[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / lib / Analysis / VectorUtils.cpp
blobbf7bc0ba84a03362fe908ae47853d9594d7186c8
1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines vectorizer utilities.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/VectorUtils.h"
14 #include "llvm/ADT/EquivalenceClasses.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/Analysis/DemandedBits.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/LoopIterator.h"
19 #include "llvm/Analysis/ScalarEvolution.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/IR/Value.h"
28 #include "llvm/Support/CommandLine.h"
30 #define DEBUG_TYPE "vectorutils"
32 using namespace llvm;
33 using namespace llvm::PatternMatch;
35 /// Maximum factor for an interleaved memory access.
36 static cl::opt<unsigned> MaxInterleaveGroupFactor(
37 "max-interleave-group-factor", cl::Hidden,
38 cl::desc("Maximum factor for an interleaved access group (default = 8)"),
39 cl::init(8));
41 /// Return true if all of the intrinsic's arguments and return type are scalars
42 /// for the scalar form of the intrinsic, and vectors for the vector form of the
43 /// intrinsic (except operands that are marked as always being scalar by
44 /// isVectorIntrinsicWithScalarOpAtArg).
45 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
46 switch (ID) {
47 case Intrinsic::abs: // Begin integer bit-manipulation.
48 case Intrinsic::bswap:
49 case Intrinsic::bitreverse:
50 case Intrinsic::ctpop:
51 case Intrinsic::ctlz:
52 case Intrinsic::cttz:
53 case Intrinsic::fshl:
54 case Intrinsic::fshr:
55 case Intrinsic::smax:
56 case Intrinsic::smin:
57 case Intrinsic::umax:
58 case Intrinsic::umin:
59 case Intrinsic::sadd_sat:
60 case Intrinsic::ssub_sat:
61 case Intrinsic::uadd_sat:
62 case Intrinsic::usub_sat:
63 case Intrinsic::smul_fix:
64 case Intrinsic::smul_fix_sat:
65 case Intrinsic::umul_fix:
66 case Intrinsic::umul_fix_sat:
67 case Intrinsic::sqrt: // Begin floating-point.
68 case Intrinsic::sin:
69 case Intrinsic::cos:
70 case Intrinsic::exp:
71 case Intrinsic::exp2:
72 case Intrinsic::log:
73 case Intrinsic::log10:
74 case Intrinsic::log2:
75 case Intrinsic::fabs:
76 case Intrinsic::minnum:
77 case Intrinsic::maxnum:
78 case Intrinsic::minimum:
79 case Intrinsic::maximum:
80 case Intrinsic::copysign:
81 case Intrinsic::floor:
82 case Intrinsic::ceil:
83 case Intrinsic::trunc:
84 case Intrinsic::rint:
85 case Intrinsic::nearbyint:
86 case Intrinsic::round:
87 case Intrinsic::roundeven:
88 case Intrinsic::pow:
89 case Intrinsic::fma:
90 case Intrinsic::fmuladd:
91 case Intrinsic::is_fpclass:
92 case Intrinsic::powi:
93 case Intrinsic::canonicalize:
94 case Intrinsic::fptosi_sat:
95 case Intrinsic::fptoui_sat:
96 case Intrinsic::lrint:
97 case Intrinsic::llrint:
98 return true;
99 default:
100 return false;
104 /// Identifies if the vector form of the intrinsic has a scalar operand.
105 bool llvm::isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID,
106 unsigned ScalarOpdIdx) {
107 switch (ID) {
108 case Intrinsic::abs:
109 case Intrinsic::ctlz:
110 case Intrinsic::cttz:
111 case Intrinsic::is_fpclass:
112 case Intrinsic::powi:
113 return (ScalarOpdIdx == 1);
114 case Intrinsic::smul_fix:
115 case Intrinsic::smul_fix_sat:
116 case Intrinsic::umul_fix:
117 case Intrinsic::umul_fix_sat:
118 return (ScalarOpdIdx == 2);
119 default:
120 return false;
124 bool llvm::isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID,
125 int OpdIdx) {
126 assert(ID != Intrinsic::not_intrinsic && "Not an intrinsic!");
128 switch (ID) {
129 case Intrinsic::fptosi_sat:
130 case Intrinsic::fptoui_sat:
131 case Intrinsic::lrint:
132 case Intrinsic::llrint:
133 return OpdIdx == -1 || OpdIdx == 0;
134 case Intrinsic::is_fpclass:
135 return OpdIdx == 0;
136 case Intrinsic::powi:
137 return OpdIdx == -1 || OpdIdx == 1;
138 default:
139 return OpdIdx == -1;
143 /// Returns intrinsic ID for call.
144 /// For the input call instruction it finds mapping intrinsic and returns
145 /// its ID, in case it does not found it return not_intrinsic.
146 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
147 const TargetLibraryInfo *TLI) {
148 Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI);
149 if (ID == Intrinsic::not_intrinsic)
150 return Intrinsic::not_intrinsic;
152 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
153 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
154 ID == Intrinsic::experimental_noalias_scope_decl ||
155 ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe)
156 return ID;
157 return Intrinsic::not_intrinsic;
160 /// Given a vector and an element number, see if the scalar value is
161 /// already around as a register, for example if it were inserted then extracted
162 /// from the vector.
163 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
164 assert(V->getType()->isVectorTy() && "Not looking at a vector?");
165 VectorType *VTy = cast<VectorType>(V->getType());
166 // For fixed-length vector, return undef for out of range access.
167 if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
168 unsigned Width = FVTy->getNumElements();
169 if (EltNo >= Width)
170 return UndefValue::get(FVTy->getElementType());
173 if (Constant *C = dyn_cast<Constant>(V))
174 return C->getAggregateElement(EltNo);
176 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
177 // If this is an insert to a variable element, we don't know what it is.
178 if (!isa<ConstantInt>(III->getOperand(2)))
179 return nullptr;
180 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
182 // If this is an insert to the element we are looking for, return the
183 // inserted value.
184 if (EltNo == IIElt)
185 return III->getOperand(1);
187 // Guard against infinite loop on malformed, unreachable IR.
188 if (III == III->getOperand(0))
189 return nullptr;
191 // Otherwise, the insertelement doesn't modify the value, recurse on its
192 // vector input.
193 return findScalarElement(III->getOperand(0), EltNo);
196 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
197 // Restrict the following transformation to fixed-length vector.
