[AMDGPU] Test codegen'ing True16 additions.
[llvm-project.git] / polly / lib / Transform / ZoneAlgo.cpp
blob4c86891d2cf7de52a22ee2f42f7caeacb7ec8b82
1 //===------ ZoneAlgo.cpp ----------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Derive information about array elements between statements ("Zones").
11 // The algorithms here work on the scatter space - the image space of the
12 // schedule returned by Scop::getSchedule(). We call an element in that space a
13 // "timepoint". Timepoints are lexicographically ordered such that we can
14 // defined ranges in the scatter space. We use two flavors of such ranges:
15 // Timepoint sets and zones. A timepoint set is simply a subset of the scatter
16 // space and is directly stored as isl_set.
18 // Zones are used to describe the space between timepoints as open sets, i.e.
19 // they do not contain the extrema. Using isl rational sets to express these
20 // would be overkill. We also cannot store them as the integer timepoints they
21 // contain; the (nonempty) zone between 1 and 2 would be empty and
22 // indistinguishable from e.g. the zone between 3 and 4. Also, we cannot store
23 // the integer set including the extrema; the set ]1,2[ + ]3,4[ could be
24 // coalesced to ]1,3[, although we defined the range [2,3] to be not in the set.
25 // Instead, we store the "half-open" integer extrema, including the lower bound,
26 // but excluding the upper bound. Examples:
28 // * The set { [i] : 1 <= i <= 3 } represents the zone ]0,3[ (which contains the
29 // integer points 1 and 2, but not 0 or 3)
31 // * { [1] } represents the zone ]0,1[
33 // * { [i] : i = 1 or i = 3 } represents the zone ]0,1[ + ]2,3[
35 // Therefore, an integer i in the set represents the zone ]i-1,i[, i.e. strictly
36 // speaking the integer points never belong to the zone. However, depending an
37 // the interpretation, one might want to include them. Part of the
38 // interpretation may not be known when the zone is constructed.
40 // Reads are assumed to always take place before writes, hence we can think of
41 // reads taking place at the beginning of a timepoint and writes at the end.
43 // Let's assume that the zone represents the lifetime of a variable. That is,
44 // the zone begins with a write that defines the value during its lifetime and
45 // ends with the last read of that value. In the following we consider whether a
46 // read/write at the beginning/ending of the lifetime zone should be within the
47 // zone or outside of it.
49 // * A read at the timepoint that starts the live-range loads the previous
50 // value. Hence, exclude the timepoint starting the zone.
52 // * A write at the timepoint that starts the live-range is not defined whether
53 // it occurs before or after the write that starts the lifetime. We do not
54 // allow this situation to occur. Hence, we include the timepoint starting the
55 // zone to determine whether they are conflicting.
57 // * A read at the timepoint that ends the live-range reads the same variable.
58 // We include the timepoint at the end of the zone to include that read into
59 // the live-range. Doing otherwise would mean that the two reads access
60 // different values, which would mean that the value they read are both alive
61 // at the same time but occupy the same variable.
63 // * A write at the timepoint that ends the live-range starts a new live-range.
64 // It must not be included in the live-range of the previous definition.
66 // All combinations of reads and writes at the endpoints are possible, but most
67 // of the time only the write->read (for instance, a live-range from definition
68 // to last use) and read->write (for instance, an unused range from last use to
69 // overwrite) and combinations are interesting (half-open ranges). write->write
70 // zones might be useful as well in some context to represent
71 // output-dependencies.
73 // @see convertZoneToTimepoints
76 // The code makes use of maps and sets in many different spaces. To not loose
77 // track in which space a set or map is expected to be in, variables holding an
78 // isl reference are usually annotated in the comments. They roughly follow isl
79 // syntax for spaces, but only the tuples, not the dimensions. The tuples have a
80 // meaning as follows:
82 // * Space[] - An unspecified tuple. Used for function parameters such that the
83 // function caller can use it for anything they like.
85 // * Domain[] - A statement instance as returned by ScopStmt::getDomain()
86 // isl_id_get_name: Stmt_<NameOfBasicBlock>
87 // isl_id_get_user: Pointer to ScopStmt
89 // * Element[] - An array element as in the range part of
90 // MemoryAccess::getAccessRelation()
91 // isl_id_get_name: MemRef_<NameOfArrayVariable>
92 // isl_id_get_user: Pointer to ScopArrayInfo
94 // * Scatter[] - Scatter space or space of timepoints
95 // Has no tuple id
97 // * Zone[] - Range between timepoints as described above
98 // Has no tuple id
100 // * ValInst[] - An llvm::Value as defined at a specific timepoint.
102 // A ValInst[] itself can be structured as one of:
104 // * [] - An unknown value.
105 // Always zero dimensions
106 // Has no tuple id
108 // * Value[] - An llvm::Value that is read-only in the SCoP, i.e. its
109 // runtime content does not depend on the timepoint.
110 // Always zero dimensions
111 // isl_id_get_name: Val_<NameOfValue>
112 // isl_id_get_user: A pointer to an llvm::Value
114 // * SCEV[...] - A synthesizable llvm::SCEV Expression.
115 // In contrast to a Value[] is has at least one dimension per
116 // SCEVAddRecExpr in the SCEV.
118 // * [Domain[] -> Value[]] - An llvm::Value that may change during the
119 // Scop's execution.
120 // The tuple itself has no id, but it wraps a map space holding a
121 // statement instance which defines the llvm::Value as the map's domain
122 // and llvm::Value itself as range.
124 // @see makeValInst()
126 // An annotation "{ Domain[] -> Scatter[] }" therefore means: A map from a
127 // statement instance to a timepoint, aka a schedule. There is only one scatter
128 // space, but most of the time multiple statements are processed in one set.
129 // This is why most of the time isl_union_map has to be used.
