[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / lib / ExecutionEngine / RuntimeDyld / RuntimeDyld.cpp
bloba9aaff42433f6556d8eb70878658b3c2205840a0
1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the MC-JIT runtime dynamic linker.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ExecutionEngine/RuntimeDyld.h"
14 #include "RuntimeDyldCOFF.h"
15 #include "RuntimeDyldELF.h"
16 #include "RuntimeDyldImpl.h"
17 #include "RuntimeDyldMachO.h"
18 #include "llvm/Object/COFF.h"
19 #include "llvm/Object/ELFObjectFile.h"
20 #include "llvm/Support/Alignment.h"
21 #include "llvm/Support/MSVCErrorWorkarounds.h"
22 #include "llvm/Support/MathExtras.h"
23 #include <mutex>
25 #include <future>
27 using namespace llvm;
28 using namespace llvm::object;
30 #define DEBUG_TYPE "dyld"
32 namespace {
34 enum RuntimeDyldErrorCode {
35 GenericRTDyldError = 1
38 // FIXME: This class is only here to support the transition to llvm::Error. It
39 // will be removed once this transition is complete. Clients should prefer to
40 // deal with the Error value directly, rather than converting to error_code.
41 class RuntimeDyldErrorCategory : public std::error_category {
42 public:
43 const char *name() const noexcept override { return "runtimedyld"; }
45 std::string message(int Condition) const override {
46 switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
47 case GenericRTDyldError: return "Generic RuntimeDyld error";
49 llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
55 char RuntimeDyldError::ID = 0;
57 void RuntimeDyldError::log(raw_ostream &OS) const {
58 OS << ErrMsg << "\n";
61 std::error_code RuntimeDyldError::convertToErrorCode() const {
62 static RuntimeDyldErrorCategory RTDyldErrorCategory;
63 return std::error_code(GenericRTDyldError, RTDyldErrorCategory);
66 // Empty out-of-line virtual destructor as the key function.
67 RuntimeDyldImpl::~RuntimeDyldImpl() = default;
69 // Pin LoadedObjectInfo's vtables to this file.
70 void RuntimeDyld::LoadedObjectInfo::anchor() {}
72 namespace llvm {
74 void RuntimeDyldImpl::registerEHFrames() {}
76 void RuntimeDyldImpl::deregisterEHFrames() {
77 MemMgr.deregisterEHFrames();
80 #ifndef NDEBUG
81 static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
82 dbgs() << "----- Contents of section " << S.getName() << " " << State
83 << " -----";
85 if (S.getAddress() == nullptr) {
86 dbgs() << "\n <section not emitted>\n";
87 return;
90 const unsigned ColsPerRow = 16;
92 uint8_t *DataAddr = S.getAddress();
93 uint64_t LoadAddr = S.getLoadAddress();
95 unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
96 unsigned BytesRemaining = S.getSize();
98 if (StartPadding) {
99 dbgs() << "\n" << format("0x%016" PRIx64,
100 LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
101 while (StartPadding--)
102 dbgs() << " ";
105 while (BytesRemaining > 0) {
106 if ((LoadAddr & (ColsPerRow - 1)) == 0)
107 dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
109 dbgs() << " " << format("%02x", *DataAddr);
111 ++DataAddr;
112 ++LoadAddr;
113 --BytesRemaining;
116 dbgs() << "\n";
118 #endif
120 // Resolve the relocations for all symbols we currently know about.
121 void RuntimeDyldImpl::resolveRelocations() {
122 std::lock_guard<sys::Mutex> locked(lock);
124 // Print out the sections prior to relocation.
125 LLVM_DEBUG({
126 for (SectionEntry &S : Sections)
127 dumpSectionMemory(S, "before relocations");
130 // First, resolve relocations associated with external symbols.
131 if (auto Err = resolveExternalSymbols()) {
132 HasError = true;
133 ErrorStr = toString(std::move(Err));
136 resolveLocalRelocations();
138 // Print out sections after relocation.
139 LLVM_DEBUG({
140 for (SectionEntry &S : Sections)
141 dumpSectionMemory(S, "after relocations");
145 void RuntimeDyldImpl::resolveLocalRelocations() {
146 // Iterate over all outstanding relocations
147 for (const auto &Rel : Relocations) {
148 // The Section here (Sections[i]) refers to the section in which the
149 // symbol for the relocation is located. The SectionID in the relocation
150 // entry provides the section to which the relocation will be applied.
