[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / bolt / lib / Core / BinaryEmitter.cpp
blob3bff3125a57a8600f13540c54be3b360937c3601
1 //===- bolt/Core/BinaryEmitter.cpp - Emit code and data -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the collection of functions and classes used for
10 // emission of code and data into object/binary file.
12 //===----------------------------------------------------------------------===//
14 #include "bolt/Core/BinaryEmitter.h"
15 #include "bolt/Core/BinaryContext.h"
16 #include "bolt/Core/BinaryFunction.h"
17 #include "bolt/Core/DebugData.h"
18 #include "bolt/Core/FunctionLayout.h"
19 #include "bolt/Utils/CommandLineOpts.h"
20 #include "bolt/Utils/Utils.h"
21 #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
22 #include "llvm/MC/MCSection.h"
23 #include "llvm/MC/MCStreamer.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/LEB128.h"
26 #include "llvm/Support/SMLoc.h"
28 #define DEBUG_TYPE "bolt"
30 using namespace llvm;
31 using namespace bolt;
33 namespace opts {
35 extern cl::opt<JumpTableSupportLevel> JumpTables;
36 extern cl::opt<bool> PreserveBlocksAlignment;
38 cl::opt<bool> AlignBlocks("align-blocks", cl::desc("align basic blocks"),
39 cl::cat(BoltOptCategory));
41 cl::opt<MacroFusionType>
42 AlignMacroOpFusion("align-macro-fusion",
43 cl::desc("fix instruction alignment for macro-fusion (x86 relocation mode)"),
44 cl::init(MFT_HOT),
45 cl::values(clEnumValN(MFT_NONE, "none",
46 "do not insert alignment no-ops for macro-fusion"),
47 clEnumValN(MFT_HOT, "hot",
48 "only insert alignment no-ops on hot execution paths (default)"),
49 clEnumValN(MFT_ALL, "all",
50 "always align instructions to allow macro-fusion")),
51 cl::ZeroOrMore,
52 cl::cat(BoltRelocCategory));
54 static cl::list<std::string>
55 BreakFunctionNames("break-funcs",
56 cl::CommaSeparated,
57 cl::desc("list of functions to core dump on (debugging)"),
58 cl::value_desc("func1,func2,func3,..."),
59 cl::Hidden,
60 cl::cat(BoltCategory));
62 static cl::list<std::string>
63 FunctionPadSpec("pad-funcs",
64 cl::CommaSeparated,
65 cl::desc("list of functions to pad with amount of bytes"),
66 cl::value_desc("func1:pad1,func2:pad2,func3:pad3,..."),
67 cl::Hidden,
68 cl::cat(BoltCategory));
70 static cl::opt<bool> MarkFuncs(
71 "mark-funcs",
72 cl::desc("mark function boundaries with break instruction to make "
73 "sure we accidentally don't cross them"),
74 cl::ReallyHidden, cl::cat(BoltCategory));
76 static cl::opt<bool> PrintJumpTables("print-jump-tables",
77 cl::desc("print jump tables"), cl::Hidden,
78 cl::cat(BoltCategory));
80 static cl::opt<bool>
81 X86AlignBranchBoundaryHotOnly("x86-align-branch-boundary-hot-only",
82 cl::desc("only apply branch boundary alignment in hot code"),
83 cl::init(true),
84 cl::cat(BoltOptCategory));
86 size_t padFunction(const BinaryFunction &Function) {
87 static std::map<std::string, size_t> FunctionPadding;
89 if (FunctionPadding.empty() && !FunctionPadSpec.empty()) {
90 for (std::string &Spec : FunctionPadSpec) {
91 size_t N = Spec.find(':');
92 if (N == std::string::npos)
93 continue;
94 std::string Name = Spec.substr(0, N);
95 size_t Padding = std::stoull(Spec.substr(N + 1));
96 FunctionPadding[Name] = Padding;
100 for (auto &FPI : FunctionPadding) {
101 std::string Name = FPI.first;
102 size_t Padding = FPI.second;
103 if (Function.hasNameRegex(Name))
104 return Padding;
107 return 0;
110 } // namespace opts
112 namespace {
113 using JumpTable = bolt::JumpTable;
115 class BinaryEmitter {
116 private:
117 BinaryEmitter(const BinaryEmitter &) = delete;
118 BinaryEmitter &operator=(const BinaryEmitter &) = delete;
120 MCStreamer &Streamer;
121 BinaryContext &BC;
123 public:
124 BinaryEmitter(MCStreamer &Streamer, BinaryContext &BC)
125 : Streamer(Streamer), BC(BC) {}
127 /// Emit all code and data.
128 void emitAll(StringRef OrgSecPrefix);
130 /// Emit function code. The caller is responsible for emitting function
131 /// symbol(s) and setting the section to emit the code to.
132 void emitFunctionBody(BinaryFunction &BF, FunctionFragment &FF,
133 bool EmitCodeOnly = false);
135 private:
136 /// Emit function code.
137 void emitFunctions();
139 /// Emit a single function.
140 bool emitFunction(BinaryFunction &BF, FunctionFragment &FF);
142 /// Helper for emitFunctionBody to write data inside a function
143 /// (used for AArch64)
144 void emitConstantIslands(BinaryFunction &BF, bool EmitColdPart,
145 BinaryFunction *OnBehalfOf = nullptr);
147 /// Emit jump tables for the function.
148 void emitJumpTables(const BinaryFunction &BF);
150 /// Emit jump table data. Callee supplies sections for the data.
151 void emitJumpTable(const JumpTable &JT, MCSection *HotSection,
152 MCSection *ColdSection);
154 void emitCFIInstruction(const MCCFIInstruction &Inst) const;
156 /// Emit exception handling ranges for the function.
157 void emitLSDA(BinaryFunction &BF, const FunctionFragment &FF);
159 /// Emit line number information corresponding to \p NewLoc. \p PrevLoc
160 /// provides a context for de-duplication of line number info.
161 /// \p FirstInstr indicates if \p NewLoc represents the first instruction
162 /// in a sequence, such as a function fragment.
164 /// If \p NewLoc location matches \p PrevLoc, no new line number entry will be
165 /// created and the function will return \p PrevLoc while \p InstrLabel will
166 /// be ignored. Otherwise, the caller should use \p InstrLabel to mark the
167 /// corresponding instruction by emitting \p InstrLabel before it.
168 /// If \p InstrLabel is set by the caller, its value will be used with \p
169 /// \p NewLoc. If it was nullptr on entry, it will be populated with a pointer
170 /// to a new temp symbol used with \p NewLoc.
