1 //===------ ZoneAlgo.cpp ----------------------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Derive information about array elements between statements ("Zones").
11 // The algorithms here work on the scatter space - the image space of the
12 // schedule returned by Scop::getSchedule(). We call an element in that space a
13 // "timepoint". Timepoints are lexicographically ordered such that we can
14 // defined ranges in the scatter space. We use two flavors of such ranges:
15 // Timepoint sets and zones. A timepoint set is simply a subset of the scatter
16 // space and is directly stored as isl_set.
18 // Zones are used to describe the space between timepoints as open sets, i.e.
19 // they do not contain the extrema. Using isl rational sets to express these
20 // would be overkill. We also cannot store them as the integer timepoints they
21 // contain; the (nonempty) zone between 1 and 2 would be empty and
22 // indistinguishable from e.g. the zone between 3 and 4. Also, we cannot store
23 // the integer set including the extrema; the set ]1,2[ + ]3,4[ could be
24 // coalesced to ]1,3[, although we defined the range [2,3] to be not in the set.
25 // Instead, we store the "half-open" integer extrema, including the lower bound,
26 // but excluding the upper bound. Examples:
28 // * The set { [i] : 1 <= i <= 3 } represents the zone ]0,3[ (which contains the
29 // integer points 1 and 2, but not 0 or 3)
31 // * { [1] } represents the zone ]0,1[
33 // * { [i] : i = 1 or i = 3 } represents the zone ]0,1[ + ]2,3[
35 // Therefore, an integer i in the set represents the zone ]i-1,i[, i.e. strictly
36 // speaking the integer points never belong to the zone. However, depending an
37 // the interpretation, one might want to include them. Part of the
38 // interpretation may not be known when the zone is constructed.
40 // Reads are assumed to always take place before writes, hence we can think of
41 // reads taking place at the beginning of a timepoint and writes at the end.
43 // Let's assume that the zone represents the lifetime of a variable. That is,
44 // the zone begins with a write that defines the value during its lifetime and
45 // ends with the last read of that value. In the following we consider whether a
46 // read/write at the beginning/ending of the lifetime zone should be within the
47 // zone or outside of it.
49 // * A read at the timepoint that starts the live-range loads the previous
50 // value. Hence, exclude the timepoint starting the zone.
52 // * A write at the timepoint that starts the live-range is not defined whether
53 // it occurs before or after the write that starts the lifetime. We do not
54 // allow this situation to occur. Hence, we include the timepoint starting the
55 // zone to determine whether they are conflicting.
57 // * A read at the timepoint that ends the live-range reads the same variable.
58 // We include the timepoint at the end of the zone to include that read into
59 // the live-range. Doing otherwise would mean that the two reads access
60 // different values, which would mean that the value they read are both alive
61 // at the same time but occupy the same variable.
63 // * A write at the timepoint that ends the live-range starts a new live-range.
64 // It must not be included in the live-range of the previous definition.
66 // All combinations of reads and writes at the endpoints are possible, but most
67 // of the time only the write->read (for instance, a live-range from definition
68 // to last use) and read->write (for instance, an unused range from last use to
69 // overwrite) and combinations are interesting (half-open ranges). write->write
70 // zones might be useful as well in some context to represent
71 // output-dependencies.
73 // @see convertZoneToTimepoints
76 // The code makes use of maps and sets in many different spaces. To not loose
77 // track in which space a set or map is expected to be in, variables holding an
78 // isl reference are usually annotated in the comments. They roughly follow isl
79 // syntax for spaces, but only the tuples, not the dimensions. The tuples have a
80 // meaning as follows:
82 // * Space[] - An unspecified tuple. Used for function parameters such that the
83 // function caller can use it for anything they like.
85 // * Domain[] - A statement instance as returned by ScopStmt::getDomain()
86 // isl_id_get_name: Stmt_<NameOfBasicBlock>
87 // isl_id_get_user: Pointer to ScopStmt
89 // * Element[] - An array element as in the range part of
90 // MemoryAccess::getAccessRelation()
91 // isl_id_get_name: MemRef_<NameOfArrayVariable>
92 // isl_id_get_user: Pointer to ScopArrayInfo
94 // * Scatter[] - Scatter space or space of timepoints
97 // * Zone[] - Range between timepoints as described above
100 // * ValInst[] - An llvm::Value as defined at a specific timepoint.
102 // A ValInst[] itself can be structured as one of:
104 // * [] - An unknown value.
105 // Always zero dimensions
108 // * Value[] - An llvm::Value that is read-only in the SCoP, i.e. its
109 // runtime content does not depend on the timepoint.
110 // Always zero dimensions
111 // isl_id_get_name: Val_<NameOfValue>
112 // isl_id_get_user: A pointer to an llvm::Value
114 // * SCEV[...] - A synthesizable llvm::SCEV Expression.
115 // In contrast to a Value[] is has at least one dimension per
116 // SCEVAddRecExpr in the SCEV.
118 // * [Domain[] -> Value[]] - An llvm::Value that may change during the
120 // The tuple itself has no id, but it wraps a map space holding a
121 // statement instance which defines the llvm::Value as the map's domain
122 // and llvm::Value itself as range.
124 // @see makeValInst()
126 // An annotation "{ Domain[] -> Scatter[] }" therefore means: A map from a
127 // statement instance to a timepoint, aka a schedule. There is only one scatter
128 // space, but most of the time multiple statements are processed in one set.
129 // This is why most of the time isl_union_map has to be used.
131 // The basic algorithm works as follows:
132 // At first we verify that the SCoP is compatible with this technique. For
133 // instance, two writes cannot write to the same location at the same statement
134 // instance because we cannot determine within the polyhedral model which one
135 // comes first. Once this was verified, we compute zones at which an array
136 // element is unused. This computation can fail if it takes too long. Then the
137 // main algorithm is executed. Because every store potentially trails an unused
138 // zone, we start at stores. We search for a scalar (MemoryKind::Value or
139 // MemoryKind::PHI) that we can map to the array element overwritten by the
140 // store, preferably one that is used by the store or at least the ScopStmt.
