[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / bolt / lib / Core / Exceptions.cpp
blobab1885f6bb5851fb5a9f4d006460dce6570be8a8
1 //===- bolt/Core/Exceptions.cpp - Helpers for C++ exceptions --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements functions for handling C++ exception meta data.
11 // Some of the code is taken from examples/ExceptionDemo
13 //===----------------------------------------------------------------------===//
15 #include "bolt/Core/Exceptions.h"
16 #include "bolt/Core/BinaryFunction.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/BinaryFormat/Dwarf.h"
20 #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h"
21 #include "llvm/Support/Casting.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/Errc.h"
25 #include "llvm/Support/LEB128.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <map>
30 #undef DEBUG_TYPE
31 #define DEBUG_TYPE "bolt-exceptions"
33 using namespace llvm::dwarf;
35 namespace opts {
37 extern llvm::cl::OptionCategory BoltCategory;
39 extern llvm::cl::opt<unsigned> Verbosity;
41 static llvm::cl::opt<bool>
42 PrintExceptions("print-exceptions",
43 llvm::cl::desc("print exception handling data"),
44 llvm::cl::Hidden, llvm::cl::cat(BoltCategory));
46 } // namespace opts
48 namespace llvm {
49 namespace bolt {
51 // Read and dump the .gcc_exception_table section entry.
53 // .gcc_except_table section contains a set of Language-Specific Data Areas -
54 // a fancy name for exception handling tables. There's one LSDA entry per
55 // function. However, we can't actually tell which function LSDA refers to
56 // unless we parse .eh_frame entry that refers to the LSDA.
57 // Then inside LSDA most addresses are encoded relative to the function start,
58 // so we need the function context in order to get to real addresses.
60 // The best visual representation of the tables comprising LSDA and
61 // relationships between them is illustrated at:
62 // https://github.com/itanium-cxx-abi/cxx-abi/blob/master/exceptions.pdf
63 // Keep in mind that GCC implementation deviates slightly from that document.
65 // To summarize, there are 4 tables in LSDA: call site table, actions table,
66 // types table, and types index table (for indirection). The main table contains
67 // call site entries. Each call site includes a PC range that can throw an
68 // exception, a handler (landing pad), and a reference to an entry in the action
69 // table. The handler and/or action could be 0. The action entry is a head
70 // of a list of actions associated with a call site. The action table contains
71 // all such lists (it could be optimized to share list tails). Each action could
72 // be either to catch an exception of a given type, to perform a cleanup, or to
73 // propagate the exception after filtering it out (e.g. to make sure function
74 // exception specification is not violated). Catch action contains a reference
75 // to an entry in the type table, and filter action refers to an entry in the
76 // type index table to encode a set of types to filter.
78 // Call site table follows LSDA header. Action table immediately follows the
79 // call site table.
81 // Both types table and type index table start at the same location, but they
82 // grow in opposite directions (types go up, indices go down). The beginning of
83 // these tables is encoded in LSDA header. Sizes for both of the tables are not
84 // included anywhere.
86 // We have to parse all of the tables to determine their sizes. Then we have
87 // to parse the call site table and associate discovered information with
88 // actual call instructions and landing pad blocks.
90 // For the purpose of rewriting exception handling tables, we can reuse action,
91 // and type index tables in their original binary format.
93 // Type table could be encoded using position-independent references, and thus
94 // may require relocation.
96 // Ideally we should be able to re-write LSDA in-place, without the need to
97 // allocate a new space for it. Sadly there's no guarantee that the new call
98 // site table will be the same size as GCC uses uleb encodings for PC offsets.
100 // Note: some functions have LSDA entries with 0 call site entries.