131 // The basic algorithm works as follows:
132 // At first we verify that the SCoP is compatible with this technique. For
133 // instance, two writes cannot write to the same location at the same statement
134 // instance because we cannot determine within the polyhedral model which one
135 // comes first. Once this was verified, we compute zones at which an array
136 // element is unused. This computation can fail if it takes too long. Then the
137 // main algorithm is executed. Because every store potentially trails an unused
138 // zone, we start at stores. We search for a scalar (MemoryKind::Value or
139 // MemoryKind::PHI) that we can map to the array element overwritten by the
140 // store, preferably one that is used by the store or at least the ScopStmt.
141 // When it does not conflict with the lifetime of the values in the array
142 // element, the map is applied and the unused zone updated as it is now used. We
143 // continue to try to map scalars to the array element until there are no more
144 // candidates to map. The algorithm is greedy in the sense that the first scalar
145 // not conflicting will be mapped. Other scalars processed later that could have
146 // fit the same unused zone will be rejected. As such the result depends on the
147 // processing order.
149 //===----------------------------------------------------------------------===//
151 #include "polly/ZoneAlgo.h"
152 #include "polly/ScopInfo.h"
153 #include "polly/Support/GICHelper.h"
154 #include "polly/Support/ISLTools.h"
155 #include "polly/Support/VirtualInstruction.h"
156 #include "llvm/ADT/Statistic.h"
157 #include "llvm/Support/raw_ostream.h"
159 #define DEBUG_TYPE "polly-zone"
161 STATISTIC(NumIncompatibleArrays, "Number of not zone-analyzable arrays");
162 STATISTIC(NumCompatibleArrays, "Number of zone-analyzable arrays");
163 STATISTIC(NumRecursivePHIs, "Number of recursive PHIs");
164 STATISTIC(NumNormalizablePHIs, "Number of normalizable PHIs");
165 STATISTIC(NumPHINormialization, "Number of PHI executed normalizations");
167 using namespace polly;
168 using namespace llvm;
170 static isl::union_map computeReachingDefinition(isl::union_map Schedule,
171 isl::union_map Writes,
172 bool InclDef, bool InclRedef) {
173 return computeReachingWrite(Schedule, Writes, false, InclDef, InclRedef);
176 /// Compute the reaching definition of a scalar.
178 /// Compared to computeReachingDefinition, there is just one element which is
179 /// accessed and therefore only a set if instances that accesses that element is
180 /// required.
182 /// @param Schedule { DomainWrite[] -> Scatter[] }
183 /// @param Writes { DomainWrite[] }
184 /// @param InclDef Include the timepoint of the definition to the result.
185 /// @param InclRedef Include the timepoint of the overwrite into the result.
187 /// @return { Scatter[] -> DomainWrite[] }
188 static isl::union_map computeScalarReachingDefinition(isl::union_map Schedule,
189 isl::union_set Writes,
190 bool InclDef,
191 bool InclRedef) {
192 // { DomainWrite[] -> Element[] }
193 isl::union_map Defs = isl::union_map::from_domain(Writes);
195 // { [Element[] -> Scatter[]] -> DomainWrite[] }
196 auto ReachDefs =
197 computeReachingDefinition(Schedule, Defs, InclDef, InclRedef);
199 // { Scatter[] -> DomainWrite[] }
200 return ReachDefs.curry().range().unwrap();
203 /// Compute the reaching definition of a scalar.
205 /// This overload accepts only a single writing statement as an isl_map,
206 /// consequently the result also is only a single isl_map.
208 /// @param Schedule { DomainWrite[] -> Scatter[] }
209 /// @param Writes { DomainWrite[] }
210 /// @param InclDef Include the timepoint of the definition to the result.
211 /// @param InclRedef Include the timepoint of the overwrite into the result.
213 /// @return { Scatter[] -> DomainWrite[] }
214 static isl::map computeScalarReachingDefinition(isl::union_map Schedule,
215 isl::set Writes, bool InclDef,
216 bool InclRedef) {
217 isl::space DomainSpace = Writes.get_space();
218 isl::space ScatterSpace = getScatterSpace(Schedule);
220 // { Scatter[] -> DomainWrite[] }
221 isl::union_map UMap = computeScalarReachingDefinition(
222 Schedule, isl::union_set(Writes), InclDef, InclRedef);
224 isl::space ResultSpace = ScatterSpace.map_from_domain_and_range(DomainSpace);
225 return singleton(UMap, ResultSpace);
228 isl::union_map polly::makeUnknownForDomain(isl::union_set Domain) {
229 return isl::union_map::from_domain(Domain);
232 /// Create a domain-to-unknown value mapping.
234 /// @see makeUnknownForDomain(isl::union_set)
236 /// @param Domain { Domain[] }
238 /// @return { Domain[] -> ValInst[] }
239 static isl::map makeUnknownForDomain(isl::set Domain) {
240 return isl::map::from_domain(Domain);
243 /// Return whether @p Map maps to an unknown value.
245 /// @param { [] -> ValInst[] }
246 static bool isMapToUnknown(const isl::map &Map) {
247 isl::space Space = Map.get_space().range();
248 return Space.has_tuple_id(isl::dim::set).is_false() &&
249 Space.is_wrapping().is_false() &&
250 Space.dim(isl::dim::set).release() == 0;
253 isl::union_map polly::filterKnownValInst(const isl::union_map &UMap) {
254 isl::union_map Result = isl::union_map::empty(UMap.ctx());
255 for (isl::map Map : UMap.get_map_list()) {
256 if (!isMapToUnknown(Map))
257 Result = Result.unite(Map);
259 return Result;
262 ZoneAlgorithm::ZoneAlgorithm(const char *PassName, Scop *S, LoopInfo *LI)
263 : PassName(PassName), IslCtx(S->getSharedIslCtx()), S(S), LI(LI),
264 Schedule(S->getSchedule()) {
265 auto Domains = S->getDomains();
267 Schedule = Schedule.intersect_domain(Domains);
268 ParamSpace = Schedule.get_space();
269 ScatterSpace = getScatterSpace(Schedule);
272 /// Check if all stores in @p Stmt store the very same value.
