[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / lib / Analysis / TargetTransformInfo.cpp
blob8902dde37cbcad798e899be1b8e05d462f2d8652
1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/TargetTransformInfo.h"
10 #include "llvm/Analysis/CFG.h"
11 #include "llvm/Analysis/LoopIterator.h"
12 #include "llvm/Analysis/TargetTransformInfoImpl.h"
13 #include "llvm/IR/CFG.h"
14 #include "llvm/IR/Dominators.h"
15 #include "llvm/IR/Instruction.h"
16 #include "llvm/IR/Instructions.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/Module.h"
19 #include "llvm/IR/Operator.h"
20 #include "llvm/IR/PatternMatch.h"
21 #include "llvm/InitializePasses.h"
22 #include "llvm/Support/CommandLine.h"
23 #include <optional>
24 #include <utility>
26 using namespace llvm;
27 using namespace PatternMatch;
29 #define DEBUG_TYPE "tti"
31 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
32 cl::Hidden,
33 cl::desc("Recognize reduction patterns."));
35 static cl::opt<unsigned> CacheLineSize(
36 "cache-line-size", cl::init(0), cl::Hidden,
37 cl::desc("Use this to override the target cache line size when "
38 "specified by the user."));
40 static cl::opt<unsigned> MinPageSize(
41 "min-page-size", cl::init(0), cl::Hidden,
42 cl::desc("Use this to override the target's minimum page size."));
44 static cl::opt<unsigned> PredictableBranchThreshold(
45 "predictable-branch-threshold", cl::init(99), cl::Hidden,
46 cl::desc(
47 "Use this to override the target's predictable branch threshold (%)."));
49 namespace {
50 /// No-op implementation of the TTI interface using the utility base
51 /// classes.
52 ///
53 /// This is used when no target specific information is available.
54 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
55 explicit NoTTIImpl(const DataLayout &DL)
56 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
58 } // namespace
60 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) {
61 // If the loop has irreducible control flow, it can not be converted to
62 // Hardware loop.
63 LoopBlocksRPO RPOT(L);
64 RPOT.perform(&LI);
65 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
66 return false;
67 return true;
70 IntrinsicCostAttributes::IntrinsicCostAttributes(
71 Intrinsic::ID Id, const CallBase &CI, InstructionCost ScalarizationCost,
72 bool TypeBasedOnly)
73 : II(dyn_cast<IntrinsicInst>(&CI)), RetTy(CI.getType()), IID(Id),
74 ScalarizationCost(ScalarizationCost) {
76 if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI))
77 FMF = FPMO->getFastMathFlags();
79 if (!TypeBasedOnly)
80 Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end());
81 FunctionType *FTy = CI.getCalledFunction()->getFunctionType();
82 ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
85 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
86 ArrayRef<Type *> Tys,
87 FastMathFlags Flags,
88 const IntrinsicInst *I,
89 InstructionCost ScalarCost)
90 : II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
91 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
94 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *Ty,
95 ArrayRef<const Value *> Args)
96 : RetTy(Ty), IID(Id) {
98 Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
99 ParamTys.reserve(Arguments.size());
100 for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
101 ParamTys.push_back(Arguments[Idx]->getType());
104 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
105 ArrayRef<const Value *> Args,
106 ArrayRef<Type *> Tys,
107 FastMathFlags Flags,
108 const IntrinsicInst *I,
109 InstructionCost ScalarCost)
110 : II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
111 ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
112 Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
115 HardwareLoopInfo::HardwareLoopInfo(Loop *L) : L(L) {
116 // Match default options:
117 // - hardware-loop-counter-bitwidth = 32
118 // - hardware-loop-decrement = 1
119 CountType = Type::getInt32Ty(L->getHeader()->getContext());
120 LoopDecrement = ConstantInt::get(CountType, 1);
123 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE,
124 LoopInfo &LI, DominatorTree &DT,
125 bool ForceNestedLoop,
126 bool ForceHardwareLoopPHI) {
127 SmallVector<BasicBlock *, 4> ExitingBlocks;
128 L->getExitingBlocks(ExitingBlocks);
130 for (BasicBlock *BB : ExitingBlocks) {
131 // If we pass the updated counter back through a phi, we need to know
132 // which latch the updated value will be coming from.
133 if (!L->isLoopLatch(BB)) {
134 if (ForceHardwareLoopPHI || CounterInReg)
135 continue;
138 const SCEV *EC = SE.getExitCount(L, BB);
139 if (isa<SCEVCouldNotCompute>(EC))
140 continue;
141 if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
142 if (ConstEC->getValue()->isZero())
143 continue;
144 } else if (!SE.isLoopInvariant(EC, L))
145 continue;
147 if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth())
148 continue;
150 // If this exiting block is contained in a nested loop, it is not eligible
151 // for insertion of the branch-and-decrement since the inner loop would
152 // end up messing up the value in the CTR.
153 if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop)
154 continue;
156 // We now have a loop-invariant count of loop iterations (which is not the
157 // constant zero) for which we know that this loop will not exit via this
158 // existing block.
160 // We need to make sure that this block will run on every loop iteration.
161 // For this to be true, we must dominate all blocks with backedges. Such
162 // blocks are in-loop predecessors to the header block.
163 bool NotAlways = false;
164 for (BasicBlock *Pred : predecessors(L->getHeader())) {
165 if (!L->contains(Pred))
166 continue;
168 if (!DT.dominates(BB, Pred)) {
169 NotAlways = true;
170 break;
174 if (NotAlways)
175 continue;
177 // Make sure this blocks ends with a conditional branch.