101 void BinaryFunction::parseLSDA(ArrayRef<uint8_t> LSDASectionData,
102 uint64_t LSDASectionAddress) {
103 assert(CurrentState == State::Disassembled && "unexpected function state");
105 if (!getLSDAAddress())
106 return;
108 DWARFDataExtractor Data(
109 StringRef(reinterpret_cast<const char *>(LSDASectionData.data()),
110 LSDASectionData.size()),
111 BC.DwCtx->getDWARFObj().isLittleEndian(),
112 BC.DwCtx->getDWARFObj().getAddressSize());
113 uint64_t Offset = getLSDAAddress() - LSDASectionAddress;
114 assert(Data.isValidOffset(Offset) && "wrong LSDA address");
116 const uint8_t LPStartEncoding = Data.getU8(&Offset);
117 uint64_t LPStart = Address;
118 if (LPStartEncoding != dwarf::DW_EH_PE_omit) {
119 std::optional<uint64_t> MaybeLPStart = Data.getEncodedPointer(
120 &Offset, LPStartEncoding, Offset + LSDASectionAddress);
121 if (!MaybeLPStart) {
122 errs() << "BOLT-ERROR: unsupported LPStartEncoding: "
123 << (unsigned)LPStartEncoding << '\n';
124 exit(1);
126 LPStart = *MaybeLPStart;
129 const uint8_t TTypeEncoding = Data.getU8(&Offset);
130 LSDATypeEncoding = TTypeEncoding;
131 size_t TTypeEncodingSize = 0;
132 uintptr_t TTypeEnd = 0;
133 if (TTypeEncoding != DW_EH_PE_omit) {
134 TTypeEnd = Data.getULEB128(&Offset);
135 TTypeEncodingSize = BC.getDWARFEncodingSize(TTypeEncoding);
138 if (opts::PrintExceptions) {
139 outs() << "[LSDA at 0x" << Twine::utohexstr(getLSDAAddress())
140 << " for function " << *this << "]:\n";
141 outs() << "LPStart Encoding = 0x" << Twine::utohexstr(LPStartEncoding)
142 << '\n';
143 outs() << "LPStart = 0x" << Twine::utohexstr(LPStart) << '\n';
144 outs() << "TType Encoding = 0x" << Twine::utohexstr(TTypeEncoding) << '\n';
145 outs() << "TType End = " << TTypeEnd << '\n';
148 // Table to store list of indices in type table. Entries are uleb128 values.
149 const uint64_t TypeIndexTableStart = Offset + TTypeEnd;
151 // Offset past the last decoded index.
152 uint64_t MaxTypeIndexTableOffset = 0;
154 // Max positive index used in type table.
155 unsigned MaxTypeIndex = 0;
157 // The actual type info table starts at the same location, but grows in
158 // opposite direction. TTypeEncoding is used to encode stored values.
159 const uint64_t TypeTableStart = Offset + TTypeEnd;
161 uint8_t CallSiteEncoding = Data.getU8(&Offset);
162 uint32_t CallSiteTableLength = Data.getULEB128(&Offset);
163 uint64_t CallSiteTableStart = Offset;
164 uint64_t CallSiteTableEnd = CallSiteTableStart + CallSiteTableLength;
165 uint64_t CallSitePtr = CallSiteTableStart;
166 uint64_t ActionTableStart = CallSiteTableEnd;
168 if (opts::PrintExceptions) {
169 outs() << "CallSite Encoding = " << (unsigned)CallSiteEncoding << '\n';
170 outs() << "CallSite table length = " << CallSiteTableLength << '\n';
171 outs() << '\n';
174 this->HasEHRanges = CallSitePtr < CallSiteTableEnd;
175 const uint64_t RangeBase = getAddress();
176 while (CallSitePtr < CallSiteTableEnd) {
177 uint64_t Start = *Data.getEncodedPointer(&CallSitePtr, CallSiteEncoding,
178 CallSitePtr + LSDASectionAddress);
179 uint64_t Length = *Data.getEncodedPointer(&CallSitePtr, CallSiteEncoding,
180 CallSitePtr + LSDASectionAddress);
181 uint64_t LandingPad = *Data.getEncodedPointer(
182 &CallSitePtr, CallSiteEncoding, CallSitePtr + LSDASectionAddress);
183 uint64_t ActionEntry = Data.getULEB128(&CallSitePtr);
184 if (LandingPad)
185 LandingPad += LPStart;
187 if (opts::PrintExceptions) {
188 outs() << "Call Site: [0x" << Twine::utohexstr(RangeBase + Start)
189 << ", 0x" << Twine::utohexstr(RangeBase + Start + Length)
190 << "); landing pad: 0x" << Twine::utohexstr(LandingPad)
191 << "; action entry: 0x" << Twine::utohexstr(ActionEntry) << "\n";
192 outs() << " current offset is " << (CallSitePtr - CallSiteTableStart)
193 << '\n';
196 // Create a handler entry if necessary.
197 MCSymbol *LPSymbol = nullptr;
198 if (LandingPad) {
199 // Verify if landing pad code is located outside current function
200 // Support landing pad to builtin_unreachable
201 if (LandingPad < Address || LandingPad > Address + getSize()) {
202 BinaryFunction *Fragment =
203 BC.getBinaryFunctionContainingAddress(LandingPad);
204 assert(Fragment != nullptr &&
205 "BOLT-ERROR: cannot find landing pad fragment");
206 BC.addInterproceduralReference(this, Fragment->getAddress());
207 BC.processInterproceduralReferences();
208 assert(isParentOrChildOf(*Fragment) &&
209 "BOLT-ERROR: cannot have landing pads in different functions");
210 setHasIndirectTargetToSplitFragment(true);
211 BC.addFragmentsToSkip(this);
212 return;
215 const uint64_t LPOffset = LandingPad - getAddress();
216 if (!getInstructionAtOffset(LPOffset)) {
217 if (opts::Verbosity >= 1)
218 errs() << "BOLT-WARNING: landing pad " << Twine::utohexstr(LPOffset)
219 << " not pointing to an instruction in function " << *this
220 << " - ignoring.\n";
221 } else {
222 auto Label = Labels.find(LPOffset);
223 if (Label != Labels.end()) {
224 LPSymbol = Label->second;
225 } else {
226 LPSymbol = BC.Ctx->createNamedTempSymbol("LP");
227 Labels[LPOffset] = LPSymbol;
232 // Mark all call instructions in the range.