172 /// Return new current location which is either \p NewLoc or \p PrevLoc.
173 SMLoc emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc, SMLoc PrevLoc,
174 bool FirstInstr, MCSymbol *&InstrLabel);
176 /// Use \p FunctionEndSymbol to mark the end of the line info sequence.
177 /// Note that it does not automatically result in the insertion of the EOS
178 /// marker in the line table program, but provides one to the DWARF generator
179 /// when it needs it.
180 void emitLineInfoEnd(const BinaryFunction &BF, MCSymbol *FunctionEndSymbol);
182 /// Emit debug line info for unprocessed functions from CUs that include
183 /// emitted functions.
184 void emitDebugLineInfoForOriginalFunctions();
186 /// Emit debug line for CUs that were not modified.
187 void emitDebugLineInfoForUnprocessedCUs();
189 /// Emit data sections that have code references in them.
190 void emitDataSections(StringRef OrgSecPrefix);
193 } // anonymous namespace
195 void BinaryEmitter::emitAll(StringRef OrgSecPrefix) {
196 Streamer.initSections(false, *BC.STI);
198 if (opts::UpdateDebugSections && BC.isELF()) {
199 // Force the emission of debug line info into allocatable section to ensure
200 // JITLink will process it.
202 // NB: on MachO all sections are required for execution, hence no need
203 // to change flags/attributes.
204 MCSectionELF *ELFDwarfLineSection =
205 static_cast<MCSectionELF *>(BC.MOFI->getDwarfLineSection());
206 ELFDwarfLineSection->setFlags(ELF::SHF_ALLOC);
207 MCSectionELF *ELFDwarfLineStrSection =
208 static_cast<MCSectionELF *>(BC.MOFI->getDwarfLineStrSection());
209 ELFDwarfLineStrSection->setFlags(ELF::SHF_ALLOC);
212 if (RuntimeLibrary *RtLibrary = BC.getRuntimeLibrary())
213 RtLibrary->emitBinary(BC, Streamer);
215 BC.getTextSection()->setAlignment(Align(opts::AlignText));
217 emitFunctions();
219 if (opts::UpdateDebugSections) {
220 emitDebugLineInfoForOriginalFunctions();
221 DwarfLineTable::emit(BC, Streamer);
224 emitDataSections(OrgSecPrefix);
226 // TODO Enable for Mach-O once BinaryContext::getDataSection supports it.
227 if (BC.isELF())
228 AddressMap::emit(Streamer, BC);
231 void BinaryEmitter::emitFunctions() {
232 auto emit = [&](const std::vector<BinaryFunction *> &Functions) {
233 const bool HasProfile = BC.NumProfiledFuncs > 0;
234 const bool OriginalAllowAutoPadding = Streamer.getAllowAutoPadding();
235 for (BinaryFunction *Function : Functions) {
236 if (!BC.shouldEmit(*Function))
237 continue;
239 LLVM_DEBUG(dbgs() << "BOLT: generating code for function \"" << *Function
240 << "\" : " << Function->getFunctionNumber() << '\n');
242 // Was any part of the function emitted.
243 bool Emitted = false;
245 // Turn off Intel JCC Erratum mitigation for cold code if requested
246 if (HasProfile && opts::X86AlignBranchBoundaryHotOnly &&
247 !Function->hasValidProfile())
248 Streamer.setAllowAutoPadding(false);
250 FunctionLayout &Layout = Function->getLayout();
251 Emitted |= emitFunction(*Function, Layout.getMainFragment());
253 if (Function->isSplit()) {
254 if (opts::X86AlignBranchBoundaryHotOnly)
255 Streamer.setAllowAutoPadding(false);
257 assert((Layout.fragment_size() == 1 || Function->isSimple()) &&
258 "Only simple functions can have fragments");
259 for (FunctionFragment &FF : Layout.getSplitFragments()) {
260 // Skip empty fragments so no symbols and sections for empty fragments
261 // are generated
262 if (FF.empty() && !Function->hasConstantIsland())
263 continue;
264 Emitted |= emitFunction(*Function, FF);
268 Streamer.setAllowAutoPadding(OriginalAllowAutoPadding);
270 if (Emitted)
271 Function->setEmitted(/*KeepCFG=*/opts::PrintCacheMetrics);
275 // Mark the start of hot text.
276 if (opts::HotText) {
277 Streamer.switchSection(BC.getTextSection());
278 Streamer.emitLabel(BC.getHotTextStartSymbol());
281 // Emit functions in sorted order.
282 std::vector<BinaryFunction *> SortedFunctions = BC.getSortedFunctions();
283 emit(SortedFunctions);
285 // Emit functions added by BOLT.
286 emit(BC.getInjectedBinaryFunctions());
288 // Mark the end of hot text.
289 if (opts::HotText) {
290 if (BC.HasWarmSection)
291 Streamer.switchSection(BC.getCodeSection(BC.getWarmCodeSectionName()));
292 else
293 Streamer.switchSection(BC.getTextSection());
294 Streamer.emitLabel(BC.getHotTextEndSymbol());
298 bool BinaryEmitter::emitFunction(BinaryFunction &Function,
299 FunctionFragment &FF) {
300 if (Function.size() == 0 && !Function.hasIslandsInfo())
301 return false;
303 if (Function.getState() == BinaryFunction::State::Empty)
304 return false;
306 // Avoid emitting function without instructions when overwriting the original
307 // function in-place. Otherwise, emit the empty function to define the symbol.
308 if (!BC.HasRelocations && !Function.hasNonPseudoInstructions())
309 return false;
311 MCSection *Section =
312 BC.getCodeSection(Function.getCodeSectionName(FF.getFragmentNum()));
313 Streamer.switchSection(Section);
314 Section->setHasInstructions(true);
315 BC.Ctx->addGenDwarfSection(Section);
317 if (BC.HasRelocations) {
318 // Set section alignment to at least maximum possible object alignment.
319 // We need this to support LongJmp and other passes that calculates
320 // tentative layout.
321 Section->ensureMinAlignment(Align(opts::AlignFunctions));
323 Streamer.emitCodeAlignment(Function.getMinAlign(), &*BC.STI);
324 uint16_t MaxAlignBytes = FF.isSplitFragment()
325 ? Function.getMaxColdAlignmentBytes()
326 : Function.getMaxAlignmentBytes();
327 if (MaxAlignBytes > 0)
328 Streamer.emitCodeAlignment(Function.getAlign(), &*BC.STI, MaxAlignBytes);
329 } else {
330 Streamer.emitCodeAlignment(Function.getAlign(), &*BC.STI);
333 MCContext &Context = Streamer.getContext();
334 const MCAsmInfo *MAI = Context.getAsmInfo();
336 MCSymbol *const StartSymbol = Function.getSymbol(FF.getFragmentNum());
338 // Emit all symbols associated with the main function entry.