198 if (SVI && isa<FixedVectorType>(SVI->getType())) {
199 unsigned LHSWidth =
200 cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements();
201 int InEl = SVI->getMaskValue(EltNo);
202 if (InEl < 0)
203 return UndefValue::get(VTy->getElementType());
204 if (InEl < (int)LHSWidth)
205 return findScalarElement(SVI->getOperand(0), InEl);
206 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
209 // Extract a value from a vector add operation with a constant zero.
210 // TODO: Use getBinOpIdentity() to generalize this.
211 Value *Val; Constant *C;
212 if (match(V, m_Add(m_Value(Val), m_Constant(C))))
213 if (Constant *Elt = C->getAggregateElement(EltNo))
214 if (Elt->isNullValue())
215 return findScalarElement(Val, EltNo);
217 // If the vector is a splat then we can trivially find the scalar element.
218 if (isa<ScalableVectorType>(VTy))
219 if (Value *Splat = getSplatValue(V))
220 if (EltNo < VTy->getElementCount().getKnownMinValue())
221 return Splat;
223 // Otherwise, we don't know.
224 return nullptr;
227 int llvm::getSplatIndex(ArrayRef<int> Mask) {
228 int SplatIndex = -1;
229 for (int M : Mask) {
230 // Ignore invalid (undefined) mask elements.
231 if (M < 0)
232 continue;
234 // There can be only 1 non-negative mask element value if this is a splat.
235 if (SplatIndex != -1 && SplatIndex != M)
236 return -1;
238 // Initialize the splat index to the 1st non-negative mask element.
239 SplatIndex = M;
241 assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?");
242 return SplatIndex;
245 /// Get splat value if the input is a splat vector or return nullptr.
246 /// This function is not fully general. It checks only 2 cases:
247 /// the input value is (1) a splat constant vector or (2) a sequence
248 /// of instructions that broadcasts a scalar at element 0.
249 Value *llvm::getSplatValue(const Value *V) {
250 if (isa<VectorType>(V->getType()))
251 if (auto *C = dyn_cast<Constant>(V))
252 return C->getSplatValue();
254 // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
255 Value *Splat;
256 if (match(V,
257 m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()),
258 m_Value(), m_ZeroMask())))
259 return Splat;
261 return nullptr;
264 bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) {
265 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
267 if (isa<VectorType>(V->getType())) {
268 if (isa<UndefValue>(V))
269 return true;
270 // FIXME: We can allow undefs, but if Index was specified, we may want to
271 // check that the constant is defined at that index.
272 if (auto *C = dyn_cast<Constant>(V))
273 return C->getSplatValue() != nullptr;
276 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) {
277 // FIXME: We can safely allow undefs here. If Index was specified, we will
278 // check that the mask elt is defined at the required index.
279 if (!all_equal(Shuf->getShuffleMask()))
280 return false;
282 // Match any index.
283 if (Index == -1)
284 return true;
286 // Match a specific element. The mask should be defined at and match the
287 // specified index.
288 return Shuf->getMaskValue(Index) == Index;
291 // The remaining tests are all recursive, so bail out if we hit the limit.
292 if (Depth++ == MaxAnalysisRecursionDepth)
293 return false;
295 // If both operands of a binop are splats, the result is a splat.
296 Value *X, *Y, *Z;
297 if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
298 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth);
300 // If all operands of a select are splats, the result is a splat.
301 if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
302 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) &&
303 isSplatValue(Z, Index, Depth);
305 // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).
307 return false;
310 bool llvm::getShuffleDemandedElts(int SrcWidth, ArrayRef<int> Mask,
311 const APInt &DemandedElts, APInt &DemandedLHS,
312 APInt &DemandedRHS, bool AllowUndefElts) {
313 DemandedLHS = DemandedRHS = APInt::getZero(SrcWidth);
315 // Early out if we don't demand any elements.
316 if (DemandedElts.isZero())
317 return true;
319 // Simple case of a shuffle with zeroinitializer.
320 if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
321 DemandedLHS.setBit(0);
322 return true;
325 for (unsigned I = 0, E = Mask.size(); I != E; ++I) {
326 int M = Mask[I];
327 assert((-1 <= M) && (M < (SrcWidth * 2)) &&
328 "Invalid shuffle mask constant");
330 if (!DemandedElts[I] || (AllowUndefElts && (M < 0)))
331 continue;
333 // For undef elements, we don't know anything about the common state of
334 // the shuffle result.
335 if (M < 0)
336 return false;
338 if (M < SrcWidth)
339 DemandedLHS.setBit(M);
340 else
341 DemandedRHS.setBit(M - SrcWidth);
344 return true;
347 void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask,
348 SmallVectorImpl<int> &ScaledMask) {
349 assert(Scale > 0 && "Unexpected scaling factor");
351 // Fast-path: if no scaling, then it is just a copy.
352 if (Scale == 1) {
353 ScaledMask.assign(Mask.begin(), Mask.end());
354 return;
357 ScaledMask.clear();
358 for (int MaskElt : Mask) {
359 if (MaskElt >= 0) {
360 assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX &&
361 "Overflowed 32-bits");
363 for (int SliceElt = 0; SliceElt != Scale; ++SliceElt)
364 ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt);
368 bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask,
369 SmallVectorImpl<int> &ScaledMask) {
370 assert(Scale > 0 && "Unexpected scaling factor");
372 // Fast-path: if no scaling, then it is just a copy.
373 if (Scale == 1) {
374 ScaledMask.assign(Mask.begin(), Mask.end());
375 return true;
378 // We must map the original elements down evenly to a type with less elements.
379 int NumElts = Mask.size();
380 if (NumElts % Scale != 0)
381 return false;
383 ScaledMask.clear();
384 ScaledMask.reserve(NumElts / Scale);
386 // Step through the input mask by splitting into Scale-sized slices.
387 do {
388 ArrayRef<int> MaskSlice = Mask.take_front(Scale);
389 assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice.");
391 // The first element of the slice determines how we evaluate this slice.
392 int SliceFront = MaskSlice.front();
393 if (SliceFront < 0) {
394 // Negative values (undef or other "sentinel" values) must be equal across
395 // the entire slice.
396 if (!all_equal(MaskSlice))
397 return false;
398 ScaledMask.push_back(SliceFront);
399 } else {
400 // A positive mask element must be cleanly divisible.
401 if (SliceFront % Scale != 0)
402 return false;
403 // Elements of the slice must be consecutive.
404 for (int i = 1; i < Scale; ++i)
405 if (MaskSlice[i] != SliceFront + i)
406 return false;
407 ScaledMask.push_back(SliceFront / Scale);
409 Mask = Mask.drop_front(Scale);
410 } while (!Mask.empty());
412 assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask");
414 // All elements of the original mask can be scaled down to map to the elements
415 // of a mask with wider elements.
