[AMDGPU] Test codegen'ing True16 additions.
[llvm-project.git] / polly / lib / Transform / ScheduleOptimizer.cpp
blob35a0a4def0403d5a5076c5c773cd5f10b1029c9c
1 //===- ScheduleOptimizer.cpp - Calculate an optimized schedule ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass generates an entirely new schedule tree from the data dependences
10 // and iteration domains. The new schedule tree is computed in two steps:
12 // 1) The isl scheduling optimizer is run
14 // The isl scheduling optimizer creates a new schedule tree that maximizes
15 // parallelism and tileability and minimizes data-dependence distances. The
16 // algorithm used is a modified version of the ``Pluto'' algorithm:
18 // U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
19 // A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.
20 // In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language
21 // Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008.
23 // 2) A set of post-scheduling transformations is applied on the schedule tree.
25 // These optimizations include:
27 // - Tiling of the innermost tilable bands
28 // - Prevectorization - The choice of a possible outer loop that is strip-mined
29 // to the innermost level to enable inner-loop
30 // vectorization.
31 // - Some optimizations for spatial locality are also planned.
33 // For a detailed description of the schedule tree itself please see section 6
34 // of:
36 // Polyhedral AST generation is more than scanning polyhedra
37 // Tobias Grosser, Sven Verdoolaege, Albert Cohen
38 // ACM Transactions on Programming Languages and Systems (TOPLAS),
39 // 37(4), July 2015
40 // http://www.grosser.es/#pub-polyhedral-AST-generation
42 // This publication also contains a detailed discussion of the different options
43 // for polyhedral loop unrolling, full/partial tile separation and other uses
44 // of the schedule tree.
46 //===----------------------------------------------------------------------===//
48 #include "polly/ScheduleOptimizer.h"
49 #include "polly/CodeGen/CodeGeneration.h"
50 #include "polly/DependenceInfo.h"
51 #include "polly/ManualOptimizer.h"
52 #include "polly/MatmulOptimizer.h"
53 #include "polly/Options.h"
54 #include "polly/ScheduleTreeTransform.h"
55 #include "polly/Support/ISLOStream.h"
56 #include "polly/Support/ISLTools.h"
57 #include "llvm/ADT/Sequence.h"
58 #include "llvm/ADT/Statistic.h"
59 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
60 #include "llvm/InitializePasses.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "isl/options.h"
64 using namespace llvm;
65 using namespace polly;
67 namespace llvm {
68 class Loop;
69 class Module;
70 } // namespace llvm
72 #define DEBUG_TYPE "polly-opt-isl"
74 static cl::opt<std::string>
75 OptimizeDeps("polly-opt-optimize-only",
76 cl::desc("Only a certain kind of dependences (all/raw)"),
77 cl::Hidden, cl::init("all"), cl::cat(PollyCategory));
79 static cl::opt<std::string>
80 SimplifyDeps("polly-opt-simplify-deps",
81 cl::desc("Dependences should be simplified (yes/no)"),
82 cl::Hidden, cl::init("yes"), cl::cat(PollyCategory));
84 static cl::opt<int> MaxConstantTerm(
85 "polly-opt-max-constant-term",
86 cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden,
87 cl::init(20), cl::cat(PollyCategory));
89 static cl::opt<int> MaxCoefficient(
90 "polly-opt-max-coefficient",
91 cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden,
92 cl::init(20), cl::cat(PollyCategory));
94 static cl::opt<std::string>
95 MaximizeBandDepth("polly-opt-maximize-bands",
96 cl::desc("Maximize the band depth (yes/no)"), cl::Hidden,
97 cl::init("yes"), cl::cat(PollyCategory));
99 static cl::opt<bool>
100 GreedyFusion("polly-loopfusion-greedy",
101 cl::desc("Aggressively try to fuse everything"), cl::Hidden,
102 cl::cat(PollyCategory));
104 static cl::opt<std::string> OuterCoincidence(
105 "polly-opt-outer-coincidence",
106 cl::desc("Try to construct schedules where the outer member of each band "
107 "satisfies the coincidence constraints (yes/no)"),
108 cl::Hidden, cl::init("no"), cl::cat(PollyCategory));
110 static cl::opt<int> PrevectorWidth(
111 "polly-prevect-width",
112 cl::desc(
113 "The number of loop iterations to strip-mine for pre-vectorization"),
114 cl::Hidden, cl::init(4), cl::cat(PollyCategory));
116 static cl::opt<bool> FirstLevelTiling("polly-tiling",
117 cl::desc("Enable loop tiling"),
118 cl::init(true), cl::cat(PollyCategory));
120 static cl::opt<int> FirstLevelDefaultTileSize(
121 "polly-default-tile-size",
122 cl::desc("The default tile size (if not enough were provided by"
123 " --polly-tile-sizes)"),
124 cl::Hidden, cl::init(32), cl::cat(PollyCategory));
126 static cl::list<int>
127 FirstLevelTileSizes("polly-tile-sizes",
128 cl::desc("A tile size for each loop dimension, filled "
129 "with --polly-default-tile-size"),