141 // When it does not conflict with the lifetime of the values in the array
142 // element, the map is applied and the unused zone updated as it is now used. We
143 // continue to try to map scalars to the array element until there are no more
144 // candidates to map. The algorithm is greedy in the sense that the first scalar
145 // not conflicting will be mapped. Other scalars processed later that could have
146 // fit the same unused zone will be rejected. As such the result depends on the
149 //===----------------------------------------------------------------------===//
151 #include "polly/ZoneAlgo.h"
152 #include "polly/ScopInfo.h"
153 #include "polly/Support/GICHelper.h"
154 #include "polly/Support/ISLTools.h"
155 #include "polly/Support/VirtualInstruction.h"
156 #include "llvm/ADT/Statistic.h"
157 #include "llvm/Support/raw_ostream.h"
159 #define DEBUG_TYPE "polly-zone"
161 STATISTIC(NumIncompatibleArrays
, "Number of not zone-analyzable arrays");
162 STATISTIC(NumCompatibleArrays
, "Number of zone-analyzable arrays");
163 STATISTIC(NumRecursivePHIs
, "Number of recursive PHIs");
164 STATISTIC(NumNormalizablePHIs
, "Number of normalizable PHIs");
165 STATISTIC(NumPHINormialization
, "Number of PHI executed normalizations");
167 using namespace polly
;
168 using namespace llvm
;
170 static isl::union_map
computeReachingDefinition(isl::union_map Schedule
,
171 isl::union_map Writes
,
172 bool InclDef
, bool InclRedef
) {
173 return computeReachingWrite(Schedule
, Writes
, false, InclDef
, InclRedef
);
176 /// Compute the reaching definition of a scalar.
178 /// Compared to computeReachingDefinition, there is just one element which is
179 /// accessed and therefore only a set if instances that accesses that element is
182 /// @param Schedule { DomainWrite[] -> Scatter[] }
183 /// @param Writes { DomainWrite[] }
184 /// @param InclDef Include the timepoint of the definition to the result.
185 /// @param InclRedef Include the timepoint of the overwrite into the result.
187 /// @return { Scatter[] -> DomainWrite[] }
188 static isl::union_map
computeScalarReachingDefinition(isl::union_map Schedule
,
189 isl::union_set Writes
,
192 // { DomainWrite[] -> Element[] }
193 isl::union_map Defs
= isl::union_map::from_domain(Writes
);
195 // { [Element[] -> Scatter[]] -> DomainWrite[] }
197 computeReachingDefinition(Schedule
, Defs
, InclDef
, InclRedef
);
199 // { Scatter[] -> DomainWrite[] }
200 return ReachDefs
.curry().range().unwrap();
203 /// Compute the reaching definition of a scalar.
205 /// This overload accepts only a single writing statement as an isl_map,
206 /// consequently the result also is only a single isl_map.
208 /// @param Schedule { DomainWrite[] -> Scatter[] }
209 /// @param Writes { DomainWrite[] }
210 /// @param InclDef Include the timepoint of the definition to the result.
211 /// @param InclRedef Include the timepoint of the overwrite into the result.
213 /// @return { Scatter[] -> DomainWrite[] }
214 static isl::map
computeScalarReachingDefinition(isl::union_map Schedule
,
215 isl::set Writes
, bool InclDef
,
217 isl::space DomainSpace
= Writes
.get_space();
218 isl::space ScatterSpace
= getScatterSpace(Schedule
);
220 // { Scatter[] -> DomainWrite[] }
221 isl::union_map UMap
= computeScalarReachingDefinition(
222 Schedule
, isl::union_set(Writes
), InclDef
, InclRedef
);
224 isl::space ResultSpace
= ScatterSpace
.map_from_domain_and_range(DomainSpace
);
225 return singleton(UMap
, ResultSpace
);
228 isl::union_map
polly::makeUnknownForDomain(isl::union_set Domain
) {
229 return isl::union_map::from_domain(Domain
);
232 /// Create a domain-to-unknown value mapping.
234 /// @see makeUnknownForDomain(isl::union_set)
236 /// @param Domain { Domain[] }
238 /// @return { Domain[] -> ValInst[] }
239 static isl::map
makeUnknownForDomain(isl::set Domain
) {
240 return isl::map::from_domain(Domain
);
243 /// Return whether @p Map maps to an unknown value.
245 /// @param { [] -> ValInst[] }
246 static bool isMapToUnknown(const isl::map
&Map
) {
247 isl::space Space
= Map
.get_space().range();
248 return Space
.has_tuple_id(isl::dim::set
).is_false() &&
249 Space
.is_wrapping().is_false() &&
250 Space
.dim(isl::dim::set
).release() == 0;
253 isl::union_map
polly::filterKnownValInst(const isl::union_map
&UMap
) {
254 isl::union_map Result
= isl::union_map::empty(UMap
.ctx());
255 for (isl::map Map
: UMap
.get_map_list()) {
256 if (!isMapToUnknown(Map
))
257 Result
= Result
.unite(Map
);
262 ZoneAlgorithm::ZoneAlgorithm(const char *PassName
, Scop
*S
, LoopInfo
*LI
)
263 : PassName(PassName
), IslCtx(S
->getSharedIslCtx()), S(S
), LI(LI
),
264 Schedule(S
->getSchedule()) {
265 auto Domains
= S
->getDomains();
267 Schedule
= Schedule
.intersect_domain(Domains
);
268 ParamSpace
= Schedule
.get_space();
269 ScatterSpace
= getScatterSpace(Schedule
);
272 /// Check if all stores in @p Stmt store the very same value.
274 /// This covers a special situation occurring in Polybench's
275 /// covariance/correlation (which is typical for algorithms that cover symmetric
278 /// for (int i = 0; i < n; i += 1)
279 /// for (int j = 0; j <= i; j += 1) {
285 /// For i == j, the same value is written twice to the same element.Double
286 /// writes to the same element are not allowed in DeLICM because its algorithm
287 /// does not see which of the writes is effective.But if its the same value
288 /// anyway, it doesn't matter.
