[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / lib / Analysis / ValueTracking.cpp
blob9f9451e4e814ac0dc1db14096ad8c8f24ef9b5bb
1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/iterator_range.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/AssumeBundleQueries.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/DomConditionCache.h"
30 #include "llvm/Analysis/GuardUtils.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/Loads.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/Analysis/WithCache.h"
38 #include "llvm/IR/Argument.h"
39 #include "llvm/IR/Attributes.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/Constant.h"
42 #include "llvm/IR/ConstantRange.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/DiagnosticInfo.h"
46 #include "llvm/IR/Dominators.h"
47 #include "llvm/IR/EHPersonalities.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GetElementPtrTypeIterator.h"
50 #include "llvm/IR/GlobalAlias.h"
51 #include "llvm/IR/GlobalValue.h"
52 #include "llvm/IR/GlobalVariable.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instruction.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/IntrinsicInst.h"
57 #include "llvm/IR/Intrinsics.h"
58 #include "llvm/IR/IntrinsicsAArch64.h"
59 #include "llvm/IR/IntrinsicsAMDGPU.h"
60 #include "llvm/IR/IntrinsicsRISCV.h"
61 #include "llvm/IR/IntrinsicsX86.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Metadata.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/Operator.h"
66 #include "llvm/IR/PatternMatch.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/CommandLine.h"
72 #include "llvm/Support/Compiler.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/KnownBits.h"
75 #include "llvm/Support/MathExtras.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstdint>
79 #include <optional>
80 #include <utility>
82 using namespace llvm;
83 using namespace llvm::PatternMatch;
85 // Controls the number of uses of the value searched for possible
86 // dominating comparisons.
87 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
88 cl::Hidden, cl::init(20));
91 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
92 /// returns the element type's bitwidth.
93 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
94 if (unsigned BitWidth = Ty->getScalarSizeInBits())
95 return BitWidth;
97 return DL.getPointerTypeSizeInBits(Ty);
100 // Given the provided Value and, potentially, a context instruction, return
101 // the preferred context instruction (if any).
102 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
103 // If we've been provided with a context instruction, then use that (provided
104 // it has been inserted).
105 if (CxtI && CxtI->getParent())
106 return CxtI;
108 // If the value is really an already-inserted instruction, then use that.
109 CxtI = dyn_cast<Instruction>(V);
110 if (CxtI && CxtI->getParent())
111 return CxtI;
113 return nullptr;
116 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) {
117 // If we've been provided with a context instruction, then use that (provided
118 // it has been inserted).
119 if (CxtI && CxtI->getParent())
120 return CxtI;
122 // If the value is really an already-inserted instruction, then use that.
123 CxtI = dyn_cast<Instruction>(V1);
124 if (CxtI && CxtI->getParent())
125 return CxtI;
127 CxtI = dyn_cast<Instruction>(V2);
128 if (CxtI && CxtI->getParent())
129 return CxtI;
131 return nullptr;
134 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
135 const APInt &DemandedElts,
136 APInt &DemandedLHS, APInt &DemandedRHS) {
137 if (isa<ScalableVectorType>(Shuf->getType())) {
138 assert(DemandedElts == APInt(1,1));
139 DemandedLHS = DemandedRHS = DemandedElts;
140 return true;
143 int NumElts =
144 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
145 return llvm::getShuffleDemandedElts(NumElts, Shuf->getShuffleMask(),
146 DemandedElts, DemandedLHS, DemandedRHS);
149 static void computeKnownBits(const Value *V, const APInt &DemandedElts,
150 KnownBits &Known, unsigned Depth,
151 const SimplifyQuery &Q);
153 void llvm::computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
154 const SimplifyQuery &Q) {
155 // Since the number of lanes in a scalable vector is unknown at compile time,
156 // we track one bit which is implicitly broadcast to all lanes. This means
157 // that all lanes in a scalable vector are considered demanded.
158 auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
159 APInt DemandedElts =
160 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
161 ::computeKnownBits(V, DemandedElts, Known, Depth, Q);
164 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
165 const DataLayout &DL, unsigned Depth,
166 AssumptionCache *AC, const Instruction *CxtI,
167 const DominatorTree *DT, bool UseInstrInfo) {
168 computeKnownBits(
169 V, Known, Depth,
170 SimplifyQuery(DL, DT, AC, safeCxtI(V, CxtI), UseInstrInfo));
173 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
174 unsigned Depth, AssumptionCache *AC,
175 const Instruction *CxtI,
176 const DominatorTree *DT, bool UseInstrInfo) {
177 return computeKnownBits(
178 V, Depth, SimplifyQuery(DL, DT, AC, safeCxtI(V, CxtI), UseInstrInfo));
181 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
182 const DataLayout &DL, unsigned Depth,
183 AssumptionCache *AC, const Instruction *CxtI,
184 const DominatorTree *DT, bool UseInstrInfo) {
185 return computeKnownBits(
186 V, DemandedElts, Depth,
187 SimplifyQuery(DL, DT, AC, safeCxtI(V, CxtI), UseInstrInfo));
190 static bool haveNoCommonBitsSetSpecialCases(const Value *LHS, const Value *RHS,
191 const SimplifyQuery &SQ) {
192 // Look for an inverted mask: (X & ~M) op (Y & M).
194 Value *M;
195 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
196 match(RHS, m_c_And(m_Specific(M), m_Value())) &&
197 isGuaranteedNotToBeUndef(M, SQ.AC, SQ.CxtI, SQ.DT))
198 return true;
201 // X op (Y & ~X)
202 if (match(RHS, m_c_And(m_Not(m_Specific(LHS)), m_Value())) &&
203 isGuaranteedNotToBeUndef(LHS, SQ.AC, SQ.CxtI, SQ.DT))
204 return true;
206 // X op ((X & Y) ^ Y) -- this is the canonical form of the previous pattern
207 // for constant Y.
208 Value *Y;
209 if (match(RHS,
210 m_c_Xor(m_c_And(m_Specific(LHS), m_Value(Y)), m_Deferred(Y))) &&
211 isGuaranteedNotToBeUndef(LHS, SQ.AC, SQ.CxtI, SQ.DT) &&
212 isGuaranteedNotToBeUndef(Y, SQ.AC, SQ.CxtI, SQ.DT))
213 return true;
215 // Peek through extends to find a 'not' of the other side:
216 // (ext Y) op ext(~Y)
217 if (match(LHS, m_ZExtOrSExt(m_Value(Y))) &&
218 match(RHS, m_ZExtOrSExt(m_Not(m_Specific(Y)))) &&
219 isGuaranteedNotToBeUndef(Y, SQ.AC, SQ.CxtI, SQ.DT))
220 return true;
222 // Look for: (A & B) op ~(A | B)
224 Value *A, *B;
225 if (match(LHS, m_And(m_Value(A), m_Value(B))) &&
226 match(RHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))) &&
227 isGuaranteedNotToBeUndef(A, SQ.AC, SQ.CxtI, SQ.DT) &&
228 isGuaranteedNotToBeUndef(B, SQ.AC, SQ.CxtI, SQ.DT))
229 return true;
232 return false;
235 bool llvm::haveNoCommonBitsSet(const WithCache<const Value *> &LHSCache,
236 const WithCache<const Value *> &RHSCache,
237 const SimplifyQuery &SQ) {
238 const Value *LHS = LHSCache.getValue();
239 const Value *RHS = RHSCache.getValue();
241 assert(LHS->getType() == RHS->getType() &&
242 "LHS and RHS should have the same type");
243 assert(LHS->getType()->isIntOrIntVectorTy() &&
244 "LHS and RHS should be integers");
246 if (haveNoCommonBitsSetSpecialCases(LHS, RHS, SQ) ||
247 haveNoCommonBitsSetSpecialCases(RHS, LHS, SQ))
248 return true;
250 return KnownBits::haveNoCommonBitsSet(LHSCache.getKnownBits(SQ),
251 RHSCache.getKnownBits(SQ));
254 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) {
255 return !I->user_empty() && all_of(I->users(), [](const User *U) {
256 ICmpInst::Predicate P;
257 return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P);
261 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
262 const SimplifyQuery &Q);
264 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
265 bool OrZero, unsigned Depth,
266 AssumptionCache *AC, const Instruction *CxtI,
267 const DominatorTree *DT, bool UseInstrInfo) {
268 return ::isKnownToBeAPowerOfTwo(
269 V, OrZero, Depth,
270 SimplifyQuery(DL, DT, AC, safeCxtI(V, CxtI), UseInstrInfo));
273 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
274 unsigned Depth, const SimplifyQuery &Q);
276 static bool isKnownNonZero(const Value *V, unsigned Depth,
277 const SimplifyQuery &Q);
279 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
280 AssumptionCache *AC, const Instruction *CxtI,
281 const DominatorTree *DT, bool UseInstrInfo) {
282 return ::isKnownNonZero(
283 V, Depth, SimplifyQuery(DL, DT, AC, safeCxtI(V, CxtI), UseInstrInfo));
286 bool llvm::isKnownNonNegative(const Value *V, const SimplifyQuery &SQ,
287 unsigned Depth) {
288 return computeKnownBits(V, Depth, SQ).isNonNegative();
291 bool llvm::isKnownPositive(const Value *V, const SimplifyQuery &SQ,
292 unsigned Depth) {
293 if (auto *CI = dyn_cast<ConstantInt>(V))
294 return CI->getValue().isStrictlyPositive();
296 // TODO: We'd doing two recursive queries here. We should factor this such
297 // that only a single query is needed.
298 return isKnownNonNegative(V, SQ, Depth) && ::isKnownNonZero(V, Depth, SQ);
301 bool llvm::isKnownNegative(const Value *V, const SimplifyQuery &SQ,
302 unsigned Depth) {
303 return computeKnownBits(V, Depth, SQ).isNegative();
306 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
307 const SimplifyQuery &Q);
309 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
310 const DataLayout &DL, AssumptionCache *AC,
311 const Instruction *CxtI, const DominatorTree *DT,
312 bool UseInstrInfo) {
313 return ::isKnownNonEqual(
314 V1, V2, 0,
315 SimplifyQuery(DL, DT, AC, safeCxtI(V2, V1, CxtI), UseInstrInfo));
318 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
319 const SimplifyQuery &SQ, unsigned Depth) {
320 KnownBits Known(Mask.getBitWidth());
321 computeKnownBits(V, Known, Depth, SQ);
322 return Mask.isSubsetOf(Known.Zero);
325 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
326 unsigned Depth, const SimplifyQuery &Q);
328 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
329 const SimplifyQuery &Q) {
330 auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
331 APInt DemandedElts =
332 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
333 return ComputeNumSignBits(V, DemandedElts, Depth, Q);
336 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
337 unsigned Depth, AssumptionCache *AC,
338 const Instruction *CxtI,
339 const DominatorTree *DT, bool UseInstrInfo) {
340 return ::ComputeNumSignBits(
341 V, Depth, SimplifyQuery(DL, DT, AC, safeCxtI(V, CxtI), UseInstrInfo));
344 unsigned llvm::ComputeMaxSignificantBits(const Value *V, const DataLayout &DL,
345 unsigned Depth, AssumptionCache *AC,
346 const Instruction *CxtI,
347 const DominatorTree *DT) {
348 unsigned SignBits = ComputeNumSignBits(V, DL, Depth, AC, CxtI, DT);
349 return V->getType()->getScalarSizeInBits() - SignBits + 1;
352 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
353 bool NSW, const APInt &DemandedElts,
354 KnownBits &KnownOut, KnownBits &Known2,
355 unsigned Depth, const SimplifyQuery &Q) {
356 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
358 // If one operand is unknown and we have no nowrap information,
359 // the result will be unknown independently of the second operand.
360 if (KnownOut.isUnknown() && !NSW)
361 return;
363 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
364 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
367 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
368 const APInt &DemandedElts, KnownBits &Known,
369 KnownBits &Known2, unsigned Depth,
370 const SimplifyQuery &Q) {
371 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
372 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
374 bool isKnownNegative = false;
375 bool isKnownNonNegative = false;
376 // If the multiplication is known not to overflow, compute the sign bit.
377 if (NSW) {
378 if (Op0 == Op1) {
379 // The product of a number with itself is non-negative.
380 isKnownNonNegative = true;
381 } else {
382 bool isKnownNonNegativeOp1 = Known.isNonNegative();
383 bool isKnownNonNegativeOp0 = Known2.isNonNegative();
384 bool isKnownNegativeOp1 = Known.isNegative();
385 bool isKnownNegativeOp0 = Known2.isNegative();
386 // The product of two numbers with the same sign is non-negative.
387 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
388 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
389 // The product of a negative number and a non-negative number is either
390 // negative or zero.
391 if (!isKnownNonNegative)
392 isKnownNegative =
393 (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
394 Known2.isNonZero()) ||
395 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero());
399 bool SelfMultiply = Op0 == Op1;
400 if (SelfMultiply)
401 SelfMultiply &=
402 isGuaranteedNotToBeUndef(Op0, Q.AC, Q.CxtI, Q.DT, Depth + 1);
403 Known = KnownBits::mul(Known, Known2, SelfMultiply);
405 // Only make use of no-wrap flags if we failed to compute the sign bit
406 // directly. This matters if the multiplication always overflows, in
407 // which case we prefer to follow the result of the direct computation,
408 // though as the program is invoking undefined behaviour we can choose
409 // whatever we like here.
410 if (isKnownNonNegative && !Known.isNegative())
411 Known.makeNonNegative();
412 else if (isKnownNegative && !Known.isNonNegative())
413 Known.makeNegative();
416 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
417 KnownBits &Known) {
418 unsigned BitWidth = Known.getBitWidth();
419 unsigned NumRanges = Ranges.getNumOperands() / 2;
420 assert(NumRanges >= 1);
422 Known.Zero.setAllBits();
423 Known.One.setAllBits();
425 for (unsigned i = 0; i < NumRanges; ++i) {
426 ConstantInt *Lower =
427 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
428 ConstantInt *Upper =
429 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
430 ConstantRange Range(Lower->getValue(), Upper->getValue());
432 // The first CommonPrefixBits of all values in Range are equal.
433 unsigned CommonPrefixBits =
434 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countl_zero();
435 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
436 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
437 Known.One &= UnsignedMax & Mask;
438 Known.Zero &= ~UnsignedMax & Mask;
442 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
443 SmallVector<const Value *, 16> WorkSet(1, I);
444 SmallPtrSet<const Value *, 32> Visited;
445 SmallPtrSet<const Value *, 16> EphValues;
447 // The instruction defining an assumption's condition itself is always
448 // considered ephemeral to that assumption (even if it has other
449 // non-ephemeral users). See r246696's test case for an example.
450 if (is_contained(I->operands(), E))
451 return true;
453 while (!WorkSet.empty()) {
454 const Value *V = WorkSet.pop_back_val();
455 if (!Visited.insert(V).second)
456 continue;
458 // If all uses of this value are ephemeral, then so is this value.
459 if (llvm::all_of(V->users(), [&](const User *U) {
460 return EphValues.count(U);
461 })) {
462 if (V == E)
463 return true;
465 if (V == I || (isa<Instruction>(V) &&
466 !cast<Instruction>(V)->mayHaveSideEffects() &&
467 !cast<Instruction>(V)->isTerminator())) {
468 EphValues.insert(V);
469 if (const User *U = dyn_cast<User>(V))
470 append_range(WorkSet, U->operands());
475 return false;
478 // Is this an intrinsic that cannot be speculated but also cannot trap?
479 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
480 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I))
481 return CI->isAssumeLikeIntrinsic();
483 return false;
486 bool llvm::isValidAssumeForContext(const Instruction *Inv,
487 const Instruction *CxtI,
488 const DominatorTree *DT,
489 bool AllowEphemerals) {
490 // There are two restrictions on the use of an assume:
491 // 1. The assume must dominate the context (or the control flow must
492 // reach the assume whenever it reaches the context).
493 // 2. The context must not be in the assume's set of ephemeral values
494 // (otherwise we will use the assume to prove that the condition
495 // feeding the assume is trivially true, thus causing the removal of
496 // the assume).
498 if (Inv->getParent() == CxtI->getParent()) {
499 // If Inv and CtxI are in the same block, check if the assume (Inv) is first
500 // in the BB.
501 if (Inv->comesBefore(CxtI))
502 return true;
504 // Don't let an assume affect itself - this would cause the problems
505 // `isEphemeralValueOf` is trying to prevent, and it would also make
506 // the loop below go out of bounds.
507 if (!AllowEphemerals && Inv == CxtI)
508 return false;
510 // The context comes first, but they're both in the same block.
511 // Make sure there is nothing in between that might interrupt
512 // the control flow, not even CxtI itself.
513 // We limit the scan distance between the assume and its context instruction
514 // to avoid a compile-time explosion. This limit is chosen arbitrarily, so
515 // it can be adjusted if needed (could be turned into a cl::opt).
516 auto Range = make_range(CxtI->getIterator(), Inv->getIterator());
517 if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15))
518 return false;
520 return AllowEphemerals || !isEphemeralValueOf(Inv, CxtI);
523 // Inv and CxtI are in different blocks.
524 if (DT) {
525 if (DT->dominates(Inv, CxtI))
526 return true;
527 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
528 // We don't have a DT, but this trivially dominates.
529 return true;
532 return false;
535 // TODO: cmpExcludesZero misses many cases where `RHS` is non-constant but
536 // we still have enough information about `RHS` to conclude non-zero. For
537 // example Pred=EQ, RHS=isKnownNonZero. cmpExcludesZero is called in loops
538 // so the extra compile time may not be worth it, but possibly a second API
539 // should be created for use outside of loops.
540 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) {
541 // v u> y implies v != 0.
542 if (Pred == ICmpInst::ICMP_UGT)
543 return true;
545 // Special-case v != 0 to also handle v != null.
546 if (Pred == ICmpInst::ICMP_NE)
547 return match(RHS, m_Zero());
549 // All other predicates - rely on generic ConstantRange handling.
550 const APInt *C;
551 auto Zero = APInt::getZero(RHS->getType()->getScalarSizeInBits());
552 if (match(RHS, m_APInt(C))) {
553 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C);
554 return !TrueValues.contains(Zero);
557 auto *VC = dyn_cast<ConstantDataVector>(RHS);
558 if (VC == nullptr)
559 return false;
561 for (unsigned ElemIdx = 0, NElem = VC->getNumElements(); ElemIdx < NElem;
562 ++ElemIdx) {
563 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(
564 Pred, VC->getElementAsAPInt(ElemIdx));
565 if (TrueValues.contains(Zero))
566 return false;
568 return true;
571 static bool isKnownNonZeroFromAssume(const Value *V, const SimplifyQuery &Q) {
572 // Use of assumptions is context-sensitive. If we don't have a context, we
573 // cannot use them!
574 if (!Q.AC || !Q.CxtI)
575 return false;
577 for (AssumptionCache::ResultElem &Elem : Q.AC->assumptionsFor(V)) {
578 if (!Elem.Assume)
579 continue;
581 AssumeInst *I = cast<AssumeInst>(Elem.Assume);
582 assert(I->getFunction() == Q.CxtI->getFunction() &&
583 "Got assumption for the wrong function!");
585 if (Elem.Index != AssumptionCache::ExprResultIdx) {
586 if (!V->getType()->isPointerTy())
587 continue;
588 if (RetainedKnowledge RK = getKnowledgeFromBundle(
589 *I, I->bundle_op_info_begin()[Elem.Index])) {
590 if (RK.WasOn == V &&
591 (RK.AttrKind == Attribute::NonNull ||
592 (RK.AttrKind == Attribute::Dereferenceable &&
593 !NullPointerIsDefined(Q.CxtI->getFunction(),
594 V->getType()->getPointerAddressSpace()))) &&
595 isValidAssumeForContext(I, Q.CxtI, Q.DT))
596 return true;
598 continue;
601 // Warning: This loop can end up being somewhat performance sensitive.
602 // We're running this loop for once for each value queried resulting in a
603 // runtime of ~O(#assumes * #values).
605 Value *RHS;
606 CmpInst::Predicate Pred;
607 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
608 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS))))
609 return false;
611 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
612 return true;
615 return false;
618 static void computeKnownBitsFromCmp(const Value *V, CmpInst::Predicate Pred,
619 Value *LHS, Value *RHS, KnownBits &Known,
620 const SimplifyQuery &Q) {
621 if (RHS->getType()->isPointerTy()) {
622 // Handle comparison of pointer to null explicitly, as it will not be
623 // covered by the m_APInt() logic below.
624 if (LHS == V && match(RHS, m_Zero())) {
625 switch (Pred) {
626 case ICmpInst::ICMP_EQ:
627 Known.setAllZero();
628 break;
629 case ICmpInst::ICMP_SGE:
630 case ICmpInst::ICMP_SGT:
631 Known.makeNonNegative();
632 break;
633 case ICmpInst::ICMP_SLT:
634 Known.makeNegative();
635 break;
636 default:
637 break;
640 return;
643 unsigned BitWidth = Known.getBitWidth();
644 auto m_V =
645 m_CombineOr(m_Specific(V), m_PtrToIntSameSize(Q.DL, m_Specific(V)));
647 const APInt *Mask, *C;
648 uint64_t ShAmt;
649 switch (Pred) {
650 case ICmpInst::ICMP_EQ:
651 // assume(V = C)
652 if (match(LHS, m_V) && match(RHS, m_APInt(C))) {
653 Known = Known.unionWith(KnownBits::makeConstant(*C));
654 // assume(V & Mask = C)
655 } else if (match(LHS, m_And(m_V, m_APInt(Mask))) &&
656 match(RHS, m_APInt(C))) {
657 // For one bits in Mask, we can propagate bits from C to V.
658 Known.Zero |= ~*C & *Mask;
659 Known.One |= *C & *Mask;
660 // assume(V | Mask = C)
661 } else if (match(LHS, m_Or(m_V, m_APInt(Mask))) && match(RHS, m_APInt(C))) {
662 // For zero bits in Mask, we can propagate bits from C to V.
663 Known.Zero |= ~*C & ~*Mask;
664 Known.One |= *C & ~*Mask;
665 // assume(V ^ Mask = C)
666 } else if (match(LHS, m_Xor(m_V, m_APInt(Mask))) &&
667 match(RHS, m_APInt(C))) {
668 // Equivalent to assume(V == Mask ^ C)
669 Known = Known.unionWith(KnownBits::makeConstant(*C ^ *Mask));
670 // assume(V << ShAmt = C)
671 } else if (match(LHS, m_Shl(m_V, m_ConstantInt(ShAmt))) &&
672 match(RHS, m_APInt(C)) && ShAmt < BitWidth) {
673 // For those bits in C that are known, we can propagate them to known
674 // bits in V shifted to the right by ShAmt.
675 KnownBits RHSKnown = KnownBits::makeConstant(*C);
676 RHSKnown.Zero.lshrInPlace(ShAmt);
677 RHSKnown.One.lshrInPlace(ShAmt);
678 Known = Known.unionWith(RHSKnown);
679 // assume(V >> ShAmt = C)
680 } else if (match(LHS, m_Shr(m_V, m_ConstantInt(ShAmt))) &&
681 match(RHS, m_APInt(C)) && ShAmt < BitWidth) {
682 KnownBits RHSKnown = KnownBits::makeConstant(*C);
683 // For those bits in RHS that are known, we can propagate them to known
684 // bits in V shifted to the right by C.
685 Known.Zero |= RHSKnown.Zero << ShAmt;
686 Known.One |= RHSKnown.One << ShAmt;
688 break;
689 case ICmpInst::ICMP_NE: {
690 // assume (V & B != 0) where B is a power of 2
691 const APInt *BPow2;
692 if (match(LHS, m_And(m_V, m_Power2(BPow2))) && match(RHS, m_Zero()))
693 Known.One |= *BPow2;
694 break;
696 default:
697 const APInt *Offset = nullptr;
698 if (match(LHS, m_CombineOr(m_V, m_Add(m_V, m_APInt(Offset)))) &&
699 match(RHS, m_APInt(C))) {
700 ConstantRange LHSRange = ConstantRange::makeAllowedICmpRegion(Pred, *C);
701 if (Offset)
702 LHSRange = LHSRange.sub(*Offset);
703 Known = Known.unionWith(LHSRange.toKnownBits());
705 break;
709 void llvm::computeKnownBitsFromContext(const Value *V, KnownBits &Known,
710 unsigned Depth, const SimplifyQuery &Q) {
711 if (!Q.CxtI)
712 return;
714 if (Q.DC && Q.DT) {
715 // Handle dominating conditions.
716 for (BranchInst *BI : Q.DC->conditionsFor(V)) {
717 auto *Cmp = dyn_cast<ICmpInst>(BI->getCondition());
718 if (!Cmp)
719 continue;
721 BasicBlockEdge Edge0(BI->getParent(), BI->getSuccessor(0));
722 if (Q.DT->dominates(Edge0, Q.CxtI->getParent()))
723 computeKnownBitsFromCmp(V, Cmp->getPredicate(), Cmp->getOperand(0),
724 Cmp->getOperand(1), Known, Q);
726 BasicBlockEdge Edge1(BI->getParent(), BI->getSuccessor(1));
727 if (Q.DT->dominates(Edge1, Q.CxtI->getParent()))
728 computeKnownBitsFromCmp(V, Cmp->getInversePredicate(),
729 Cmp->getOperand(0), Cmp->getOperand(1), Known,
733 if (Known.hasConflict())
734 Known.resetAll();
737 if (!Q.AC)
738 return;
740 unsigned BitWidth = Known.getBitWidth();
742 // Note that the patterns below need to be kept in sync with the code
743 // in AssumptionCache::updateAffectedValues.
745 for (AssumptionCache::ResultElem &Elem : Q.AC->assumptionsFor(V)) {
746 if (!Elem.Assume)
747 continue;
749 AssumeInst *I = cast<AssumeInst>(Elem.Assume);
750 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
751 "Got assumption for the wrong function!");
753 if (Elem.Index != AssumptionCache::ExprResultIdx) {
754 if (!V->getType()->isPointerTy())
755 continue;
756 if (RetainedKnowledge RK = getKnowledgeFromBundle(
757 *I, I->bundle_op_info_begin()[Elem.Index])) {
758 if (RK.WasOn == V && RK.AttrKind == Attribute::Alignment &&
759 isPowerOf2_64(RK.ArgValue) &&
760 isValidAssumeForContext(I, Q.CxtI, Q.DT))
761 Known.Zero.setLowBits(Log2_64(RK.ArgValue));
763 continue;
766 // Warning: This loop can end up being somewhat performance sensitive.
767 // We're running this loop for once for each value queried resulting in a
768 // runtime of ~O(#assumes * #values).
770 Value *Arg = I->getArgOperand(0);
772 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
773 assert(BitWidth == 1 && "assume operand is not i1?");
774 (void)BitWidth;
775 Known.setAllOnes();
776 return;
778 if (match(Arg, m_Not(m_Specific(V))) &&
779 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
780 assert(BitWidth == 1 && "assume operand is not i1?");
781 (void)BitWidth;
782 Known.setAllZero();
783 return;
786 // The remaining tests are all recursive, so bail out if we hit the limit.
787 if (Depth == MaxAnalysisRecursionDepth)
788 continue;
790 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
791 if (!Cmp)
792 continue;
794 if (!isValidAssumeForContext(I, Q.CxtI, Q.DT))
795 continue;
797 computeKnownBitsFromCmp(V, Cmp->getPredicate(), Cmp->getOperand(0),
798 Cmp->getOperand(1), Known, Q);
801 // Conflicting assumption: Undefined behavior will occur on this execution
802 // path.
803 if (Known.hasConflict())
804 Known.resetAll();
807 /// Compute known bits from a shift operator, including those with a
808 /// non-constant shift amount. Known is the output of this function. Known2 is a
809 /// pre-allocated temporary with the same bit width as Known and on return
810 /// contains the known bit of the shift value source. KF is an
811 /// operator-specific function that, given the known-bits and a shift amount,
812 /// compute the implied known-bits of the shift operator's result respectively
813 /// for that shift amount. The results from calling KF are conservatively
814 /// combined for all permitted shift amounts.
815 static void computeKnownBitsFromShiftOperator(
816 const Operator *I, const APInt &DemandedElts, KnownBits &Known,
817 KnownBits &Known2, unsigned Depth, const SimplifyQuery &Q,
818 function_ref<KnownBits(const KnownBits &, const KnownBits &, bool)> KF) {
819 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
820 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
821 // To limit compile-time impact, only query isKnownNonZero() if we know at
822 // least something about the shift amount.
823 bool ShAmtNonZero =
824 Known.isNonZero() ||
825 (Known.getMaxValue().ult(Known.getBitWidth()) &&
826 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q));
827 Known = KF(Known2, Known, ShAmtNonZero);
830 static KnownBits
831 getKnownBitsFromAndXorOr(const Operator *I, const APInt &DemandedElts,
832 const KnownBits &KnownLHS, const KnownBits &KnownRHS,
833 unsigned Depth, const SimplifyQuery &Q) {
834 unsigned BitWidth = KnownLHS.getBitWidth();
835 KnownBits KnownOut(BitWidth);
836 bool IsAnd = false;
837 bool HasKnownOne = !KnownLHS.One.isZero() || !KnownRHS.One.isZero();
838 Value *X = nullptr, *Y = nullptr;
840 switch (I->getOpcode()) {
841 case Instruction::And:
842 KnownOut = KnownLHS & KnownRHS;
843 IsAnd = true;
844 // and(x, -x) is common idioms that will clear all but lowest set
845 // bit. If we have a single known bit in x, we can clear all bits
846 // above it.
847 // TODO: instcombine often reassociates independent `and` which can hide
848 // this pattern. Try to match and(x, and(-x, y)) / and(and(x, y), -x).
849 if (HasKnownOne && match(I, m_c_And(m_Value(X), m_Neg(m_Deferred(X))))) {
850 // -(-x) == x so using whichever (LHS/RHS) gets us a better result.
851 if (KnownLHS.countMaxTrailingZeros() <= KnownRHS.countMaxTrailingZeros())
852 KnownOut = KnownLHS.blsi();
853 else
854 KnownOut = KnownRHS.blsi();
856 break;
857 case Instruction::Or:
858 KnownOut = KnownLHS | KnownRHS;
859 break;
860 case Instruction::Xor:
861 KnownOut = KnownLHS ^ KnownRHS;
862 // xor(x, x-1) is common idioms that will clear all but lowest set
863 // bit. If we have a single known bit in x, we can clear all bits
864 // above it.
865 // TODO: xor(x, x-1) is often rewritting as xor(x, x-C) where C !=
866 // -1 but for the purpose of demanded bits (xor(x, x-C) &
867 // Demanded) == (xor(x, x-1) & Demanded). Extend the xor pattern
868 // to use arbitrary C if xor(x, x-C) as the same as xor(x, x-1).
869 if (HasKnownOne &&
870 match(I, m_c_Xor(m_Value(X), m_c_Add(m_Deferred(X), m_AllOnes())))) {
871 const KnownBits &XBits = I->getOperand(0) == X ? KnownLHS : KnownRHS;
872 KnownOut = XBits.blsmsk();
874 break;
875 default:
876 llvm_unreachable("Invalid Op used in 'analyzeKnownBitsFromAndXorOr'");
879 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
880 // xor/or(x, add (x, -1)) is an idiom that will always set the low bit.
881 // here we handle the more general case of adding any odd number by
882 // matching the form and/xor/or(x, add(x, y)) where y is odd.
883 // TODO: This could be generalized to clearing any bit set in y where the
884 // following bit is known to be unset in y.
885 if (!KnownOut.Zero[0] && !KnownOut.One[0] &&
886 (match(I, m_c_BinOp(m_Value(X), m_c_Add(m_Deferred(X), m_Value(Y)))) ||
887 match(I, m_c_BinOp(m_Value(X), m_Sub(m_Deferred(X), m_Value(Y)))) ||
888 match(I, m_c_BinOp(m_Value(X), m_Sub(m_Value(Y), m_Deferred(X)))))) {
889 KnownBits KnownY(BitWidth);
890 computeKnownBits(Y, DemandedElts, KnownY, Depth + 1, Q);
891 if (KnownY.countMinTrailingOnes() > 0) {
892 if (IsAnd)
893 KnownOut.Zero.setBit(0);
894 else
895 KnownOut.One.setBit(0);
898 return KnownOut;
901 // Public so this can be used in `SimplifyDemandedUseBits`.
902 KnownBits llvm::analyzeKnownBitsFromAndXorOr(const Operator *I,
903 const KnownBits &KnownLHS,
904 const KnownBits &KnownRHS,
905 unsigned Depth,
906 const SimplifyQuery &SQ) {
907 auto *FVTy = dyn_cast<FixedVectorType>(I->getType());
908 APInt DemandedElts =
909 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
911 return getKnownBitsFromAndXorOr(I, DemandedElts, KnownLHS, KnownRHS, Depth,
912 SQ);
915 ConstantRange llvm::getVScaleRange(const Function *F, unsigned BitWidth) {
916 Attribute Attr = F->getFnAttribute(Attribute::VScaleRange);
917 // Without vscale_range, we only know that vscale is non-zero.
918 if (!Attr.isValid())
919 return ConstantRange(APInt(BitWidth, 1), APInt::getZero(BitWidth));
921 unsigned AttrMin = Attr.getVScaleRangeMin();
922 // Minimum is larger than vscale width, result is always poison.
923 if ((unsigned)llvm::bit_width(AttrMin) > BitWidth)
924 return ConstantRange::getEmpty(BitWidth);
926 APInt Min(BitWidth, AttrMin);
927 std::optional<unsigned> AttrMax = Attr.getVScaleRangeMax();
928 if (!AttrMax || (unsigned)llvm::bit_width(*AttrMax) > BitWidth)
929 return ConstantRange(Min, APInt::getZero(BitWidth));
931 return ConstantRange(Min, APInt(BitWidth, *AttrMax) + 1);
934 static void computeKnownBitsFromOperator(const Operator *I,
935 const APInt &DemandedElts,
936 KnownBits &Known, unsigned Depth,
937 const SimplifyQuery &Q) {
938 unsigned BitWidth = Known.getBitWidth();
940 KnownBits Known2(BitWidth);
941 switch (I->getOpcode()) {
942 default: break;
943 case Instruction::Load:
944 if (MDNode *MD =
945 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
946 computeKnownBitsFromRangeMetadata(*MD, Known);
947 break;
948 case Instruction::And:
949 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
950 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
952 Known = getKnownBitsFromAndXorOr(I, DemandedElts, Known2, Known, Depth, Q);
953 break;
954 case Instruction::Or:
955 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
956 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
958 Known = getKnownBitsFromAndXorOr(I, DemandedElts, Known2, Known, Depth, Q);
959 break;
960 case Instruction::Xor:
961 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
962 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
964 Known = getKnownBitsFromAndXorOr(I, DemandedElts, Known2, Known, Depth, Q);
965 break;
966 case Instruction::Mul: {
967 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
968 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
969 Known, Known2, Depth, Q);
970 break;
972 case Instruction::UDiv: {
973 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
974 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
975 Known =
976 KnownBits::udiv(Known, Known2, Q.IIQ.isExact(cast<BinaryOperator>(I)));
977 break;
979 case Instruction::SDiv: {
980 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
981 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
982 Known =
983 KnownBits::sdiv(Known, Known2, Q.IIQ.isExact(cast<BinaryOperator>(I)));
984 break;
986 case Instruction::Select: {
987 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
988 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
990 // Only known if known in both the LHS and RHS.
991 Known = Known.intersectWith(Known2);
992 break;
994 case Instruction::FPTrunc:
995 case Instruction::FPExt:
996 case Instruction::FPToUI:
997 case Instruction::FPToSI:
998 case Instruction::SIToFP:
999 case Instruction::UIToFP:
1000 break; // Can't work with floating point.
1001 case Instruction::PtrToInt:
1002 case Instruction::IntToPtr:
1003 // Fall through and handle them the same as zext/trunc.
1004 [[fallthrough]];
1005 case Instruction::ZExt:
1006 case Instruction::Trunc: {
1007 Type *SrcTy = I->getOperand(0)->getType();
1009 unsigned SrcBitWidth;
1010 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1011 // which fall through here.
1012 Type *ScalarTy = SrcTy->getScalarType();
1013 SrcBitWidth = ScalarTy->isPointerTy() ?
1014 Q.DL.getPointerTypeSizeInBits(ScalarTy) :
1015 Q.DL.getTypeSizeInBits(ScalarTy);
1017 assert(SrcBitWidth && "SrcBitWidth can't be zero");
1018 Known = Known.anyextOrTrunc(SrcBitWidth);
1019 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1020 if (auto *Inst = dyn_cast<PossiblyNonNegInst>(I);
1021 Inst && Inst->hasNonNeg() && !Known.isNegative())
1022 Known.makeNonNegative();
1023 Known = Known.zextOrTrunc(BitWidth);
1024 break;
1026 case Instruction::BitCast: {
1027 Type *SrcTy = I->getOperand(0)->getType();
1028 if (SrcTy->isIntOrPtrTy() &&
1029 // TODO: For now, not handling conversions like:
1030 // (bitcast i64 %x to <2 x i32>)
1031 !I->getType()->isVectorTy()) {
1032 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1033 break;
1036 // Handle cast from vector integer type to scalar or vector integer.
1037 auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy);
1038 if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() ||
1039 !I->getType()->isIntOrIntVectorTy() ||
1040 isa<ScalableVectorType>(I->getType()))
1041 break;
1043 // Look through a cast from narrow vector elements to wider type.
1044 // Examples: v4i32 -> v2i64, v3i8 -> v24
1045 unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits();
1046 if (BitWidth % SubBitWidth == 0) {
1047 // Known bits are automatically intersected across demanded elements of a
1048 // vector. So for example, if a bit is computed as known zero, it must be
1049 // zero across all demanded elements of the vector.
1051 // For this bitcast, each demanded element of the output is sub-divided
1052 // across a set of smaller vector elements in the source vector. To get
1053 // the known bits for an entire element of the output, compute the known
1054 // bits for each sub-element sequentially. This is done by shifting the
1055 // one-set-bit demanded elements parameter across the sub-elements for
1056 // consecutive calls to computeKnownBits. We are using the demanded
1057 // elements parameter as a mask operator.
1059 // The known bits of each sub-element are then inserted into place
1060 // (dependent on endian) to form the full result of known bits.
1061 unsigned NumElts = DemandedElts.getBitWidth();
1062 unsigned SubScale = BitWidth / SubBitWidth;
1063 APInt SubDemandedElts = APInt::getZero(NumElts * SubScale);
1064 for (unsigned i = 0; i != NumElts; ++i) {
1065 if (DemandedElts[i])
1066 SubDemandedElts.setBit(i * SubScale);
1069 KnownBits KnownSrc(SubBitWidth);
1070 for (unsigned i = 0; i != SubScale; ++i) {
1071 computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc,
1072 Depth + 1, Q);
1073 unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i;
1074 Known.insertBits(KnownSrc, ShiftElt * SubBitWidth);
1077 break;
1079 case Instruction::SExt: {
1080 // Compute the bits in the result that are not present in the input.
1081 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1083 Known = Known.trunc(SrcBitWidth);
1084 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1085 // If the sign bit of the input is known set or clear, then we know the
1086 // top bits of the result.
1087 Known = Known.sext(BitWidth);
1088 break;
1090 case Instruction::Shl: {
1091 bool NUW = Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(I));
1092 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1093 auto KF = [NUW, NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt,
1094 bool ShAmtNonZero) {
1095 return KnownBits::shl(KnownVal, KnownAmt, NUW, NSW, ShAmtNonZero);
1097 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1098 KF);
1099 // Trailing zeros of a right-shifted constant never decrease.
1100 const APInt *C;
1101 if (match(I->getOperand(0), m_APInt(C)))
1102 Known.Zero.setLowBits(C->countr_zero());
1103 break;
1105 case Instruction::LShr: {
1106 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt,
1107 bool ShAmtNonZero) {
1108 return KnownBits::lshr(KnownVal, KnownAmt, ShAmtNonZero);
1110 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1111 KF);
1112 // Leading zeros of a left-shifted constant never decrease.
1113 const APInt *C;
1114 if (match(I->getOperand(0), m_APInt(C)))
1115 Known.Zero.setHighBits(C->countl_zero());
1116 break;
1118 case Instruction::AShr: {
1119 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt,
1120 bool ShAmtNonZero) {
1121 return KnownBits::ashr(KnownVal, KnownAmt, ShAmtNonZero);
1123 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1124 KF);
1125 break;
1127 case Instruction::Sub: {
1128 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1129 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1130 DemandedElts, Known, Known2, Depth, Q);
1131 break;
1133 case Instruction::Add: {
1134 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1135 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1136 DemandedElts, Known, Known2, Depth, Q);
1137 break;
1139 case Instruction::SRem:
1140 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1141 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1142 Known = KnownBits::srem(Known, Known2);
1143 break;
1145 case Instruction::URem:
1146 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1147 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1148 Known = KnownBits::urem(Known, Known2);
1149 break;
1150 case Instruction::Alloca:
1151 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
1152 break;
1153 case Instruction::GetElementPtr: {
1154 // Analyze all of the subscripts of this getelementptr instruction
1155 // to determine if we can prove known low zero bits.