416 return true;
419 void llvm::getShuffleMaskWithWidestElts(ArrayRef<int> Mask,
420 SmallVectorImpl<int> &ScaledMask) {
421 std::array<SmallVector<int, 16>, 2> TmpMasks;
422 SmallVectorImpl<int> *Output = &TmpMasks[0], *Tmp = &TmpMasks[1];
423 ArrayRef<int> InputMask = Mask;
424 for (unsigned Scale = 2; Scale <= InputMask.size(); ++Scale) {
425 while (widenShuffleMaskElts(Scale, InputMask, *Output)) {
426 InputMask = *Output;
427 std::swap(Output, Tmp);
430 ScaledMask.assign(InputMask.begin(), InputMask.end());
433 void llvm::processShuffleMasks(
434 ArrayRef<int> Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs,
435 unsigned NumOfUsedRegs, function_ref<void()> NoInputAction,
436 function_ref<void(ArrayRef<int>, unsigned, unsigned)> SingleInputAction,
437 function_ref<void(ArrayRef<int>, unsigned, unsigned)> ManyInputsAction) {
438 SmallVector<SmallVector<SmallVector<int>>> Res(NumOfDestRegs);
439 // Try to perform better estimation of the permutation.
440 // 1. Split the source/destination vectors into real registers.
441 // 2. Do the mask analysis to identify which real registers are
442 // permuted.
443 int Sz = Mask.size();
444 unsigned SzDest = Sz / NumOfDestRegs;
445 unsigned SzSrc = Sz / NumOfSrcRegs;
446 for (unsigned I = 0; I < NumOfDestRegs; ++I) {
447 auto &RegMasks = Res[I];
448 RegMasks.assign(NumOfSrcRegs, {});
449 // Check that the values in dest registers are in the one src
450 // register.
451 for (unsigned K = 0; K < SzDest; ++K) {
452 int Idx = I * SzDest + K;
453 if (Idx == Sz)
454 break;
455 if (Mask[Idx] >= Sz || Mask[Idx] == PoisonMaskElem)
456 continue;
457 int SrcRegIdx = Mask[Idx] / SzSrc;
458 // Add a cost of PermuteTwoSrc for each new source register permute,
459 // if we have more than one source registers.
460 if (RegMasks[SrcRegIdx].empty())
461 RegMasks[SrcRegIdx].assign(SzDest, PoisonMaskElem);
462 RegMasks[SrcRegIdx][K] = Mask[Idx] % SzSrc;
465 // Process split mask.
466 for (unsigned I = 0; I < NumOfUsedRegs; ++I) {
467 auto &Dest = Res[I];
468 int NumSrcRegs =
469 count_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); });
470 switch (NumSrcRegs) {
471 case 0:
472 // No input vectors were used!
473 NoInputAction();
474 break;
475 case 1: {
476 // Find the only mask with at least single undef mask elem.
477 auto *It =
478 find_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); });
479 unsigned SrcReg = std::distance(Dest.begin(), It);
480 SingleInputAction(*It, SrcReg, I);
481 break;
483 default: {
484 // The first mask is a permutation of a single register. Since we have >2
485 // input registers to shuffle, we merge the masks for 2 first registers
486 // and generate a shuffle of 2 registers rather than the reordering of the
487 // first register and then shuffle with the second register. Next,
488 // generate the shuffles of the resulting register + the remaining
489 // registers from the list.
490 auto &&CombineMasks = [](MutableArrayRef<int> FirstMask,
491 ArrayRef<int> SecondMask) {
492 for (int Idx = 0, VF = FirstMask.size(); Idx < VF; ++Idx) {
493 if (SecondMask[Idx] != PoisonMaskElem) {
494 assert(FirstMask[Idx] == PoisonMaskElem &&
495 "Expected undefined mask element.");
496 FirstMask[Idx] = SecondMask[Idx] + VF;
500 auto &&NormalizeMask = [](MutableArrayRef<int> Mask) {
501 for (int Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) {
502 if (Mask[Idx] != PoisonMaskElem)
503 Mask[Idx] = Idx;
506 int SecondIdx;
507 do {
508 int FirstIdx = -1;
509 SecondIdx = -1;
510 MutableArrayRef<int> FirstMask, SecondMask;
511 for (unsigned I = 0; I < NumOfDestRegs; ++I) {
512 SmallVectorImpl<int> &RegMask = Dest[I];
513 if (RegMask.empty())
514 continue;
516 if (FirstIdx == SecondIdx) {
517 FirstIdx = I;
518 FirstMask = RegMask;
519 continue;
521 SecondIdx = I;
522 SecondMask = RegMask;
523 CombineMasks(FirstMask, SecondMask);
524 ManyInputsAction(FirstMask, FirstIdx, SecondIdx);
525 NormalizeMask(FirstMask);
526 RegMask.clear();
527 SecondMask = FirstMask;
528 SecondIdx = FirstIdx;
530 if (FirstIdx != SecondIdx && SecondIdx >= 0) {
531 CombineMasks(SecondMask, FirstMask);
532 ManyInputsAction(SecondMask, SecondIdx, FirstIdx);
533 Dest[FirstIdx].clear();
534 NormalizeMask(SecondMask);
536 } while (SecondIdx >= 0);
537 break;
543 MapVector<Instruction *, uint64_t>
544 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
545 const TargetTransformInfo *TTI) {
547 // DemandedBits will give us every value's live-out bits. But we want
548 // to ensure no extra casts would need to be inserted, so every DAG
549 // of connected values must have the same minimum bitwidth.
550 EquivalenceClasses<Value *> ECs;
551 SmallVector<Value *, 16> Worklist;
552 SmallPtrSet<Value *, 4> Roots;
553 SmallPtrSet<Value *, 16> Visited;
554 DenseMap<Value *, uint64_t> DBits;
555 SmallPtrSet<Instruction *, 4> InstructionSet;
556 MapVector<Instruction *, uint64_t> MinBWs;
558 // Determine the roots. We work bottom-up, from truncs or icmps.
559 bool SeenExtFromIllegalType = false;
560 for (auto *BB : Blocks)
561 for (auto &I : *BB) {
562 InstructionSet.insert(&I);
564 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
565 !TTI->isTypeLegal(I.getOperand(0)->getType()))
566 SeenExtFromIllegalType = true;
568 // Only deal with non-vector integers up to 64-bits wide.
569 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
570 !I.getType()->isVectorTy() &&
571 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
572 // Don't make work for ourselves. If we know the loaded type is legal,
573 // don't add it to the worklist.