130 cl::Hidden, cl::CommaSeparated, cl::cat(PollyCategory));
132 static cl::opt<bool>
133 SecondLevelTiling("polly-2nd-level-tiling",
134 cl::desc("Enable a 2nd level loop of loop tiling"),
135 cl::cat(PollyCategory));
137 static cl::opt<int> SecondLevelDefaultTileSize(
138 "polly-2nd-level-default-tile-size",
139 cl::desc("The default 2nd-level tile size (if not enough were provided by"
140 " --polly-2nd-level-tile-sizes)"),
141 cl::Hidden, cl::init(16), cl::cat(PollyCategory));
143 static cl::list<int>
144 SecondLevelTileSizes("polly-2nd-level-tile-sizes",
145 cl::desc("A tile size for each loop dimension, filled "
146 "with --polly-default-tile-size"),
147 cl::Hidden, cl::CommaSeparated,
148 cl::cat(PollyCategory));
150 static cl::opt<bool> RegisterTiling("polly-register-tiling",
151 cl::desc("Enable register tiling"),
152 cl::cat(PollyCategory));
154 static cl::opt<int> RegisterDefaultTileSize(
155 "polly-register-tiling-default-tile-size",
156 cl::desc("The default register tile size (if not enough were provided by"
157 " --polly-register-tile-sizes)"),
158 cl::Hidden, cl::init(2), cl::cat(PollyCategory));
160 static cl::list<int>
161 RegisterTileSizes("polly-register-tile-sizes",
162 cl::desc("A tile size for each loop dimension, filled "
163 "with --polly-register-tile-size"),
164 cl::Hidden, cl::CommaSeparated, cl::cat(PollyCategory));
166 static cl::opt<bool> PragmaBasedOpts(
167 "polly-pragma-based-opts",
168 cl::desc("Apply user-directed transformation from metadata"),
169 cl::init(true), cl::cat(PollyCategory));
171 static cl::opt<bool> EnableReschedule("polly-reschedule",
172 cl::desc("Optimize SCoPs using ISL"),
173 cl::init(true), cl::cat(PollyCategory));
175 static cl::opt<bool>
176 PMBasedOpts("polly-pattern-matching-based-opts",
177 cl::desc("Perform optimizations based on pattern matching"),
178 cl::init(true), cl::cat(PollyCategory));
180 static cl::opt<bool>
181 EnablePostopts("polly-postopts",
182 cl::desc("Apply post-rescheduling optimizations such as "
183 "tiling (requires -polly-reschedule)"),
184 cl::init(true), cl::cat(PollyCategory));
186 static cl::opt<bool> OptimizedScops(
187 "polly-optimized-scops",
188 cl::desc("Polly - Dump polyhedral description of Scops optimized with "
189 "the isl scheduling optimizer and the set of post-scheduling "
190 "transformations is applied on the schedule tree"),
191 cl::cat(PollyCategory));
193 STATISTIC(ScopsProcessed, "Number of scops processed");
194 STATISTIC(ScopsRescheduled, "Number of scops rescheduled");
195 STATISTIC(ScopsOptimized, "Number of scops optimized");
197 STATISTIC(NumAffineLoopsOptimized, "Number of affine loops optimized");
198 STATISTIC(NumBoxedLoopsOptimized, "Number of boxed loops optimized");
200 #define THREE_STATISTICS(VARNAME, DESC) \
201 static Statistic VARNAME[3] = { \
202 {DEBUG_TYPE, #VARNAME "0", DESC " (original)"}, \
203 {DEBUG_TYPE, #VARNAME "1", DESC " (after scheduler)"}, \
204 {DEBUG_TYPE, #VARNAME "2", DESC " (after optimizer)"}}
206 THREE_STATISTICS(NumBands, "Number of bands");
207 THREE_STATISTICS(NumBandMembers, "Number of band members");
208 THREE_STATISTICS(NumCoincident, "Number of coincident band members");
209 THREE_STATISTICS(NumPermutable, "Number of permutable bands");
210 THREE_STATISTICS(NumFilters, "Number of filter nodes");
211 THREE_STATISTICS(NumExtension, "Number of extension nodes");
213 STATISTIC(FirstLevelTileOpts, "Number of first level tiling applied");
214 STATISTIC(SecondLevelTileOpts, "Number of second level tiling applied");
215 STATISTIC(RegisterTileOpts, "Number of register tiling applied");
216 STATISTIC(PrevectOpts, "Number of strip-mining for prevectorization applied");
217 STATISTIC(MatMulOpts,
218 "Number of matrix multiplication patterns detected and optimized");
220 namespace {
221 /// Additional parameters of the schedule optimizer.
223 /// Target Transform Info and the SCoP dependencies used by the schedule
224 /// optimizer.
225 struct OptimizerAdditionalInfoTy {
226 const llvm::TargetTransformInfo *TTI;
227 const Dependences *D;
228 bool PatternOpts;
229 bool Postopts;
230 bool Prevect;
231 bool &DepsChanged;
234 class ScheduleTreeOptimizer final {
235 public:
236 /// Apply schedule tree transformations.
238 /// This function takes an (possibly already optimized) schedule tree and
239 /// applies a set of additional optimizations on the schedule tree. The
240 /// transformations applied include:
242 /// - Pattern-based optimizations
243 /// - Tiling
244 /// - Prevectorization
246 /// @param Schedule The schedule object the transformations will be applied
247 /// to.
248 /// @param OAI Target Transform Info and the SCoP dependencies.
249 /// @returns The transformed schedule.
250 static isl::schedule
251 optimizeSchedule(isl::schedule Schedule,
252 const OptimizerAdditionalInfoTy *OAI = nullptr);
254 /// Apply schedule tree transformations.
