopIndex = LoopBuilder.CreatePHI(CopyLenType, 2, "loop-index");
237 LoopIndex->addIncoming(ConstantInt::get(CopyLenType, 0U), PreLoopBB);
239 Value *SrcGEP = LoopBuilder.CreateInBoundsGEP(LoopOpType, SrcAddr, LoopIndex);
240 LoadInst *Load = LoopBuilder.CreateAlignedLoad(LoopOpType, SrcGEP,
241 PartSrcAlign, SrcIsVolatile);
242 if (!CanOverlap) {
243 // Set alias scope for loads.
244 Load->setMetadata(LLVMContext::MD_alias_scope, MDNode::get(Ctx, NewScope));
246 Value *DstGEP = LoopBuilder.CreateInBoundsGEP(LoopOpType, DstAddr, LoopIndex);
247 StoreInst *Store =
248 LoopBuilder.CreateAlignedStore(Load, DstGEP, PartDstAlign, DstIsVolatile);
249 if (!CanOverlap) {
250 // Indicate that stores don't overlap loads.
251 Store->setMetadata(LLVMContext::MD_noalias, MDNode::get(Ctx, NewScope));
253 if (AtomicElementSize) {
254 Load->setAtomic(AtomicOrdering::Unordered);
255 Store->setAtomic(AtomicOrdering::Unordered);
257 Value *NewIndex =
258 LoopBuilder.CreateAdd(LoopIndex, ConstantInt::get(CopyLenType, 1U));
259 LoopIndex->addIncoming(NewIndex, LoopBB);
261 bool requiresResidual =
262 !LoopOpIsInt8 && !(AtomicElementSize && LoopOpSize == AtomicElementSize);
263 if (requiresResidual) {
264 Type *ResLoopOpType = AtomicElementSize
265 ? Type::getIntNTy(Ctx, *AtomicElementSize * 8)
266 : Int8Type;
267 unsigned ResLoopOpSize = DL.getTypeStoreSize(ResLoopOpType);
268 assert((ResLoopOpSize == AtomicElementSize ? *AtomicElementSize : 1) &&
269 "Store size is expected to match type size");
271 // Add in the
272 Value *RuntimeResidual = PLBuilder.CreateURem(CopyLen, CILoopOpSize);
273 Value *RuntimeBytesCopied = PLBuilder.CreateSub(CopyLen, RuntimeResidual);
275 // Loop body for the residual copy.
276 BasicBlock *ResLoopBB = BasicBlock::Create(Ctx, "loop-memcpy-residual",
277 PreLoopBB->getParent(),
278 PostLoopBB);
279 // Residual loop header.
280 BasicBlock *ResHeaderBB = BasicBlock::Create(
281 Ctx, "loop-memcpy-residual-header", PreLoopBB->getParent(), nullptr);
283 // Need to update the pre-loop basic block to branch to the correct place.
284 // branch to the main loop if the count is non-zero, branch to the residual
285 // loop if the copy size is smaller then 1 iteration of the main loop but
286 // non-zero and finally branch to after the residual loop if the memcpy
287 // size is zero.
288 ConstantInt *Zero = ConstantInt::get(ILengthType, 0U);
289 PLBuilder.CreateCondBr(PLBuilder.CreateICmpNE(RuntimeLoopCount, Zero),
290 LoopBB, ResHeaderBB);
291 PreLoopBB->getTerminator()->eraseFromParent();
293 LoopBuilder.CreateCondBr(
294 LoopBuilder.CreateICmpULT(NewIndex, RuntimeLoopCount), LoopBB,
295 ResHeaderBB);
297 // Determine if we need to branch to the residual loop or bypass it.
298 IRBuilder<> RHBuilder(ResHeaderBB);
299 RHBuilder.CreateCondBr(RHBuilder.CreateICmpNE(RuntimeResidual, Zero),
300 ResLoopBB, PostLoopBB);
302 // Copy the residual with single byte load/store loop.