574 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
575 continue;
577 Worklist.push_back(&I);
578 Roots.insert(&I);
581 // Early exit.
582 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
583 return MinBWs;
585 // Now proceed breadth-first, unioning values together.
586 while (!Worklist.empty()) {
587 Value *Val = Worklist.pop_back_val();
588 Value *Leader = ECs.getOrInsertLeaderValue(Val);
590 if (!Visited.insert(Val).second)
591 continue;
593 // Non-instructions terminate a chain successfully.
594 if (!isa<Instruction>(Val))
595 continue;
596 Instruction *I = cast<Instruction>(Val);
598 // If we encounter a type that is larger than 64 bits, we can't represent
599 // it so bail out.
600 if (DB.getDemandedBits(I).getBitWidth() > 64)
601 return MapVector<Instruction *, uint64_t>();
603 uint64_t V = DB.getDemandedBits(I).getZExtValue();
604 DBits[Leader] |= V;
605 DBits[I] = V;
607 // Casts, loads and instructions outside of our range terminate a chain
608 // successfully.
609 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
610 !InstructionSet.count(I))
611 continue;
613 // Unsafe casts terminate a chain unsuccessfully. We can't do anything
614 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
615 // transform anything that relies on them.
616 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
617 !I->getType()->isIntegerTy()) {
618 DBits[Leader] |= ~0ULL;
619 continue;
622 // We don't modify the types of PHIs. Reductions will already have been
623 // truncated if possible, and inductions' sizes will have been chosen by
624 // indvars.
625 if (isa<PHINode>(I))
626 continue;
628 if (DBits[Leader] == ~0ULL)
629 // All bits demanded, no point continuing.
630 continue;
632 for (Value *O : cast<User>(I)->operands()) {
633 ECs.unionSets(Leader, O);
634 Worklist.push_back(O);
638 // Now we've discovered all values, walk them to see if there are
639 // any users we didn't see. If there are, we can't optimize that
640 // chain.
641 for (auto &I : DBits)
642 for (auto *U : I.first->users())
643 if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
644 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
646 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
647 uint64_t LeaderDemandedBits = 0;
648 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end()))
649 LeaderDemandedBits |= DBits[M];
651 uint64_t MinBW = llvm::bit_width(LeaderDemandedBits);
652 // Round up to a power of 2
653 MinBW = llvm::bit_ceil(MinBW);
655 // We don't modify the types of PHIs. Reductions will already have been
656 // truncated if possible, and inductions' sizes will have been chosen by
657 // indvars.
658 // If we are required to shrink a PHI, abandon this entire equivalence class.
659 bool Abort = false;
660 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end()))
661 if (isa<PHINode>(M) && MinBW < M->getType()->getScalarSizeInBits()) {
662 Abort = true;
663 break;
665 if (Abort)
666 continue;
668 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) {
669 auto *MI = dyn_cast<Instruction>(M);
670 if (!MI)
671 continue;
672 Type *Ty = M->getType();
673 if (Roots.count(M))
674 Ty = MI->getOperand(0)->getType();
676 if (MinBW >= Ty->getScalarSizeInBits())
677 continue;
679 // If any of M's operands demand more bits than MinBW then M cannot be
680 // performed safely in MinBW.
681 if (any_of(MI->operands(), [&DB, MinBW](Use &U) {
682 auto *CI = dyn_cast<ConstantInt>(U);
683 // For constants shift amounts, check if the shift would result in
684 // poison.
685 if (CI &&
686 isa<ShlOperator, LShrOperator, AShrOperator>(U.getUser()) &&
687 U.getOperandNo() == 1)
688 return CI->uge(MinBW);
689 uint64_t BW = bit_width(DB.getDemandedBits(&U).getZExtValue());
690 return bit_ceil(BW) > MinBW;
692 continue;
694 MinBWs[MI] = MinBW;
698 return MinBWs;
701 /// Add all access groups in @p AccGroups to @p List.
702 template <typename ListT>
703 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
704 // Interpret an access group as a list containing itself.
705 if (AccGroups->getNumOperands() == 0) {
706 assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
707 List.insert(AccGroups);
708 return;
711 for (const auto &AccGroupListOp : AccGroups->operands()) {
712 auto *Item = cast<MDNode>(AccGroupListOp.get());
713 assert(isValidAsAccessGroup(Item) && "List item must be an access group");
714 List.insert(Item);
718 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
719 if (!AccGroups1)
720 return AccGroups2;
721 if (!AccGroups2)
722 return AccGroups1;
723 if (AccGroups1 == AccGroups2)
724 return AccGroups1;
726 SmallSetVector<Metadata *, 4> Union;
727 addToAccessGroupList(Union, AccGroups1);
728 addToAccessGroupList(Union, AccGroups2);
730 if (Union.size() == 0)
731 return nullptr;
732 if (Union.size() == 1)
733 return cast<MDNode>(Union.front());
735 LLVMContext &Ctx = AccGroups1->getContext();
736 return MDNode::get(Ctx, Union.getArrayRef());
739 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
740 const Instruction *Inst2) {
741 bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
742 bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
744 if (!MayAccessMem1 && !MayAccessMem2)
745 return nullptr;
746 if (!MayAccessMem1)
747 return Inst2->getMetadata(LLVMContext::MD_access_group);
748 if (!MayAccessMem2)
749 return Inst1->getMetadata(LLVMContext::MD_access_group);
751 MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
752 MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
753 if (!MD1 || !MD2)
754 return nullptr;
755 if (MD1 == MD2)
756 return MD1;
758 // Use set for scalable 'contains' check.
759 SmallPtrSet<Metadata *, 4> AccGroupSet2;
760 addToAccessGroupList(AccGroupSet2, MD2);
762 SmallVector<Metadata *, 4> Intersection;
763 if (MD1->getNumOperands() == 0) {
764 assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
765 if (AccGroupSet2.count(MD1))
766 Intersection.push_back(MD1);
767 } else {
768 for (const MDOperand &Node : MD1->operands()) {
769 auto *Item = cast<MDNode>(Node.get());
770 assert(isValidAsAccessGroup(Item) && "List item must be an access group");
771 if (AccGroupSet2.count(Item))
772 Intersection.push_back(Item);
776 if (Intersection.size() == 0)
777 return nullptr;
778 if (Intersection.size() == 1)
779 return cast<MDNode>(Intersection.front());
781 LLVMContext &Ctx = Inst1->getContext();
782 return MDNode::get(Ctx, Intersection);
785 /// \returns \p I after propagating metadata from \p VL.