256 /// This function takes a node in an (possibly already optimized) schedule
257 /// tree and applies a set of additional optimizations on this schedule tree
258 /// node and its descendants. The transformations applied include:
260 /// - Pattern-based optimizations
261 /// - Tiling
262 /// - Prevectorization
264 /// @param Node The schedule object post-transformations will be applied to.
265 /// @param OAI Target Transform Info and the SCoP dependencies.
266 /// @returns The transformed schedule.
267 static isl::schedule_node
268 optimizeScheduleNode(isl::schedule_node Node,
269 const OptimizerAdditionalInfoTy *OAI = nullptr);
271 /// Decide if the @p NewSchedule is profitable for @p S.
273 /// @param S The SCoP we optimize.
274 /// @param NewSchedule The new schedule we computed.
276 /// @return True, if we believe @p NewSchedule is an improvement for @p S.
277 static bool isProfitableSchedule(polly::Scop &S, isl::schedule NewSchedule);
279 /// Isolate a set of partial tile prefixes.
281 /// This set should ensure that it contains only partial tile prefixes that
282 /// have exactly VectorWidth iterations.
284 /// @param Node A schedule node band, which is a parent of a band node,
285 /// that contains a vector loop.
286 /// @return Modified isl_schedule_node.
287 static isl::schedule_node isolateFullPartialTiles(isl::schedule_node Node,
288 int VectorWidth);
290 private:
291 /// Check if this node is a band node we want to tile.
293 /// We look for innermost band nodes where individual dimensions are marked as
294 /// permutable.
296 /// @param Node The node to check.
297 static bool isTileableBandNode(isl::schedule_node Node);
299 /// Check if this node is a band node we want to transform using pattern
300 /// matching.
302 /// We look for innermost band nodes where individual dimensions are marked as
303 /// permutable. There is no restriction on the number of individual
304 /// dimensions.
306 /// @param Node The node to check.
307 static bool isPMOptimizableBandNode(isl::schedule_node Node);
309 /// Pre-vectorizes one scheduling dimension of a schedule band.
311 /// prevectSchedBand splits out the dimension DimToVectorize, tiles it and
312 /// sinks the resulting point loop.
314 /// Example (DimToVectorize=0, VectorWidth=4):
316 /// | Before transformation:
317 /// |
318 /// | A[i,j] -> [i,j]
319 /// |
320 /// | for (i = 0; i < 128; i++)
321 /// | for (j = 0; j < 128; j++)
322 /// | A(i,j);
324 /// | After transformation:
325 /// |
326 /// | for (it = 0; it < 32; it+=1)
327 /// | for (j = 0; j < 128; j++)
328 /// | for (ip = 0; ip <= 3; ip++)
329 /// | A(4 * it + ip,j);
331 /// The goal of this transformation is to create a trivially vectorizable
332 /// loop. This means a parallel loop at the innermost level that has a
333 /// constant number of iterations corresponding to the target vector width.
335 /// This transformation creates a loop at the innermost level. The loop has
336 /// a constant number of iterations, if the number of loop iterations at
337 /// DimToVectorize can be divided by VectorWidth. The default VectorWidth is
338 /// currently constant and not yet target specific. This function does not
339 /// reason about parallelism.
340 static isl::schedule_node prevectSchedBand(isl::schedule_node Node,
341 unsigned DimToVectorize,
342 int VectorWidth);
344 /// Apply additional optimizations on the bands in the schedule tree.
346 /// We are looking for an innermost band node and apply the following
347 /// transformations:
349 /// - Tile the band
350 /// - if the band is tileable
351 /// - if the band has more than one loop dimension
353 /// - Prevectorize the schedule of the band (or the point loop in case of
354 /// tiling).
355 /// - if vectorization is enabled
357 /// @param Node The schedule node to (possibly) optimize.
358 /// @param User A pointer to forward some use information
359 /// (currently unused).
360 static isl_schedule_node *optimizeBand(isl_schedule_node *Node, void *User);
362 /// Apply tiling optimizations on the bands in the schedule tree.
364 /// @param Node The schedule node to (possibly) optimize.
365 static isl::schedule_node applyTileBandOpt(isl::schedule_node Node);
367 /// Apply prevectorization on the bands in the schedule tree.
369 /// @param Node The schedule node to (possibly) prevectorize.
370 static isl::schedule_node applyPrevectBandOpt(isl::schedule_node Node);
373 isl::schedule_node
374 ScheduleTreeOptimizer::isolateFullPartialTiles(isl::schedule_node Node,
375 int VectorWidth) {
376 assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
377 Node = Node.child(0).child(0);
378 isl::union_map SchedRelUMap = Node.get_prefix_schedule_relation();
379 isl::union_set ScheduleRangeUSet = SchedRelUMap.range();
380 isl::set ScheduleRange{ScheduleRangeUSet};
381 isl::set IsolateDomain = getPartialTilePrefixes(ScheduleRange, VectorWidth);
382 auto AtomicOption = getDimOptions(IsolateDomain.ctx(), "atomic");
383 isl::union_set IsolateOption = getIsolateOptions(IsolateDomain, 1);
384 Node = Node.parent().parent();
385 isl::union_set Options = IsolateOption.unite(AtomicOption);
386 isl::schedule_node_band Result =
387 Node.as<isl::schedule_node_band>().set_ast_build_options(Options);
388 return Result;
391 struct InsertSimdMarkers final : ScheduleNodeRewriter<InsertSimdMarkers> {
392 isl::schedule_node visitBand(isl::schedule_node_band Band) {
393 isl::schedule_node Node = visitChildren(Band);
395 // Only add SIMD markers to innermost bands.