303 IRBuilder<> ResBuilder(ResLoopBB);
304 PHINode *ResidualIndex =
305 ResBuilder.CreatePHI(CopyLenType, 2, "residual-loop-index");
306 ResidualIndex->addIncoming(Zero, ResHeaderBB);
308 Value *SrcAsResLoopOpType = ResBuilder.CreateBitCast(
309 SrcAddr, PointerType::get(ResLoopOpType, SrcAS));
310 Value *DstAsResLoopOpType = ResBuilder.CreateBitCast(
311 DstAddr, PointerType::get(ResLoopOpType, DstAS));
312 Value *FullOffset = ResBuilder.CreateAdd(RuntimeBytesCopied, ResidualIndex);
313 Value *SrcGEP = ResBuilder.CreateInBoundsGEP(
314 ResLoopOpType, SrcAsResLoopOpType, FullOffset);
315 LoadInst *Load = ResBuilder.CreateAlignedLoad(ResLoopOpType, SrcGEP,
316 PartSrcAlign, SrcIsVolatile);
317 if (!CanOverlap) {
318 // Set alias scope for loads.
319 Load->setMetadata(LLVMContext::MD_alias_scope,
320 MDNode::get(Ctx, NewScope));
322 Value *DstGEP = ResBuilder.CreateInBoundsGEP(
323 ResLoopOpType, DstAsResLoopOpType, FullOffset);
324 StoreInst *Store = ResBuilder.CreateAlignedStore(Load, DstGEP, PartDstAlign,
325 DstIsVolatile);
326 if (!CanOverlap) {
327 // Indicate that stores don't overlap loads.
328 Store->setMetadata(LLVMContext::MD_noalias, MDNode::get(Ctx, NewScope));
330 if (AtomicElementSize) {
331 Load->setAtomic(AtomicOrdering::Unordered);
332 Store->setAtomic(AtomicOrdering::Unordered);
334 Value *ResNewIndex = ResBuilder.CreateAdd(
335 ResidualIndex, ConstantInt::get(CopyLenType, ResLoopOpSize));
336 ResidualIndex->addIncoming(ResNewIndex, ResLoopBB);
338 // Create the loop branch condition.
339 ResBuilder.CreateCondBr(
340 ResBuilder.CreateICmpULT(ResNewIndex, RuntimeResidual), ResLoopBB,
341 PostLoopBB);
342 } else {
343 // In this case the loop operand type was a byte, and there is no need for a
344 // residual loop to copy the remaining memory after the main loop.
345 // We do however need to patch up the control flow by creating the
346 // terminators for the preloop block and the memcpy loop.
347 ConstantInt *Zero = ConstantInt::get(ILengthType, 0U);
348 PLBuilder.CreateCondBr(PLBuilder.CreateICmpNE(RuntimeLoopCount, Zero),
349 LoopBB, PostLoopBB);
350 PreLoopBB->getTerminator()->eraseFromParent();
351 LoopBuilder.CreateCondBr(
352 LoopBuilder.CreateICmpULT(NewIndex, RuntimeLoopCount), LoopBB,
353 PostLoopBB);
357 // Lower memmove to IR. memmove is required to correctly copy overlapping memory
358 // regions; therefore, it has to check the relative positions of the source and
359 // destination pointers and choose the copy direction accordingly.