233 auto II = Instructions.find(Start);
234 auto IE = Instructions.end();
235 assert(II != IE && "exception range not pointing to an instruction");
236 do {
237 MCInst &Instruction = II->second;
238 if (BC.MIB->isCall(Instruction) &&
239 !BC.MIB->getConditionalTailCall(Instruction)) {
240 assert(!BC.MIB->isInvoke(Instruction) &&
241 "overlapping exception ranges detected");
242 // Add extra operands to a call instruction making it an invoke from
243 // now on.
244 BC.MIB->addEHInfo(Instruction,
245 MCPlus::MCLandingPad(LPSymbol, ActionEntry));
247 ++II;
248 } while (II != IE && II->first < Start + Length);
250 if (ActionEntry != 0) {
251 auto printType = [&](int Index, raw_ostream &OS) {
252 assert(Index > 0 && "only positive indices are valid");
253 uint64_t TTEntry = TypeTableStart - Index * TTypeEncodingSize;
254 const uint64_t TTEntryAddress = TTEntry + LSDASectionAddress;
255 uint64_t TypeAddress =
256 *Data.getEncodedPointer(&TTEntry, TTypeEncoding, TTEntryAddress);
257 if ((TTypeEncoding & DW_EH_PE_pcrel) && TypeAddress == TTEntryAddress)
258 TypeAddress = 0;
259 if (TypeAddress == 0) {
260 OS << "<all>";
261 return;
263 if (TTypeEncoding & DW_EH_PE_indirect) {
264 ErrorOr<uint64_t> PointerOrErr = BC.getPointerAtAddress(TypeAddress);
265 assert(PointerOrErr && "failed to decode indirect address");
266 TypeAddress = *PointerOrErr;
268 if (BinaryData *TypeSymBD = BC.getBinaryDataAtAddress(TypeAddress))
269 OS << TypeSymBD->getName();
270 else
271 OS << "0x" << Twine::utohexstr(TypeAddress);
273 if (opts::PrintExceptions)
274 outs() << " actions: ";
275 uint64_t ActionPtr = ActionTableStart + ActionEntry - 1;
276 int64_t ActionType;
277 int64_t ActionNext;
278 const char *Sep = "";
279 do {
280 ActionType = Data.getSLEB128(&ActionPtr);
281 const uint32_t Self = ActionPtr;
282 ActionNext = Data.getSLEB128(&ActionPtr);
283 if (opts::PrintExceptions)
284 outs() << Sep << "(" << ActionType << ", " << ActionNext << ") ";
285 if (ActionType == 0) {
286 if (opts::PrintExceptions)
287 outs() << "cleanup";
288 } else if (ActionType > 0) {
289 // It's an index into a type table.
290 MaxTypeIndex =
291 std::max(MaxTypeIndex, static_cast<unsigned>(ActionType));
292 if (opts::PrintExceptions) {
293 outs() << "catch type ";
294 printType(ActionType, outs());
296 } else { // ActionType < 0
297 if (opts::PrintExceptions)
298 outs() << "filter exception types ";
299 const char *TSep = "";
300 // ActionType is a negative *byte* offset into *uleb128-encoded* table
301 // of indices with base 1.
302 // E.g. -1 means offset 0, -2 is offset 1, etc. The indices are
303 // encoded using uleb128 thus we cannot directly dereference them.