178 Instruction *TI = BB->getTerminator();
179 if (!TI)
180 continue;
182 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
183 if (!BI->isConditional())
184 continue;
186 ExitBranch = BI;
187 } else
188 continue;
190 // Note that this block may not be the loop latch block, even if the loop
191 // has a latch block.
192 ExitBlock = BB;
193 ExitCount = EC;
194 break;
197 if (!ExitBlock)
198 return false;
199 return true;
202 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
203 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
205 TargetTransformInfo::~TargetTransformInfo() = default;
207 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
208 : TTIImpl(std::move(Arg.TTIImpl)) {}
210 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
211 TTIImpl = std::move(RHS.TTIImpl);
212 return *this;
215 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
216 return TTIImpl->getInliningThresholdMultiplier();
219 unsigned
220 TargetTransformInfo::getInliningCostBenefitAnalysisSavingsMultiplier() const {
221 return TTIImpl->getInliningCostBenefitAnalysisSavingsMultiplier();
224 unsigned
225 TargetTransformInfo::getInliningCostBenefitAnalysisProfitableMultiplier()
226 const {
227 return TTIImpl->getInliningCostBenefitAnalysisProfitableMultiplier();
230 unsigned
231 TargetTransformInfo::adjustInliningThreshold(const CallBase *CB) const {
232 return TTIImpl->adjustInliningThreshold(CB);
235 unsigned TargetTransformInfo::getCallerAllocaCost(const CallBase *CB,
236 const AllocaInst *AI) const {
237 return TTIImpl->getCallerAllocaCost(CB, AI);
240 int TargetTransformInfo::getInlinerVectorBonusPercent() const {
241 return TTIImpl->getInlinerVectorBonusPercent();
244 InstructionCost TargetTransformInfo::getGEPCost(
245 Type *PointeeType, const Value *Ptr, ArrayRef<const Value *> Operands,
246 Type *AccessType, TTI::TargetCostKind CostKind) const {
247 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, AccessType, CostKind);
250 InstructionCost TargetTransformInfo::getPointersChainCost(
251 ArrayRef<const Value *> Ptrs, const Value *Base,
252 const TTI::PointersChainInfo &Info, Type *AccessTy,
253 TTI::TargetCostKind CostKind) const {
254 assert((Base || !Info.isSameBase()) &&
255 "If pointers have same base address it has to be provided.");
256 return TTIImpl->getPointersChainCost(Ptrs, Base, Info, AccessTy, CostKind);
259 unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters(
260 const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI,
261 BlockFrequencyInfo *BFI) const {
262 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
265 InstructionCost
266 TargetTransformInfo::getInstructionCost(const User *U,
267 ArrayRef<const Value *> Operands,
268 enum TargetCostKind CostKind) const {
269 InstructionCost Cost = TTIImpl->getInstructionCost(U, Operands, CostKind);
270 assert((CostKind == TTI::TCK_RecipThroughput || Cost >= 0) &&
271 "TTI should not produce negative costs!");
272 return Cost;
275 BranchProbability TargetTransformInfo::getPredictableBranchThreshold() const {
276 return PredictableBranchThreshold.getNumOccurrences() > 0
277 ? BranchProbability(PredictableBranchThreshold, 100)
278 : TTIImpl->getPredictableBranchThreshold();
281 bool TargetTransformInfo::hasBranchDivergence(const Function *F) const {
282 return TTIImpl->hasBranchDivergence(F);
285 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
286 return TTIImpl->isSourceOfDivergence(V);
289 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
290 return TTIImpl->isAlwaysUniform(V);
293 bool llvm::TargetTransformInfo::isValidAddrSpaceCast(unsigned FromAS,
294 unsigned ToAS) const {
295 return TTIImpl->isValidAddrSpaceCast(FromAS, ToAS);
298 bool llvm::TargetTransformInfo::addrspacesMayAlias(unsigned FromAS,
299 unsigned ToAS) const {
300 return TTIImpl->addrspacesMayAlias(FromAS, ToAS);
303 unsigned TargetTransformInfo::getFlatAddressSpace() const {
304 return TTIImpl->getFlatAddressSpace();
307 bool TargetTransformInfo::collectFlatAddressOperands(
308 SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const {
309 return TTIImpl->collectFlatAddressOperands(OpIndexes, IID);
312 bool TargetTransformInfo::isNoopAddrSpaceCast(unsigned FromAS,
313 unsigned ToAS) const {
314 return TTIImpl->isNoopAddrSpaceCast(FromAS, ToAS);
317 bool TargetTransformInfo::canHaveNonUndefGlobalInitializerInAddressSpace(
318 unsigned AS) const {
319 return TTIImpl->canHaveNonUndefGlobalInitializerInAddressSpace(AS);
322 unsigned TargetTransformInfo::getAssumedAddrSpace(const Value *V) const {
323 return TTIImpl->getAssumedAddrSpace(V);
326 bool TargetTransformInfo::isSingleThreaded() const {
327 return TTIImpl->isSingleThreaded();
330 std::pair<const Value *, unsigned>
331 TargetTransformInfo::getPredicatedAddrSpace(const Value *V) const {
332 return TTIImpl->getPredicatedAddrSpace(V);
335 Value *TargetTransformInfo::rewriteIntrinsicWithAddressSpace(
336 IntrinsicInst *II, Value *OldV, Value *NewV) const {
337 return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
340 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
341 return TTIImpl->isLoweredToCall(F);
344 bool TargetTransformInfo::isHardwareLoopProfitable(