290 /// LLVM passes, however, cannot simplify this because the write is necessary
291 /// for i != j (unless it would add a condition for one of the writes to occur
294 /// TODO: In the future we may want to extent this to make the checks
295 /// specific to different memory locations.
296 static bool onlySameValueWrites(ScopStmt
*Stmt
) {
299 for (auto *MA
: *Stmt
) {
300 if (!MA
->isLatestArrayKind() || !MA
->isMustWrite() ||
301 !MA
->isOriginalArrayKind())
305 V
= MA
->getAccessValue();
309 if (V
!= MA
->getAccessValue())
315 /// Is @p InnerLoop nested inside @p OuterLoop?
316 static bool isInsideLoop(Loop
*OuterLoop
, Loop
*InnerLoop
) {
317 // If OuterLoop is nullptr, we cannot call its contains() method. In this case
318 // OuterLoop represents the 'top level' and therefore contains all loop.
319 return !OuterLoop
|| OuterLoop
->contains(InnerLoop
);
322 void ZoneAlgorithm::collectIncompatibleElts(ScopStmt
*Stmt
,
323 isl::union_set
&IncompatibleElts
,
324 isl::union_set
&AllElts
) {
325 auto Stores
= makeEmptyUnionMap();
326 auto Loads
= makeEmptyUnionMap();
328 // This assumes that the MemoryKind::Array MemoryAccesses are iterated in
330 for (auto *MA
: *Stmt
) {
331 if (!MA
->isOriginalArrayKind())
334 isl::map AccRelMap
= getAccessRelationFor(MA
);
335 isl::union_map AccRel
= AccRelMap
;
337 // To avoid solving any ILP problems, always add entire arrays instead of
338 // just the elements that are accessed.
339 auto ArrayElts
= isl::set::universe(AccRelMap
.get_space().range());
340 AllElts
= AllElts
.unite(ArrayElts
);
343 // Reject load after store to same location.
344 if (!Stores
.is_disjoint(AccRel
)) {
346 dbgs() << "Load after store of same element in same statement\n");
347 OptimizationRemarkMissed
R(PassName
, "LoadAfterStore",
348 MA
->getAccessInstruction());
349 R
<< "load after store of same element in same statement";
350 R
<< " (previous stores: " << Stores
;
351 R
<< ", loading: " << AccRel
<< ")";
352 S
->getFunction().getContext().diagnose(R
);
354 IncompatibleElts
= IncompatibleElts
.unite(ArrayElts
);
357 Loads
= Loads
.unite(AccRel
);
362 // In region statements the order is less clear, eg. the load and store
363 // might be in a boxed loop.
364 if (Stmt
->isRegionStmt() && !Loads
.is_disjoint(AccRel
)) {
365 LLVM_DEBUG(dbgs() << "WRITE in non-affine subregion not supported\n");
366 OptimizationRemarkMissed
R(PassName
, "StoreInSubregion",
367 MA
->getAccessInstruction());
368 R
<< "store is in a non-affine subregion";
369 S
->getFunction().getContext().diagnose(R
);
371 IncompatibleElts
= IncompatibleElts
.unite(ArrayElts
);
374 // Do not allow more than one store to the same location.
375 if (!Stores
.is_disjoint(AccRel
) && !onlySameValueWrites(Stmt
)) {
376 LLVM_DEBUG(dbgs() << "WRITE after WRITE to same element\n");
377 OptimizationRemarkMissed
R(PassName
, "StoreAfterStore",
378 MA
->getAccessInstruction());
379 R
<< "store after store of same element in same statement";
380 R
<< " (previous stores: " << Stores
;
381 R
<< ", storing: " << AccRel
<< ")";
382 S
->getFunction().getContext().diagnose(R
);
384 IncompatibleElts
= IncompatibleElts
.unite(ArrayElts
);
387 Stores
= Stores
.unite(AccRel
);
391 void ZoneAlgorithm::addArrayReadAccess(MemoryAccess
*MA
) {
392 assert(MA
->isLatestArrayKind());
393 assert(MA
->isRead());
394 ScopStmt
*Stmt
= MA
->getStatement();
396 // { DomainRead[] -> Element[] }
397 auto AccRel
= intersectRange(getAccessRelationFor(MA
), CompatibleElts
);
398 AllReads
= AllReads
.unite(AccRel
);
400 if (LoadInst
*Load
= dyn_cast_or_null
<LoadInst
>(MA
->getAccessInstruction())) {
401 // { DomainRead[] -> ValInst[] }
402 isl::map LoadValInst
= makeValInst(
403 Load
, Stmt
, LI
->getLoopFor(Load
->getParent()), Stmt
->isBlockStmt());
405 // { DomainRead[] -> [Element[] -> DomainRead[]] }
406 isl::map IncludeElement
= AccRel
.domain_map().curry();
408 // { [Element[] -> DomainRead[]] -> ValInst[] }
409 isl::map EltLoadValInst
= LoadValInst
.apply_domain(IncludeElement
);
411 AllReadValInst
= AllReadValInst
.unite(EltLoadValInst
);
415 isl::union_map
ZoneAlgorithm::getWrittenValue(MemoryAccess
*MA
,
417 if (!MA
->isMustWrite())
420 Value
*AccVal
= MA
->getAccessValue();
421 ScopStmt
*Stmt
= MA
->getStatement();
422 Instruction
*AccInst
= MA
->getAccessInstruction();
424 // Write a value to a single element.