339 if (FF.isMainFragment()) {
340 for (MCSymbol *Symbol : Function.getSymbols()) {
341 Streamer.emitSymbolAttribute(Symbol, MCSA_ELF_TypeFunction);
342 Streamer.emitLabel(Symbol);
344 } else {
345 Streamer.emitSymbolAttribute(StartSymbol, MCSA_ELF_TypeFunction);
346 Streamer.emitLabel(StartSymbol);
349 // Emit CFI start
350 if (Function.hasCFI()) {
351 Streamer.emitCFIStartProc(/*IsSimple=*/false);
352 if (Function.getPersonalityFunction() != nullptr)
353 Streamer.emitCFIPersonality(Function.getPersonalityFunction(),
354 Function.getPersonalityEncoding());
355 MCSymbol *LSDASymbol = Function.getLSDASymbol(FF.getFragmentNum());
356 if (LSDASymbol)
357 Streamer.emitCFILsda(LSDASymbol, BC.LSDAEncoding);
358 else
359 Streamer.emitCFILsda(0, dwarf::DW_EH_PE_omit);
360 // Emit CFI instructions relative to the CIE
361 for (const MCCFIInstruction &CFIInstr : Function.cie()) {
362 // Only write CIE CFI insns that LLVM will not already emit
363 const std::vector<MCCFIInstruction> &FrameInstrs =
364 MAI->getInitialFrameState();
365 if (!llvm::is_contained(FrameInstrs, CFIInstr))
366 emitCFIInstruction(CFIInstr);
370 assert((Function.empty() || !(*Function.begin()).isCold()) &&
371 "first basic block should never be cold");
373 // Emit UD2 at the beginning if requested by user.
374 if (!opts::BreakFunctionNames.empty()) {
375 for (std::string &Name : opts::BreakFunctionNames) {
376 if (Function.hasNameRegex(Name)) {
377 Streamer.emitIntValue(0x0B0F, 2); // UD2: 0F 0B
378 break;
383 // Emit code.
384 emitFunctionBody(Function, FF, /*EmitCodeOnly=*/false);
386 // Emit padding if requested.
387 if (size_t Padding = opts::padFunction(Function)) {
388 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: padding function " << Function << " with "
389 << Padding << " bytes\n");
390 Streamer.emitFill(Padding, MAI->getTextAlignFillValue());
393 if (opts::MarkFuncs)
394 Streamer.emitBytes(BC.MIB->getTrapFillValue());
396 // Emit CFI end
397 if (Function.hasCFI())
398 Streamer.emitCFIEndProc();
400 MCSymbol *EndSymbol = Function.getFunctionEndLabel(FF.getFragmentNum());
401 Streamer.emitLabel(EndSymbol);
403 if (MAI->hasDotTypeDotSizeDirective()) {
404 const MCExpr *SizeExpr = MCBinaryExpr::createSub(
405 MCSymbolRefExpr::create(EndSymbol, Context),
406 MCSymbolRefExpr::create(StartSymbol, Context), Context);
407 Streamer.emitELFSize(StartSymbol, SizeExpr);
410 if (opts::UpdateDebugSections && Function.getDWARFUnit())
411 emitLineInfoEnd(Function, EndSymbol);
413 // Exception handling info for the function.
414 emitLSDA(Function, FF);
416 if (FF.isMainFragment() && opts::JumpTables > JTS_NONE)
417 emitJumpTables(Function);
419 return true;
422 void BinaryEmitter::emitFunctionBody(BinaryFunction &BF, FunctionFragment &FF,
423 bool EmitCodeOnly) {
424 if (!EmitCodeOnly && FF.isSplitFragment() && BF.hasConstantIsland()) {
425 assert(BF.getLayout().isHotColdSplit() &&
426 "Constant island support only with hot/cold split");
427 BF.duplicateConstantIslands();
430 if (!FF.empty() && FF.front()->isLandingPad()) {
431 assert(!FF.front()->isEntryPoint() &&
432 "Landing pad cannot be entry point of function");
433 // If the first block of the fragment is a landing pad, it's offset from the
434 // start of the area that the corresponding LSDA describes is zero. In this
435 // case, the call site entries in that LSDA have 0 as offset to the landing
436 // pad, which the runtime interprets as "no handler". To prevent this,
437 // insert some padding.
438 Streamer.emitBytes(BC.MIB->getTrapFillValue());
441 // Track the first emitted instruction with debug info.
442 bool FirstInstr = true;
443 for (BinaryBasicBlock *const BB : FF) {
444 if ((opts::AlignBlocks || opts::PreserveBlocksAlignment) &&
445 BB->getAlignment() > 1)
446 Streamer.emitCodeAlignment(BB->getAlign(), &*BC.STI,
447 BB->getAlignmentMaxBytes());
448 Streamer.emitLabel(BB->getLabel());
449 if (!EmitCodeOnly) {
450 if (MCSymbol *EntrySymbol = BF.getSecondaryEntryPointSymbol(*BB))
451 Streamer.emitLabel(EntrySymbol);
454 // Check if special alignment for macro-fusion is needed.
455 bool MayNeedMacroFusionAlignment =
456 (opts::AlignMacroOpFusion == MFT_ALL) ||
457 (opts::AlignMacroOpFusion == MFT_HOT && BB->getKnownExecutionCount());
458 BinaryBasicBlock::const_iterator MacroFusionPair;
459 if (MayNeedMacroFusionAlignment) {
460 MacroFusionPair = BB->getMacroOpFusionPair();
461 if (MacroFusionPair == BB->end())
462 MayNeedMacroFusionAlignment = false;
465 SMLoc LastLocSeen;
466 // Remember if the last instruction emitted was a prefix.
467 bool LastIsPrefix = false;
468 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
469 MCInst &Instr = *I;
471 if (EmitCodeOnly && BC.MIB->isPseudo(Instr))
472 continue;
474 // Handle pseudo instructions.
475 if (BC.MIB->isCFI(Instr)) {
476 emitCFIInstruction(*BF.getCFIFor(Instr));
477 continue;
480 // Handle macro-fusion alignment. If we emitted a prefix as
481 // the last instruction, we should've already emitted the associated
482 // alignment hint, so don't emit it twice.
483 if (MayNeedMacroFusionAlignment && !LastIsPrefix &&
484 I == MacroFusionPair) {
485 // This assumes the second instruction in the macro-op pair will get
486 // assigned to its own MCRelaxableFragment. Since all JCC instructions
487 // are relaxable, we should be safe.