345 Loop *L, ScalarEvolution &SE, AssumptionCache &AC,
346 TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const {
347 return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
350 bool TargetTransformInfo::preferPredicateOverEpilogue(
351 TailFoldingInfo *TFI) const {
352 return TTIImpl->preferPredicateOverEpilogue(TFI);
355 TailFoldingStyle TargetTransformInfo::getPreferredTailFoldingStyle(
356 bool IVUpdateMayOverflow) const {
357 return TTIImpl->getPreferredTailFoldingStyle(IVUpdateMayOverflow);
360 std::optional<Instruction *>
361 TargetTransformInfo::instCombineIntrinsic(InstCombiner &IC,
362 IntrinsicInst &II) const {
363 return TTIImpl->instCombineIntrinsic(IC, II);
366 std::optional<Value *> TargetTransformInfo::simplifyDemandedUseBitsIntrinsic(
367 InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
368 bool &KnownBitsComputed) const {
369 return TTIImpl->simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
370 KnownBitsComputed);
373 std::optional<Value *> TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic(
374 InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
375 APInt &UndefElts2, APInt &UndefElts3,
376 std::function<void(Instruction *, unsigned, APInt, APInt &)>
377 SimplifyAndSetOp) const {
378 return TTIImpl->simplifyDemandedVectorEltsIntrinsic(
379 IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
380 SimplifyAndSetOp);
383 void TargetTransformInfo::getUnrollingPreferences(
384 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP,
385 OptimizationRemarkEmitter *ORE) const {
386 return TTIImpl->getUnrollingPreferences(L, SE, UP, ORE);
389 void TargetTransformInfo::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
390 PeelingPreferences &PP) const {
391 return TTIImpl->getPeelingPreferences(L, SE, PP);
394 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
395 return TTIImpl->isLegalAddImmediate(Imm);
398 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
399 return TTIImpl->isLegalICmpImmediate(Imm);
402 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
403 int64_t BaseOffset,
404 bool HasBaseReg, int64_t Scale,
405 unsigned AddrSpace,
406 Instruction *I) const {
407 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
408 Scale, AddrSpace, I);
411 bool TargetTransformInfo::isLSRCostLess(const LSRCost &C1,
412 const LSRCost &C2) const {
413 return TTIImpl->isLSRCostLess(C1, C2);
416 bool TargetTransformInfo::isNumRegsMajorCostOfLSR() const {
417 return TTIImpl->isNumRegsMajorCostOfLSR();
420 bool TargetTransformInfo::shouldFoldTerminatingConditionAfterLSR() const {
421 return TTIImpl->shouldFoldTerminatingConditionAfterLSR();
424 bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const {
425 return TTIImpl->isProfitableLSRChainElement(I);
428 bool TargetTransformInfo::canMacroFuseCmp() const {
429 return TTIImpl->canMacroFuseCmp();
432 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI,
433 ScalarEvolution *SE, LoopInfo *LI,
434 DominatorTree *DT, AssumptionCache *AC,
435 TargetLibraryInfo *LibInfo) const {
436 return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
439 TTI::AddressingModeKind
440 TargetTransformInfo::getPreferredAddressingMode(const Loop *L,
441 ScalarEvolution *SE) const {
442 return TTIImpl->getPreferredAddressingMode(L, SE);
445 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType,
446 Align Alignment) const {
447 return TTIImpl->isLegalMaskedStore(DataType, Alignment);
450 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType,
451 Align Alignment) const {
452 return TTIImpl->isLegalMaskedLoad(DataType, Alignment);
455 bool TargetTransformInfo::isLegalNTStore(Type *DataType,
456 Align Alignment) const {
457 return TTIImpl->isLegalNTStore(DataType, Alignment);
460 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const {
461 return TTIImpl->isLegalNTLoad(DataType, Alignment);
464 bool TargetTransformInfo::isLegalBroadcastLoad(Type *ElementTy,
465 ElementCount NumElements) const {
466 return TTIImpl->isLegalBroadcastLoad(ElementTy, NumElements);
469 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType,
470 Align Alignment) const {
471 return TTIImpl->isLegalMaskedGather(DataType, Alignment);
474 bool TargetTransformInfo::isLegalAltInstr(
475 VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
476 const SmallBitVector &OpcodeMask) const {
477 return TTIImpl->isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask);
480 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType,
481 Align Alignment) const {
482 return TTIImpl->isLegalMaskedScatter(DataType, Alignment);
485 bool TargetTransformInfo::forceScalarizeMaskedGather(VectorType *DataType,
486 Align Alignment) const {
487 return TTIImpl->forceScalarizeMaskedGather(DataType, Alignment);
490 bool TargetTransformInfo::forceScalarizeMaskedScatter(VectorType *DataType,
491 Align Alignment) const {
492 return TTIImpl->forceScalarizeMaskedScatter(DataType, Alignment);
495 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const {
496 return TTIImpl->isLegalMaskedCompressStore(DataType);
499 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const {
500 return TTIImpl->isLegalMaskedExpandLoad(DataType);
503 bool TargetTransformInfo::enableOrderedReductions() const {