304 uint64_t TypeIndexTablePtr = TypeIndexTableStart - ActionType - 1;
305 while (uint64_t Index = Data.getULEB128(&TypeIndexTablePtr)) {
306 MaxTypeIndex = std::max(MaxTypeIndex, static_cast<unsigned>(Index));
307 if (opts::PrintExceptions) {
308 outs() << TSep;
309 printType(Index, outs());
310 TSep = ", ";
313 MaxTypeIndexTableOffset = std::max(
314 MaxTypeIndexTableOffset, TypeIndexTablePtr - TypeIndexTableStart);
317 Sep = "; ";
319 ActionPtr = Self + ActionNext;
320 } while (ActionNext);
321 if (opts::PrintExceptions)
322 outs() << '\n';
325 if (opts::PrintExceptions)
326 outs() << '\n';
328 assert(TypeIndexTableStart + MaxTypeIndexTableOffset <=
329 Data.getData().size() &&
330 "LSDA entry has crossed section boundary");
332 if (TTypeEnd) {
333 LSDAActionTable = LSDASectionData.slice(
334 ActionTableStart, TypeIndexTableStart -
335 MaxTypeIndex * TTypeEncodingSize -
336 ActionTableStart);
337 for (unsigned Index = 1; Index <= MaxTypeIndex; ++Index) {
338 uint64_t TTEntry = TypeTableStart - Index * TTypeEncodingSize;
339 const uint64_t TTEntryAddress = TTEntry + LSDASectionAddress;
340 uint64_t TypeAddress =
341 *Data.getEncodedPointer(&TTEntry, TTypeEncoding, TTEntryAddress);
342 if ((TTypeEncoding & DW_EH_PE_pcrel) && (TypeAddress == TTEntryAddress))
343 TypeAddress = 0;
344 if (TTypeEncoding & DW_EH_PE_indirect) {
345 LSDATypeAddressTable.emplace_back(TypeAddress);
346 if (TypeAddress) {
347 ErrorOr<uint64_t> PointerOrErr = BC.getPointerAtAddress(TypeAddress);
348 assert(PointerOrErr && "failed to decode indirect address");
349 TypeAddress = *PointerOrErr;
352 LSDATypeTable.emplace_back(TypeAddress);
354 LSDATypeIndexTable =
355 LSDASectionData.slice(TypeIndexTableStart, MaxTypeIndexTableOffset);
359 void BinaryFunction::updateEHRanges() {
360 if (getSize() == 0)
361 return;
363 assert(CurrentState == State::CFG_Finalized && "unexpected state");
365 // Build call sites table.
366 struct EHInfo {
367 const MCSymbol *LP; // landing pad
368 uint64_t Action;
371 // Sites to update.
372 CallSitesList Sites;
374 for (FunctionFragment &FF : getLayout().fragments()) {
375 // If previous call can throw, this is its exception handler.
376 EHInfo PreviousEH = {nullptr, 0};
378 // Marker for the beginning of exceptions range.
379 const MCSymbol *StartRange = nullptr;
381 for (BinaryBasicBlock *const BB : FF) {
382 for (MCInst &Instr : *BB) {
383 if (!BC.MIB->isCall(Instr))
384 continue;
386 // Instruction can throw an exception that should be handled.
387 const bool Throws = BC.MIB->isInvoke(Instr);
389 // Ignore the call if it's a continuation of a no-throw gap.
390 if (!Throws && !StartRange)
391 continue;
393 // Extract exception handling information from the instruction.
394 const MCSymbol *LP = nullptr;
395 uint64_t Action = 0;
396 if (const std::optional<MCPlus::MCLandingPad> EHInfo =
397 BC.MIB->getEHInfo(Instr))
398 std::tie(LP, Action) = *EHInfo;
400 // No action if the exception handler has not changed.
401 if (Throws && StartRange && PreviousEH.LP == LP &&
402 PreviousEH.Action == Action)
403 continue;
405 // Same symbol is used for the beginning and the end of the range.
406 MCSymbol *EHSymbol;
407 if (MCSymbol *InstrLabel = BC.MIB->getLabel(Instr)) {
408 EHSymbol = InstrLabel;
409 } else {
410 std::unique_lock<llvm::sys::RWMutex> Lock(BC.CtxMutex);
411 EHSymbol = BC.Ctx->createNamedTempSymbol("EH");
412 BC.MIB->setLabel(Instr, EHSymbol);
415 // At this point we could be in one of the following states:
417 // I. Exception handler has changed and we need to close previous range
418 // and start a new one.
420 // II. Start a new exception range after the gap.
422 // III. Close current exception range and start a new gap.
423 const MCSymbol *EndRange;
424 if (StartRange) {
425 // I, III:
426 EndRange = EHSymbol;
427 } else {
428 // II:
429 StartRange = EHSymbol;
430 EndRange = nullptr;
433 // Close the previous range.
434 if (EndRange)
435 Sites.emplace_back(
436 FF.getFragmentNum(),
437 CallSite{StartRange, EndRange, PreviousEH.LP, PreviousEH.Action});
439 if (Throws) {
440 // I, II:
441 StartRange = EHSymbol;
442 PreviousEH = EHInfo{LP, Action};
443 } else {
444 StartRange = nullptr;
449 // Check if we need to close the range.