361 // The code below is an IR rendition of this C function:
363 // void* memmove(void* dst, const void* src, size_t n) {
364 // unsigned char* d = dst;
365 // const unsigned char* s = src;
366 // if (s < d) {
367 // // copy backwards
368 // while (n--) {
369 // d[n] = s[n];
370 // }
371 // } else {
372 // // copy forward
373 // for (size_t i = 0; i < n; ++i) {
374 // d[i] = s[i];
375 // }
376 // }
377 // return dst;
378 // }
379 static void createMemMoveLoop(Instruction *InsertBefore, Value *SrcAddr,
380 Value *DstAddr, Value *CopyLen, Align SrcAlign,
381 Align DstAlign, bool SrcIsVolatile,
382 bool DstIsVolatile,
383 const TargetTransformInfo &TTI) {
384 Type *TypeOfCopyLen = CopyLen->getType();
385 BasicBlock *OrigBB = InsertBefore->getParent();
386 Function *F = OrigBB->getParent();
387 const DataLayout &DL = F->getParent()->getDataLayout();
388 // TODO: Use different element type if possible?
389 Type *EltTy = Type::getInt8Ty(F->getContext());
391 // Create the a comparison of src and dst, based on which we jump to either
392 // the forward-copy part of the function (if src >= dst) or the backwards-copy
393 // part (if src < dst).
394 // SplitBlockAndInsertIfThenElse conveniently creates the basic if-then-else
395 // structure. Its block terminators (unconditional branches) are replaced by
396 // the appropriate conditional branches when the loop is built.
397 ICmpInst *PtrCompare = new ICmpInst(InsertBefore, ICmpInst::ICMP_ULT,
398 SrcAddr, DstAddr, "compare_src_dst");
399 Instruction *ThenTerm, *ElseTerm;
400 SplitBlockAndInsertIfThenElse(PtrCompare, InsertBefore, &ThenTerm,
401 &ElseTerm);
403 // Each part of the function consists of two blocks:
404 // copy_backwards: used to skip the loop when n == 0
405 // copy_backwards_loop: the actual backwards loop BB
406 // copy_forward: used to skip the loop when n == 0
407 // copy_forward_loop: the actual forward loop BB
408 BasicBlock *CopyBackwardsBB = ThenTerm->getParent();
409 CopyBackwardsBB->setName("copy_backwards");
410 BasicBlock *CopyForwardBB = ElseTerm->getParent();
411 CopyForwardBB->setName("copy_forward");
412 BasicBlock *ExitBB = InsertBefore->getParent();
413 ExitBB->setName("memmove_done");
415 unsigned PartSize = DL.getTypeStoreSize(EltTy);
416 Align PartSrcAlign(commonAlignment(SrcAlign, PartSize));
417 Align PartDstAlign(commonAlignment(DstAlign, PartSize));
419 // Initial comparison of n == 0 that lets us skip the loops altogether. Shared
420 // between both backwards and forward copy clauses.
421 ICmpInst *CompareN =
422 new ICmpInst(OrigBB->getTerminator(), ICmpInst::ICMP_EQ, CopyLen,
423 ConstantInt::get(TypeOfCopyLen, 0), "compare_n_to_0");
425 // Copying backwards.
426 BasicBlock *LoopBB =
427 BasicBlock::Create(F->getContext(), "copy_backwards_loop", F, CopyForwardBB);
428 IRBuilder<> LoopBuilder(LoopBB);
430 PHINode *LoopPhi = LoopBuilder.CreatePHI(TypeOfCopyLen, 0);
431 Value *IndexPtr = LoopBuilder.CreateSub(
432 LoopPhi, ConstantInt::get(TypeOfCopyLen, 1), "index_ptr");
433 Value *Element = LoopBuilder.CreateAlignedLoad(
434 EltTy, LoopBuilder.CreateInBoundsGEP(EltTy, SrcAddr, IndexPtr),
435 PartSrcAlign, "element");
436 LoopBuilder.CreateAlignedStore(
437 Element, LoopBuilder.CreateInBoundsGEP(EltTy, DstAddr, IndexPtr),
438 PartDstAlign);
439 LoopBuilder.CreateCondBr(
440 LoopBuilder.CreateICmpEQ(IndexPtr, ConstantInt::get(TypeOfCopyLen, 0)),
441 ExitBB, LoopBB);
442 LoopPhi->addIncoming(IndexPtr, LoopBB);
443 LoopPhi->addIncoming(CopyLen, CopyBackwardsBB);
444 BranchInst::Create(ExitBB, LoopBB, CompareN, ThenTerm);
445 ThenTerm->eraseFromParent();
447 // Copying forward.