490 if (!EmitCodeOnly) {
491 // A symbol to be emitted before the instruction to mark its location.
492 MCSymbol *InstrLabel = BC.MIB->getLabel(Instr);
494 if (opts::UpdateDebugSections && BF.getDWARFUnit()) {
495 LastLocSeen = emitLineInfo(BF, Instr.getLoc(), LastLocSeen,
496 FirstInstr, InstrLabel);
497 FirstInstr = false;
500 // Prepare to tag this location with a label if we need to keep track of
501 // the location of calls/returns for BOLT address translation maps
502 if (BF.requiresAddressTranslation() && BC.MIB->getOffset(Instr)) {
503 const uint32_t Offset = *BC.MIB->getOffset(Instr);
504 if (!InstrLabel)
505 InstrLabel = BC.Ctx->createTempSymbol();
506 BB->getLocSyms().emplace_back(Offset, InstrLabel);
509 if (InstrLabel)
510 Streamer.emitLabel(InstrLabel);
513 // Emit sized NOPs via MCAsmBackend::writeNopData() interface on x86.
514 // This is a workaround for invalid NOPs handling by asm/disasm layer.
515 if (BC.MIB->isNoop(Instr) && BC.isX86()) {
516 if (std::optional<uint32_t> Size = BC.MIB->getSize(Instr)) {
517 SmallString<15> Code;
518 raw_svector_ostream VecOS(Code);
519 BC.MAB->writeNopData(VecOS, *Size, BC.STI.get());
520 Streamer.emitBytes(Code);
521 continue;
525 Streamer.emitInstruction(Instr, *BC.STI);
526 LastIsPrefix = BC.MIB->isPrefix(Instr);
530 if (!EmitCodeOnly)
531 emitConstantIslands(BF, FF.isSplitFragment());
534 void BinaryEmitter::emitConstantIslands(BinaryFunction &BF, bool EmitColdPart,
535 BinaryFunction *OnBehalfOf) {
536 if (!BF.hasIslandsInfo())
537 return;
539 BinaryFunction::IslandInfo &Islands = BF.getIslandInfo();
540 if (Islands.DataOffsets.empty() && Islands.Dependency.empty())
541 return;
543 // AArch64 requires CI to be aligned to 8 bytes due to access instructions
544 // restrictions. E.g. the ldr with imm, where imm must be aligned to 8 bytes.
545 const uint16_t Alignment = OnBehalfOf
546 ? OnBehalfOf->getConstantIslandAlignment()
547 : BF.getConstantIslandAlignment();
548 Streamer.emitCodeAlignment(Align(Alignment), &*BC.STI);
550 if (!OnBehalfOf) {
551 if (!EmitColdPart)
552 Streamer.emitLabel(BF.getFunctionConstantIslandLabel());
553 else
554 Streamer.emitLabel(BF.getFunctionColdConstantIslandLabel());
557 assert((!OnBehalfOf || Islands.Proxies[OnBehalfOf].size() > 0) &&
558 "spurious OnBehalfOf constant island emission");
560 assert(!BF.isInjected() &&
561 "injected functions should not have constant islands");
562 // Raw contents of the function.
563 StringRef SectionContents = BF.getOriginSection()->getContents();
565 // Raw contents of the function.
566 StringRef FunctionContents = SectionContents.substr(
567 BF.getAddress() - BF.getOriginSection()->getAddress(), BF.getMaxSize());
569 if (opts::Verbosity && !OnBehalfOf)
570 outs() << "BOLT-INFO: emitting constant island for function " << BF << "\n";
572 // We split the island into smaller blocks and output labels between them.
573 auto IS = Islands.Offsets.begin();
574 for (auto DataIter = Islands.DataOffsets.begin();
575 DataIter != Islands.DataOffsets.end(); ++DataIter) {
576 uint64_t FunctionOffset = *DataIter;
577 uint64_t EndOffset = 0ULL;
579 // Determine size of this data chunk
580 auto NextData = std::next(DataIter);
581 auto CodeIter = Islands.CodeOffsets.lower_bound(*DataIter);
582 if (CodeIter == Islands.CodeOffsets.end() &&
583 NextData == Islands.DataOffsets.end())
584 EndOffset = BF.getMaxSize();
585 else if (CodeIter == Islands.CodeOffsets.end())
586 EndOffset = *NextData;
587 else if (NextData == Islands.DataOffsets.end())
588 EndOffset = *CodeIter;
589 else
590 EndOffset = (*CodeIter > *NextData) ? *NextData : *CodeIter;
592 if (FunctionOffset == EndOffset)
593 continue; // Size is zero, nothing to emit
595 auto emitCI = [&](uint64_t &FunctionOffset, uint64_t EndOffset) {
596 if (FunctionOffset >= EndOffset)
597 return;
599 for (auto It = Islands.Relocations.lower_bound(FunctionOffset);
600 It != Islands.Relocations.end(); ++It) {
601 if (It->first >= EndOffset)
602 break;
604 const Relocation &Relocation = It->second;
605 if (FunctionOffset < Relocation.Offset) {
606 Streamer.emitBytes(
607 FunctionContents.slice(FunctionOffset, Relocation.Offset));
608 FunctionOffset = Relocation.Offset;
611 LLVM_DEBUG(
612 dbgs() << "BOLT-DEBUG: emitting constant island relocation"
613 << " for " << BF << " at offset 0x"
614 << Twine::utohexstr(Relocation.Offset) << " with size "
615 << Relocation::getSizeForType(Relocation.Type) << '\n');
617 FunctionOffset += Relocation.emit(&Streamer);
620 assert(FunctionOffset <= EndOffset && "overflow error");
621 if (FunctionOffset < EndOffset) {
622 Streamer.emitBytes(FunctionContents.slice(FunctionOffset, EndOffset));
623 FunctionOffset = EndOffset;
627 // Emit labels, relocs and data
628 while (IS != Islands.Offsets.end() && IS->first < EndOffset) {
629 auto NextLabelOffset =
630 IS == Islands.Offsets.end() ? EndOffset : IS->first;
631 auto NextStop = std::min(NextLabelOffset, EndOffset);
632 assert(NextStop <= EndOffset && "internal overflow error");
633 emitCI(FunctionOffset, NextStop);
634 if (IS != Islands.Offsets.end() && FunctionOffset == IS->first) {
635 // This is a slightly complex code to decide which label to emit. We
636 // have 4 cases to handle: regular symbol, cold symbol, regular or cold
637 // symbol being emitted on behalf of an external function.