450 if (StartRange) {
451 const MCSymbol *EndRange = getFunctionEndLabel(FF.getFragmentNum());
452 Sites.emplace_back(
453 FF.getFragmentNum(),
454 CallSite{StartRange, EndRange, PreviousEH.LP, PreviousEH.Action});
458 addCallSites(Sites);
461 const uint8_t DWARF_CFI_PRIMARY_OPCODE_MASK = 0xc0;
463 CFIReaderWriter::CFIReaderWriter(const DWARFDebugFrame &EHFrame) {
464 // Prepare FDEs for fast lookup
465 for (const dwarf::FrameEntry &Entry : EHFrame.entries()) {
466 const auto *CurFDE = dyn_cast<dwarf::FDE>(&Entry);
467 // Skip CIEs.
468 if (!CurFDE)
469 continue;
470 // There could me multiple FDEs with the same initial address, and perhaps
471 // different sizes (address ranges). Use the first entry with non-zero size.
472 auto FDEI = FDEs.lower_bound(CurFDE->getInitialLocation());
473 if (FDEI != FDEs.end() && FDEI->first == CurFDE->getInitialLocation()) {
474 if (CurFDE->getAddressRange()) {
475 if (FDEI->second->getAddressRange() == 0) {
476 FDEI->second = CurFDE;
477 } else if (opts::Verbosity > 0) {
478 errs() << "BOLT-WARNING: different FDEs for function at 0x"
479 << Twine::utohexstr(FDEI->first)
480 << " detected; sizes: " << FDEI->second->getAddressRange()
481 << " and " << CurFDE->getAddressRange() << '\n';
484 } else {
485 FDEs.emplace_hint(FDEI, CurFDE->getInitialLocation(), CurFDE);
490 bool CFIReaderWriter::fillCFIInfoFor(BinaryFunction &Function) const {
491 uint64_t Address = Function.getAddress();
492 auto I = FDEs.find(Address);
493 // Ignore zero-length FDE ranges.
494 if (I == FDEs.end() || !I->second->getAddressRange())
495 return true;
497 const FDE &CurFDE = *I->second;
498 std::optional<uint64_t> LSDA = CurFDE.getLSDAAddress();
499 Function.setLSDAAddress(LSDA ? *LSDA : 0);
501 uint64_t Offset = Function.getFirstInstructionOffset();
502 uint64_t CodeAlignment = CurFDE.getLinkedCIE()->getCodeAlignmentFactor();
503 uint64_t DataAlignment = CurFDE.getLinkedCIE()->getDataAlignmentFactor();
504 if (CurFDE.getLinkedCIE()->getPersonalityAddress()) {
505 Function.setPersonalityFunction(
506 *CurFDE.getLinkedCIE()->getPersonalityAddress());
507 Function.setPersonalityEncoding(
508 *CurFDE.getLinkedCIE()->getPersonalityEncoding());
511 auto decodeFrameInstruction = [&Function, &Offset, Address, CodeAlignment,
512 DataAlignment](
513 const CFIProgram::Instruction &Instr) {
514 uint8_t Opcode = Instr.Opcode;
515 if (Opcode & DWARF_CFI_PRIMARY_OPCODE_MASK)
516 Opcode &= DWARF_CFI_PRIMARY_OPCODE_MASK;
517 switch (Instr.Opcode) {
518 case DW_CFA_nop:
519 break;
520 case DW_CFA_advance_loc4:
521 case DW_CFA_advance_loc2:
522 case DW_CFA_advance_loc1:
523 case DW_CFA_advance_loc:
524 // Advance our current address
525 Offset += CodeAlignment * int64_t(Instr.Ops[0]);
526 break;
527 case DW_CFA_offset_extended_sf:
528 Function.addCFIInstruction(
529 Offset,
530 MCCFIInstruction::createOffset(
531 nullptr, Instr.Ops[0], DataAlignment * int64_t(Instr.Ops[1])));
532 break;
533 case DW_CFA_offset_extended:
534 case DW_CFA_offset:
535 Function.addCFIInstruction(
536 Offset, MCCFIInstruction::createOffset(nullptr, Instr.Ops[0],
537 DataAlignment * Instr.Ops[1]));
538 break;
539 case DW_CFA_restore_extended:
540 case DW_CFA_restore:
541 Function.addCFIInstruction(
542 Offset, MCCFIInstruction::createRestore(nullptr, Instr.Ops[0]));
543 break;
544 case DW_CFA_set_loc:
545 assert(Instr.Ops[0] >= Address && "set_loc out of function bounds");
546 assert(Instr.Ops[0] <= Address + Function.getSize() &&
547 "set_loc out of function bounds");
548 Offset = Instr.Ops[0] - Address;
549 break;
551 case DW_CFA_undefined:
552 Function.addCFIInstruction(
553 Offset, MCCFIInstruction::createUndefined(nullptr, Instr.Ops[0]));
554 break;
555 case DW_CFA_same_value:
556 Function.addCFIInstruction(
557 Offset, MCCFIInstruction::createSameValue(nullptr, Instr.Ops[0]));
558 break;
559 case DW_CFA_register:
560 Function.addCFIInstruction(
561 Offset, MCCFIInstruction::createRegister(nullptr, Instr.Ops[0],
562 Instr.Ops[1]));
563 break;
564 case DW_CFA_remember_state:
565 Function.addCFIInstruction(
566 Offset, MCCFIInstruction::createRememberState(nullptr));
567 break;
568 case DW_CFA_restore_state:
569 Function.addCFIInstruction(Offset,
570 MCCFIInstruction::createRestoreState(nullptr));
571 break;
572 case DW_CFA_def_cfa:
573 Function.addCFIInstruction(
574 Offset,
575 MCCFIInstruction::cfiDefCfa(nullptr, Instr.Ops[0], Instr.Ops[1]));
576 break;
577 case DW_CFA_def_cfa_sf:
578 Function.addCFIInstruction(
579 Offset,
580 MCCFIInstruction::cfiDefCfa(nullptr, Instr.Ops[0],
581 DataAlignment * int64_t(Instr.Ops[1])));
582 break;
583 case DW_CFA_def_cfa_register:
584 Function.addCFIInstruction(Offset, MCCFIInstruction::createDefCfaRegister(
585 nullptr, Instr.Ops[0]));
586 break;
587 case DW_CFA_def_cfa_offset:
588 Function.addCFIInstruction(
589 Offset, MCCFIInstruction::cfiDefCfaOffset(nullptr, Instr.Ops[0]));
590 break;
591 case DW_CFA_def_cfa_offset_sf:
592 Function.addCFIInstruction(
593 Offset, MCCFIInstruction::cfiDefCfaOffset(
594 nullptr, DataAlignment * int64_t(Instr.Ops[0])));
595 break;
596 case DW_CFA_GNU_args_size:
597 Function.addCFIInstruction(
598 Offset, MCCFIInstruction::createGnuArgsSize(nullptr, Instr.Ops[0]));
599 Function.setUsesGnuArgsSize();
600 break;
601 case DW_CFA_val_offset_sf:
602 case DW_CFA_val_offset:
603 if (opts::Verbosity >= 1) {
604 errs() << "BOLT-WARNING: DWARF val_offset() unimplemented\n";
606 return false;
607 case DW_CFA_def_cfa_expression:
608 case DW_CFA_val_expression:
609 case DW_CFA_expression: {
610 StringRef ExprBytes = Instr.Expression->getData();
611 std::string Str;
612 raw_string_ostream OS(Str);
613 // Manually encode this instruction using CFI escape
614 OS << Opcode;
615 if (Opcode != DW_CFA_def_cfa_expression)
616 encodeULEB128(Instr.Ops[0], OS);
617 encodeULEB128(ExprBytes.size(), OS);
618 OS << ExprBytes;
619 Function.addCFIInstruction(
620 Offset, MCCFIInstruction::createEscape(nullptr, OS.str()));
621 break;
623 case DW_CFA_MIPS_advance_loc8:
624 if (opts::Verbosity >= 1)
625 errs() << "BOLT-WARNING: DW_CFA_MIPS_advance_loc unimplemented\n";
626 return false;
627 case DW_CFA_GNU_window_save:
628 // DW_CFA_GNU_window_save and DW_CFA_GNU_NegateRAState just use the same
629 // id but mean different things. The latter is used in AArch64.
630 if (Function.getBinaryContext().isAArch64()) {
631 Function.addCFIInstruction(
632 Offset, MCCFIInstruction::createNegateRAState(nullptr));
633 break;
635 if (opts::Verbosity >= 1)
636 errs() << "BOLT-WARNING: DW_CFA_GNU_window_save unimplemented\n";
637 return false;
638 case DW_CFA_lo_user:
639 case DW_CFA_hi_user:
640 if (opts::Verbosity >= 1)
641 errs() << "BOLT-WARNING: DW_CFA_*_user unimplemented\n";
642 return false;
643 default:
644 if (opts::Verbosity >= 1)
645 errs() << "BOLT-WARNING: Unrecognized CFI instruction: " << Instr.Opcode
646 << '\n';
647 return false;
650 return true;
653 for (const CFIProgram::Instruction &Instr : CurFDE.getLinkedCIE()->cfis())
654 if (!decodeFrameInstruction(Instr))
655 return false;
657 for (const CFIProgram::Instruction &Instr : CurFDE.cfis())
658 if (!decodeFrameInstruction(Instr))
659 return false;
661 return true;
664 std::vector<char> CFIReaderWriter::generateEHFrameHeader(
665 const DWARFDebugFrame &OldEHFrame, const DWARFDebugFrame &NewEHFrame,
666 uint64_t EHFrameHeaderAddress,
667 std::vector<uint64_t> &FailedAddresses) const {
668 // Common PC -> FDE map to be written into .eh_frame_hdr.