448 BasicBlock *FwdLoopBB =
449 BasicBlock::Create(F->getContext(), "copy_forward_loop", F, ExitBB);
450 IRBuilder<> FwdLoopBuilder(FwdLoopBB);
451 PHINode *FwdCopyPhi = FwdLoopBuilder.CreatePHI(TypeOfCopyLen, 0, "index_ptr");
452 Value *SrcGEP = FwdLoopBuilder.CreateInBoundsGEP(EltTy, SrcAddr, FwdCopyPhi);
453 Value *FwdElement =
454 FwdLoopBuilder.CreateAlignedLoad(EltTy, SrcGEP, PartSrcAlign, "element");
455 Value *DstGEP = FwdLoopBuilder.CreateInBoundsGEP(EltTy, DstAddr, FwdCopyPhi);
456 FwdLoopBuilder.CreateAlignedStore(FwdElement, DstGEP, PartDstAlign);
457 Value *FwdIndexPtr = FwdLoopBuilder.CreateAdd(
458 FwdCopyPhi, ConstantInt::get(TypeOfCopyLen, 1), "index_increment");
459 FwdLoopBuilder.CreateCondBr(FwdLoopBuilder.CreateICmpEQ(FwdIndexPtr, CopyLen),
460 ExitBB, FwdLoopBB);
461 FwdCopyPhi->addIncoming(FwdIndexPtr, FwdLoopBB);
462 FwdCopyPhi->addIncoming(ConstantInt::get(TypeOfCopyLen, 0), CopyForwardBB);
464 BranchInst::Create(ExitBB, FwdLoopBB, CompareN, ElseTerm);
465 ElseTerm->eraseFromParent();
468 static void createMemSetLoop(Instruction *InsertBefore, Value *DstAddr,
469 Value *CopyLen, Value *SetValue, Align DstAlign,
470 bool IsVolatile) {
471 Type *TypeOfCopyLen = CopyLen->getType();
472 BasicBlock *OrigBB = InsertBefore->getParent();
473 Function *F = OrigBB->getParent();
474 const DataLayout &DL = F->getParent()->getDataLayout();
475 BasicBlock *NewBB =
476 OrigBB->splitBasicBlock(InsertBefore, "split");
477 BasicBlock *LoopBB
478 = BasicBlock::Create(F->getContext(), "loadstoreloop", F, NewBB);
480 IRBuilder<> Builder(OrigBB->getTerminator());
482 // Cast pointer to the type of value getting stored
483 unsigned dstAS = cast<PointerType>(DstAddr->getType())->getAddressSpace();
484 DstAddr = Builder.CreateBitCast(DstAddr,
485 PointerType::get(SetValue->getType(), dstAS));
487 Builder.CreateCondBr(
488 Builder.CreateICmpEQ(ConstantInt::get(TypeOfCopyLen, 0), CopyLen), NewBB,
489 LoopBB);
490 OrigBB->getTerminator()->eraseFromParent();
492 unsigned PartSize = DL.getTypeStoreSize(SetValue->getType());
493 Align PartAlign(commonAlignment(DstAlign, PartSize));
495 IRBuilder<> LoopBuilder(LoopBB);
496 PHINode *LoopIndex = LoopBuilder.CreatePHI(TypeOfCopyLen, 0);
497 LoopIndex->addIncoming(ConstantInt::get(TypeOfCopyLen, 0), OrigBB);
499 LoopBuilder.CreateAlignedStore(
500 SetValue,
501 LoopBuilder.CreateInBoundsGEP(SetValue->getType(), DstAddr, LoopIndex),
502 PartAlign, IsVolatile);
504 Value *NewIndex =
