[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / lib / Analysis / Loads.cpp
blob5916d2ab48ececfe3a2c56ab2b624fbd803b1c6a
1 //===- Loads.cpp - Local load analysis ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines simple local analyses for load instructions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/Loads.h"
14 #include "llvm/Analysis/AliasAnalysis.h"
15 #include "llvm/Analysis/AssumeBundleQueries.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/MemoryBuiltins.h"
18 #include "llvm/Analysis/MemoryLocation.h"
19 #include "llvm/Analysis/ScalarEvolution.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Operator.h"
27 using namespace llvm;
29 static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment,
30 const DataLayout &DL) {
31 Align BA = Base->getPointerAlignment(DL);
32 return BA >= Alignment && Offset.isAligned(BA);
35 /// Test if V is always a pointer to allocated and suitably aligned memory for
36 /// a simple load or store.
37 static bool isDereferenceableAndAlignedPointer(
38 const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL,
39 const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT,
40 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited,
41 unsigned MaxDepth) {
42 assert(V->getType()->isPointerTy() && "Base must be pointer");
44 // Recursion limit.
45 if (MaxDepth-- == 0)
46 return false;
48 // Already visited? Bail out, we've likely hit unreachable code.
49 if (!Visited.insert(V).second)
50 return false;
52 // Note that it is not safe to speculate into a malloc'd region because
53 // malloc may return null.
55 // For GEPs, determine if the indexing lands within the allocated object.
56 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
57 const Value *Base = GEP->getPointerOperand();
59 APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
60 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
61 !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value()))
62 .isMinValue())
63 return false;
65 // If the base pointer is dereferenceable for Offset+Size bytes, then the
66 // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base
67 // pointer is aligned to Align bytes, and the Offset is divisible by Align
68 // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
69 // aligned to Align bytes.
71 // Offset and Size may have different bit widths if we have visited an
72 // addrspacecast, so we can't do arithmetic directly on the APInt values.
73 return isDereferenceableAndAlignedPointer(
74 Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL,
75 CtxI, AC, DT, TLI, Visited, MaxDepth);
78 // bitcast instructions are no-ops as far as dereferenceability is concerned.
79 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
80 if (BC->getSrcTy()->isPointerTy())
81 return isDereferenceableAndAlignedPointer(
82 BC->getOperand(0), Alignment, Size, DL, CtxI, AC, DT, TLI,
83 Visited, MaxDepth);
86 // Recurse into both hands of select.
87 if (const SelectInst *Sel = dyn_cast<SelectInst>(V)) {
88 return isDereferenceableAndAlignedPointer(Sel->getTrueValue(), Alignment,
89 Size, DL, CtxI, AC, DT, TLI,
90 Visited, MaxDepth) &&
91 isDereferenceableAndAlignedPointer(Sel->getFalseValue(), Alignment,
92 Size, DL, CtxI, AC, DT, TLI,
93 Visited, MaxDepth);
96 bool CheckForNonNull, CheckForFreed;
97 APInt KnownDerefBytes(Size.getBitWidth(),
98 V->getPointerDereferenceableBytes(DL, CheckForNonNull,
99 CheckForFreed));
100 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) &&
101 !CheckForFreed)
102 if (!CheckForNonNull || isKnownNonZero(V, DL, 0, AC, CtxI, DT)) {
103 // As we recursed through GEPs to get here, we've incrementally checked
104 // that each step advanced by a multiple of the alignment. If our base is
105 // properly aligned, then the original offset accessed must also be.
106 APInt Offset(DL.getTypeStoreSizeInBits(V->getType()), 0);
107 return isAligned(V, Offset, Alignment, DL);
110 /// TODO refactor this function to be able to search independently for
111 /// Dereferencability and Alignment requirements.
114 if (const auto *Call = dyn_cast<CallBase>(V)) {
115 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
116 return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI,
117 AC, DT, TLI, Visited, MaxDepth);
119 // If we have a call we can't recurse through, check to see if this is an
120 // allocation function for which we can establish an minimum object size.