274 /// This covers a special situation occurring in Polybench's
275 /// covariance/correlation (which is typical for algorithms that cover symmetric
276 /// matrices):
278 /// for (int i = 0; i < n; i += 1)
279 /// for (int j = 0; j <= i; j += 1) {
280 /// double x = ...;
281 /// C[i][j] = x;
282 /// C[j][i] = x;
283 /// }
285 /// For i == j, the same value is written twice to the same element.Double
286 /// writes to the same element are not allowed in DeLICM because its algorithm
287 /// does not see which of the writes is effective.But if its the same value
288 /// anyway, it doesn't matter.
290 /// LLVM passes, however, cannot simplify this because the write is necessary
291 /// for i != j (unless it would add a condition for one of the writes to occur
292 /// only if i != j).
294 /// TODO: In the future we may want to extent this to make the checks
295 /// specific to different memory locations.
296 static bool onlySameValueWrites(ScopStmt *Stmt) {
297 Value *V = nullptr;
299 for (auto *MA : *Stmt) {
300 if (!MA->isLatestArrayKind() || !MA->isMustWrite() ||
301 !MA->isOriginalArrayKind())
302 continue;
304 if (!V) {
305 V = MA->getAccessValue();
306 continue;
309 if (V != MA->getAccessValue())
310 return false;
312 return true;
315 /// Is @p InnerLoop nested inside @p OuterLoop?
316 static bool isInsideLoop(Loop *OuterLoop, Loop *InnerLoop) {
317 // If OuterLoop is nullptr, we cannot call its contains() method. In this case
318 // OuterLoop represents the 'top level' and therefore contains all loop.
319 return !OuterLoop || OuterLoop->contains(InnerLoop);
322 void ZoneAlgorithm::collectIncompatibleElts(ScopStmt *Stmt,
323 isl::union_set &IncompatibleElts,
324 isl::union_set &AllElts) {
325 auto Stores = makeEmptyUnionMap();
326 auto Loads = makeEmptyUnionMap();
328 // This assumes that the MemoryKind::Array MemoryAccesses are iterated in
329 // order.
330 for (auto *MA : *Stmt) {
331 if (!MA->isOriginalArrayKind())
332 continue;
334 isl::map AccRelMap = getAccessRelationFor(MA);
335 isl::union_map AccRel = AccRelMap;
337 // To avoid solving any ILP problems, always add entire arrays instead of
338 // just the elements that are accessed.
339 auto ArrayElts = isl::set::universe(AccRelMap.get_space().range());
340 AllElts = AllElts.unite(ArrayElts);
342 if (MA->isRead()) {
343 // Reject load after store to same location.
344 if (!Stores.is_disjoint(AccRel)) {
345 LLVM_DEBUG(
346 dbgs() << "Load after store of same element in same statement\n");
347 OptimizationRemarkMissed R(PassName, "LoadAfterStore",
348 MA->getAccessInstruction());
349 R << "load after store of same element in same statement";
350 R << " (previous stores: " << Stores;
351 R << ", loading: " << AccRel << ")";
352 S->getFunction().getContext().diagnose(R);
354 IncompatibleElts = IncompatibleElts.unite(ArrayElts);
357 Loads = Loads.unite(AccRel);
359 continue;
362 // In region statements the order is less clear, eg. the load and store
363 // might be in a boxed loop.
364 if (Stmt->isRegionStmt() && !Loads.is_disjoint(AccRel)) {
365 LLVM_DEBUG(dbgs() << "WRITE in non-affine subregion not supported\n");
366 OptimizationRemarkMissed R(PassName, "StoreInSubregion",
367 MA->getAccessInstruction());
368 R << "store is in a non-affine subregion";
369 S->getFunction().getContext().diagnose(R);
371 IncompatibleElts = IncompatibleElts.unite(ArrayElts);
374 // Do not allow more than one store to the same location.
375 if (!Stores.is_disjoint(AccRel) && !onlySameValueWrites(Stmt)) {
376 LLVM_DEBUG(dbgs() << "WRITE after WRITE to same element\n");
377 OptimizationRemarkMissed R(PassName, "StoreAfterStore",
378 MA->getAccessInstruction());
379 R << "store after store of same element in same statement";
380 R << " (previous stores: " << Stores;
381 R << ", storing: " << AccRel << ")";
382 S->getFunction().getContext().diagnose(R);
384 IncompatibleElts = IncompatibleElts.unite(ArrayElts);
387 Stores = Stores.unite(AccRel);
391 void ZoneAlgorithm::addArrayReadAccess(MemoryAccess *MA) {
392 assert(MA->isLatestArrayKind());
393 assert(MA->isRead());
394 ScopStmt *Stmt = MA->getStatement();
396 // { DomainRead[] -> Element[] }
397 auto AccRel = intersectRange(getAccessRelationFor(MA), CompatibleElts);
398 AllReads = AllReads.unite(AccRel);
400 if (LoadInst *Load = dyn_cast_or_null<LoadInst>(MA->getAccessInstruction())) {
401 // { DomainRead[] -> ValInst[] }
402 isl::map LoadValInst = makeValInst(
403 Load, Stmt, LI->getLoopFor(Load->getParent()), Stmt->isBlockStmt());
405 // { DomainRead[] -> [Element[] -> DomainRead[]] }
406 isl::map IncludeElement = AccRel.domain_map().curry();
408 // { [Element[] -> DomainRead[]] -> ValInst[] }
409 isl::map EltLoadValInst = LoadValInst.apply_domain(IncludeElement);
411 AllReadValInst = AllReadValInst.unite(EltLoadValInst);
415 isl::union_map ZoneAlgorithm::getWrittenValue(MemoryAccess *MA,
416 isl::map AccRel) {
417 if (!MA->isMustWrite())
418 return {};
420 Value *AccVal = MA->getAccessValue();
421 ScopStmt *Stmt = MA->getStatement();
422 Instruction *AccInst = MA->getAccessInstruction();
424 // Write a value to a single element.
425 auto L = MA->isOriginalArrayKind() ? LI->getLoopFor(AccInst->getParent())
426 : Stmt->getSurroundingLoop();
427 if (AccVal &&
428 AccVal->getType() == MA->getLatestScopArrayInfo()->getElementType() &&
429 AccRel.is_single_valued().is_true())
430 return makeNormalizedValInst(AccVal, Stmt, L);
432 // memset(_, '0', ) is equivalent to writing the null value to all touched
433 // elements. isMustWrite() ensures that all of an element's bytes are
434 // overwritten.