425 auto L
= MA
->isOriginalArrayKind() ? LI
->getLoopFor(AccInst
->getParent())
426 : Stmt
->getSurroundingLoop();
428 AccVal
->getType() == MA
->getLatestScopArrayInfo()->getElementType() &&
429 AccRel
.is_single_valued().is_true())
430 return makeNormalizedValInst(AccVal
, Stmt
, L
);
432 // memset(_, '0', ) is equivalent to writing the null value to all touched
433 // elements. isMustWrite() ensures that all of an element's bytes are
435 if (auto *Memset
= dyn_cast
<MemSetInst
>(AccInst
)) {
436 auto *WrittenConstant
= dyn_cast
<Constant
>(Memset
->getValue());
437 Type
*Ty
= MA
->getLatestScopArrayInfo()->getElementType();
438 if (WrittenConstant
&& WrittenConstant
->isZeroValue()) {
439 Constant
*Zero
= Constant::getNullValue(Ty
);
440 return makeNormalizedValInst(Zero
, Stmt
, L
);
447 void ZoneAlgorithm::addArrayWriteAccess(MemoryAccess
*MA
) {
448 assert(MA
->isLatestArrayKind());
449 assert(MA
->isWrite());
450 auto *Stmt
= MA
->getStatement();
452 // { Domain[] -> Element[] }
453 isl::map AccRel
= intersectRange(getAccessRelationFor(MA
), CompatibleElts
);
455 if (MA
->isMustWrite())
456 AllMustWrites
= AllMustWrites
.unite(AccRel
);
458 if (MA
->isMayWrite())
459 AllMayWrites
= AllMayWrites
.unite(AccRel
);
461 // { Domain[] -> ValInst[] }
462 isl::union_map WriteValInstance
= getWrittenValue(MA
, AccRel
);
463 if (WriteValInstance
.is_null())
464 WriteValInstance
= makeUnknownForDomain(Stmt
);
466 // { Domain[] -> [Element[] -> Domain[]] }
467 isl::map IncludeElement
= AccRel
.domain_map().curry();
469 // { [Element[] -> DomainWrite[]] -> ValInst[] }
470 isl::union_map EltWriteValInst
=
471 WriteValInstance
.apply_domain(IncludeElement
);
473 AllWriteValInst
= AllWriteValInst
.unite(EltWriteValInst
);
476 /// For an llvm::Value defined in @p DefStmt, compute the RAW dependency for a
477 /// use in every instance of @p UseStmt.
479 /// @param UseStmt Statement a scalar is used in.
480 /// @param DefStmt Statement a scalar is defined in.
482 /// @return { DomainUse[] -> DomainDef[] }
483 isl::map
ZoneAlgorithm::computeUseToDefFlowDependency(ScopStmt
*UseStmt
,
485 // { DomainUse[] -> Scatter[] }
486 isl::map UseScatter
= getScatterFor(UseStmt
);
488 // { Zone[] -> DomainDef[] }
489 isl::map ReachDefZone
= getScalarReachingDefinition(DefStmt
);
491 // { Scatter[] -> DomainDef[] }
492 isl::map ReachDefTimepoints
=
493 convertZoneToTimepoints(ReachDefZone
, isl::dim::in
, false, true);
495 // { DomainUse[] -> DomainDef[] }
496 return UseScatter
.apply_range(ReachDefTimepoints
);
499 /// Return whether @p PHI refers (also transitively through other PHIs) to
503 /// %phi1 = phi [0, %preheader], [%phi1, %loop]
504 /// br i1 %c, label %loop, label %exit
507 /// %phi2 = phi [%phi1, %bb]
509 /// In this example, %phi1 is recursive, but %phi2 is not.
510 static bool isRecursivePHI(const PHINode
*PHI
) {
511 SmallVector
<const PHINode
*, 8> Worklist
;
512 SmallPtrSet
<const PHINode
*, 8> Visited
;
513 Worklist
.push_back(PHI
);
515 while (!Worklist
.empty()) {
516 const PHINode
*Cur
= Worklist
.pop_back_val();
518 if (Visited
.count(Cur
))
522 for (const Use
&Incoming
: Cur
->incoming_values()) {
523 Value
*IncomingVal
= Incoming
.get();
524 auto *IncomingPHI
= dyn_cast
<PHINode
>(IncomingVal
);
528 if (IncomingPHI
== PHI
)
530 Worklist
.push_back(IncomingPHI
);
536 isl::union_map
ZoneAlgorithm::computePerPHI(const ScopArrayInfo
*SAI
) {
537 // TODO: If the PHI has an incoming block from before the SCoP, it is not
538 // represented in any ScopStmt.
540 auto *PHI
= cast
<PHINode
>(SAI
->getBasePtr());
541 auto It
= PerPHIMaps
.find(PHI
);
542 if (It
!= PerPHIMaps
.end())
545 // Cannot reliably compute immediate predecessor for undefined executions, so
546 // bail out if we do not know. This in particular applies to undefined control
548 isl::set DefinedContext
= S
->getDefinedBehaviorContext();
549 if (DefinedContext
.is_null())
552 assert(SAI
->isPHIKind());
554 // { DomainPHIWrite[] -> Scatter[] }
555 isl::union_map PHIWriteScatter
= makeEmptyUnionMap();
557 // Collect all incoming block timepoints.
558 for (MemoryAccess
*MA
: S
->getPHIIncomings(SAI
)) {
559 isl::map Scatter
= getScatterFor(MA
);
560 PHIWriteScatter
= PHIWriteScatter
.unite(Scatter
);
563 // { DomainPHIRead[] -> Scatter[] }
564 isl::map PHIReadScatter
= getScatterFor(S
->getPHIRead(SAI
));
566 // { DomainPHIRead[] -> Scatter[] }
567 isl::map BeforeRead
= beforeScatter(PHIReadScatter
, true);
570 isl::set WriteTimes
= singleton(PHIWriteScatter
.range(), ScatterSpace
);
572 // { DomainPHIRead[] -> Scatter[] }
573 isl::map PHIWriteTimes
= BeforeRead
.intersect_range(WriteTimes
);
575 // Remove instances outside the context.