121 // Such a minimum object size is analogous to a deref_or_null attribute in
122 // that we still need to prove the result non-null at point of use.
123 // NOTE: We can only use the object size as a base fact as we a) need to
124 // prove alignment too, and b) don't want the compile time impact of a
125 // separate recursive walk.
126 ObjectSizeOpts Opts;
127 // TODO: It may be okay to round to align, but that would imply that
128 // accessing slightly out of bounds was legal, and we're currently
129 // inconsistent about that. For the moment, be conservative.
130 Opts.RoundToAlign = false;
131 Opts.NullIsUnknownSize = true;
132 uint64_t ObjSize;
133 if (getObjectSize(V, ObjSize, DL, TLI, Opts)) {
134 APInt KnownDerefBytes(Size.getBitWidth(), ObjSize);
135 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) &&
136 isKnownNonZero(V, DL, 0, AC, CtxI, DT) && !V->canBeFreed()) {
137 // As we recursed through GEPs to get here, we've incrementally
138 // checked that each step advanced by a multiple of the alignment. If
139 // our base is properly aligned, then the original offset accessed
140 // must also be.
141 APInt Offset(DL.getTypeStoreSizeInBits(V->getType()), 0);
142 return isAligned(V, Offset, Alignment, DL);
147 // For gc.relocate, look through relocations
148 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
149 return isDereferenceableAndAlignedPointer(RelocateInst->getDerivedPtr(),
150 Alignment, Size, DL, CtxI, AC, DT,
151 TLI, Visited, MaxDepth);
153 if (const AddrSpaceCastOperator *ASC = dyn_cast<AddrSpaceCastOperator>(V))
154 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment,
155 Size, DL, CtxI, AC, DT, TLI,
156 Visited, MaxDepth);
158 if (CtxI) {
159 /// Look through assumes to see if both dereferencability and alignment can
160 /// be provent by an assume
161 RetainedKnowledge AlignRK;
162 RetainedKnowledge DerefRK;
163 if (getKnowledgeForValue(
164 V, {Attribute::Dereferenceable, Attribute::Alignment}, AC,
165 [&](RetainedKnowledge RK, Instruction *Assume, auto) {
166 if (!isValidAssumeForContext(Assume, CtxI))
167 return false;
168 if (RK.AttrKind == Attribute::Alignment)
169 AlignRK = std::max(AlignRK, RK);
170 if (RK.AttrKind == Attribute::Dereferenceable)
171 DerefRK = std::max(DerefRK, RK);
172 if (AlignRK && DerefRK && AlignRK.ArgValue >= Alignment.value() &&
173 DerefRK.ArgValue >= Size.getZExtValue())
174 return true; // We have found what we needed so we stop looking
175 return false; // Other assumes may have better information. so
176 // keep looking
178 return true;
181 // If we don't know, assume the worst.
182 return false;
185 bool llvm::isDereferenceableAndAlignedPointer(
186 const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL,
187 const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT,
188 const TargetLibraryInfo *TLI) {
189 // Note: At the moment, Size can be zero. This ends up being interpreted as
190 // a query of whether [Base, V] is dereferenceable and V is aligned (since
191 // that's what the implementation happened to do). It's unclear if this is
192 // the desired semantic, but at least SelectionDAG does exercise this case.
194 SmallPtrSet<const Value *, 32> Visited;
195 return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, AC,
196 DT, TLI, Visited, 16);
199 bool llvm::isDereferenceableAndAlignedPointer(
200 const Value *V, Type *Ty, Align Alignment, const DataLayout &DL,
201 const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT,
202 const TargetLibraryInfo *TLI) {
203 // For unsized types or scalable vectors we don't know exactly how many bytes
204 // are dereferenced, so bail out.