638 if (!OnBehalfOf) {
639 if (!EmitColdPart) {
640 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label "
641 << IS->second->getName() << " at offset 0x"
642 << Twine::utohexstr(IS->first) << '\n');
643 if (IS->second->isUndefined())
644 Streamer.emitLabel(IS->second);
645 else
646 assert(BF.hasName(std::string(IS->second->getName())));
647 } else if (Islands.ColdSymbols.count(IS->second) != 0) {
648 LLVM_DEBUG(dbgs()
649 << "BOLT-DEBUG: emitted label "
650 << Islands.ColdSymbols[IS->second]->getName() << '\n');
651 if (Islands.ColdSymbols[IS->second]->isUndefined())
652 Streamer.emitLabel(Islands.ColdSymbols[IS->second]);
654 } else {
655 if (!EmitColdPart) {
656 if (MCSymbol *Sym = Islands.Proxies[OnBehalfOf][IS->second]) {
657 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label "
658 << Sym->getName() << '\n');
659 Streamer.emitLabel(Sym);
661 } else if (MCSymbol *Sym =
662 Islands.ColdProxies[OnBehalfOf][IS->second]) {
663 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " << Sym->getName()
664 << '\n');
665 Streamer.emitLabel(Sym);
668 ++IS;
671 assert(FunctionOffset <= EndOffset && "overflow error");
672 emitCI(FunctionOffset, EndOffset);
674 assert(IS == Islands.Offsets.end() && "some symbols were not emitted!");
676 if (OnBehalfOf)
677 return;
678 // Now emit constant islands from other functions that we may have used in
679 // this function.
680 for (BinaryFunction *ExternalFunc : Islands.Dependency)
681 emitConstantIslands(*ExternalFunc, EmitColdPart, &BF);
684 SMLoc BinaryEmitter::emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc,
685 SMLoc PrevLoc, bool FirstInstr,
686 MCSymbol *&InstrLabel) {
687 DWARFUnit *FunctionCU = BF.getDWARFUnit();
688 const DWARFDebugLine::LineTable *FunctionLineTable = BF.getDWARFLineTable();
689 assert(FunctionCU && "cannot emit line info for function without CU");
691 DebugLineTableRowRef RowReference = DebugLineTableRowRef::fromSMLoc(NewLoc);
693 // Check if no new line info needs to be emitted.
694 if (RowReference == DebugLineTableRowRef::NULL_ROW ||
695 NewLoc.getPointer() == PrevLoc.getPointer())
696 return PrevLoc;
698 unsigned CurrentFilenum = 0;
699 const DWARFDebugLine::LineTable *CurrentLineTable = FunctionLineTable;
701 // If the CU id from the current instruction location does not
702 // match the CU id from the current function, it means that we
703 // have come across some inlined code. We must look up the CU
704 // for the instruction's original function and get the line table
705 // from that.
706 const uint64_t FunctionUnitIndex = FunctionCU->getOffset();
707 const uint32_t CurrentUnitIndex = RowReference.DwCompileUnitIndex;
708 if (CurrentUnitIndex != FunctionUnitIndex) {
709 CurrentLineTable = BC.DwCtx->getLineTableForUnit(
710 BC.DwCtx->getCompileUnitForOffset(CurrentUnitIndex));
711 // Add filename from the inlined function to the current CU.
712 CurrentFilenum = BC.addDebugFilenameToUnit(
713 FunctionUnitIndex, CurrentUnitIndex,
714 CurrentLineTable->Rows[RowReference.RowIndex - 1].File);
717 const DWARFDebugLine::Row &CurrentRow =
718 CurrentLineTable->Rows[RowReference.RowIndex - 1];
719 if (!CurrentFilenum)
720 CurrentFilenum = CurrentRow.File;
722 unsigned Flags = (DWARF2_FLAG_IS_STMT * CurrentRow.IsStmt) |
723 (DWARF2_FLAG_BASIC_BLOCK * CurrentRow.BasicBlock) |
724 (DWARF2_FLAG_PROLOGUE_END * CurrentRow.PrologueEnd) |
725 (DWARF2_FLAG_EPILOGUE_BEGIN * CurrentRow.EpilogueBegin);
727 // Always emit is_stmt at the beginning of function fragment.
728 if (FirstInstr)
729 Flags |= DWARF2_FLAG_IS_STMT;
731 BC.Ctx->setCurrentDwarfLoc(CurrentFilenum, CurrentRow.Line, CurrentRow.Column,
732 Flags, CurrentRow.Isa, CurrentRow.Discriminator);
733 const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc();
734 BC.Ctx->clearDwarfLocSeen();
736 if (!InstrLabel)
737 InstrLabel = BC.Ctx->createTempSymbol();
739 BC.getDwarfLineTable(FunctionUnitIndex)
740 .getMCLineSections()
741 .addLineEntry(MCDwarfLineEntry(InstrLabel, DwarfLoc),
742 Streamer.getCurrentSectionOnly());
744 return NewLoc;
747 void BinaryEmitter::emitLineInfoEnd(const BinaryFunction &BF,
748 MCSymbol *FunctionEndLabel) {
749 DWARFUnit *FunctionCU = BF.getDWARFUnit();
750 assert(FunctionCU && "DWARF unit expected");
751 BC.Ctx->setCurrentDwarfLoc(0, 0, 0, DWARF2_FLAG_END_SEQUENCE, 0, 0);
752 const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc();
753 BC.Ctx->clearDwarfLocSeen();
754 BC.getDwarfLineTable(FunctionCU->getOffset())
755 .getMCLineSections()
756 .addLineEntry(MCDwarfLineEntry(FunctionEndLabel, DwarfLoc),
757 Streamer.getCurrentSectionOnly());
760 void BinaryEmitter::emitJumpTables(const BinaryFunction &BF) {
761 MCSection *ReadOnlySection = BC.MOFI->getReadOnlySection();
762 MCSection *ReadOnlyColdSection = BC.MOFI->getContext().getELFSection(
763 ".rodata.cold", ELF::SHT_PROGBITS, ELF::SHF_ALLOC);
765 if (!BF.hasJumpTables())
766 return;
768 if (opts::PrintJumpTables)
769 outs() << "BOLT-INFO: jump tables for function " << BF << ":\n";
771 for (auto &JTI : BF.jumpTables()) {
772 JumpTable &JT = *JTI.second;
773 // Only emit shared jump tables once, when processing the first parent
774 if (JT.Parents.size() > 1 && JT.Parents[0] != &BF)
775 continue;
776 if (opts::PrintJumpTables)
777 JT.print(outs());
778 if (opts::JumpTables == JTS_BASIC && BC.HasRelocations) {
779 JT.updateOriginal();
780 } else {
781 MCSection *HotSection, *ColdSection;
782 if (opts::JumpTables == JTS_BASIC) {
783 // In non-relocation mode we have to emit jump tables in local sections.