1156 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1157 // Accumulate the constant indices in a separate variable
1158 // to minimize the number of calls to computeForAddSub.
1159 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true);
1161 gep_type_iterator GTI = gep_type_begin(I);
1162 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1163 // TrailZ can only become smaller, short-circuit if we hit zero.
1164 if (Known.isUnknown())
1165 break;
1167 Value *Index = I->getOperand(i);
1169 // Handle case when index is zero.
1170 Constant *CIndex = dyn_cast<Constant>(Index);
1171 if (CIndex && CIndex->isZeroValue())
1172 continue;
1174 if (StructType *STy = GTI.getStructTypeOrNull()) {
1175 // Handle struct member offset arithmetic.
1177 assert(CIndex &&
1178 "Access to structure field must be known at compile time");
1180 if (CIndex->getType()->isVectorTy())
1181 Index = CIndex->getSplatValue();
1183 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1184 const StructLayout *SL = Q.DL.getStructLayout(STy);
1185 uint64_t Offset = SL->getElementOffset(Idx);
1186 AccConstIndices += Offset;
1187 continue;
1190 // Handle array index arithmetic.
1191 Type *IndexedTy = GTI.getIndexedType();
1192 if (!IndexedTy->isSized()) {
1193 Known.resetAll();
1194 break;
1197 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits();
1198 KnownBits IndexBits(IndexBitWidth);
1199 computeKnownBits(Index, IndexBits, Depth + 1, Q);
1200 TypeSize IndexTypeSize = GTI.getSequentialElementStride(Q.DL);
1201 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinValue();
1202 KnownBits ScalingFactor(IndexBitWidth);
1203 // Multiply by current sizeof type.
1204 // &A[i] == A + i * sizeof(*A[i]).
1205 if (IndexTypeSize.isScalable()) {
1206 // For scalable types the only thing we know about sizeof is
1207 // that this is a multiple of the minimum size.
1208 ScalingFactor.Zero.setLowBits(llvm::countr_zero(TypeSizeInBytes));
1209 } else if (IndexBits.isConstant()) {
1210 APInt IndexConst = IndexBits.getConstant();
1211 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes);
1212 IndexConst *= ScalingFactor;
1213 AccConstIndices += IndexConst.sextOrTrunc(BitWidth);
1214 continue;
1215 } else {
1216 ScalingFactor =
1217 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes));
1219 IndexBits = KnownBits::mul(IndexBits, ScalingFactor);
1221 // If the offsets have a different width from the pointer, according
1222 // to the language reference we need to sign-extend or truncate them
1223 // to the width of the pointer.
1224 IndexBits = IndexBits.sextOrTrunc(BitWidth);
1226 // Note that inbounds does *not* guarantee nsw for the addition, as only
1227 // the offset is signed, while the base address is unsigned.
1228 Known = KnownBits::computeForAddSub(
1229 /*Add=*/true, /*NSW=*/false, Known, IndexBits);
1231 if (!Known.isUnknown() && !AccConstIndices.isZero()) {
1232 KnownBits Index = KnownBits::makeConstant(AccConstIndices);
1233 Known = KnownBits::computeForAddSub(
1234 /*Add=*/true, /*NSW=*/false, Known, Index);
1236 break;
1238 case Instruction::PHI: {
1239 const PHINode *P = cast<PHINode>(I);
1240 BinaryOperator *BO = nullptr;
1241 Value *R = nullptr, *L = nullptr;
1242 if (matchSimpleRecurrence(P, BO, R, L)) {
1243 // Handle the case of a simple two-predecessor recurrence PHI.
1244 // There's a lot more that could theoretically be done here, but
1245 // this is sufficient to catch some interesting cases.
1246 unsigned Opcode = BO->getOpcode();
1248 // If this is a shift recurrence, we know the bits being shifted in.
1249 // We can combine that with information about the start value of the
1250 // recurrence to conclude facts about the result.
1251 if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr ||
1252 Opcode == Instruction::Shl) &&
1253 BO->getOperand(0) == I) {
1255 // We have matched a recurrence of the form:
1256 // %iv = [R, %entry], [%iv.next, %backedge]
1257 // %iv.next = shift_op %iv, L
1259 // Recurse with the phi context to avoid concern about whether facts
1260 // inferred hold at original context instruction. TODO: It may be
1261 // correct to use the original context. IF warranted, explore and
1262 // add sufficient tests to cover.
1263 SimplifyQuery RecQ = Q;
1264 RecQ.CxtI = P;
1265 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ);
1266 switch (Opcode) {
1267 case Instruction::Shl:
1268 // A shl recurrence will only increase the tailing zeros
1269 Known.Zero.setLowBits(Known2.countMinTrailingZeros());
1270 break;
1271 case Instruction::LShr:
1272 // A lshr recurrence will preserve the leading zeros of the
1273 // start value
1274 Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1275 break;
1276 case Instruction::AShr:
1277 // An ashr recurrence will extend the initial sign bit
1278 Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1279 Known.One.setHighBits(Known2.countMinLeadingOnes());
1280 break;
1284 // Check for operations that have the property that if
1285 // both their operands have low zero bits, the result
1286 // will have low zero bits.
1287 if (Opcode == Instruction::Add ||
1288 Opcode == Instruction::Sub ||
1289 Opcode == Instruction::And ||
1290 Opcode == Instruction::Or ||
1291 Opcode == Instruction::Mul) {
1292 // Change the context instruction to the "edge" that flows into the
1293 // phi. This is important because that is where the value is actually
1294 // "evaluated" even though it is used later somewhere else. (see also
1295 // D69571).
1296 SimplifyQuery RecQ = Q;
1298 unsigned OpNum = P->getOperand(0) == R ? 0 : 1;
1299 Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator();
1300 Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator();
1302 // Ok, we have a PHI of the form L op= R. Check for low
1303 // zero bits.
1304 RecQ.CxtI = RInst;
1305 computeKnownBits(R, Known2, Depth + 1, RecQ);
1307 // We need to take the minimum number of known bits
1308 KnownBits Known3(BitWidth);
1309 RecQ.CxtI = LInst;
1310 computeKnownBits(L, Known3, Depth + 1, RecQ);
1312 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1313 Known3.countMinTrailingZeros()));
1315 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO);
1316 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1317 // If initial value of recurrence is nonnegative, and we are adding
1318 // a nonnegative number with nsw, the result can only be nonnegative
1319 // or poison value regardless of the number of times we execute the
1320 // add in phi recurrence. If initial value is negative and we are
1321 // adding a negative number with nsw, the result can only be
1322 // negative or poison value. Similar arguments apply to sub and mul.
1324 // (add non-negative, non-negative) --> non-negative
1325 // (add negative, negative) --> negative
1326 if (Opcode == Instruction::Add) {
1327 if (Known2.isNonNegative() && Known3.isNonNegative())
1328 Known.makeNonNegative();
1329 else if (Known2.isNegative() && Known3.isNegative())
1330 Known.makeNegative();
1333 // (sub nsw non-negative, negative) --> non-negative
1334 // (sub nsw negative, non-negative) --> negative
1335 else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) {
1336 if (Known2.isNonNegative() && Known3.isNegative())
1337 Known.makeNonNegative();
1338 else if (Known2.isNegative() && Known3.isNonNegative())
1339 Known.makeNegative();
1342 // (mul nsw non-negative, non-negative) --> non-negative
1343 else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1344 Known3.isNonNegative())
1345 Known.makeNonNegative();
1348 break;
1352 // Unreachable blocks may have zero-operand PHI nodes.
1353 if (P->getNumIncomingValues() == 0)
1354 break;
1356 // Otherwise take the unions of the known bit sets of the operands,
1357 // taking conservative care to avoid excessive recursion.
1358 if (Depth < MaxAnalysisRecursionDepth - 1 && Known.isUnknown()) {
1359 // Skip if every incoming value references to ourself.
1360 if (isa_and_nonnull<UndefValue>(P->hasConstantValue()))
1361 break;
1363 Known.Zero.setAllBits();
1364 Known.One.setAllBits();
1365 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
1366 Value *IncValue = P->getIncomingValue(u);
1367 // Skip direct self references.
1368 if (IncValue == P) continue;
1370 // Change the context instruction to the "edge" that flows into the
1371 // phi. This is important because that is where the value is actually
1372 // "evaluated" even though it is used later somewhere else. (see also
1373 // D69571).
1374 SimplifyQuery RecQ = Q;
1375 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
1377 Known2 = KnownBits(BitWidth);
1379 // Recurse, but cap the recursion to one level, because we don't
1380 // want to waste time spinning around in loops.
1381 // TODO: See if we can base recursion limiter on number of incoming phi
1382 // edges so we don't overly clamp analysis.
1383 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ);
1385 // See if we can further use a conditional branch into the phi
1386 // to help us determine the range of the value.
1387 if (!Known2.isConstant()) {
1388 ICmpInst::Predicate Pred;
1389 const APInt *RHSC;
1390 BasicBlock *TrueSucc, *FalseSucc;
1391 // TODO: Use RHS Value and compute range from its known bits.
1392 if (match(RecQ.CxtI,
1393 m_Br(m_c_ICmp(Pred, m_Specific(IncValue), m_APInt(RHSC)),
1394 m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) {
1395 // Check for cases of duplicate successors.
1396 if ((TrueSucc == P->getParent()) != (FalseSucc == P->getParent())) {
1397 // If we're using the false successor, invert the predicate.
1398 if (FalseSucc == P->getParent())
1399 Pred = CmpInst::getInversePredicate(Pred);
1400 // Get the knownbits implied by the incoming phi condition.
1401 auto CR = ConstantRange::makeExactICmpRegion(Pred, *RHSC);
1402 KnownBits KnownUnion = Known2.unionWith(CR.toKnownBits());
1403 // We can have conflicts here if we are analyzing deadcode (its
1404 // impossible for us reach this BB based the icmp).
1405 if (KnownUnion.hasConflict()) {
1406 // No reason to continue analyzing in a known dead region, so
1407 // just resetAll and break. This will cause us to also exit the
1408 // outer loop.
1409 Known.resetAll();
1410 break;
1412 Known2 = KnownUnion;
1417 Known = Known.intersectWith(Known2);
1418 // If all bits have been ruled out, there's no need to check
1419 // more operands.
1420 if (Known.isUnknown())
1421 break;
1424 break;
1426 case Instruction::Call:
1427 case Instruction::Invoke:
1428 // If range metadata is attached to this call, set known bits from that,
1429 // and then intersect with known bits based on other properties of the
1430 // function.
1431 if (MDNode *MD =
1432 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1433 computeKnownBitsFromRangeMetadata(*MD, Known);
1434 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
1435 if (RV->getType() == I->getType()) {
1436 computeKnownBits(RV, Known2, Depth + 1, Q);
1437 Known = Known.unionWith(Known2);
1440 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1441 switch (II->getIntrinsicID()) {
1442 default: break;
1443 case Intrinsic::abs: {
1444 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1445 bool IntMinIsPoison = match(II->getArgOperand(1), m_One());
1446 Known = Known2.abs(IntMinIsPoison);
1447 break;
1449 case Intrinsic::bitreverse:
1450 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1451 Known.Zero |= Known2.Zero.reverseBits();
1452 Known.One |= Known2.One.reverseBits();
1453 break;
1454 case Intrinsic::bswap:
1455 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1456 Known.Zero |= Known2.Zero.byteSwap();
1457 Known.One |= Known2.One.byteSwap();
1458 break;
1459 case Intrinsic::ctlz: {
1460 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1461 // If we have a known 1, its position is our upper bound.
1462 unsigned PossibleLZ = Known2.countMaxLeadingZeros();
1463 // If this call is poison for 0 input, the result will be less than 2^n.
1464 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1465 PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1466 unsigned LowBits = llvm::bit_width(PossibleLZ);
1467 Known.Zero.setBitsFrom(LowBits);
1468 break;
1470 case Intrinsic::cttz: {
1471 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1472 // If we have a known 1, its position is our upper bound.
1473 unsigned PossibleTZ = Known2.countMaxTrailingZeros();
1474 // If this call is poison for 0 input, the result will be less than 2^n.
1475 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1476 PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1477 unsigned LowBits = llvm::bit_width(PossibleTZ);
1478 Known.Zero.setBitsFrom(LowBits);
1479 break;
1481 case Intrinsic::ctpop: {
1482 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1483 // We can bound the space the count needs. Also, bits known to be zero
1484 // can't contribute to the population.
1485 unsigned BitsPossiblySet = Known2.countMaxPopulation();
1486 unsigned LowBits = llvm::bit_width(BitsPossiblySet);
1487 Known.Zero.setBitsFrom(LowBits);
1488 // TODO: we could bound KnownOne using the lower bound on the number
1489 // of bits which might be set provided by popcnt KnownOne2.
1490 break;
1492 case Intrinsic::fshr:
1493 case Intrinsic::fshl: {
1494 const APInt *SA;
1495 if (!match(I->getOperand(2), m_APInt(SA)))
1496 break;
1498 // Normalize to funnel shift left.
1499 uint64_t ShiftAmt = SA->urem(BitWidth);
1500 if (II->getIntrinsicID() == Intrinsic::fshr)
1501 ShiftAmt = BitWidth - ShiftAmt;
1503 KnownBits Known3(BitWidth);
1504 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1505 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1507 Known.Zero =
1508 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1509 Known.One =
1510 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1511 break;
1513 case Intrinsic::uadd_sat:
1514 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1515 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1516 Known = KnownBits::uadd_sat(Known, Known2);
1517 break;
1518 case Intrinsic::usub_sat:
1519 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1520 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1521 Known = KnownBits::usub_sat(Known, Known2);
1522 break;
1523 case Intrinsic::sadd_sat:
1524 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1525 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1526 Known = KnownBits::sadd_sat(Known, Known2);
1527 break;
1528 case Intrinsic::ssub_sat:
1529 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1530 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1531 Known = KnownBits::ssub_sat(Known, Known2);
1532 break;
1533 case Intrinsic::umin:
1534 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1535 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1536 Known = KnownBits::umin(Known, Known2);
1537 break;
1538 case Intrinsic::umax:
1539 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1540 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1541 Known = KnownBits::umax(Known, Known2);
1542 break;
1543 case Intrinsic::smin:
1544 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1545 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1546 Known = KnownBits::smin(Known, Known2);
1547 break;
1548 case Intrinsic::smax:
1549 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1550 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1551 Known = KnownBits::smax(Known, Known2);
1552 break;
1553 case Intrinsic::ptrmask: {
1554 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1556 const Value *Mask = I->getOperand(1);
1557 Known2 = KnownBits(Mask->getType()->getScalarSizeInBits());
1558 computeKnownBits(Mask, Known2, Depth + 1, Q);
1559 // TODO: 1-extend would be more precise.
1560 Known &= Known2.anyextOrTrunc(BitWidth);
1561 break;
1563 case Intrinsic::x86_sse42_crc32_64_64:
1564 Known.Zero.setBitsFrom(32);
1565 break;
1566 case Intrinsic::riscv_vsetvli:
1567 case Intrinsic::riscv_vsetvlimax:
1568 // Assume that VL output is <= 65536.
1569 // TODO: Take SEW and LMUL into account.
1570 if (BitWidth > 17)
1571 Known.Zero.setBitsFrom(17);
1572 break;
1573 case Intrinsic::vscale: {
1574 if (!II->getParent() || !II->getFunction())
1575 break;
1577 Known = getVScaleRange(II->getFunction(), BitWidth).toKnownBits();
1578 break;
1582 break;
1583 case Instruction::ShuffleVector: {
1584 auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
1585 // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
1586 if (!Shuf) {
1587 Known.resetAll();
1588 return;
1590 // For undef elements, we don't know anything about the common state of
1591 // the shuffle result.
1592 APInt DemandedLHS, DemandedRHS;
1593 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
1594 Known.resetAll();
1595 return;
1597 Known.One.setAllBits();
1598 Known.Zero.setAllBits();
1599 if (!!DemandedLHS) {
1600 const Value *LHS = Shuf->getOperand(0);
1601 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
1602 // If we don't know any bits, early out.
1603 if (Known.isUnknown())
1604 break;
1606 if (!!DemandedRHS) {
1607 const Value *RHS = Shuf->getOperand(1);
1608 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
1609 Known = Known.intersectWith(Known2);
1611 break;
1613 case Instruction::InsertElement: {
1614 if (isa<ScalableVectorType>(I->getType())) {
1615 Known.resetAll();
1616 return;
1618 const Value *Vec = I->getOperand(0);
1619 const Value *Elt = I->getOperand(1);
1620 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
1621 // Early out if the index is non-constant or out-of-range.
1622 unsigned NumElts = DemandedElts.getBitWidth();
1623 if (!CIdx || CIdx->getValue().uge(NumElts)) {
1624 Known.resetAll();
1625 return;
1627 Known.One.setAllBits();
1628 Known.Zero.setAllBits();
1629 unsigned EltIdx = CIdx->getZExtValue();
1630 // Do we demand the inserted element?
1631 if (DemandedElts[EltIdx]) {
1632 computeKnownBits(Elt, Known, Depth + 1, Q);
1633 // If we don't know any bits, early out.
1634 if (Known.isUnknown())
1635 break;
1637 // We don't need the base vector element that has been inserted.
1638 APInt DemandedVecElts = DemandedElts;
1639 DemandedVecElts.clearBit(EltIdx);
1640 if (!!DemandedVecElts) {
1641 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
1642 Known = Known.intersectWith(Known2);
1644 break;
1646 case Instruction::ExtractElement: {
1647 // Look through extract element. If the index is non-constant or
1648 // out-of-range demand all elements, otherwise just the extracted element.
1649 const Value *Vec = I->getOperand(0);
1650 const Value *Idx = I->getOperand(1);
1651 auto *CIdx = dyn_cast<ConstantInt>(Idx);
1652 if (isa<ScalableVectorType>(Vec->getType())) {
1653 // FIXME: there's probably *something* we can do with scalable vectors
1654 Known.resetAll();
1655 break;
1657 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
1658 APInt DemandedVecElts = APInt::getAllOnes(NumElts);
1659 if (CIdx && CIdx->getValue().ult(NumElts))
1660 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
1661 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
1662 break;
1664 case Instruction::ExtractValue:
1665 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1666 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1667 if (EVI->getNumIndices() != 1) break;
1668 if (EVI->getIndices()[0] == 0) {
1669 switch (II->getIntrinsicID()) {
1670 default: break;
1671 case Intrinsic::uadd_with_overflow:
1672 case Intrinsic::sadd_with_overflow:
1673 computeKnownBitsAddSub(true, II->getArgOperand(0),
1674 II->getArgOperand(1), false, DemandedElts,
1675 Known, Known2, Depth, Q);
1676 break;
1677 case Intrinsic::usub_with_overflow:
1678 case Intrinsic::ssub_with_overflow:
1679 computeKnownBitsAddSub(false, II->getArgOperand(0),
1680 II->getArgOperand(1), false, DemandedElts,
1681 Known, Known2, Depth, Q);
1682 break;
1683 case Intrinsic::umul_with_overflow:
1684 case Intrinsic::smul_with_overflow:
1685 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1686 DemandedElts, Known, Known2, Depth, Q);
1687 break;
1691 break;
1692 case Instruction::Freeze:
1693 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
1694 Depth + 1))
1695 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1696 break;
1700 /// Determine which bits of V are known to be either zero or one and return
1701 /// them.
1702 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
1703 unsigned Depth, const SimplifyQuery &Q) {
1704 KnownBits Known(getBitWidth(V->getType(), Q.DL));
1705 ::computeKnownBits(V, DemandedElts, Known, Depth, Q);
1706 return Known;
1709 /// Determine which bits of V are known to be either zero or one and return
1710 /// them.
1711 KnownBits llvm::computeKnownBits(const Value *V, unsigned Depth,
1712 const SimplifyQuery &Q) {
1713 KnownBits Known(getBitWidth(V->getType(), Q.DL));
1714 computeKnownBits(V, Known, Depth, Q);
1715 return Known;
1718 /// Determine which bits of V are known to be either zero or one and return
1719 /// them in the Known bit set.
1721 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1722 /// we cannot optimize based on the assumption that it is zero without changing
1723 /// it to be an explicit zero. If we don't change it to zero, other code could
1724 /// optimized based on the contradictory assumption that it is non-zero.
1725 /// Because instcombine aggressively folds operations with undef args anyway,
1726 /// this won't lose us code quality.
1728 /// This function is defined on values with integer type, values with pointer
1729 /// type, and vectors of integers. In the case
1730 /// where V is a vector, known zero, and known one values are the
1731 /// same width as the vector element, and the bit is set only if it is true
1732 /// for all of the demanded elements in the vector specified by DemandedElts.
1733 void computeKnownBits(const Value *V, const APInt &DemandedElts,
1734 KnownBits &Known, unsigned Depth,
1735 const SimplifyQuery &Q) {
1736 if (!DemandedElts) {
1737 // No demanded elts, better to assume we don't know anything.
1738 Known.resetAll();
1739 return;
1742 assert(V && "No Value?");
1743 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1745 #ifndef NDEBUG
1746 Type *Ty = V->getType();
1747 unsigned BitWidth = Known.getBitWidth();
1749 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
1750 "Not integer or pointer type!");
1752 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
1753 assert(
1754 FVTy->getNumElements() == DemandedElts.getBitWidth() &&
1755 "DemandedElt width should equal the fixed vector number of elements");
1756 } else {
1757 assert(DemandedElts == APInt(1, 1) &&
1758 "DemandedElt width should be 1 for scalars or scalable vectors");
1761 Type *ScalarTy = Ty->getScalarType();
1762 if (ScalarTy->isPointerTy()) {
1763 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
1764 "V and Known should have same BitWidth");
1765 } else {
1766 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
1767 "V and Known should have same BitWidth");
1769 #endif
1771 const APInt *C;
1772 if (match(V, m_APInt(C))) {
1773 // We know all of the bits for a scalar constant or a splat vector constant!
1774 Known = KnownBits::makeConstant(*C);
1775 return;
1777 // Null and aggregate-zero are all-zeros.
1778 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1779 Known.setAllZero();
1780 return;
1782 // Handle a constant vector by taking the intersection of the known bits of
1783 // each element.
1784 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
1785 assert(!isa<ScalableVectorType>(V->getType()));
1786 // We know that CDV must be a vector of integers. Take the intersection of
1787 // each element.
1788 Known.Zero.setAllBits(); Known.One.setAllBits();
1789 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
1790 if (!DemandedElts[i])
1791 continue;
1792 APInt Elt = CDV->getElementAsAPInt(i);
1793 Known.Zero &= ~Elt;
1794 Known.One &= Elt;
1796 if (Known.hasConflict())
1797 Known.resetAll();
1798 return;
1801 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1802 assert(!isa<ScalableVectorType>(V->getType()));
1803 // We know that CV must be a vector of integers. Take the intersection of
1804 // each element.
1805 Known.Zero.setAllBits(); Known.One.setAllBits();
1806 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1807 if (!DemandedElts[i])
1808 continue;
1809 Constant *Element = CV->getAggregateElement(i);
1810 if (isa<PoisonValue>(Element))
1811 continue;
1812 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1813 if (!ElementCI) {
1814 Known.resetAll();
1815 return;
1817 const APInt &Elt = ElementCI->getValue();
1818 Known.Zero &= ~Elt;
1819 Known.One &= Elt;
1821 if (Known.hasConflict())
1822 Known.resetAll();
1823 return;
1826 // Start out not knowing anything.
1827 Known.resetAll();
1829 // We can't imply anything about undefs.
1830 if (isa<UndefValue>(V))
1831 return;
1833 // There's no point in looking through other users of ConstantData for
1834 // assumptions. Confirm that we've handled them all.
1835 assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1837 // All recursive calls that increase depth must come after this.
1838 if (Depth == MaxAnalysisRecursionDepth)
1839 return;
1841 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1842 // the bits of its aliasee.
1843 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1844 if (!GA->isInterposable())
1845 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
1846 return;
1849 if (const Operator *I = dyn_cast<Operator>(V))
1850 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
1851 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1852 if (std::optional<ConstantRange> CR = GV->getAbsoluteSymbolRange())
1853 Known = CR->toKnownBits();
1856 // Aligned pointers have trailing zeros - refine Known.Zero set
1857 if (isa<PointerType>(V->getType())) {
1858 Align Alignment = V->getPointerAlignment(Q.DL);
1859 Known.Zero.setLowBits(Log2(Alignment));
1862 // computeKnownBitsFromContext strictly refines Known.
1863 // Therefore, we run them after computeKnownBitsFromOperator.
1865 // Check whether we can determine known bits from context such as assumes.
1866 computeKnownBitsFromContext(V, Known, Depth, Q);
1868 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1871 /// Try to detect a recurrence that the value of the induction variable is
1872 /// always a power of two (or zero).
1873 static bool isPowerOfTwoRecurrence(const PHINode *PN, bool OrZero,
1874 unsigned Depth, SimplifyQuery &Q) {
1875 BinaryOperator *BO = nullptr;
1876 Value *Start = nullptr, *Step = nullptr;
1877 if (!matchSimpleRecurrence(PN, BO, Start, Step))
1878 return false;
1880 // Initial value must be a power of two.
1881 for (const Use &U : PN->operands()) {
1882 if (U.get() == Start) {
1883 // Initial value comes from a different BB, need to adjust context
1884 // instruction for analysis.
1885 Q.CxtI = PN->getIncomingBlock(U)->getTerminator();
1886 if (!isKnownToBeAPowerOfTwo(Start, OrZero, Depth, Q))
1887 return false;
1891 // Except for Mul, the induction variable must be on the left side of the
1892 // increment expression, otherwise its value can be arbitrary.
1893 if (BO->getOpcode() != Instruction::Mul && BO->getOperand(1) != Step)
1894 return false;
1896 Q.CxtI = BO->getParent()->getTerminator();
1897 switch (BO->getOpcode()) {
1898 case Instruction::Mul:
1899 // Power of two is closed under multiplication.
1900 return (OrZero || Q.IIQ.hasNoUnsignedWrap(BO) ||
1901 Q.IIQ.hasNoSignedWrap(BO)) &&
1902 isKnownToBeAPowerOfTwo(Step, OrZero, Depth, Q);
1903 case Instruction::SDiv:
1904 // Start value must not be signmask for signed division, so simply being a
1905 // power of two is not sufficient, and it has to be a constant.
1906 if (!match(Start, m_Power2()) || match(Start, m_SignMask()))
1907 return false;
1908 [[fallthrough]];
1909 case Instruction::UDiv:
1910 // Divisor must be a power of two.
1911 // If OrZero is false, cannot guarantee induction variable is non-zero after
1912 // division, same for Shr, unless it is exact division.
1913 return (OrZero || Q.IIQ.isExact(BO)) &&
1914 isKnownToBeAPowerOfTwo(Step, false, Depth, Q);
1915 case Instruction::Shl:
1916 return OrZero || Q.IIQ.hasNoUnsignedWrap(BO) || Q.IIQ.hasNoSignedWrap(BO);
1917 case Instruction::AShr:
1918 if (!match(Start, m_Power2()) || match(Start, m_SignMask()))
1919 return false;
1920 [[fallthrough]];
1921 case Instruction::LShr:
1922 return OrZero || Q.IIQ.isExact(BO);
1923 default:
1924 return false;
1928 /// Return true if the given value is known to have exactly one
1929 /// bit set when defined. For vectors return true if every element is known to
1930 /// be a power of two when defined. Supports values with integer or pointer
1931 /// types and vectors of integers.
1932 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
1933 const SimplifyQuery &Q) {
1934 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1936 if (isa<Constant>(V))
1937 return OrZero ? match(V, m_Power2OrZero()) : match(V, m_Power2());
1939 // i1 is by definition a power of 2 or zero.
1940 if (OrZero && V->getType()->getScalarSizeInBits() == 1)
1941 return true;
1943 auto *I = dyn_cast<Instruction>(V);
1944 if (!I)
1945 return false;
1947 if (Q.CxtI && match(V, m_VScale())) {
1948 const Function *F = Q.CxtI->getFunction();
1949 // The vscale_range indicates vscale is a power-of-two.
1950 return F->hasFnAttribute(Attribute::VScaleRange);
1953 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1954 // it is shifted off the end then the result is undefined.
1955 if (match(I, m_Shl(m_One(), m_Value())))
1956 return true;
1958 // (signmask) >>l X is clearly a power of two if the one is not shifted off
1959 // the bottom. If it is shifted off the bottom then the result is undefined.
1960 if (match(I, m_LShr(m_SignMask(), m_Value())))
1961 return true;
1963 // The remaining tests are all recursive, so bail out if we hit the limit.
1964 if (Depth++ == MaxAnalysisRecursionDepth)
1965 return false;
1967 switch (I->getOpcode()) {
1968 case Instruction::ZExt:
1969 return isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Depth, Q);
1970 case Instruction::Trunc:
1971 return OrZero && isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Depth, Q);
1972 case Instruction::Shl:
1973 if (OrZero || Q.IIQ.hasNoUnsignedWrap(I) || Q.IIQ.hasNoSignedWrap(I))
1974 return isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Depth, Q);
1975 return false;
1976 case Instruction::LShr:
1977 if (OrZero || Q.IIQ.isExact(cast<BinaryOperator>(I)))
1978 return isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Depth, Q);
1979 return false;
1980 case Instruction::UDiv:
1981 if (Q.IIQ.isExact(cast<BinaryOperator>(I)))
1982 return isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Depth, Q);
1983 return false;
1984 case Instruction::Mul:
1985 return isKnownToBeAPowerOfTwo(I->getOperand(1), OrZero, Depth, Q) &&
1986 isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Depth, Q) &&
1987 (OrZero || isKnownNonZero(I, Depth, Q));
1988 case Instruction::And:
1989 // A power of two and'd with anything is a power of two or zero.
1990 if (OrZero &&
1991 (isKnownToBeAPowerOfTwo(I->getOperand(1), /*OrZero*/ true, Depth, Q) ||
1992 isKnownToBeAPowerOfTwo(I->getOperand(0), /*OrZero*/ true, Depth, Q)))
1993 return true;
1994 // X & (-X) is always a power of two or zero.
1995 if (match(I->getOperand(0), m_Neg(m_Specific(I->getOperand(1)))) ||
1996 match(I->getOperand(1), m_Neg(m_Specific(I->getOperand(0)))))
1997 return OrZero || isKnownNonZero(I->getOperand(0), Depth, Q);
1998 return false;
1999 case Instruction::Add: {
2000 // Adding a power-of-two or zero to the same power-of-two or zero yields
2001 // either the original power-of-two, a larger power-of-two or zero.
2002 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
2003 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
2004 Q.IIQ.hasNoSignedWrap(VOBO)) {
2005 if (match(I->getOperand(0),
2006 m_c_And(m_Specific(I->getOperand(1)), m_Value())) &&
2007 isKnownToBeAPowerOfTwo(I->getOperand(1), OrZero, Depth, Q))
2008 return true;
2009 if (match(I->getOperand(1),
2010 m_c_And(m_Specific(I->getOperand(0)), m_Value())) &&
2011 isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Depth, Q))
2012 return true;
2014 unsigned BitWidth = V->getType()->getScalarSizeInBits();
2015 KnownBits LHSBits(BitWidth);
2016 computeKnownBits(I->getOperand(0), LHSBits, Depth, Q);
2018 KnownBits RHSBits(BitWidth);
2019 computeKnownBits(I->getOperand(1), RHSBits, Depth, Q);
2020 // If i8 V is a power of two or zero:
2021 // ZeroBits: 1 1 1 0 1 1 1 1
2022 // ~ZeroBits: 0 0 0 1 0 0 0 0
2023 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
2024 // If OrZero isn't set, we cannot give back a zero result.
2025 // Make sure either the LHS or RHS has a bit set.
2026 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
2027 return true;
2029 return false;
2031 case Instruction::Select:
2032 return isKnownToBeAPowerOfTwo(I->getOperand(1), OrZero, Depth, Q) &&
2033 isKnownToBeAPowerOfTwo(I->getOperand(2), OrZero, Depth, Q);
2034 case Instruction::PHI: {
2035 // A PHI node is power of two if all incoming values are power of two, or if
2036 // it is an induction variable where in each step its value is a power of
2037 // two.
2038 auto *PN = cast<PHINode>(I);
2039 SimplifyQuery RecQ = Q;
2041 // Check if it is an induction variable and always power of two.
2042 if (isPowerOfTwoRecurrence(PN, OrZero, Depth, RecQ))
2043 return true;
2045 // Recursively check all incoming values. Limit recursion to 2 levels, so
2046 // that search complexity is limited to number of operands^2.
2047 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2048 return llvm::all_of(PN->operands(), [&](const Use &U) {
2049 // Value is power of 2 if it is coming from PHI node itself by induction.
2050 if (U.get() == PN)
2051 return true;
2053 // Change the context instruction to the incoming block where it is
2054 // evaluated.
2055 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2056 return isKnownToBeAPowerOfTwo(U.get(), OrZero, NewDepth, RecQ);
2059 case Instruction::Invoke:
2060 case Instruction::Call: {
2061 if (auto *II = dyn_cast<IntrinsicInst>(I)) {
2062 switch (II->getIntrinsicID()) {
2063 case Intrinsic::umax:
2064 case Intrinsic::smax:
2065 case Intrinsic::umin:
2066 case Intrinsic::smin:
2067 return isKnownToBeAPowerOfTwo(II->getArgOperand(1), OrZero, Depth, Q) &&
2068 isKnownToBeAPowerOfTwo(II->getArgOperand(0), OrZero, Depth, Q);
2069 // bswap/bitreverse just move around bits, but don't change any 1s/0s
2070 // thus dont change pow2/non-pow2 status.
2071 case Intrinsic::bitreverse:
2072 case Intrinsic::bswap:
2073 return isKnownToBeAPowerOfTwo(II->getArgOperand(0), OrZero, Depth, Q);
2074 case Intrinsic::fshr:
2075 case Intrinsic::fshl:
2076 // If Op0 == Op1, this is a rotate. is_pow2(rotate(x, y)) == is_pow2(x)
2077 if (II->getArgOperand(0) == II->getArgOperand(1))
2078 return isKnownToBeAPowerOfTwo(II->getArgOperand(0), OrZero, Depth, Q);
2079 break;
2080 default:
2081 break;
2084 return false;
2086 default:
2087 return false;
2091 /// Test whether a GEP's result is known to be non-null.
2093 /// Uses properties inherent in a GEP to try to determine whether it is known
2094 /// to be non-null.
2096 /// Currently this routine does not support vector GEPs.
2097 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
2098 const SimplifyQuery &Q) {
2099 const Function *F = nullptr;
2100 if (const Instruction *I = dyn_cast<Instruction>(GEP))
2101 F = I->getFunction();
2103 if (!GEP->isInBounds() ||
2104 NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
2105 return false;
2107 // FIXME: Support vector-GEPs.
2108 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
2110 // If the base pointer is non-null, we cannot walk to a null address with an
2111 // inbounds GEP in address space zero.
2112 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
2113 return true;
2115 // Walk the GEP operands and see if any operand introduces a non-zero offset.
2116 // If so, then the GEP cannot produce a null pointer, as doing so would
2117 // inherently violate the inbounds contract within address space zero.
2118 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
2119 GTI != GTE; ++GTI) {
2120 // Struct types are easy -- they must always be indexed by a constant.
2121 if (StructType *STy = GTI.getStructTypeOrNull()) {
2122 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
2123 unsigned ElementIdx = OpC->getZExtValue();
2124 const StructLayout *SL = Q.DL.getStructLayout(STy);
2125 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
2126 if (ElementOffset > 0)
2127 return true;
2128 continue;
2131 // If we have a zero-sized type, the index doesn't matter. Keep looping.
2132 if (GTI.getSequentialElementStride(Q.DL).isZero())
2133 continue;
2135 // Fast path the constant operand case both for efficiency and so we don't
2136 // increment Depth when just zipping down an all-constant GEP.
2137 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
2138 if (!OpC->isZero())
2139 return true;
2140 continue;
2143 // We post-increment Depth here because while isKnownNonZero increments it
2144 // as well, when we pop back up that increment won't persist. We don't want
2145 // to recurse 10k times just because we have 10k GEP operands. We don't
2146 // bail completely out because we want to handle constant GEPs regardless
2147 // of depth.
2148 if (Depth++ >= MaxAnalysisRecursionDepth)
2149 continue;
2151 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
2152 return true;
2155 return false;
2158 static bool isKnownNonNullFromDominatingCondition(const Value *V,
2159 const Instruction *CtxI,
2160 const DominatorTree *DT) {
2161 assert(!isa<Constant>(V) && "Called for constant?");
2163 if (!CtxI || !DT)
2164 return false;
2166 unsigned NumUsesExplored = 0;
2167 for (const auto *U : V->users()) {
2168 // Avoid massive lists
2169 if (NumUsesExplored >= DomConditionsMaxUses)
2170 break;
2171 NumUsesExplored++;
2173 // If the value is used as an argument to a call or invoke, then argument
2174 // attributes may provide an answer about null-ness.
2175 if (const auto *CB = dyn_cast<CallBase>(U))
2176 if (auto *CalledFunc = CB->getCalledFunction())
2177 for (const Argument &Arg : CalledFunc->args())
2178 if (CB->getArgOperand(Arg.getArgNo()) == V &&
2179 Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) &&
2180 DT->dominates(CB, CtxI))
2181 return true;
2183 // If the value is used as a load/store, then the pointer must be non null.
2184 if (V == getLoadStorePointerOperand(U)) {
2185 const Instruction *I = cast<Instruction>(U);
2186 if (!NullPointerIsDefined(I->getFunction(),
2187 V->getType()->getPointerAddressSpace()) &&
2188 DT->dominates(I, CtxI))
2189 return true;
2192 if ((match(U, m_IDiv(m_Value(), m_Specific(V))) ||
2193 match(U, m_IRem(m_Value(), m_Specific(V)))) &&
2194 isValidAssumeForContext(cast<Instruction>(U), CtxI, DT))
2195 return true;
2197 // Consider only compare instructions uniquely controlling a branch
2198 Value *RHS;
2199 CmpInst::Predicate Pred;
2200 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS))))
2201 continue;
2203 bool NonNullIfTrue;
2204 if (cmpExcludesZero(Pred, RHS))
2205 NonNullIfTrue = true;
2206 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS))
2207 NonNullIfTrue = false;
2208 else
2209 continue;
2211 SmallVector<const User *, 4> WorkList;
2212 SmallPtrSet<const User *, 4> Visited;
2213 for (const auto *CmpU : U->users()) {
2214 assert(WorkList.empty() && "Should be!");
2215 if (Visited.insert(CmpU).second)
2216 WorkList.push_back(CmpU);
2218 while (!WorkList.empty()) {
2219 auto *Curr = WorkList.pop_back_val();
2221 // If a user is an AND, add all its users to the work list. We only
2222 // propagate "pred != null" condition through AND because it is only
2223 // correct to assume that all conditions of AND are met in true branch.
2224 // TODO: Support similar logic of OR and EQ predicate?
2225 if (NonNullIfTrue)
2226 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) {
2227 for (const auto *CurrU : Curr->users())
2228 if (Visited.insert(CurrU).second)
2229 WorkList.push_back(CurrU);
2230 continue;
2233 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
2234 assert(BI->isConditional() && "uses a comparison!");
2236 BasicBlock *NonNullSuccessor =
2237 BI->getSuccessor(NonNullIfTrue ? 0 : 1);
2238 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
2239 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
2240 return true;
2241 } else if (NonNullIfTrue && isGuard(Curr) &&
2242 DT->dominates(cast<Instruction>(Curr), CtxI)) {
2243 return true;
2249 return false;
2252 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
2253 /// ensure that the value it's attached to is never Value? 'RangeType' is
2254 /// is the type of the value described by the range.
2255 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
2256 const unsigned NumRanges = Ranges->getNumOperands() / 2;
2257 assert(NumRanges >= 1);
2258 for (unsigned i = 0; i < NumRanges; ++i) {
2259 ConstantInt *Lower =
2260 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2261 ConstantInt *Upper =
2262 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2263 ConstantRange Range(Lower->getValue(), Upper->getValue());
2264 if (Range.contains(Value))
2265 return false;
2267 return true;
2270 /// Try to detect a recurrence that monotonically increases/decreases from a
2271 /// non-zero starting value. These are common as induction variables.
2272 static bool isNonZeroRecurrence(const PHINode *PN) {
2273 BinaryOperator *BO = nullptr;
2274 Value *Start = nullptr, *Step = nullptr;
2275 const APInt *StartC, *StepC;
2276 if (!matchSimpleRecurrence(PN, BO, Start, Step) ||
2277 !match(Start, m_APInt(StartC)) || StartC->isZero())
2278 return false;
2280 switch (BO->getOpcode()) {
2281 case Instruction::Add:
2282 // Starting from non-zero and stepping away from zero can never wrap back
2283 // to zero.