396 if (!Node.first_child().isa<isl::schedule_node_leaf>())
397 return Node;
399 isl::id LoopMarker = isl::id::alloc(Band.ctx(), "SIMD", nullptr);
400 return Band.insert_mark(LoopMarker);
404 isl::schedule_node ScheduleTreeOptimizer::prevectSchedBand(
405 isl::schedule_node Node, unsigned DimToVectorize, int VectorWidth) {
406 assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
408 auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
409 unsigned ScheduleDimensions = unsignedFromIslSize(Space.dim(isl::dim::set));
410 assert(DimToVectorize < ScheduleDimensions);
412 if (DimToVectorize > 0) {
413 Node = isl::manage(
414 isl_schedule_node_band_split(Node.release(), DimToVectorize));
415 Node = Node.child(0);
417 if (DimToVectorize < ScheduleDimensions - 1)
418 Node = isl::manage(isl_schedule_node_band_split(Node.release(), 1));
419 Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
420 auto Sizes = isl::multi_val::zero(Space);
421 Sizes = Sizes.set_val(0, isl::val(Node.ctx(), VectorWidth));
422 Node =
423 isl::manage(isl_schedule_node_band_tile(Node.release(), Sizes.release()));
424 Node = isolateFullPartialTiles(Node, VectorWidth);
425 Node = Node.child(0);
426 // Make sure the "trivially vectorizable loop" is not unrolled. Otherwise,
427 // we will have troubles to match it in the backend.
428 Node = Node.as<isl::schedule_node_band>().set_ast_build_options(
429 isl::union_set(Node.ctx(), "{ unroll[x]: 1 = 0 }"));
431 // Sink the inner loop into the smallest possible statements to make them
432 // represent a single vector instruction if possible.
433 Node = isl::manage(isl_schedule_node_band_sink(Node.release()));
435 // Add SIMD markers to those vector statements.
436 InsertSimdMarkers SimdMarkerInserter;
437 Node = SimdMarkerInserter.visit(Node);
439 PrevectOpts++;
440 return Node.parent();
443 static bool isSimpleInnermostBand(const isl::schedule_node &Node) {
444 assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
445 assert(isl_schedule_node_n_children(Node.get()) == 1);
447 auto ChildType = isl_schedule_node_get_type(Node.child(0).get());
449 if (ChildType == isl_schedule_node_leaf)
450 return true;
452 if (ChildType != isl_schedule_node_sequence)
453 return false;
455 auto Sequence = Node.child(0);
457 for (int c = 0, nc = isl_schedule_node_n_children(Sequence.get()); c < nc;
458 ++c) {
459 auto Child = Sequence.child(c);
460 if (isl_schedule_node_get_type(Child.get()) != isl_schedule_node_filter)
461 return false;
462 if (isl_schedule_node_get_type(Child.child(0).get()) !=
463 isl_schedule_node_leaf)
464 return false;
466 return true;
469 /// Check if this node is a band node, which has only one child.
471 /// @param Node The node to check.
472 static bool isOneTimeParentBandNode(isl::schedule_node Node) {
473 if (isl_schedule_node_get_type(Node.get()) != isl_schedule_node_band)
474 return false;
476 if (isl_schedule_node_n_children(Node.get()) != 1)
477 return false;
479 return true;
482 bool ScheduleTreeOptimizer::isTileableBandNode(isl::schedule_node Node) {
483 if (!isOneTimeParentBandNode(Node))
484 return false;
486 if (!isl_schedule_node_band_get_permutable(Node.get()))
487 return false;
489 auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
491 if (unsignedFromIslSize(Space.dim(isl::dim::set)) <= 1u)
492 return false;
494 return isSimpleInnermostBand(Node);
497 bool ScheduleTreeOptimizer::isPMOptimizableBandNode(isl::schedule_node Node) {
498 if (!isOneTimeParentBandNode(Node))
499 return false;
501 return Node.child(0).isa<isl::schedule_node_leaf>();
504 __isl_give isl::schedule_node
505 ScheduleTreeOptimizer::applyTileBandOpt(isl::schedule_node Node) {
506 if (FirstLevelTiling) {
507 Node = tileNode(Node, "1st level tiling", FirstLevelTileSizes,
508 FirstLevelDefaultTileSize);
509 FirstLevelTileOpts++;
512 if (SecondLevelTiling) {
513 Node = tileNode(Node, "2nd level tiling", SecondLevelTileSizes,
514 SecondLevelDefaultTileSize);
515 SecondLevelTileOpts++;
518 if (RegisterTiling) {
519 Node =
520 applyRegisterTiling(Node, RegisterTileSizes, RegisterDefaultTileSize);
521 RegisterTileOpts++;
524 return Node;
527 isl::schedule_node
528 ScheduleTreeOptimizer::applyPrevectBandOpt(isl::schedule_node Node) {
529 auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
530 int Dims = unsignedFromIslSize(Space.dim(isl::dim::set));
532 for (int i = Dims - 1; i >= 0; i--)
533 if (Node.as<isl::schedule_node_band>().member_get_coincident(i)) {
534 Node = prevectSchedBand(Node, i, PrevectorWidth);
535 break;
538 return Node;
541 __isl_give isl_schedule_node *
542 ScheduleTreeOptimizer::optimizeBand(__isl_take isl_schedule_node *NodeArg,
543 void *User) {
544 const OptimizerAdditionalInfoTy *OAI =
545 static_cast<const OptimizerAdditionalInfoTy *>(User);
546 assert(OAI && "Expecting optimization options");
548 isl::schedule_node Node = isl::manage(NodeArg);
550 if (OAI->PatternOpts && isPMOptimizableBandNode(Node)) {
551 isl::schedule_node PatternOptimizedSchedule =
552 tryOptimizeMatMulPattern(Node, OAI->TTI, OAI->D);
553 if (!PatternOptimizedSchedule.is_null()) {
554 MatMulOpts++;
555 OAI->DepsChanged = true;
556 return PatternOptimizedSchedule.release();
560 if (!isTileableBandNode(Node))
561 return Node.release();
563 if (OAI->Postopts)
564 Node = applyTileBandOpt(Node);
566 if (OAI->Prevect) {
567 // FIXME: Prevectorization requirements are different from those checked by
568 // isTileableBandNode.