786 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
787 if (VL.empty())
788 return Inst;
789 Instruction *I0 = cast<Instruction>(VL[0]);
790 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
791 I0->getAllMetadataOtherThanDebugLoc(Metadata);
793 for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
794 LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
795 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
796 LLVMContext::MD_access_group}) {
797 MDNode *MD = I0->getMetadata(Kind);
799 for (int J = 1, E = VL.size(); MD && J != E; ++J) {
800 const Instruction *IJ = cast<Instruction>(VL[J]);
801 MDNode *IMD = IJ->getMetadata(Kind);
802 switch (Kind) {
803 case LLVMContext::MD_tbaa:
804 MD = MDNode::getMostGenericTBAA(MD, IMD);
805 break;
806 case LLVMContext::MD_alias_scope:
807 MD = MDNode::getMostGenericAliasScope(MD, IMD);
808 break;
809 case LLVMContext::MD_fpmath:
810 MD = MDNode::getMostGenericFPMath(MD, IMD);
811 break;
812 case LLVMContext::MD_noalias:
813 case LLVMContext::MD_nontemporal:
814 case LLVMContext::MD_invariant_load:
815 MD = MDNode::intersect(MD, IMD);
816 break;
817 case LLVMContext::MD_access_group:
818 MD = intersectAccessGroups(Inst, IJ);
819 break;
820 default:
821 llvm_unreachable("unhandled metadata");
825 Inst->setMetadata(Kind, MD);
828 return Inst;
831 Constant *
832 llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF,
833 const InterleaveGroup<Instruction> &Group) {
834 // All 1's means mask is not needed.
835 if (Group.getNumMembers() == Group.getFactor())
836 return nullptr;
838 // TODO: support reversed access.
839 assert(!Group.isReverse() && "Reversed group not supported.");
841 SmallVector<Constant *, 16> Mask;
842 for (unsigned i = 0; i < VF; i++)
843 for (unsigned j = 0; j < Group.getFactor(); ++j) {
844 unsigned HasMember = Group.getMember(j) ? 1 : 0;
845 Mask.push_back(Builder.getInt1(HasMember));
848 return ConstantVector::get(Mask);
851 llvm::SmallVector<int, 16>
852 llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) {
853 SmallVector<int, 16> MaskVec;
854 for (unsigned i = 0; i < VF; i++)
855 for (unsigned j = 0; j < ReplicationFactor; j++)
856 MaskVec.push_back(i);
858 return MaskVec;
861 llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF,
862 unsigned NumVecs) {
863 SmallVector<int, 16> Mask;
864 for (unsigned i = 0; i < VF; i++)
865 for (unsigned j = 0; j < NumVecs; j++)
866 Mask.push_back(j * VF + i);
868 return Mask;
871 llvm::SmallVector<int, 16>
872 llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) {
873 SmallVector<int, 16> Mask;
874 for (unsigned i = 0; i < VF; i++)
875 Mask.push_back(Start + i * Stride);
877 return Mask;
880 llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start,
881 unsigned NumInts,
882 unsigned NumUndefs) {
883 SmallVector<int, 16> Mask;
884 for (unsigned i = 0; i < NumInts; i++)
885 Mask.push_back(Start + i);
887 for (unsigned i = 0; i < NumUndefs; i++)
888 Mask.push_back(-1);
890 return Mask;
893 llvm::SmallVector<int, 16> llvm::createUnaryMask(ArrayRef<int> Mask,
894 unsigned NumElts) {
895 // Avoid casts in the loop and make sure we have a reasonable number.
896 int NumEltsSigned = NumElts;
897 assert(NumEltsSigned > 0 && "Expected smaller or non-zero element count");
899 // If the mask chooses an element from operand 1, reduce it to choose from the
900 // corresponding element of operand 0. Undef mask elements are unchanged.
901 SmallVector<int, 16> UnaryMask;
902 for (int MaskElt : Mask) {
903 assert((MaskElt < NumEltsSigned * 2) && "Expected valid shuffle mask");
904 int UnaryElt = MaskElt >= NumEltsSigned ? MaskElt - NumEltsSigned : MaskElt;
905 UnaryMask.push_back(UnaryElt);
907 return UnaryMask;
910 /// A helper function for concatenating vectors. This function concatenates two
911 /// vectors having the same element type. If the second vector has fewer
912 /// elements than the first, it is padded with undefs.
913 static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1,
914 Value *V2) {
915 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
916 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
917 assert(VecTy1 && VecTy2 &&
918 VecTy1->getScalarType() == VecTy2->getScalarType() &&
919 "Expect two vectors with the same element type");
921 unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements();
922 unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements();
923 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
925 if (NumElts1 > NumElts2) {
926 // Extend with UNDEFs.
927 V2 = Builder.CreateShuffleVector(
928 V2, createSequentialMask(0, NumElts2, NumElts1 - NumElts2));
931 return Builder.CreateShuffleVector(
932 V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0));
935 Value *llvm::concatenateVectors(IRBuilderBase &Builder,
936 ArrayRef<Value *> Vecs) {
937 unsigned NumVecs = Vecs.size();
938 assert(NumVecs > 1 && "Should be at least two vectors");
940 SmallVector<Value *, 8> ResList;
941 ResList.append(Vecs.begin(), Vecs.end());
942 do {
943 SmallVector<Value *, 8> TmpList;
944 for (unsigned i = 0; i < NumVecs - 1; i += 2) {
945 Value *V0 = ResList[i], *V1 = ResList[i + 1];
946 assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
947 "Only the last vector may have a different type");
949 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
952 // Push the last vector if the total number of vectors is odd.