435 if (auto *Memset = dyn_cast<MemSetInst>(AccInst)) {
436 auto *WrittenConstant = dyn_cast<Constant>(Memset->getValue());
437 Type *Ty = MA->getLatestScopArrayInfo()->getElementType();
438 if (WrittenConstant && WrittenConstant->isZeroValue()) {
439 Constant *Zero = Constant::getNullValue(Ty);
440 return makeNormalizedValInst(Zero, Stmt, L);
444 return {};
447 void ZoneAlgorithm::addArrayWriteAccess(MemoryAccess *MA) {
448 assert(MA->isLatestArrayKind());
449 assert(MA->isWrite());
450 auto *Stmt = MA->getStatement();
452 // { Domain[] -> Element[] }
453 isl::map AccRel = intersectRange(getAccessRelationFor(MA), CompatibleElts);
455 if (MA->isMustWrite())
456 AllMustWrites = AllMustWrites.unite(AccRel);
458 if (MA->isMayWrite())
459 AllMayWrites = AllMayWrites.unite(AccRel);
461 // { Domain[] -> ValInst[] }
462 isl::union_map WriteValInstance = getWrittenValue(MA, AccRel);
463 if (WriteValInstance.is_null())
464 WriteValInstance = makeUnknownForDomain(Stmt);
466 // { Domain[] -> [Element[] -> Domain[]] }
467 isl::map IncludeElement = AccRel.domain_map().curry();
469 // { [Element[] -> DomainWrite[]] -> ValInst[] }
470 isl::union_map EltWriteValInst =
471 WriteValInstance.apply_domain(IncludeElement);
473 AllWriteValInst = AllWriteValInst.unite(EltWriteValInst);
476 /// For an llvm::Value defined in @p DefStmt, compute the RAW dependency for a
477 /// use in every instance of @p UseStmt.
479 /// @param UseStmt Statement a scalar is used in.
480 /// @param DefStmt Statement a scalar is defined in.
482 /// @return { DomainUse[] -> DomainDef[] }
483 isl::map ZoneAlgorithm::computeUseToDefFlowDependency(ScopStmt *UseStmt,
484 ScopStmt *DefStmt) {
485 // { DomainUse[] -> Scatter[] }
486 isl::map UseScatter = getScatterFor(UseStmt);
488 // { Zone[] -> DomainDef[] }
489 isl::map ReachDefZone = getScalarReachingDefinition(DefStmt);
491 // { Scatter[] -> DomainDef[] }
492 isl::map ReachDefTimepoints =
493 convertZoneToTimepoints(ReachDefZone, isl::dim::in, false, true);
495 // { DomainUse[] -> DomainDef[] }
496 return UseScatter.apply_range(ReachDefTimepoints);
499 /// Return whether @p PHI refers (also transitively through other PHIs) to
500 /// itself.
502 /// loop:
503 /// %phi1 = phi [0, %preheader], [%phi1, %loop]
504 /// br i1 %c, label %loop, label %exit
506 /// exit:
507 /// %phi2 = phi [%phi1, %bb]
509 /// In this example, %phi1 is recursive, but %phi2 is not.
510 static bool isRecursivePHI(const PHINode *PHI) {
511 SmallVector<const PHINode *, 8> Worklist;
512 SmallPtrSet<const PHINode *, 8> Visited;
513 Worklist.push_back(PHI);
515 while (!Worklist.empty()) {
516 const PHINode *Cur = Worklist.pop_back_val();
518 if (Visited.count(Cur))
519 continue;
520 Visited.insert(Cur);
522 for (const Use &Incoming : Cur->incoming_values()) {
523 Value *IncomingVal = Incoming.get();
524 auto *IncomingPHI = dyn_cast<PHINode>(IncomingVal);
525 if (!IncomingPHI)
526 continue;
528 if (IncomingPHI == PHI)
529 return true;
530 Worklist.push_back(IncomingPHI);
533 return false;
536 isl::union_map ZoneAlgorithm::computePerPHI(const ScopArrayInfo *SAI) {
537 // TODO: If the PHI has an incoming block from before the SCoP, it is not
538 // represented in any ScopStmt.
540 auto *PHI = cast<PHINode>(SAI->getBasePtr());
541 auto It = PerPHIMaps.find(PHI);
542 if (It != PerPHIMaps.end())
543 return It->second;
545 // Cannot reliably compute immediate predecessor for undefined executions, so
546 // bail out if we do not know. This in particular applies to undefined control
547 // flow.
548 isl::set DefinedContext = S->getDefinedBehaviorContext();
549 if (DefinedContext.is_null())
550 return {};
552 assert(SAI->isPHIKind());
554 // { DomainPHIWrite[] -> Scatter[] }
555 isl::union_map PHIWriteScatter = makeEmptyUnionMap();
557 // Collect all incoming block timepoints.
558 for (MemoryAccess *MA : S->getPHIIncomings(SAI)) {
559 isl::map Scatter = getScatterFor(MA);
560 PHIWriteScatter = PHIWriteScatter.unite(Scatter);
563 // { DomainPHIRead[] -> Scatter[] }
564 isl::map PHIReadScatter = getScatterFor(S->getPHIRead(SAI));
566 // { DomainPHIRead[] -> Scatter[] }
567 isl::map BeforeRead = beforeScatter(PHIReadScatter, true);
569 // { Scatter[] }
570 isl::set WriteTimes = singleton(PHIWriteScatter.range(), ScatterSpace);
572 // { DomainPHIRead[] -> Scatter[] }
573 isl::map PHIWriteTimes = BeforeRead.intersect_range(WriteTimes);
575 // Remove instances outside the context.