2284 return BO->hasNoUnsignedWrap() ||
2285 (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) &&
2286 StartC->isNegative() == StepC->isNegative());
2287 case Instruction::Mul:
2288 return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) &&
2289 match(Step, m_APInt(StepC)) && !StepC->isZero();
2290 case Instruction::Shl:
2291 return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap();
2292 case Instruction::AShr:
2293 case Instruction::LShr:
2294 return BO->isExact();
2295 default:
2296 return false;
2300 static bool isNonZeroAdd(const APInt &DemandedElts, unsigned Depth,
2301 const SimplifyQuery &Q, unsigned BitWidth, Value *X,
2302 Value *Y, bool NSW) {
2303 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
2304 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
2306 // If X and Y are both non-negative (as signed values) then their sum is not
2307 // zero unless both X and Y are zero.
2308 if (XKnown.isNonNegative() && YKnown.isNonNegative())
2309 if (isKnownNonZero(Y, DemandedElts, Depth, Q) ||
2310 isKnownNonZero(X, DemandedElts, Depth, Q))
2311 return true;
2313 // If X and Y are both negative (as signed values) then their sum is not
2314 // zero unless both X and Y equal INT_MIN.
2315 if (XKnown.isNegative() && YKnown.isNegative()) {
2316 APInt Mask = APInt::getSignedMaxValue(BitWidth);
2317 // The sign bit of X is set. If some other bit is set then X is not equal
2318 // to INT_MIN.
2319 if (XKnown.One.intersects(Mask))
2320 return true;
2321 // The sign bit of Y is set. If some other bit is set then Y is not equal
2322 // to INT_MIN.
2323 if (YKnown.One.intersects(Mask))
2324 return true;
2327 // The sum of a non-negative number and a power of two is not zero.
2328 if (XKnown.isNonNegative() &&
2329 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2330 return true;
2331 if (YKnown.isNonNegative() &&
2332 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2333 return true;
2335 return KnownBits::computeForAddSub(/*Add*/ true, NSW, XKnown, YKnown)
2336 .isNonZero();
2339 static bool isNonZeroSub(const APInt &DemandedElts, unsigned Depth,
2340 const SimplifyQuery &Q, unsigned BitWidth, Value *X,
2341 Value *Y) {
2342 // TODO: Move this case into isKnownNonEqual().
2343 if (auto *C = dyn_cast<Constant>(X))
2344 if (C->isNullValue() && isKnownNonZero(Y, DemandedElts, Depth, Q))
2345 return true;
2347 return ::isKnownNonEqual(X, Y, Depth, Q);
2350 static bool isNonZeroShift(const Operator *I, const APInt &DemandedElts,
2351 unsigned Depth, const SimplifyQuery &Q,
2352 const KnownBits &KnownVal) {
2353 auto ShiftOp = [&](const APInt &Lhs, const APInt &Rhs) {
2354 switch (I->getOpcode()) {
2355 case Instruction::Shl:
2356 return Lhs.shl(Rhs);
2357 case Instruction::LShr:
2358 return Lhs.lshr(Rhs);
2359 case Instruction::AShr:
2360 return Lhs.ashr(Rhs);
2361 default:
2362 llvm_unreachable("Unknown Shift Opcode");
2366 auto InvShiftOp = [&](const APInt &Lhs, const APInt &Rhs) {
2367 switch (I->getOpcode()) {
2368 case Instruction::Shl:
2369 return Lhs.lshr(Rhs);
2370 case Instruction::LShr:
2371 case Instruction::AShr:
2372 return Lhs.shl(Rhs);
2373 default:
2374 llvm_unreachable("Unknown Shift Opcode");
2378 if (KnownVal.isUnknown())
2379 return false;
2381 KnownBits KnownCnt =
2382 computeKnownBits(I->getOperand(1), DemandedElts, Depth, Q);
2383 APInt MaxShift = KnownCnt.getMaxValue();
2384 unsigned NumBits = KnownVal.getBitWidth();
2385 if (MaxShift.uge(NumBits))
2386 return false;
2388 if (!ShiftOp(KnownVal.One, MaxShift).isZero())
2389 return true;
2391 // If all of the bits shifted out are known to be zero, and Val is known
2392 // non-zero then at least one non-zero bit must remain.
2393 if (InvShiftOp(KnownVal.Zero, NumBits - MaxShift)
2394 .eq(InvShiftOp(APInt::getAllOnes(NumBits), NumBits - MaxShift)) &&
2395 isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q))
2396 return true;
2398 return false;
2401 static bool isKnownNonZeroFromOperator(const Operator *I,
2402 const APInt &DemandedElts,
2403 unsigned Depth, const SimplifyQuery &Q) {
2404 unsigned BitWidth = getBitWidth(I->getType()->getScalarType(), Q.DL);
2405 switch (I->getOpcode()) {
2406 case Instruction::Alloca:
2407 // Alloca never returns null, malloc might.
2408 return I->getType()->getPointerAddressSpace() == 0;
2409 case Instruction::GetElementPtr:
2410 if (I->getType()->isPointerTy())
2411 return isGEPKnownNonNull(cast<GEPOperator>(I), Depth, Q);
2412 break;
2413 case Instruction::BitCast: {
2414 // We need to be a bit careful here. We can only peek through the bitcast
2415 // if the scalar size of elements in the operand are smaller than and a
2416 // multiple of the size they are casting too. Take three cases:
2418 // 1) Unsafe:
2419 // bitcast <2 x i16> %NonZero to <4 x i8>
2421 // %NonZero can have 2 non-zero i16 elements, but isKnownNonZero on a
2422 // <4 x i8> requires that all 4 i8 elements be non-zero which isn't
2423 // guranteed (imagine just sign bit set in the 2 i16 elements).
2425 // 2) Unsafe:
2426 // bitcast <4 x i3> %NonZero to <3 x i4>
2428 // Even though the scalar size of the src (`i3`) is smaller than the
2429 // scalar size of the dst `i4`, because `i3` is not a multiple of `i4`
2430 // its possible for the `3 x i4` elements to be zero because there are
2431 // some elements in the destination that don't contain any full src
2432 // element.
2434 // 3) Safe:
2435 // bitcast <4 x i8> %NonZero to <2 x i16>
2437 // This is always safe as non-zero in the 4 i8 elements implies
2438 // non-zero in the combination of any two adjacent ones. Since i8 is a
2439 // multiple of i16, each i16 is guranteed to have 2 full i8 elements.
2440 // This all implies the 2 i16 elements are non-zero.
2441 Type *FromTy = I->getOperand(0)->getType();
2442 if ((FromTy->isIntOrIntVectorTy() || FromTy->isPtrOrPtrVectorTy()) &&
2443 (BitWidth % getBitWidth(FromTy->getScalarType(), Q.DL)) == 0)
2444 return isKnownNonZero(I->getOperand(0), Depth, Q);
2445 } break;
2446 case Instruction::IntToPtr:
2447 // Note that we have to take special care to avoid looking through
2448 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2449 // as casts that can alter the value, e.g., AddrSpaceCasts.
2450 if (!isa<ScalableVectorType>(I->getType()) &&
2451 Q.DL.getTypeSizeInBits(I->getOperand(0)->getType()).getFixedValue() <=
2452 Q.DL.getTypeSizeInBits(I->getType()).getFixedValue())
2453 return isKnownNonZero(I->getOperand(0), Depth, Q);
2454 break;
2455 case Instruction::PtrToInt:
2456 // Similar to int2ptr above, we can look through ptr2int here if the cast
2457 // is a no-op or an extend and not a truncate.
2458 if (!isa<ScalableVectorType>(I->getType()) &&
2459 Q.DL.getTypeSizeInBits(I->getOperand(0)->getType()).getFixedValue() <=
2460 Q.DL.getTypeSizeInBits(I->getType()).getFixedValue())
2461 return isKnownNonZero(I->getOperand(0), Depth, Q);
2462 break;
2463 case Instruction::Sub:
2464 return isNonZeroSub(DemandedElts, Depth, Q, BitWidth, I->getOperand(0),
2465 I->getOperand(1));
2466 case Instruction::Or:
2467 // X | Y != 0 if X != 0 or Y != 0.
2468 return isKnownNonZero(I->getOperand(1), DemandedElts, Depth, Q) ||
2469 isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q);
2470 case Instruction::SExt:
2471 case Instruction::ZExt:
2472 // ext X != 0 if X != 0.
2473 return isKnownNonZero(I->getOperand(0), Depth, Q);
2475 case Instruction::Shl: {
2476 // shl nsw/nuw can't remove any non-zero bits.
2477 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(I);
2478 if (Q.IIQ.hasNoUnsignedWrap(BO) || Q.IIQ.hasNoSignedWrap(BO))
2479 return isKnownNonZero(I->getOperand(0), Depth, Q);
2481 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
2482 // if the lowest bit is shifted off the end.
2483 KnownBits Known(BitWidth);
2484 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth, Q);
2485 if (Known.One[0])
2486 return true;
2488 return isNonZeroShift(I, DemandedElts, Depth, Q, Known);
2490 case Instruction::LShr:
2491 case Instruction::AShr: {
2492 // shr exact can only shift out zero bits.
2493 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(I);
2494 if (BO->isExact())
2495 return isKnownNonZero(I->getOperand(0), Depth, Q);
2497 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
2498 // defined if the sign bit is shifted off the end.
2499 KnownBits Known =
2500 computeKnownBits(I->getOperand(0), DemandedElts, Depth, Q);
2501 if (Known.isNegative())
2502 return true;
2504 return isNonZeroShift(I, DemandedElts, Depth, Q, Known);
2506 case Instruction::UDiv:
2507 case Instruction::SDiv: {
2508 // X / Y
2509 // div exact can only produce a zero if the dividend is zero.
2510 if (cast<PossiblyExactOperator>(I)->isExact())
2511 return isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q);
2513 std::optional<bool> XUgeY;
2514 KnownBits XKnown =
2515 computeKnownBits(I->getOperand(0), DemandedElts, Depth, Q);
2516 // If X is fully unknown we won't be able to figure anything out so don't
2517 // both computing knownbits for Y.
2518 if (XKnown.isUnknown())
2519 return false;
2521 KnownBits YKnown =
2522 computeKnownBits(I->getOperand(1), DemandedElts, Depth, Q);
2523 if (I->getOpcode() == Instruction::SDiv) {
2524 // For signed division need to compare abs value of the operands.
2525 XKnown = XKnown.abs(/*IntMinIsPoison*/ false);
2526 YKnown = YKnown.abs(/*IntMinIsPoison*/ false);
2528 // If X u>= Y then div is non zero (0/0 is UB).
2529 XUgeY = KnownBits::uge(XKnown, YKnown);
2530 // If X is total unknown or X u< Y we won't be able to prove non-zero
2531 // with compute known bits so just return early.
2532 return XUgeY && *XUgeY;
2534 case Instruction::Add: {
2535 // X + Y.
2537 // If Add has nuw wrap flag, then if either X or Y is non-zero the result is
2538 // non-zero.
2539 auto *BO = cast<OverflowingBinaryOperator>(I);
2540 if (Q.IIQ.hasNoUnsignedWrap(BO))
2541 return isKnownNonZero(I->getOperand(1), DemandedElts, Depth, Q) ||
2542 isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q);
2544 return isNonZeroAdd(DemandedElts, Depth, Q, BitWidth, I->getOperand(0),
2545 I->getOperand(1), Q.IIQ.hasNoSignedWrap(BO));
2547 case Instruction::Mul: {
2548 // If X and Y are non-zero then so is X * Y as long as the multiplication
2549 // does not overflow.
2550 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(I);
2551 if (Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO))
2552 return isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q) &&
2553 isKnownNonZero(I->getOperand(1), DemandedElts, Depth, Q);
2555 // If either X or Y is odd, then if the other is non-zero the result can't
2556 // be zero.
2557 KnownBits XKnown =
2558 computeKnownBits(I->getOperand(0), DemandedElts, Depth, Q);
2559 if (XKnown.One[0])
2560 return isKnownNonZero(I->getOperand(1), DemandedElts, Depth, Q);
2562 KnownBits YKnown =
2563 computeKnownBits(I->getOperand(1), DemandedElts, Depth, Q);
2564 if (YKnown.One[0])
2565 return XKnown.isNonZero() ||
2566 isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q);
2568 // If there exists any subset of X (sX) and subset of Y (sY) s.t sX * sY is
2569 // non-zero, then X * Y is non-zero. We can find sX and sY by just taking
2570 // the lowest known One of X and Y. If they are non-zero, the result
2571 // must be non-zero. We can check if LSB(X) * LSB(Y) != 0 by doing
2572 // X.CountLeadingZeros + Y.CountLeadingZeros < BitWidth.
2573 return (XKnown.countMaxTrailingZeros() + YKnown.countMaxTrailingZeros()) <
2574 BitWidth;
2576 case Instruction::Select: {
2577 // (C ? X : Y) != 0 if X != 0 and Y != 0.
2579 // First check if the arm is non-zero using `isKnownNonZero`. If that fails,
2580 // then see if the select condition implies the arm is non-zero. For example
2581 // (X != 0 ? X : Y), we know the true arm is non-zero as the `X` "return" is
2582 // dominated by `X != 0`.
2583 auto SelectArmIsNonZero = [&](bool IsTrueArm) {
2584 Value *Op;
2585 Op = IsTrueArm ? I->getOperand(1) : I->getOperand(2);
2586 // Op is trivially non-zero.
2587 if (isKnownNonZero(Op, DemandedElts, Depth, Q))
2588 return true;
2590 // The condition of the select dominates the true/false arm. Check if the
2591 // condition implies that a given arm is non-zero.
2592 Value *X;
2593 CmpInst::Predicate Pred;
2594 if (!match(I->getOperand(0), m_c_ICmp(Pred, m_Specific(Op), m_Value(X))))
2595 return false;
2597 if (!IsTrueArm)
2598 Pred = ICmpInst::getInversePredicate(Pred);
2600 return cmpExcludesZero(Pred, X);
2603 if (SelectArmIsNonZero(/* IsTrueArm */ true) &&
2604 SelectArmIsNonZero(/* IsTrueArm */ false))
2605 return true;
2606 break;
2608 case Instruction::PHI: {
2609 auto *PN = cast<PHINode>(I);
2610 if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN))
2611 return true;
2613 // Check if all incoming values are non-zero using recursion.
2614 SimplifyQuery RecQ = Q;
2615 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2616 return llvm::all_of(PN->operands(), [&](const Use &U) {
2617 if (U.get() == PN)
2618 return true;
2619 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2620 // Check if the branch on the phi excludes zero.
2621 ICmpInst::Predicate Pred;
2622 Value *X;
2623 BasicBlock *TrueSucc, *FalseSucc;
2624 if (match(RecQ.CxtI,
2625 m_Br(m_c_ICmp(Pred, m_Specific(U.get()), m_Value(X)),
2626 m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) {
2627 // Check for cases of duplicate successors.
2628 if ((TrueSucc == PN->getParent()) != (FalseSucc == PN->getParent())) {
2629 // If we're using the false successor, invert the predicate.
2630 if (FalseSucc == PN->getParent())
2631 Pred = CmpInst::getInversePredicate(Pred);
2632 if (cmpExcludesZero(Pred, X))
2633 return true;
2636 // Finally recurse on the edge and check it directly.
2637 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ);
2640 case Instruction::ExtractElement:
2641 if (const auto *EEI = dyn_cast<ExtractElementInst>(I)) {
2642 const Value *Vec = EEI->getVectorOperand();
2643 const Value *Idx = EEI->getIndexOperand();
2644 auto *CIdx = dyn_cast<ConstantInt>(Idx);
2645 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
2646 unsigned NumElts = VecTy->getNumElements();
2647 APInt DemandedVecElts = APInt::getAllOnes(NumElts);
2648 if (CIdx && CIdx->getValue().ult(NumElts))
2649 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
2650 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
2653 break;
2654 case Instruction::Freeze:
2655 return isKnownNonZero(I->getOperand(0), Depth, Q) &&
2656 isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
2657 Depth);
2658 case Instruction::Load: {
2659 auto *LI = cast<LoadInst>(I);
2660 // A Load tagged with nonnull or dereferenceable with null pointer undefined
2661 // is never null.
2662 if (auto *PtrT = dyn_cast<PointerType>(I->getType()))
2663 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull) ||
2664 (Q.IIQ.getMetadata(LI, LLVMContext::MD_dereferenceable) &&
2665 !NullPointerIsDefined(LI->getFunction(), PtrT->getAddressSpace())))
2666 return true;
2668 // No need to fall through to computeKnownBits as range metadata is already
2669 // handled in isKnownNonZero.
2670 return false;
2672 case Instruction::Call:
2673 case Instruction::Invoke:
2674 if (I->getType()->isPointerTy()) {
2675 const auto *Call = cast<CallBase>(I);
2676 if (Call->isReturnNonNull())
2677 return true;
2678 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
2679 return isKnownNonZero(RP, Depth, Q);
2680 } else if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
2681 if (RV->getType() == I->getType() && isKnownNonZero(RV, Depth, Q))
2682 return true;
2685 if (auto *II = dyn_cast<IntrinsicInst>(I)) {
2686 switch (II->getIntrinsicID()) {
2687 case Intrinsic::sshl_sat:
2688 case Intrinsic::ushl_sat:
2689 case Intrinsic::abs:
2690 case Intrinsic::bitreverse:
2691 case Intrinsic::bswap:
2692 case Intrinsic::ctpop:
2693 return isKnownNonZero(II->getArgOperand(0), DemandedElts, Depth, Q);
2694 case Intrinsic::ssub_sat:
2695 return isNonZeroSub(DemandedElts, Depth, Q, BitWidth,
2696 II->getArgOperand(0), II->getArgOperand(1));
2697 case Intrinsic::sadd_sat:
2698 return isNonZeroAdd(DemandedElts, Depth, Q, BitWidth,
2699 II->getArgOperand(0), II->getArgOperand(1),
2700 /*NSW*/ true);
2701 case Intrinsic::umax:
2702 case Intrinsic::uadd_sat:
2703 return isKnownNonZero(II->getArgOperand(1), DemandedElts, Depth, Q) ||
2704 isKnownNonZero(II->getArgOperand(0), DemandedElts, Depth, Q);
2705 case Intrinsic::smin:
2706 case Intrinsic::smax: {
2707 auto KnownOpImpliesNonZero = [&](const KnownBits &K) {
2708 return II->getIntrinsicID() == Intrinsic::smin
2709 ? K.isNegative()
2710 : K.isStrictlyPositive();
2712 KnownBits XKnown =
2713 computeKnownBits(II->getArgOperand(0), DemandedElts, Depth, Q);
2714 if (KnownOpImpliesNonZero(XKnown))
2715 return true;
2716 KnownBits YKnown =
2717 computeKnownBits(II->getArgOperand(1), DemandedElts, Depth, Q);
2718 if (KnownOpImpliesNonZero(YKnown))
2719 return true;
2721 if (XKnown.isNonZero() && YKnown.isNonZero())
2722 return true;
2724 [[fallthrough]];
2725 case Intrinsic::umin:
2726 return isKnownNonZero(II->getArgOperand(0), DemandedElts, Depth, Q) &&
2727 isKnownNonZero(II->getArgOperand(1), DemandedElts, Depth, Q);
2728 case Intrinsic::cttz:
2729 return computeKnownBits(II->getArgOperand(0), DemandedElts, Depth, Q)
2730 .Zero[0];
2731 case Intrinsic::ctlz:
2732 return computeKnownBits(II->getArgOperand(0), DemandedElts, Depth, Q)
2733 .isNonNegative();
2734 case Intrinsic::fshr:
2735 case Intrinsic::fshl:
2736 // If Op0 == Op1, this is a rotate. rotate(x, y) != 0 iff x != 0.
2737 if (II->getArgOperand(0) == II->getArgOperand(1))
2738 return isKnownNonZero(II->getArgOperand(0), DemandedElts, Depth, Q);
2739 break;
2740 case Intrinsic::vscale:
2741 return true;
2742 default:
2743 break;
2745 break;
2748 return false;
2751 KnownBits Known(BitWidth);
2752 computeKnownBits(I, DemandedElts, Known, Depth, Q);
2753 return Known.One != 0;
2756 /// Return true if the given value is known to be non-zero when defined. For
2757 /// vectors, return true if every demanded element is known to be non-zero when
2758 /// defined. For pointers, if the context instruction and dominator tree are
2759 /// specified, perform context-sensitive analysis and return true if the
2760 /// pointer couldn't possibly be null at the specified instruction.
2761 /// Supports values with integer or pointer type and vectors of integers.
2762 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
2763 const SimplifyQuery &Q) {
2765 #ifndef NDEBUG
2766 Type *Ty = V->getType();
2767 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2769 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
2770 assert(
2771 FVTy->getNumElements() == DemandedElts.getBitWidth() &&
2772 "DemandedElt width should equal the fixed vector number of elements");
2773 } else {
2774 assert(DemandedElts == APInt(1, 1) &&
2775 "DemandedElt width should be 1 for scalars");
2777 #endif
2779 if (auto *C = dyn_cast<Constant>(V)) {
2780 if (C->isNullValue())
2781 return false;
2782 if (isa<ConstantInt>(C))
2783 // Must be non-zero due to null test above.
2784 return true;
2786 // For constant vectors, check that all elements are undefined or known
2787 // non-zero to determine that the whole vector is known non-zero.
2788 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
2789 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2790 if (!DemandedElts[i])
2791 continue;
2792 Constant *Elt = C->getAggregateElement(i);
2793 if (!Elt || Elt->isNullValue())
2794 return false;
2795 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2796 return false;
2798 return true;
2801 // A global variable in address space 0 is non null unless extern weak
2802 // or an absolute symbol reference. Other address spaces may have null as a
2803 // valid address for a global, so we can't assume anything.
2804 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2805 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2806 GV->getType()->getAddressSpace() == 0)
2807 return true;
2810 // For constant expressions, fall through to the Operator code below.
2811 if (!isa<ConstantExpr>(V))
2812 return false;
2815 if (auto *I = dyn_cast<Instruction>(V)) {
2816 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2817 // If the possible ranges don't contain zero, then the value is
2818 // definitely non-zero.
2819 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2820 const APInt ZeroValue(Ty->getBitWidth(), 0);
2821 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2822 return true;
2827 if (!isa<Constant>(V) && isKnownNonZeroFromAssume(V, Q))
2828 return true;
2830 // Some of the tests below are recursive, so bail out if we hit the limit.
2831 if (Depth++ >= MaxAnalysisRecursionDepth)
2832 return false;
2834 // Check for pointer simplifications.
2836 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) {
2837 // A byval, inalloca may not be null in a non-default addres space. A
2838 // nonnull argument is assumed never 0.
2839 if (const Argument *A = dyn_cast<Argument>(V)) {
2840 if (((A->hasPassPointeeByValueCopyAttr() &&
2841 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
2842 A->hasNonNullAttr()))
2843 return true;
2847 if (const auto *I = dyn_cast<Operator>(V))
2848 if (isKnownNonZeroFromOperator(I, DemandedElts, Depth, Q))
2849 return true;
2851 if (!isa<Constant>(V) &&
2852 isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2853 return true;
2855 return false;
2858 bool isKnownNonZero(const Value *V, unsigned Depth, const SimplifyQuery &Q) {
2859 auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
2860 APInt DemandedElts =
2861 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
2862 return isKnownNonZero(V, DemandedElts, Depth, Q);
2865 /// If the pair of operators are the same invertible function, return the
2866 /// the operands of the function corresponding to each input. Otherwise,
2867 /// return std::nullopt. An invertible function is one that is 1-to-1 and maps
2868 /// every input value to exactly one output value. This is equivalent to
2869 /// saying that Op1 and Op2 are equal exactly when the specified pair of
2870 /// operands are equal, (except that Op1 and Op2 may be poison more often.)
2871 static std::optional<std::pair<Value*, Value*>>
2872 getInvertibleOperands(const Operator *Op1,
2873 const Operator *Op2) {
2874 if (Op1->getOpcode() != Op2->getOpcode())
2875 return std::nullopt;
2877 auto getOperands = [&](unsigned OpNum) -> auto {
2878 return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum));
2881 switch (Op1->getOpcode()) {
2882 default:
2883 break;
2884 case Instruction::Add:
2885 case Instruction::Sub:
2886 if (Op1->getOperand(0) == Op2->getOperand(0))
2887 return getOperands(1);
2888 if (Op1->getOperand(1) == Op2->getOperand(1))
2889 return getOperands(0);
2890 break;
2891 case Instruction::Mul: {
2892 // invertible if A * B == (A * B) mod 2^N where A, and B are integers
2893 // and N is the bitwdith. The nsw case is non-obvious, but proven by
2894 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK
2895 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2896 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
2897 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2898 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2899 break;
2901 // Assume operand order has been canonicalized
2902 if (Op1->getOperand(1) == Op2->getOperand(1) &&
2903 isa<ConstantInt>(Op1->getOperand(1)) &&
2904 !cast<ConstantInt>(Op1->getOperand(1))->isZero())
2905 return getOperands(0);
2906 break;
2908 case Instruction::Shl: {
2909 // Same as multiplies, with the difference that we don't need to check
2910 // for a non-zero multiply. Shifts always multiply by non-zero.
2911 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2912 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
2913 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2914 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2915 break;
2917 if (Op1->getOperand(1) == Op2->getOperand(1))
2918 return getOperands(0);
2919 break;
2921 case Instruction::AShr:
2922 case Instruction::LShr: {
2923 auto *PEO1 = cast<PossiblyExactOperator>(Op1);
2924 auto *PEO2 = cast<PossiblyExactOperator>(Op2);
2925 if (!PEO1->isExact() || !PEO2->isExact())
2926 break;
2928 if (Op1->getOperand(1) == Op2->getOperand(1))
2929 return getOperands(0);
2930 break;
2932 case Instruction::SExt:
2933 case Instruction::ZExt:
2934 if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType())
2935 return getOperands(0);
2936 break;
2937 case Instruction::PHI: {
2938 const PHINode *PN1 = cast<PHINode>(Op1);
2939 const PHINode *PN2 = cast<PHINode>(Op2);
2941 // If PN1 and PN2 are both recurrences, can we prove the entire recurrences
2942 // are a single invertible function of the start values? Note that repeated
2943 // application of an invertible function is also invertible
2944 BinaryOperator *BO1 = nullptr;
2945 Value *Start1 = nullptr, *Step1 = nullptr;
2946 BinaryOperator *BO2 = nullptr;
2947 Value *Start2 = nullptr, *Step2 = nullptr;
2948 if (PN1->getParent() != PN2->getParent() ||
2949 !matchSimpleRecurrence(PN1, BO1, Start1, Step1) ||
2950 !matchSimpleRecurrence(PN2, BO2, Start2, Step2))
2951 break;
2953 auto Values = getInvertibleOperands(cast<Operator>(BO1),
2954 cast<Operator>(BO2));
2955 if (!Values)
2956 break;
2958 // We have to be careful of mutually defined recurrences here. Ex:
2959 // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V
2960 // * X_i = Y_i = X_(i-1) OP Y_(i-1)
2961 // The invertibility of these is complicated, and not worth reasoning
2962 // about (yet?).
2963 if (Values->first != PN1 || Values->second != PN2)
2964 break;
2966 return std::make_pair(Start1, Start2);
2969 return std::nullopt;
2972 /// Return true if V2 == V1 + X, where X is known non-zero.
2973 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth,
2974 const SimplifyQuery &Q) {
2975 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2976 if (!BO || BO->getOpcode() != Instruction::Add)
2977 return false;
2978 Value *Op = nullptr;
2979 if (V2 == BO->getOperand(0))
2980 Op = BO->getOperand(1);
2981 else if (V2 == BO->getOperand(1))
2982 Op = BO->getOperand(0);
2983 else
2984 return false;
2985 return isKnownNonZero(Op, Depth + 1, Q);
2988 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and
2989 /// the multiplication is nuw or nsw.
2990 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth,
2991 const SimplifyQuery &Q) {
2992 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2993 const APInt *C;
2994 return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) &&
2995 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2996 !C->isZero() && !C->isOne() && isKnownNonZero(V1, Depth + 1, Q);
2998 return false;
3001 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and
3002 /// the shift is nuw or nsw.
3003 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth,
3004 const SimplifyQuery &Q) {
3005 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
3006 const APInt *C;
3007 return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) &&
3008 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
3009 !C->isZero() && isKnownNonZero(V1, Depth + 1, Q);
3011 return false;
3014 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2,
3015 unsigned Depth, const SimplifyQuery &Q) {
3016 // Check two PHIs are in same block.
3017 if (PN1->getParent() != PN2->getParent())
3018 return false;
3020 SmallPtrSet<const BasicBlock *, 8> VisitedBBs;
3021 bool UsedFullRecursion = false;
3022 for (const BasicBlock *IncomBB : PN1->blocks()) {
3023 if (!VisitedBBs.insert(IncomBB).second)
3024 continue; // Don't reprocess blocks that we have dealt with already.
3025 const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB);
3026 const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB);
3027 const APInt *C1, *C2;
3028 if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2)
3029 continue;
3031 // Only one pair of phi operands is allowed for full recursion.
3032 if (UsedFullRecursion)
3033 return false;
3035 SimplifyQuery RecQ = Q;
3036 RecQ.CxtI = IncomBB->getTerminator();
3037 if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ))
3038 return false;
3039 UsedFullRecursion = true;
3041 return true;
3044 static bool isNonEqualSelect(const Value *V1, const Value *V2, unsigned Depth,
3045 const SimplifyQuery &Q) {
3046 const SelectInst *SI1 = dyn_cast<SelectInst>(V1);
3047 if (!SI1)
3048 return false;
3050 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) {
3051 const Value *Cond1 = SI1->getCondition();
3052 const Value *Cond2 = SI2->getCondition();
3053 if (Cond1 == Cond2)
3054 return isKnownNonEqual(SI1->getTrueValue(), SI2->getTrueValue(),
3055 Depth + 1, Q) &&
3056 isKnownNonEqual(SI1->getFalseValue(), SI2->getFalseValue(),
3057 Depth + 1, Q);
3059 return isKnownNonEqual(SI1->getTrueValue(), V2, Depth + 1, Q) &&
3060 isKnownNonEqual(SI1->getFalseValue(), V2, Depth + 1, Q);
3063 // Check to see if A is both a GEP and is the incoming value for a PHI in the
3064 // loop, and B is either a ptr or another GEP. If the PHI has 2 incoming values,
3065 // one of them being the recursive GEP A and the other a ptr at same base and at
3066 // the same/higher offset than B we are only incrementing the pointer further in
3067 // loop if offset of recursive GEP is greater than 0.
3068 static bool isNonEqualPointersWithRecursiveGEP(const Value *A, const Value *B,
3069 const SimplifyQuery &Q) {
3070 if (!A->getType()->isPointerTy() || !B->getType()->isPointerTy())
3071 return false;
3073 auto *GEPA = dyn_cast<GEPOperator>(A);
3074 if (!GEPA || GEPA->getNumIndices() != 1 || !isa<Constant>(GEPA->idx_begin()))
3075 return false;
3077 // Handle 2 incoming PHI values with one being a recursive GEP.
3078 auto *PN = dyn_cast<PHINode>(GEPA->getPointerOperand());
3079 if (!PN || PN->getNumIncomingValues() != 2)
3080 return false;
3082 // Search for the recursive GEP as an incoming operand, and record that as
3083 // Step.
3084 Value *Start = nullptr;
3085 Value *Step = const_cast<Value *>(A);
3086 if (PN->getIncomingValue(0) == Step)
3087 Start = PN->getIncomingValue(1);
3088 else if (PN->getIncomingValue(1) == Step)
3089 Start = PN->getIncomingValue(0);
3090 else
3091 return false;
3093 // Other incoming node base should match the B base.
3094 // StartOffset >= OffsetB && StepOffset > 0?
3095 // StartOffset <= OffsetB && StepOffset < 0?
3096 // Is non-equal if above are true.
3097 // We use stripAndAccumulateInBoundsConstantOffsets to restrict the
3098 // optimisation to inbounds GEPs only.
3099 unsigned IndexWidth = Q.DL.getIndexTypeSizeInBits(Start->getType());
3100 APInt StartOffset(IndexWidth, 0);
3101 Start = Start->stripAndAccumulateInBoundsConstantOffsets(Q.DL, StartOffset);
3102 APInt StepOffset(IndexWidth, 0);
3103 Step = Step->stripAndAccumulateInBoundsConstantOffsets(Q.DL, StepOffset);
3105 // Check if Base Pointer of Step matches the PHI.
3106 if (Step != PN)
3107 return false;
3108 APInt OffsetB(IndexWidth, 0);
3109 B = B->stripAndAccumulateInBoundsConstantOffsets(Q.DL, OffsetB);
3110 return Start == B &&
3111 ((StartOffset.sge(OffsetB) && StepOffset.isStrictlyPositive()) ||
3112 (StartOffset.sle(OffsetB) && StepOffset.isNegative()));
3115 /// Return true if it is known that V1 != V2.
3116 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
3117 const SimplifyQuery &Q) {
3118 if (V1 == V2)
3119 return false;
3120 if (V1->getType() != V2->getType())
3121 // We can't look through casts yet.
3122 return false;
3124 if (Depth >= MaxAnalysisRecursionDepth)
3125 return false;
3127 // See if we can recurse through (exactly one of) our operands. This
3128 // requires our operation be 1-to-1 and map every input value to exactly
3129 // one output value. Such an operation is invertible.
3130 auto *O1 = dyn_cast<Operator>(V1);
3131 auto *O2 = dyn_cast<Operator>(V2);
3132 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
3133 if (auto Values = getInvertibleOperands(O1, O2))
3134 return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q);
3136 if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) {
3137 const PHINode *PN2 = cast<PHINode>(V2);
3138 // FIXME: This is missing a generalization to handle the case where one is
3139 // a PHI and another one isn't.
3140 if (isNonEqualPHIs(PN1, PN2, Depth, Q))
3141 return true;
3145 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q))
3146 return true;
3148 if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q))
3149 return true;
3151 if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q))
3152 return true;
3154 if (V1->getType()->isIntOrIntVectorTy()) {
3155 // Are any known bits in V1 contradictory to known bits in V2? If V1
3156 // has a known zero where V2 has a known one, they must not be equal.
3157 KnownBits Known1 = computeKnownBits(V1, Depth, Q);
3158 if (!Known1.isUnknown()) {
3159 KnownBits Known2 = computeKnownBits(V2, Depth, Q);
3160 if (Known1.Zero.intersects(Known2.One) ||
3161 Known2.Zero.intersects(Known1.One))
3162 return true;
3166 if (isNonEqualSelect(V1, V2, Depth, Q) || isNonEqualSelect(V2, V1, Depth, Q))
3167 return true;
3169 if (isNonEqualPointersWithRecursiveGEP(V1, V2, Q) ||
3170 isNonEqualPointersWithRecursiveGEP(V2, V1, Q))
3171 return true;
3173 Value *A, *B;
3174 // PtrToInts are NonEqual if their Ptrs are NonEqual.
3175 // Check PtrToInt type matches the pointer size.
3176 if (match(V1, m_PtrToIntSameSize(Q.DL, m_Value(A))) &&
3177 match(V2, m_PtrToIntSameSize(Q.DL, m_Value(B))))
3178 return isKnownNonEqual(A, B, Depth + 1, Q);
3180 return false;
3183 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
3184 // Returns the input and lower/upper bounds.
3185 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
3186 const APInt *&CLow, const APInt *&CHigh) {
3187 assert(isa<Operator>(Select) &&
3188 cast<Operator>(Select)->getOpcode() == Instruction::Select &&
3189 "Input should be a Select!");
3191 const Value *LHS = nullptr, *RHS = nullptr;
3192 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
3193 if (SPF != SPF_SMAX && SPF != SPF_SMIN)
3194 return false;
3196 if (!match(RHS, m_APInt(CLow)))
3197 return false;
3199 const Value *LHS2 = nullptr, *RHS2 = nullptr;
3200 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
3201 if (getInverseMinMaxFlavor(SPF) != SPF2)
3202 return false;
3204 if (!match(RHS2, m_APInt(CHigh)))
3205 return false;
3207 if (SPF == SPF_SMIN)
3208 std::swap(CLow, CHigh);
3210 In = LHS2;
3211 return CLow->sle(*CHigh);
3214 static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II,
3215 const APInt *&CLow,
3216 const APInt *&CHigh) {
3217 assert((II->getIntrinsicID() == Intrinsic::smin ||
3218 II->getIntrinsicID() == Intrinsic::smax) && "Must be smin/smax");
3220 Intrinsic::ID InverseID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
3221 auto *InnerII = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
3222 if (!InnerII || InnerII->getIntrinsicID() != InverseID ||
3223 !match(II->getArgOperand(1), m_APInt(CLow)) ||
3224 !match(InnerII->getArgOperand(1), m_APInt(CHigh)))
3225 return false;
3227 if (II->getIntrinsicID() == Intrinsic::smin)
3228 std::swap(CLow, CHigh);
3229 return CLow->sle(*CHigh);
3232 /// For vector constants, loop over the elements and find the constant with the
3233 /// minimum number of sign bits. Return 0 if the value is not a vector constant
3234 /// or if any element was not analyzed; otherwise, return the count for the
3235 /// element with the minimum number of sign bits.
3236 static unsigned computeNumSignBitsVectorConstant(const Value *V,
3237 const APInt &DemandedElts,
3238 unsigned TyBits) {
3239 const auto *CV = dyn_cast<Constant>(V);
3240 if (!CV || !isa<FixedVectorType>(CV->getType()))
3241 return 0;
3243 unsigned MinSignBits = TyBits;
3244 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
3245 for (unsigned i = 0; i != NumElts; ++i) {
3246 if (!DemandedElts[i])
3247 continue;
3248 // If we find a non-ConstantInt, bail out.
3249 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
3250 if (!Elt)
3251 return 0;
3253 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
3256 return MinSignBits;
3259 static unsigned ComputeNumSignBitsImpl(const Value *V,
3260 const APInt &DemandedElts,
3261 unsigned Depth, const SimplifyQuery &Q);
3263 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
3264 unsigned Depth, const SimplifyQuery &Q) {
3265 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
3266 assert(Result > 0 && "At least one sign bit needs to be present!");
3267 return Result;
3270 /// Return the number of times the sign bit of the register is replicated into
3271 /// the other bits. We know that at least 1 bit is always equal to the sign bit
3272 /// (itself), but other cases can give us information. For example, immediately
3273 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
3274 /// other, so we return 3. For vectors, return the number of sign bits for the
3275 /// vector element with the minimum number of known sign bits of the demanded
3276 /// elements in the vector specified by DemandedElts.
3277 static unsigned ComputeNumSignBitsImpl(const Value *V,
3278 const APInt &DemandedElts,
3279 unsigned Depth, const SimplifyQuery &Q) {
3280 Type *Ty = V->getType();
3281 #ifndef NDEBUG
3282 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
3284 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
3285 assert(
3286 FVTy->getNumElements() == DemandedElts.getBitWidth() &&
3287 "DemandedElt width should equal the fixed vector number of elements");
3288 } else {
3289 assert(DemandedElts == APInt(1, 1) &&
3290 "DemandedElt width should be 1 for scalars");
3292 #endif
3294 // We return the minimum number of sign bits that are guaranteed to be present
3295 // in V, so for undef we have to conservatively return 1. We don't have the
3296 // same behavior for poison though -- that's a FIXME today.
3298 Type *ScalarTy = Ty->getScalarType();
3299 unsigned TyBits = ScalarTy->isPointerTy() ?
3300 Q.DL.getPointerTypeSizeInBits(ScalarTy) :
3301 Q.DL.getTypeSizeInBits(ScalarTy);
3303 unsigned Tmp, Tmp2;
3304 unsigned FirstAnswer = 1;
3306 // Note that ConstantInt is handled by the general computeKnownBits case
3307 // below.
3309 if (Depth == MaxAnalysisRecursionDepth)
3310 return 1;
3312 if (auto *U = dyn_cast<Operator>(V)) {
3313 switch (Operator::getOpcode(V)) {
3314 default: break;
3315 case Instruction::SExt:
3316 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
3317 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
3319 case Instruction::SDiv: {
3320 const APInt *Denominator;
3321 // sdiv X, C -> adds log(C) sign bits.
3322 if (match(U->getOperand(1), m_APInt(Denominator))) {
3324 // Ignore non-positive denominator.
3325 if (!Denominator->isStrictlyPositive())
3326 break;
3328 // Calculate the incoming numerator bits.
3329 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3331 // Add floor(log(C)) bits to the numerator bits.
3332 return std::min(TyBits, NumBits + Denominator->logBase2());
3334 break;
3337 case Instruction::SRem: {
3338 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3340 const APInt *Denominator;
3341 // srem X, C -> we know that the result is within [-C+1,C) when C is a
3342 // positive constant. This let us put a lower bound on the number of sign
3343 // bits.
3344 if (match(U->getOperand(1), m_APInt(Denominator))) {
3346 // Ignore non-positive denominator.
3347 if (Denominator->isStrictlyPositive()) {
3348 // Calculate the leading sign bit constraints by examining the
3349 // denominator. Given that the denominator is positive, there are two
3350 // cases:
3352 // 1. The numerator is positive. The result range is [0,C) and
3353 // [0,C) u< (1 << ceilLogBase2(C)).