953 if (NumVecs % 2 != 0)
954 TmpList.push_back(ResList[NumVecs - 1]);
956 ResList = TmpList;
957 NumVecs = ResList.size();
958 } while (NumVecs > 1);
960 return ResList[0];
963 bool llvm::maskIsAllZeroOrUndef(Value *Mask) {
964 assert(isa<VectorType>(Mask->getType()) &&
965 isa<IntegerType>(Mask->getType()->getScalarType()) &&
966 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
967 1 &&
968 "Mask must be a vector of i1");
970 auto *ConstMask = dyn_cast<Constant>(Mask);
971 if (!ConstMask)
972 return false;
973 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
974 return true;
975 if (isa<ScalableVectorType>(ConstMask->getType()))
976 return false;
977 for (unsigned
978 I = 0,
979 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
980 I != E; ++I) {
981 if (auto *MaskElt = ConstMask->getAggregateElement(I))
982 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
983 continue;
984 return false;
986 return true;
989 bool llvm::maskIsAllOneOrUndef(Value *Mask) {
990 assert(isa<VectorType>(Mask->getType()) &&
991 isa<IntegerType>(Mask->getType()->getScalarType()) &&
992 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
993 1 &&
994 "Mask must be a vector of i1");
996 auto *ConstMask = dyn_cast<Constant>(Mask);
997 if (!ConstMask)
998 return false;
999 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
1000 return true;
1001 if (isa<ScalableVectorType>(ConstMask->getType()))
1002 return false;
1003 for (unsigned
1004 I = 0,
1005 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
1006 I != E; ++I) {
1007 if (auto *MaskElt = ConstMask->getAggregateElement(I))
1008 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
1009 continue;
1010 return false;
1012 return true;
1015 bool llvm::maskContainsAllOneOrUndef(Value *Mask) {
1016 assert(isa<VectorType>(Mask->getType()) &&
1017 isa<IntegerType>(Mask->getType()->getScalarType()) &&
1018 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1019 1 &&
1020 "Mask must be a vector of i1");
1022 auto *ConstMask = dyn_cast<Constant>(Mask);
1023 if (!ConstMask)
1024 return false;
1025 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
1026 return true;
1027 if (isa<ScalableVectorType>(ConstMask->getType()))
1028 return false;
1029 for (unsigned
1030 I = 0,
1031 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
1032 I != E; ++I) {
1033 if (auto *MaskElt = ConstMask->getAggregateElement(I))
1034 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
1035 return true;
1037 return false;
1040 /// TODO: This is a lot like known bits, but for
1041 /// vectors. Is there something we can common this with?
1042 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) {
1043 assert(isa<FixedVectorType>(Mask->getType()) &&
1044 isa<IntegerType>(Mask->getType()->getScalarType()) &&
1045 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1046 1 &&
1047 "Mask must be a fixed width vector of i1");
1049 const unsigned VWidth =
1050 cast<FixedVectorType>(Mask->getType())->getNumElements();
1051 APInt DemandedElts = APInt::getAllOnes(VWidth);
1052 if (auto *CV = dyn_cast<ConstantVector>(Mask))
1053 for (unsigned i = 0; i < VWidth; i++)
1054 if (CV->getAggregateElement(i)->isNullValue())
1055 DemandedElts.clearBit(i);
1056 return DemandedElts;
1059 bool InterleavedAccessInfo::isStrided(int Stride) {
1060 unsigned Factor = std::abs(Stride);
1061 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
1064 void InterleavedAccessInfo::collectConstStrideAccesses(
1065 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
1066 const DenseMap<Value*, const SCEV*> &Strides) {
1067 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
1069 // Since it's desired that the load/store instructions be maintained in
1070 // "program order" for the interleaved access analysis, we have to visit the
1071 // blocks in the loop in reverse postorder (i.e., in a topological order).
1072 // Such an ordering will ensure that any load/store that may be executed
1073 // before a second load/store will precede the second load/store in
1074 // AccessStrideInfo.
1075 LoopBlocksDFS DFS(TheLoop);
1076 DFS.perform(LI);
1077 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
1078 for (auto &I : *BB) {
1079 Value *Ptr = getLoadStorePointerOperand(&I);
1080 if (!Ptr)
1081 continue;
1082 Type *ElementTy = getLoadStoreType(&I);
1084 // Currently, codegen doesn't support cases where the type size doesn't
1085 // match the alloc size. Skip them for now.
1086 uint64_t Size = DL.getTypeAllocSize(ElementTy);
1087 if (Size * 8 != DL.getTypeSizeInBits(ElementTy))
1088 continue;
1090 // We don't check wrapping here because we don't know yet if Ptr will be
1091 // part of a full group or a group with gaps. Checking wrapping for all
1092 // pointers (even those that end up in groups with no gaps) will be overly
1093 // conservative. For full groups, wrapping should be ok since if we would
1094 // wrap around the address space we would do a memory access at nullptr
1095 // even without the transformation. The wrapping checks are therefore
1096 // deferred until after we've formed the interleaved groups.
1097 int64_t Stride =
1098 getPtrStride(PSE, ElementTy, Ptr, TheLoop, Strides,
1099 /*Assume=*/true, /*ShouldCheckWrap=*/false).value_or(0);
1101 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
1102 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size,
1103 getLoadStoreAlignment(&I));
1107 // Analyze interleaved accesses and collect them into interleaved load and
1108 // store groups.
1110 // When generating code for an interleaved load group, we effectively hoist all
1111 // loads in the group to the location of the first load in program order. When
1112 // generating code for an interleaved store group, we sink all stores to the
1113 // location of the last store. This code motion can change the order of load
1114 // and store instructions and may break dependences.
1116 // The code generation strategy mentioned above ensures that we won't violate
1117 // any write-after-read (WAR) dependences.
1119 // E.g., for the WAR dependence: a = A[i]; // (1)
1120 // A[i] = b; // (2)
1122 // The store group of (2) is always inserted at or below (2), and the load
1123 // group of (1) is always inserted at or above (1). Thus, the instructions will
1124 // never be reordered. All other dependences are checked to ensure the
1125 // correctness of the instruction reordering.
1127 // The algorithm visits all memory accesses in the loop in bottom-up program
1128 // order. Program order is established by traversing the blocks in the loop in
1129 // reverse postorder when collecting the accesses.
1131 // We visit the memory accesses in bottom-up order because it can simplify the
1132 // construction of store groups in the presence of write-after-write (WAW)
1133 // dependences.
1135 // E.g., for the WAW dependence: A[i] = a; // (1)
1136 // A[i] = b; // (2)
1137 // A[i + 1] = c; // (3)
1139 // We will first create a store group with (3) and (2). (1) can't be added to
1140 // this group because it and (2) are dependent. However, (1) can be grouped
1141 // with other accesses that may precede it in program order. Note that a
1142 // bottom-up order does not imply that WAW dependences should not be checked.
1143 void InterleavedAccessInfo::analyzeInterleaving(
1144 bool EnablePredicatedInterleavedMemAccesses) {
1145 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
1146 const auto &Strides = LAI->getSymbolicStrides();
1148 // Holds all accesses with a constant stride.
1149 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
1150 collectConstStrideAccesses(AccessStrideInfo, Strides);
1152 if (AccessStrideInfo.empty())
1153 return;
1155 // Collect the dependences in the loop.
1156 collectDependences();
1158 // Holds all interleaved store groups temporarily.
1159 SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
1160 // Holds all interleaved load groups temporarily.