504 return TTIImpl->enableOrderedReductions();
507 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
508 return TTIImpl->hasDivRemOp(DataType, IsSigned);
511 bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
512 unsigned AddrSpace) const {
513 return TTIImpl->hasVolatileVariant(I, AddrSpace);
516 bool TargetTransformInfo::prefersVectorizedAddressing() const {
517 return TTIImpl->prefersVectorizedAddressing();
520 InstructionCost TargetTransformInfo::getScalingFactorCost(
521 Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg,
522 int64_t Scale, unsigned AddrSpace) const {
523 InstructionCost Cost = TTIImpl->getScalingFactorCost(
524 Ty, BaseGV, BaseOffset, HasBaseReg, Scale, AddrSpace);
525 assert(Cost >= 0 && "TTI should not produce negative costs!");
526 return Cost;
529 bool TargetTransformInfo::LSRWithInstrQueries() const {
530 return TTIImpl->LSRWithInstrQueries();
533 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
534 return TTIImpl->isTruncateFree(Ty1, Ty2);
537 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
538 return TTIImpl->isProfitableToHoist(I);
541 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
543 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
544 return TTIImpl->isTypeLegal(Ty);
547 unsigned TargetTransformInfo::getRegUsageForType(Type *Ty) const {
548 return TTIImpl->getRegUsageForType(Ty);
551 bool TargetTransformInfo::shouldBuildLookupTables() const {
552 return TTIImpl->shouldBuildLookupTables();
555 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(
556 Constant *C) const {
557 return TTIImpl->shouldBuildLookupTablesForConstant(C);
560 bool TargetTransformInfo::shouldBuildRelLookupTables() const {
561 return TTIImpl->shouldBuildRelLookupTables();
564 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
565 return TTIImpl->useColdCCForColdCall(F);
568 InstructionCost TargetTransformInfo::getScalarizationOverhead(
569 VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract,
570 TTI::TargetCostKind CostKind) const {
571 return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract,
572 CostKind);
575 InstructionCost TargetTransformInfo::getOperandsScalarizationOverhead(
576 ArrayRef<const Value *> Args, ArrayRef<Type *> Tys,
577 TTI::TargetCostKind CostKind) const {
578 return TTIImpl->getOperandsScalarizationOverhead(Args, Tys, CostKind);
581 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
582 return TTIImpl->supportsEfficientVectorElementLoadStore();
585 bool TargetTransformInfo::supportsTailCalls() const {
586 return TTIImpl->supportsTailCalls();
589 bool TargetTransformInfo::supportsTailCallFor(const CallBase *CB) const {
590 return TTIImpl->supportsTailCallFor(CB);
593 bool TargetTransformInfo::enableAggressiveInterleaving(
594 bool LoopHasReductions) const {
595 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
598 TargetTransformInfo::MemCmpExpansionOptions
599 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
600 return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp);
603 bool TargetTransformInfo::enableSelectOptimize() const {
604 return TTIImpl->enableSelectOptimize();
607 bool TargetTransformInfo::shouldTreatInstructionLikeSelect(
608 const Instruction *I) const {
609 return TTIImpl->shouldTreatInstructionLikeSelect(I);
612 bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
613 return TTIImpl->enableInterleavedAccessVectorization();
616 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
617 return TTIImpl->enableMaskedInterleavedAccessVectorization();
620 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
621 return TTIImpl->isFPVectorizationPotentiallyUnsafe();
624 bool
625 TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
626 unsigned BitWidth,
627 unsigned AddressSpace,
628 Align Alignment,
629 unsigned *Fast) const {
630 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth,
631 AddressSpace, Alignment, Fast);
634 TargetTransformInfo::PopcntSupportKind
635 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
636 return TTIImpl->getPopcntSupport(IntTyWidthInBit);
639 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
640 return TTIImpl->haveFastSqrt(Ty);
643 bool TargetTransformInfo::isExpensiveToSpeculativelyExecute(
644 const Instruction *I) const {
645 return TTIImpl->isExpensiveToSpeculativelyExecute(I);
648 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
649 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
652 InstructionCost TargetTransformInfo::getFPOpCost(Type *Ty) const {
653 InstructionCost Cost = TTIImpl->getFPOpCost(Ty);
654 assert(Cost >= 0 && "TTI should not produce negative costs!");
655 return Cost;
658 InstructionCost TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode,
659 unsigned Idx,
660 const APInt &Imm,
661 Type *Ty) const {
662 InstructionCost Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
663 assert(Cost >= 0 && "TTI should not produce negative costs!");
664 return Cost;
667 InstructionCost
668 TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty,
669 TTI::TargetCostKind CostKind) const {
670 InstructionCost Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind);
671 assert(Cost >= 0 && "TTI should not produce negative costs!");