576 PHIWriteTimes
= PHIWriteTimes
.intersect_params(DefinedContext
);
578 isl::map LastPerPHIWrites
= PHIWriteTimes
.lexmax();
580 // { DomainPHIRead[] -> DomainPHIWrite[] }
581 isl::union_map Result
=
582 isl::union_map(LastPerPHIWrites
).apply_range(PHIWriteScatter
.reverse());
583 assert(!Result
.is_single_valued().is_false());
584 assert(!Result
.is_injective().is_false());
586 PerPHIMaps
.insert({PHI
, Result
});
590 isl::union_set
ZoneAlgorithm::makeEmptyUnionSet() const {
591 return isl::union_set::empty(ParamSpace
.ctx());
594 isl::union_map
ZoneAlgorithm::makeEmptyUnionMap() const {
595 return isl::union_map::empty(ParamSpace
.ctx());
598 void ZoneAlgorithm::collectCompatibleElts() {
599 // First find all the incompatible elements, then take the complement.
600 // We compile the list of compatible (rather than incompatible) elements so
601 // users can intersect with the list, not requiring a subtract operation. It
602 // also allows us to define a 'universe' of all elements and makes it more
603 // explicit in which array elements can be used.
604 isl::union_set AllElts
= makeEmptyUnionSet();
605 isl::union_set IncompatibleElts
= makeEmptyUnionSet();
607 for (auto &Stmt
: *S
)
608 collectIncompatibleElts(&Stmt
, IncompatibleElts
, AllElts
);
610 NumIncompatibleArrays
+= isl_union_set_n_set(IncompatibleElts
.get());
611 CompatibleElts
= AllElts
.subtract(IncompatibleElts
);
612 NumCompatibleArrays
+= isl_union_set_n_set(CompatibleElts
.get());
615 isl::map
ZoneAlgorithm::getScatterFor(ScopStmt
*Stmt
) const {
616 isl::space ResultSpace
=
617 Stmt
->getDomainSpace().map_from_domain_and_range(ScatterSpace
);
618 return Schedule
.extract_map(ResultSpace
);
621 isl::map
ZoneAlgorithm::getScatterFor(MemoryAccess
*MA
) const {
622 return getScatterFor(MA
->getStatement());
625 isl::union_map
ZoneAlgorithm::getScatterFor(isl::union_set Domain
) const {
626 return Schedule
.intersect_domain(Domain
);
629 isl::map
ZoneAlgorithm::getScatterFor(isl::set Domain
) const {
630 auto ResultSpace
= Domain
.get_space().map_from_domain_and_range(ScatterSpace
);
631 auto UDomain
= isl::union_set(Domain
);
632 auto UResult
= getScatterFor(std::move(UDomain
));
633 auto Result
= singleton(std::move(UResult
), std::move(ResultSpace
));
634 assert(Result
.is_null() || Result
.domain().is_equal(Domain
) == isl_bool_true
);
638 isl::set
ZoneAlgorithm::getDomainFor(ScopStmt
*Stmt
) const {
639 return Stmt
->getDomain().remove_redundancies();
642 isl::set
ZoneAlgorithm::getDomainFor(MemoryAccess
*MA
) const {
643 return getDomainFor(MA
->getStatement());
646 isl::map
ZoneAlgorithm::getAccessRelationFor(MemoryAccess
*MA
) const {
647 auto Domain
= getDomainFor(MA
);
648 auto AccRel
= MA
->getLatestAccessRelation();
649 return AccRel
.intersect_domain(Domain
);
652 isl::map
ZoneAlgorithm::getDefToTarget(ScopStmt
*DefStmt
,
653 ScopStmt
*TargetStmt
) {
654 // No translation required if the definition is already at the target.
655 if (TargetStmt
== DefStmt
)
656 return isl::map::identity(
657 getDomainFor(TargetStmt
).get_space().map_from_set());
659 isl::map
&Result
= DefToTargetCache
[std::make_pair(TargetStmt
, DefStmt
)];
661 // This is a shortcut in case the schedule is still the original and
662 // TargetStmt is in the same or nested inside DefStmt's loop. With the
663 // additional assumption that operand trees do not cross DefStmt's loop
664 // header, then TargetStmt's instance shared coordinates are the same as
665 // DefStmt's coordinates. All TargetStmt instances with this prefix share
666 // the same DefStmt instance.
669 // for (int i < 0; i < N; i+=1) {
672 // for (int j < 0; j < N; j+=1) {
678 // Here, the value used in TargetStmt is defined in the corresponding
681 // { DefStmt[i] -> TargetStmt[i,j] }
683 // In practice, this should cover the majority of cases.
684 if (Result
.is_null() && S
->isOriginalSchedule() &&
685 isInsideLoop(DefStmt
->getSurroundingLoop(),
686 TargetStmt
->getSurroundingLoop())) {
687 isl::set DefDomain
= getDomainFor(DefStmt
);
688 isl::set TargetDomain
= getDomainFor(TargetStmt
);
689 assert(unsignedFromIslSize(DefDomain
.tuple_dim()) <=
690 unsignedFromIslSize(TargetDomain
.tuple_dim()));
692 Result
= isl::map::from_domain_and_range(DefDomain
, TargetDomain
);
693 for (unsigned i
: rangeIslSize(0, DefDomain
.tuple_dim()))
694 Result
= Result
.equate(isl::dim::in
, i
, isl::dim::out
, i
);
697 if (Result
.is_null()) {
698 // { DomainDef[] -> DomainTarget[] }
699 Result
= computeUseToDefFlowDependency(TargetStmt
, DefStmt
).reverse();
706 isl::map
ZoneAlgorithm::getScalarReachingDefinition(ScopStmt
*Stmt
) {
707 auto &Result
= ScalarReachDefZone
[Stmt
];
708 if (!Result
.is_null())
711 auto Domain
= getDomainFor(Stmt
);
712 Result
= computeScalarReachingDefinition(Schedule
, Domain
, false, true);
718 isl::map
ZoneAlgorithm::getScalarReachingDefinition(isl::set DomainDef
) {
719 auto DomId
= DomainDef
.get_tuple_id();
720 auto *Stmt
= static_cast<ScopStmt
*>(isl_id_get_user(DomId
.get()));
722 auto StmtResult
= getScalarReachingDefinition(Stmt
);
724 return StmtResult
.intersect_range(DomainDef
);
727 isl::map
ZoneAlgorithm::makeUnknownForDomain(ScopStmt
*Stmt
) const {
728 return ::makeUnknownForDomain(getDomainFor(Stmt
));
731 isl::id
ZoneAlgorithm::makeValueId(Value
*V
) {
735 auto &Id
= ValueIds
[V
];
737 auto Name
= getIslCompatibleName("Val_", V
, ValueIds
.size() - 1,
738 std::string(), UseInstructionNames
);
739 Id
= isl::id::alloc(IslCtx
.get(), Name
.c_str(), V
);
744 isl::space
ZoneAlgorithm::makeValueSpace(Value
*V
) {
745 auto Result
= ParamSpace
.set_from_params();
746 return Result
.set_tuple_id(isl::dim::set
, makeValueId(V
));
749 isl::set
ZoneAlgorithm::makeValueSet(Value
*V
) {
750 auto Space
= makeValueSpace(V
);
751 return isl::set::universe(Space
);
754 isl::map
ZoneAlgorithm::makeValInst(Value
*Val
, ScopStmt
*UserStmt
, Loop
*Scope
,
756 // If the definition/write is conditional, the value at the location could
757 // be either the written value or the old value. Since we cannot know which
758 // one, consider the value to be unknown.