3355 // 2. The numerator is negative. Then the result range is (-C,0] and
3356 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
3358 // Thus a lower bound on the number of sign bits is `TyBits -
3359 // ceilLogBase2(C)`.
3361 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
3362 Tmp = std::max(Tmp, ResBits);
3365 return Tmp;
3368 case Instruction::AShr: {
3369 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3370 // ashr X, C -> adds C sign bits. Vectors too.
3371 const APInt *ShAmt;
3372 if (match(U->getOperand(1), m_APInt(ShAmt))) {
3373 if (ShAmt->uge(TyBits))
3374 break; // Bad shift.
3375 unsigned ShAmtLimited = ShAmt->getZExtValue();
3376 Tmp += ShAmtLimited;
3377 if (Tmp > TyBits) Tmp = TyBits;
3379 return Tmp;
3381 case Instruction::Shl: {
3382 const APInt *ShAmt;
3383 if (match(U->getOperand(1), m_APInt(ShAmt))) {
3384 // shl destroys sign bits.
3385 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3386 if (ShAmt->uge(TyBits) || // Bad shift.
3387 ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
3388 Tmp2 = ShAmt->getZExtValue();
3389 return Tmp - Tmp2;
3391 break;
3393 case Instruction::And:
3394 case Instruction::Or:
3395 case Instruction::Xor: // NOT is handled here.
3396 // Logical binary ops preserve the number of sign bits at the worst.
3397 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3398 if (Tmp != 1) {
3399 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3400 FirstAnswer = std::min(Tmp, Tmp2);
3401 // We computed what we know about the sign bits as our first
3402 // answer. Now proceed to the generic code that uses
3403 // computeKnownBits, and pick whichever answer is better.
3405 break;
3407 case Instruction::Select: {
3408 // If we have a clamp pattern, we know that the number of sign bits will
3409 // be the minimum of the clamp min/max range.
3410 const Value *X;
3411 const APInt *CLow, *CHigh;
3412 if (isSignedMinMaxClamp(U, X, CLow, CHigh))
3413 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
3415 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3416 if (Tmp == 1) break;
3417 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
3418 return std::min(Tmp, Tmp2);
3421 case Instruction::Add:
3422 // Add can have at most one carry bit. Thus we know that the output
3423 // is, at worst, one more bit than the inputs.
3424 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3425 if (Tmp == 1) break;
3427 // Special case decrementing a value (ADD X, -1):
3428 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
3429 if (CRHS->isAllOnesValue()) {
3430 KnownBits Known(TyBits);
3431 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
3433 // If the input is known to be 0 or 1, the output is 0/-1, which is
3434 // all sign bits set.
3435 if ((Known.Zero | 1).isAllOnes())
3436 return TyBits;
3438 // If we are subtracting one from a positive number, there is no carry
3439 // out of the result.
3440 if (Known.isNonNegative())
3441 return Tmp;
3444 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3445 if (Tmp2 == 1) break;
3446 return std::min(Tmp, Tmp2) - 1;
3448 case Instruction::Sub:
3449 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3450 if (Tmp2 == 1) break;
3452 // Handle NEG.
3453 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
3454 if (CLHS->isNullValue()) {
3455 KnownBits Known(TyBits);
3456 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
3457 // If the input is known to be 0 or 1, the output is 0/-1, which is
3458 // all sign bits set.
3459 if ((Known.Zero | 1).isAllOnes())
3460 return TyBits;
3462 // If the input is known to be positive (the sign bit is known clear),
3463 // the output of the NEG has the same number of sign bits as the
3464 // input.
3465 if (Known.isNonNegative())
3466 return Tmp2;
3468 // Otherwise, we treat this like a SUB.
3471 // Sub can have at most one carry bit. Thus we know that the output
3472 // is, at worst, one more bit than the inputs.
3473 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3474 if (Tmp == 1) break;
3475 return std::min(Tmp, Tmp2) - 1;
3477 case Instruction::Mul: {
3478 // The output of the Mul can be at most twice the valid bits in the
3479 // inputs.
3480 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3481 if (SignBitsOp0 == 1) break;
3482 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3483 if (SignBitsOp1 == 1) break;
3484 unsigned OutValidBits =
3485 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
3486 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
3489 case Instruction::PHI: {
3490 const PHINode *PN = cast<PHINode>(U);
3491 unsigned NumIncomingValues = PN->getNumIncomingValues();
3492 // Don't analyze large in-degree PHIs.
3493 if (NumIncomingValues > 4) break;
3494 // Unreachable blocks may have zero-operand PHI nodes.
3495 if (NumIncomingValues == 0) break;
3497 // Take the minimum of all incoming values. This can't infinitely loop
3498 // because of our depth threshold.
3499 SimplifyQuery RecQ = Q;
3500 Tmp = TyBits;
3501 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
3502 if (Tmp == 1) return Tmp;
3503 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator();
3504 Tmp = std::min(
3505 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ));
3507 return Tmp;
3510 case Instruction::Trunc: {
3511 // If the input contained enough sign bits that some remain after the
3512 // truncation, then we can make use of that. Otherwise we don't know
3513 // anything.
3514 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3515 unsigned OperandTyBits = U->getOperand(0)->getType()->getScalarSizeInBits();
3516 if (Tmp > (OperandTyBits - TyBits))
3517 return Tmp - (OperandTyBits - TyBits);
3519 return 1;
3522 case Instruction::ExtractElement:
3523 // Look through extract element. At the moment we keep this simple and
3524 // skip tracking the specific element. But at least we might find
3525 // information valid for all elements of the vector (for example if vector
3526 // is sign extended, shifted, etc).
3527 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3529 case Instruction::ShuffleVector: {
3530 // Collect the minimum number of sign bits that are shared by every vector
3531 // element referenced by the shuffle.
3532 auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
3533 if (!Shuf) {
3534 // FIXME: Add support for shufflevector constant expressions.
3535 return 1;
3537 APInt DemandedLHS, DemandedRHS;
3538 // For undef elements, we don't know anything about the common state of
3539 // the shuffle result.
3540 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
3541 return 1;
3542 Tmp = std::numeric_limits<unsigned>::max();
3543 if (!!DemandedLHS) {
3544 const Value *LHS = Shuf->getOperand(0);
3545 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
3547 // If we don't know anything, early out and try computeKnownBits
3548 // fall-back.
3549 if (Tmp == 1)
3550 break;
3551 if (!!DemandedRHS) {
3552 const Value *RHS = Shuf->getOperand(1);
3553 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
3554 Tmp = std::min(Tmp, Tmp2);
3556 // If we don't know anything, early out and try computeKnownBits
3557 // fall-back.
3558 if (Tmp == 1)
3559 break;
3560 assert(Tmp <= TyBits && "Failed to determine minimum sign bits");
3561 return Tmp;
3563 case Instruction::Call: {
3564 if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
3565 switch (II->getIntrinsicID()) {
3566 default: break;
3567 case Intrinsic::abs:
3568 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3569 if (Tmp == 1) break;
3571 // Absolute value reduces number of sign bits by at most 1.
3572 return Tmp - 1;
3573 case Intrinsic::smin:
3574 case Intrinsic::smax: {
3575 const APInt *CLow, *CHigh;
3576 if (isSignedMinMaxIntrinsicClamp(II, CLow, CHigh))
3577 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
3585 // Finally, if we can prove that the top bits of the result are 0's or 1's,
3586 // use this information.
3588 // If we can examine all elements of a vector constant successfully, we're
3589 // done (we can't do any better than that). If not, keep trying.
3590 if (unsigned VecSignBits =
3591 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
3592 return VecSignBits;
3594 KnownBits Known(TyBits);
3595 computeKnownBits(V, DemandedElts, Known, Depth, Q);
3597 // If we know that the sign bit is either zero or one, determine the number of
3598 // identical bits in the top of the input value.
3599 return std::max(FirstAnswer, Known.countMinSignBits());
3602 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
3603 const TargetLibraryInfo *TLI) {
3604 const Function *F = CB.getCalledFunction();
3605 if (!F)
3606 return Intrinsic::not_intrinsic;
3608 if (F->isIntrinsic())
3609 return F->getIntrinsicID();
3611 // We are going to infer semantics of a library function based on mapping it
3612 // to an LLVM intrinsic. Check that the library function is available from
3613 // this callbase and in this environment.
3614 LibFunc Func;
3615 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
3616 !CB.onlyReadsMemory())
3617 return Intrinsic::not_intrinsic;
3619 switch (Func) {
3620 default:
3621 break;
3622 case LibFunc_sin:
3623 case LibFunc_sinf:
3624 case LibFunc_sinl:
3625 return Intrinsic::sin;
3626 case LibFunc_cos:
3627 case LibFunc_cosf:
3628 case LibFunc_cosl:
3629 return Intrinsic::cos;
3630 case LibFunc_exp:
3631 case LibFunc_expf:
3632 case LibFunc_expl:
3633 return Intrinsic::exp;
3634 case LibFunc_exp2:
3635 case LibFunc_exp2f:
3636 case LibFunc_exp2l:
3637 return Intrinsic::exp2;
3638 case LibFunc_log:
3639 case LibFunc_logf:
3640 case LibFunc_logl:
3641 return Intrinsic::log;
3642 case LibFunc_log10:
3643 case LibFunc_log10f:
3644 case LibFunc_log10l:
3645 return Intrinsic::log10;
3646 case LibFunc_log2:
3647 case LibFunc_log2f:
3648 case LibFunc_log2l:
3649 return Intrinsic::log2;
3650 case LibFunc_fabs:
3651 case LibFunc_fabsf:
3652 case LibFunc_fabsl:
3653 return Intrinsic::fabs;
3654 case LibFunc_fmin:
3655 case LibFunc_fminf:
3656 case LibFunc_fminl:
3657 return Intrinsic::minnum;
3658 case LibFunc_fmax:
3659 case LibFunc_fmaxf:
3660 case LibFunc_fmaxl:
3661 return Intrinsic::maxnum;
3662 case LibFunc_copysign:
3663 case LibFunc_copysignf:
3664 case LibFunc_copysignl:
3665 return Intrinsic::copysign;
3666 case LibFunc_floor:
3667 case LibFunc_floorf:
3668 case LibFunc_floorl:
3669 return Intrinsic::floor;
3670 case LibFunc_ceil:
3671 case LibFunc_ceilf:
3672 case LibFunc_ceill:
3673 return Intrinsic::ceil;
3674 case LibFunc_trunc:
3675 case LibFunc_truncf:
3676 case LibFunc_truncl:
3677 return Intrinsic::trunc;
3678 case LibFunc_rint:
3679 case LibFunc_rintf:
3680 case LibFunc_rintl:
3681 return Intrinsic::rint;
3682 case LibFunc_nearbyint:
3683 case LibFunc_nearbyintf:
3684 case LibFunc_nearbyintl:
3685 return Intrinsic::nearbyint;
3686 case LibFunc_round:
3687 case LibFunc_roundf:
3688 case LibFunc_roundl:
3689 return Intrinsic::round;
3690 case LibFunc_roundeven:
3691 case LibFunc_roundevenf:
3692 case LibFunc_roundevenl:
3693 return Intrinsic::roundeven;
3694 case LibFunc_pow:
3695 case LibFunc_powf:
3696 case LibFunc_powl:
3697 return Intrinsic::pow;
3698 case LibFunc_sqrt:
3699 case LibFunc_sqrtf:
3700 case LibFunc_sqrtl:
3701 return Intrinsic::sqrt;
3704 return Intrinsic::not_intrinsic;
3707 /// Deprecated, use computeKnownFPClass instead.
3709 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
3710 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
3711 /// bit despite comparing equal.
3712 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
3713 const DataLayout &DL,
3714 const TargetLibraryInfo *TLI,
3715 bool SignBitOnly, unsigned Depth) {
3716 // TODO: This function does not do the right thing when SignBitOnly is true
3717 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
3718 // which flips the sign bits of NaNs. See
3719 // https://llvm.org/bugs/show_bug.cgi?id=31702.
3721 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3722 return !CFP->getValueAPF().isNegative() ||
3723 (!SignBitOnly && CFP->getValueAPF().isZero());
3726 // Handle vector of constants.
3727 if (auto *CV = dyn_cast<Constant>(V)) {
3728 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
3729 unsigned NumElts = CVFVTy->getNumElements();
3730 for (unsigned i = 0; i != NumElts; ++i) {
3731 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
3732 if (!CFP)
3733 return false;
3734 if (CFP->getValueAPF().isNegative() &&
3735 (SignBitOnly || !CFP->getValueAPF().isZero()))
3736 return false;
3739 // All non-negative ConstantFPs.
3740 return true;
3744 if (Depth == MaxAnalysisRecursionDepth)
3745 return false;
3747 const Operator *I = dyn_cast<Operator>(V);
3748 if (!I)
3749 return false;
3751 switch (I->getOpcode()) {
3752 default:
3753 break;
3754 // Unsigned integers are always nonnegative.
3755 case Instruction::UIToFP:
3756 return true;
3757 case Instruction::FDiv:
3758 // X / X is always exactly 1.0 or a NaN.
3759 if (I->getOperand(0) == I->getOperand(1) &&
3760 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3761 return true;
3763 // Set SignBitOnly for RHS, because X / -0.0 is -Inf (or NaN).
3764 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), DL, TLI,
3765 SignBitOnly, Depth + 1) &&
3766 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), DL, TLI,
3767 /*SignBitOnly*/ true, Depth + 1);
3768 case Instruction::FMul:
3769 // X * X is always non-negative or a NaN.
3770 if (I->getOperand(0) == I->getOperand(1) &&
3771 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3772 return true;
3774 [[fallthrough]];
3775 case Instruction::FAdd:
3776 case Instruction::FRem:
3777 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), DL, TLI,
3778 SignBitOnly, Depth + 1) &&
3779 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), DL, TLI,
3780 SignBitOnly, Depth + 1);
3781 case Instruction::Select:
3782 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), DL, TLI,
3783 SignBitOnly, Depth + 1) &&
3784 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), DL, TLI,
3785 SignBitOnly, Depth + 1);
3786 case Instruction::FPExt:
3787 case Instruction::FPTrunc:
3788 // Widening/narrowing never change sign.
3789 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), DL, TLI,
3790 SignBitOnly, Depth + 1);
3791 case Instruction::ExtractElement:
3792 // Look through extract element. At the moment we keep this simple and skip
3793 // tracking the specific element. But at least we might find information
3794 // valid for all elements of the vector.
3795 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), DL, TLI,
3796 SignBitOnly, Depth + 1);
3797 case Instruction::Call:
3798 const auto *CI = cast<CallInst>(I);
3799 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
3800 switch (IID) {
3801 default:
3802 break;
3803 case Intrinsic::canonicalize:
3804 case Intrinsic::arithmetic_fence:
3805 case Intrinsic::floor:
3806 case Intrinsic::ceil:
3807 case Intrinsic::trunc:
3808 case Intrinsic::rint:
3809 case Intrinsic::nearbyint:
3810 case Intrinsic::round:
3811 case Intrinsic::roundeven:
3812 case Intrinsic::fptrunc_round:
3813 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), DL, TLI,
3814 SignBitOnly, Depth + 1);
3815 case Intrinsic::maxnum: {
3816 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1);
3817 auto isPositiveNum = [&](Value *V) {
3818 if (SignBitOnly) {
3819 // With SignBitOnly, this is tricky because the result of
3820 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is
3821 // a constant strictly greater than 0.0.
3822 const APFloat *C;
3823 return match(V, m_APFloat(C)) &&
3824 *C > APFloat::getZero(C->getSemantics());
3827 // -0.0 compares equal to 0.0, so if this operand is at least -0.0,
3828 // maxnum can't be ordered-less-than-zero.
3829 return isKnownNeverNaN(V, DL, TLI) &&
3830 cannotBeOrderedLessThanZeroImpl(V, DL, TLI, false, Depth + 1);
3833 // TODO: This could be improved. We could also check that neither operand
3834 // has its sign bit set (and at least 1 is not-NAN?).
3835 return isPositiveNum(V0) || isPositiveNum(V1);
3838 case Intrinsic::maximum:
3839 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), DL, TLI,
3840 SignBitOnly, Depth + 1) ||
3841 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), DL, TLI,
3842 SignBitOnly, Depth + 1);
3843 case Intrinsic::minnum:
3844 case Intrinsic::minimum:
3845 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), DL, TLI,
3846 SignBitOnly, Depth + 1) &&
3847 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), DL, TLI,
3848 SignBitOnly, Depth + 1);
3849 case Intrinsic::exp:
3850 case Intrinsic::exp2:
3851 case Intrinsic::fabs:
3852 return true;
3853 case Intrinsic::copysign:
3854 // Only the sign operand matters.
3855 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), DL, TLI, true,
3856 Depth + 1);
3857 case Intrinsic::sqrt:
3858 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
3859 if (!SignBitOnly)
3860 return true;
3861 return CI->hasNoNaNs() &&
3862 (CI->hasNoSignedZeros() ||
3863 cannotBeNegativeZero(CI->getOperand(0), DL, TLI));
3865 case Intrinsic::powi:
3866 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3867 // powi(x,n) is non-negative if n is even.
3868 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3869 return true;
3871 // TODO: This is not correct. Given that exp is an integer, here are the
3872 // ways that pow can return a negative value:
3874 // pow(x, exp) --> negative if exp is odd and x is negative.
3875 // pow(-0, exp) --> -inf if exp is negative odd.
3876 // pow(-0, exp) --> -0 if exp is positive odd.
3877 // pow(-inf, exp) --> -0 if exp is negative odd.
3878 // pow(-inf, exp) --> -inf if exp is positive odd.
3880 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3881 // but we must return false if x == -0. Unfortunately we do not currently
3882 // have a way of expressing this constraint. See details in
3883 // https://llvm.org/bugs/show_bug.cgi?id=31702.
3884 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), DL, TLI,
3885 SignBitOnly, Depth + 1);
3887 case Intrinsic::fma:
3888 case Intrinsic::fmuladd:
3889 // x*x+y is non-negative if y is non-negative.
3890 return I->getOperand(0) == I->getOperand(1) &&
3891 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3892 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), DL, TLI,
3893 SignBitOnly, Depth + 1);
3895 break;
3897 return false;
3900 bool llvm::SignBitMustBeZero(const Value *V, const DataLayout &DL,
3901 const TargetLibraryInfo *TLI) {
3902 // FIXME: Use computeKnownFPClass and pass all arguments
3903 return cannotBeOrderedLessThanZeroImpl(V, DL, TLI, true, 0);
3906 /// Return true if it's possible to assume IEEE treatment of input denormals in
3907 /// \p F for \p Val.
3908 static bool inputDenormalIsIEEE(const Function &F, const Type *Ty) {
3909 Ty = Ty->getScalarType();
3910 return F.getDenormalMode(Ty->getFltSemantics()).Input == DenormalMode::IEEE;
3913 static bool inputDenormalIsIEEEOrPosZero(const Function &F, const Type *Ty) {
3914 Ty = Ty->getScalarType();
3915 DenormalMode Mode = F.getDenormalMode(Ty->getFltSemantics());
3916 return Mode.Input == DenormalMode::IEEE ||
3917 Mode.Input == DenormalMode::PositiveZero;
3920 static bool outputDenormalIsIEEEOrPosZero(const Function &F, const Type *Ty) {
3921 Ty = Ty->getScalarType();
3922 DenormalMode Mode = F.getDenormalMode(Ty->getFltSemantics());
3923 return Mode.Output == DenormalMode::IEEE ||
3924 Mode.Output == DenormalMode::PositiveZero;
3927 bool KnownFPClass::isKnownNeverLogicalZero(const Function &F, Type *Ty) const {
3928 return isKnownNeverZero() &&
3929 (isKnownNeverSubnormal() || inputDenormalIsIEEE(F, Ty));
3932 bool KnownFPClass::isKnownNeverLogicalNegZero(const Function &F,
3933 Type *Ty) const {
3934 return isKnownNeverNegZero() &&
3935 (isKnownNeverNegSubnormal() || inputDenormalIsIEEEOrPosZero(F, Ty));
3938 bool KnownFPClass::isKnownNeverLogicalPosZero(const Function &F,
3939 Type *Ty) const {
3940 if (!isKnownNeverPosZero())
3941 return false;
3943 // If we know there are no denormals, nothing can be flushed to zero.
3944 if (isKnownNeverSubnormal())
3945 return true;
3947 DenormalMode Mode = F.getDenormalMode(Ty->getScalarType()->getFltSemantics());
3948 switch (Mode.Input) {
3949 case DenormalMode::IEEE:
3950 return true;
3951 case DenormalMode::PreserveSign:
3952 // Negative subnormal won't flush to +0
3953 return isKnownNeverPosSubnormal();
3954 case DenormalMode::PositiveZero:
3955 default:
3956 // Both positive and negative subnormal could flush to +0
3957 return false;
3960 llvm_unreachable("covered switch over denormal mode");
3963 void KnownFPClass::propagateDenormal(const KnownFPClass &Src, const Function &F,
3964 Type *Ty) {
3965 KnownFPClasses = Src.KnownFPClasses;
3966 // If we aren't assuming the source can't be a zero, we don't have to check if
3967 // a denormal input could be flushed.
3968 if (!Src.isKnownNeverPosZero() && !Src.isKnownNeverNegZero())
3969 return;
3971 // If we know the input can't be a denormal, it can't be flushed to 0.
3972 if (Src.isKnownNeverSubnormal())
3973 return;
3975 DenormalMode Mode = F.getDenormalMode(Ty->getScalarType()->getFltSemantics());
3977 if (!Src.isKnownNeverPosSubnormal() && Mode != DenormalMode::getIEEE())
3978 KnownFPClasses |= fcPosZero;
3980 if (!Src.isKnownNeverNegSubnormal() && Mode != DenormalMode::getIEEE()) {
3981 if (Mode != DenormalMode::getPositiveZero())
3982 KnownFPClasses |= fcNegZero;
3984 if (Mode.Input == DenormalMode::PositiveZero ||
3985 Mode.Output == DenormalMode::PositiveZero ||
3986 Mode.Input == DenormalMode::Dynamic ||
3987 Mode.Output == DenormalMode::Dynamic)
3988 KnownFPClasses |= fcPosZero;
3992 void KnownFPClass::propagateCanonicalizingSrc(const KnownFPClass &Src,
3993 const Function &F, Type *Ty) {
3994 propagateDenormal(Src, F, Ty);
3995 propagateNaN(Src, /*PreserveSign=*/true);
3998 /// Returns a pair of values, which if passed to llvm.is.fpclass, returns the
3999 /// same result as an fcmp with the given operands.
4000 std::pair<Value *, FPClassTest> llvm::fcmpToClassTest(FCmpInst::Predicate Pred,
4001 const Function &F,
4002 Value *LHS, Value *RHS,
4003 bool LookThroughSrc) {
4004 const APFloat *ConstRHS;
4005 if (!match(RHS, m_APFloatAllowUndef(ConstRHS)))
4006 return {nullptr, fcAllFlags};
4008 return fcmpToClassTest(Pred, F, LHS, ConstRHS, LookThroughSrc);
4011 std::pair<Value *, FPClassTest>
4012 llvm::fcmpToClassTest(FCmpInst::Predicate Pred, const Function &F, Value *LHS,
4013 const APFloat *ConstRHS, bool LookThroughSrc) {
4014 // fcmp ord x, zero|normal|subnormal|inf -> ~fcNan
4015 if (Pred == FCmpInst::FCMP_ORD && !ConstRHS->isNaN())
4016 return {LHS, ~fcNan};
4018 // fcmp uno x, zero|normal|subnormal|inf -> fcNan
4019 if (Pred == FCmpInst::FCMP_UNO && !ConstRHS->isNaN())
4020 return {LHS, fcNan};
4022 if (Pred == FCmpInst::FCMP_TRUE)
4023 return {LHS, fcAllFlags};
4025 if (Pred == FCmpInst::FCMP_FALSE)
4026 return {LHS, fcNone};
4028 if (ConstRHS->isZero()) {
4029 // Compares with fcNone are only exactly equal to fcZero if input denormals
4030 // are not flushed.
4031 // TODO: Handle DAZ by expanding masks to cover subnormal cases.
4032 if (Pred != FCmpInst::FCMP_ORD && Pred != FCmpInst::FCMP_UNO &&
4033 !inputDenormalIsIEEE(F, LHS->getType()))
4034 return {nullptr, fcAllFlags};
4036 switch (Pred) {
4037 case FCmpInst::FCMP_OEQ: // Match x == 0.0
4038 return {LHS, fcZero};
4039 case FCmpInst::FCMP_UEQ: // Match isnan(x) || (x == 0.0)
4040 return {LHS, fcZero | fcNan};
4041 case FCmpInst::FCMP_UNE: // Match (x != 0.0)
4042 return {LHS, ~fcZero};
4043 case FCmpInst::FCMP_ONE: // Match !isnan(x) && x != 0.0
4044 return {LHS, ~fcNan & ~fcZero};
4045 case FCmpInst::FCMP_ORD:
4046 // Canonical form of ord/uno is with a zero. We could also handle
4047 // non-canonical other non-NaN constants or LHS == RHS.
4048 return {LHS, ~fcNan};
4049 case FCmpInst::FCMP_UNO:
4050 return {LHS, fcNan};
4051 case FCmpInst::FCMP_OGT: // x > 0
4052 return {LHS, fcPosSubnormal | fcPosNormal | fcPosInf};
4053 case FCmpInst::FCMP_UGT: // isnan(x) || x > 0
4054 return {LHS, fcPosSubnormal | fcPosNormal | fcPosInf | fcNan};
4055 case FCmpInst::FCMP_OGE: // x >= 0
4056 return {LHS, fcPositive | fcNegZero};
4057 case FCmpInst::FCMP_UGE: // isnan(x) || x >= 0
4058 return {LHS, fcPositive | fcNegZero | fcNan};
4059 case FCmpInst::FCMP_OLT: // x < 0
4060 return {LHS, fcNegSubnormal | fcNegNormal | fcNegInf};
4061 case FCmpInst::FCMP_ULT: // isnan(x) || x < 0
4062 return {LHS, fcNegSubnormal | fcNegNormal | fcNegInf | fcNan};
4063 case FCmpInst::FCMP_OLE: // x <= 0
4064 return {LHS, fcNegative | fcPosZero};
4065 case FCmpInst::FCMP_ULE: // isnan(x) || x <= 0
4066 return {LHS, fcNegative | fcPosZero | fcNan};
4067 default:
4068 llvm_unreachable("all compare types are handled");
4071 return {nullptr, fcAllFlags};
4074 Value *Src = LHS;
4075 const bool IsFabs = LookThroughSrc && match(LHS, m_FAbs(m_Value(Src)));
4077 // Compute the test mask that would return true for the ordered comparisons.
4078 FPClassTest Mask;
4080 if (ConstRHS->isInfinity()) {
4081 switch (Pred) {
4082 case FCmpInst::FCMP_OEQ:
4083 case FCmpInst::FCMP_UNE: {
4084 // Match __builtin_isinf patterns
4086 // fcmp oeq x, +inf -> is_fpclass x, fcPosInf
4087 // fcmp oeq fabs(x), +inf -> is_fpclass x, fcInf
4088 // fcmp oeq x, -inf -> is_fpclass x, fcNegInf
4089 // fcmp oeq fabs(x), -inf -> is_fpclass x, 0 -> false
4091 // fcmp une x, +inf -> is_fpclass x, ~fcPosInf
4092 // fcmp une fabs(x), +inf -> is_fpclass x, ~fcInf
4093 // fcmp une x, -inf -> is_fpclass x, ~fcNegInf
4094 // fcmp une fabs(x), -inf -> is_fpclass x, fcAllFlags -> true
4096 if (ConstRHS->isNegative()) {
4097 Mask = fcNegInf;
4098 if (IsFabs)
4099 Mask = fcNone;
4100 } else {
4101 Mask = fcPosInf;
4102 if (IsFabs)
4103 Mask |= fcNegInf;
4106 break;
4108 case FCmpInst::FCMP_ONE:
4109 case FCmpInst::FCMP_UEQ: {
4110 // Match __builtin_isinf patterns
4111 // fcmp one x, -inf -> is_fpclass x, fcNegInf
4112 // fcmp one fabs(x), -inf -> is_fpclass x, ~fcNegInf & ~fcNan
4113 // fcmp one x, +inf -> is_fpclass x, ~fcNegInf & ~fcNan
4114 // fcmp one fabs(x), +inf -> is_fpclass x, ~fcInf & fcNan
4116 // fcmp ueq x, +inf -> is_fpclass x, fcPosInf|fcNan
4117 // fcmp ueq (fabs x), +inf -> is_fpclass x, fcInf|fcNan
4118 // fcmp ueq x, -inf -> is_fpclass x, fcNegInf|fcNan
4119 // fcmp ueq fabs(x), -inf -> is_fpclass x, fcNan
4120 if (ConstRHS->isNegative()) {
4121 Mask = ~fcNegInf & ~fcNan;
4122 if (IsFabs)
4123 Mask = ~fcNan;
4124 } else {
4125 Mask = ~fcPosInf & ~fcNan;
4126 if (IsFabs)
4127 Mask &= ~fcNegInf;
4130 break;
4132 case FCmpInst::FCMP_OLT:
4133 case FCmpInst::FCMP_UGE: {
4134 if (ConstRHS->isNegative()) {
4135 // No value is ordered and less than negative infinity.
4136 // All values are unordered with or at least negative infinity.
4137 // fcmp olt x, -inf -> false
4138 // fcmp uge x, -inf -> true
4139 Mask = fcNone;
4140 break;
4143 // fcmp olt fabs(x), +inf -> fcFinite
4144 // fcmp uge fabs(x), +inf -> ~fcFinite
4145 // fcmp olt x, +inf -> fcFinite|fcNegInf
4146 // fcmp uge x, +inf -> ~(fcFinite|fcNegInf)
4147 Mask = fcFinite;
4148 if (!IsFabs)
4149 Mask |= fcNegInf;
4150 break;
4152 case FCmpInst::FCMP_OGE:
4153 case FCmpInst::FCMP_ULT: {
4154 if (ConstRHS->isNegative()) {
4155 // fcmp oge x, -inf -> ~fcNan
4156 // fcmp oge fabs(x), -inf -> ~fcNan
4157 // fcmp ult x, -inf -> fcNan
4158 // fcmp ult fabs(x), -inf -> fcNan
4159 Mask = ~fcNan;
4160 break;
4163 // fcmp oge fabs(x), +inf -> fcInf
4164 // fcmp oge x, +inf -> fcPosInf
4165 // fcmp ult fabs(x), +inf -> ~fcInf
4166 // fcmp ult x, +inf -> ~fcPosInf
4167 Mask = fcPosInf;
4168 if (IsFabs)
4169 Mask |= fcNegInf;
4170 break;
4172 case FCmpInst::FCMP_OGT:
4173 case FCmpInst::FCMP_ULE: {
4174 if (ConstRHS->isNegative()) {
4175 // fcmp ogt x, -inf -> fcmp one x, -inf
4176 // fcmp ogt fabs(x), -inf -> fcmp ord x, x
4177 // fcmp ule x, -inf -> fcmp ueq x, -inf
4178 // fcmp ule fabs(x), -inf -> fcmp uno x, x
4179 Mask = IsFabs ? ~fcNan : ~(fcNegInf | fcNan);
4180 break;
4183 // No value is ordered and greater than infinity.
4184 Mask = fcNone;
4185 break;
4187 case FCmpInst::FCMP_OLE:
4188 case FCmpInst::FCMP_UGT: {
4189 if (ConstRHS->isNegative()) {
4190 Mask = IsFabs ? fcNone : fcNegInf;
4191 break;
4194 // fcmp ole x, +inf -> fcmp ord x, x
4195 // fcmp ole fabs(x), +inf -> fcmp ord x, x
4196 // fcmp ole x, -inf -> fcmp oeq x, -inf
4197 // fcmp ole fabs(x), -inf -> false
4198 Mask = ~fcNan;
4199 break;
4201 default:
4202 llvm_unreachable("all compare types are handled");
4204 } else if (ConstRHS->isSmallestNormalized() && !ConstRHS->isNegative()) {
4205 // Match pattern that's used in __builtin_isnormal.
4206 switch (Pred) {
4207 case FCmpInst::FCMP_OLT:
4208 case FCmpInst::FCMP_UGE: {
4209 // fcmp olt x, smallest_normal -> fcNegInf|fcNegNormal|fcSubnormal|fcZero
4210 // fcmp olt fabs(x), smallest_normal -> fcSubnormal|fcZero
4211 // fcmp uge x, smallest_normal -> fcNan|fcPosNormal|fcPosInf
4212 // fcmp uge fabs(x), smallest_normal -> ~(fcSubnormal|fcZero)
4213 Mask = fcZero | fcSubnormal;
4214 if (!IsFabs)
4215 Mask |= fcNegNormal | fcNegInf;
4217 break;
4219 case FCmpInst::FCMP_OGE:
4220 case FCmpInst::FCMP_ULT: {
4221 // fcmp oge x, smallest_normal -> fcPosNormal | fcPosInf
4222 // fcmp oge fabs(x), smallest_normal -> fcInf | fcNormal
4223 // fcmp ult x, smallest_normal -> ~(fcPosNormal | fcPosInf)
4224 // fcmp ult fabs(x), smallest_normal -> ~(fcInf | fcNormal)
4225 Mask = fcPosInf | fcPosNormal;
4226 if (IsFabs)
4227 Mask |= fcNegInf | fcNegNormal;
4228 break;
4230 default:
4231 return {nullptr, fcAllFlags};
4233 } else if (ConstRHS->isNaN()) {
4234 // fcmp o__ x, nan -> false
4235 // fcmp u__ x, nan -> true
4236 Mask = fcNone;
4237 } else
4238 return {nullptr, fcAllFlags};
4240 // Invert the comparison for the unordered cases.
4241 if (FCmpInst::isUnordered(Pred))
4242 Mask = ~Mask;
4244 return {Src, Mask};
4247 static FPClassTest computeKnownFPClassFromAssumes(const Value *V,
4248 const SimplifyQuery &Q) {
4249 FPClassTest KnownFromAssume = fcAllFlags;
4251 // Try to restrict the floating-point classes based on information from
4252 // assumptions.
4253 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
4254 if (!AssumeVH)
4255 continue;
4256 CallInst *I = cast<CallInst>(AssumeVH);
4257 const Function *F = I->getFunction();
4259 assert(F == Q.CxtI->getParent()->getParent() &&
4260 "Got assumption for the wrong function!");
4261 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
4262 "must be an assume intrinsic");
4264 if (!isValidAssumeForContext(I, Q.CxtI, Q.DT))
4265 continue;
4267 CmpInst::Predicate Pred;
4268 Value *LHS, *RHS;
4269 uint64_t ClassVal = 0;
4270 if (match(I->getArgOperand(0), m_FCmp(Pred, m_Value(LHS), m_Value(RHS)))) {
4271 auto [TestedValue, TestedMask] =
4272 fcmpToClassTest(Pred, *F, LHS, RHS, true);
4273 // First see if we can fold in fabs/fneg into the test.
4274 if (TestedValue == V)
4275 KnownFromAssume &= TestedMask;
4276 else {
4277 // Try again without the lookthrough if we found a different source
4278 // value.
4279 auto [TestedValue, TestedMask] =
4280 fcmpToClassTest(Pred, *F, LHS, RHS, false);
4281 if (TestedValue == V)
4282 KnownFromAssume &= TestedMask;
4284 } else if (match(I->getArgOperand(0),
4285 m_Intrinsic<Intrinsic::is_fpclass>(
4286 m_Value(LHS), m_ConstantInt(ClassVal)))) {
4287 KnownFromAssume &= static_cast<FPClassTest>(ClassVal);
4291 return KnownFromAssume;
4294 void computeKnownFPClass(const Value *V, const APInt &DemandedElts,
4295 FPClassTest InterestedClasses, KnownFPClass &Known,
4296 unsigned Depth, const SimplifyQuery &Q);
4298 static void computeKnownFPClass(const Value *V, KnownFPClass &Known,
4299 FPClassTest InterestedClasses, unsigned Depth,
4300 const SimplifyQuery &Q) {
4301 auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
4302 APInt DemandedElts =
4303 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
4304 computeKnownFPClass(V, DemandedElts, InterestedClasses, Known, Depth, Q);
4307 static void computeKnownFPClassForFPTrunc(const Operator *Op,
4308 const APInt &DemandedElts,
4309 FPClassTest InterestedClasses,
4310 KnownFPClass &Known, unsigned Depth,
4311 const SimplifyQuery &Q) {
4312 if ((InterestedClasses &
4313 (KnownFPClass::OrderedLessThanZeroMask | fcNan)) == fcNone)
4314 return;
4316 KnownFPClass KnownSrc;
4317 computeKnownFPClass(Op->getOperand(0), DemandedElts, InterestedClasses,
4318 KnownSrc, Depth + 1, Q);
4320 // Sign should be preserved
4321 // TODO: Handle cannot be ordered greater than zero
4322 if (KnownSrc.cannotBeOrderedLessThanZero())
4323 Known.knownNot(KnownFPClass::OrderedLessThanZeroMask);
4325 Known.propagateNaN(KnownSrc, true);
4327 // Infinity needs a range check.
4330 // TODO: Merge implementation of cannotBeOrderedLessThanZero into here.
4331 void computeKnownFPClass(const Value *V, const APInt &DemandedElts,
4332 FPClassTest InterestedClasses, KnownFPClass &Known,
4333 unsigned Depth, const SimplifyQuery &Q) {
4334 assert(Known.isUnknown() && "should not be called with known information");
4336 if (!DemandedElts) {
4337 // No demanded elts, better to assume we don't know anything.
4338 Known.resetAll();
4339 return;
4342 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
4344 if (auto *CFP = dyn_cast_or_null<ConstantFP>(V)) {
4345 Known.KnownFPClasses = CFP->getValueAPF().classify();
4346 Known.SignBit = CFP->isNegative();
4347 return;
4350 // Try to handle fixed width vector constants
4351 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
4352 const Constant *CV = dyn_cast<Constant>(V);
4353 if (VFVTy && CV) {
4354 Known.KnownFPClasses = fcNone;
4356 // For vectors, verify that each element is not NaN.
4357 unsigned NumElts = VFVTy->getNumElements();
4358 for (unsigned i = 0; i != NumElts; ++i) {
4359 Constant *Elt = CV->getAggregateElement(i);
4360 if (!Elt) {
4361 Known = KnownFPClass();
4362 return;
4364 if (isa<UndefValue>(Elt))
4365 continue;
4366 auto *CElt = dyn_cast<ConstantFP>(Elt);
4367 if (!CElt) {
4368 Known = KnownFPClass();
4369 return;
4372 KnownFPClass KnownElt{CElt->getValueAPF().classify(), CElt->isNegative()};
4373 Known |= KnownElt;
4376 return;
4379 FPClassTest KnownNotFromFlags = fcNone;
4380 if (const auto *CB = dyn_cast<CallBase>(V))
4381 KnownNotFromFlags |= CB->getRetNoFPClass();
4382 else if (const auto *Arg = dyn_cast<Argument>(V))
4383 KnownNotFromFlags |= Arg->getNoFPClass();
4385 const Operator *Op = dyn_cast<Operator>(V);
4386 if (const FPMathOperator *FPOp = dyn_cast_or_null<FPMathOperator>(Op)) {
4387 if (FPOp->hasNoNaNs())
4388 KnownNotFromFlags |= fcNan;
4389 if (FPOp->hasNoInfs())
4390 KnownNotFromFlags |= fcInf;
4393 if (Q.AC) {
4394 FPClassTest AssumedClasses = computeKnownFPClassFromAssumes(V, Q);
4395 KnownNotFromFlags |= ~AssumedClasses;
4398 // We no longer need to find out about these bits from inputs if we can
4399 // assume this from flags/attributes.
4400 InterestedClasses &= ~KnownNotFromFlags;
4402 auto ClearClassesFromFlags = make_scope_exit([=, &Known] {
4403 Known.knownNot(KnownNotFromFlags);
4406 if (!Op)
4407 return;
4409 // All recursive calls that increase depth must come after this.
4410 if (Depth == MaxAnalysisRecursionDepth)
4411 return;
4413 const unsigned Opc = Op->getOpcode();
4414 switch (Opc) {
4415 case Instruction::FNeg: {
4416 computeKnownFPClass(Op->getOperand(0), DemandedElts, InterestedClasses,
4417 Known, Depth + 1, Q);
4418 Known.fneg();
4419 break;
4421 case Instruction::Select: {
4422 Value *Cond = Op->getOperand(0);
4423 Value *LHS = Op->getOperand(1);
4424 Value *RHS = Op->getOperand(2);
4426 FPClassTest FilterLHS = fcAllFlags;
4427 FPClassTest FilterRHS = fcAllFlags;
4429 Value *TestedValue = nullptr;
4430 FPClassTest TestedMask = fcNone;
4431 uint64_t ClassVal = 0;
4432 const Function *F = cast<Instruction>(Op)->getFunction();
4433 CmpInst::Predicate Pred;
4434 Value *CmpLHS, *CmpRHS;
4435 if (F && match(Cond, m_FCmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) {
4436 // If the select filters out a value based on the class, it no longer
4437 // participates in the class of the result
4439 // TODO: In some degenerate cases we can infer something if we try again
4440 // without looking through sign operations.