569 Node = applyPrevectBandOpt(Node);
572 return Node.release();
575 isl::schedule
576 ScheduleTreeOptimizer::optimizeSchedule(isl::schedule Schedule,
577 const OptimizerAdditionalInfoTy *OAI) {
578 auto Root = Schedule.get_root();
579 Root = optimizeScheduleNode(Root, OAI);
580 return Root.get_schedule();
583 isl::schedule_node ScheduleTreeOptimizer::optimizeScheduleNode(
584 isl::schedule_node Node, const OptimizerAdditionalInfoTy *OAI) {
585 Node = isl::manage(isl_schedule_node_map_descendant_bottom_up(
586 Node.release(), optimizeBand,
587 const_cast<void *>(static_cast<const void *>(OAI))));
588 return Node;
591 bool ScheduleTreeOptimizer::isProfitableSchedule(Scop &S,
592 isl::schedule NewSchedule) {
593 // To understand if the schedule has been optimized we check if the schedule
594 // has changed at all.
595 // TODO: We can improve this by tracking if any necessarily beneficial
596 // transformations have been performed. This can e.g. be tiling, loop
597 // interchange, or ...) We can track this either at the place where the
598 // transformation has been performed or, in case of automatic ILP based
599 // optimizations, by comparing (yet to be defined) performance metrics
600 // before/after the scheduling optimizer
601 // (e.g., #stride-one accesses)
602 // FIXME: A schedule tree whose union_map-conversion is identical to the
603 // original schedule map may still allow for parallelization, i.e. can still
604 // be profitable.
605 auto NewScheduleMap = NewSchedule.get_map();
606 auto OldSchedule = S.getSchedule();
607 assert(!OldSchedule.is_null() &&
608 "Only IslScheduleOptimizer can insert extension nodes "
609 "that make Scop::getSchedule() return nullptr.");
610 bool changed = !OldSchedule.is_equal(NewScheduleMap);
611 return changed;
614 class IslScheduleOptimizerWrapperPass final : public ScopPass {
615 public:
616 static char ID;
618 explicit IslScheduleOptimizerWrapperPass() : ScopPass(ID) {}
620 /// Optimize the schedule of the SCoP @p S.
621 bool runOnScop(Scop &S) override;
623 /// Print the new schedule for the SCoP @p S.
624 void printScop(raw_ostream &OS, Scop &S) const override;
626 /// Register all analyses and transformation required.
627 void getAnalysisUsage(AnalysisUsage &AU) const override;
629 /// Release the internal memory.
630 void releaseMemory() override {
631 LastSchedule = {};
632 IslCtx.reset();
635 private:
636 std::shared_ptr<isl_ctx> IslCtx;
637 isl::schedule LastSchedule;
640 char IslScheduleOptimizerWrapperPass::ID = 0;
642 #ifndef NDEBUG
643 static void printSchedule(llvm::raw_ostream &OS, const isl::schedule &Schedule,
644 StringRef Desc) {
645 isl::ctx Ctx = Schedule.ctx();
646 isl_printer *P = isl_printer_to_str(Ctx.get());
647 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
648 P = isl_printer_print_schedule(P, Schedule.get());
649 char *Str = isl_printer_get_str(P);
650 OS << Desc << ": \n" << Str << "\n";
651 free(Str);
652 isl_printer_free(P);
654 #endif
656 /// Collect statistics for the schedule tree.
658 /// @param Schedule The schedule tree to analyze. If not a schedule tree it is
659 /// ignored.
660 /// @param Version The version of the schedule tree that is analyzed.
661 /// 0 for the original schedule tree before any transformation.
662 /// 1 for the schedule tree after isl's rescheduling.