672 return Cost;
675 InstructionCost TargetTransformInfo::getIntImmCostInst(
676 unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty,
677 TTI::TargetCostKind CostKind, Instruction *Inst) const {
678 InstructionCost Cost =
679 TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
680 assert(Cost >= 0 && "TTI should not produce negative costs!");
681 return Cost;
684 InstructionCost
685 TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
686 const APInt &Imm, Type *Ty,
687 TTI::TargetCostKind CostKind) const {
688 InstructionCost Cost =
689 TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
690 assert(Cost >= 0 && "TTI should not produce negative costs!");
691 return Cost;
694 bool TargetTransformInfo::preferToKeepConstantsAttached(
695 const Instruction &Inst, const Function &Fn) const {
696 return TTIImpl->preferToKeepConstantsAttached(Inst, Fn);
699 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const {
700 return TTIImpl->getNumberOfRegisters(ClassID);
703 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector,
704 Type *Ty) const {
705 return TTIImpl->getRegisterClassForType(Vector, Ty);
708 const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const {
709 return TTIImpl->getRegisterClassName(ClassID);
712 TypeSize TargetTransformInfo::getRegisterBitWidth(
713 TargetTransformInfo::RegisterKind K) const {
714 return TTIImpl->getRegisterBitWidth(K);
717 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
718 return TTIImpl->getMinVectorRegisterBitWidth();
721 std::optional<unsigned> TargetTransformInfo::getMaxVScale() const {
722 return TTIImpl->getMaxVScale();
725 std::optional<unsigned> TargetTransformInfo::getVScaleForTuning() const {
726 return TTIImpl->getVScaleForTuning();
729 bool TargetTransformInfo::isVScaleKnownToBeAPowerOfTwo() const {
730 return TTIImpl->isVScaleKnownToBeAPowerOfTwo();
733 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(
734 TargetTransformInfo::RegisterKind K) const {
735 return TTIImpl->shouldMaximizeVectorBandwidth(K);
738 ElementCount TargetTransformInfo::getMinimumVF(unsigned ElemWidth,
739 bool IsScalable) const {
740 return TTIImpl->getMinimumVF(ElemWidth, IsScalable);
743 unsigned TargetTransformInfo::getMaximumVF(unsigned ElemWidth,
744 unsigned Opcode) const {
745 return TTIImpl->getMaximumVF(ElemWidth, Opcode);
748 unsigned TargetTransformInfo::getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
749 Type *ScalarValTy) const {
750 return TTIImpl->getStoreMinimumVF(VF, ScalarMemTy, ScalarValTy);
753 bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
754 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
755 return TTIImpl->shouldConsiderAddressTypePromotion(
756 I, AllowPromotionWithoutCommonHeader);
759 unsigned TargetTransformInfo::getCacheLineSize() const {
760 return CacheLineSize.getNumOccurrences() > 0 ? CacheLineSize
761 : TTIImpl->getCacheLineSize();
764 std::optional<unsigned>
765 TargetTransformInfo::getCacheSize(CacheLevel Level) const {
766 return TTIImpl->getCacheSize(Level);
769 std::optional<unsigned>
770 TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const {
771 return TTIImpl->getCacheAssociativity(Level);
774 std::optional<unsigned> TargetTransformInfo::getMinPageSize() const {
775 return MinPageSize.getNumOccurrences() > 0 ? MinPageSize
776 : TTIImpl->getMinPageSize();
779 unsigned TargetTransformInfo::getPrefetchDistance() const {
780 return TTIImpl->getPrefetchDistance();
783 unsigned TargetTransformInfo::getMinPrefetchStride(
784 unsigned NumMemAccesses, unsigned NumStridedMemAccesses,
785 unsigned NumPrefetches, bool HasCall) const {
786 return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
787 NumPrefetches, HasCall);
790 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
791 return TTIImpl->getMaxPrefetchIterationsAhead();
794 bool TargetTransformInfo::enableWritePrefetching() const {
795 return TTIImpl->enableWritePrefetching();
798 bool TargetTransformInfo::shouldPrefetchAddressSpace(unsigned AS) const {
799 return TTIImpl->shouldPrefetchAddressSpace(AS);
802 unsigned TargetTransformInfo::getMaxInterleaveFactor(ElementCount VF) const {
803 return TTIImpl->getMaxInterleaveFactor(VF);
806 TargetTransformInfo::OperandValueInfo
807 TargetTransformInfo::getOperandInfo(const Value *V) {
808 OperandValueKind OpInfo = OK_AnyValue;
809 OperandValueProperties OpProps = OP_None;
811 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
812 if (const auto *CI = dyn_cast<ConstantInt>(V)) {
813 if (CI->getValue().isPowerOf2())
814 OpProps = OP_PowerOf2;
815 else if (CI->getValue().isNegatedPowerOf2())
816 OpProps = OP_NegatedPowerOf2;
818 return {OK_UniformConstantValue, OpProps};
821 // A broadcast shuffle creates a uniform value.
822 // TODO: Add support for non-zero index broadcasts.
823 // TODO: Add support for different source vector width.
824 if (const auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
825 if (ShuffleInst->isZeroEltSplat())
826 OpInfo = OK_UniformValue;
828 const Value *Splat = getSplatValue(V);
830 // Check for a splat of a constant or for a non uniform vector of constants
831 // and check if the constant(s) are all powers of two.