4441 bool LookThroughFAbsFNeg = CmpLHS != LHS && CmpLHS != RHS;
4442 std::tie(TestedValue, TestedMask) =
4443 fcmpToClassTest(Pred, *F, CmpLHS, CmpRHS, LookThroughFAbsFNeg);
4444 } else if (match(Cond,
4445 m_Intrinsic<Intrinsic::is_fpclass>(
4446 m_Value(TestedValue), m_ConstantInt(ClassVal)))) {
4447 TestedMask = static_cast<FPClassTest>(ClassVal);
4450 if (TestedValue == LHS) {
4451 // match !isnan(x) ? x : y
4452 FilterLHS = TestedMask;
4453 } else if (TestedValue == RHS) {
4454 // match !isnan(x) ? y : x
4455 FilterRHS = ~TestedMask;
4458 KnownFPClass Known2;
4459 computeKnownFPClass(LHS, DemandedElts, InterestedClasses & FilterLHS, Known,
4460 Depth + 1, Q);
4461 Known.KnownFPClasses &= FilterLHS;
4463 computeKnownFPClass(RHS, DemandedElts, InterestedClasses & FilterRHS,
4464 Known2, Depth + 1, Q);
4465 Known2.KnownFPClasses &= FilterRHS;
4467 Known |= Known2;
4468 break;
4470 case Instruction::Call: {
4471 const CallInst *II = cast<CallInst>(Op);
4472 const Intrinsic::ID IID = II->getIntrinsicID();
4473 switch (IID) {
4474 case Intrinsic::fabs: {
4475 if ((InterestedClasses & (fcNan | fcPositive)) != fcNone) {
4476 // If we only care about the sign bit we don't need to inspect the
4477 // operand.
4478 computeKnownFPClass(II->getArgOperand(0), DemandedElts,
4479 InterestedClasses, Known, Depth + 1, Q);
4482 Known.fabs();
4483 break;
4485 case Intrinsic::copysign: {
4486 KnownFPClass KnownSign;
4488 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses,
4489 Known, Depth + 1, Q);
4490 computeKnownFPClass(II->getArgOperand(1), DemandedElts, InterestedClasses,
4491 KnownSign, Depth + 1, Q);
4492 Known.copysign(KnownSign);
4493 break;
4495 case Intrinsic::fma:
4496 case Intrinsic::fmuladd: {
4497 if ((InterestedClasses & fcNegative) == fcNone)
4498 break;
4500 if (II->getArgOperand(0) != II->getArgOperand(1))
4501 break;
4503 // The multiply cannot be -0 and therefore the add can't be -0
4504 Known.knownNot(fcNegZero);
4506 // x * x + y is non-negative if y is non-negative.
4507 KnownFPClass KnownAddend;
4508 computeKnownFPClass(II->getArgOperand(2), DemandedElts, InterestedClasses,
4509 KnownAddend, Depth + 1, Q);
4511 // TODO: Known sign bit with no nans
4512 if (KnownAddend.cannotBeOrderedLessThanZero())
4513 Known.knownNot(fcNegative);
4514 break;
4516 case Intrinsic::sqrt:
4517 case Intrinsic::experimental_constrained_sqrt: {
4518 KnownFPClass KnownSrc;
4519 FPClassTest InterestedSrcs = InterestedClasses;
4520 if (InterestedClasses & fcNan)
4521 InterestedSrcs |= KnownFPClass::OrderedLessThanZeroMask;
4523 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedSrcs,
4524 KnownSrc, Depth + 1, Q);
4526 if (KnownSrc.isKnownNeverPosInfinity())
4527 Known.knownNot(fcPosInf);
4528 if (KnownSrc.isKnownNever(fcSNan))
4529 Known.knownNot(fcSNan);
4531 // Any negative value besides -0 returns a nan.
4532 if (KnownSrc.isKnownNeverNaN() && KnownSrc.cannotBeOrderedLessThanZero())
4533 Known.knownNot(fcNan);
4535 // The only negative value that can be returned is -0 for -0 inputs.
4536 Known.knownNot(fcNegInf | fcNegSubnormal | fcNegNormal);
4538 // If the input denormal mode could be PreserveSign, a negative
4539 // subnormal input could produce a negative zero output.
4540 const Function *F = II->getFunction();
4541 if (Q.IIQ.hasNoSignedZeros(II) ||
4542 (F && KnownSrc.isKnownNeverLogicalNegZero(*F, II->getType()))) {
4543 Known.knownNot(fcNegZero);
4544 if (KnownSrc.isKnownNeverNaN())
4545 Known.SignBit = false;
4548 break;
4550 case Intrinsic::sin:
4551 case Intrinsic::cos: {
4552 // Return NaN on infinite inputs.
4553 KnownFPClass KnownSrc;
4554 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses,
4555 KnownSrc, Depth + 1, Q);
4556 Known.knownNot(fcInf);
4557 if (KnownSrc.isKnownNeverNaN() && KnownSrc.isKnownNeverInfinity())
4558 Known.knownNot(fcNan);
4559 break;
4561 case Intrinsic::maxnum:
4562 case Intrinsic::minnum:
4563 case Intrinsic::minimum:
4564 case Intrinsic::maximum: {
4565 KnownFPClass KnownLHS, KnownRHS;
4566 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses,
4567 KnownLHS, Depth + 1, Q);
4568 computeKnownFPClass(II->getArgOperand(1), DemandedElts, InterestedClasses,
4569 KnownRHS, Depth + 1, Q);
4571 bool NeverNaN = KnownLHS.isKnownNeverNaN() || KnownRHS.isKnownNeverNaN();
4572 Known = KnownLHS | KnownRHS;
4574 // If either operand is not NaN, the result is not NaN.
4575 if (NeverNaN && (IID == Intrinsic::minnum || IID == Intrinsic::maxnum))
4576 Known.knownNot(fcNan);
4578 if (IID == Intrinsic::maxnum) {
4579 // If at least one operand is known to be positive, the result must be
4580 // positive.
4581 if ((KnownLHS.cannotBeOrderedLessThanZero() &&
4582 KnownLHS.isKnownNeverNaN()) ||
4583 (KnownRHS.cannotBeOrderedLessThanZero() &&
4584 KnownRHS.isKnownNeverNaN()))
4585 Known.knownNot(KnownFPClass::OrderedLessThanZeroMask);
4586 } else if (IID == Intrinsic::maximum) {
4587 // If at least one operand is known to be positive, the result must be
4588 // positive.
4589 if (KnownLHS.cannotBeOrderedLessThanZero() ||
4590 KnownRHS.cannotBeOrderedLessThanZero())
4591 Known.knownNot(KnownFPClass::OrderedLessThanZeroMask);
4592 } else if (IID == Intrinsic::minnum) {
4593 // If at least one operand is known to be negative, the result must be
4594 // negative.
4595 if ((KnownLHS.cannotBeOrderedGreaterThanZero() &&
4596 KnownLHS.isKnownNeverNaN()) ||
4597 (KnownRHS.cannotBeOrderedGreaterThanZero() &&
4598 KnownRHS.isKnownNeverNaN()))
4599 Known.knownNot(KnownFPClass::OrderedGreaterThanZeroMask);
4600 } else {
4601 // If at least one operand is known to be negative, the result must be
4602 // negative.
4603 if (KnownLHS.cannotBeOrderedGreaterThanZero() ||
4604 KnownRHS.cannotBeOrderedGreaterThanZero())
4605 Known.knownNot(KnownFPClass::OrderedGreaterThanZeroMask);
4608 // Fixup zero handling if denormals could be returned as a zero.
4610 // As there's no spec for denormal flushing, be conservative with the
4611 // treatment of denormals that could be flushed to zero. For older
4612 // subtargets on AMDGPU the min/max instructions would not flush the
4613 // output and return the original value.
4615 // TODO: This could be refined based on the sign
4616 if ((Known.KnownFPClasses & fcZero) != fcNone &&
4617 !Known.isKnownNeverSubnormal()) {
4618 const Function *Parent = II->getFunction();
4619 if (!Parent)
4620 break;
4622 DenormalMode Mode = Parent->getDenormalMode(
4623 II->getType()->getScalarType()->getFltSemantics());
4624 if (Mode != DenormalMode::getIEEE())
4625 Known.KnownFPClasses |= fcZero;
4628 break;
4630 case Intrinsic::canonicalize: {
4631 KnownFPClass KnownSrc;
4632 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses,
4633 KnownSrc, Depth + 1, Q);
4635 // This is essentially a stronger form of
4636 // propagateCanonicalizingSrc. Other "canonicalizing" operations don't
4637 // actually have an IR canonicalization guarantee.
4639 // Canonicalize may flush denormals to zero, so we have to consider the
4640 // denormal mode to preserve known-not-0 knowledge.
4641 Known.KnownFPClasses = KnownSrc.KnownFPClasses | fcZero | fcQNan;
4643 // Stronger version of propagateNaN
4644 // Canonicalize is guaranteed to quiet signaling nans.
4645 if (KnownSrc.isKnownNeverNaN())
4646 Known.knownNot(fcNan);
4647 else
4648 Known.knownNot(fcSNan);
4650 const Function *F = II->getFunction();
4651 if (!F)
4652 break;
4654 // If the parent function flushes denormals, the canonical output cannot
4655 // be a denormal.
4656 const fltSemantics &FPType =
4657 II->getType()->getScalarType()->getFltSemantics();
4658 DenormalMode DenormMode = F->getDenormalMode(FPType);
4659 if (DenormMode == DenormalMode::getIEEE()) {
4660 if (KnownSrc.isKnownNever(fcPosZero))
4661 Known.knownNot(fcPosZero);
4662 if (KnownSrc.isKnownNever(fcNegZero))
4663 Known.knownNot(fcNegZero);
4664 break;
4667 if (DenormMode.inputsAreZero() || DenormMode.outputsAreZero())
4668 Known.knownNot(fcSubnormal);
4670 if (DenormMode.Input == DenormalMode::PositiveZero ||
4671 (DenormMode.Output == DenormalMode::PositiveZero &&
4672 DenormMode.Input == DenormalMode::IEEE))
4673 Known.knownNot(fcNegZero);
4675 break;
4677 case Intrinsic::trunc:
4678 case Intrinsic::floor:
4679 case Intrinsic::ceil:
4680 case Intrinsic::rint:
4681 case Intrinsic::nearbyint:
4682 case Intrinsic::round:
4683 case Intrinsic::roundeven: {
4684 KnownFPClass KnownSrc;
4685 FPClassTest InterestedSrcs = InterestedClasses;
4686 if (InterestedSrcs & fcPosFinite)
4687 InterestedSrcs |= fcPosFinite;
4688 if (InterestedSrcs & fcNegFinite)
4689 InterestedSrcs |= fcNegFinite;
4690 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedSrcs,
4691 KnownSrc, Depth + 1, Q);
4693 // Integer results cannot be subnormal.
4694 Known.knownNot(fcSubnormal);
4696 Known.propagateNaN(KnownSrc, true);
4698 // Pass through infinities, except PPC_FP128 is a special case for
4699 // intrinsics other than trunc.
4700 if (IID == Intrinsic::trunc || !V->getType()->isMultiUnitFPType()) {
4701 if (KnownSrc.isKnownNeverPosInfinity())
4702 Known.knownNot(fcPosInf);
4703 if (KnownSrc.isKnownNeverNegInfinity())
4704 Known.knownNot(fcNegInf);
4707 // Negative round ups to 0 produce -0
4708 if (KnownSrc.isKnownNever(fcPosFinite))
4709 Known.knownNot(fcPosFinite);
4710 if (KnownSrc.isKnownNever(fcNegFinite))
4711 Known.knownNot(fcNegFinite);
4713 break;
4715 case Intrinsic::exp:
4716 case Intrinsic::exp2:
4717 case Intrinsic::exp10: {
4718 Known.knownNot(fcNegative);
4719 if ((InterestedClasses & fcNan) == fcNone)
4720 break;
4722 KnownFPClass KnownSrc;
4723 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses,
4724 KnownSrc, Depth + 1, Q);
4725 if (KnownSrc.isKnownNeverNaN()) {
4726 Known.knownNot(fcNan);
4727 Known.SignBit = false;
4730 break;
4732 case Intrinsic::fptrunc_round: {
4733 computeKnownFPClassForFPTrunc(Op, DemandedElts, InterestedClasses, Known,
4734 Depth, Q);
4735 break;
4737 case Intrinsic::log:
4738 case Intrinsic::log10:
4739 case Intrinsic::log2:
4740 case Intrinsic::experimental_constrained_log:
4741 case Intrinsic::experimental_constrained_log10:
4742 case Intrinsic::experimental_constrained_log2: {
4743 // log(+inf) -> +inf
4744 // log([+-]0.0) -> -inf
4745 // log(-inf) -> nan
4746 // log(-x) -> nan
4747 if ((InterestedClasses & (fcNan | fcInf)) == fcNone)
4748 break;
4750 FPClassTest InterestedSrcs = InterestedClasses;
4751 if ((InterestedClasses & fcNegInf) != fcNone)
4752 InterestedSrcs |= fcZero | fcSubnormal;
4753 if ((InterestedClasses & fcNan) != fcNone)
4754 InterestedSrcs |= fcNan | (fcNegative & ~fcNan);
4756 KnownFPClass KnownSrc;
4757 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedSrcs,
4758 KnownSrc, Depth + 1, Q);
4760 if (KnownSrc.isKnownNeverPosInfinity())
4761 Known.knownNot(fcPosInf);
4763 if (KnownSrc.isKnownNeverNaN() && KnownSrc.cannotBeOrderedLessThanZero())
4764 Known.knownNot(fcNan);
4766 const Function *F = II->getFunction();
4767 if (F && KnownSrc.isKnownNeverLogicalZero(*F, II->getType()))
4768 Known.knownNot(fcNegInf);
4770 break;
4772 case Intrinsic::powi: {
4773 if ((InterestedClasses & fcNegative) == fcNone)
4774 break;
4776 const Value *Exp = II->getArgOperand(1);
4777 Type *ExpTy = Exp->getType();
4778 unsigned BitWidth = ExpTy->getScalarType()->getIntegerBitWidth();
4779 KnownBits ExponentKnownBits(BitWidth);
4780 computeKnownBits(Exp, isa<VectorType>(ExpTy) ? DemandedElts : APInt(1, 1),
4781 ExponentKnownBits, Depth + 1, Q);
4783 if (ExponentKnownBits.Zero[0]) { // Is even
4784 Known.knownNot(fcNegative);
4785 break;
4788 // Given that exp is an integer, here are the
4789 // ways that pow can return a negative value:
4791 // pow(-x, exp) --> negative if exp is odd and x is negative.
4792 // pow(-0, exp) --> -inf if exp is negative odd.
4793 // pow(-0, exp) --> -0 if exp is positive odd.
4794 // pow(-inf, exp) --> -0 if exp is negative odd.
4795 // pow(-inf, exp) --> -inf if exp is positive odd.
4796 KnownFPClass KnownSrc;
4797 computeKnownFPClass(II->getArgOperand(0), DemandedElts, fcNegative,
4798 KnownSrc, Depth + 1, Q);
4799 if (KnownSrc.isKnownNever(fcNegative))
4800 Known.knownNot(fcNegative);
4801 break;
4803 case Intrinsic::ldexp: {
4804 KnownFPClass KnownSrc;
4805 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses,
4806 KnownSrc, Depth + 1, Q);
4807 Known.propagateNaN(KnownSrc, /*PropagateSign=*/true);
4809 // Sign is preserved, but underflows may produce zeroes.
4810 if (KnownSrc.isKnownNever(fcNegative))
4811 Known.knownNot(fcNegative);
4812 else if (KnownSrc.cannotBeOrderedLessThanZero())
4813 Known.knownNot(KnownFPClass::OrderedLessThanZeroMask);
4815 if (KnownSrc.isKnownNever(fcPositive))
4816 Known.knownNot(fcPositive);
4817 else if (KnownSrc.cannotBeOrderedGreaterThanZero())
4818 Known.knownNot(KnownFPClass::OrderedGreaterThanZeroMask);
4820 // Can refine inf/zero handling based on the exponent operand.
4821 const FPClassTest ExpInfoMask = fcZero | fcSubnormal | fcInf;
4822 if ((InterestedClasses & ExpInfoMask) == fcNone)
4823 break;
4824 if ((KnownSrc.KnownFPClasses & ExpInfoMask) == fcNone)
4825 break;
4827 const fltSemantics &Flt =
4828 II->getType()->getScalarType()->getFltSemantics();
4829 unsigned Precision = APFloat::semanticsPrecision(Flt);
4830 const Value *ExpArg = II->getArgOperand(1);
4831 ConstantRange ExpRange = computeConstantRange(
4832 ExpArg, true, Q.IIQ.UseInstrInfo, Q.AC, Q.CxtI, Q.DT, Depth + 1);
4834 const int MantissaBits = Precision - 1;
4835 if (ExpRange.getSignedMin().sge(static_cast<int64_t>(MantissaBits)))
4836 Known.knownNot(fcSubnormal);
4838 const Function *F = II->getFunction();
4839 const APInt *ConstVal = ExpRange.getSingleElement();
4840 if (ConstVal && ConstVal->isZero()) {
4841 // ldexp(x, 0) -> x, so propagate everything.
4842 Known.propagateCanonicalizingSrc(KnownSrc, *F, II->getType());
4843 } else if (ExpRange.isAllNegative()) {
4844 // If we know the power is <= 0, can't introduce inf
4845 if (KnownSrc.isKnownNeverPosInfinity())
4846 Known.knownNot(fcPosInf);
4847 if (KnownSrc.isKnownNeverNegInfinity())
4848 Known.knownNot(fcNegInf);
4849 } else if (ExpRange.isAllNonNegative()) {
4850 // If we know the power is >= 0, can't introduce subnormal or zero
4851 if (KnownSrc.isKnownNeverPosSubnormal())
4852 Known.knownNot(fcPosSubnormal);
4853 if (KnownSrc.isKnownNeverNegSubnormal())
4854 Known.knownNot(fcNegSubnormal);
4855 if (F && KnownSrc.isKnownNeverLogicalPosZero(*F, II->getType()))
4856 Known.knownNot(fcPosZero);
4857 if (F && KnownSrc.isKnownNeverLogicalNegZero(*F, II->getType()))
4858 Known.knownNot(fcNegZero);
4861 break;
4863 case Intrinsic::arithmetic_fence: {
4864 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses,
4865 Known, Depth + 1, Q);
4866 break;
4868 case Intrinsic::experimental_constrained_sitofp:
4869 case Intrinsic::experimental_constrained_uitofp:
4870 // Cannot produce nan
4871 Known.knownNot(fcNan);
4873 // sitofp and uitofp turn into +0.0 for zero.
4874 Known.knownNot(fcNegZero);
4876 // Integers cannot be subnormal
4877 Known.knownNot(fcSubnormal);
4879 if (IID == Intrinsic::experimental_constrained_uitofp)
4880 Known.signBitMustBeZero();
4882 // TODO: Copy inf handling from instructions
4883 break;
4884 default:
4885 break;
4888 break;
4890 case Instruction::FAdd:
4891 case Instruction::FSub: {
4892 KnownFPClass KnownLHS, KnownRHS;
4893 bool WantNegative =
4894 Op->getOpcode() == Instruction::FAdd &&
4895 (InterestedClasses & KnownFPClass::OrderedLessThanZeroMask) != fcNone;
4896 bool WantNaN = (InterestedClasses & fcNan) != fcNone;
4897 bool WantNegZero = (InterestedClasses & fcNegZero) != fcNone;
4899 if (!WantNaN && !WantNegative && !WantNegZero)
4900 break;
4902 FPClassTest InterestedSrcs = InterestedClasses;
4903 if (WantNegative)
4904 InterestedSrcs |= KnownFPClass::OrderedLessThanZeroMask;
4905 if (InterestedClasses & fcNan)
4906 InterestedSrcs |= fcInf;
4907 computeKnownFPClass(Op->getOperand(1), DemandedElts, InterestedSrcs,
4908 KnownRHS, Depth + 1, Q);
4910 if ((WantNaN && KnownRHS.isKnownNeverNaN()) ||
4911 (WantNegative && KnownRHS.cannotBeOrderedLessThanZero()) ||
4912 WantNegZero || Opc == Instruction::FSub) {
4914 // RHS is canonically cheaper to compute. Skip inspecting the LHS if
4915 // there's no point.
4916 computeKnownFPClass(Op->getOperand(0), DemandedElts, InterestedSrcs,
4917 KnownLHS, Depth + 1, Q);
4918 // Adding positive and negative infinity produces NaN.
4919 // TODO: Check sign of infinities.
4920 if (KnownLHS.isKnownNeverNaN() && KnownRHS.isKnownNeverNaN() &&
4921 (KnownLHS.isKnownNeverInfinity() || KnownRHS.isKnownNeverInfinity()))
4922 Known.knownNot(fcNan);
4924 // FIXME: Context function should always be passed in separately
4925 const Function *F = cast<Instruction>(Op)->getFunction();
4927 if (Op->getOpcode() == Instruction::FAdd) {
4928 if (KnownLHS.cannotBeOrderedLessThanZero() &&
4929 KnownRHS.cannotBeOrderedLessThanZero())
4930 Known.knownNot(KnownFPClass::OrderedLessThanZeroMask);
4931 if (!F)
4932 break;
4934 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
4935 if ((KnownLHS.isKnownNeverLogicalNegZero(*F, Op->getType()) ||
4936 KnownRHS.isKnownNeverLogicalNegZero(*F, Op->getType())) &&
4937 // Make sure output negative denormal can't flush to -0
4938 outputDenormalIsIEEEOrPosZero(*F, Op->getType()))
4939 Known.knownNot(fcNegZero);
4940 } else {
4941 if (!F)
4942 break;
4944 // Only fsub -0, +0 can return -0
4945 if ((KnownLHS.isKnownNeverLogicalNegZero(*F, Op->getType()) ||
4946 KnownRHS.isKnownNeverLogicalPosZero(*F, Op->getType())) &&
4947 // Make sure output negative denormal can't flush to -0
4948 outputDenormalIsIEEEOrPosZero(*F, Op->getType()))
4949 Known.knownNot(fcNegZero);
4953 break;
4955 case Instruction::FMul: {
4956 // X * X is always non-negative or a NaN.
4957 if (Op->getOperand(0) == Op->getOperand(1))
4958 Known.knownNot(fcNegative);
4960 if ((InterestedClasses & fcNan) != fcNan)
4961 break;
4963 // fcSubnormal is only needed in case of DAZ.
4964 const FPClassTest NeedForNan = fcNan | fcInf | fcZero | fcSubnormal;
4966 KnownFPClass KnownLHS, KnownRHS;
4967 computeKnownFPClass(Op->getOperand(1), DemandedElts, NeedForNan, KnownRHS,
4968 Depth + 1, Q);
4969 if (!KnownRHS.isKnownNeverNaN())
4970 break;
4972 computeKnownFPClass(Op->getOperand(0), DemandedElts, NeedForNan, KnownLHS,
4973 Depth + 1, Q);
4974 if (!KnownLHS.isKnownNeverNaN())
4975 break;
4977 // If 0 * +/-inf produces NaN.
4978 if (KnownLHS.isKnownNeverInfinity() && KnownRHS.isKnownNeverInfinity()) {
4979 Known.knownNot(fcNan);
4980 break;
4983 const Function *F = cast<Instruction>(Op)->getFunction();
4984 if (!F)
4985 break;
4987 if ((KnownRHS.isKnownNeverInfinity() ||
4988 KnownLHS.isKnownNeverLogicalZero(*F, Op->getType())) &&
4989 (KnownLHS.isKnownNeverInfinity() ||
4990 KnownRHS.isKnownNeverLogicalZero(*F, Op->getType())))
4991 Known.knownNot(fcNan);
4993 break;
4995 case Instruction::FDiv:
4996 case Instruction::FRem: {
4997 if (Op->getOperand(0) == Op->getOperand(1)) {
4998 // TODO: Could filter out snan if we inspect the operand
4999 if (Op->getOpcode() == Instruction::FDiv) {
5000 // X / X is always exactly 1.0 or a NaN.
5001 Known.KnownFPClasses = fcNan | fcPosNormal;
5002 } else {
5003 // X % X is always exactly [+-]0.0 or a NaN.
5004 Known.KnownFPClasses = fcNan | fcZero;
5007 break;
5010 const bool WantNan = (InterestedClasses & fcNan) != fcNone;
5011 const bool WantNegative = (InterestedClasses & fcNegative) != fcNone;
5012 const bool WantPositive =
5013 Opc == Instruction::FRem && (InterestedClasses & fcPositive) != fcNone;
5014 if (!WantNan && !WantNegative && !WantPositive)
5015 break;
5017 KnownFPClass KnownLHS, KnownRHS;
5019 computeKnownFPClass(Op->getOperand(1), DemandedElts,
5020 fcNan | fcInf | fcZero | fcNegative, KnownRHS,
5021 Depth + 1, Q);
5023 bool KnowSomethingUseful =
5024 KnownRHS.isKnownNeverNaN() || KnownRHS.isKnownNever(fcNegative);
5026 if (KnowSomethingUseful || WantPositive) {
5027 const FPClassTest InterestedLHS =
5028 WantPositive ? fcAllFlags
5029 : fcNan | fcInf | fcZero | fcSubnormal | fcNegative;
5031 computeKnownFPClass(Op->getOperand(0), DemandedElts,
5032 InterestedClasses & InterestedLHS, KnownLHS,
5033 Depth + 1, Q);
5036 const Function *F = cast<Instruction>(Op)->getFunction();
5038 if (Op->getOpcode() == Instruction::FDiv) {
5039 // Only 0/0, Inf/Inf produce NaN.
5040 if (KnownLHS.isKnownNeverNaN() && KnownRHS.isKnownNeverNaN() &&
5041 (KnownLHS.isKnownNeverInfinity() ||
5042 KnownRHS.isKnownNeverInfinity()) &&
5043 ((F && KnownLHS.isKnownNeverLogicalZero(*F, Op->getType())) ||
5044 (F && KnownRHS.isKnownNeverLogicalZero(*F, Op->getType())))) {
5045 Known.knownNot(fcNan);
5048 // X / -0.0 is -Inf (or NaN).
5049 // +X / +X is +X
5050 if (KnownLHS.isKnownNever(fcNegative) && KnownRHS.isKnownNever(fcNegative))
5051 Known.knownNot(fcNegative);
5052 } else {
5053 // Inf REM x and x REM 0 produce NaN.
5054 if (KnownLHS.isKnownNeverNaN() && KnownRHS.isKnownNeverNaN() &&
5055 KnownLHS.isKnownNeverInfinity() && F &&
5056 KnownRHS.isKnownNeverLogicalZero(*F, Op->getType())) {
5057 Known.knownNot(fcNan);
5060 // The sign for frem is the same as the first operand.
5061 if (KnownLHS.cannotBeOrderedLessThanZero())
5062 Known.knownNot(KnownFPClass::OrderedLessThanZeroMask);
5063 if (KnownLHS.cannotBeOrderedGreaterThanZero())
5064 Known.knownNot(KnownFPClass::OrderedGreaterThanZeroMask);
5066 // See if we can be more aggressive about the sign of 0.
5067 if (KnownLHS.isKnownNever(fcNegative))
5068 Known.knownNot(fcNegative);
5069 if (KnownLHS.isKnownNever(fcPositive))
5070 Known.knownNot(fcPositive);
5073 break;
5075 case Instruction::FPExt: {
5076 // Infinity, nan and zero propagate from source.
5077 computeKnownFPClass(Op->getOperand(0), DemandedElts, InterestedClasses,
5078 Known, Depth + 1, Q);
5080 const fltSemantics &DstTy =
5081 Op->getType()->getScalarType()->getFltSemantics();
5082 const fltSemantics &SrcTy =
5083 Op->getOperand(0)->getType()->getScalarType()->getFltSemantics();
5085 // All subnormal inputs should be in the normal range in the result type.
5086 if (APFloat::isRepresentableAsNormalIn(SrcTy, DstTy)) {
5087 if (Known.KnownFPClasses & fcPosSubnormal)
5088 Known.KnownFPClasses |= fcPosNormal;
5089 if (Known.KnownFPClasses & fcNegSubnormal)
5090 Known.KnownFPClasses |= fcNegNormal;
5091 Known.knownNot(fcSubnormal);
5094 // Sign bit of a nan isn't guaranteed.
5095 if (!Known.isKnownNeverNaN())
5096 Known.SignBit = std::nullopt;
5097 break;
5099 case Instruction::FPTrunc: {
5100 computeKnownFPClassForFPTrunc(Op, DemandedElts, InterestedClasses, Known,
5101 Depth, Q);
5102 break;
5104 case Instruction::SIToFP:
5105 case Instruction::UIToFP: {
5106 // Cannot produce nan
5107 Known.knownNot(fcNan);
5109 // Integers cannot be subnormal
5110 Known.knownNot(fcSubnormal);
5112 // sitofp and uitofp turn into +0.0 for zero.
5113 Known.knownNot(fcNegZero);
5114 if (Op->getOpcode() == Instruction::UIToFP)
5115 Known.signBitMustBeZero();
5117 if (InterestedClasses & fcInf) {
5118 // Get width of largest magnitude integer (remove a bit if signed).
5119 // This still works for a signed minimum value because the largest FP
5120 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).
5121 int IntSize = Op->getOperand(0)->getType()->getScalarSizeInBits();
5122 if (Op->getOpcode() == Instruction::SIToFP)
5123 --IntSize;
5125 // If the exponent of the largest finite FP value can hold the largest
5126 // integer, the result of the cast must be finite.
5127 Type *FPTy = Op->getType()->getScalarType();
5128 if (ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize)
5129 Known.knownNot(fcInf);
5132 break;
5134 case Instruction::ExtractElement: {
5135 // Look through extract element. If the index is non-constant or
5136 // out-of-range demand all elements, otherwise just the extracted element.
5137 const Value *Vec = Op->getOperand(0);
5138 const Value *Idx = Op->getOperand(1);
5139 auto *CIdx = dyn_cast<ConstantInt>(Idx);
5141 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
5142 unsigned NumElts = VecTy->getNumElements();
5143 APInt DemandedVecElts = APInt::getAllOnes(NumElts);
5144 if (CIdx && CIdx->getValue().ult(NumElts))
5145 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
5146 return computeKnownFPClass(Vec, DemandedVecElts, InterestedClasses, Known,
5147 Depth + 1, Q);
5150 break;
5152 case Instruction::InsertElement: {
5153 if (isa<ScalableVectorType>(Op->getType()))
5154 return;
5156 const Value *Vec = Op->getOperand(0);
5157 const Value *Elt = Op->getOperand(1);
5158 auto *CIdx = dyn_cast<ConstantInt>(Op->getOperand(2));
5159 // Early out if the index is non-constant or out-of-range.
5160 unsigned NumElts = DemandedElts.getBitWidth();
5161 if (!CIdx || CIdx->getValue().uge(NumElts))
5162 return;
5164 unsigned EltIdx = CIdx->getZExtValue();
5165 // Do we demand the inserted element?
5166 if (DemandedElts[EltIdx]) {
5167 computeKnownFPClass(Elt, Known, InterestedClasses, Depth + 1, Q);
5168 // If we don't know any bits, early out.
5169 if (Known.isUnknown())
5170 break;
5171 } else {
5172 Known.KnownFPClasses = fcNone;
5175 // We don't need the base vector element that has been inserted.
5176 APInt DemandedVecElts = DemandedElts;
5177 DemandedVecElts.clearBit(EltIdx);
5178 if (!!DemandedVecElts) {
5179 KnownFPClass Known2;
5180 computeKnownFPClass(Vec, DemandedVecElts, InterestedClasses, Known2,
5181 Depth + 1, Q);
5182 Known |= Known2;
5185 break;
5187 case Instruction::ShuffleVector: {
5188 // For undef elements, we don't know anything about the common state of
5189 // the shuffle result.
5190 APInt DemandedLHS, DemandedRHS;
5191 auto *Shuf = dyn_cast<ShuffleVectorInst>(Op);
5192 if (!Shuf || !getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
5193 return;
5195 if (!!DemandedLHS) {
5196 const Value *LHS = Shuf->getOperand(0);
5197 computeKnownFPClass(LHS, DemandedLHS, InterestedClasses, Known,
5198 Depth + 1, Q);
5200 // If we don't know any bits, early out.
5201 if (Known.isUnknown())
5202 break;
5203 } else {
5204 Known.KnownFPClasses = fcNone;
5207 if (!!DemandedRHS) {
5208 KnownFPClass Known2;
5209 const Value *RHS = Shuf->getOperand(1);
5210 computeKnownFPClass(RHS, DemandedRHS, InterestedClasses, Known2,
5211 Depth + 1, Q);
5212 Known |= Known2;
5215 break;
5217 case Instruction::ExtractValue: {
5218 const ExtractValueInst *Extract = cast<ExtractValueInst>(Op);
5219 ArrayRef<unsigned> Indices = Extract->getIndices();
5220 const Value *Src = Extract->getAggregateOperand();
5221 if (isa<StructType>(Src->getType()) && Indices.size() == 1 &&
5222 Indices[0] == 0) {
5223 if (const auto *II = dyn_cast<IntrinsicInst>(Src)) {
5224 switch (II->getIntrinsicID()) {
5225 case Intrinsic::frexp: {
5226 Known.knownNot(fcSubnormal);
5228 KnownFPClass KnownSrc;
5229 computeKnownFPClass(II->getArgOperand(0), DemandedElts,
5230 InterestedClasses, KnownSrc, Depth + 1, Q);
5232 const Function *F = cast<Instruction>(Op)->getFunction();
5234 if (KnownSrc.isKnownNever(fcNegative))
5235 Known.knownNot(fcNegative);
5236 else {
5237 if (F && KnownSrc.isKnownNeverLogicalNegZero(*F, Op->getType()))
5238 Known.knownNot(fcNegZero);
5239 if (KnownSrc.isKnownNever(fcNegInf))
5240 Known.knownNot(fcNegInf);
5243 if (KnownSrc.isKnownNever(fcPositive))
5244 Known.knownNot(fcPositive);
5245 else {
5246 if (F && KnownSrc.isKnownNeverLogicalPosZero(*F, Op->getType()))
5247 Known.knownNot(fcPosZero);
5248 if (KnownSrc.isKnownNever(fcPosInf))
5249 Known.knownNot(fcPosInf);
5252 Known.propagateNaN(KnownSrc);
5253 return;
5255 default:
5256 break;
5261 computeKnownFPClass(Src, DemandedElts, InterestedClasses, Known, Depth + 1,
5263 break;
5265 case Instruction::PHI: {
5266 const PHINode *P = cast<PHINode>(Op);
5267 // Unreachable blocks may have zero-operand PHI nodes.
5268 if (P->getNumIncomingValues() == 0)
5269 break;
5271 // Otherwise take the unions of the known bit sets of the operands,
5272 // taking conservative care to avoid excessive recursion.
5273 const unsigned PhiRecursionLimit = MaxAnalysisRecursionDepth - 2;
5275 if (Depth < PhiRecursionLimit) {
5276 // Skip if every incoming value references to ourself.
5277 if (isa_and_nonnull<UndefValue>(P->hasConstantValue()))
5278 break;
5280 bool First = true;
5282 for (Value *IncValue : P->incoming_values()) {
5283 // Skip direct self references.
5284 if (IncValue == P)
5285 continue;
5287 KnownFPClass KnownSrc;
5288 // Recurse, but cap the recursion to two levels, because we don't want
5289 // to waste time spinning around in loops. We need at least depth 2 to
5290 // detect known sign bits.
5291 computeKnownFPClass(IncValue, DemandedElts, InterestedClasses, KnownSrc,
5292 PhiRecursionLimit, Q);
5294 if (First) {
5295 Known = KnownSrc;
5296 First = false;
5297 } else {
5298 Known |= KnownSrc;
5301 if (Known.KnownFPClasses == fcAllFlags)
5302 break;
5306 break;
5308 default:
5309 break;
5313 KnownFPClass llvm::computeKnownFPClass(
5314 const Value *V, const APInt &DemandedElts, const DataLayout &DL,
5315 FPClassTest InterestedClasses, unsigned Depth, const TargetLibraryInfo *TLI,
5316 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
5317 bool UseInstrInfo) {
5318 KnownFPClass KnownClasses;
5319 ::computeKnownFPClass(
5320 V, DemandedElts, InterestedClasses, KnownClasses, Depth,
5321 SimplifyQuery(DL, TLI, DT, AC, safeCxtI(V, CxtI), UseInstrInfo));
5322 return KnownClasses;
5325 KnownFPClass llvm::computeKnownFPClass(
5326 const Value *V, const DataLayout &DL, FPClassTest InterestedClasses,
5327 unsigned Depth, const TargetLibraryInfo *TLI, AssumptionCache *AC,
5328 const Instruction *CxtI, const DominatorTree *DT, bool UseInstrInfo) {
5329 KnownFPClass Known;
5330 ::computeKnownFPClass(
5331 V, Known, InterestedClasses, Depth,
5332 SimplifyQuery(DL, TLI, DT, AC, safeCxtI(V, CxtI), UseInstrInfo));
5333 return Known;
5336 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
5338 // All byte-wide stores are splatable, even of arbitrary variables.
5339 if (V->getType()->isIntegerTy(8))
5340 return V;
5342 LLVMContext &Ctx = V->getContext();
5344 // Undef don't care.
5345 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
5346 if (isa<UndefValue>(V))
5347 return UndefInt8;
5349 // Return Undef for zero-sized type.
5350 if (DL.getTypeStoreSize(V->getType()).isZero())
5351 return UndefInt8;
5353 Constant *C = dyn_cast<Constant>(V);
5354 if (!C) {
5355 // Conceptually, we could handle things like:
5356 // %a = zext i8 %X to i16
5357 // %b = shl i16 %a, 8
5358 // %c = or i16 %a, %b
5359 // but until there is an example that actually needs this, it doesn't seem
5360 // worth worrying about.
5361 return nullptr;
5364 // Handle 'null' ConstantArrayZero etc.
5365 if (C->isNullValue())
5366 return Constant::getNullValue(Type::getInt8Ty(Ctx));
5368 // Constant floating-point values can be handled as integer values if the
5369 // corresponding integer value is "byteable". An important case is 0.0.
5370 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
5371 Type *Ty = nullptr;
5372 if (CFP->getType()->isHalfTy())
5373 Ty = Type::getInt16Ty(Ctx);
5374 else if (CFP->getType()->isFloatTy())
5375 Ty = Type::getInt32Ty(Ctx);
5376 else if (CFP->getType()->isDoubleTy())
5377 Ty = Type::getInt64Ty(Ctx);
5378 // Don't handle long double formats, which have strange constraints.
5379 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
5380 : nullptr;
5383 // We can handle constant integers that are multiple of 8 bits.
5384 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
5385 if (CI->getBitWidth() % 8 == 0) {
5386 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
5387 if (!CI->getValue().isSplat(8))
5388 return nullptr;
5389 return ConstantInt::get(Ctx, CI->getValue().trunc(8));
5393 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
5394 if (CE->getOpcode() == Instruction::IntToPtr) {
5395 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) {
5396 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace());
5397 if (Constant *Op = ConstantFoldIntegerCast(
5398 CE->getOperand(0), Type::getIntNTy(Ctx, BitWidth), false, DL))
5399 return isBytewiseValue(Op, DL);
5404 auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
5405 if (LHS == RHS)
5406 return LHS;
5407 if (!LHS || !RHS)
5408 return nullptr;
5409 if (LHS == UndefInt8)
5410 return RHS;
5411 if (RHS == UndefInt8)
5412 return LHS;
5413 return nullptr;
5416 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
5417 Value *Val = UndefInt8;
5418 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
5419 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
5420 return nullptr;
5421 return Val;
5424 if (isa<ConstantAggregate>(C)) {
5425 Value *Val = UndefInt8;
5426 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
5427 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
5428 return nullptr;
5429 return Val;
5432 // Don't try to handle the handful of other constants.
5433 return nullptr;
5436 // This is the recursive version of BuildSubAggregate. It takes a few different
5437 // arguments. Idxs is the index within the nested struct From that we are
5438 // looking at now (which is of type IndexedType). IdxSkip is the number of
5439 // indices from Idxs that should be left out when inserting into the resulting
5440 // struct. To is the result struct built so far, new insertvalue instructions
5441 // build on that.