576 PHIWriteTimes = PHIWriteTimes.intersect_params(DefinedContext);
578 isl::map LastPerPHIWrites = PHIWriteTimes.lexmax();
580 // { DomainPHIRead[] -> DomainPHIWrite[] }
581 isl::union_map Result =
582 isl::union_map(LastPerPHIWrites).apply_range(PHIWriteScatter.reverse());
583 assert(!Result.is_single_valued().is_false());
584 assert(!Result.is_injective().is_false());
586 PerPHIMaps.insert({PHI, Result});
587 return Result;
590 isl::union_set ZoneAlgorithm::makeEmptyUnionSet() const {
591 return isl::union_set::empty(ParamSpace.ctx());
594 isl::union_map ZoneAlgorithm::makeEmptyUnionMap() const {
595 return isl::union_map::empty(ParamSpace.ctx());
598 void ZoneAlgorithm::collectCompatibleElts() {
599 // First find all the incompatible elements, then take the complement.
600 // We compile the list of compatible (rather than incompatible) elements so
601 // users can intersect with the list, not requiring a subtract operation. It
602 // also allows us to define a 'universe' of all elements and makes it more
603 // explicit in which array elements can be used.
604 isl::union_set AllElts = makeEmptyUnionSet();
605 isl::union_set IncompatibleElts = makeEmptyUnionSet();
607 for (auto &Stmt : *S)
608 collectIncompatibleElts(&Stmt, IncompatibleElts, AllElts);
610 NumIncompatibleArrays += isl_union_set_n_set(IncompatibleElts.get());
611 CompatibleElts = AllElts.subtract(IncompatibleElts);
612 NumCompatibleArrays += isl_union_set_n_set(CompatibleElts.get());
615 isl::map ZoneAlgorithm::getScatterFor(ScopStmt *Stmt) const {
616 isl::space ResultSpace =
617 Stmt->getDomainSpace().map_from_domain_and_range(ScatterSpace);
618 return Schedule.extract_map(ResultSpace);
621 isl::map ZoneAlgorithm::getScatterFor(MemoryAccess *MA) const {
622 return getScatterFor(MA->getStatement());
625 isl::union_map ZoneAlgorithm::getScatterFor(isl::union_set Domain) const {
626 return Schedule.intersect_domain(Domain);
629 isl::map ZoneAlgorithm::getScatterFor(isl::set Domain) const {
630 auto ResultSpace = Domain.get_space().map_from_domain_and_range(ScatterSpace);
631 auto UDomain = isl::union_set(Domain);
632 auto UResult = getScatterFor(std::move(UDomain));
633 auto Result = singleton(std::move(UResult), std::move(ResultSpace));
634 assert(Result.is_null() || Result.domain().is_equal(Domain) == isl_bool_true);
635 return Result;
638 isl::set ZoneAlgorithm::getDomainFor(ScopStmt *Stmt) const {
639 return Stmt->getDomain().remove_redundancies();
642 isl::set ZoneAlgorithm::getDomainFor(MemoryAccess *MA) const {
643 return getDomainFor(MA->getStatement());
646 isl::map ZoneAlgorithm::getAccessRelationFor(MemoryAccess *MA) const {
647 auto Domain = getDomainFor(MA);
648 auto AccRel = MA->getLatestAccessRelation();
649 return AccRel.intersect_domain(Domain);
652 isl::map ZoneAlgorithm::getDefToTarget(ScopStmt *DefStmt,
653 ScopStmt *TargetStmt) {
654 // No translation required if the definition is already at the target.
655 if (TargetStmt == DefStmt)
656 return isl::map::identity(
657 getDomainFor(TargetStmt).get_space().map_from_set());
659 isl::map &Result = DefToTargetCache[std::make_pair(TargetStmt, DefStmt)];
661 // This is a shortcut in case the schedule is still the original and
662 // TargetStmt is in the same or nested inside DefStmt's loop. With the
663 // additional assumption that operand trees do not cross DefStmt's loop
664 // header, then TargetStmt's instance shared coordinates are the same as
665 // DefStmt's coordinates. All TargetStmt instances with this prefix share
666 // the same DefStmt instance.
667 // Model:
669 // for (int i < 0; i < N; i+=1) {
670 // DefStmt:
671 // D = ...;
672 // for (int j < 0; j < N; j+=1) {
673 // TargetStmt:
674 // use(D);
675 // }
676 // }
678 // Here, the value used in TargetStmt is defined in the corresponding
679 // DefStmt, i.e.
681 // { DefStmt[i] -> TargetStmt[i,j] }
683 // In practice, this should cover the majority of cases.
684 if (Result.is_null() && S->isOriginalSchedule() &&
685 isInsideLoop(DefStmt->getSurroundingLoop(),
686 TargetStmt->getSurroundingLoop())) {
687 isl::set DefDomain = getDomainFor(DefStmt);
688 isl::set TargetDomain = getDomainFor(TargetStmt);
689 assert(unsignedFromIslSize(DefDomain.tuple_dim()) <=
690 unsignedFromIslSize(TargetDomain.tuple_dim()));
692 Result = isl::map::from_domain_and_range(DefDomain, TargetDomain);
693 for (unsigned i : rangeIslSize(0, DefDomain.tuple_dim()))
694 Result = Result.equate(isl::dim::in, i, isl::dim::out, i);
697 if (Result.is_null()) {
698 // { DomainDef[] -> DomainTarget[] }
699 Result = computeUseToDefFlowDependency(TargetStmt, DefStmt).reverse();
700 simplify(Result);
703 return Result;
706 isl::map ZoneAlgorithm::getScalarReachingDefinition(ScopStmt *Stmt) {
707 auto &Result = ScalarReachDefZone[Stmt];
708 if (!Result.is_null())
709 return Result;
711 auto Domain = getDomainFor(Stmt);
712 Result = computeScalarReachingDefinition(Schedule, Domain, false, true);
713 simplify(Result);
715 return Result;
718 isl::map ZoneAlgorithm::getScalarReachingDefinition(isl::set DomainDef) {
719 auto DomId = DomainDef.get_tuple_id();
720 auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(DomId.get()));
722 auto StmtResult = getScalarReachingDefinition(Stmt);
724 return StmtResult.intersect_range(DomainDef);
727 isl::map ZoneAlgorithm::makeUnknownForDomain(ScopStmt *Stmt) const {
728 return ::makeUnknownForDomain(getDomainFor(Stmt));
731 isl::id ZoneAlgorithm::makeValueId(Value *V) {
732 if (!V)
733 return {};
735 auto &Id = ValueIds[V];
736 if (Id.is_null()) {
737 auto Name = getIslCompatibleName("Val_", V, ValueIds.size() - 1,
738 std::string(), UseInstructionNames);
739 Id = isl::id::alloc(IslCtx.get(), Name.c_str(), V);
741 return Id;
744 isl::space ZoneAlgorithm::makeValueSpace(Value *V) {
745 auto Result = ParamSpace.set_from_params();
746 return Result.set_tuple_id(isl::dim::set, makeValueId(V));
749 isl::set ZoneAlgorithm::makeValueSet(Value *V) {
750 auto Space = makeValueSpace(V);
751 return isl::set::universe(Space);
754 isl::map ZoneAlgorithm::makeValInst(Value *Val, ScopStmt *UserStmt, Loop *Scope,
755 bool IsCertain) {
756 // If the definition/write is conditional, the value at the location could
757 // be either the written value or the old value. Since we cannot know which
758 // one, consider the value to be unknown.