832 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
833 OpInfo = OK_NonUniformConstantValue;
834 if (Splat) {
835 OpInfo = OK_UniformConstantValue;
836 if (auto *CI = dyn_cast<ConstantInt>(Splat)) {
837 if (CI->getValue().isPowerOf2())
838 OpProps = OP_PowerOf2;
839 else if (CI->getValue().isNegatedPowerOf2())
840 OpProps = OP_NegatedPowerOf2;
842 } else if (const auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
843 bool AllPow2 = true, AllNegPow2 = true;
844 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
845 if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I))) {
846 AllPow2 &= CI->getValue().isPowerOf2();
847 AllNegPow2 &= CI->getValue().isNegatedPowerOf2();
848 if (AllPow2 || AllNegPow2)
849 continue;
851 AllPow2 = AllNegPow2 = false;
852 break;
854 OpProps = AllPow2 ? OP_PowerOf2 : OpProps;
855 OpProps = AllNegPow2 ? OP_NegatedPowerOf2 : OpProps;
859 // Check for a splat of a uniform value. This is not loop aware, so return
860 // true only for the obviously uniform cases (argument, globalvalue)
861 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
862 OpInfo = OK_UniformValue;
864 return {OpInfo, OpProps};
867 InstructionCost TargetTransformInfo::getArithmeticInstrCost(
868 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
869 OperandValueInfo Op1Info, OperandValueInfo Op2Info,
870 ArrayRef<const Value *> Args, const Instruction *CxtI) const {
871 InstructionCost Cost =
872 TTIImpl->getArithmeticInstrCost(Opcode, Ty, CostKind,
873 Op1Info, Op2Info,
874 Args, CxtI);
875 assert(Cost >= 0 && "TTI should not produce negative costs!");
876 return Cost;
879 InstructionCost TargetTransformInfo::getAltInstrCost(
880 VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
881 const SmallBitVector &OpcodeMask, TTI::TargetCostKind CostKind) const {
882 InstructionCost Cost =
883 TTIImpl->getAltInstrCost(VecTy, Opcode0, Opcode1, OpcodeMask, CostKind);
884 assert(Cost >= 0 && "TTI should not produce negative costs!");
885 return Cost;
888 InstructionCost TargetTransformInfo::getShuffleCost(
889 ShuffleKind Kind, VectorType *Ty, ArrayRef<int> Mask,
890 TTI::TargetCostKind CostKind, int Index, VectorType *SubTp,
891 ArrayRef<const Value *> Args) const {
892 InstructionCost Cost =
893 TTIImpl->getShuffleCost(Kind, Ty, Mask, CostKind, Index, SubTp, Args);
894 assert(Cost >= 0 && "TTI should not produce negative costs!");
895 return Cost;
898 TTI::CastContextHint
899 TargetTransformInfo::getCastContextHint(const Instruction *I) {
900 if (!I)
901 return CastContextHint::None;
903 auto getLoadStoreKind = [](const Value *V, unsigned LdStOp, unsigned MaskedOp,
904 unsigned GatScatOp) {
905 const Instruction *I = dyn_cast<Instruction>(V);
906 if (!I)
907 return CastContextHint::None;
909 if (I->getOpcode() == LdStOp)
910 return CastContextHint::Normal;
912 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
913 if (II->getIntrinsicID() == MaskedOp)
914 return TTI::CastContextHint::Masked;
915 if (II->getIntrinsicID() == GatScatOp)
916 return TTI::CastContextHint::GatherScatter;
919 return TTI::CastContextHint::None;
922 switch (I->getOpcode()) {
923 case Instruction::ZExt:
924 case Instruction::SExt:
925 case Instruction::FPExt:
926 return getLoadStoreKind(I->getOperand(0), Instruction::Load,
927 Intrinsic::masked_load, Intrinsic::masked_gather);
928 case Instruction::Trunc:
929 case Instruction::FPTrunc:
930 if (I->hasOneUse())
931 return getLoadStoreKind(*I->user_begin(), Instruction::Store,
932 Intrinsic::masked_store,
933 Intrinsic::masked_scatter);
934 break;
935 default:
936 return CastContextHint::None;
939 return TTI::CastContextHint::None;
942 InstructionCost TargetTransformInfo::getCastInstrCost(
943 unsigned Opcode, Type *Dst, Type *Src, CastContextHint CCH,
944 TTI::TargetCostKind CostKind, const Instruction *I) const {
945 assert((I == nullptr || I->getOpcode() == Opcode) &&
946 "Opcode should reflect passed instruction.");
947 InstructionCost Cost =
948 TTIImpl->getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
949 assert(Cost >= 0 && "TTI should not produce negative costs!");
950 return Cost;
953 InstructionCost TargetTransformInfo::getExtractWithExtendCost(
954 unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index) const {
955 InstructionCost Cost =
956 TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
957 assert(Cost >= 0 && "TTI should not produce negative costs!");
958 return Cost;
961 InstructionCost TargetTransformInfo::getCFInstrCost(
962 unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I) const {
963 assert((I == nullptr || I->getOpcode() == Opcode) &&
964 "Opcode should reflect passed instruction.");
965 InstructionCost Cost = TTIImpl->getCFInstrCost(Opcode, CostKind, I);
966 assert(Cost >= 0 && "TTI should not produce negative costs!");
967 return Cost;
970 InstructionCost TargetTransformInfo::getCmpSelInstrCost(
971 unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred,
972 TTI::TargetCostKind CostKind, const Instruction *I) const {
973 assert((I == nullptr || I->getOpcode() == Opcode) &&
974 "Opcode should reflect passed instruction.");
975 InstructionCost Cost =
976 TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
977 assert(Cost >= 0 && "TTI should not produce negative costs!");
978 return Cost;
981 InstructionCost TargetTransformInfo::getVectorInstrCost(
982 unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index,
983 Value *Op0, Value *Op1) const {
984 // FIXME: Assert that Opcode is either InsertElement or ExtractElement.
985 // This is mentioned in the interface description and respected by all
986 // callers, but never asserted upon.
987 InstructionCost Cost =
988 TTIImpl->getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
989 assert(Cost >= 0 && "TTI should not produce negative costs!");
990 return Cost;
993 InstructionCost
994 TargetTransformInfo::getVectorInstrCost(const Instruction &I, Type *Val,
995 TTI::TargetCostKind CostKind,
996 unsigned Index) const {
997 // FIXME: Assert that Opcode is either InsertElement or ExtractElement.
998 // This is mentioned in the interface description and respected by all
999 // callers, but never asserted upon.