505 LoopBuilder.CreateAdd(LoopIndex, ConstantInt::get(TypeOfCopyLen, 1));
506 LoopIndex->addIncoming(NewIndex, LoopBB);
508 LoopBuilder.CreateCondBr(LoopBuilder.CreateICmpULT(NewIndex, CopyLen), LoopBB,
509 NewBB);
512 template <typename T>
513 static bool canOverlap(MemTransferBase<T> *Memcpy, ScalarEvolution *SE) {
514 if (SE) {
515 auto *SrcSCEV = SE->getSCEV(Memcpy->getRawSource());
516 auto *DestSCEV = SE->getSCEV(Memcpy->getRawDest());
517 if (SE->isKnownPredicateAt(CmpInst::ICMP_NE, SrcSCEV, DestSCEV, Memcpy))
518 return false;
520 return true;
523 void llvm::expandMemCpyAsLoop(MemCpyInst *Memcpy,
524 const TargetTransformInfo &TTI,
525 ScalarEvolution *SE) {
526 bool CanOverlap = canOverlap(Memcpy, SE);
527 if (ConstantInt *CI = dyn_cast<ConstantInt>(Memcpy->getLength())) {
528 createMemCpyLoopKnownSize(
529 /* InsertBefore */ Memcpy,
530 /* SrcAddr */ Memcpy->getRawSource(),
531 /* DstAddr */ Memcpy->getRawDest(),
532 /* CopyLen */ CI,
533 /* SrcAlign */ Memcpy->getSourceAlign().valueOrOne(),
534 /* DestAlign */ Memcpy->getDestAlign().valueOrOne(),
535 /* SrcIsVolatile */ Memcpy->isVolatile(),
536 /* DstIsVolatile */ Memcpy->isVolatile(),
537 /* CanOverlap */ CanOverlap,
538 /* TargetTransformInfo */ TTI);
539 } else {
540 createMemCpyLoopUnknownSize(
541 /* InsertBefore */ Memcpy,
542 /* SrcAddr */ Memcpy->getRawSource(),
543 /* DstAddr */ Memcpy->getRawDest(),
544 /* CopyLen */ Memcpy->getLength(),
545 /* SrcAlign */ Memcpy->getSourceAlign().valueOrOne(),
546 /* DestAlign */ Memcpy->getDestAlign().valueOrOne(),
547 /* SrcIsVolatile */ Memcpy->isVolatile(),
548 /* DstIsVolatile */ Memcpy->isVolatile(),
549 /* CanOverlap */ CanOverlap,
550 /* TargetTransformInfo */ TTI);
554 bool llvm::expandMemMoveAsLoop(MemMoveInst *Memmove,
555 const TargetTransformInfo &TTI) {
556 Value *CopyLen = Memmove->getLength();
557 Value *SrcAddr = Memmove->getRawSource();
558 Value *DstAddr = Memmove->getRawDest();
559 Align SrcAlign = Memmove->getSourceAlign().valueOrOne();
560 Align DstAlign = Memmove->getDestAlign().valueOrOne();
561 bool SrcIsVolatile = Memmove->isVolatile();
562 bool DstIsVolatile = SrcIsVolatile;
563 IRBuilder<> CastBuilder(Memmove);
565 unsigned SrcAS = SrcAddr->getType()->getPointerAddressSpace();
566 unsigned DstAS = DstAddr->getType()->getPointerAddressSpace();
567 if (SrcAS != DstAS) {
568 if (!TTI.addrspacesMayAlias(SrcAS, DstAS)) {
569 // We may not be able to emit a pointer comparison, but we don't have
570 // to. Expand as memcpy.