760 return makeUnknownForDomain(UserStmt
);
762 auto DomainUse
= getDomainFor(UserStmt
);
763 auto VUse
= VirtualUse::create(S
, UserStmt
, Scope
, Val
, true);
764 switch (VUse
.getKind()) {
765 case VirtualUse::Constant
:
766 case VirtualUse::Block
:
767 case VirtualUse::Hoisted
:
768 case VirtualUse::ReadOnly
: {
769 // The definition does not depend on the statement which uses it.
770 auto ValSet
= makeValueSet(Val
);
771 return isl::map::from_domain_and_range(DomainUse
, ValSet
);
774 case VirtualUse::Synthesizable
: {
775 auto *ScevExpr
= VUse
.getScevExpr();
776 auto UseDomainSpace
= DomainUse
.get_space();
778 // Construct the SCEV space.
779 // TODO: Add only the induction variables referenced in SCEVAddRecExpr
780 // expressions, not just all of them.
781 auto ScevId
= isl::manage(isl_id_alloc(UseDomainSpace
.ctx().get(), nullptr,
782 const_cast<SCEV
*>(ScevExpr
)));
784 auto ScevSpace
= UseDomainSpace
.drop_dims(isl::dim::set
, 0, 0);
785 ScevSpace
= ScevSpace
.set_tuple_id(isl::dim::set
, ScevId
);
787 // { DomainUse[] -> ScevExpr[] }
789 isl::map::identity(UseDomainSpace
.map_from_domain_and_range(ScevSpace
));
793 case VirtualUse::Intra
: {
794 // Definition and use is in the same statement. We do not need to compute
795 // a reaching definition.
798 auto ValSet
= makeValueSet(Val
);
800 // { UserDomain[] -> llvm::Value }
801 auto ValInstSet
= isl::map::from_domain_and_range(DomainUse
, ValSet
);
803 // { UserDomain[] -> [UserDomain[] - >llvm::Value] }
804 auto Result
= ValInstSet
.domain_map().reverse();
809 case VirtualUse::Inter
: {
810 // The value is defined in a different statement.
812 auto *Inst
= cast
<Instruction
>(Val
);
813 auto *ValStmt
= S
->getStmtFor(Inst
);
815 // If the llvm::Value is defined in a removed Stmt, we cannot derive its
816 // domain. We could use an arbitrary statement, but this could result in
817 // different ValInst[] for the same llvm::Value.
819 return ::makeUnknownForDomain(DomainUse
);
821 // { DomainUse[] -> DomainDef[] }
822 auto UsedInstance
= getDefToTarget(ValStmt
, UserStmt
).reverse();
825 auto ValSet
= makeValueSet(Val
);
827 // { DomainUse[] -> llvm::Value[] }
828 auto ValInstSet
= isl::map::from_domain_and_range(DomainUse
, ValSet
);
830 // { DomainUse[] -> [DomainDef[] -> llvm::Value] }
831 auto Result
= UsedInstance
.range_product(ValInstSet
);
837 llvm_unreachable("Unhandled use type");
840 /// Remove all computed PHIs out of @p Input and replace by their incoming
843 /// @param Input { [] -> ValInst[] }
844 /// @param ComputedPHIs Set of PHIs that are replaced. Its ValInst must appear
845 /// on the LHS of @p NormalizeMap.
846 /// @param NormalizeMap { ValInst[] -> ValInst[] }
847 static isl::union_map
normalizeValInst(isl::union_map Input
,
848 const DenseSet
<PHINode
*> &ComputedPHIs
,
849 isl::union_map NormalizeMap
) {
850 isl::union_map Result
= isl::union_map::empty(Input
.ctx());
851 for (isl::map Map
: Input
.get_map_list()) {
852 isl::space Space
= Map
.get_space();
853 isl::space RangeSpace
= Space
.range();
855 // Instructions within the SCoP are always wrapped. Non-wrapped tuples
856 // are therefore invariant in the SCoP and don't need normalization.
857 if (!RangeSpace
.is_wrapping()) {
858 Result
= Result
.unite(Map
);
862 auto *PHI
= dyn_cast
<PHINode
>(static_cast<Value
*>(
863 RangeSpace
.unwrap().get_tuple_id(isl::dim::out
).get_user()));
865 // If no normalization is necessary, then the ValInst stands for itself.
866 if (!ComputedPHIs
.count(PHI
)) {
867 Result
= Result
.unite(Map
);
871 // Otherwise, apply the normalization.