1000 InstructionCost Cost = TTIImpl->getVectorInstrCost(I, Val, CostKind, Index);
1001 assert(Cost >= 0 && "TTI should not produce negative costs!");
1002 return Cost;
1005 InstructionCost TargetTransformInfo::getReplicationShuffleCost(
1006 Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts,
1007 TTI::TargetCostKind CostKind) {
1008 InstructionCost Cost = TTIImpl->getReplicationShuffleCost(
1009 EltTy, ReplicationFactor, VF, DemandedDstElts, CostKind);
1010 assert(Cost >= 0 && "TTI should not produce negative costs!");
1011 return Cost;
1014 InstructionCost TargetTransformInfo::getMemoryOpCost(
1015 unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
1016 TTI::TargetCostKind CostKind, TTI::OperandValueInfo OpInfo,
1017 const Instruction *I) const {
1018 assert((I == nullptr || I->getOpcode() == Opcode) &&
1019 "Opcode should reflect passed instruction.");
1020 InstructionCost Cost = TTIImpl->getMemoryOpCost(
1021 Opcode, Src, Alignment, AddressSpace, CostKind, OpInfo, I);
1022 assert(Cost >= 0 && "TTI should not produce negative costs!");
1023 return Cost;
1026 InstructionCost TargetTransformInfo::getMaskedMemoryOpCost(
1027 unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
1028 TTI::TargetCostKind CostKind) const {
1029 InstructionCost Cost = TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment,
1030 AddressSpace, CostKind);
1031 assert(Cost >= 0 && "TTI should not produce negative costs!");
1032 return Cost;
1035 InstructionCost TargetTransformInfo::getGatherScatterOpCost(
1036 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
1037 Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const {
1038 InstructionCost Cost = TTIImpl->getGatherScatterOpCost(
1039 Opcode, DataTy, Ptr, VariableMask, Alignment, CostKind, I);
1040 assert(Cost >= 0 && "TTI should not produce negative costs!");
1041 return Cost;
1044 InstructionCost TargetTransformInfo::getInterleavedMemoryOpCost(
1045 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1046 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
1047 bool UseMaskForCond, bool UseMaskForGaps) const {
1048 InstructionCost Cost = TTIImpl->getInterleavedMemoryOpCost(
1049 Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind,
1050 UseMaskForCond, UseMaskForGaps);
1051 assert(Cost >= 0 && "TTI should not produce negative costs!");
1052 return Cost;
1055 InstructionCost
1056 TargetTransformInfo::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
1057 TTI::TargetCostKind CostKind) const {
1058 InstructionCost Cost = TTIImpl->getIntrinsicInstrCost(ICA, CostKind);
1059 assert(Cost >= 0 && "TTI should not produce negative costs!");
1060 return Cost;
1063 InstructionCost
1064 TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
1065 ArrayRef<Type *> Tys,
1066 TTI::TargetCostKind CostKind) const {
1067 InstructionCost Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind);
1068 assert(Cost >= 0 && "TTI should not produce negative costs!");
1069 return Cost;
1072 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
1073 return TTIImpl->getNumberOfParts(Tp);
1076 InstructionCost
1077 TargetTransformInfo::getAddressComputationCost(Type *Tp, ScalarEvolution *SE,
1078 const SCEV *Ptr) const {
1079 InstructionCost Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
1080 assert(Cost >= 0 && "TTI should not produce negative costs!");
1081 return Cost;
1084 InstructionCost TargetTransformInfo::getMemcpyCost(const Instruction *I) const {
1085 InstructionCost Cost = TTIImpl->getMemcpyCost(I);
1086 assert(Cost >= 0 && "TTI should not produce negative costs!");
1087 return Cost;
1090 uint64_t TargetTransformInfo::getMaxMemIntrinsicInlineSizeThreshold() const {
1091 return TTIImpl->getMaxMemIntrinsicInlineSizeThreshold();
1094 InstructionCost TargetTransformInfo::getArithmeticReductionCost(
1095 unsigned Opcode, VectorType *Ty, std::optional<FastMathFlags> FMF,
1096 TTI::TargetCostKind CostKind) const {
1097 InstructionCost Cost =
1098 TTIImpl->getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
1099 assert(Cost >= 0 && "TTI should not produce negative costs!");
1100 return Cost;
1103 InstructionCost TargetTransformInfo::getMinMaxReductionCost(
1104 Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF,
1105 TTI::TargetCostKind CostKind) const {
1106 InstructionCost Cost =
1107 TTIImpl->getMinMaxReductionCost(IID, Ty, FMF, CostKind);
1108 assert(Cost >= 0 && "TTI should not produce negative costs!");
1109 return Cost;
1112 InstructionCost TargetTransformInfo::getExtendedReductionCost(
1113 unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty,
1114 FastMathFlags FMF, TTI::TargetCostKind CostKind) const {
1115 return TTIImpl->getExtendedReductionCost(Opcode, IsUnsigned, ResTy, Ty, FMF,
1116 CostKind);
1119 InstructionCost TargetTransformInfo::getMulAccReductionCost(
1120 bool IsUnsigned, Type *ResTy, VectorType *Ty,
1121 TTI::TargetCostKind CostKind) const {
1122 return TTIImpl->getMulAccReductionCost(IsUnsigned, ResTy, Ty, CostKind);
1125 InstructionCost
1126 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
1127 return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
1130 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
1131 MemIntrinsicInfo &Info) const {
1132 return TTIImpl->getTgtMemIntrinsic(Inst, Info);
1135 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
1136 return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
1139 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
1140 IntrinsicInst *Inst, Type *ExpectedType) const {
1141 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
1144 Type *TargetTransformInfo::getMemcpyLoopLoweringType(
1145 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
1146 unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
1147 std::optional<uint32_t> AtomicElementSize) const {
1148 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
1149 DestAddrSpace, SrcAlign, DestAlign,
1150 AtomicElementSize);