151 unsigned Idx = Rel.first;
152 uint64_t Addr = getSectionLoadAddress(Idx);
153 LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"
154 << format("%p", (uintptr_t)Addr) << "\n");
155 resolveRelocationList(Rel.second, Addr);
157 Relocations.clear();
160 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
161 uint64_t TargetAddress) {
162 std::lock_guard<sys::Mutex> locked(lock);
163 for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
164 if (Sections[i].getAddress() == LocalAddress) {
165 reassignSectionAddress(i, TargetAddress);
166 return;
169 llvm_unreachable("Attempting to remap address of unknown section!");
172 static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
173 uint64_t &Result) {
174 Expected<uint64_t> AddressOrErr = Sym.getAddress();
175 if (!AddressOrErr)
176 return AddressOrErr.takeError();
177 Result = *AddressOrErr - Sec.getAddress();
178 return Error::success();
181 Expected<RuntimeDyldImpl::ObjSectionToIDMap>
182 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
183 std::lock_guard<sys::Mutex> locked(lock);
185 // Save information about our target
186 Arch = (Triple::ArchType)Obj.getArch();
187 IsTargetLittleEndian = Obj.isLittleEndian();
188 setMipsABI(Obj);
190 // Compute the memory size required to load all sections to be loaded
191 // and pass this information to the memory manager
192 if (MemMgr.needsToReserveAllocationSpace()) {
193 uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
194 Align CodeAlign, RODataAlign, RWDataAlign;
195 if (auto Err = computeTotalAllocSize(Obj, CodeSize, CodeAlign, RODataSize,
196 RODataAlign, RWDataSize, RWDataAlign))
197 return std::move(Err);
198 MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
199 RWDataSize, RWDataAlign);
202 // Used sections from the object file
203 ObjSectionToIDMap LocalSections;
205 // Common symbols requiring allocation, with their sizes and alignments
206 CommonSymbolList CommonSymbolsToAllocate;
208 uint64_t CommonSize = 0;
209 uint32_t CommonAlign = 0;
211 // First, collect all weak and common symbols. We need to know if stronger
212 // definitions occur elsewhere.
213 JITSymbolResolver::LookupSet ResponsibilitySet;
215 JITSymbolResolver::LookupSet Symbols;
216 for (auto &Sym : Obj.symbols()) {
217 Expected<uint32_t> FlagsOrErr = Sym.getFlags();
218 if (!FlagsOrErr)
219 // TODO: Test this error.
220 return FlagsOrErr.takeError();
221 if ((*FlagsOrErr & SymbolRef::SF_Common) ||
222 (*FlagsOrErr & SymbolRef::SF_Weak)) {
223 // Get symbol name.
224 if (auto NameOrErr = Sym.getName())
225 Symbols.insert(*NameOrErr);
226 else
227 return NameOrErr.takeError();
231 if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols))
232 ResponsibilitySet = std::move(*ResultOrErr);
233 else
234 return ResultOrErr.takeError();
237 // Parse symbols
238 LLVM_DEBUG(dbgs() << "Parse symbols:\n");
239 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
240 ++I) {
241 Expected<uint32_t> FlagsOrErr = I->getFlags();
242 if (!FlagsOrErr)
243 // TODO: Test this error.
244 return FlagsOrErr.takeError();
246 // Skip undefined symbols.
247 if (*FlagsOrErr & SymbolRef::SF_Undefined)
248 continue;
250 // Get the symbol type.
251 object::SymbolRef::Type SymType;
252 if (auto SymTypeOrErr = I->getType())
253 SymType = *SymTypeOrErr;
254 else
255 return SymTypeOrErr.takeError();
257 // Get symbol name.
258 StringRef Name;
259 if (auto NameOrErr = I->getName())
260 Name = *NameOrErr;
261 else
262 return NameOrErr.takeError();
264 // Compute JIT symbol flags.
265 auto JITSymFlags = getJITSymbolFlags(*I);
266 if (!JITSymFlags)
267 return JITSymFlags.takeError();
269 // If this is a weak definition, check to see if there's a strong one.
270 // If there is, skip this symbol (we won't be providing it: the strong
271 // definition will). If there's no strong definition, make this definition
272 // strong.
273 if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) {
274 // First check whether there's already a definition in this instance.
275 if (GlobalSymbolTable.count(Name))
276 continue;
278 // If we're not responsible for this symbol, skip it.
279 if (!ResponsibilitySet.count(Name))
280 continue;
282 // Otherwise update the flags on the symbol to make this definition
283 // strong.
284 if (JITSymFlags->isWeak())
285 *JITSymFlags &= ~JITSymbolFlags::Weak;
286 if (JITSymFlags->isCommon()) {
287 *JITSymFlags &= ~JITSymbolFlags::Common;
288 uint32_t Align = I->getAlignment();
289 uint64_t Size = I->getCommonSize();
290 if (!CommonAlign)
291 CommonAlign = Align;
292 CommonSize = alignTo(CommonSize, Align) + Size;
293 CommonSymbolsToAllocate.push_back(*I);
297 if (*FlagsOrErr & SymbolRef::SF_Absolute &&
298 SymType != object::SymbolRef::ST_File) {
299 uint64_t Addr = 0;
300 if (auto AddrOrErr = I->getAddress())
301 Addr = *AddrOrErr;
302 else
303 return AddrOrErr.takeError();
305 unsigned SectionID = AbsoluteSymbolSection;
307 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name
308 << " SID: " << SectionID
309 << " Offset: " << format("%p", (uintptr_t)Addr)
310 << " flags: " << *FlagsOrErr << "\n");
311 // Skip absolute symbol relocations.