5442 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
5443 SmallVectorImpl<unsigned> &Idxs,
5444 unsigned IdxSkip,
5445 Instruction *InsertBefore) {
5446 StructType *STy = dyn_cast<StructType>(IndexedType);
5447 if (STy) {
5448 // Save the original To argument so we can modify it
5449 Value *OrigTo = To;
5450 // General case, the type indexed by Idxs is a struct
5451 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
5452 // Process each struct element recursively
5453 Idxs.push_back(i);
5454 Value *PrevTo = To;
5455 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
5456 InsertBefore);
5457 Idxs.pop_back();
5458 if (!To) {
5459 // Couldn't find any inserted value for this index? Cleanup
5460 while (PrevTo != OrigTo) {
5461 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
5462 PrevTo = Del->getAggregateOperand();
5463 Del->eraseFromParent();
5465 // Stop processing elements
5466 break;
5469 // If we successfully found a value for each of our subaggregates
5470 if (To)
5471 return To;
5473 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
5474 // the struct's elements had a value that was inserted directly. In the latter
5475 // case, perhaps we can't determine each of the subelements individually, but
5476 // we might be able to find the complete struct somewhere.
5478 // Find the value that is at that particular spot
5479 Value *V = FindInsertedValue(From, Idxs);
5481 if (!V)
5482 return nullptr;
5484 // Insert the value in the new (sub) aggregate
5485 return InsertValueInst::Create(To, V, ArrayRef(Idxs).slice(IdxSkip), "tmp",
5486 InsertBefore);
5489 // This helper takes a nested struct and extracts a part of it (which is again a
5490 // struct) into a new value. For example, given the struct:
5491 // { a, { b, { c, d }, e } }
5492 // and the indices "1, 1" this returns
5493 // { c, d }.
5495 // It does this by inserting an insertvalue for each element in the resulting
5496 // struct, as opposed to just inserting a single struct. This will only work if
5497 // each of the elements of the substruct are known (ie, inserted into From by an
5498 // insertvalue instruction somewhere).
5500 // All inserted insertvalue instructions are inserted before InsertBefore
5501 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
5502 Instruction *InsertBefore) {
5503 assert(InsertBefore && "Must have someplace to insert!");
5504 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
5505 idx_range);
5506 Value *To = PoisonValue::get(IndexedType);
5507 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
5508 unsigned IdxSkip = Idxs.size();
5510 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
5513 /// Given an aggregate and a sequence of indices, see if the scalar value
5514 /// indexed is already around as a register, for example if it was inserted
5515 /// directly into the aggregate.
5517 /// If InsertBefore is not null, this function will duplicate (modified)
5518 /// insertvalues when a part of a nested struct is extracted.
5519 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
5520 Instruction *InsertBefore) {
5521 // Nothing to index? Just return V then (this is useful at the end of our
5522 // recursion).
5523 if (idx_range.empty())
5524 return V;
5525 // We have indices, so V should have an indexable type.
5526 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
5527 "Not looking at a struct or array?");
5528 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
5529 "Invalid indices for type?");
5531 if (Constant *C = dyn_cast<Constant>(V)) {
5532 C = C->getAggregateElement(idx_range[0]);
5533 if (!C) return nullptr;
5534 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
5537 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
5538 // Loop the indices for the insertvalue instruction in parallel with the
5539 // requested indices
5540 const unsigned *req_idx = idx_range.begin();
5541 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
5542 i != e; ++i, ++req_idx) {
5543 if (req_idx == idx_range.end()) {
5544 // We can't handle this without inserting insertvalues
5545 if (!InsertBefore)
5546 return nullptr;
5548 // The requested index identifies a part of a nested aggregate. Handle
5549 // this specially. For example,
5550 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
5551 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
5552 // %C = extractvalue {i32, { i32, i32 } } %B, 1
5553 // This can be changed into
5554 // %A = insertvalue {i32, i32 } undef, i32 10, 0
5555 // %C = insertvalue {i32, i32 } %A, i32 11, 1
5556 // which allows the unused 0,0 element from the nested struct to be
5557 // removed.
5558 return BuildSubAggregate(V, ArrayRef(idx_range.begin(), req_idx),
5559 InsertBefore);
5562 // This insert value inserts something else than what we are looking for.
5563 // See if the (aggregate) value inserted into has the value we are
5564 // looking for, then.
5565 if (*req_idx != *i)
5566 return FindInsertedValue(I->getAggregateOperand(), idx_range,
5567 InsertBefore);
5569 // If we end up here, the indices of the insertvalue match with those
5570 // requested (though possibly only partially). Now we recursively look at
5571 // the inserted value, passing any remaining indices.
5572 return FindInsertedValue(I->getInsertedValueOperand(),
5573 ArrayRef(req_idx, idx_range.end()), InsertBefore);
5576 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
5577 // If we're extracting a value from an aggregate that was extracted from
5578 // something else, we can extract from that something else directly instead.
5579 // However, we will need to chain I's indices with the requested indices.
5581 // Calculate the number of indices required
5582 unsigned size = I->getNumIndices() + idx_range.size();
5583 // Allocate some space to put the new indices in
5584 SmallVector<unsigned, 5> Idxs;
5585 Idxs.reserve(size);
5586 // Add indices from the extract value instruction
5587 Idxs.append(I->idx_begin(), I->idx_end());
5589 // Add requested indices
5590 Idxs.append(idx_range.begin(), idx_range.end());
5592 assert(Idxs.size() == size
5593 && "Number of indices added not correct?");
5595 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
5597 // Otherwise, we don't know (such as, extracting from a function return value
5598 // or load instruction)
5599 return nullptr;
5602 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
5603 unsigned CharSize) {
5604 // Make sure the GEP has exactly three arguments.
5605 if (GEP->getNumOperands() != 3)
5606 return false;
5608 // Make sure the index-ee is a pointer to array of \p CharSize integers.
5609 // CharSize.
5610 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
5611 if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
5612 return false;
5614 // Check to make sure that the first operand of the GEP is an integer and
5615 // has value 0 so that we are sure we're indexing into the initializer.
5616 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
5617 if (!FirstIdx || !FirstIdx->isZero())
5618 return false;
5620 return true;
5623 // If V refers to an initialized global constant, set Slice either to
5624 // its initializer if the size of its elements equals ElementSize, or,
5625 // for ElementSize == 8, to its representation as an array of unsiged
5626 // char. Return true on success.
5627 // Offset is in the unit "nr of ElementSize sized elements".
5628 bool llvm::getConstantDataArrayInfo(const Value *V,
5629 ConstantDataArraySlice &Slice,
5630 unsigned ElementSize, uint64_t Offset) {
5631 assert(V && "V should not be null.");
5632 assert((ElementSize % 8) == 0 &&
5633 "ElementSize expected to be a multiple of the size of a byte.");
5634 unsigned ElementSizeInBytes = ElementSize / 8;
5636 // Drill down into the pointer expression V, ignoring any intervening
5637 // casts, and determine the identity of the object it references along
5638 // with the cumulative byte offset into it.
5639 const GlobalVariable *GV =
5640 dyn_cast<GlobalVariable>(getUnderlyingObject(V));
5641 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
5642 // Fail if V is not based on constant global object.
5643 return false;
5645 const DataLayout &DL = GV->getParent()->getDataLayout();
5646 APInt Off(DL.getIndexTypeSizeInBits(V->getType()), 0);
5648 if (GV != V->stripAndAccumulateConstantOffsets(DL, Off,
5649 /*AllowNonInbounds*/ true))
5650 // Fail if a constant offset could not be determined.
5651 return false;
5653 uint64_t StartIdx = Off.getLimitedValue();
5654 if (StartIdx == UINT64_MAX)
5655 // Fail if the constant offset is excessive.
5656 return false;
5658 // Off/StartIdx is in the unit of bytes. So we need to convert to number of
5659 // elements. Simply bail out if that isn't possible.
5660 if ((StartIdx % ElementSizeInBytes) != 0)
5661 return false;
5663 Offset += StartIdx / ElementSizeInBytes;
5664 ConstantDataArray *Array = nullptr;
5665 ArrayType *ArrayTy = nullptr;
5667 if (GV->getInitializer()->isNullValue()) {
5668 Type *GVTy = GV->getValueType();
5669 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedValue();
5670 uint64_t Length = SizeInBytes / ElementSizeInBytes;
5672 Slice.Array = nullptr;
5673 Slice.Offset = 0;
5674 // Return an empty Slice for undersized constants to let callers
5675 // transform even undefined library calls into simpler, well-defined
5676 // expressions. This is preferable to making the calls although it
5677 // prevents sanitizers from detecting such calls.
5678 Slice.Length = Length < Offset ? 0 : Length - Offset;
5679 return true;
5682 auto *Init = const_cast<Constant *>(GV->getInitializer());
5683 if (auto *ArrayInit = dyn_cast<ConstantDataArray>(Init)) {
5684 Type *InitElTy = ArrayInit->getElementType();
5685 if (InitElTy->isIntegerTy(ElementSize)) {
5686 // If Init is an initializer for an array of the expected type
5687 // and size, use it as is.
5688 Array = ArrayInit;
5689 ArrayTy = ArrayInit->getType();
5693 if (!Array) {
5694 if (ElementSize != 8)
5695 // TODO: Handle conversions to larger integral types.
5696 return false;
5698 // Otherwise extract the portion of the initializer starting
5699 // at Offset as an array of bytes, and reset Offset.
5700 Init = ReadByteArrayFromGlobal(GV, Offset);
5701 if (!Init)
5702 return false;
5704 Offset = 0;
5705 Array = dyn_cast<ConstantDataArray>(Init);
5706 ArrayTy = dyn_cast<ArrayType>(Init->getType());
5709 uint64_t NumElts = ArrayTy->getArrayNumElements();
5710 if (Offset > NumElts)
5711 return false;
5713 Slice.Array = Array;
5714 Slice.Offset = Offset;
5715 Slice.Length = NumElts - Offset;
5716 return true;
5719 /// Extract bytes from the initializer of the constant array V, which need
5720 /// not be a nul-terminated string. On success, store the bytes in Str and
5721 /// return true. When TrimAtNul is set, Str will contain only the bytes up
5722 /// to but not including the first nul. Return false on failure.
5723 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
5724 bool TrimAtNul) {
5725 ConstantDataArraySlice Slice;
5726 if (!getConstantDataArrayInfo(V, Slice, 8))
5727 return false;
5729 if (Slice.Array == nullptr) {
5730 if (TrimAtNul) {
5731 // Return a nul-terminated string even for an empty Slice. This is
5732 // safe because all existing SimplifyLibcalls callers require string
5733 // arguments and the behavior of the functions they fold is undefined
5734 // otherwise. Folding the calls this way is preferable to making
5735 // the undefined library calls, even though it prevents sanitizers
5736 // from reporting such calls.
5737 Str = StringRef();
5738 return true;
5740 if (Slice.Length == 1) {
5741 Str = StringRef("", 1);
5742 return true;
5744 // We cannot instantiate a StringRef as we do not have an appropriate string
5745 // of 0s at hand.
5746 return false;
5749 // Start out with the entire array in the StringRef.
5750 Str = Slice.Array->getAsString();
5751 // Skip over 'offset' bytes.
5752 Str = Str.substr(Slice.Offset);
5754 if (TrimAtNul) {
5755 // Trim off the \0 and anything after it. If the array is not nul
5756 // terminated, we just return the whole end of string. The client may know
5757 // some other way that the string is length-bound.
5758 Str = Str.substr(0, Str.find('\0'));
5760 return true;
5763 // These next two are very similar to the above, but also look through PHI
5764 // nodes.
5765 // TODO: See if we can integrate these two together.
5767 /// If we can compute the length of the string pointed to by
5768 /// the specified pointer, return 'len+1'. If we can't, return 0.
5769 static uint64_t GetStringLengthH(const Value *V,
5770 SmallPtrSetImpl<const PHINode*> &PHIs,
5771 unsigned CharSize) {
5772 // Look through noop bitcast instructions.
5773 V = V->stripPointerCasts();
5775 // If this is a PHI node, there are two cases: either we have already seen it
5776 // or we haven't.
5777 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
5778 if (!PHIs.insert(PN).second)
5779 return ~0ULL; // already in the set.
5781 // If it was new, see if all the input strings are the same length.
5782 uint64_t LenSoFar = ~0ULL;
5783 for (Value *IncValue : PN->incoming_values()) {
5784 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
5785 if (Len == 0) return 0; // Unknown length -> unknown.
5787 if (Len == ~0ULL) continue;
5789 if (Len != LenSoFar && LenSoFar != ~0ULL)
5790 return 0; // Disagree -> unknown.
5791 LenSoFar = Len;
5794 // Success, all agree.
5795 return LenSoFar;
5798 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
5799 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
5800 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
5801 if (Len1 == 0) return 0;
5802 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
5803 if (Len2 == 0) return 0;
5804 if (Len1 == ~0ULL) return Len2;
5805 if (Len2 == ~0ULL) return Len1;
5806 if (Len1 != Len2) return 0;
5807 return Len1;
5810 // Otherwise, see if we can read the string.
5811 ConstantDataArraySlice Slice;
5812 if (!getConstantDataArrayInfo(V, Slice, CharSize))
5813 return 0;
5815 if (Slice.Array == nullptr)
5816 // Zeroinitializer (including an empty one).
5817 return 1;
5819 // Search for the first nul character. Return a conservative result even
5820 // when there is no nul. This is safe since otherwise the string function
5821 // being folded such as strlen is undefined, and can be preferable to
5822 // making the undefined library call.
5823 unsigned NullIndex = 0;
5824 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
5825 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
5826 break;
5829 return NullIndex + 1;
5832 /// If we can compute the length of the string pointed to by
5833 /// the specified pointer, return 'len+1'. If we can't, return 0.
5834 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
5835 if (!V->getType()->isPointerTy())
5836 return 0;
5838 SmallPtrSet<const PHINode*, 32> PHIs;
5839 uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
5840 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
5841 // an empty string as a length.
5842 return Len == ~0ULL ? 1 : Len;
5845 const Value *
5846 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
5847 bool MustPreserveNullness) {
5848 assert(Call &&
5849 "getArgumentAliasingToReturnedPointer only works on nonnull calls");
5850 if (const Value *RV = Call->getReturnedArgOperand())
5851 return RV;
5852 // This can be used only as a aliasing property.
5853 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
5854 Call, MustPreserveNullness))
5855 return Call->getArgOperand(0);
5856 return nullptr;
5859 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
5860 const CallBase *Call, bool MustPreserveNullness) {
5861 switch (Call->getIntrinsicID()) {
5862 case Intrinsic::launder_invariant_group:
5863 case Intrinsic::strip_invariant_group:
5864 case Intrinsic::aarch64_irg:
5865 case Intrinsic::aarch64_tagp:
5866 // The amdgcn_make_buffer_rsrc function does not alter the address of the
5867 // input pointer (and thus preserve null-ness for the purposes of escape
5868 // analysis, which is where the MustPreserveNullness flag comes in to play).
5869 // However, it will not necessarily map ptr addrspace(N) null to ptr
5870 // addrspace(8) null, aka the "null descriptor", which has "all loads return
5871 // 0, all stores are dropped" semantics. Given the context of this intrinsic
5872 // list, no one should be relying on such a strict interpretation of
5873 // MustPreserveNullness (and, at time of writing, they are not), but we
5874 // document this fact out of an abundance of caution.
5875 case Intrinsic::amdgcn_make_buffer_rsrc:
5876 return true;
5877 case Intrinsic::ptrmask:
5878 return !MustPreserveNullness;
5879 default:
5880 return false;
5884 /// \p PN defines a loop-variant pointer to an object. Check if the
5885 /// previous iteration of the loop was referring to the same object as \p PN.
5886 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
5887 const LoopInfo *LI) {
5888 // Find the loop-defined value.
5889 Loop *L = LI->getLoopFor(PN->getParent());
5890 if (PN->getNumIncomingValues() != 2)
5891 return true;
5893 // Find the value from previous iteration.
5894 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
5895 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
5896 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
5897 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
5898 return true;
5900 // If a new pointer is loaded in the loop, the pointer references a different
5901 // object in every iteration. E.g.:
5902 // for (i)
5903 // int *p = a[i];
5904 // ...
5905 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
5906 if (!L->isLoopInvariant(Load->getPointerOperand()))
5907 return false;
5908 return true;
5911 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) {
5912 if (!V->getType()->isPointerTy())
5913 return V;
5914 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
5915 if (auto *GEP = dyn_cast<GEPOperator>(V)) {
5916 V = GEP->getPointerOperand();
5917 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
5918 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
5919 V = cast<Operator>(V)->getOperand(0);
5920 if (!V->getType()->isPointerTy())
5921 return V;
5922 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
5923 if (GA->isInterposable())
5924 return V;
5925 V = GA->getAliasee();
5926 } else {
5927 if (auto *PHI = dyn_cast<PHINode>(V)) {
5928 // Look through single-arg phi nodes created by LCSSA.
5929 if (PHI->getNumIncomingValues() == 1) {
5930 V = PHI->getIncomingValue(0);
5931 continue;
5933 } else if (auto *Call = dyn_cast<CallBase>(V)) {
5934 // CaptureTracking can know about special capturing properties of some
5935 // intrinsics like launder.invariant.group, that can't be expressed with
5936 // the attributes, but have properties like returning aliasing pointer.
5937 // Because some analysis may assume that nocaptured pointer is not
5938 // returned from some special intrinsic (because function would have to
5939 // be marked with returns attribute), it is crucial to use this function
5940 // because it should be in sync with CaptureTracking. Not using it may
5941 // cause weird miscompilations where 2 aliasing pointers are assumed to
5942 // noalias.
5943 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
5944 V = RP;
5945 continue;
5949 return V;
5951 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
5953 return V;
5956 void llvm::getUnderlyingObjects(const Value *V,
5957 SmallVectorImpl<const Value *> &Objects,
5958 LoopInfo *LI, unsigned MaxLookup) {
5959 SmallPtrSet<const Value *, 4> Visited;
5960 SmallVector<const Value *, 4> Worklist;
5961 Worklist.push_back(V);
5962 do {
5963 const Value *P = Worklist.pop_back_val();
5964 P = getUnderlyingObject(P, MaxLookup);
5966 if (!Visited.insert(P).second)
5967 continue;
5969 if (auto *SI = dyn_cast<SelectInst>(P)) {
5970 Worklist.push_back(SI->getTrueValue());
5971 Worklist.push_back(SI->getFalseValue());
5972 continue;
5975 if (auto *PN = dyn_cast<PHINode>(P)) {
5976 // If this PHI changes the underlying object in every iteration of the
5977 // loop, don't look through it. Consider:
5978 // int **A;
5979 // for (i) {
5980 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
5981 // Curr = A[i];
5982 // *Prev, *Curr;
5984 // Prev is tracking Curr one iteration behind so they refer to different
5985 // underlying objects.
5986 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
5987 isSameUnderlyingObjectInLoop(PN, LI))
5988 append_range(Worklist, PN->incoming_values());
5989 else
5990 Objects.push_back(P);
5991 continue;
5994 Objects.push_back(P);
5995 } while (!Worklist.empty());
5998 /// This is the function that does the work of looking through basic
5999 /// ptrtoint+arithmetic+inttoptr sequences.
6000 static const Value *getUnderlyingObjectFromInt(const Value *V) {
6001 do {
6002 if (const Operator *U = dyn_cast<Operator>(V)) {
6003 // If we find a ptrtoint, we can transfer control back to the
6004 // regular getUnderlyingObjectFromInt.
6005 if (U->getOpcode() == Instruction::PtrToInt)
6006 return U->getOperand(0);
6007 // If we find an add of a constant, a multiplied value, or a phi, it's
6008 // likely that the other operand will lead us to the base
6009 // object. We don't have to worry about the case where the
6010 // object address is somehow being computed by the multiply,
6011 // because our callers only care when the result is an
6012 // identifiable object.
6013 if (U->getOpcode() != Instruction::Add ||
6014 (!isa<ConstantInt>(U->getOperand(1)) &&
6015 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
6016 !isa<PHINode>(U->getOperand(1))))
6017 return V;
6018 V = U->getOperand(0);
6019 } else {
6020 return V;
6022 assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
6023 } while (true);
6026 /// This is a wrapper around getUnderlyingObjects and adds support for basic
6027 /// ptrtoint+arithmetic+inttoptr sequences.
6028 /// It returns false if unidentified object is found in getUnderlyingObjects.
6029 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
6030 SmallVectorImpl<Value *> &Objects) {
6031 SmallPtrSet<const Value *, 16> Visited;
6032 SmallVector<const Value *, 4> Working(1, V);
6033 do {
6034 V = Working.pop_back_val();
6036 SmallVector<const Value *, 4> Objs;
6037 getUnderlyingObjects(V, Objs);
6039 for (const Value *V : Objs) {
6040 if (!Visited.insert(V).second)
6041 continue;
6042 if (Operator::getOpcode(V) == Instruction::IntToPtr) {
6043 const Value *O =
6044 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
6045 if (O->getType()->isPointerTy()) {
6046 Working.push_back(O);
6047 continue;
6050 // If getUnderlyingObjects fails to find an identifiable object,
6051 // getUnderlyingObjectsForCodeGen also fails for safety.
6052 if (!isIdentifiedObject(V)) {
6053 Objects.clear();
6054 return false;
6056 Objects.push_back(const_cast<Value *>(V));
6058 } while (!Working.empty());
6059 return true;
6062 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
6063 AllocaInst *Result = nullptr;
6064 SmallPtrSet<Value *, 4> Visited;
6065 SmallVector<Value *, 4> Worklist;
6067 auto AddWork = [&](Value *V) {
6068 if (Visited.insert(V).second)
6069 Worklist.push_back(V);
6072 AddWork(V);
6073 do {
6074 V = Worklist.pop_back_val();
6075 assert(Visited.count(V));
6077 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
6078 if (Result && Result != AI)
6079 return nullptr;
6080 Result = AI;
6081 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
6082 AddWork(CI->getOperand(0));
6083 } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
6084 for (Value *IncValue : PN->incoming_values())
6085 AddWork(IncValue);
6086 } else if (auto *SI = dyn_cast<SelectInst>(V)) {
6087 AddWork(SI->getTrueValue());
6088 AddWork(SI->getFalseValue());
6089 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
6090 if (OffsetZero && !GEP->hasAllZeroIndices())
6091 return nullptr;
6092 AddWork(GEP->getPointerOperand());
6093 } else if (CallBase *CB = dyn_cast<CallBase>(V)) {
6094 Value *Returned = CB->getReturnedArgOperand();
6095 if (Returned)
6096 AddWork(Returned);
6097 else
6098 return nullptr;
6099 } else {
6100 return nullptr;
6102 } while (!Worklist.empty());
6104 return Result;
6107 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
6108 const Value *V, bool AllowLifetime, bool AllowDroppable) {
6109 for (const User *U : V->users()) {
6110 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
6111 if (!II)
6112 return false;
6114 if (AllowLifetime && II->isLifetimeStartOrEnd())
6115 continue;
6117 if (AllowDroppable && II->isDroppable())
6118 continue;
6120 return false;
6122 return true;
6125 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
6126 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
6127 V, /* AllowLifetime */ true, /* AllowDroppable */ false);
6129 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
6130 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
6131 V, /* AllowLifetime */ true, /* AllowDroppable */ true);
6134 bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
6135 if (!LI.isUnordered())
6136 return true;
6137 const Function &F = *LI.getFunction();
6138 // Speculative load may create a race that did not exist in the source.
6139 return F.hasFnAttribute(Attribute::SanitizeThread) ||
6140 // Speculative load may load data from dirty regions.
6141 F.hasFnAttribute(Attribute::SanitizeAddress) ||
6142 F.hasFnAttribute(Attribute::SanitizeHWAddress);
6145 bool llvm::isSafeToSpeculativelyExecute(const Instruction *Inst,
6146 const Instruction *CtxI,
6147 AssumptionCache *AC,
6148 const DominatorTree *DT,
6149 const TargetLibraryInfo *TLI) {
6150 return isSafeToSpeculativelyExecuteWithOpcode(Inst->getOpcode(), Inst, CtxI,
6151 AC, DT, TLI);
6154 bool llvm::isSafeToSpeculativelyExecuteWithOpcode(
6155 unsigned Opcode, const Instruction *Inst, const Instruction *CtxI,
6156 AssumptionCache *AC, const DominatorTree *DT,
6157 const TargetLibraryInfo *TLI) {
6158 #ifndef NDEBUG
6159 if (Inst->getOpcode() != Opcode) {
6160 // Check that the operands are actually compatible with the Opcode override.
6161 auto hasEqualReturnAndLeadingOperandTypes =
6162 [](const Instruction *Inst, unsigned NumLeadingOperands) {
6163 if (Inst->getNumOperands() < NumLeadingOperands)
6164 return false;
6165 const Type *ExpectedType = Inst->getType();
6166 for (unsigned ItOp = 0; ItOp < NumLeadingOperands; ++ItOp)
6167 if (Inst->getOperand(ItOp)->getType() != ExpectedType)
6168 return false;
6169 return true;
6171 assert(!Instruction::isBinaryOp(Opcode) ||
6172 hasEqualReturnAndLeadingOperandTypes(Inst, 2));
6173 assert(!Instruction::isUnaryOp(Opcode) ||
6174 hasEqualReturnAndLeadingOperandTypes(Inst, 1));
6176 #endif
6178 switch (Opcode) {
6179 default:
6180 return true;
6181 case Instruction::UDiv:
6182 case Instruction::URem: {
6183 // x / y is undefined if y == 0.
6184 const APInt *V;
6185 if (match(Inst->getOperand(1), m_APInt(V)))
6186 return *V != 0;
6187 return false;
6189 case Instruction::SDiv:
6190 case Instruction::SRem: {
6191 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
6192 const APInt *Numerator, *Denominator;
6193 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
6194 return false;
6195 // We cannot hoist this division if the denominator is 0.
6196 if (*Denominator == 0)
6197 return false;
6198 // It's safe to hoist if the denominator is not 0 or -1.
6199 if (!Denominator->isAllOnes())
6200 return true;
6201 // At this point we know that the denominator is -1. It is safe to hoist as
6202 // long we know that the numerator is not INT_MIN.
6203 if (match(Inst->getOperand(0), m_APInt(Numerator)))
6204 return !Numerator->isMinSignedValue();
6205 // The numerator *might* be MinSignedValue.
6206 return false;
6208 case Instruction::Load: {
6209 const LoadInst *LI = dyn_cast<LoadInst>(Inst);
6210 if (!LI)
6211 return false;
6212 if (mustSuppressSpeculation(*LI))
6213 return false;
6214 const DataLayout &DL = LI->getModule()->getDataLayout();
6215 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
6216 LI->getType(), LI->getAlign(), DL,
6217 CtxI, AC, DT, TLI);
6219 case Instruction::Call: {
6220 auto *CI = dyn_cast<const CallInst>(Inst);
6221 if (!CI)
6222 return false;
6223 const Function *Callee = CI->getCalledFunction();
6225 // The called function could have undefined behavior or side-effects, even
6226 // if marked readnone nounwind.
6227 return Callee && Callee->isSpeculatable();
6229 case Instruction::VAArg:
6230 case Instruction::Alloca:
6231 case Instruction::Invoke:
6232 case Instruction::CallBr:
6233 case Instruction::PHI:
6234 case Instruction::Store:
6235 case Instruction::Ret:
6236 case Instruction::Br:
6237 case Instruction::IndirectBr:
6238 case Instruction::Switch:
6239 case Instruction::Unreachable:
6240 case Instruction::Fence:
6241 case Instruction::AtomicRMW:
6242 case Instruction::AtomicCmpXchg:
6243 case Instruction::LandingPad:
6244 case Instruction::Resume:
6245 case Instruction::CatchSwitch:
6246 case Instruction::CatchPad:
6247 case Instruction::CatchRet:
6248 case Instruction::CleanupPad:
6249 case Instruction::CleanupRet:
6250 return false; // Misc instructions which have effects
6254 bool llvm::mayHaveNonDefUseDependency(const Instruction &I) {
6255 if (I.mayReadOrWriteMemory())
6256 // Memory dependency possible
6257 return true;
6258 if (!isSafeToSpeculativelyExecute(&I))
6259 // Can't move above a maythrow call or infinite loop. Or if an
6260 // inalloca alloca, above a stacksave call.
6261 return true;
6262 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6263 // 1) Can't reorder two inf-loop calls, even if readonly
6264 // 2) Also can't reorder an inf-loop call below a instruction which isn't
6265 // safe to speculative execute. (Inverse of above)
6266 return true;
6267 return false;
6270 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
6271 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
6272 switch (OR) {
6273 case ConstantRange::OverflowResult::MayOverflow:
6274 return OverflowResult::MayOverflow;
6275 case ConstantRange::OverflowResult::AlwaysOverflowsLow:
6276 return OverflowResult::AlwaysOverflowsLow;
6277 case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
6278 return OverflowResult::AlwaysOverflowsHigh;
6279 case ConstantRange::OverflowResult::NeverOverflows:
6280 return OverflowResult::NeverOverflows;
6282 llvm_unreachable("Unknown OverflowResult");
6285 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
6286 ConstantRange
6287 llvm::computeConstantRangeIncludingKnownBits(const WithCache<const Value *> &V,
6288 bool ForSigned,
6289 const SimplifyQuery &SQ) {
6290 ConstantRange CR1 =
6291 ConstantRange::fromKnownBits(V.getKnownBits(SQ), ForSigned);
6292 ConstantRange CR2 = computeConstantRange(V, ForSigned, SQ.IIQ.UseInstrInfo);
6293 ConstantRange::PreferredRangeType RangeType =
6294 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
6295 return CR1.intersectWith(CR2, RangeType);
6298 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
6299 const Value *RHS,
6300 const SimplifyQuery &SQ) {
6301 KnownBits LHSKnown = computeKnownBits(LHS, /*Depth=*/0, SQ);
6302 KnownBits RHSKnown = computeKnownBits(RHS, /*Depth=*/0, SQ);
6303 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
6304 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
6305 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
6308 OverflowResult llvm::computeOverflowForSignedMul(const Value *LHS,
6309 const Value *RHS,
6310 const SimplifyQuery &SQ) {
6311 // Multiplying n * m significant bits yields a result of n + m significant
6312 // bits. If the total number of significant bits does not exceed the
6313 // result bit width (minus 1), there is no overflow.
6314 // This means if we have enough leading sign bits in the operands
6315 // we can guarantee that the result does not overflow.
6316 // Ref: "Hacker's Delight" by Henry Warren
6317 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
6319 // Note that underestimating the number of sign bits gives a more
6320 // conservative answer.
6321 unsigned SignBits =
6322 ::ComputeNumSignBits(LHS, 0, SQ) + ::ComputeNumSignBits(RHS, 0, SQ);
6324 // First handle the easy case: if we have enough sign bits there's
6325 // definitely no overflow.
6326 if (SignBits > BitWidth + 1)
6327 return OverflowResult::NeverOverflows;
6329 // There are two ambiguous cases where there can be no overflow:
6330 // SignBits == BitWidth + 1 and
6331 // SignBits == BitWidth
6332 // The second case is difficult to check, therefore we only handle the
6333 // first case.
6334 if (SignBits == BitWidth + 1) {
6335 // It overflows only when both arguments are negative and the true
6336 // product is exactly the minimum negative number.
6337 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
6338 // For simplicity we just check if at least one side is not negative.
6339 KnownBits LHSKnown = computeKnownBits(LHS, /*Depth=*/0, SQ);
6340 KnownBits RHSKnown = computeKnownBits(RHS, /*Depth=*/0, SQ);
6341 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
6342 return OverflowResult::NeverOverflows;
6344 return OverflowResult::MayOverflow;
6347 OverflowResult
6348 llvm::computeOverflowForUnsignedAdd(const WithCache<const Value *> &LHS,
6349 const WithCache<const Value *> &RHS,
6350 const SimplifyQuery &SQ) {
6351 ConstantRange LHSRange =
6352 computeConstantRangeIncludingKnownBits(LHS, /*ForSigned=*/false, SQ);
6353 ConstantRange RHSRange =
6354 computeConstantRangeIncludingKnownBits(RHS, /*ForSigned=*/false, SQ);
6355 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
6358 static OverflowResult
6359 computeOverflowForSignedAdd(const WithCache<const Value *> &LHS,
6360 const WithCache<const Value *> &RHS,
6361 const AddOperator *Add, const SimplifyQuery &SQ) {
6362 if (Add && Add->hasNoSignedWrap()) {
6363 return OverflowResult::NeverOverflows;
6366 // If LHS and RHS each have at least two sign bits, the addition will look
6367 // like
6369 // XX..... +
6370 // YY.....
6372 // If the carry into the most significant position is 0, X and Y can't both
6373 // be 1 and therefore the carry out of the addition is also 0.
6375 // If the carry into the most significant position is 1, X and Y can't both
6376 // be 0 and therefore the carry out of the addition is also 1.
6378 // Since the carry into the most significant position is always equal to
6379 // the carry out of the addition, there is no signed overflow.
6380 if (::ComputeNumSignBits(LHS, 0, SQ) > 1 &&
6381 ::ComputeNumSignBits(RHS, 0, SQ) > 1)
6382 return OverflowResult::NeverOverflows;
6384 ConstantRange LHSRange =
6385 computeConstantRangeIncludingKnownBits(LHS, /*ForSigned=*/true, SQ);
6386 ConstantRange RHSRange =
6387 computeConstantRangeIncludingKnownBits(RHS, /*ForSigned=*/true, SQ);
6388 OverflowResult OR =
6389 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
6390 if (OR != OverflowResult::MayOverflow)
6391 return OR;
6393 // The remaining code needs Add to be available. Early returns if not so.
6394 if (!Add)
6395 return OverflowResult::MayOverflow;
6397 // If the sign of Add is the same as at least one of the operands, this add
6398 // CANNOT overflow. If this can be determined from the known bits of the
6399 // operands the above signedAddMayOverflow() check will have already done so.
6400 // The only other way to improve on the known bits is from an assumption, so
6401 // call computeKnownBitsFromContext() directly.
6402 bool LHSOrRHSKnownNonNegative =
6403 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
6404 bool LHSOrRHSKnownNegative =
6405 (LHSRange.isAllNegative() || RHSRange.isAllNegative());
6406 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
6407 KnownBits AddKnown(LHSRange.getBitWidth());
6408 computeKnownBitsFromContext(Add, AddKnown, /*Depth=*/0, SQ);
6409 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
6410 (AddKnown.isNegative() && LHSOrRHSKnownNegative))
6411 return OverflowResult::NeverOverflows;
6414 return OverflowResult::MayOverflow;
6417 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
6418 const Value *RHS,
6419 const SimplifyQuery &SQ) {
6420 // X - (X % ?)
6421 // The remainder of a value can't have greater magnitude than itself,
6422 // so the subtraction can't overflow.
6424 // X - (X -nuw ?)
6425 // In the minimal case, this would simplify to "?", so there's no subtract
6426 // at all. But if this analysis is used to peek through casts, for example,
6427 // then determining no-overflow may allow other transforms.
6429 // TODO: There are other patterns like this.
6430 // See simplifyICmpWithBinOpOnLHS() for candidates.
6431 if (match(RHS, m_URem(m_Specific(LHS), m_Value())) ||
6432 match(RHS, m_NUWSub(m_Specific(LHS), m_Value())))
6433 if (isGuaranteedNotToBeUndef(LHS, SQ.AC, SQ.CxtI, SQ.DT))
6434 return OverflowResult::NeverOverflows;
6436 // Checking for conditions implied by dominating conditions may be expensive.
6437 // Limit it to usub_with_overflow calls for now.
6438 if (match(SQ.CxtI,
6439 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
6440 if (auto C = isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, SQ.CxtI,
6441 SQ.DL)) {
6442 if (*C)
6443 return OverflowResult::NeverOverflows;
6444 return OverflowResult::AlwaysOverflowsLow;
6446 ConstantRange LHSRange =
6447 computeConstantRangeIncludingKnownBits(LHS, /*ForSigned=*/false, SQ);
6448 ConstantRange RHSRange =
6449 computeConstantRangeIncludingKnownBits(RHS, /*ForSigned=*/false, SQ);
6450 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
6453 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
6454 const Value *RHS,
6455 const SimplifyQuery &SQ) {
6456 // X - (X % ?)
6457 // The remainder of a value can't have greater magnitude than itself,
6458 // so the subtraction can't overflow.
6460 // X - (X -nsw ?)
6461 // In the minimal case, this would simplify to "?", so there's no subtract
6462 // at all. But if this analysis is used to peek through casts, for example,
6463 // then determining no-overflow may allow other transforms.
6464 if (match(RHS, m_SRem(m_Specific(LHS), m_Value())) ||
6465 match(RHS, m_NSWSub(m_Specific(LHS), m_Value())))
6466 if (isGuaranteedNotToBeUndef(LHS, SQ.AC, SQ.CxtI, SQ.DT))
6467 return OverflowResult::NeverOverflows;
6469 // If LHS and RHS each have at least two sign bits, the subtraction
6470 // cannot overflow.
6471 if (::ComputeNumSignBits(LHS, 0, SQ) > 1 &&
6472 ::ComputeNumSignBits(RHS, 0, SQ) > 1)
6473 return OverflowResult::NeverOverflows;
6475 ConstantRange LHSRange =
6476 computeConstantRangeIncludingKnownBits(LHS, /*ForSigned=*/true, SQ);
6477 ConstantRange RHSRange =
6478 computeConstantRangeIncludingKnownBits(RHS, /*ForSigned=*/true, SQ);
6479 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
6482 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
6483 const DominatorTree &DT) {
6484 SmallVector<const BranchInst *, 2> GuardingBranches;
6485 SmallVector<const ExtractValueInst *, 2> Results;
6487 for (const User *U : WO->users()) {
6488 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
6489 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
6491 if (EVI->getIndices()[0] == 0)
6492 Results.push_back(EVI);
6493 else {
6494 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
6496 for (const auto *U : EVI->users())
6497 if (const auto *B = dyn_cast<BranchInst>(U)) {
6498 assert(B->isConditional() && "How else is it using an i1?");
6499 GuardingBranches.push_back(B);
6502 } else {
6503 // We are using the aggregate directly in a way we don't want to analyze
6504 // here (storing it to a global, say).
6505 return false;
6509 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
6510 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
6511 if (!NoWrapEdge.isSingleEdge())
6512 return false;
6514 // Check if all users of the add are provably no-wrap.
6515 for (const auto *Result : Results) {
6516 // If the extractvalue itself is not executed on overflow, the we don't
6517 // need to check each use separately, since domination is transitive.
6518 if (DT.dominates(NoWrapEdge, Result->getParent()))
6519 continue;
6521 for (const auto &RU : Result->uses())
6522 if (!DT.dominates(NoWrapEdge, RU))
6523 return false;
6526 return true;
6529 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
6532 /// Shifts return poison if shiftwidth is larger than the bitwidth.
6533 static bool shiftAmountKnownInRange(const Value *ShiftAmount) {
6534 auto *C = dyn_cast<Constant>(ShiftAmount);
6535 if (!C)
6536 return false;
6538 // Shifts return poison if shiftwidth is larger than the bitwidth.
6539 SmallVector<const Constant *, 4> ShiftAmounts;
6540 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
6541 unsigned NumElts = FVTy->getNumElements();
6542 for (unsigned i = 0; i < NumElts; ++i)
6543 ShiftAmounts.push_back(C->getAggregateElement(i));
6544 } else if (isa<ScalableVectorType>(C->getType()))
6545 return false; // Can't tell, just return false to be safe
6546 else
6547 ShiftAmounts.push_back(C);
6549 bool Safe = llvm::all_of(ShiftAmounts, [](const Constant *C) {
6550 auto *CI = dyn_cast_or_null<ConstantInt>(C);
6551 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth());
6554 return Safe;
6557 enum class UndefPoisonKind {
6558 PoisonOnly = (1 << 0),
6559 UndefOnly = (1 << 1),
6560 UndefOrPoison = PoisonOnly | UndefOnly,
6563 static bool includesPoison(UndefPoisonKind Kind) {
6564 return (unsigned(Kind) & unsigned(UndefPoisonKind::PoisonOnly)) != 0;
6567 static bool includesUndef(UndefPoisonKind Kind) {
6568 return (unsigned(Kind) & unsigned(UndefPoisonKind::UndefOnly)) != 0;
6571 static bool canCreateUndefOrPoison(const Operator *Op, UndefPoisonKind Kind,
6572 bool ConsiderFlagsAndMetadata) {
6574 if (ConsiderFlagsAndMetadata && includesPoison(Kind) &&
6575 Op->hasPoisonGeneratingFlagsOrMetadata())
6576 return true;
6578 unsigned Opcode = Op->getOpcode();
6580 // Check whether opcode is a poison/undef-generating operation
6581 switch (Opcode) {
6582 case Instruction::Shl:
6583 case Instruction::AShr:
6584 case Instruction::LShr:
6585 return includesPoison(Kind) && !shiftAmountKnownInRange(Op->getOperand(1));
6586 case Instruction::FPToSI:
6587 case Instruction::FPToUI:
6588 // fptosi/ui yields poison if the resulting value does not fit in the
6589 // destination type.
6590 return true;
6591 case Instruction::Call:
6592 if (auto *II = dyn_cast<IntrinsicInst>(Op)) {
6593 switch (II->getIntrinsicID()) {
6594 // TODO: Add more intrinsics.