1161 SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
1162 // Groups added to this set cannot have new members added.
1163 SmallPtrSet<InterleaveGroup<Instruction> *, 4> CompletedLoadGroups;
1165 // Search in bottom-up program order for pairs of accesses (A and B) that can
1166 // form interleaved load or store groups. In the algorithm below, access A
1167 // precedes access B in program order. We initialize a group for B in the
1168 // outer loop of the algorithm, and then in the inner loop, we attempt to
1169 // insert each A into B's group if:
1171 // 1. A and B have the same stride,
1172 // 2. A and B have the same memory object size, and
1173 // 3. A belongs in B's group according to its distance from B.
1175 // Special care is taken to ensure group formation will not break any
1176 // dependences.
1177 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
1178 BI != E; ++BI) {
1179 Instruction *B = BI->first;
1180 StrideDescriptor DesB = BI->second;
1182 // Initialize a group for B if it has an allowable stride. Even if we don't
1183 // create a group for B, we continue with the bottom-up algorithm to ensure
1184 // we don't break any of B's dependences.
1185 InterleaveGroup<Instruction> *GroupB = nullptr;
1186 if (isStrided(DesB.Stride) &&
1187 (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
1188 GroupB = getInterleaveGroup(B);
1189 if (!GroupB) {
1190 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
1191 << '\n');
1192 GroupB = createInterleaveGroup(B, DesB.Stride, DesB.Alignment);
1193 if (B->mayWriteToMemory())
1194 StoreGroups.insert(GroupB);
1195 else
1196 LoadGroups.insert(GroupB);
1200 for (auto AI = std::next(BI); AI != E; ++AI) {
1201 Instruction *A = AI->first;
1202 StrideDescriptor DesA = AI->second;
1204 // Our code motion strategy implies that we can't have dependences
1205 // between accesses in an interleaved group and other accesses located
1206 // between the first and last member of the group. Note that this also
1207 // means that a group can't have more than one member at a given offset.
1208 // The accesses in a group can have dependences with other accesses, but
1209 // we must ensure we don't extend the boundaries of the group such that
1210 // we encompass those dependent accesses.
1212 // For example, assume we have the sequence of accesses shown below in a
1213 // stride-2 loop:
1215 // (1, 2) is a group | A[i] = a; // (1)
1216 // | A[i-1] = b; // (2) |
1217 // A[i-3] = c; // (3)
1218 // A[i] = d; // (4) | (2, 4) is not a group
1220 // Because accesses (2) and (3) are dependent, we can group (2) with (1)
1221 // but not with (4). If we did, the dependent access (3) would be within
1222 // the boundaries of the (2, 4) group.
1223 auto DependentMember = [&](InterleaveGroup<Instruction> *Group,
1224 StrideEntry *A) -> Instruction * {
1225 for (uint32_t Index = 0; Index < Group->getFactor(); ++Index) {
1226 Instruction *MemberOfGroupB = Group->getMember(Index);
1227 if (MemberOfGroupB && !canReorderMemAccessesForInterleavedGroups(
1228 A, &*AccessStrideInfo.find(MemberOfGroupB)))
1229 return MemberOfGroupB;
1231 return nullptr;
1234 auto GroupA = getInterleaveGroup(A);
1235 // If A is a load, dependencies are tolerable, there's nothing to do here.
1236 // If both A and B belong to the same (store) group, they are independent,
1237 // even if dependencies have not been recorded.
1238 // If both GroupA and GroupB are null, there's nothing to do here.
1239 if (A->mayWriteToMemory() && GroupA != GroupB) {
1240 Instruction *DependentInst = nullptr;
1241 // If GroupB is a load group, we have to compare AI against all
1242 // members of GroupB because if any load within GroupB has a dependency
1243 // on AI, we need to mark GroupB as complete and also release the
1244 // store GroupA (if A belongs to one). The former prevents incorrect
1245 // hoisting of load B above store A while the latter prevents incorrect
1246 // sinking of store A below load B.
1247 if (GroupB && LoadGroups.contains(GroupB))
1248 DependentInst = DependentMember(GroupB, &*AI);
1249 else if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI))
1250 DependentInst = B;
1252 if (DependentInst) {
1253 // A has a store dependence on B (or on some load within GroupB) and
1254 // is part of a store group. Release A's group to prevent illegal
1255 // sinking of A below B. A will then be free to form another group
1256 // with instructions that precede it.
1257 if (GroupA && StoreGroups.contains(GroupA)) {
1258 LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to "
1259 "dependence between "
1260 << *A << " and " << *DependentInst << '\n');
1261 StoreGroups.remove(GroupA);
1262 releaseGroup(GroupA);
1264 // If B is a load and part of an interleave group, no earlier loads
1265 // can be added to B's interleave group, because this would mean the
1266 // DependentInst would move across store A. Mark the interleave group
1267 // as complete.
1268 if (GroupB && LoadGroups.contains(GroupB)) {
1269 LLVM_DEBUG(dbgs() << "LV: Marking interleave group for " << *B
1270 << " as complete.\n");
1271 CompletedLoadGroups.insert(GroupB);
1275 if (CompletedLoadGroups.contains(GroupB)) {
1276 // Skip trying to add A to B, continue to look for other conflicting A's
1277 // in groups to be released.
1278 continue;
1281 // At this point, we've checked for illegal code motion. If either A or B
1282 // isn't strided, there's nothing left to do.
1283 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
1284 continue;
1286 // Ignore A if it's already in a group or isn't the same kind of memory
1287 // operation as B.
1288 // Note that mayReadFromMemory() isn't mutually exclusive to
1289 // mayWriteToMemory in the case of atomic loads. We shouldn't see those
1290 // here, canVectorizeMemory() should have returned false - except for the
1291 // case we asked for optimization remarks.
1292 if (isInterleaved(A) ||
1293 (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
1294 (A->mayWriteToMemory() != B->mayWriteToMemory()))
1295 continue;
1297 // Check rules 1 and 2. Ignore A if its stride or size is different from
1298 // that of B.
1299 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
1300 continue;
1302 // Ignore A if the memory object of A and B don't belong to the same
1303 // address space
1304 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
1305 continue;
1307 // Calculate the distance from A to B.
1308 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
1309 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
1310 if (!DistToB)
1311 continue;
1312 int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
1314 // Check rule 3. Ignore A if its distance to B is not a multiple of the
1315 // size.
1316 if (DistanceToB % static_cast<int64_t>(DesB.Size))
1317 continue;
1319 // All members of a predicated interleave-group must have the same predicate,
1320 // and currently must reside in the same BB.