784 // This way we only overwrite them when the corresponding function is
785 // overwritten.
786 std::string Name = ".local." + JT.Labels[0]->getName().str();
787 std::replace(Name.begin(), Name.end(), '/', '.');
788 BinarySection &Section =
789 BC.registerOrUpdateSection(Name, ELF::SHT_PROGBITS, ELF::SHF_ALLOC);
790 Section.setAnonymous(true);
791 JT.setOutputSection(Section);
792 HotSection = BC.getDataSection(Name);
793 ColdSection = HotSection;
794 } else {
795 if (BF.isSimple()) {
796 HotSection = ReadOnlySection;
797 ColdSection = ReadOnlyColdSection;
798 } else {
799 HotSection = BF.hasProfile() ? ReadOnlySection : ReadOnlyColdSection;
800 ColdSection = HotSection;
803 emitJumpTable(JT, HotSection, ColdSection);
808 void BinaryEmitter::emitJumpTable(const JumpTable &JT, MCSection *HotSection,
809 MCSection *ColdSection) {
810 // Pre-process entries for aggressive splitting.
811 // Each label represents a separate switch table and gets its own count
812 // determining its destination.
813 std::map<MCSymbol *, uint64_t> LabelCounts;
814 if (opts::JumpTables > JTS_SPLIT && !JT.Counts.empty()) {
815 MCSymbol *CurrentLabel = JT.Labels.at(0);
816 uint64_t CurrentLabelCount = 0;
817 for (unsigned Index = 0; Index < JT.Entries.size(); ++Index) {
818 auto LI = JT.Labels.find(Index * JT.EntrySize);
819 if (LI != JT.Labels.end()) {
820 LabelCounts[CurrentLabel] = CurrentLabelCount;
821 CurrentLabel = LI->second;
822 CurrentLabelCount = 0;
824 CurrentLabelCount += JT.Counts[Index].Count;
826 LabelCounts[CurrentLabel] = CurrentLabelCount;
827 } else {
828 Streamer.switchSection(JT.Count > 0 ? HotSection : ColdSection);
829 Streamer.emitValueToAlignment(Align(JT.EntrySize));
831 MCSymbol *LastLabel = nullptr;
832 uint64_t Offset = 0;
833 for (MCSymbol *Entry : JT.Entries) {
834 auto LI = JT.Labels.find(Offset);
835 if (LI != JT.Labels.end()) {
836 LLVM_DEBUG({
837 dbgs() << "BOLT-DEBUG: emitting jump table " << LI->second->getName()
838 << " (originally was at address 0x"
839 << Twine::utohexstr(JT.getAddress() + Offset)
840 << (Offset ? ") as part of larger jump table\n" : ")\n");
842 if (!LabelCounts.empty()) {
843 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump table count: "
844 << LabelCounts[LI->second] << '\n');
845 if (LabelCounts[LI->second] > 0)
846 Streamer.switchSection(HotSection);
847 else
848 Streamer.switchSection(ColdSection);
849 Streamer.emitValueToAlignment(Align(JT.EntrySize));
851 // Emit all labels registered at the address of this jump table
852 // to sync with our global symbol table. We may have two labels
853 // registered at this address if one label was created via
854 // getOrCreateGlobalSymbol() (e.g. LEA instructions referencing
855 // this location) and another via getOrCreateJumpTable(). This
856 // creates a race where the symbols created by these two
857 // functions may or may not be the same, but they are both
858 // registered in our symbol table at the same address. By
859 // emitting them all here we make sure there is no ambiguity
860 // that depends on the order that these symbols were created, so
861 // whenever this address is referenced in the binary, it is
862 // certain to point to the jump table identified at this
863 // address.
864 if (BinaryData *BD = BC.getBinaryDataByName(LI->second->getName())) {
865 for (MCSymbol *S : BD->getSymbols())
866 Streamer.emitLabel(S);
867 } else {
868 Streamer.emitLabel(LI->second);
870 LastLabel = LI->second;
872 if (JT.Type == JumpTable::JTT_NORMAL) {
873 Streamer.emitSymbolValue(Entry, JT.OutputEntrySize);
874 } else { // JTT_PIC
875 const MCSymbolRefExpr *JTExpr =
876 MCSymbolRefExpr::create(LastLabel, Streamer.getContext());
877 const MCSymbolRefExpr *E =
878 MCSymbolRefExpr::create(Entry, Streamer.getContext());
879 const MCBinaryExpr *Value =
880 MCBinaryExpr::createSub(E, JTExpr, Streamer.getContext());
881 Streamer.emitValue(Value, JT.EntrySize);
883 Offset += JT.EntrySize;
887 void BinaryEmitter::emitCFIInstruction(const MCCFIInstruction &Inst) const {
888 switch (Inst.getOperation()) {
889 default:
890 llvm_unreachable("Unexpected instruction");
891 case MCCFIInstruction::OpDefCfaOffset:
892 Streamer.emitCFIDefCfaOffset(Inst.getOffset());
893 break;
894 case MCCFIInstruction::OpAdjustCfaOffset:
895 Streamer.emitCFIAdjustCfaOffset(Inst.getOffset());
896 break;
897 case MCCFIInstruction::OpDefCfa:
898 Streamer.emitCFIDefCfa(Inst.getRegister(), Inst.getOffset());
899 break;
900 case MCCFIInstruction::OpDefCfaRegister:
901 Streamer.emitCFIDefCfaRegister(Inst.getRegister());
902 break;
903 case MCCFIInstruction::OpOffset:
904 Streamer.emitCFIOffset(Inst.getRegister(), Inst.getOffset());
905 break;
906 case MCCFIInstruction::OpRegister:
907 Streamer.emitCFIRegister(Inst.getRegister(), Inst.getRegister2());
908 break;
909 case MCCFIInstruction::OpWindowSave:
910 Streamer.emitCFIWindowSave();
911 break;
912 case MCCFIInstruction::OpNegateRAState:
913 Streamer.emitCFINegateRAState();
914 break;
915 case MCCFIInstruction::OpSameValue:
916 Streamer.emitCFISameValue(Inst.getRegister());
917 break;
918 case MCCFIInstruction::OpGnuArgsSize:
919 Streamer.emitCFIGnuArgsSize(Inst.getOffset());
920 break;
921 case MCCFIInstruction::OpEscape:
922 Streamer.AddComment(Inst.getComment());
923 Streamer.emitCFIEscape(Inst.getValues());
924 break;
925 case MCCFIInstruction::OpRestore:
926 Streamer.emitCFIRestore(Inst.getRegister());
927 break;
928 case MCCFIInstruction::OpUndefined:
929 Streamer.emitCFIUndefined(Inst.getRegister());
930 break;
934 // The code is based on EHStreamer::emitExceptionTable().