205 if (!Ty->isSized() || Ty->isScalableTy())
206 return false;
208 // When dereferenceability information is provided by a dereferenceable
209 // attribute, we know exactly how many bytes are dereferenceable. If we can
210 // determine the exact offset to the attributed variable, we can use that
211 // information here.
213 APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()),
214 DL.getTypeStoreSize(Ty));
215 return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI,
216 AC, DT, TLI);
219 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty,
220 const DataLayout &DL,
221 const Instruction *CtxI,
222 AssumptionCache *AC,
223 const DominatorTree *DT,
224 const TargetLibraryInfo *TLI) {
225 return isDereferenceableAndAlignedPointer(V, Ty, Align(1), DL, CtxI, AC, DT,
226 TLI);
229 /// Test if A and B will obviously have the same value.
231 /// This includes recognizing that %t0 and %t1 will have the same
232 /// value in code like this:
233 /// \code
234 /// %t0 = getelementptr \@a, 0, 3
235 /// store i32 0, i32* %t0
236 /// %t1 = getelementptr \@a, 0, 3
237 /// %t2 = load i32* %t1
238 /// \endcode
240 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
241 // Test if the values are trivially equivalent.
242 if (A == B)
243 return true;
245 // Test if the values come from identical arithmetic instructions.
246 // Use isIdenticalToWhenDefined instead of isIdenticalTo because
247 // this function is only used when one address use dominates the
248 // other, which means that they'll always either have the same
249 // value or one of them will have an undefined value.
250 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
251 isa<GetElementPtrInst>(A))
252 if (const Instruction *BI = dyn_cast<Instruction>(B))
253 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
254 return true;
256 // Otherwise they may not be equivalent.
257 return false;
260 bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L,
261 ScalarEvolution &SE,
262 DominatorTree &DT,
263 AssumptionCache *AC) {
264 auto &DL = LI->getModule()->getDataLayout();
265 Value *Ptr = LI->getPointerOperand();
267 APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()),
268 DL.getTypeStoreSize(LI->getType()).getFixedValue());
269 const Align Alignment = LI->getAlign();
271 Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI();
273 // If given a uniform (i.e. non-varying) address, see if we can prove the
274 // access is safe within the loop w/o needing predication.
275 if (L->isLoopInvariant(Ptr))
276 return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL,
277 HeaderFirstNonPHI, AC, &DT);
279 // Otherwise, check to see if we have a repeating access pattern where we can
280 // prove that all accesses are well aligned and dereferenceable.
281 auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Ptr));
282 if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine())
283 return false;
284 auto* Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(SE));
285 if (!Step)
286 return false;
288 auto TC = SE.getSmallConstantMaxTripCount(L);
289 if (!TC)
290 return false;
292 // TODO: Handle overlapping accesses.
293 // We should be computing AccessSize as (TC - 1) * Step + EltSize.
294 if (EltSize.sgt(Step->getAPInt()))
295 return false;
297 // Compute the total access size for access patterns with unit stride and
298 // patterns with gaps. For patterns with unit stride, Step and EltSize are the
299 // same.
300 // For patterns with gaps (i.e. non unit stride), we are
301 // accessing EltSize bytes at every Step.
302 APInt AccessSize = TC * Step->getAPInt();
304 assert(SE.isLoopInvariant(AddRec->getStart(), L) &&
305 "implied by addrec definition");
306 Value *Base = nullptr;
307 if (auto *StartS = dyn_cast<SCEVUnknown>(AddRec->getStart())) {
308 Base = StartS->getValue();
309 } else if (auto *StartS = dyn_cast<SCEVAddExpr>(AddRec->getStart())) {
310 // Handle (NewBase + offset) as start value.
311 const auto *Offset = dyn_cast<SCEVConstant>(StartS->getOperand(0));
312 const auto *NewBase = dyn_cast<SCEVUnknown>(StartS->getOperand(1));
313 if (StartS->getNumOperands() == 2 && Offset && NewBase) {
314 // For the moment, restrict ourselves to the case where the offset is a
315 // multiple of the requested alignment and the base is aligned.