759 if (!IsCertain)
760 return makeUnknownForDomain(UserStmt);
762 auto DomainUse = getDomainFor(UserStmt);
763 auto VUse = VirtualUse::create(S, UserStmt, Scope, Val, true);
764 switch (VUse.getKind()) {
765 case VirtualUse::Constant:
766 case VirtualUse::Block:
767 case VirtualUse::Hoisted:
768 case VirtualUse::ReadOnly: {
769 // The definition does not depend on the statement which uses it.
770 auto ValSet = makeValueSet(Val);
771 return isl::map::from_domain_and_range(DomainUse, ValSet);
774 case VirtualUse::Synthesizable: {
775 auto *ScevExpr = VUse.getScevExpr();
776 auto UseDomainSpace = DomainUse.get_space();
778 // Construct the SCEV space.
779 // TODO: Add only the induction variables referenced in SCEVAddRecExpr
780 // expressions, not just all of them.
781 auto ScevId = isl::manage(isl_id_alloc(UseDomainSpace.ctx().get(), nullptr,
782 const_cast<SCEV *>(ScevExpr)));
784 auto ScevSpace = UseDomainSpace.drop_dims(isl::dim::set, 0, 0);
785 ScevSpace = ScevSpace.set_tuple_id(isl::dim::set, ScevId);
787 // { DomainUse[] -> ScevExpr[] }
788 auto ValInst =
789 isl::map::identity(UseDomainSpace.map_from_domain_and_range(ScevSpace));
790 return ValInst;
793 case VirtualUse::Intra: {
794 // Definition and use is in the same statement. We do not need to compute
795 // a reaching definition.
797 // { llvm::Value }
798 auto ValSet = makeValueSet(Val);
800 // { UserDomain[] -> llvm::Value }
801 auto ValInstSet = isl::map::from_domain_and_range(DomainUse, ValSet);
803 // { UserDomain[] -> [UserDomain[] - >llvm::Value] }
804 auto Result = ValInstSet.domain_map().reverse();
805 simplify(Result);
806 return Result;
809 case VirtualUse::Inter: {
810 // The value is defined in a different statement.
812 auto *Inst = cast<Instruction>(Val);
813 auto *ValStmt = S->getStmtFor(Inst);
815 // If the llvm::Value is defined in a removed Stmt, we cannot derive its
816 // domain. We could use an arbitrary statement, but this could result in
817 // different ValInst[] for the same llvm::Value.
818 if (!ValStmt)
819 return ::makeUnknownForDomain(DomainUse);
821 // { DomainUse[] -> DomainDef[] }
822 auto UsedInstance = getDefToTarget(ValStmt, UserStmt).reverse();
824 // { llvm::Value }
825 auto ValSet = makeValueSet(Val);
827 // { DomainUse[] -> llvm::Value[] }
828 auto ValInstSet = isl::map::from_domain_and_range(DomainUse, ValSet);
830 // { DomainUse[] -> [DomainDef[] -> llvm::Value] }
831 auto Result = UsedInstance.range_product(ValInstSet);
833 simplify(Result);
834 return Result;
837 llvm_unreachable("Unhandled use type");
840 /// Remove all computed PHIs out of @p Input and replace by their incoming
841 /// value.
843 /// @param Input { [] -> ValInst[] }
844 /// @param ComputedPHIs Set of PHIs that are replaced. Its ValInst must appear
845 /// on the LHS of @p NormalizeMap.
846 /// @param NormalizeMap { ValInst[] -> ValInst[] }
847 static isl::union_map normalizeValInst(isl::union_map Input,
848 const DenseSet<PHINode *> &ComputedPHIs,
849 isl::union_map NormalizeMap) {
850 isl::union_map Result = isl::union_map::empty(Input.ctx());
851 for (isl::map Map : Input.get_map_list()) {
852 isl::space Space = Map.get_space();
853 isl::space RangeSpace = Space.range();
855 // Instructions within the SCoP are always wrapped. Non-wrapped tuples
856 // are therefore invariant in the SCoP and don't need normalization.
857 if (!RangeSpace.is_wrapping()) {
858 Result = Result.unite(Map);
859 continue;
862 auto *PHI = dyn_cast<PHINode>(static_cast<Value *>(
863 RangeSpace.unwrap().get_tuple_id(isl::dim::out).get_user()));
865 // If no normalization is necessary, then the ValInst stands for itself.
866 if (!ComputedPHIs.count(PHI)) {
867 Result = Result.unite(Map);
868 continue;
871 // Otherwise, apply the normalization.