935 void BinaryEmitter::emitLSDA(BinaryFunction &BF, const FunctionFragment &FF) {
936 const BinaryFunction::CallSitesRange Sites =
937 BF.getCallSites(FF.getFragmentNum());
938 if (Sites.empty())
939 return;
941 // Calculate callsite table size. Size of each callsite entry is:
943 // sizeof(start) + sizeof(length) + sizeof(LP) + sizeof(uleb128(action))
945 // or
947 // sizeof(dwarf::DW_EH_PE_data4) * 3 + sizeof(uleb128(action))
948 uint64_t CallSiteTableLength = llvm::size(Sites) * 4 * 3;
949 for (const auto &FragmentCallSite : Sites)
950 CallSiteTableLength += getULEB128Size(FragmentCallSite.second.Action);
952 Streamer.switchSection(BC.MOFI->getLSDASection());
954 const unsigned TTypeEncoding = BF.getLSDATypeEncoding();
955 const unsigned TTypeEncodingSize = BC.getDWARFEncodingSize(TTypeEncoding);
956 const uint16_t TTypeAlignment = 4;
958 // Type tables have to be aligned at 4 bytes.
959 Streamer.emitValueToAlignment(Align(TTypeAlignment));
961 // Emit the LSDA label.
962 MCSymbol *LSDASymbol = BF.getLSDASymbol(FF.getFragmentNum());
963 assert(LSDASymbol && "no LSDA symbol set");
964 Streamer.emitLabel(LSDASymbol);
966 // Corresponding FDE start.
967 const MCSymbol *StartSymbol = BF.getSymbol(FF.getFragmentNum());
969 // Emit the LSDA header.
971 // If LPStart is omitted, then the start of the FDE is used as a base for
972 // landing pad displacements. Then if a cold fragment starts with
973 // a landing pad, this means that the first landing pad offset will be 0.
974 // As a result, the exception handling runtime will ignore this landing pad
975 // because zero offset denotes the absence of a landing pad.
976 // For this reason, when the binary has fixed starting address we emit LPStart
977 // as 0 and output the absolute value of the landing pad in the table.
979 // If the base address can change, we cannot use absolute addresses for
980 // landing pads (at least not without runtime relocations). Hence, we fall
981 // back to emitting landing pads relative to the FDE start.
982 // As we are emitting label differences, we have to guarantee both labels are
983 // defined in the same section and hence cannot place the landing pad into a
984 // cold fragment when the corresponding call site is in the hot fragment.
985 // Because of this issue and the previously described issue of possible
986 // zero-offset landing pad we have to place landing pads in the same section
987 // as the corresponding invokes for shared objects.
988 std::function<void(const MCSymbol *)> emitLandingPad;
989 if (BC.HasFixedLoadAddress) {
990 Streamer.emitIntValue(dwarf::DW_EH_PE_udata4, 1); // LPStart format
991 Streamer.emitIntValue(0, 4); // LPStart
992 emitLandingPad = [&](const MCSymbol *LPSymbol) {
993 if (!LPSymbol)
994 Streamer.emitIntValue(0, 4);
995 else
996 Streamer.emitSymbolValue(LPSymbol, 4);
998 } else {
999 Streamer.emitIntValue(dwarf::DW_EH_PE_omit, 1); // LPStart format
1000 emitLandingPad = [&](const MCSymbol *LPSymbol) {
1001 if (!LPSymbol)
1002 Streamer.emitIntValue(0, 4);
1003 else
1004 Streamer.emitAbsoluteSymbolDiff(LPSymbol, StartSymbol, 4);
1008 Streamer.emitIntValue(TTypeEncoding, 1); // TType format
1010 // See the comment in EHStreamer::emitExceptionTable() on to use
1011 // uleb128 encoding (which can use variable number of bytes to encode the same
1012 // value) to ensure type info table is properly aligned at 4 bytes without
1013 // iteratively fixing sizes of the tables.
1014 unsigned CallSiteTableLengthSize = getULEB128Size(CallSiteTableLength);
1015 unsigned TTypeBaseOffset =
1016 sizeof(int8_t) + // Call site format
1017 CallSiteTableLengthSize + // Call site table length size
1018 CallSiteTableLength + // Call site table length
1019 BF.getLSDAActionTable().size() + // Actions table size
1020 BF.getLSDATypeTable().size() * TTypeEncodingSize; // Types table size
1021 unsigned TTypeBaseOffsetSize = getULEB128Size(TTypeBaseOffset);
1022 unsigned TotalSize = sizeof(int8_t) + // LPStart format
1023 sizeof(int8_t) + // TType format
1024 TTypeBaseOffsetSize + // TType base offset size
1025 TTypeBaseOffset; // TType base offset
1026 unsigned SizeAlign = (4 - TotalSize) & 3;
1028 if (TTypeEncoding != dwarf::DW_EH_PE_omit)
1029 // Account for any extra padding that will be added to the call site table
1030 // length.
1031 Streamer.emitULEB128IntValue(TTypeBaseOffset,
1032 /*PadTo=*/TTypeBaseOffsetSize + SizeAlign);
1034 // Emit the landing pad call site table. We use signed data4 since we can emit
1035 // a landing pad in a different part of the split function that could appear
1036 // earlier in the address space than LPStart.
1037 Streamer.emitIntValue(dwarf::DW_EH_PE_sdata4, 1);
1038 Streamer.emitULEB128IntValue(CallSiteTableLength);
1040 for (const auto &FragmentCallSite : Sites) {
1041 const BinaryFunction::CallSite &CallSite = FragmentCallSite.second;
1042 const MCSymbol *BeginLabel = CallSite.Start;
1043 const MCSymbol *EndLabel = CallSite.End;
1045 assert(BeginLabel && "start EH label expected");
1046 assert(EndLabel && "end EH label expected");
1048 // Start of the range is emitted relative to the start of current
1049 // function split part.
1050 Streamer.emitAbsoluteSymbolDiff(BeginLabel, StartSymbol, 4);
1051 Streamer.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
1052 emitLandingPad(CallSite.LP);
1053 Streamer.emitULEB128IntValue(CallSite.Action);
1056 // Write out action, type, and type index tables at the end.