316 // TODO: generalize if a case found which warrants
317 if (Offset->getAPInt().urem(Alignment.value()) != 0)
318 return false;
319 Base = NewBase->getValue();
320 bool Overflow = false;
321 AccessSize = AccessSize.uadd_ov(Offset->getAPInt(), Overflow);
322 if (Overflow)
323 return false;
327 if (!Base)
328 return false;
330 // For the moment, restrict ourselves to the case where the access size is a
331 // multiple of the requested alignment and the base is aligned.
332 // TODO: generalize if a case found which warrants
333 if (EltSize.urem(Alignment.value()) != 0)
334 return false;
335 return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL,
336 HeaderFirstNonPHI, AC, &DT);
339 /// Check if executing a load of this pointer value cannot trap.
341 /// If DT and ScanFrom are specified this method performs context-sensitive
342 /// analysis and returns true if it is safe to load immediately before ScanFrom.
344 /// If it is not obviously safe to load from the specified pointer, we do
345 /// a quick local scan of the basic block containing \c ScanFrom, to determine
346 /// if the address is already accessed.
348 /// This uses the pointee type to determine how many bytes need to be safe to
349 /// load from the pointer.
350 bool llvm::isSafeToLoadUnconditionally(Value *V, Align Alignment, APInt &Size,
351 const DataLayout &DL,
352 Instruction *ScanFrom,
353 AssumptionCache *AC,
354 const DominatorTree *DT,
355 const TargetLibraryInfo *TLI) {
356 // If DT is not specified we can't make context-sensitive query
357 const Instruction* CtxI = DT ? ScanFrom : nullptr;
358 if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, AC, DT,
359 TLI))
360 return true;
362 if (!ScanFrom)
363 return false;
365 if (Size.getBitWidth() > 64)
366 return false;
367 const TypeSize LoadSize = TypeSize::getFixed(Size.getZExtValue());
369 // Otherwise, be a little bit aggressive by scanning the local block where we
370 // want to check to see if the pointer is already being loaded or stored
371 // from/to. If so, the previous load or store would have already trapped,
372 // so there is no harm doing an extra load (also, CSE will later eliminate
373 // the load entirely).
374 BasicBlock::iterator BBI = ScanFrom->getIterator(),
375 E = ScanFrom->getParent()->begin();
377 // We can at least always strip pointer casts even though we can't use the
378 // base here.
379 V = V->stripPointerCasts();
381 while (BBI != E) {
382 --BBI;
384 // If we see a free or a call which may write to memory (i.e. which might do
385 // a free) the pointer could be marked invalid.
386 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
387 !isa<LifetimeIntrinsic>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
388 return false;
390 Value *AccessedPtr;
391 Type *AccessedTy;
392 Align AccessedAlign;
393 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
394 // Ignore volatile loads. The execution of a volatile load cannot
395 // be used to prove an address is backed by regular memory; it can,
396 // for example, point to an MMIO register.
397 if (LI->isVolatile())
398 continue;
399 AccessedPtr = LI->getPointerOperand();
400 AccessedTy = LI->getType();
401 AccessedAlign = LI->getAlign();
402 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
403 // Ignore volatile stores (see comment for loads).
404 if (SI->isVolatile())
405 continue;
406 AccessedPtr = SI->getPointerOperand();
407 AccessedTy = SI->getValueOperand()->getType();
408 AccessedAlign = SI->getAlign();
409 } else
410 continue;
412 if (AccessedAlign < Alignment)
413 continue;
415 // Handle trivial cases.