663 /// 2 for the schedule tree after optimizations are applied
664 /// (tiling, pattern matching)
665 static void walkScheduleTreeForStatistics(isl::schedule Schedule, int Version) {
666 auto Root = Schedule.get_root();
667 if (Root.is_null())
668 return;
670 isl_schedule_node_foreach_descendant_top_down(
671 Root.get(),
672 [](__isl_keep isl_schedule_node *nodeptr, void *user) -> isl_bool {
673 isl::schedule_node Node = isl::manage_copy(nodeptr);
674 int Version = *static_cast<int *>(user);
676 switch (isl_schedule_node_get_type(Node.get())) {
677 case isl_schedule_node_band: {
678 NumBands[Version]++;
679 if (isl_schedule_node_band_get_permutable(Node.get()) ==
680 isl_bool_true)
681 NumPermutable[Version]++;
683 int CountMembers = isl_schedule_node_band_n_member(Node.get());
684 NumBandMembers[Version] += CountMembers;
685 for (int i = 0; i < CountMembers; i += 1) {
686 if (Node.as<isl::schedule_node_band>().member_get_coincident(i))
687 NumCoincident[Version]++;
689 break;
692 case isl_schedule_node_filter:
693 NumFilters[Version]++;
694 break;
696 case isl_schedule_node_extension:
697 NumExtension[Version]++;
698 break;
700 default:
701 break;
704 return isl_bool_true;
706 &Version);
709 static void runIslScheduleOptimizer(
710 Scop &S,
711 function_ref<const Dependences &(Dependences::AnalysisLevel)> GetDeps,
712 TargetTransformInfo *TTI, OptimizationRemarkEmitter *ORE,
713 isl::schedule &LastSchedule, bool &DepsChanged) {
714 // Skip empty SCoPs but still allow code generation as it will delete the
715 // loops present but not needed.
716 if (S.getSize() == 0) {
717 S.markAsOptimized();
718 return;
721 ScopsProcessed++;
723 // Schedule without optimizations.
724 isl::schedule Schedule = S.getScheduleTree();
725 walkScheduleTreeForStatistics(S.getScheduleTree(), 0);
726 LLVM_DEBUG(printSchedule(dbgs(), Schedule, "Original schedule tree"));
728 bool HasUserTransformation = false;
729 if (PragmaBasedOpts) {
730 isl::schedule ManuallyTransformed = applyManualTransformations(
731 &S, Schedule, GetDeps(Dependences::AL_Statement), ORE);
732 if (ManuallyTransformed.is_null()) {
733 LLVM_DEBUG(dbgs() << "Error during manual optimization\n");
734 return;
737 if (ManuallyTransformed.get() != Schedule.get()) {
738 // User transformations have precedence over other transformations.
739 HasUserTransformation = true;
740 Schedule = std::move(ManuallyTransformed);
741 LLVM_DEBUG(
742 printSchedule(dbgs(), Schedule, "After manual transformations"));
746 // Only continue if either manual transformations have been applied or we are
747 // allowed to apply heuristics.
748 // TODO: Detect disabled heuristics and no user-directed transformation
749 // metadata earlier in ScopDetection.
750 if (!HasUserTransformation && S.hasDisableHeuristicsHint()) {
751 LLVM_DEBUG(dbgs() << "Heuristic optimizations disabled by metadata\n");
752 return;
755 // Get dependency analysis.
756 const Dependences &D = GetDeps(Dependences::AL_Statement);
757 if (D.getSharedIslCtx() != S.getSharedIslCtx()) {
758 LLVM_DEBUG(dbgs() << "DependenceInfo for another SCoP/isl_ctx\n");
759 return;
761 if (!D.hasValidDependences()) {
762 LLVM_DEBUG(dbgs() << "Dependency information not available\n");
763 return;
766 // Apply ISL's algorithm only if not overriden by the user. Note that
767 // post-rescheduling optimizations (tiling, pattern-based, prevectorization)
768 // rely on the coincidence/permutable annotations on schedule tree bands that
769 // are added by the rescheduling analyzer. Therefore, disabling the
770 // rescheduler implicitly also disables these optimizations.
771 if (!EnableReschedule) {
772 LLVM_DEBUG(dbgs() << "Skipping rescheduling due to command line option\n");
773 } else if (HasUserTransformation) {
774 LLVM_DEBUG(
775 dbgs() << "Skipping rescheduling due to manual transformation\n");
776 } else {
777 // Build input data.
778 int ValidityKinds =
779 Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
780 int ProximityKinds;
782 if (OptimizeDeps == "all")
783 ProximityKinds =
784 Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
785 else if (OptimizeDeps == "raw")
786 ProximityKinds = Dependences::TYPE_RAW;
787 else {
788 errs() << "Do not know how to optimize for '" << OptimizeDeps << "'"
789 << " Falling back to optimizing all dependences.\n";
790 ProximityKinds =
791 Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
794 isl::union_set Domain = S.getDomains();
796 if (Domain.is_null())
797 return;
799 isl::union_map Validity = D.getDependences(ValidityKinds);
800 isl::union_map Proximity = D.getDependences(ProximityKinds);
802 // Simplify the dependences by removing the constraints introduced by the
803 // domains. This can speed up the scheduling time significantly, as large
804 // constant coefficients will be removed from the dependences. The
805 // introduction of some additional dependences reduces the possible
806 // transformations, but in most cases, such transformation do not seem to be
807 // interesting anyway. In some cases this option may stop the scheduler to
808 // find any schedule.