872 isl::union_map Mapped = isl::union_map(Map).apply_range(NormalizeMap);
873 Result = Result.unite(Mapped);
874 NumPHINormialization++;
876 return Result;
879 isl::union_map ZoneAlgorithm::makeNormalizedValInst(llvm::Value *Val,
880 ScopStmt *UserStmt,
881 llvm::Loop *Scope,
882 bool IsCertain) {
883 isl::map ValInst = makeValInst(Val, UserStmt, Scope, IsCertain);
884 isl::union_map Normalized =
885 normalizeValInst(ValInst, ComputedPHIs, NormalizeMap);
886 return Normalized;
889 bool ZoneAlgorithm::isCompatibleAccess(MemoryAccess *MA) {
890 if (!MA)
891 return false;
892 if (!MA->isLatestArrayKind())
893 return false;
894 Instruction *AccInst = MA->getAccessInstruction();
895 return isa<StoreInst>(AccInst) || isa<LoadInst>(AccInst);
898 bool ZoneAlgorithm::isNormalizable(MemoryAccess *MA) {
899 assert(MA->isRead());
901 // Exclude ExitPHIs, we are assuming that a normalizable PHI has a READ
902 // MemoryAccess.
903 if (!MA->isOriginalPHIKind())
904 return false;
906 // Exclude recursive PHIs, normalizing them would require a transitive
907 // closure.
908 auto *PHI = cast<PHINode>(MA->getAccessInstruction());
909 if (RecursivePHIs.count(PHI))
910 return false;
912 // Ensure that each incoming value can be represented by a ValInst[].
913 // We do represent values from statements associated to multiple incoming
914 // value by the PHI itself, but we do not handle this case yet (especially
915 // isNormalized()) when normalizing.
916 const ScopArrayInfo *SAI = MA->getOriginalScopArrayInfo();
917 auto Incomings = S->getPHIIncomings(SAI);
918 for (MemoryAccess *Incoming : Incomings) {
919 if (Incoming->getIncoming().size() != 1)
920 return false;
923 return true;
926 isl::boolean ZoneAlgorithm::isNormalized(isl::map Map) {
927 isl::space Space = Map.get_space();
928 isl::space RangeSpace = Space.range();
930 isl::boolean IsWrapping = RangeSpace.is_wrapping();
931 if (!IsWrapping.is_true())
932 return !IsWrapping;
933 isl::space Unwrapped = RangeSpace.unwrap();
935 isl::id OutTupleId = Unwrapped.get_tuple_id(isl::dim::out);
936 if (OutTupleId.is_null())
937 return isl::boolean();
938 auto *PHI = dyn_cast<PHINode>(static_cast<Value *>(OutTupleId.get_user()));
939 if (!PHI)
940 return true;
942 isl::id InTupleId = Unwrapped.get_tuple_id(isl::dim::in);
943 if (OutTupleId.is_null())
944 return isl::boolean();
945 auto *IncomingStmt = static_cast<ScopStmt *>(InTupleId.get_user());
946 MemoryAccess *PHIRead = IncomingStmt->lookupPHIReadOf(PHI);
947 if (!isNormalizable(PHIRead))
948 return true;
950 return false;
953 isl::boolean ZoneAlgorithm::isNormalized(isl::union_map UMap) {
954 isl::boolean Result = true;
955 for (isl::map Map : UMap.get_map_list()) {
956 Result = isNormalized(Map);
957 if (Result.is_true())
958 continue;
959 break;
961 return Result;
964 void ZoneAlgorithm::computeCommon() {
965 AllReads = makeEmptyUnionMap();
966 AllMayWrites = makeEmptyUnionMap();
967 AllMustWrites = makeEmptyUnionMap();
968 AllWriteValInst = makeEmptyUnionMap();
969 AllReadValInst = makeEmptyUnionMap();
971 // Default to empty, i.e. no normalization/replacement is taking place. Call
972 // computeNormalizedPHIs() to initialize.
973 NormalizeMap = makeEmptyUnionMap();
974 ComputedPHIs.clear();
976 for (auto &Stmt : *S) {
977 for (auto *MA : Stmt) {
978 if (!MA->isLatestArrayKind())
979 continue;
981 if (MA->isRead())
982 addArrayReadAccess(MA);
984 if (MA->isWrite())
985 addArrayWriteAccess(MA);
989 // { DomainWrite[] -> Element[] }
990 AllWrites = AllMustWrites.unite(AllMayWrites);
992 // { [Element[] -> Zone[]] -> DomainWrite[] }
993 WriteReachDefZone =
994 computeReachingDefinition(Schedule, AllWrites, false, true);
995 simplify(WriteReachDefZone);
998 void ZoneAlgorithm::computeNormalizedPHIs() {
999 // Determine which PHIs can reference themselves. They are excluded from
1000 // normalization to avoid problems with transitive closures.
1001 for (ScopStmt &Stmt : *S) {
1002 for (MemoryAccess *MA : Stmt) {
1003 if (!MA->isPHIKind())
1004 continue;
1005 if (!MA->isRead())
1006 continue;
1008 // TODO: Can be more efficient since isRecursivePHI can theoretically
1009 // determine recursiveness for multiple values and/or cache results.
1010 auto *PHI = cast<PHINode>(MA->getAccessInstruction());
1011 if (isRecursivePHI(PHI)) {
1012 NumRecursivePHIs++;
1013 RecursivePHIs.insert(PHI);
1018 // { PHIValInst[] -> IncomingValInst[] }
1019 isl::union_map AllPHIMaps = makeEmptyUnionMap();
1021 // Discover new PHIs and try to normalize them.
1022 DenseSet<PHINode *> AllPHIs;
1023 for (ScopStmt &Stmt : *S) {
1024 for (MemoryAccess *MA : Stmt) {
1025 if (!MA->isOriginalPHIKind())
1026 continue;
1027 if (!MA->isRead())
1028 continue;
1029 if (!isNormalizable(MA))
1030 continue;
1032 auto *PHI = cast<PHINode>(MA->getAccessInstruction());
1033 const ScopArrayInfo *SAI = MA->getOriginalScopArrayInfo();
1035 // Determine which instance of the PHI statement corresponds to which
1036 // incoming value. Skip if we cannot determine PHI predecessors.