416 if (AccessedPtr == V &&
417 TypeSize::isKnownLE(LoadSize, DL.getTypeStoreSize(AccessedTy)))
418 return true;
420 if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
421 TypeSize::isKnownLE(LoadSize, DL.getTypeStoreSize(AccessedTy)))
422 return true;
424 return false;
427 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, Align Alignment,
428 const DataLayout &DL,
429 Instruction *ScanFrom,
430 AssumptionCache *AC,
431 const DominatorTree *DT,
432 const TargetLibraryInfo *TLI) {
433 TypeSize TySize = DL.getTypeStoreSize(Ty);
434 if (TySize.isScalable())
435 return false;
436 APInt Size(DL.getIndexTypeSizeInBits(V->getType()), TySize.getFixedValue());
437 return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, AC, DT,
438 TLI);
441 /// DefMaxInstsToScan - the default number of maximum instructions
442 /// to scan in the block, used by FindAvailableLoadedValue().
443 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump
444 /// threading in part by eliminating partially redundant loads.
445 /// At that point, the value of MaxInstsToScan was already set to '6'
446 /// without documented explanation.
447 cl::opt<unsigned>
448 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
449 cl::desc("Use this to specify the default maximum number of instructions "
450 "to scan backward from a given instruction, when searching for "
451 "available loaded value"));
453 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, BasicBlock *ScanBB,
454 BasicBlock::iterator &ScanFrom,
455 unsigned MaxInstsToScan,
456 BatchAAResults *AA, bool *IsLoad,
457 unsigned *NumScanedInst) {
458 // Don't CSE load that is volatile or anything stronger than unordered.
459 if (!Load->isUnordered())
460 return nullptr;
462 MemoryLocation Loc = MemoryLocation::get(Load);
463 return findAvailablePtrLoadStore(Loc, Load->getType(), Load->isAtomic(),
464 ScanBB, ScanFrom, MaxInstsToScan, AA, IsLoad,
465 NumScanedInst);
468 // Check if the load and the store have the same base, constant offsets and
469 // non-overlapping access ranges.
470 static bool areNonOverlapSameBaseLoadAndStore(const Value *LoadPtr,
471 Type *LoadTy,
472 const Value *StorePtr,
473 Type *StoreTy,
474 const DataLayout &DL) {
475 APInt LoadOffset(DL.getIndexTypeSizeInBits(LoadPtr->getType()), 0);
476 APInt StoreOffset(DL.getIndexTypeSizeInBits(StorePtr->getType()), 0);
477 const Value *LoadBase = LoadPtr->stripAndAccumulateConstantOffsets(
478 DL, LoadOffset, /* AllowNonInbounds */ false);
479 const Value *StoreBase = StorePtr->stripAndAccumulateConstantOffsets(
480 DL, StoreOffset, /* AllowNonInbounds */ false);
481 if (LoadBase != StoreBase)
482 return false;
483 auto LoadAccessSize = LocationSize::precise(DL.getTypeStoreSize(LoadTy));
484 auto StoreAccessSize = LocationSize::precise(DL.getTypeStoreSize(StoreTy));
485 ConstantRange LoadRange(LoadOffset,
486 LoadOffset + LoadAccessSize.toRaw());
487 ConstantRange StoreRange(StoreOffset,
488 StoreOffset + StoreAccessSize.toRaw());
489 return LoadRange.intersectWith(StoreRange).isEmptySet();
492 static Value *getAvailableLoadStore(Instruction *Inst, const Value *Ptr,
493 Type *AccessTy, bool AtLeastAtomic,
494 const DataLayout &DL, bool *IsLoadCSE) {
495 // If this is a load of Ptr, the loaded value is available.
496 // (This is true even if the load is volatile or atomic, although
497 // those cases are unlikely.)
498 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
499 // We can value forward from an atomic to a non-atomic, but not the
500 // other way around.
501 if (LI->isAtomic() < AtLeastAtomic)
502 return nullptr;
504 Value *LoadPtr = LI->getPointerOperand()->stripPointerCasts();
505 if (!AreEquivalentAddressValues(LoadPtr, Ptr))
506 return nullptr;
508 if (CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
509 if (IsLoadCSE)
510 *IsLoadCSE = true;
511 return LI;
515 // If this is a store through Ptr, the value is available!
516 // (This is true even if the store is volatile or atomic, although
517 // those cases are unlikely.)