1153 void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
1154 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
1155 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
1156 unsigned SrcAlign, unsigned DestAlign,
1157 std::optional<uint32_t> AtomicCpySize) const {
1158 TTIImpl->getMemcpyLoopResidualLoweringType(
1159 OpsOut, Context, RemainingBytes, SrcAddrSpace, DestAddrSpace, SrcAlign,
1160 DestAlign, AtomicCpySize);
1163 bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
1164 const Function *Callee) const {
1165 return TTIImpl->areInlineCompatible(Caller, Callee);
1168 unsigned
1169 TargetTransformInfo::getInlineCallPenalty(const Function *F,
1170 const CallBase &Call,
1171 unsigned DefaultCallPenalty) const {
1172 return TTIImpl->getInlineCallPenalty(F, Call, DefaultCallPenalty);
1175 bool TargetTransformInfo::areTypesABICompatible(
1176 const Function *Caller, const Function *Callee,
1177 const ArrayRef<Type *> &Types) const {
1178 return TTIImpl->areTypesABICompatible(Caller, Callee, Types);
1181 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
1182 Type *Ty) const {
1183 return TTIImpl->isIndexedLoadLegal(Mode, Ty);
1186 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
1187 Type *Ty) const {
1188 return TTIImpl->isIndexedStoreLegal(Mode, Ty);
1191 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
1192 return TTIImpl->getLoadStoreVecRegBitWidth(AS);
1195 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
1196 return TTIImpl->isLegalToVectorizeLoad(LI);
1199 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
1200 return TTIImpl->isLegalToVectorizeStore(SI);
1203 bool TargetTransformInfo::isLegalToVectorizeLoadChain(
1204 unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
1205 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
1206 AddrSpace);
1209 bool TargetTransformInfo::isLegalToVectorizeStoreChain(
1210 unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
1211 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
1212 AddrSpace);
1215 bool TargetTransformInfo::isLegalToVectorizeReduction(
1216 const RecurrenceDescriptor &RdxDesc, ElementCount VF) const {
1217 return TTIImpl->isLegalToVectorizeReduction(RdxDesc, VF);
1220 bool TargetTransformInfo::isElementTypeLegalForScalableVector(Type *Ty) const {
1221 return TTIImpl->isElementTypeLegalForScalableVector(Ty);
1224 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
1225 unsigned LoadSize,
1226 unsigned ChainSizeInBytes,
1227 VectorType *VecTy) const {
1228 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
1231 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
1232 unsigned StoreSize,
1233 unsigned ChainSizeInBytes,
1234 VectorType *VecTy) const {
1235 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
1238 bool TargetTransformInfo::preferInLoopReduction(unsigned Opcode, Type *Ty,
1239 ReductionFlags Flags) const {
1240 return TTIImpl->preferInLoopReduction(Opcode, Ty, Flags);
1243 bool TargetTransformInfo::preferPredicatedReductionSelect(
1244 unsigned Opcode, Type *Ty, ReductionFlags Flags) const {
1245 return TTIImpl->preferPredicatedReductionSelect(Opcode, Ty, Flags);
1248 bool TargetTransformInfo::preferEpilogueVectorization() const {
1249 return TTIImpl->preferEpilogueVectorization();
1252 TargetTransformInfo::VPLegalization
1253 TargetTransformInfo::getVPLegalizationStrategy(const VPIntrinsic &VPI) const {
1254 return TTIImpl->getVPLegalizationStrategy(VPI);
1257 bool TargetTransformInfo::hasArmWideBranch(bool Thumb) const {
1258 return TTIImpl->hasArmWideBranch(Thumb);
1261 unsigned TargetTransformInfo::getMaxNumArgs() const {
1262 return TTIImpl->getMaxNumArgs();
1265 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
1266 return TTIImpl->shouldExpandReduction(II);
1269 unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
1270 return TTIImpl->getGISelRematGlobalCost();
1273 unsigned TargetTransformInfo::getMinTripCountTailFoldingThreshold() const {
1274 return TTIImpl->getMinTripCountTailFoldingThreshold();
1277 bool TargetTransformInfo::supportsScalableVectors() const {
1278 return TTIImpl->supportsScalableVectors();
1281 bool TargetTransformInfo::enableScalableVectorization() const {
1282 return TTIImpl->enableScalableVectorization();
1285 bool TargetTransformInfo::hasActiveVectorLength(unsigned Opcode, Type *DataType,
1286 Align Alignment) const {
1287 return TTIImpl->hasActiveVectorLength(Opcode, DataType, Alignment);
1290 TargetTransformInfo::Concept::~Concept() = default;
1292 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
1294 TargetIRAnalysis::TargetIRAnalysis(
1295 std::function<Result(const Function &)> TTICallback)
1296 : TTICallback(std::move(TTICallback)) {}
1298 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
1299 FunctionAnalysisManager &) {
1300 return TTICallback(F);
1303 AnalysisKey TargetIRAnalysis::Key;
1305 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
1306 return Result(F.getParent()->getDataLayout());
1309 // Register the basic pass.
1310 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
1311 "Target Transform Information", false, true)
1312 char TargetTransformInfoWrapperPass::ID = 0;
1314 void TargetTransformInfoWrapperPass::anchor() {}
1316 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
1317 : ImmutablePass(ID) {
1318 initializeTargetTransformInfoWrapperPassPass(
1319 *PassRegistry::getPassRegistry());
1322 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
1323 TargetIRAnalysis TIRA)
1324 : ImmutablePass(ID), TIRA(std::move(TIRA)) {
1325 initializeTargetTransformInfoWrapperPassPass(
1326 *PassRegistry::getPassRegistry());
1329 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
1330 FunctionAnalysisManager DummyFAM;
1331 TTI = TIRA.run(F, DummyFAM);
1332 return *TTI;
1335 ImmutablePass *
1336 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
1337 return new TargetTransformInfoWrapperPass(std::move(TIRA));