669 std::map<uint64_t, uint64_t> PCToFDE;
671 // Presort array for binary search.
672 llvm::sort(FailedAddresses);
674 // Initialize PCToFDE using NewEHFrame.
675 for (dwarf::FrameEntry &Entry : NewEHFrame.entries()) {
676 const dwarf::FDE *FDE = dyn_cast<dwarf::FDE>(&Entry);
677 if (FDE == nullptr)
678 continue;
679 const uint64_t FuncAddress = FDE->getInitialLocation();
680 const uint64_t FDEAddress =
681 NewEHFrame.getEHFrameAddress() + FDE->getOffset();
683 // Ignore unused FDEs.
684 if (FuncAddress == 0)
685 continue;
687 // Add the address to the map unless we failed to write it.
688 if (!std::binary_search(FailedAddresses.begin(), FailedAddresses.end(),
689 FuncAddress)) {
690 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: FDE for function at 0x"
691 << Twine::utohexstr(FuncAddress) << " is at 0x"
692 << Twine::utohexstr(FDEAddress) << '\n');
693 PCToFDE[FuncAddress] = FDEAddress;
697 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: new .eh_frame contains "
698 << llvm::size(NewEHFrame.entries()) << " entries\n");
700 // Add entries from the original .eh_frame corresponding to the functions
701 // that we did not update.
702 for (const dwarf::FrameEntry &Entry : OldEHFrame) {
703 const dwarf::FDE *FDE = dyn_cast<dwarf::FDE>(&Entry);
704 if (FDE == nullptr)
705 continue;
706 const uint64_t FuncAddress = FDE->getInitialLocation();
707 const uint64_t FDEAddress =
708 OldEHFrame.getEHFrameAddress() + FDE->getOffset();
710 // Add the address if we failed to write it.
711 if (PCToFDE.count(FuncAddress) == 0) {
712 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: old FDE for function at 0x"
713 << Twine::utohexstr(FuncAddress) << " is at 0x"
714 << Twine::utohexstr(FDEAddress) << '\n');
715 PCToFDE[FuncAddress] = FDEAddress;
719 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: old .eh_frame contains "
720 << llvm::size(OldEHFrame.entries()) << " entries\n");
722 // Generate a new .eh_frame_hdr based on the new map.
724 // Header plus table of entries of size 8 bytes.
725 std::vector<char> EHFrameHeader(12 + PCToFDE.size() * 8);
727 // Version is 1.
728 EHFrameHeader[0] = 1;
729 // Encoding of the eh_frame pointer.
730 EHFrameHeader[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4;
731 // Encoding of the count field to follow.
732 EHFrameHeader[2] = DW_EH_PE_udata4;
733 // Encoding of the table entries - 4-byte offset from the start of the header.
734 EHFrameHeader[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
736 // Address of eh_frame. Use the new one.
737 support::ulittle32_t::ref(EHFrameHeader.data() + 4) =
738 NewEHFrame.getEHFrameAddress() - (EHFrameHeaderAddress + 4);
740 // Number of entries in the table (FDE count).
741 support::ulittle32_t::ref(EHFrameHeader.data() + 8) = PCToFDE.size();
743 // Write the table at offset 12.
744 char *Ptr = EHFrameHeader.data();
745 uint32_t Offset = 12;
746 for (const auto &PCI : PCToFDE) {
747 int64_t InitialPCOffset = PCI.first - EHFrameHeaderAddress;
748 assert(isInt<32>(InitialPCOffset) && "PC offset out of bounds");
749 support::ulittle32_t::ref(Ptr + Offset) = InitialPCOffset;
750 Offset += 4;
751 int64_t FDEOffset = PCI.second - EHFrameHeaderAddress;
752 assert(isInt<32>(FDEOffset) && "FDE offset out of bounds");
753 support::ulittle32_t::ref(Ptr + Offset) = FDEOffset;
754 Offset += 4;
757 return EHFrameHeader;
760 Error EHFrameParser::parseCIE(uint64_t StartOffset) {
761 uint8_t Version = Data.getU8(&Offset);
762 const char *Augmentation = Data.getCStr(&Offset);
763 StringRef AugmentationString(Augmentation ? Augmentation : "");
764 uint8_t AddressSize =
765 Version < 4 ? Data.getAddressSize() : Data.getU8(&Offset);
766 Data.setAddressSize(AddressSize);
767 // Skip segment descriptor size
768 if (Version >= 4)
769 Offset += 1;
770 // Skip code alignment factor
771 Data.getULEB128(&Offset);
772 // Skip data alignment
773 Data.getSLEB128(&Offset);
774 // Skip return address register
775 if (Version == 1)
776 Offset += 1;
777 else
778 Data.getULEB128(&Offset);
780 uint32_t FDEPointerEncoding = DW_EH_PE_absptr;
781 uint32_t LSDAPointerEncoding = DW_EH_PE_omit;
782 // Walk the augmentation string to get all the augmentation data.