872 isl::union_map Mapped
= isl::union_map(Map
).apply_range(NormalizeMap
);
873 Result
= Result
.unite(Mapped
);
874 NumPHINormialization
++;
879 isl::union_map
ZoneAlgorithm::makeNormalizedValInst(llvm::Value
*Val
,
883 isl::map ValInst
= makeValInst(Val
, UserStmt
, Scope
, IsCertain
);
884 isl::union_map Normalized
=
885 normalizeValInst(ValInst
, ComputedPHIs
, NormalizeMap
);
889 bool ZoneAlgorithm::isCompatibleAccess(MemoryAccess
*MA
) {
892 if (!MA
->isLatestArrayKind())
894 Instruction
*AccInst
= MA
->getAccessInstruction();
895 return isa
<StoreInst
>(AccInst
) || isa
<LoadInst
>(AccInst
);
898 bool ZoneAlgorithm::isNormalizable(MemoryAccess
*MA
) {
899 assert(MA
->isRead());
901 // Exclude ExitPHIs, we are assuming that a normalizable PHI has a READ
903 if (!MA
->isOriginalPHIKind())
906 // Exclude recursive PHIs, normalizing them would require a transitive
908 auto *PHI
= cast
<PHINode
>(MA
->getAccessInstruction());
909 if (RecursivePHIs
.count(PHI
))
912 // Ensure that each incoming value can be represented by a ValInst[].
913 // We do represent values from statements associated to multiple incoming
914 // value by the PHI itself, but we do not handle this case yet (especially
915 // isNormalized()) when normalizing.
916 const ScopArrayInfo
*SAI
= MA
->getOriginalScopArrayInfo();
917 auto Incomings
= S
->getPHIIncomings(SAI
);
918 for (MemoryAccess
*Incoming
: Incomings
) {
919 if (Incoming
->getIncoming().size() != 1)
926 isl::boolean
ZoneAlgorithm::isNormalized(isl::map Map
) {
927 isl::space Space
= Map
.get_space();
928 isl::space RangeSpace
= Space
.range();
930 isl::boolean IsWrapping
= RangeSpace
.is_wrapping();
931 if (!IsWrapping
.is_true())
933 isl::space Unwrapped
= RangeSpace
.unwrap();
935 isl::id OutTupleId
= Unwrapped
.get_tuple_id(isl::dim::out
);
936 if (OutTupleId
.is_null())
937 return isl::boolean();
938 auto *PHI
= dyn_cast
<PHINode
>(static_cast<Value
*>(OutTupleId
.get_user()));
942 isl::id InTupleId
= Unwrapped
.get_tuple_id(isl::dim::in
);
943 if (OutTupleId
.is_null())
944 return isl::boolean();
945 auto *IncomingStmt
= static_cast<ScopStmt
*>(InTupleId
.get_user());
946 MemoryAccess
*PHIRead
= IncomingStmt
->lookupPHIReadOf(PHI
);
947 if (!isNormalizable(PHIRead
))
953 isl::boolean
ZoneAlgorithm::isNormalized(isl::union_map UMap
) {
954 isl::boolean Result
= true;
955 for (isl::map Map
: UMap
.get_map_list()) {
956 Result
= isNormalized(Map
);
957 if (Result
.is_true())
964 void ZoneAlgorithm::computeCommon() {
965 AllReads
= makeEmptyUnionMap();
966 AllMayWrites
= makeEmptyUnionMap();
967 AllMustWrites
= makeEmptyUnionMap();
968 AllWriteValInst
= makeEmptyUnionMap();
969 AllReadValInst
= makeEmptyUnionMap();
971 // Default to empty, i.e. no normalization/replacement is taking place. Call
972 // computeNormalizedPHIs() to initialize.
973 NormalizeMap
= makeEmptyUnionMap();
974 ComputedPHIs
.clear();
976 for (auto &Stmt
: *S
) {
977 for (auto *MA
: Stmt
) {
978 if (!MA
->isLatestArrayKind())
982 addArrayReadAccess(MA
);
985 addArrayWriteAccess(MA
);
989 // { DomainWrite[] -> Element[] }
990 AllWrites
= AllMustWrites
.unite(AllMayWrites
);
992 // { [Element[] -> Zone[]] -> DomainWrite[] }
994 computeReachingDefinition(Schedule
, AllWrites
, false, true);
995 simplify(WriteReachDefZone
);
998 void ZoneAlgorithm::computeNormalizedPHIs() {
999 // Determine which PHIs can reference themselves. They are excluded from
1000 // normalization to avoid problems with transitive closures.
1001 for (ScopStmt
&Stmt
: *S
) {
1002 for (MemoryAccess
*MA
: Stmt
) {
1003 if (!MA
->isPHIKind())
1008 // TODO: Can be more efficient since isRecursivePHI can theoretically
1009 // determine recursiveness for multiple values and/or cache results.
1010 auto *PHI
= cast
<PHINode
>(MA
->getAccessInstruction());
1011 if (isRecursivePHI(PHI
)) {
1013 RecursivePHIs
.insert(PHI
);
1018 // { PHIValInst[] -> IncomingValInst[] }
1019 isl::union_map AllPHIMaps
= makeEmptyUnionMap();
1021 // Discover new PHIs and try to normalize them.
1022 DenseSet
<PHINode
*> AllPHIs
;
1023 for (ScopStmt
&Stmt
: *S
) {
1024 for (MemoryAccess
*MA
: Stmt
) {
1025 if (!MA
->isOriginalPHIKind())
1029 if (!isNormalizable(MA
))
1032 auto *PHI
= cast
<PHINode
>(MA
->getAccessInstruction());
1033 const ScopArrayInfo
*SAI
= MA
->getOriginalScopArrayInfo();
1035 // Determine which instance of the PHI statement corresponds to which
1036 // incoming value. Skip if we cannot determine PHI predecessors.
1037 // { PHIDomain[] -> IncomingDomain[] }
1038 isl::union_map PerPHI
= computePerPHI(SAI
);
1039 if (PerPHI
.is_null())
1042 // { PHIDomain[] -> PHIValInst[] }
1043 isl::map PHIValInst
= makeValInst(PHI
, &Stmt
, Stmt
.getSurroundingLoop());
1045 // { IncomingDomain[] -> IncomingValInst[] }
1046 isl::union_map IncomingValInsts
= makeEmptyUnionMap();
1048 // Get all incoming values.