571 if (ConstantInt *CI = dyn_cast<ConstantInt>(CopyLen)) {
572 createMemCpyLoopKnownSize(/*InsertBefore=*/Memmove, SrcAddr, DstAddr,
573 CI, SrcAlign, DstAlign, SrcIsVolatile,
574 DstIsVolatile,
575 /*CanOverlap=*/false, TTI);
576 } else {
577 createMemCpyLoopUnknownSize(/*InsertBefore=*/Memmove, SrcAddr, DstAddr,
578 CopyLen, SrcAlign, DstAlign, SrcIsVolatile,
579 DstIsVolatile,
580 /*CanOverlap=*/false, TTI);
583 return true;
586 if (TTI.isValidAddrSpaceCast(DstAS, SrcAS))
587 DstAddr = CastBuilder.CreateAddrSpaceCast(DstAddr, SrcAddr->getType());
588 else if (TTI.isValidAddrSpaceCast(SrcAS, DstAS))
589 SrcAddr = CastBuilder.CreateAddrSpaceCast(SrcAddr, DstAddr->getType());
590 else {
591 // We don't know generically if it's legal to introduce an
592 // addrspacecast. We need to know either if it's legal to insert an
593 // addrspacecast, or if the address spaces cannot alias.
594 LLVM_DEBUG(
595 dbgs() << "Do not know how to expand memmove between different "
596 "address spaces\n");
597 return false;
601 createMemMoveLoop(
602 /*InsertBefore=*/Memmove, SrcAddr, DstAddr, CopyLen, SrcAlign, DstAlign,
603 SrcIsVolatile, DstIsVolatile, TTI);
604 return true;
607 void llvm::expandMemSetAsLoop(MemSetInst *Memset) {
608 createMemSetLoop(/* InsertBefore */ Memset,
609 /* DstAddr */ Memset->getRawDest(),
610 /* CopyLen */ Memset->getLength(),
611 /* SetValue */ Memset->getValue(),
612 /* Alignment */ Memset->getDestAlign().valueOrOne(),
613 Memset->isVolatile());
616 void llvm::expandAtomicMemCpyAsLoop(AtomicMemCpyInst *AtomicMemcpy,
617 const TargetTransformInfo &TTI,
618 ScalarEvolution *SE) {
619 if (ConstantInt *CI = dyn_cast<ConstantInt>(AtomicMemcpy->getLength())) {
620 createMemCpyLoopKnownSize(
621 /* InsertBefore */ AtomicMemcpy,
622 /* SrcAddr */ AtomicMemcpy->getRawSource(),
623 /* DstAddr */ AtomicMemcpy->getRawDest(),
624 /* CopyLen */ CI,
625 /* SrcAlign */ AtomicMemcpy->getSourceAlign().valueOrOne(),
626 /* DestAlign */ AtomicMemcpy->getDestAlign().valueOrOne(),
627 /* SrcIsVolatile */ AtomicMemcpy->isVolatile(),
628 /* DstIsVolatile */ AtomicMemcpy->isVolatile(),
629 /* CanOverlap */ false, // SrcAddr & DstAddr may not overlap by spec.
630 /* TargetTransformInfo */ TTI,
631 /* AtomicCpySize */ AtomicMemcpy->getElementSizeInBytes());
632 } else {
633 createMemCpyLoopUnknownSize(
634 /* InsertBefore */ AtomicMemcpy,
635 /* SrcAddr */ AtomicMemcpy->getRawSource(),
636 /* DstAddr */ AtomicMemcpy->getRawDest(),
637 /* CopyLen */ AtomicMemcpy->getLength(),
638 /* SrcAlign */ AtomicMemcpy->getSourceAlign().valueOrOne(),
639 /* DestAlign */ AtomicMemcpy->getDestAlign().valueOrOne(),
640 /* SrcIsVolatile */ AtomicMemcpy->isVolatile(),
641 /* DstIsVolatile */ AtomicMemcpy->isVolatile(),
642 /* CanOverlap */ false, // SrcAddr & DstAddr may not overlap by spec.
643 /* TargetTransformInfo */ TTI,
644 /* AtomicCpySize */ AtomicMemcpy->getElementSizeInBytes());