6595 case Intrinsic::ctlz:
6596 case Intrinsic::cttz:
6597 case Intrinsic::abs:
6598 if (cast<ConstantInt>(II->getArgOperand(1))->isNullValue())
6599 return false;
6600 break;
6601 case Intrinsic::ctpop:
6602 case Intrinsic::bswap:
6603 case Intrinsic::bitreverse:
6604 case Intrinsic::fshl:
6605 case Intrinsic::fshr:
6606 case Intrinsic::smax:
6607 case Intrinsic::smin:
6608 case Intrinsic::umax:
6609 case Intrinsic::umin:
6610 case Intrinsic::ptrmask:
6611 case Intrinsic::fptoui_sat:
6612 case Intrinsic::fptosi_sat:
6613 case Intrinsic::sadd_with_overflow:
6614 case Intrinsic::ssub_with_overflow:
6615 case Intrinsic::smul_with_overflow:
6616 case Intrinsic::uadd_with_overflow:
6617 case Intrinsic::usub_with_overflow:
6618 case Intrinsic::umul_with_overflow:
6619 case Intrinsic::sadd_sat:
6620 case Intrinsic::uadd_sat:
6621 case Intrinsic::ssub_sat:
6622 case Intrinsic::usub_sat:
6623 return false;
6624 case Intrinsic::sshl_sat:
6625 case Intrinsic::ushl_sat:
6626 return includesPoison(Kind) &&
6627 !shiftAmountKnownInRange(II->getArgOperand(1));
6628 case Intrinsic::fma:
6629 case Intrinsic::fmuladd:
6630 case Intrinsic::sqrt:
6631 case Intrinsic::powi:
6632 case Intrinsic::sin:
6633 case Intrinsic::cos:
6634 case Intrinsic::pow:
6635 case Intrinsic::log:
6636 case Intrinsic::log10:
6637 case Intrinsic::log2:
6638 case Intrinsic::exp:
6639 case Intrinsic::exp2:
6640 case Intrinsic::exp10:
6641 case Intrinsic::fabs:
6642 case Intrinsic::copysign:
6643 case Intrinsic::floor:
6644 case Intrinsic::ceil:
6645 case Intrinsic::trunc:
6646 case Intrinsic::rint:
6647 case Intrinsic::nearbyint:
6648 case Intrinsic::round:
6649 case Intrinsic::roundeven:
6650 case Intrinsic::fptrunc_round:
6651 case Intrinsic::canonicalize:
6652 case Intrinsic::arithmetic_fence:
6653 case Intrinsic::minnum:
6654 case Intrinsic::maxnum:
6655 case Intrinsic::minimum:
6656 case Intrinsic::maximum:
6657 case Intrinsic::is_fpclass:
6658 case Intrinsic::ldexp:
6659 case Intrinsic::frexp:
6660 return false;
6661 case Intrinsic::lround:
6662 case Intrinsic::llround:
6663 case Intrinsic::lrint:
6664 case Intrinsic::llrint:
6665 // If the value doesn't fit an unspecified value is returned (but this
6666 // is not poison).
6667 return false;
6670 [[fallthrough]];
6671 case Instruction::CallBr:
6672 case Instruction::Invoke: {
6673 const auto *CB = cast<CallBase>(Op);
6674 return !CB->hasRetAttr(Attribute::NoUndef);
6676 case Instruction::InsertElement:
6677 case Instruction::ExtractElement: {
6678 // If index exceeds the length of the vector, it returns poison
6679 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
6680 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
6681 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
6682 if (includesPoison(Kind))
6683 return !Idx ||
6684 Idx->getValue().uge(VTy->getElementCount().getKnownMinValue());
6685 return false;
6687 case Instruction::ShuffleVector: {
6688 ArrayRef<int> Mask = isa<ConstantExpr>(Op)
6689 ? cast<ConstantExpr>(Op)->getShuffleMask()
6690 : cast<ShuffleVectorInst>(Op)->getShuffleMask();
6691 return includesPoison(Kind) && is_contained(Mask, PoisonMaskElem);
6693 case Instruction::FNeg:
6694 case Instruction::PHI:
6695 case Instruction::Select:
6696 case Instruction::URem:
6697 case Instruction::SRem:
6698 case Instruction::ExtractValue:
6699 case Instruction::InsertValue:
6700 case Instruction::Freeze:
6701 case Instruction::ICmp:
6702 case Instruction::FCmp:
6703 case Instruction::FAdd:
6704 case Instruction::FSub:
6705 case Instruction::FMul:
6706 case Instruction::FDiv:
6707 case Instruction::FRem:
6708 return false;
6709 case Instruction::GetElementPtr:
6710 // inbounds is handled above
6711 // TODO: what about inrange on constexpr?
6712 return false;
6713 default: {
6714 const auto *CE = dyn_cast<ConstantExpr>(Op);
6715 if (isa<CastInst>(Op) || (CE && CE->isCast()))
6716 return false;
6717 else if (Instruction::isBinaryOp(Opcode))
6718 return false;
6719 // Be conservative and return true.
6720 return true;
6725 bool llvm::canCreateUndefOrPoison(const Operator *Op,
6726 bool ConsiderFlagsAndMetadata) {
6727 return ::canCreateUndefOrPoison(Op, UndefPoisonKind::UndefOrPoison,
6728 ConsiderFlagsAndMetadata);
6731 bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata) {
6732 return ::canCreateUndefOrPoison(Op, UndefPoisonKind::PoisonOnly,
6733 ConsiderFlagsAndMetadata);
6736 static bool directlyImpliesPoison(const Value *ValAssumedPoison, const Value *V,
6737 unsigned Depth) {
6738 if (ValAssumedPoison == V)
6739 return true;
6741 const unsigned MaxDepth = 2;
6742 if (Depth >= MaxDepth)
6743 return false;
6745 if (const auto *I = dyn_cast<Instruction>(V)) {
6746 if (any_of(I->operands(), [=](const Use &Op) {
6747 return propagatesPoison(Op) &&
6748 directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
6750 return true;
6752 // V = extractvalue V0, idx
6753 // V2 = extractvalue V0, idx2
6754 // V0's elements are all poison or not. (e.g., add_with_overflow)
6755 const WithOverflowInst *II;
6756 if (match(I, m_ExtractValue(m_WithOverflowInst(II))) &&
6757 (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) ||
6758 llvm::is_contained(II->args(), ValAssumedPoison)))
6759 return true;
6761 return false;
6764 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V,
6765 unsigned Depth) {
6766 if (isGuaranteedNotToBePoison(ValAssumedPoison))
6767 return true;
6769 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0))
6770 return true;
6772 const unsigned MaxDepth = 2;
6773 if (Depth >= MaxDepth)
6774 return false;
6776 const auto *I = dyn_cast<Instruction>(ValAssumedPoison);
6777 if (I && !canCreatePoison(cast<Operator>(I))) {
6778 return all_of(I->operands(), [=](const Value *Op) {
6779 return impliesPoison(Op, V, Depth + 1);
6782 return false;
6785 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) {
6786 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0);
6789 static bool programUndefinedIfUndefOrPoison(const Value *V, bool PoisonOnly);
6791 static bool isGuaranteedNotToBeUndefOrPoison(
6792 const Value *V, AssumptionCache *AC, const Instruction *CtxI,
6793 const DominatorTree *DT, unsigned Depth, UndefPoisonKind Kind) {
6794 if (Depth >= MaxAnalysisRecursionDepth)
6795 return false;
6797 if (isa<MetadataAsValue>(V))
6798 return false;
6800 if (const auto *A = dyn_cast<Argument>(V)) {
6801 if (A->hasAttribute(Attribute::NoUndef) ||
6802 A->hasAttribute(Attribute::Dereferenceable) ||
6803 A->hasAttribute(Attribute::DereferenceableOrNull))
6804 return true;
6807 if (auto *C = dyn_cast<Constant>(V)) {
6808 if (isa<PoisonValue>(C))
6809 return !includesPoison(Kind);
6811 if (isa<UndefValue>(C))
6812 return !includesUndef(Kind);
6814 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
6815 isa<ConstantPointerNull>(C) || isa<Function>(C))
6816 return true;
6818 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C))
6819 return (!includesUndef(Kind) ? !C->containsPoisonElement()
6820 : !C->containsUndefOrPoisonElement()) &&
6821 !C->containsConstantExpression();
6824 // Strip cast operations from a pointer value.
6825 // Note that stripPointerCastsSameRepresentation can strip off getelementptr
6826 // inbounds with zero offset. To guarantee that the result isn't poison, the
6827 // stripped pointer is checked as it has to be pointing into an allocated
6828 // object or be null `null` to ensure `inbounds` getelement pointers with a
6829 // zero offset could not produce poison.
6830 // It can strip off addrspacecast that do not change bit representation as
6831 // well. We believe that such addrspacecast is equivalent to no-op.
6832 auto *StrippedV = V->stripPointerCastsSameRepresentation();
6833 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
6834 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
6835 return true;
6837 auto OpCheck = [&](const Value *V) {
6838 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, Kind);
6841 if (auto *Opr = dyn_cast<Operator>(V)) {
6842 // If the value is a freeze instruction, then it can never
6843 // be undef or poison.
6844 if (isa<FreezeInst>(V))
6845 return true;
6847 if (const auto *CB = dyn_cast<CallBase>(V)) {
6848 if (CB->hasRetAttr(Attribute::NoUndef) ||
6849 CB->hasRetAttr(Attribute::Dereferenceable) ||
6850 CB->hasRetAttr(Attribute::DereferenceableOrNull))
6851 return true;
6854 if (const auto *PN = dyn_cast<PHINode>(V)) {
6855 unsigned Num = PN->getNumIncomingValues();
6856 bool IsWellDefined = true;
6857 for (unsigned i = 0; i < Num; ++i) {
6858 auto *TI = PN->getIncomingBlock(i)->getTerminator();
6859 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI,
6860 DT, Depth + 1, Kind)) {
6861 IsWellDefined = false;
6862 break;
6865 if (IsWellDefined)
6866 return true;
6867 } else if (!::canCreateUndefOrPoison(Opr, Kind,
6868 /*ConsiderFlagsAndMetadata*/ true) &&
6869 all_of(Opr->operands(), OpCheck))
6870 return true;
6873 if (auto *I = dyn_cast<LoadInst>(V))
6874 if (I->hasMetadata(LLVMContext::MD_noundef) ||
6875 I->hasMetadata(LLVMContext::MD_dereferenceable) ||
6876 I->hasMetadata(LLVMContext::MD_dereferenceable_or_null))
6877 return true;
6879 if (programUndefinedIfUndefOrPoison(V, !includesUndef(Kind)))
6880 return true;
6882 // CxtI may be null or a cloned instruction.
6883 if (!CtxI || !CtxI->getParent() || !DT)
6884 return false;
6886 auto *DNode = DT->getNode(CtxI->getParent());
6887 if (!DNode)
6888 // Unreachable block
6889 return false;
6891 // If V is used as a branch condition before reaching CtxI, V cannot be
6892 // undef or poison.
6893 // br V, BB1, BB2
6894 // BB1:
6895 // CtxI ; V cannot be undef or poison here
6896 auto *Dominator = DNode->getIDom();
6897 while (Dominator) {
6898 auto *TI = Dominator->getBlock()->getTerminator();
6900 Value *Cond = nullptr;
6901 if (auto BI = dyn_cast_or_null<BranchInst>(TI)) {
6902 if (BI->isConditional())
6903 Cond = BI->getCondition();
6904 } else if (auto SI = dyn_cast_or_null<SwitchInst>(TI)) {
6905 Cond = SI->getCondition();
6908 if (Cond) {
6909 if (Cond == V)
6910 return true;
6911 else if (!includesUndef(Kind) && isa<Operator>(Cond)) {
6912 // For poison, we can analyze further
6913 auto *Opr = cast<Operator>(Cond);
6914 if (any_of(Opr->operands(),
6915 [V](const Use &U) { return V == U && propagatesPoison(U); }))
6916 return true;
6920 Dominator = Dominator->getIDom();
6923 if (getKnowledgeValidInContext(V, {Attribute::NoUndef}, CtxI, DT, AC))
6924 return true;
6926 return false;
6929 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC,
6930 const Instruction *CtxI,
6931 const DominatorTree *DT,
6932 unsigned Depth) {
6933 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth,
6934 UndefPoisonKind::UndefOrPoison);
6937 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC,
6938 const Instruction *CtxI,
6939 const DominatorTree *DT, unsigned Depth) {
6940 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth,
6941 UndefPoisonKind::PoisonOnly);
6944 bool llvm::isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC,
6945 const Instruction *CtxI,
6946 const DominatorTree *DT, unsigned Depth) {
6947 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth,
6948 UndefPoisonKind::UndefOnly);
6951 /// Return true if undefined behavior would provably be executed on the path to
6952 /// OnPathTo if Root produced a posion result. Note that this doesn't say
6953 /// anything about whether OnPathTo is actually executed or whether Root is
6954 /// actually poison. This can be used to assess whether a new use of Root can
6955 /// be added at a location which is control equivalent with OnPathTo (such as
6956 /// immediately before it) without introducing UB which didn't previously
6957 /// exist. Note that a false result conveys no information.
6958 bool llvm::mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
6959 Instruction *OnPathTo,
6960 DominatorTree *DT) {
6961 // Basic approach is to assume Root is poison, propagate poison forward
6962 // through all users we can easily track, and then check whether any of those
6963 // users are provable UB and must execute before out exiting block might
6964 // exit.
6966 // The set of all recursive users we've visited (which are assumed to all be
6967 // poison because of said visit)
6968 SmallSet<const Value *, 16> KnownPoison;
6969 SmallVector<const Instruction*, 16> Worklist;
6970 Worklist.push_back(Root);
6971 while (!Worklist.empty()) {
6972 const Instruction *I = Worklist.pop_back_val();
6974 // If we know this must trigger UB on a path leading our target.
6975 if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo))
6976 return true;
6978 // If we can't analyze propagation through this instruction, just skip it
6979 // and transitive users. Safe as false is a conservative result.
6980 if (I != Root && !any_of(I->operands(), [&KnownPoison](const Use &U) {
6981 return KnownPoison.contains(U) && propagatesPoison(U);
6983 continue;
6985 if (KnownPoison.insert(I).second)
6986 for (const User *User : I->users())
6987 Worklist.push_back(cast<Instruction>(User));
6990 // Might be non-UB, or might have a path we couldn't prove must execute on
6991 // way to exiting bb.
6992 return false;
6995 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
6996 const SimplifyQuery &SQ) {
6997 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
6998 Add, SQ);
7001 OverflowResult
7002 llvm::computeOverflowForSignedAdd(const WithCache<const Value *> &LHS,
7003 const WithCache<const Value *> &RHS,
7004 const SimplifyQuery &SQ) {
7005 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, SQ);
7008 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
7009 // Note: An atomic operation isn't guaranteed to return in a reasonable amount
7010 // of time because it's possible for another thread to interfere with it for an
7011 // arbitrary length of time, but programs aren't allowed to rely on that.
7013 // If there is no successor, then execution can't transfer to it.
7014 if (isa<ReturnInst>(I))
7015 return false;
7016 if (isa<UnreachableInst>(I))
7017 return false;
7019 // Note: Do not add new checks here; instead, change Instruction::mayThrow or
7020 // Instruction::willReturn.
7022 // FIXME: Move this check into Instruction::willReturn.
7023 if (isa<CatchPadInst>(I)) {
7024 switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) {
7025 default:
7026 // A catchpad may invoke exception object constructors and such, which
7027 // in some languages can be arbitrary code, so be conservative by default.
7028 return false;
7029 case EHPersonality::CoreCLR:
7030 // For CoreCLR, it just involves a type test.
7031 return true;
7035 // An instruction that returns without throwing must transfer control flow
7036 // to a successor.
7037 return !I->mayThrow() && I->willReturn();
7040 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
7041 // TODO: This is slightly conservative for invoke instruction since exiting
7042 // via an exception *is* normal control for them.
7043 for (const Instruction &I : *BB)
7044 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
7045 return false;
7046 return true;
7049 bool llvm::isGuaranteedToTransferExecutionToSuccessor(
7050 BasicBlock::const_iterator Begin, BasicBlock::const_iterator End,
7051 unsigned ScanLimit) {
7052 return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End),
7053 ScanLimit);
7056 bool llvm::isGuaranteedToTransferExecutionToSuccessor(
7057 iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit) {
7058 assert(ScanLimit && "scan limit must be non-zero");
7059 for (const Instruction &I : Range) {
7060 if (isa<DbgInfoIntrinsic>(I))
7061 continue;
7062 if (--ScanLimit == 0)
7063 return false;
7064 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
7065 return false;
7067 return true;
7070 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
7071 const Loop *L) {
7072 // The loop header is guaranteed to be executed for every iteration.
7074 // FIXME: Relax this constraint to cover all basic blocks that are
7075 // guaranteed to be executed at every iteration.
7076 if (I->getParent() != L->getHeader()) return false;
7078 for (const Instruction &LI : *L->getHeader()) {
7079 if (&LI == I) return true;
7080 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
7082 llvm_unreachable("Instruction not contained in its own parent basic block.");
7085 bool llvm::propagatesPoison(const Use &PoisonOp) {
7086 const Operator *I = cast<Operator>(PoisonOp.getUser());
7087 switch (I->getOpcode()) {
7088 case Instruction::Freeze:
7089 case Instruction::PHI:
7090 case Instruction::Invoke:
7091 return false;
7092 case Instruction::Select:
7093 return PoisonOp.getOperandNo() == 0;
7094 case Instruction::Call:
7095 if (auto *II = dyn_cast<IntrinsicInst>(I)) {
7096 switch (II->getIntrinsicID()) {
7097 // TODO: Add more intrinsics.
7098 case Intrinsic::sadd_with_overflow:
7099 case Intrinsic::ssub_with_overflow:
7100 case Intrinsic::smul_with_overflow:
7101 case Intrinsic::uadd_with_overflow:
7102 case Intrinsic::usub_with_overflow:
7103 case Intrinsic::umul_with_overflow:
7104 // If an input is a vector containing a poison element, the
7105 // two output vectors (calculated results, overflow bits)'
7106 // corresponding lanes are poison.
7107 return true;
7108 case Intrinsic::ctpop:
7109 return true;
7112 return false;
7113 case Instruction::ICmp:
7114 case Instruction::FCmp:
7115 case Instruction::GetElementPtr:
7116 return true;
7117 default:
7118 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
7119 return true;
7121 // Be conservative and return false.
7122 return false;
7126 void llvm::getGuaranteedWellDefinedOps(
7127 const Instruction *I, SmallVectorImpl<const Value *> &Operands) {
7128 switch (I->getOpcode()) {
7129 case Instruction::Store:
7130 Operands.push_back(cast<StoreInst>(I)->getPointerOperand());
7131 break;
7133 case Instruction::Load:
7134 Operands.push_back(cast<LoadInst>(I)->getPointerOperand());
7135 break;
7137 // Since dereferenceable attribute imply noundef, atomic operations
7138 // also implicitly have noundef pointers too
7139 case Instruction::AtomicCmpXchg:
7140 Operands.push_back(cast<AtomicCmpXchgInst>(I)->getPointerOperand());
7141 break;
7143 case Instruction::AtomicRMW:
7144 Operands.push_back(cast<AtomicRMWInst>(I)->getPointerOperand());
7145 break;
7147 case Instruction::Call:
7148 case Instruction::Invoke: {
7149 const CallBase *CB = cast<CallBase>(I);
7150 if (CB->isIndirectCall())
7151 Operands.push_back(CB->getCalledOperand());
7152 for (unsigned i = 0; i < CB->arg_size(); ++i) {
7153 if (CB->paramHasAttr(i, Attribute::NoUndef) ||
7154 CB->paramHasAttr(i, Attribute::Dereferenceable) ||
7155 CB->paramHasAttr(i, Attribute::DereferenceableOrNull))
7156 Operands.push_back(CB->getArgOperand(i));
7158 break;
7160 case Instruction::Ret:
7161 if (I->getFunction()->hasRetAttribute(Attribute::NoUndef))
7162 Operands.push_back(I->getOperand(0));
7163 break;
7164 case Instruction::Switch:
7165 Operands.push_back(cast<SwitchInst>(I)->getCondition());
7166 break;
7167 case Instruction::Br: {
7168 auto *BR = cast<BranchInst>(I);
7169 if (BR->isConditional())
7170 Operands.push_back(BR->getCondition());
7171 break;
7173 default:
7174 break;
7178 void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
7179 SmallVectorImpl<const Value *> &Operands) {
7180 getGuaranteedWellDefinedOps(I, Operands);
7181 switch (I->getOpcode()) {
7182 // Divisors of these operations are allowed to be partially undef.
7183 case Instruction::UDiv:
7184 case Instruction::SDiv:
7185 case Instruction::URem:
7186 case Instruction::SRem:
7187 Operands.push_back(I->getOperand(1));
7188 break;
7189 default:
7190 break;
7194 bool llvm::mustTriggerUB(const Instruction *I,
7195 const SmallPtrSetImpl<const Value *> &KnownPoison) {
7196 SmallVector<const Value *, 4> NonPoisonOps;
7197 getGuaranteedNonPoisonOps(I, NonPoisonOps);
7199 for (const auto *V : NonPoisonOps)
7200 if (KnownPoison.count(V))
7201 return true;
7203 return false;
7206 static bool programUndefinedIfUndefOrPoison(const Value *V,
7207 bool PoisonOnly) {
7208 // We currently only look for uses of values within the same basic
7209 // block, as that makes it easier to guarantee that the uses will be
7210 // executed given that Inst is executed.
7212 // FIXME: Expand this to consider uses beyond the same basic block. To do
7213 // this, look out for the distinction between post-dominance and strong
7214 // post-dominance.
7215 const BasicBlock *BB = nullptr;
7216 BasicBlock::const_iterator Begin;
7217 if (const auto *Inst = dyn_cast<Instruction>(V)) {
7218 BB = Inst->getParent();
7219 Begin = Inst->getIterator();
7220 Begin++;
7221 } else if (const auto *Arg = dyn_cast<Argument>(V)) {
7222 if (Arg->getParent()->isDeclaration())
7223 return false;
7224 BB = &Arg->getParent()->getEntryBlock();
7225 Begin = BB->begin();
7226 } else {
7227 return false;
7230 // Limit number of instructions we look at, to avoid scanning through large
7231 // blocks. The current limit is chosen arbitrarily.
7232 unsigned ScanLimit = 32;
7233 BasicBlock::const_iterator End = BB->end();
7235 if (!PoisonOnly) {
7236 // Since undef does not propagate eagerly, be conservative & just check
7237 // whether a value is directly passed to an instruction that must take
7238 // well-defined operands.
7240 for (const auto &I : make_range(Begin, End)) {
7241 if (isa<DbgInfoIntrinsic>(I))
7242 continue;
7243 if (--ScanLimit == 0)
7244 break;
7246 SmallVector<const Value *, 4> WellDefinedOps;
7247 getGuaranteedWellDefinedOps(&I, WellDefinedOps);
7248 if (is_contained(WellDefinedOps, V))
7249 return true;
7251 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
7252 break;
7254 return false;
7257 // Set of instructions that we have proved will yield poison if Inst
7258 // does.
7259 SmallSet<const Value *, 16> YieldsPoison;
7260 SmallSet<const BasicBlock *, 4> Visited;
7262 YieldsPoison.insert(V);
7263 Visited.insert(BB);
7265 while (true) {
7266 for (const auto &I : make_range(Begin, End)) {
7267 if (isa<DbgInfoIntrinsic>(I))
7268 continue;
7269 if (--ScanLimit == 0)
7270 return false;
7271 if (mustTriggerUB(&I, YieldsPoison))
7272 return true;
7273 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
7274 return false;
7276 // If an operand is poison and propagates it, mark I as yielding poison.
7277 for (const Use &Op : I.operands()) {
7278 if (YieldsPoison.count(Op) && propagatesPoison(Op)) {
7279 YieldsPoison.insert(&I);
7280 break;
7284 // Special handling for select, which returns poison if its operand 0 is
7285 // poison (handled in the loop above) *or* if both its true/false operands
7286 // are poison (handled here).
7287 if (I.getOpcode() == Instruction::Select &&
7288 YieldsPoison.count(I.getOperand(1)) &&
7289 YieldsPoison.count(I.getOperand(2))) {
7290 YieldsPoison.insert(&I);
7294 BB = BB->getSingleSuccessor();
7295 if (!BB || !Visited.insert(BB).second)
7296 break;
7298 Begin = BB->getFirstNonPHI()->getIterator();
7299 End = BB->end();
7301 return false;
7304 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) {
7305 return ::programUndefinedIfUndefOrPoison(Inst, false);
7308 bool llvm::programUndefinedIfPoison(const Instruction *Inst) {
7309 return ::programUndefinedIfUndefOrPoison(Inst, true);
7312 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
7313 if (FMF.noNaNs())
7314 return true;
7316 if (auto *C = dyn_cast<ConstantFP>(V))
7317 return !C->isNaN();
7319 if (auto *C = dyn_cast<ConstantDataVector>(V)) {
7320 if (!C->getElementType()->isFloatingPointTy())
7321 return false;
7322 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
7323 if (C->getElementAsAPFloat(I).isNaN())
7324 return false;
7326 return true;
7329 if (isa<ConstantAggregateZero>(V))
7330 return true;
7332 return false;
7335 static bool isKnownNonZero(const Value *V) {
7336 if (auto *C = dyn_cast<ConstantFP>(V))
7337 return !C->isZero();
7339 if (auto *C = dyn_cast<ConstantDataVector>(V)) {
7340 if (!C->getElementType()->isFloatingPointTy())
7341 return false;
7342 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
7343 if (C->getElementAsAPFloat(I).isZero())
7344 return false;
7346 return true;
7349 return false;
7352 /// Match clamp pattern for float types without care about NaNs or signed zeros.
7353 /// Given non-min/max outer cmp/select from the clamp pattern this
7354 /// function recognizes if it can be substitued by a "canonical" min/max
7355 /// pattern.
7356 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
7357 Value *CmpLHS, Value *CmpRHS,
7358 Value *TrueVal, Value *FalseVal,
7359 Value *&LHS, Value *&RHS) {
7360 // Try to match
7361 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
7362 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
7363 // and return description of the outer Max/Min.
7365 // First, check if select has inverse order:
7366 if (CmpRHS == FalseVal) {
7367 std::swap(TrueVal, FalseVal);
7368 Pred = CmpInst::getInversePredicate(Pred);
7371 // Assume success now. If there's no match, callers should not use these anyway.
7372 LHS = TrueVal;
7373 RHS = FalseVal;
7375 const APFloat *FC1;
7376 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
7377 return {SPF_UNKNOWN, SPNB_NA, false};
7379 const APFloat *FC2;
7380 switch (Pred) {
7381 case CmpInst::FCMP_OLT:
7382 case CmpInst::FCMP_OLE:
7383 case CmpInst::FCMP_ULT:
7384 case CmpInst::FCMP_ULE:
7385 if (match(FalseVal,
7386 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
7387 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
7388 *FC1 < *FC2)
7389 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
7390 break;
7391 case CmpInst::FCMP_OGT:
7392 case CmpInst::FCMP_OGE:
7393 case CmpInst::FCMP_UGT:
7394 case CmpInst::FCMP_UGE:
7395 if (match(FalseVal,
7396 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
7397 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
7398 *FC1 > *FC2)
7399 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
7400 break;
7401 default:
7402 break;
7405 return {SPF_UNKNOWN, SPNB_NA, false};
7408 /// Recognize variations of:
7409 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
7410 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
7411 Value *CmpLHS, Value *CmpRHS,
7412 Value *TrueVal, Value *FalseVal) {
7413 // Swap the select operands and predicate to match the patterns below.
7414 if (CmpRHS != TrueVal) {
7415 Pred = ICmpInst::getSwappedPredicate(Pred);
7416 std::swap(TrueVal, FalseVal);
7418 const APInt *C1;
7419 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
7420 const APInt *C2;
7421 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
7422 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
7423 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
7424 return {SPF_SMAX, SPNB_NA, false};
7426 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
7427 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
7428 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
7429 return {SPF_SMIN, SPNB_NA, false};
7431 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
7432 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
7433 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
7434 return {SPF_UMAX, SPNB_NA, false};
7436 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
7437 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
7438 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
7439 return {SPF_UMIN, SPNB_NA, false};
7441 return {SPF_UNKNOWN, SPNB_NA, false};
7444 /// Recognize variations of:
7445 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
7446 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
7447 Value *CmpLHS, Value *CmpRHS,
7448 Value *TVal, Value *FVal,
7449 unsigned Depth) {
7450 // TODO: Allow FP min/max with nnan/nsz.
7451 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
7453 Value *A = nullptr, *B = nullptr;
7454 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
7455 if (!SelectPatternResult::isMinOrMax(L.Flavor))
7456 return {SPF_UNKNOWN, SPNB_NA, false};
7458 Value *C = nullptr, *D = nullptr;
7459 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
7460 if (L.Flavor != R.Flavor)
7461 return {SPF_UNKNOWN, SPNB_NA, false};
7463 // We have something like: x Pred y ? min(a, b) : min(c, d).
7464 // Try to match the compare to the min/max operations of the select operands.
7465 // First, make sure we have the right compare predicate.
7466 switch (L.Flavor) {
7467 case SPF_SMIN:
7468 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
7469 Pred = ICmpInst::getSwappedPredicate(Pred);
7470 std::swap(CmpLHS, CmpRHS);
7472 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
7473 break;
7474 return {SPF_UNKNOWN, SPNB_NA, false};
7475 case SPF_SMAX:
7476 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
7477 Pred = ICmpInst::getSwappedPredicate(Pred);
7478 std::swap(CmpLHS, CmpRHS);
7480 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
7481 break;
7482 return {SPF_UNKNOWN, SPNB_NA, false};
7483 case SPF_UMIN:
7484 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
7485 Pred = ICmpInst::getSwappedPredicate(Pred);
7486 std::swap(CmpLHS, CmpRHS);
7488 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
7489 break;
7490 return {SPF_UNKNOWN, SPNB_NA, false};
7491 case SPF_UMAX:
7492 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
7493 Pred = ICmpInst::getSwappedPredicate(Pred);
7494 std::swap(CmpLHS, CmpRHS);
7496 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
7497 break;
7498 return {SPF_UNKNOWN, SPNB_NA, false};
7499 default:
7500 return {SPF_UNKNOWN, SPNB_NA, false};
7503 // If there is a common operand in the already matched min/max and the other
7504 // min/max operands match the compare operands (either directly or inverted),
7505 // then this is min/max of the same flavor.
7507 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
7508 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
7509 if (D == B) {
7510 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
7511 match(A, m_Not(m_Specific(CmpRHS)))))
7512 return {L.Flavor, SPNB_NA, false};
7514 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
7515 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
7516 if (C == B) {
7517 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
7518 match(A, m_Not(m_Specific(CmpRHS)))))
7519 return {L.Flavor, SPNB_NA, false};
7521 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
7522 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
7523 if (D == A) {
7524 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
7525 match(B, m_Not(m_Specific(CmpRHS)))))
7526 return {L.Flavor, SPNB_NA, false};
7528 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
7529 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
7530 if (C == A) {
7531 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
7532 match(B, m_Not(m_Specific(CmpRHS)))))
7533 return {L.Flavor, SPNB_NA, false};
7536 return {SPF_UNKNOWN, SPNB_NA, false};
7539 /// If the input value is the result of a 'not' op, constant integer, or vector
7540 /// splat of a constant integer, return the bitwise-not source value.
7541 /// TODO: This could be extended to handle non-splat vector integer constants.
7542 static Value *getNotValue(Value *V) {
7543 Value *NotV;
7544 if (match(V, m_Not(m_Value(NotV))))
7545 return NotV;
7547 const APInt *C;
7548 if (match(V, m_APInt(C)))
7549 return ConstantInt::get(V->getType(), ~(*C));
7551 return nullptr;
7554 /// Match non-obvious integer minimum and maximum sequences.
7555 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
7556 Value *CmpLHS, Value *CmpRHS,
7557 Value *TrueVal, Value *FalseVal,
7558 Value *&LHS, Value *&RHS,
7559 unsigned Depth) {
7560 // Assume success. If there's no match, callers should not use these anyway.
7561 LHS = TrueVal;
7562 RHS = FalseVal;
7564 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
7565 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
7566 return SPR;
7568 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
7569 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
7570 return SPR;
7572 // Look through 'not' ops to find disguised min/max.
7573 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
7574 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
7575 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
7576 switch (Pred) {
7577 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
7578 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
7579 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
7580 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
7581 default: break;
7585 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
7586 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
7587 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
7588 switch (Pred) {
7589 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
7590 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
7591 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
7592 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
7593 default: break;
7597 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
7598 return {SPF_UNKNOWN, SPNB_NA, false};
7600 const APInt *C1;
7601 if (!match(CmpRHS, m_APInt(C1)))
7602 return {SPF_UNKNOWN, SPNB_NA, false};
7604 // An unsigned min/max can be written with a signed compare.
7605 const APInt *C2;
7606 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
7607 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
7608 // Is the sign bit set?
7609 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
7610 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
7611 if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue())
7612 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
7614 // Is the sign bit clear?
7615 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
7616 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
7617 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue())
7618 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
7621 return {SPF_UNKNOWN, SPNB_NA, false};
7624 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
7625 assert(X && Y && "Invalid operand");
7627 // X = sub (0, Y) || X = sub nsw (0, Y)
7628 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
7629 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
7630 return true;
7632 // Y = sub (0, X) || Y = sub nsw (0, X)
7633 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
7634 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
7635 return true;
7637 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
7638 Value *A, *B;
7639 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
7640 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
7641 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
7642 match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
7645 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
7646 FastMathFlags FMF,
7647 Value *CmpLHS, Value *CmpRHS,
7648 Value *TrueVal, Value *FalseVal,
7649 Value *&LHS, Value *&RHS,
7650 unsigned Depth) {
7651 bool HasMismatchedZeros = false;
7652 if (CmpInst::isFPPredicate(Pred)) {
7653 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
7654 // 0.0 operand, set the compare's 0.0 operands to that same value for the
7655 // purpose of identifying min/max. Disregard vector constants with undefined
7656 // elements because those can not be back-propagated for analysis.
7657 Value *OutputZeroVal = nullptr;
7658 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
7659 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement())
7660 OutputZeroVal = TrueVal;
7661 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
7662 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement())
7663 OutputZeroVal = FalseVal;
7665 if (OutputZeroVal) {
7666 if (match(CmpLHS, m_AnyZeroFP()) && CmpLHS != OutputZeroVal) {
7667 HasMismatchedZeros = true;
7668 CmpLHS = OutputZeroVal;
7670 if (match(CmpRHS, m_AnyZeroFP()) && CmpRHS != OutputZeroVal) {
7671 HasMismatchedZeros = true;
7672 CmpRHS = OutputZeroVal;
7677 LHS = CmpLHS;
7678 RHS = CmpRHS;
7680 // Signed zero may return inconsistent results between implementations.
7681 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
7682 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
7683 // Therefore, we behave conservatively and only proceed if at least one of the
7684 // operands is known to not be zero or if we don't care about signed zero.
7685 switch (Pred) {
7686 default: break;
7687 case CmpInst::FCMP_OGT: case CmpInst::FCMP_OLT:
7688 case CmpInst::FCMP_UGT: case CmpInst::FCMP_ULT:
7689 if (!HasMismatchedZeros)
7690 break;
7691 [[fallthrough]];
7692 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
7693 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
7694 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
7695 !isKnownNonZero(CmpRHS))
7696 return {SPF_UNKNOWN, SPNB_NA, false};
7699 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
7700 bool Ordered = false;
7702 // When given one NaN and one non-NaN input:
7703 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
7704 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
7705 // ordered comparison fails), which could be NaN or non-NaN.
7706 // so here we discover exactly what NaN behavior is required/accepted.
7707 if (CmpInst::isFPPredicate(Pred)) {
7708 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
7709 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
7711 if (LHSSafe && RHSSafe) {
7712 // Both operands are known non-NaN.
7713 NaNBehavior = SPNB_RETURNS_ANY;
7714 } else if (CmpInst::isOrdered(Pred)) {
7715 // An ordered comparison will return false when given a NaN, so it
7716 // returns the RHS.
7717 Ordered = true;
7718 if (LHSSafe)
7719 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
7720 NaNBehavior = SPNB_RETURNS_NAN;
7721 else if (RHSSafe)
7722 NaNBehavior = SPNB_RETURNS_OTHER;
7723 else
7724 // Completely unsafe.
7725 return {SPF_UNKNOWN, SPNB_NA, false};
7726 } else {
7727 Ordered = false;
7728 // An unordered comparison will return true when given a NaN, so it
7729 // returns the LHS.
7730 if (LHSSafe)
7731 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
7732 NaNBehavior = SPNB_RETURNS_OTHER;
7733 else if (RHSSafe)
7734 NaNBehavior = SPNB_RETURNS_NAN;
7735 else
7736 // Completely unsafe.
7737 return {SPF_UNKNOWN, SPNB_NA, false};
7741 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
7742 std::swap(CmpLHS, CmpRHS);
7743 Pred = CmpInst::getSwappedPredicate(Pred);
7744 if (NaNBehavior == SPNB_RETURNS_NAN)
7745 NaNBehavior = SPNB_RETURNS_OTHER;
7746 else if (NaNBehavior == SPNB_RETURNS_OTHER)
7747 NaNBehavior = SPNB_RETURNS_NAN;
7748 Ordered = !Ordered;
7751 // ([if]cmp X, Y) ? X : Y
7752 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
7753 switch (Pred) {
7754 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
7755 case ICmpInst::ICMP_UGT:
7756 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
7757 case ICmpInst::ICMP_SGT:
7758 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
7759 case ICmpInst::ICMP_ULT:
7760 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
7761 case ICmpInst::ICMP_SLT:
7762 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
7763 case FCmpInst::FCMP_UGT:
7764 case FCmpInst::FCMP_UGE:
7765 case FCmpInst::FCMP_OGT:
7766 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
7767 case FCmpInst::FCMP_ULT:
7768 case FCmpInst::FCMP_ULE:
7769 case FCmpInst::FCMP_OLT:
7770 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
7774 if (isKnownNegation(TrueVal, FalseVal)) {
7775 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
7776 // match against either LHS or sext(LHS).
7777 auto MaybeSExtCmpLHS =
7778 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
7779 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
7780 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
7781 if (match(TrueVal, MaybeSExtCmpLHS)) {
7782 // Set the return values. If the compare uses the negated value (-X >s 0),
7783 // swap the return values because the negated value is always 'RHS'.
7784 LHS = TrueVal;
7785 RHS = FalseVal;
7786 if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
7787 std::swap(LHS, RHS);
7789 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
7790 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
7791 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
7792 return {SPF_ABS, SPNB_NA, false};
7794 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
7795 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
7796 return {SPF_ABS, SPNB_NA, false};
7798 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
7799 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
7800 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
7801 return {SPF_NABS, SPNB_NA, false};
7803 else if (match(FalseVal, MaybeSExtCmpLHS)) {
7804 // Set the return values. If the compare uses the negated value (-X >s 0),
7805 // swap the return values because the negated value is always 'RHS'.
7806 LHS = FalseVal;
7807 RHS = TrueVal;
7808 if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
7809 std::swap(LHS, RHS);
7811 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
7812 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
7813 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
7814 return {SPF_NABS, SPNB_NA, false};
7816 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
7817 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
7818 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
7819 return {SPF_ABS, SPNB_NA, false};
7823 if (CmpInst::isIntPredicate(Pred))
7824 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
7826 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
7827 // may return either -0.0 or 0.0, so fcmp/select pair has stricter
7828 // semantics than minNum. Be conservative in such case.
7829 if (NaNBehavior != SPNB_RETURNS_ANY ||
7830 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
7831 !isKnownNonZero(CmpRHS)))
7832 return {SPF_UNKNOWN, SPNB_NA, false};
7834 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
7837 /// Helps to match a select pattern in case of a type mismatch.
7839 /// The function processes the case when type of true and false values of a
7840 /// select instruction differs from type of the cmp instruction operands because
7841 /// of a cast instruction. The function checks if it is legal to move the cast
7842 /// operation after "select". If yes, it returns the new second value of
7843 /// "select" (with the assumption that cast is moved):
7844 /// 1. As operand of cast instruction when both values of "select" are same cast
7845 /// instructions.
7846 /// 2. As restored constant (by applying reverse cast operation) when the first
7847 /// value of the "select" is a cast operation and the second value is a
7848 /// constant.
7849 /// NOTE: We return only the new second value because the first value could be
7850 /// accessed as operand of cast instruction.
7851 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
7852 Instruction::CastOps *CastOp) {
7853 auto *Cast1 = dyn_cast<CastInst>(V1);
7854 if (!Cast1)
7855 return nullptr;
7857 *CastOp = Cast1->getOpcode();
7858 Type *SrcTy = Cast1->getSrcTy();
7859 if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
7860 // If V1 and V2 are both the same cast from the same type, look through V1.