809 if (SimplifyDeps == "yes") {
810 Validity = Validity.gist_domain(Domain);
811 Validity = Validity.gist_range(Domain);
812 Proximity = Proximity.gist_domain(Domain);
813 Proximity = Proximity.gist_range(Domain);
814 } else if (SimplifyDeps != "no") {
815 errs()
816 << "warning: Option -polly-opt-simplify-deps should either be 'yes' "
817 "or 'no'. Falling back to default: 'yes'\n";
820 LLVM_DEBUG(dbgs() << "\n\nCompute schedule from: ");
821 LLVM_DEBUG(dbgs() << "Domain := " << Domain << ";\n");
822 LLVM_DEBUG(dbgs() << "Proximity := " << Proximity << ";\n");
823 LLVM_DEBUG(dbgs() << "Validity := " << Validity << ";\n");
825 int IslMaximizeBands;
826 if (MaximizeBandDepth == "yes") {
827 IslMaximizeBands = 1;
828 } else if (MaximizeBandDepth == "no") {
829 IslMaximizeBands = 0;
830 } else {
831 errs()
832 << "warning: Option -polly-opt-maximize-bands should either be 'yes'"
833 " or 'no'. Falling back to default: 'yes'\n";
834 IslMaximizeBands = 1;
837 int IslOuterCoincidence;
838 if (OuterCoincidence == "yes") {
839 IslOuterCoincidence = 1;
840 } else if (OuterCoincidence == "no") {
841 IslOuterCoincidence = 0;
842 } else {
843 errs() << "warning: Option -polly-opt-outer-coincidence should either be "
844 "'yes' or 'no'. Falling back to default: 'no'\n";
845 IslOuterCoincidence = 0;
848 isl_ctx *Ctx = S.getIslCtx().get();
850 isl_options_set_schedule_outer_coincidence(Ctx, IslOuterCoincidence);
851 isl_options_set_schedule_maximize_band_depth(Ctx, IslMaximizeBands);
852 isl_options_set_schedule_max_constant_term(Ctx, MaxConstantTerm);
853 isl_options_set_schedule_max_coefficient(Ctx, MaxCoefficient);
854 isl_options_set_tile_scale_tile_loops(Ctx, 0);
856 auto OnErrorStatus = isl_options_get_on_error(Ctx);
857 isl_options_set_on_error(Ctx, ISL_ON_ERROR_CONTINUE);
859 auto SC = isl::schedule_constraints::on_domain(Domain);
860 SC = SC.set_proximity(Proximity);
861 SC = SC.set_validity(Validity);
862 SC = SC.set_coincidence(Validity);
863 Schedule = SC.compute_schedule();
864 isl_options_set_on_error(Ctx, OnErrorStatus);
866 ScopsRescheduled++;
867 LLVM_DEBUG(printSchedule(dbgs(), Schedule, "After rescheduling"));
870 walkScheduleTreeForStatistics(Schedule, 1);
872 // In cases the scheduler is not able to optimize the code, we just do not
873 // touch the schedule.
874 if (Schedule.is_null())
875 return;
877 if (GreedyFusion) {
878 isl::union_map Validity = D.getDependences(
879 Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW);
880 Schedule = applyGreedyFusion(Schedule, Validity);
881 assert(!Schedule.is_null());
884 // Apply post-rescheduling optimizations (if enabled) and/or prevectorization.
885 const OptimizerAdditionalInfoTy OAI = {
886 TTI,
887 const_cast<Dependences *>(&D),
888 /*PatternOpts=*/!HasUserTransformation && PMBasedOpts,
889 /*Postopts=*/!HasUserTransformation && EnablePostopts,
890 /*Prevect=*/PollyVectorizerChoice != VECTORIZER_NONE,
891 DepsChanged};
892 if (OAI.PatternOpts || OAI.Postopts || OAI.Prevect) {
893 Schedule = ScheduleTreeOptimizer::optimizeSchedule(Schedule, &OAI);
894 Schedule = hoistExtensionNodes(Schedule);
895 LLVM_DEBUG(printSchedule(dbgs(), Schedule, "After post-optimizations"));
896 walkScheduleTreeForStatistics(Schedule, 2);
899 // Skip profitability check if user transformation(s) have been applied.
900 if (!HasUserTransformation &&
901 !ScheduleTreeOptimizer::isProfitableSchedule(S, Schedule))
902 return;
904 auto ScopStats = S.getStatistics();
905 ScopsOptimized++;
906 NumAffineLoopsOptimized += ScopStats.NumAffineLoops;
907 NumBoxedLoopsOptimized += ScopStats.NumBoxedLoops;
908 LastSchedule = Schedule;
910 S.setScheduleTree(Schedule);
911 S.markAsOptimized();
913 if (OptimizedScops)
914 errs() << S;
917 bool IslScheduleOptimizerWrapperPass::runOnScop(Scop &S) {
918 releaseMemory();
920 Function &F = S.getFunction();
921 IslCtx = S.getSharedIslCtx();
923 auto getDependences =
924 [this](Dependences::AnalysisLevel) -> const Dependences & {
925 return getAnalysis<DependenceInfo>().getDependences(
926 Dependences::AL_Statement);
928 OptimizationRemarkEmitter &ORE =
929 getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
930 TargetTransformInfo *TTI =
931 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
933 bool DepsChanged = false;
934 runIslScheduleOptimizer(S, getDependences, TTI, &ORE, LastSchedule,
935 DepsChanged);
936 if (DepsChanged)
937 getAnalysis<DependenceInfo>().abandonDependences();
938 return false;
941 static void runScheduleOptimizerPrinter(raw_ostream &OS,
942 isl::schedule LastSchedule) {
943 isl_printer *p;
944 char *ScheduleStr;
946 OS << "Calculated schedule:\n";