1049 for (MemoryAccess
*MA
: S
->getPHIIncomings(SAI
)) {
1050 ScopStmt
*IncomingStmt
= MA
->getStatement();
1052 auto Incoming
= MA
->getIncoming();
1053 assert(Incoming
.size() == 1 && "The incoming value must be "
1054 "representable by something else than "
1056 Value
*IncomingVal
= Incoming
[0].second
;
1058 // { IncomingDomain[] -> IncomingValInst[] }
1059 isl::map IncomingValInst
= makeValInst(
1060 IncomingVal
, IncomingStmt
, IncomingStmt
->getSurroundingLoop());
1062 IncomingValInsts
= IncomingValInsts
.unite(IncomingValInst
);
1065 // { PHIValInst[] -> IncomingValInst[] }
1066 isl::union_map PHIMap
=
1067 PerPHI
.apply_domain(PHIValInst
).apply_range(IncomingValInsts
);
1068 assert(!PHIMap
.is_single_valued().is_false());
1070 // Resolve transitiveness: The incoming value of the newly discovered PHI
1071 // may reference a previously normalized PHI. At the same time, already
1072 // normalized PHIs might be normalized to the new PHI. At the end, none of
1073 // the PHIs may appear on the right-hand-side of the normalization map.
1074 PHIMap
= normalizeValInst(PHIMap
, AllPHIs
, AllPHIMaps
);
1075 AllPHIs
.insert(PHI
);
1076 AllPHIMaps
= normalizeValInst(AllPHIMaps
, AllPHIs
, PHIMap
);
1078 AllPHIMaps
= AllPHIMaps
.unite(PHIMap
);
1079 NumNormalizablePHIs
++;
1082 simplify(AllPHIMaps
);
1084 // Apply the normalization.
1085 ComputedPHIs
= AllPHIs
;
1086 NormalizeMap
= AllPHIMaps
;
1088 assert(NormalizeMap
.is_null() || isNormalized(NormalizeMap
));
1091 void ZoneAlgorithm::printAccesses(llvm::raw_ostream
&OS
, int Indent
) const {
1092 OS
.indent(Indent
) << "After accesses {\n";
1093 for (auto &Stmt
: *S
) {
1094 OS
.indent(Indent
+ 4) << Stmt
.getBaseName() << "\n";
1095 for (auto *MA
: Stmt
)
1098 OS
.indent(Indent
) << "}\n";
1101 isl::union_map
ZoneAlgorithm::computeKnownFromMustWrites() const {
1102 // { [Element[] -> Zone[]] -> [Element[] -> DomainWrite[]] }
1103 isl::union_map EltReachdDef
= distributeDomain(WriteReachDefZone
.curry());
1105 // { [Element[] -> DomainWrite[]] -> ValInst[] }
1106 isl::union_map AllKnownWriteValInst
= filterKnownValInst(AllWriteValInst
);
1108 // { [Element[] -> Zone[]] -> ValInst[] }
1109 return EltReachdDef
.apply_range(AllKnownWriteValInst
);
1112 isl::union_map
ZoneAlgorithm::computeKnownFromLoad() const {
1114 isl::union_set AllAccessedElts
= AllReads
.range().unite(AllWrites
.range());
1116 // { Element[] -> Scatter[] }
1117 isl::union_map EltZoneUniverse
= isl::union_map::from_domain_and_range(
1118 AllAccessedElts
, isl::set::universe(ScatterSpace
));
1120 // This assumes there are no "holes" in
1121 // isl_union_map_domain(WriteReachDefZone); alternatively, compute the zone
1122 // before the first write or that are not written at all.
1123 // { Element[] -> Scatter[] }
1124 isl::union_set NonReachDef
=
1125 EltZoneUniverse
.wrap().subtract(WriteReachDefZone
.domain());
1127 // { [Element[] -> Zone[]] -> ReachDefId[] }
1128 isl::union_map DefZone
=
1129 WriteReachDefZone
.unite(isl::union_map::from_domain(NonReachDef
));
1131 // { [Element[] -> Scatter[]] -> Element[] }
1132 isl::union_map EltZoneElt
= EltZoneUniverse
.domain_map();
1134 // { [Element[] -> Zone[]] -> [Element[] -> ReachDefId[]] }
1135 isl::union_map DefZoneEltDefId
= EltZoneElt
.range_product(DefZone
);
1137 // { Element[] -> [Zone[] -> ReachDefId[]] }
1138 isl::union_map EltDefZone
= DefZone
.curry();
1140 // { [Element[] -> Zone[] -> [Element[] -> ReachDefId[]] }
1141 isl::union_map EltZoneEltDefid
= distributeDomain(EltDefZone
);
1143 // { [Element[] -> Scatter[]] -> DomainRead[] }
1144 isl::union_map Reads
= AllReads
.range_product(Schedule
).reverse();
1146 // { [Element[] -> Scatter[]] -> [Element[] -> DomainRead[]] }
1147 isl::union_map ReadsElt
= EltZoneElt
.range_product(Reads
);
1149 // { [Element[] -> Scatter[]] -> ValInst[] }
1150 isl::union_map ScatterKnown
= ReadsElt
.apply_range(AllReadValInst
);
1152 // { [Element[] -> ReachDefId[]] -> ValInst[] }
1153 isl::union_map DefidKnown
=
1154 DefZoneEltDefId
.apply_domain(ScatterKnown
).reverse();
1156 // { [Element[] -> Zone[]] -> ValInst[] }
1157 return DefZoneEltDefId
.apply_range(DefidKnown
);
1160 isl::union_map
ZoneAlgorithm::computeKnown(bool FromWrite
,
1161 bool FromRead
) const {
1162 isl::union_map Result
= makeEmptyUnionMap();
1165 Result
= Result
.unite(computeKnownFromMustWrites());
1168 Result
= Result
.unite(computeKnownFromLoad());