7861 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
7862 return Cast2->getOperand(0);
7863 return nullptr;
7866 auto *C = dyn_cast<Constant>(V2);
7867 if (!C)
7868 return nullptr;
7870 const DataLayout &DL = CmpI->getModule()->getDataLayout();
7871 Constant *CastedTo = nullptr;
7872 switch (*CastOp) {
7873 case Instruction::ZExt:
7874 if (CmpI->isUnsigned())
7875 CastedTo = ConstantExpr::getTrunc(C, SrcTy);
7876 break;
7877 case Instruction::SExt:
7878 if (CmpI->isSigned())
7879 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
7880 break;
7881 case Instruction::Trunc:
7882 Constant *CmpConst;
7883 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
7884 CmpConst->getType() == SrcTy) {
7885 // Here we have the following case:
7887 // %cond = cmp iN %x, CmpConst
7888 // %tr = trunc iN %x to iK
7889 // %narrowsel = select i1 %cond, iK %t, iK C
7891 // We can always move trunc after select operation:
7893 // %cond = cmp iN %x, CmpConst
7894 // %widesel = select i1 %cond, iN %x, iN CmpConst
7895 // %tr = trunc iN %widesel to iK
7897 // Note that C could be extended in any way because we don't care about
7898 // upper bits after truncation. It can't be abs pattern, because it would
7899 // look like:
7901 // select i1 %cond, x, -x.
7903 // So only min/max pattern could be matched. Such match requires widened C
7904 // == CmpConst. That is why set widened C = CmpConst, condition trunc
7905 // CmpConst == C is checked below.
7906 CastedTo = CmpConst;
7907 } else {
7908 unsigned ExtOp = CmpI->isSigned() ? Instruction::SExt : Instruction::ZExt;
7909 CastedTo = ConstantFoldCastOperand(ExtOp, C, SrcTy, DL);
7911 break;
7912 case Instruction::FPTrunc:
7913 CastedTo = ConstantFoldCastOperand(Instruction::FPExt, C, SrcTy, DL);
7914 break;
7915 case Instruction::FPExt:
7916 CastedTo = ConstantFoldCastOperand(Instruction::FPTrunc, C, SrcTy, DL);
7917 break;
7918 case Instruction::FPToUI:
7919 CastedTo = ConstantFoldCastOperand(Instruction::UIToFP, C, SrcTy, DL);
7920 break;
7921 case Instruction::FPToSI:
7922 CastedTo = ConstantFoldCastOperand(Instruction::SIToFP, C, SrcTy, DL);
7923 break;
7924 case Instruction::UIToFP:
7925 CastedTo = ConstantFoldCastOperand(Instruction::FPToUI, C, SrcTy, DL);
7926 break;
7927 case Instruction::SIToFP:
7928 CastedTo = ConstantFoldCastOperand(Instruction::FPToSI, C, SrcTy, DL);
7929 break;
7930 default:
7931 break;
7934 if (!CastedTo)
7935 return nullptr;
7937 // Make sure the cast doesn't lose any information.
7938 Constant *CastedBack =
7939 ConstantFoldCastOperand(*CastOp, CastedTo, C->getType(), DL);
7940 if (CastedBack && CastedBack != C)
7941 return nullptr;
7943 return CastedTo;
7946 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
7947 Instruction::CastOps *CastOp,
7948 unsigned Depth) {
7949 if (Depth >= MaxAnalysisRecursionDepth)
7950 return {SPF_UNKNOWN, SPNB_NA, false};
7952 SelectInst *SI = dyn_cast<SelectInst>(V);
7953 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
7955 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
7956 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
7958 Value *TrueVal = SI->getTrueValue();
7959 Value *FalseVal = SI->getFalseValue();
7961 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
7962 CastOp, Depth);
7965 SelectPatternResult llvm::matchDecomposedSelectPattern(
7966 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
7967 Instruction::CastOps *CastOp, unsigned Depth) {
7968 CmpInst::Predicate Pred = CmpI->getPredicate();
7969 Value *CmpLHS = CmpI->getOperand(0);
7970 Value *CmpRHS = CmpI->getOperand(1);
7971 FastMathFlags FMF;
7972 if (isa<FPMathOperator>(CmpI))
7973 FMF = CmpI->getFastMathFlags();
7975 // Bail out early.
7976 if (CmpI->isEquality())
7977 return {SPF_UNKNOWN, SPNB_NA, false};
7979 // Deal with type mismatches.
7980 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
7981 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
7982 // If this is a potential fmin/fmax with a cast to integer, then ignore
7983 // -0.0 because there is no corresponding integer value.
7984 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
7985 FMF.setNoSignedZeros();
7986 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
7987 cast<CastInst>(TrueVal)->getOperand(0), C,
7988 LHS, RHS, Depth);
7990 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
7991 // If this is a potential fmin/fmax with a cast to integer, then ignore
7992 // -0.0 because there is no corresponding integer value.
7993 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
7994 FMF.setNoSignedZeros();
7995 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
7996 C, cast<CastInst>(FalseVal)->getOperand(0),
7997 LHS, RHS, Depth);
8000 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
8001 LHS, RHS, Depth);
8004 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
8005 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
8006 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
8007 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
8008 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
8009 if (SPF == SPF_FMINNUM)
8010 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
8011 if (SPF == SPF_FMAXNUM)
8012 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
8013 llvm_unreachable("unhandled!");
8016 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
8017 if (SPF == SPF_SMIN) return SPF_SMAX;
8018 if (SPF == SPF_UMIN) return SPF_UMAX;
8019 if (SPF == SPF_SMAX) return SPF_SMIN;
8020 if (SPF == SPF_UMAX) return SPF_UMIN;
8021 llvm_unreachable("unhandled!");
8024 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) {
8025 switch (MinMaxID) {
8026 case Intrinsic::smax: return Intrinsic::smin;
8027 case Intrinsic::smin: return Intrinsic::smax;
8028 case Intrinsic::umax: return Intrinsic::umin;
8029 case Intrinsic::umin: return Intrinsic::umax;
8030 // Please note that next four intrinsics may produce the same result for
8031 // original and inverted case even if X != Y due to NaN is handled specially.
8032 case Intrinsic::maximum: return Intrinsic::minimum;
8033 case Intrinsic::minimum: return Intrinsic::maximum;
8034 case Intrinsic::maxnum: return Intrinsic::minnum;
8035 case Intrinsic::minnum: return Intrinsic::maxnum;
8036 default: llvm_unreachable("Unexpected intrinsic");
8040 APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) {
8041 switch (SPF) {
8042 case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth);
8043 case SPF_SMIN: return APInt::getSignedMinValue(BitWidth);
8044 case SPF_UMAX: return APInt::getMaxValue(BitWidth);
8045 case SPF_UMIN: return APInt::getMinValue(BitWidth);
8046 default: llvm_unreachable("Unexpected flavor");
8050 std::pair<Intrinsic::ID, bool>
8051 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) {
8052 // Check if VL contains select instructions that can be folded into a min/max
8053 // vector intrinsic and return the intrinsic if it is possible.
8054 // TODO: Support floating point min/max.
8055 bool AllCmpSingleUse = true;
8056 SelectPatternResult SelectPattern;
8057 SelectPattern.Flavor = SPF_UNKNOWN;
8058 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) {
8059 Value *LHS, *RHS;
8060 auto CurrentPattern = matchSelectPattern(I, LHS, RHS);
8061 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) ||
8062 CurrentPattern.Flavor == SPF_FMINNUM ||
8063 CurrentPattern.Flavor == SPF_FMAXNUM ||
8064 !I->getType()->isIntOrIntVectorTy())
8065 return false;
8066 if (SelectPattern.Flavor != SPF_UNKNOWN &&
8067 SelectPattern.Flavor != CurrentPattern.Flavor)
8068 return false;
8069 SelectPattern = CurrentPattern;
8070 AllCmpSingleUse &=
8071 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value()));
8072 return true;
8073 })) {
8074 switch (SelectPattern.Flavor) {
8075 case SPF_SMIN:
8076 return {Intrinsic::smin, AllCmpSingleUse};
8077 case SPF_UMIN:
8078 return {Intrinsic::umin, AllCmpSingleUse};
8079 case SPF_SMAX:
8080 return {Intrinsic::smax, AllCmpSingleUse};
8081 case SPF_UMAX:
8082 return {Intrinsic::umax, AllCmpSingleUse};
8083 default:
8084 llvm_unreachable("unexpected select pattern flavor");
8087 return {Intrinsic::not_intrinsic, false};
8090 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO,
8091 Value *&Start, Value *&Step) {
8092 // Handle the case of a simple two-predecessor recurrence PHI.
8093 // There's a lot more that could theoretically be done here, but
8094 // this is sufficient to catch some interesting cases.
8095 if (P->getNumIncomingValues() != 2)
8096 return false;
8098 for (unsigned i = 0; i != 2; ++i) {
8099 Value *L = P->getIncomingValue(i);
8100 Value *R = P->getIncomingValue(!i);
8101 auto *LU = dyn_cast<BinaryOperator>(L);
8102 if (!LU)
8103 continue;
8104 unsigned Opcode = LU->getOpcode();
8106 switch (Opcode) {
8107 default:
8108 continue;
8109 // TODO: Expand list -- xor, div, gep, uaddo, etc..
8110 case Instruction::LShr:
8111 case Instruction::AShr:
8112 case Instruction::Shl:
8113 case Instruction::Add:
8114 case Instruction::Sub:
8115 case Instruction::And:
8116 case Instruction::Or:
8117 case Instruction::Mul:
8118 case Instruction::FMul: {
8119 Value *LL = LU->getOperand(0);
8120 Value *LR = LU->getOperand(1);
8121 // Find a recurrence.
8122 if (LL == P)
8123 L = LR;
8124 else if (LR == P)
8125 L = LL;
8126 else
8127 continue; // Check for recurrence with L and R flipped.
8129 break; // Match!
8133 // We have matched a recurrence of the form:
8134 // %iv = [R, %entry], [%iv.next, %backedge]
8135 // %iv.next = binop %iv, L
8136 // OR
8137 // %iv = [R, %entry], [%iv.next, %backedge]
8138 // %iv.next = binop L, %iv
8139 BO = LU;
8140 Start = R;
8141 Step = L;
8142 return true;
8144 return false;
8147 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P,
8148 Value *&Start, Value *&Step) {
8149 BinaryOperator *BO = nullptr;
8150 P = dyn_cast<PHINode>(I->getOperand(0));
8151 if (!P)
8152 P = dyn_cast<PHINode>(I->getOperand(1));
8153 return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I;
8156 /// Return true if "icmp Pred LHS RHS" is always true.
8157 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
8158 const Value *RHS, const DataLayout &DL,
8159 unsigned Depth) {
8160 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
8161 return true;
8163 switch (Pred) {
8164 default:
8165 return false;
8167 case CmpInst::ICMP_SLE: {
8168 const APInt *C;
8170 // LHS s<= LHS +_{nsw} C if C >= 0
8171 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
8172 return !C->isNegative();
8173 return false;
8176 case CmpInst::ICMP_ULE: {
8177 // LHS u<= LHS +_{nuw} V for any V
8178 if (match(RHS, m_c_Add(m_Specific(LHS), m_Value())) &&
8179 cast<OverflowingBinaryOperator>(RHS)->hasNoUnsignedWrap())
8180 return true;
8182 // RHS >> V u<= RHS for any V
8183 if (match(LHS, m_LShr(m_Specific(RHS), m_Value())))
8184 return true;
8186 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
8187 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
8188 const Value *&X,
8189 const APInt *&CA, const APInt *&CB) {
8190 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
8191 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
8192 return true;
8194 // If X & C == 0 then (X | C) == X +_{nuw} C
8195 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
8196 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
8197 KnownBits Known(CA->getBitWidth());
8198 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
8199 /*CxtI*/ nullptr, /*DT*/ nullptr);
8200 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
8201 return true;
8204 return false;
8207 const Value *X;
8208 const APInt *CLHS, *CRHS;
8209 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
8210 return CLHS->ule(*CRHS);
8212 return false;
8217 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
8218 /// ALHS ARHS" is true. Otherwise, return std::nullopt.
8219 static std::optional<bool>
8220 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
8221 const Value *ARHS, const Value *BLHS, const Value *BRHS,
8222 const DataLayout &DL, unsigned Depth) {
8223 switch (Pred) {
8224 default:
8225 return std::nullopt;
8227 case CmpInst::ICMP_SLT:
8228 case CmpInst::ICMP_SLE:
8229 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
8230 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
8231 return true;
8232 return std::nullopt;
8234 case CmpInst::ICMP_SGT:
8235 case CmpInst::ICMP_SGE:
8236 if (isTruePredicate(CmpInst::ICMP_SLE, ALHS, BLHS, DL, Depth) &&
8237 isTruePredicate(CmpInst::ICMP_SLE, BRHS, ARHS, DL, Depth))
8238 return true;
8239 return std::nullopt;
8241 case CmpInst::ICMP_ULT:
8242 case CmpInst::ICMP_ULE:
8243 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
8244 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
8245 return true;
8246 return std::nullopt;
8248 case CmpInst::ICMP_UGT:
8249 case CmpInst::ICMP_UGE:
8250 if (isTruePredicate(CmpInst::ICMP_ULE, ALHS, BLHS, DL, Depth) &&
8251 isTruePredicate(CmpInst::ICMP_ULE, BRHS, ARHS, DL, Depth))
8252 return true;
8253 return std::nullopt;
8257 /// Return true if the operands of two compares (expanded as "L0 pred L1" and
8258 /// "R0 pred R1") match. IsSwappedOps is true when the operands match, but are
8259 /// swapped.
8260 static bool areMatchingOperands(const Value *L0, const Value *L1, const Value *R0,
8261 const Value *R1, bool &AreSwappedOps) {
8262 bool AreMatchingOps = (L0 == R0 && L1 == R1);
8263 AreSwappedOps = (L0 == R1 && L1 == R0);
8264 return AreMatchingOps || AreSwappedOps;
8267 /// Return true if "icmp1 LPred X, Y" implies "icmp2 RPred X, Y" is true.
8268 /// Return false if "icmp1 LPred X, Y" implies "icmp2 RPred X, Y" is false.
8269 /// Otherwise, return std::nullopt if we can't infer anything.
8270 static std::optional<bool>
8271 isImpliedCondMatchingOperands(CmpInst::Predicate LPred,
8272 CmpInst::Predicate RPred, bool AreSwappedOps) {
8273 // Canonicalize the predicate as if the operands were not commuted.
8274 if (AreSwappedOps)
8275 RPred = ICmpInst::getSwappedPredicate(RPred);
8277 if (CmpInst::isImpliedTrueByMatchingCmp(LPred, RPred))
8278 return true;
8279 if (CmpInst::isImpliedFalseByMatchingCmp(LPred, RPred))
8280 return false;
8282 return std::nullopt;
8285 /// Return true if "icmp LPred X, LC" implies "icmp RPred X, RC" is true.
8286 /// Return false if "icmp LPred X, LC" implies "icmp RPred X, RC" is false.
8287 /// Otherwise, return std::nullopt if we can't infer anything.
8288 static std::optional<bool> isImpliedCondCommonOperandWithConstants(
8289 CmpInst::Predicate LPred, const APInt &LC, CmpInst::Predicate RPred,
8290 const APInt &RC) {
8291 ConstantRange DomCR = ConstantRange::makeExactICmpRegion(LPred, LC);
8292 ConstantRange CR = ConstantRange::makeExactICmpRegion(RPred, RC);
8293 ConstantRange Intersection = DomCR.intersectWith(CR);
8294 ConstantRange Difference = DomCR.difference(CR);
8295 if (Intersection.isEmptySet())
8296 return false;
8297 if (Difference.isEmptySet())
8298 return true;
8299 return std::nullopt;
8302 /// Return true if LHS implies RHS (expanded to its components as "R0 RPred R1")
8303 /// is true. Return false if LHS implies RHS is false. Otherwise, return
8304 /// std::nullopt if we can't infer anything.
8305 static std::optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
8306 CmpInst::Predicate RPred,
8307 const Value *R0, const Value *R1,
8308 const DataLayout &DL,
8309 bool LHSIsTrue, unsigned Depth) {
8310 Value *L0 = LHS->getOperand(0);
8311 Value *L1 = LHS->getOperand(1);
8313 // The rest of the logic assumes the LHS condition is true. If that's not the
8314 // case, invert the predicate to make it so.
8315 CmpInst::Predicate LPred =
8316 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
8318 // Can we infer anything when the 0-operands match and the 1-operands are
8319 // constants (not necessarily matching)?
8320 const APInt *LC, *RC;
8321 if (L0 == R0 && match(L1, m_APInt(LC)) && match(R1, m_APInt(RC)))
8322 return isImpliedCondCommonOperandWithConstants(LPred, *LC, RPred, *RC);
8324 // Can we infer anything when the two compares have matching operands?
8325 bool AreSwappedOps;
8326 if (areMatchingOperands(L0, L1, R0, R1, AreSwappedOps))
8327 return isImpliedCondMatchingOperands(LPred, RPred, AreSwappedOps);
8329 // L0 = R0 = L1 + R1, L0 >=u L1 implies R0 >=u R1, L0 <u L1 implies R0 <u R1
8330 if (ICmpInst::isUnsigned(LPred) && ICmpInst::isUnsigned(RPred)) {
8331 if (L0 == R1) {
8332 std::swap(R0, R1);
8333 RPred = ICmpInst::getSwappedPredicate(RPred);
8335 if (L1 == R0) {
8336 std::swap(L0, L1);
8337 LPred = ICmpInst::getSwappedPredicate(LPred);
8339 if (L1 == R1) {
8340 std::swap(L0, L1);
8341 LPred = ICmpInst::getSwappedPredicate(LPred);
8342 std::swap(R0, R1);
8343 RPred = ICmpInst::getSwappedPredicate(RPred);
8345 if (L0 == R0 &&
8346 (LPred == ICmpInst::ICMP_ULT || LPred == ICmpInst::ICMP_UGE) &&
8347 (RPred == ICmpInst::ICMP_ULT || RPred == ICmpInst::ICMP_UGE) &&
8348 match(L0, m_c_Add(m_Specific(L1), m_Specific(R1))))
8349 return LPred == RPred;
8352 if (LPred == RPred)
8353 return isImpliedCondOperands(LPred, L0, L1, R0, R1, DL, Depth);
8355 return std::nullopt;
8358 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
8359 /// false. Otherwise, return std::nullopt if we can't infer anything. We
8360 /// expect the RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select'
8361 /// instruction.
8362 static std::optional<bool>
8363 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred,
8364 const Value *RHSOp0, const Value *RHSOp1,
8365 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
8366 // The LHS must be an 'or', 'and', or a 'select' instruction.
8367 assert((LHS->getOpcode() == Instruction::And ||
8368 LHS->getOpcode() == Instruction::Or ||
8369 LHS->getOpcode() == Instruction::Select) &&
8370 "Expected LHS to be 'and', 'or', or 'select'.");
8372 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
8374 // If the result of an 'or' is false, then we know both legs of the 'or' are
8375 // false. Similarly, if the result of an 'and' is true, then we know both
8376 // legs of the 'and' are true.
8377 const Value *ALHS, *ARHS;
8378 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) ||
8379 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) {
8380 // FIXME: Make this non-recursion.
8381 if (std::optional<bool> Implication = isImpliedCondition(
8382 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
8383 return Implication;
8384 if (std::optional<bool> Implication = isImpliedCondition(
8385 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
8386 return Implication;
8387 return std::nullopt;
8389 return std::nullopt;
8392 std::optional<bool>
8393 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
8394 const Value *RHSOp0, const Value *RHSOp1,
8395 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
8396 // Bail out when we hit the limit.
8397 if (Depth == MaxAnalysisRecursionDepth)
8398 return std::nullopt;
8400 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
8401 // example.
8402 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
8403 return std::nullopt;
8405 assert(LHS->getType()->isIntOrIntVectorTy(1) &&
8406 "Expected integer type only!");
8408 // Both LHS and RHS are icmps.
8409 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
8410 if (LHSCmp)
8411 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
8412 Depth);
8414 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect
8415 /// the RHS to be an icmp.
8416 /// FIXME: Add support for and/or/select on the RHS.
8417 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
8418 if ((LHSI->getOpcode() == Instruction::And ||
8419 LHSI->getOpcode() == Instruction::Or ||
8420 LHSI->getOpcode() == Instruction::Select))
8421 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
8422 Depth);
8424 return std::nullopt;
8427 std::optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
8428 const DataLayout &DL,
8429 bool LHSIsTrue, unsigned Depth) {
8430 // LHS ==> RHS by definition
8431 if (LHS == RHS)
8432 return LHSIsTrue;
8434 if (const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS))
8435 return isImpliedCondition(LHS, RHSCmp->getPredicate(),
8436 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
8437 LHSIsTrue, Depth);
8439 if (Depth == MaxAnalysisRecursionDepth)
8440 return std::nullopt;
8442 // LHS ==> (RHS1 || RHS2) if LHS ==> RHS1 or LHS ==> RHS2
8443 // LHS ==> !(RHS1 && RHS2) if LHS ==> !RHS1 or LHS ==> !RHS2
8444 const Value *RHS1, *RHS2;
8445 if (match(RHS, m_LogicalOr(m_Value(RHS1), m_Value(RHS2)))) {
8446 if (std::optional<bool> Imp =
8447 isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1))
8448 if (*Imp == true)
8449 return true;
8450 if (std::optional<bool> Imp =
8451 isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1))
8452 if (*Imp == true)
8453 return true;
8455 if (match(RHS, m_LogicalAnd(m_Value(RHS1), m_Value(RHS2)))) {
8456 if (std::optional<bool> Imp =
8457 isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1))
8458 if (*Imp == false)
8459 return false;
8460 if (std::optional<bool> Imp =
8461 isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1))
8462 if (*Imp == false)
8463 return false;
8466 return std::nullopt;
8469 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
8470 // condition dominating ContextI or nullptr, if no condition is found.
8471 static std::pair<Value *, bool>
8472 getDomPredecessorCondition(const Instruction *ContextI) {
8473 if (!ContextI || !ContextI->getParent())
8474 return {nullptr, false};
8476 // TODO: This is a poor/cheap way to determine dominance. Should we use a
8477 // dominator tree (eg, from a SimplifyQuery) instead?
8478 const BasicBlock *ContextBB = ContextI->getParent();
8479 const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
8480 if (!PredBB)
8481 return {nullptr, false};
8483 // We need a conditional branch in the predecessor.
8484 Value *PredCond;
8485 BasicBlock *TrueBB, *FalseBB;
8486 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
8487 return {nullptr, false};
8489 // The branch should get simplified. Don't bother simplifying this condition.
8490 if (TrueBB == FalseBB)
8491 return {nullptr, false};
8493 assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
8494 "Predecessor block does not point to successor?");
8496 // Is this condition implied by the predecessor condition?
8497 return {PredCond, TrueBB == ContextBB};
8500 std::optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
8501 const Instruction *ContextI,
8502 const DataLayout &DL) {
8503 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
8504 auto PredCond = getDomPredecessorCondition(ContextI);
8505 if (PredCond.first)
8506 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
8507 return std::nullopt;
8510 std::optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
8511 const Value *LHS,
8512 const Value *RHS,
8513 const Instruction *ContextI,
8514 const DataLayout &DL) {
8515 auto PredCond = getDomPredecessorCondition(ContextI);
8516 if (PredCond.first)
8517 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
8518 PredCond.second);
8519 return std::nullopt;
8522 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
8523 APInt &Upper, const InstrInfoQuery &IIQ,
8524 bool PreferSignedRange) {
8525 unsigned Width = Lower.getBitWidth();
8526 const APInt *C;
8527 switch (BO.getOpcode()) {
8528 case Instruction::Add:
8529 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
8530 bool HasNSW = IIQ.hasNoSignedWrap(&BO);
8531 bool HasNUW = IIQ.hasNoUnsignedWrap(&BO);
8533 // If the caller expects a signed compare, then try to use a signed range.
8534 // Otherwise if both no-wraps are set, use the unsigned range because it
8535 // is never larger than the signed range. Example:
8536 // "add nuw nsw i8 X, -2" is unsigned [254,255] vs. signed [-128, 125].
8537 if (PreferSignedRange && HasNSW && HasNUW)
8538 HasNUW = false;
8540 if (HasNUW) {
8541 // 'add nuw x, C' produces [C, UINT_MAX].
8542 Lower = *C;
8543 } else if (HasNSW) {
8544 if (C->isNegative()) {
8545 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
8546 Lower = APInt::getSignedMinValue(Width);
8547 Upper = APInt::getSignedMaxValue(Width) + *C + 1;
8548 } else {
8549 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
8550 Lower = APInt::getSignedMinValue(Width) + *C;
8551 Upper = APInt::getSignedMaxValue(Width) + 1;
8555 break;
8557 case Instruction::And:
8558 if (match(BO.getOperand(1), m_APInt(C)))
8559 // 'and x, C' produces [0, C].
8560 Upper = *C + 1;
8561 // X & -X is a power of two or zero. So we can cap the value at max power of
8562 // two.
8563 if (match(BO.getOperand(0), m_Neg(m_Specific(BO.getOperand(1)))) ||
8564 match(BO.getOperand(1), m_Neg(m_Specific(BO.getOperand(0)))))
8565 Upper = APInt::getSignedMinValue(Width) + 1;
8566 break;
8568 case Instruction::Or:
8569 if (match(BO.getOperand(1), m_APInt(C)))
8570 // 'or x, C' produces [C, UINT_MAX].
8571 Lower = *C;
8572 break;
8574 case Instruction::AShr:
8575 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
8576 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
8577 Lower = APInt::getSignedMinValue(Width).ashr(*C);
8578 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
8579 } else if (match(BO.getOperand(0), m_APInt(C))) {
8580 unsigned ShiftAmount = Width - 1;
8581 if (!C->isZero() && IIQ.isExact(&BO))
8582 ShiftAmount = C->countr_zero();
8583 if (C->isNegative()) {
8584 // 'ashr C, x' produces [C, C >> (Width-1)]
8585 Lower = *C;
8586 Upper = C->ashr(ShiftAmount) + 1;
8587 } else {
8588 // 'ashr C, x' produces [C >> (Width-1), C]
8589 Lower = C->ashr(ShiftAmount);
8590 Upper = *C + 1;
8593 break;
8595 case Instruction::LShr:
8596 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
8597 // 'lshr x, C' produces [0, UINT_MAX >> C].
8598 Upper = APInt::getAllOnes(Width).lshr(*C) + 1;
8599 } else if (match(BO.getOperand(0), m_APInt(C))) {
8600 // 'lshr C, x' produces [C >> (Width-1), C].
8601 unsigned ShiftAmount = Width - 1;
8602 if (!C->isZero() && IIQ.isExact(&BO))
8603 ShiftAmount = C->countr_zero();
8604 Lower = C->lshr(ShiftAmount);
8605 Upper = *C + 1;
8607 break;
8609 case Instruction::Shl:
8610 if (match(BO.getOperand(0), m_APInt(C))) {
8611 if (IIQ.hasNoUnsignedWrap(&BO)) {
8612 // 'shl nuw C, x' produces [C, C << CLZ(C)]
8613 Lower = *C;
8614 Upper = Lower.shl(Lower.countl_zero()) + 1;
8615 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
8616 if (C->isNegative()) {
8617 // 'shl nsw C, x' produces [C << CLO(C)-1, C]
8618 unsigned ShiftAmount = C->countl_one() - 1;
8619 Lower = C->shl(ShiftAmount);
8620 Upper = *C + 1;
8621 } else {
8622 // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
8623 unsigned ShiftAmount = C->countl_zero() - 1;
8624 Lower = *C;
8625 Upper = C->shl(ShiftAmount) + 1;
8627 } else {
8628 // If lowbit is set, value can never be zero.
8629 if ((*C)[0])
8630 Lower = APInt::getOneBitSet(Width, 0);
8631 // If we are shifting a constant the largest it can be is if the longest
8632 // sequence of consecutive ones is shifted to the highbits (breaking
8633 // ties for which sequence is higher). At the moment we take a liberal
8634 // upper bound on this by just popcounting the constant.
8635 // TODO: There may be a bitwise trick for it longest/highest
8636 // consecutative sequence of ones (naive method is O(Width) loop).
8637 Upper = APInt::getHighBitsSet(Width, C->popcount()) + 1;
8639 } else if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
8640 Upper = APInt::getBitsSetFrom(Width, C->getZExtValue()) + 1;
8642 break;
8644 case Instruction::SDiv:
8645 if (match(BO.getOperand(1), m_APInt(C))) {
8646 APInt IntMin = APInt::getSignedMinValue(Width);
8647 APInt IntMax = APInt::getSignedMaxValue(Width);
8648 if (C->isAllOnes()) {
8649 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
8650 // where C != -1 and C != 0 and C != 1
8651 Lower = IntMin + 1;
8652 Upper = IntMax + 1;
8653 } else if (C->countl_zero() < Width - 1) {
8654 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
8655 // where C != -1 and C != 0 and C != 1
8656 Lower = IntMin.sdiv(*C);
8657 Upper = IntMax.sdiv(*C);
8658 if (Lower.sgt(Upper))
8659 std::swap(Lower, Upper);
8660 Upper = Upper + 1;
8661 assert(Upper != Lower && "Upper part of range has wrapped!");
8663 } else if (match(BO.getOperand(0), m_APInt(C))) {
8664 if (C->isMinSignedValue()) {
8665 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
8666 Lower = *C;
8667 Upper = Lower.lshr(1) + 1;
8668 } else {
8669 // 'sdiv C, x' produces [-|C|, |C|].
8670 Upper = C->abs() + 1;
8671 Lower = (-Upper) + 1;
8674 break;
8676 case Instruction::UDiv:
8677 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
8678 // 'udiv x, C' produces [0, UINT_MAX / C].
8679 Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
8680 } else if (match(BO.getOperand(0), m_APInt(C))) {
8681 // 'udiv C, x' produces [0, C].
8682 Upper = *C + 1;
8684 break;
8686 case Instruction::SRem:
8687 if (match(BO.getOperand(1), m_APInt(C))) {
8688 // 'srem x, C' produces (-|C|, |C|).
8689 Upper = C->abs();
8690 Lower = (-Upper) + 1;
8692 break;
8694 case Instruction::URem:
8695 if (match(BO.getOperand(1), m_APInt(C)))
8696 // 'urem x, C' produces [0, C).
8697 Upper = *C;
8698 break;
8700 default:
8701 break;
8705 static ConstantRange getRangeForIntrinsic(const IntrinsicInst &II) {
8706 unsigned Width = II.getType()->getScalarSizeInBits();
8707 const APInt *C;
8708 switch (II.getIntrinsicID()) {
8709 case Intrinsic::ctpop:
8710 case Intrinsic::ctlz:
8711 case Intrinsic::cttz:
8712 // Maximum of set/clear bits is the bit width.
8713 return ConstantRange::getNonEmpty(APInt::getZero(Width),
8714 APInt(Width, Width + 1));
8715 case Intrinsic::uadd_sat:
8716 // uadd.sat(x, C) produces [C, UINT_MAX].
8717 if (match(II.getOperand(0), m_APInt(C)) ||
8718 match(II.getOperand(1), m_APInt(C)))
8719 return ConstantRange::getNonEmpty(*C, APInt::getZero(Width));
8720 break;
8721 case Intrinsic::sadd_sat:
8722 if (match(II.getOperand(0), m_APInt(C)) ||
8723 match(II.getOperand(1), m_APInt(C))) {
8724 if (C->isNegative())
8725 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
8726 return ConstantRange::getNonEmpty(APInt::getSignedMinValue(Width),
8727 APInt::getSignedMaxValue(Width) + *C +
8730 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
8731 return ConstantRange::getNonEmpty(APInt::getSignedMinValue(Width) + *C,
8732 APInt::getSignedMaxValue(Width) + 1);
8734 break;
8735 case Intrinsic::usub_sat:
8736 // usub.sat(C, x) produces [0, C].
8737 if (match(II.getOperand(0), m_APInt(C)))
8738 return ConstantRange::getNonEmpty(APInt::getZero(Width), *C + 1);
8740 // usub.sat(x, C) produces [0, UINT_MAX - C].
8741 if (match(II.getOperand(1), m_APInt(C)))
8742 return ConstantRange::getNonEmpty(APInt::getZero(Width),
8743 APInt::getMaxValue(Width) - *C + 1);
8744 break;
8745 case Intrinsic::ssub_sat:
8746 if (match(II.getOperand(0), m_APInt(C))) {
8747 if (C->isNegative())
8748 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
8749 return ConstantRange::getNonEmpty(APInt::getSignedMinValue(Width),
8750 *C - APInt::getSignedMinValue(Width) +
8753 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
8754 return ConstantRange::getNonEmpty(*C - APInt::getSignedMaxValue(Width),
8755 APInt::getSignedMaxValue(Width) + 1);
8756 } else if (match(II.getOperand(1), m_APInt(C))) {
8757 if (C->isNegative())
8758 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
8759 return ConstantRange::getNonEmpty(APInt::getSignedMinValue(Width) - *C,
8760 APInt::getSignedMaxValue(Width) + 1);
8762 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
8763 return ConstantRange::getNonEmpty(APInt::getSignedMinValue(Width),
8764 APInt::getSignedMaxValue(Width) - *C +
8767 break;
8768 case Intrinsic::umin:
8769 case Intrinsic::umax:
8770 case Intrinsic::smin:
8771 case Intrinsic::smax:
8772 if (!match(II.getOperand(0), m_APInt(C)) &&
8773 !match(II.getOperand(1), m_APInt(C)))
8774 break;
8776 switch (II.getIntrinsicID()) {
8777 case Intrinsic::umin:
8778 return ConstantRange::getNonEmpty(APInt::getZero(Width), *C + 1);
8779 case Intrinsic::umax:
8780 return ConstantRange::getNonEmpty(*C, APInt::getZero(Width));
8781 case Intrinsic::smin:
8782 return ConstantRange::getNonEmpty(APInt::getSignedMinValue(Width),
8783 *C + 1);
8784 case Intrinsic::smax:
8785 return ConstantRange::getNonEmpty(*C,
8786 APInt::getSignedMaxValue(Width) + 1);
8787 default:
8788 llvm_unreachable("Must be min/max intrinsic");
8790 break;
8791 case Intrinsic::abs:
8792 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
8793 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
8794 if (match(II.getOperand(1), m_One()))
8795 return ConstantRange::getNonEmpty(APInt::getZero(Width),
8796 APInt::getSignedMaxValue(Width) + 1);
8798 return ConstantRange::getNonEmpty(APInt::getZero(Width),
8799 APInt::getSignedMinValue(Width) + 1);
8800 case Intrinsic::vscale:
8801 if (!II.getParent() || !II.getFunction())
8802 break;
8803 return getVScaleRange(II.getFunction(), Width);
8804 default:
8805 break;
8808 return ConstantRange::getFull(Width);
8811 static ConstantRange getRangeForSelectPattern(const SelectInst &SI,
8812 const InstrInfoQuery &IIQ) {
8813 unsigned BitWidth = SI.getType()->getScalarSizeInBits();
8814 const Value *LHS = nullptr, *RHS = nullptr;
8815 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
8816 if (R.Flavor == SPF_UNKNOWN)
8817 return ConstantRange::getFull(BitWidth);
8819 if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
8820 // If the negation part of the abs (in RHS) has the NSW flag,
8821 // then the result of abs(X) is [0..SIGNED_MAX],
8822 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
8823 if (match(RHS, m_Neg(m_Specific(LHS))) &&
8824 IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
8825 return ConstantRange::getNonEmpty(APInt::getZero(BitWidth),
8826 APInt::getSignedMaxValue(BitWidth) + 1);
8828 return ConstantRange::getNonEmpty(APInt::getZero(BitWidth),
8829 APInt::getSignedMinValue(BitWidth) + 1);
8832 if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
8833 // The result of -abs(X) is <= 0.
8834 return ConstantRange::getNonEmpty(APInt::getSignedMinValue(BitWidth),
8835 APInt(BitWidth, 1));
8838 const APInt *C;
8839 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
8840 return ConstantRange::getFull(BitWidth);
8842 switch (R.Flavor) {
8843 case SPF_UMIN:
8844 return ConstantRange::getNonEmpty(APInt::getZero(BitWidth), *C + 1);
8845 case SPF_UMAX:
8846 return ConstantRange::getNonEmpty(*C, APInt::getZero(BitWidth));
8847 case SPF_SMIN:
8848 return ConstantRange::getNonEmpty(APInt::getSignedMinValue(BitWidth),
8849 *C + 1);
8850 case SPF_SMAX:
8851 return ConstantRange::getNonEmpty(*C,
8852 APInt::getSignedMaxValue(BitWidth) + 1);
8853 default:
8854 return ConstantRange::getFull(BitWidth);
8858 static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper) {
8859 // The maximum representable value of a half is 65504. For floats the maximum
8860 // value is 3.4e38 which requires roughly 129 bits.
8861 unsigned BitWidth = I->getType()->getScalarSizeInBits();
8862 if (!I->getOperand(0)->getType()->getScalarType()->isHalfTy())
8863 return;
8864 if (isa<FPToSIInst>(I) && BitWidth >= 17) {
8865 Lower = APInt(BitWidth, -65504);
8866 Upper = APInt(BitWidth, 65505);
8869 if (isa<FPToUIInst>(I) && BitWidth >= 16) {
8870 // For a fptoui the lower limit is left as 0.
8871 Upper = APInt(BitWidth, 65505);
8875 ConstantRange llvm::computeConstantRange(const Value *V, bool ForSigned,
8876 bool UseInstrInfo, AssumptionCache *AC,
8877 const Instruction *CtxI,
8878 const DominatorTree *DT,
8879 unsigned Depth) {
8880 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
8882 if (Depth == MaxAnalysisRecursionDepth)
8883 return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
8885 const APInt *C;
8886 if (match(V, m_APInt(C)))
8887 return ConstantRange(*C);
8888 unsigned BitWidth = V->getType()->getScalarSizeInBits();
8890 if (auto *VC = dyn_cast<ConstantDataVector>(V)) {
8891 ConstantRange CR = ConstantRange::getEmpty(BitWidth);
8892 for (unsigned ElemIdx = 0, NElem = VC->getNumElements(); ElemIdx < NElem;
8893 ++ElemIdx)
8894 CR = CR.unionWith(VC->getElementAsAPInt(ElemIdx));
8895 return CR;
8898 InstrInfoQuery IIQ(UseInstrInfo);
8899 ConstantRange CR = ConstantRange::getFull(BitWidth);
8900 if (auto *BO = dyn_cast<BinaryOperator>(V)) {
8901 APInt Lower = APInt(BitWidth, 0);
8902 APInt Upper = APInt(BitWidth, 0);
8903 // TODO: Return ConstantRange.
8904 setLimitsForBinOp(*BO, Lower, Upper, IIQ, ForSigned);
8905 CR = ConstantRange::getNonEmpty(Lower, Upper);
8906 } else if (auto *II = dyn_cast<IntrinsicInst>(V))
8907 CR = getRangeForIntrinsic(*II);
8908 else if (auto *SI = dyn_cast<SelectInst>(V)) {
8909 ConstantRange CRTrue = computeConstantRange(
8910 SI->getTrueValue(), ForSigned, UseInstrInfo, AC, CtxI, DT, Depth + 1);
8911 ConstantRange CRFalse = computeConstantRange(
8912 SI->getFalseValue(), ForSigned, UseInstrInfo, AC, CtxI, DT, Depth + 1);
8913 CR = CRTrue.unionWith(CRFalse);
8914 CR = CR.intersectWith(getRangeForSelectPattern(*SI, IIQ));
8915 } else if (isa<FPToUIInst>(V) || isa<FPToSIInst>(V)) {
8916 APInt Lower = APInt(BitWidth, 0);
8917 APInt Upper = APInt(BitWidth, 0);
8918 // TODO: Return ConstantRange.
8919 setLimitForFPToI(cast<Instruction>(V), Lower, Upper);
8920 CR = ConstantRange::getNonEmpty(Lower, Upper);
8923 if (auto *I = dyn_cast<Instruction>(V))
8924 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
8925 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
8927 if (CtxI && AC) {
8928 // Try to restrict the range based on information from assumptions.
8929 for (auto &AssumeVH : AC->assumptionsFor(V)) {
8930 if (!AssumeVH)
8931 continue;
8932 CallInst *I = cast<CallInst>(AssumeVH);
8933 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
8934 "Got assumption for the wrong function!");
8935 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
8936 "must be an assume intrinsic");
8938 if (!isValidAssumeForContext(I, CtxI, DT))
8939 continue;
8940 Value *Arg = I->getArgOperand(0);
8941 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
8942 // Currently we just use information from comparisons.
8943 if (!Cmp || Cmp->getOperand(0) != V)
8944 continue;
8945 // TODO: Set "ForSigned" parameter via Cmp->isSigned()?
8946 ConstantRange RHS =
8947 computeConstantRange(Cmp->getOperand(1), /* ForSigned */ false,
8948 UseInstrInfo, AC, I, DT, Depth + 1);
8949 CR = CR.intersectWith(
8950 ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS));
8954 return CR;