518 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
519 // We can value forward from an atomic to a non-atomic, but not the
520 // other way around.
521 if (SI->isAtomic() < AtLeastAtomic)
522 return nullptr;
524 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
525 if (!AreEquivalentAddressValues(StorePtr, Ptr))
526 return nullptr;
528 if (IsLoadCSE)
529 *IsLoadCSE = false;
531 Value *Val = SI->getValueOperand();
532 if (CastInst::isBitOrNoopPointerCastable(Val->getType(), AccessTy, DL))
533 return Val;
535 TypeSize StoreSize = DL.getTypeSizeInBits(Val->getType());
536 TypeSize LoadSize = DL.getTypeSizeInBits(AccessTy);
537 if (TypeSize::isKnownLE(LoadSize, StoreSize))
538 if (auto *C = dyn_cast<Constant>(Val))
539 return ConstantFoldLoadFromConst(C, AccessTy, DL);
542 if (auto *MSI = dyn_cast<MemSetInst>(Inst)) {
543 // Don't forward from (non-atomic) memset to atomic load.
544 if (AtLeastAtomic)
545 return nullptr;
547 // Only handle constant memsets.
548 auto *Val = dyn_cast<ConstantInt>(MSI->getValue());
549 auto *Len = dyn_cast<ConstantInt>(MSI->getLength());
550 if (!Val || !Len)
551 return nullptr;
553 // TODO: Handle offsets.
554 Value *Dst = MSI->getDest();
555 if (!AreEquivalentAddressValues(Dst, Ptr))
556 return nullptr;
558 if (IsLoadCSE)
559 *IsLoadCSE = false;
561 TypeSize LoadTypeSize = DL.getTypeSizeInBits(AccessTy);
562 if (LoadTypeSize.isScalable())
563 return nullptr;
565 // Make sure the read bytes are contained in the memset.
566 uint64_t LoadSize = LoadTypeSize.getFixedValue();
567 if ((Len->getValue() * 8).ult(LoadSize))
568 return nullptr;
570 APInt Splat = LoadSize >= 8 ? APInt::getSplat(LoadSize, Val->getValue())
571 : Val->getValue().trunc(LoadSize);
572 ConstantInt *SplatC = ConstantInt::get(MSI->getContext(), Splat);
573 if (CastInst::isBitOrNoopPointerCastable(SplatC->getType(), AccessTy, DL))
574 return SplatC;
576 return nullptr;
579 return nullptr;
582 Value *llvm::findAvailablePtrLoadStore(
583 const MemoryLocation &Loc, Type *AccessTy, bool AtLeastAtomic,
584 BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan,
585 BatchAAResults *AA, bool *IsLoadCSE, unsigned *NumScanedInst) {
586 if (MaxInstsToScan == 0)
587 MaxInstsToScan = ~0U;
589 const DataLayout &DL = ScanBB->getModule()->getDataLayout();
590 const Value *StrippedPtr = Loc.Ptr->stripPointerCasts();
592 while (ScanFrom != ScanBB->begin()) {
593 // We must ignore debug info directives when counting (otherwise they
594 // would affect codegen).
595 Instruction *Inst = &*--ScanFrom;
596 if (Inst->isDebugOrPseudoInst())
597 continue;
599 // Restore ScanFrom to expected value in case next test succeeds
600 ScanFrom++;
602 if (NumScanedInst)
603 ++(*NumScanedInst);
605 // Don't scan huge blocks.
606 if (MaxInstsToScan-- == 0)
607 return nullptr;
609 --ScanFrom;
611 if (Value *Available = getAvailableLoadStore(Inst, StrippedPtr, AccessTy,
612 AtLeastAtomic, DL, IsLoadCSE))
613 return Available;
615 // Try to get the store size for the type.
616 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
617 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
619 // If both StrippedPtr and StorePtr reach all the way to an alloca or
620 // global and they are different, ignore the store. This is a trivial form
621 // of alias analysis that is important for reg2mem'd code.