1321 BasicBlock *BlockA = A->getParent();
1322 BasicBlock *BlockB = B->getParent();
1323 if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
1324 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
1325 continue;
1327 // The index of A is the index of B plus A's distance to B in multiples
1328 // of the size.
1329 int IndexA =
1330 GroupB->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
1332 // Try to insert A into B's group.
1333 if (GroupB->insertMember(A, IndexA, DesA.Alignment)) {
1334 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
1335 << " into the interleave group with" << *B
1336 << '\n');
1337 InterleaveGroupMap[A] = GroupB;
1339 // Set the first load in program order as the insert position.
1340 if (A->mayReadFromMemory())
1341 GroupB->setInsertPos(A);
1343 } // Iteration over A accesses.
1344 } // Iteration over B accesses.
1346 auto InvalidateGroupIfMemberMayWrap = [&](InterleaveGroup<Instruction> *Group,
1347 int Index,
1348 std::string FirstOrLast) -> bool {
1349 Instruction *Member = Group->getMember(Index);
1350 assert(Member && "Group member does not exist");
1351 Value *MemberPtr = getLoadStorePointerOperand(Member);
1352 Type *AccessTy = getLoadStoreType(Member);
1353 if (getPtrStride(PSE, AccessTy, MemberPtr, TheLoop, Strides,
1354 /*Assume=*/false, /*ShouldCheckWrap=*/true).value_or(0))
1355 return false;
1356 LLVM_DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "
1357 << FirstOrLast
1358 << " group member potentially pointer-wrapping.\n");
1359 releaseGroup(Group);
1360 return true;
1363 // Remove interleaved groups with gaps whose memory
1364 // accesses may wrap around. We have to revisit the getPtrStride analysis,
1365 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
1366 // not check wrapping (see documentation there).
1367 // FORNOW we use Assume=false;
1368 // TODO: Change to Assume=true but making sure we don't exceed the threshold
1369 // of runtime SCEV assumptions checks (thereby potentially failing to
1370 // vectorize altogether).
1371 // Additional optional optimizations:
1372 // TODO: If we are peeling the loop and we know that the first pointer doesn't
1373 // wrap then we can deduce that all pointers in the group don't wrap.
1374 // This means that we can forcefully peel the loop in order to only have to
1375 // check the first pointer for no-wrap. When we'll change to use Assume=true
1376 // we'll only need at most one runtime check per interleaved group.
1377 for (auto *Group : LoadGroups) {
1378 // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1379 // load would wrap around the address space we would do a memory access at
1380 // nullptr even without the transformation.
1381 if (Group->getNumMembers() == Group->getFactor())
1382 continue;
1384 // Case 2: If first and last members of the group don't wrap this implies
1385 // that all the pointers in the group don't wrap.
1386 // So we check only group member 0 (which is always guaranteed to exist),
1387 // and group member Factor - 1; If the latter doesn't exist we rely on
1388 // peeling (if it is a non-reversed accsess -- see Case 3).
1389 if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first")))
1390 continue;
1391 if (Group->getMember(Group->getFactor() - 1))
1392 InvalidateGroupIfMemberMayWrap(Group, Group->getFactor() - 1,
1393 std::string("last"));
1394 else {
1395 // Case 3: A non-reversed interleaved load group with gaps: We need
1396 // to execute at least one scalar epilogue iteration. This will ensure
1397 // we don't speculatively access memory out-of-bounds. We only need
1398 // to look for a member at index factor - 1, since every group must have
1399 // a member at index zero.
1400 if (Group->isReverse()) {
1401 LLVM_DEBUG(
1402 dbgs() << "LV: Invalidate candidate interleaved group due to "
1403 "a reverse access with gaps.\n");
1404 releaseGroup(Group);
1405 continue;
1407 LLVM_DEBUG(
1408 dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
1409 RequiresScalarEpilogue = true;
1413 for (auto *Group : StoreGroups) {
1414 // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1415 // store would wrap around the address space we would do a memory access at
1416 // nullptr even without the transformation.
1417 if (Group->getNumMembers() == Group->getFactor())
1418 continue;
1420 // Interleave-store-group with gaps is implemented using masked wide store.
1421 // Remove interleaved store groups with gaps if
1422 // masked-interleaved-accesses are not enabled by the target.
1423 if (!EnablePredicatedInterleavedMemAccesses) {
1424 LLVM_DEBUG(
1425 dbgs() << "LV: Invalidate candidate interleaved store group due "
1426 "to gaps.\n");
1427 releaseGroup(Group);
1428 continue;
1431 // Case 2: If first and last members of the group don't wrap this implies
1432 // that all the pointers in the group don't wrap.
1433 // So we check only group member 0 (which is always guaranteed to exist),
1434 // and the last group member. Case 3 (scalar epilog) is not relevant for
1435 // stores with gaps, which are implemented with masked-store (rather than
1436 // speculative access, as in loads).
1437 if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first")))
1438 continue;
1439 for (int Index = Group->getFactor() - 1; Index > 0; Index--)
1440 if (Group->getMember(Index)) {
1441 InvalidateGroupIfMemberMayWrap(Group, Index, std::string("last"));
1442 break;
1447 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
1448 // If no group had triggered the requirement to create an epilogue loop,
1449 // there is nothing to do.
1450 if (!requiresScalarEpilogue())
1451 return;
1453 bool ReleasedGroup = false;
1454 // Release groups requiring scalar epilogues. Note that this also removes them
1455 // from InterleaveGroups.
1456 for (auto *Group : make_early_inc_range(InterleaveGroups)) {
1457 if (!Group->requiresScalarEpilogue())
1458 continue;
1459 LLVM_DEBUG(
1460 dbgs()
1461 << "LV: Invalidate candidate interleaved group due to gaps that "
1462 "require a scalar epilogue (not allowed under optsize) and cannot "
1463 "be masked (not enabled). \n");
1464 releaseGroup(Group);
1465 ReleasedGroup = true;
1467 assert(ReleasedGroup && "At least one group must be invalidated, as a "
1468 "scalar epilogue was required");
1469 (void)ReleasedGroup;
1470 RequiresScalarEpilogue = false;
1473 template <typename InstT>
1474 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
1475 llvm_unreachable("addMetadata can only be used for Instruction");
1478 namespace llvm {
1479 template <>
1480 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
1481 SmallVector<Value *, 4> VL;
1482 std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
1483 [](std::pair<int, Instruction *> p) { return p.second; });
1484 propagateMetadata(NewInst, VL);
1486 } // namespace llvm