783 for (unsigned i = 0, e = AugmentationString.size(); i != e; ++i) {
784 switch (AugmentationString[i]) {
785 default:
786 return createStringError(
787 errc::invalid_argument,
788 "unknown augmentation character in entry at 0x%" PRIx64, StartOffset);
789 case 'L':
790 LSDAPointerEncoding = Data.getU8(&Offset);
791 break;
792 case 'P': {
793 uint32_t PersonalityEncoding = Data.getU8(&Offset);
794 std::optional<uint64_t> Personality =
795 Data.getEncodedPointer(&Offset, PersonalityEncoding,
796 EHFrameAddress ? EHFrameAddress + Offset : 0);
797 // Patch personality address
798 if (Personality)
799 PatcherCallback(*Personality, Offset, PersonalityEncoding);
800 break;
802 case 'R':
803 FDEPointerEncoding = Data.getU8(&Offset);
804 break;
805 case 'z':
806 if (i)
807 return createStringError(
808 errc::invalid_argument,
809 "'z' must be the first character at 0x%" PRIx64, StartOffset);
810 // Skip augmentation length
811 Data.getULEB128(&Offset);
812 break;
813 case 'S':
814 case 'B':
815 break;
818 Entries.emplace_back(std::make_unique<CIEInfo>(
819 FDEPointerEncoding, LSDAPointerEncoding, AugmentationString));
820 CIEs[StartOffset] = &*Entries.back();
821 return Error::success();
824 Error EHFrameParser::parseFDE(uint64_t CIEPointer,
825 uint64_t StartStructureOffset) {
826 std::optional<uint64_t> LSDAAddress;
827 CIEInfo *Cie = CIEs[StartStructureOffset - CIEPointer];
829 // The address size is encoded in the CIE we reference.
830 if (!Cie)
831 return createStringError(errc::invalid_argument,
832 "parsing FDE data at 0x%" PRIx64
833 " failed due to missing CIE",
834 StartStructureOffset);
835 // Patch initial location
836 if (auto Val = Data.getEncodedPointer(&Offset, Cie->FDEPtrEncoding,
837 EHFrameAddress + Offset)) {
838 PatcherCallback(*Val, Offset, Cie->FDEPtrEncoding);
840 // Skip address range
841 Data.getEncodedPointer(&Offset, Cie->FDEPtrEncoding, 0);
843 // Process augmentation data for this FDE.
844 StringRef AugmentationString = Cie->AugmentationString;
845 if (!AugmentationString.empty() && Cie->LSDAPtrEncoding != DW_EH_PE_omit) {
846 // Skip augmentation length
847 Data.getULEB128(&Offset);
848 LSDAAddress =
849 Data.getEncodedPointer(&Offset, Cie->LSDAPtrEncoding,
850 EHFrameAddress ? Offset + EHFrameAddress : 0);
851 // Patch LSDA address
852 PatcherCallback(*LSDAAddress, Offset, Cie->LSDAPtrEncoding);
854 return Error::success();
857 Error EHFrameParser::parse() {
858 while (Data.isValidOffset(Offset)) {
859 const uint64_t StartOffset = Offset;
861 uint64_t Length;
862 DwarfFormat Format;
863 std::tie(Length, Format) = Data.getInitialLength(&Offset);
865 // If the Length is 0, then this CIE is a terminator
866 if (Length == 0)
867 break;
869 const uint64_t StartStructureOffset = Offset;
870 const uint64_t EndStructureOffset = Offset + Length;
872 Error Err = Error::success();
873 const uint64_t Id = Data.getRelocatedValue(4, &Offset,
874 /*SectionIndex=*/nullptr, &Err);
875 if (Err)
876 return Err;
878 if (!Id) {
879 if (Error Err = parseCIE(StartOffset))
880 return Err;
881 } else {
882 if (Error Err = parseFDE(Id, StartStructureOffset))
883 return Err;
885 Offset = EndStructureOffset;
888 return Error::success();
891 Error EHFrameParser::parse(DWARFDataExtractor Data, uint64_t EHFrameAddress,
892 PatcherCallbackTy PatcherCallback) {
893 EHFrameParser Parser(Data, EHFrameAddress, PatcherCallback);
894 return Parser.parse();
897 } // namespace bolt
898 } // namespace llvm