622 if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
623 (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
624 StrippedPtr != StorePtr)
625 continue;
627 if (!AA) {
628 // When AA isn't available, but if the load and the store have the same
629 // base, constant offsets and non-overlapping access ranges, ignore the
630 // store. This is a simple form of alias analysis that is used by the
631 // inliner. FIXME: use BasicAA if possible.
632 if (areNonOverlapSameBaseLoadAndStore(
633 Loc.Ptr, AccessTy, SI->getPointerOperand(),
634 SI->getValueOperand()->getType(), DL))
635 continue;
636 } else {
637 // If we have alias analysis and it says the store won't modify the
638 // loaded value, ignore the store.
639 if (!isModSet(AA->getModRefInfo(SI, Loc)))
640 continue;
643 // Otherwise the store that may or may not alias the pointer, bail out.
644 ++ScanFrom;
645 return nullptr;
648 // If this is some other instruction that may clobber Ptr, bail out.
649 if (Inst->mayWriteToMemory()) {
650 // If alias analysis claims that it really won't modify the load,
651 // ignore it.
652 if (AA && !isModSet(AA->getModRefInfo(Inst, Loc)))
653 continue;
655 // May modify the pointer, bail out.
656 ++ScanFrom;
657 return nullptr;
661 // Got to the start of the block, we didn't find it, but are done for this
662 // block.
663 return nullptr;
666 Value *llvm::FindAvailableLoadedValue(LoadInst *Load, BatchAAResults &AA,
667 bool *IsLoadCSE,
668 unsigned MaxInstsToScan) {
669 const DataLayout &DL = Load->getModule()->getDataLayout();
670 Value *StrippedPtr = Load->getPointerOperand()->stripPointerCasts();
671 BasicBlock *ScanBB = Load->getParent();
672 Type *AccessTy = Load->getType();
673 bool AtLeastAtomic = Load->isAtomic();
675 if (!Load->isUnordered())
676 return nullptr;
678 // Try to find an available value first, and delay expensive alias analysis
679 // queries until later.
680 Value *Available = nullptr;
681 SmallVector<Instruction *> MustNotAliasInsts;
682 for (Instruction &Inst : make_range(++Load->getReverseIterator(),
683 ScanBB->rend())) {
684 if (Inst.isDebugOrPseudoInst())
685 continue;
687 if (MaxInstsToScan-- == 0)
688 return nullptr;
690 Available = getAvailableLoadStore(&Inst, StrippedPtr, AccessTy,
691 AtLeastAtomic, DL, IsLoadCSE);
692 if (Available)
693 break;
695 if (Inst.mayWriteToMemory())
696 MustNotAliasInsts.push_back(&Inst);
699 // If we found an available value, ensure that the instructions in between
700 // did not modify the memory location.
701 if (Available) {
702 MemoryLocation Loc = MemoryLocation::get(Load);
703 for (Instruction *Inst : MustNotAliasInsts)
704 if (isModSet(AA.getModRefInfo(Inst, Loc)))
705 return nullptr;
708 return Available;
711 bool llvm::canReplacePointersIfEqual(Value *A, Value *B, const DataLayout &DL,
712 Instruction *CtxI) {
713 Type *Ty = A->getType();
714 assert(Ty == B->getType() && Ty->isPointerTy() &&
715 "values must have matching pointer types");
717 // NOTE: The checks in the function are incomplete and currently miss illegal
718 // cases! The current implementation is a starting point and the
719 // implementation should be made stricter over time.
720 if (auto *C = dyn_cast<Constant>(B)) {
721 // Do not allow replacing a pointer with a constant pointer, unless it is
722 // either null or at least one byte is dereferenceable.
723 APInt OneByte(DL.getPointerTypeSizeInBits(Ty), 1);
724 return C->isNullValue() ||
725 isDereferenceableAndAlignedPointer(B, Align(1), OneByte, DL, CtxI);
728 return true;