1037 // { PHIDomain[] -> IncomingDomain[] }
1038 isl::union_map PerPHI = computePerPHI(SAI);
1039 if (PerPHI.is_null())
1040 continue;
1042 // { PHIDomain[] -> PHIValInst[] }
1043 isl::map PHIValInst = makeValInst(PHI, &Stmt, Stmt.getSurroundingLoop());
1045 // { IncomingDomain[] -> IncomingValInst[] }
1046 isl::union_map IncomingValInsts = makeEmptyUnionMap();
1048 // Get all incoming values.
1049 for (MemoryAccess *MA : S->getPHIIncomings(SAI)) {
1050 ScopStmt *IncomingStmt = MA->getStatement();
1052 auto Incoming = MA->getIncoming();
1053 assert(Incoming.size() == 1 && "The incoming value must be "
1054 "representable by something else than "
1055 "the PHI itself");
1056 Value *IncomingVal = Incoming[0].second;
1058 // { IncomingDomain[] -> IncomingValInst[] }
1059 isl::map IncomingValInst = makeValInst(
1060 IncomingVal, IncomingStmt, IncomingStmt->getSurroundingLoop());
1062 IncomingValInsts = IncomingValInsts.unite(IncomingValInst);
1065 // { PHIValInst[] -> IncomingValInst[] }
1066 isl::union_map PHIMap =
1067 PerPHI.apply_domain(PHIValInst).apply_range(IncomingValInsts);
1068 assert(!PHIMap.is_single_valued().is_false());
1070 // Resolve transitiveness: The incoming value of the newly discovered PHI
1071 // may reference a previously normalized PHI. At the same time, already
1072 // normalized PHIs might be normalized to the new PHI. At the end, none of
1073 // the PHIs may appear on the right-hand-side of the normalization map.
1074 PHIMap = normalizeValInst(PHIMap, AllPHIs, AllPHIMaps);
1075 AllPHIs.insert(PHI);
1076 AllPHIMaps = normalizeValInst(AllPHIMaps, AllPHIs, PHIMap);
1078 AllPHIMaps = AllPHIMaps.unite(PHIMap);
1079 NumNormalizablePHIs++;
1082 simplify(AllPHIMaps);
1084 // Apply the normalization.
1085 ComputedPHIs = AllPHIs;
1086 NormalizeMap = AllPHIMaps;
1088 assert(NormalizeMap.is_null() || isNormalized(NormalizeMap));
1091 void ZoneAlgorithm::printAccesses(llvm::raw_ostream &OS, int Indent) const {
1092 OS.indent(Indent) << "After accesses {\n";
1093 for (auto &Stmt : *S) {
1094 OS.indent(Indent + 4) << Stmt.getBaseName() << "\n";
1095 for (auto *MA : Stmt)
1096 MA->print(OS);
1098 OS.indent(Indent) << "}\n";
1101 isl::union_map ZoneAlgorithm::computeKnownFromMustWrites() const {
1102 // { [Element[] -> Zone[]] -> [Element[] -> DomainWrite[]] }
1103 isl::union_map EltReachdDef = distributeDomain(WriteReachDefZone.curry());
1105 // { [Element[] -> DomainWrite[]] -> ValInst[] }
1106 isl::union_map AllKnownWriteValInst = filterKnownValInst(AllWriteValInst);
1108 // { [Element[] -> Zone[]] -> ValInst[] }
1109 return EltReachdDef.apply_range(AllKnownWriteValInst);
1112 isl::union_map ZoneAlgorithm::computeKnownFromLoad() const {
1113 // { Element[] }
1114 isl::union_set AllAccessedElts = AllReads.range().unite(AllWrites.range());
1116 // { Element[] -> Scatter[] }
1117 isl::union_map EltZoneUniverse = isl::union_map::from_domain_and_range(
1118 AllAccessedElts, isl::set::universe(ScatterSpace));
1120 // This assumes there are no "holes" in
1121 // isl_union_map_domain(WriteReachDefZone); alternatively, compute the zone
1122 // before the first write or that are not written at all.
1123 // { Element[] -> Scatter[] }
1124 isl::union_set NonReachDef =
1125 EltZoneUniverse.wrap().subtract(WriteReachDefZone.domain());
1127 // { [Element[] -> Zone[]] -> ReachDefId[] }
1128 isl::union_map DefZone =
1129 WriteReachDefZone.unite(isl::union_map::from_domain(NonReachDef));
1131 // { [Element[] -> Scatter[]] -> Element[] }
1132 isl::union_map EltZoneElt = EltZoneUniverse.domain_map();
1134 // { [Element[] -> Zone[]] -> [Element[] -> ReachDefId[]] }
1135 isl::union_map DefZoneEltDefId = EltZoneElt.range_product(DefZone);
1137 // { Element[] -> [Zone[] -> ReachDefId[]] }
1138 isl::union_map EltDefZone = DefZone.curry();
1140 // { [Element[] -> Zone[] -> [Element[] -> ReachDefId[]] }
1141 isl::union_map EltZoneEltDefid = distributeDomain(EltDefZone);
1143 // { [Element[] -> Scatter[]] -> DomainRead[] }
1144 isl::union_map Reads = AllReads.range_product(Schedule).reverse();
1146 // { [Element[] -> Scatter[]] -> [Element[] -> DomainRead[]] }
1147 isl::union_map ReadsElt = EltZoneElt.range_product(Reads);
1149 // { [Element[] -> Scatter[]] -> ValInst[] }
1150 isl::union_map ScatterKnown = ReadsElt.apply_range(AllReadValInst);
1152 // { [Element[] -> ReachDefId[]] -> ValInst[] }
1153 isl::union_map DefidKnown =
1154 DefZoneEltDefId.apply_domain(ScatterKnown).reverse();
1156 // { [Element[] -> Zone[]] -> ValInst[] }
1157 return DefZoneEltDefId.apply_range(DefidKnown);
1160 isl::union_map ZoneAlgorithm::computeKnown(bool FromWrite,
1161 bool FromRead) const {
1162 isl::union_map Result = makeEmptyUnionMap();
1164 if (FromWrite)
1165 Result = Result.unite(computeKnownFromMustWrites());
1167 if (FromRead)
1168 Result = Result.unite(computeKnownFromLoad());
1170 simplify(Result);
1171 return Result;