948 if (LastSchedule.is_null()) {
949 OS << "n/a\n";
950 return;
953 p = isl_printer_to_str(LastSchedule.ctx().get());
954 p = isl_printer_set_yaml_style(p, ISL_YAML_STYLE_BLOCK);
955 p = isl_printer_print_schedule(p, LastSchedule.get());
956 ScheduleStr = isl_printer_get_str(p);
957 isl_printer_free(p);
959 OS << ScheduleStr << "\n";
961 free(ScheduleStr);
964 void IslScheduleOptimizerWrapperPass::printScop(raw_ostream &OS, Scop &) const {
965 runScheduleOptimizerPrinter(OS, LastSchedule);
968 void IslScheduleOptimizerWrapperPass::getAnalysisUsage(
969 AnalysisUsage &AU) const {
970 ScopPass::getAnalysisUsage(AU);
971 AU.addRequired<DependenceInfo>();
972 AU.addRequired<TargetTransformInfoWrapperPass>();
973 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
975 AU.addPreserved<DependenceInfo>();
976 AU.addPreserved<OptimizationRemarkEmitterWrapperPass>();
979 } // namespace
981 Pass *polly::createIslScheduleOptimizerWrapperPass() {
982 return new IslScheduleOptimizerWrapperPass();
985 INITIALIZE_PASS_BEGIN(IslScheduleOptimizerWrapperPass, "polly-opt-isl",
986 "Polly - Optimize schedule of SCoP", false, false);
987 INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
988 INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass);
989 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass);
990 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass);
991 INITIALIZE_PASS_END(IslScheduleOptimizerWrapperPass, "polly-opt-isl",
992 "Polly - Optimize schedule of SCoP", false, false)
994 static llvm::PreservedAnalyses
995 runIslScheduleOptimizerUsingNPM(Scop &S, ScopAnalysisManager &SAM,
996 ScopStandardAnalysisResults &SAR, SPMUpdater &U,
997 raw_ostream *OS) {
998 DependenceAnalysis::Result &Deps = SAM.getResult<DependenceAnalysis>(S, SAR);
999 auto GetDeps = [&Deps](Dependences::AnalysisLevel) -> const Dependences & {
1000 return Deps.getDependences(Dependences::AL_Statement);
1002 OptimizationRemarkEmitter ORE(&S.getFunction());
1003 TargetTransformInfo *TTI = &SAR.TTI;
1004 isl::schedule LastSchedule;
1005 bool DepsChanged = false;
1006 runIslScheduleOptimizer(S, GetDeps, TTI, &ORE, LastSchedule, DepsChanged);
1007 if (DepsChanged)
1008 Deps.abandonDependences();
1010 if (OS) {
1011 *OS << "Printing analysis 'Polly - Optimize schedule of SCoP' for region: '"
1012 << S.getName() << "' in function '" << S.getFunction().getName()
1013 << "':\n";
1014 runScheduleOptimizerPrinter(*OS, LastSchedule);
1016 return PreservedAnalyses::all();
1019 llvm::PreservedAnalyses
1020 IslScheduleOptimizerPass::run(Scop &S, ScopAnalysisManager &SAM,
1021 ScopStandardAnalysisResults &SAR, SPMUpdater &U) {
1022 return runIslScheduleOptimizerUsingNPM(S, SAM, SAR, U, nullptr);
1025 llvm::PreservedAnalyses
1026 IslScheduleOptimizerPrinterPass::run(Scop &S, ScopAnalysisManager &SAM,
1027 ScopStandardAnalysisResults &SAR,
1028 SPMUpdater &U) {
1029 return runIslScheduleOptimizerUsingNPM(S, SAM, SAR, U, &OS);
1032 //===----------------------------------------------------------------------===//
1034 namespace {
1035 /// Print result from IslScheduleOptimizerWrapperPass.
1036 class IslScheduleOptimizerPrinterLegacyPass final : public ScopPass {
1037 public:
1038 static char ID;
1040 IslScheduleOptimizerPrinterLegacyPass()
1041 : IslScheduleOptimizerPrinterLegacyPass(outs()) {}
1042 explicit IslScheduleOptimizerPrinterLegacyPass(llvm::raw_ostream &OS)
1043 : ScopPass(ID), OS(OS) {}
1045 bool runOnScop(Scop &S) override {
1046 IslScheduleOptimizerWrapperPass &P =
1047 getAnalysis<IslScheduleOptimizerWrapperPass>();
1049 OS << "Printing analysis '" << P.getPassName() << "' for region: '"
1050 << S.getRegion().getNameStr() << "' in function '"
1051 << S.getFunction().getName() << "':\n";
1052 P.printScop(OS, S);
1054 return false;
1057 void getAnalysisUsage(AnalysisUsage &AU) const override {
1058 ScopPass::getAnalysisUsage(AU);
1059 AU.addRequired<IslScheduleOptimizerWrapperPass>();
1060 AU.setPreservesAll();
1063 private:
1064 llvm::raw_ostream &OS;
1067 char IslScheduleOptimizerPrinterLegacyPass::ID = 0;
1068 } // namespace
1070 Pass *polly::createIslScheduleOptimizerPrinterLegacyPass(raw_ostream &OS) {
1071 return new IslScheduleOptimizerPrinterLegacyPass(OS);
1074 INITIALIZE_PASS_BEGIN(IslScheduleOptimizerPrinterLegacyPass,
1075 "polly-print-opt-isl",
1076 "Polly - Print optimizer schedule of SCoP", false, false);
1077 INITIALIZE_PASS_DEPENDENCY(IslScheduleOptimizerWrapperPass)
1078 INITIALIZE_PASS_END(IslScheduleOptimizerPrinterLegacyPass,
1079 "polly-print-opt-isl",
1080 "Polly - Print optimizer schedule of SCoP", false, false)