1058 // For action and type index tables there's no need to change the original
1059 // table format unless we are doing function splitting, in which case we can
1060 // split and optimize the tables.
1062 // For type table we (re-)encode the table using TTypeEncoding matching
1063 // the current assembler mode.
1064 for (uint8_t const &Byte : BF.getLSDAActionTable())
1065 Streamer.emitIntValue(Byte, 1);
1067 const BinaryFunction::LSDATypeTableTy &TypeTable =
1068 (TTypeEncoding & dwarf::DW_EH_PE_indirect) ? BF.getLSDATypeAddressTable()
1069 : BF.getLSDATypeTable();
1070 assert(TypeTable.size() == BF.getLSDATypeTable().size() &&
1071 "indirect type table size mismatch");
1073 for (int Index = TypeTable.size() - 1; Index >= 0; --Index) {
1074 const uint64_t TypeAddress = TypeTable[Index];
1075 switch (TTypeEncoding & 0x70) {
1076 default:
1077 llvm_unreachable("unsupported TTypeEncoding");
1078 case dwarf::DW_EH_PE_absptr:
1079 Streamer.emitIntValue(TypeAddress, TTypeEncodingSize);
1080 break;
1081 case dwarf::DW_EH_PE_pcrel: {
1082 if (TypeAddress) {
1083 const MCSymbol *TypeSymbol =
1084 BC.getOrCreateGlobalSymbol(TypeAddress, "TI", 0, TTypeAlignment);
1085 MCSymbol *DotSymbol = BC.Ctx->createNamedTempSymbol();
1086 Streamer.emitLabel(DotSymbol);
1087 const MCBinaryExpr *SubDotExpr = MCBinaryExpr::createSub(
1088 MCSymbolRefExpr::create(TypeSymbol, *BC.Ctx),
1089 MCSymbolRefExpr::create(DotSymbol, *BC.Ctx), *BC.Ctx);
1090 Streamer.emitValue(SubDotExpr, TTypeEncodingSize);
1091 } else {
1092 Streamer.emitIntValue(0, TTypeEncodingSize);
1094 break;
1098 for (uint8_t const &Byte : BF.getLSDATypeIndexTable())
1099 Streamer.emitIntValue(Byte, 1);
1102 void BinaryEmitter::emitDebugLineInfoForOriginalFunctions() {
1103 // If a function is in a CU containing at least one processed function, we
1104 // have to rewrite the whole line table for that CU. For unprocessed functions
1105 // we use data from the input line table.
1106 for (auto &It : BC.getBinaryFunctions()) {
1107 const BinaryFunction &Function = It.second;
1109 // If the function was emitted, its line info was emitted with it.
1110 if (Function.isEmitted())
1111 continue;
1113 const DWARFDebugLine::LineTable *LineTable = Function.getDWARFLineTable();
1114 if (!LineTable)
1115 continue; // nothing to update for this function
1117 const uint64_t Address = Function.getAddress();
1118 std::vector<uint32_t> Results;
1119 if (!LineTable->lookupAddressRange(
1120 {Address, object::SectionedAddress::UndefSection},
1121 Function.getSize(), Results))
1122 continue;
1124 if (Results.empty())
1125 continue;
1127 // The first row returned could be the last row matching the start address.
1128 // Find the first row with the same address that is not the end of the
1129 // sequence.
1130 uint64_t FirstRow = Results.front();
1131 while (FirstRow > 0) {
1132 const DWARFDebugLine::Row &PrevRow = LineTable->Rows[FirstRow - 1];
1133 if (PrevRow.Address.Address != Address || PrevRow.EndSequence)
1134 break;
1135 --FirstRow;
1138 const uint64_t EndOfSequenceAddress =
1139 Function.getAddress() + Function.getMaxSize();
1140 BC.getDwarfLineTable(Function.getDWARFUnit()->getOffset())
1141 .addLineTableSequence(LineTable, FirstRow, Results.back(),
1142 EndOfSequenceAddress);
1145 // For units that are completely unprocessed, use original debug line contents
1146 // eliminating the need to regenerate line info program.
1147 emitDebugLineInfoForUnprocessedCUs();
1150 void BinaryEmitter::emitDebugLineInfoForUnprocessedCUs() {
1151 // Sorted list of section offsets provides boundaries for section fragments,
1152 // where each fragment is the unit's contribution to debug line section.
1153 std::vector<uint64_t> StmtListOffsets;
1154 StmtListOffsets.reserve(BC.DwCtx->getNumCompileUnits());
1155 for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) {
1156 DWARFDie CUDie = CU->getUnitDIE();
1157 auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list));
1158 if (!StmtList)
1159 continue;
1161 StmtListOffsets.push_back(*StmtList);
1163 llvm::sort(StmtListOffsets);
1165 // For each CU that was not processed, emit its line info as a binary blob.
1166 for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) {
1167 if (BC.ProcessedCUs.count(CU.get()))
1168 continue;
1170 DWARFDie CUDie = CU->getUnitDIE();
1171 auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list));
1172 if (!StmtList)
1173 continue;
1175 StringRef DebugLineContents = CU->getLineSection().Data;
1177 const uint64_t Begin = *StmtList;
1179 // Statement list ends where the next unit contribution begins, or at the
1180 // end of the section.
1181 auto It = llvm::upper_bound(StmtListOffsets, Begin);
1182 const uint64_t End =
1183 It == StmtListOffsets.end() ? DebugLineContents.size() : *It;
1185 BC.getDwarfLineTable(CU->getOffset())
1186 .addRawContents(DebugLineContents.slice(Begin, End));
1190 void BinaryEmitter::emitDataSections(StringRef OrgSecPrefix) {
1191 for (BinarySection &Section : BC.sections()) {
1192 if (!Section.hasRelocations())
1193 continue;
1195 StringRef Prefix = Section.hasSectionRef() ? OrgSecPrefix : "";
1196 Section.emitAsData(Streamer, Prefix + Section.getName());
1197 Section.clearRelocations();
1201 namespace llvm {
1202 namespace bolt {
1204 void emitBinaryContext(MCStreamer &Streamer, BinaryContext &BC,
1205 StringRef OrgSecPrefix) {
1206 BinaryEmitter(Streamer, BC).emitAll(OrgSecPrefix);
1209 void emitFunctionBody(MCStreamer &Streamer, BinaryFunction &BF,
1210 FunctionFragment &FF, bool EmitCodeOnly) {
1211 BinaryEmitter(Streamer, BF.getBinaryContext())
1212 .emitFunctionBody(BF, FF, EmitCodeOnly);
1215 } // namespace bolt
1216 } // namespace llvm