312 if (!Name.empty()) {
313 auto Result = GlobalSymbolTable.insert_or_assign(
314 Name, SymbolTableEntry(SectionID, Addr, *JITSymFlags));
315 processNewSymbol(*I, Result.first->getValue());
317 } else if (SymType == object::SymbolRef::ST_Function ||
318 SymType == object::SymbolRef::ST_Data ||
319 SymType == object::SymbolRef::ST_Unknown ||
320 SymType == object::SymbolRef::ST_Other) {
322 section_iterator SI = Obj.section_end();
323 if (auto SIOrErr = I->getSection())
324 SI = *SIOrErr;
325 else
326 return SIOrErr.takeError();
328 if (SI == Obj.section_end())
329 continue;
331 // Get symbol offset.
332 uint64_t SectOffset;
333 if (auto Err = getOffset(*I, *SI, SectOffset))
334 return std::move(Err);
336 bool IsCode = SI->isText();
337 unsigned SectionID;
338 if (auto SectionIDOrErr =
339 findOrEmitSection(Obj, *SI, IsCode, LocalSections))
340 SectionID = *SectionIDOrErr;
341 else
342 return SectionIDOrErr.takeError();
344 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
345 << " SID: " << SectionID
346 << " Offset: " << format("%p", (uintptr_t)SectOffset)
347 << " flags: " << *FlagsOrErr << "\n");
348 // Skip absolute symbol relocations.
349 if (!Name.empty()) {
350 auto Result = GlobalSymbolTable.insert_or_assign(
351 Name, SymbolTableEntry(SectionID, SectOffset, *JITSymFlags));
352 processNewSymbol(*I, Result.first->getValue());
357 // Allocate common symbols
358 if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize,
359 CommonAlign))
360 return std::move(Err);
362 // Parse and process relocations
363 LLVM_DEBUG(dbgs() << "Parse relocations:\n");
364 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
365 SI != SE; ++SI) {
366 StubMap Stubs;
368 Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
369 if (!RelSecOrErr)
370 return RelSecOrErr.takeError();
372 section_iterator RelocatedSection = *RelSecOrErr;
373 if (RelocatedSection == SE)
374 continue;
376 relocation_iterator I = SI->relocation_begin();
377 relocation_iterator E = SI->relocation_end();
379 if (I == E && !ProcessAllSections)
380 continue;
382 bool IsCode = RelocatedSection->isText();
383 unsigned SectionID = 0;
384 if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
385 LocalSections))
386 SectionID = *SectionIDOrErr;
387 else
388 return SectionIDOrErr.takeError();
390 LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
392 for (; I != E;)
393 if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
394 I = *IOrErr;
395 else
396 return IOrErr.takeError();
398 // If there is a NotifyStubEmitted callback set, call it to register any
399 // stubs created for this section.
400 if (NotifyStubEmitted) {
401 StringRef FileName = Obj.getFileName();
402 StringRef SectionName = Sections[SectionID].getName();
403 for (auto &KV : Stubs) {
405 auto &VR = KV.first;
406 uint64_t StubAddr = KV.second;
408 // If this is a named stub, just call NotifyStubEmitted.
409 if (VR.SymbolName) {
410 NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID,
411 StubAddr);
412 continue;
415 // Otherwise we will have to try a reverse lookup on the globla symbol table.
416 for (auto &GSTMapEntry : GlobalSymbolTable) {
417 StringRef SymbolName = GSTMapEntry.first();
418 auto &GSTEntry = GSTMapEntry.second;
419 if (GSTEntry.getSectionID() == VR.SectionID &&
420 GSTEntry.getOffset() == VR.Offset) {
421 NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID,
422 StubAddr);
423 break;
430 // Process remaining sections
431 if (ProcessAllSections) {
432 LLVM_DEBUG(dbgs() << "Process remaining sections:\n");
433 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
434 SI != SE; ++SI) {
436 /* Ignore already loaded sections */
437 if (LocalSections.find(*SI) != LocalSections.end())
438 continue;
440 bool IsCode = SI->isText();
441 if (auto SectionIDOrErr =
442 findOrEmitSection(Obj, *SI, IsCode, LocalSections))
443 LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n");
444 else
445 return SectionIDOrErr.takeError();
449 // Give the subclasses a chance to tie-up any loose ends.
450 if (auto Err = finalizeLoad(Obj, LocalSections))
451 return std::move(Err);
453 // for (auto E : LocalSections)
454 // llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
456 return LocalSections;
459 // A helper method for computeTotalAllocSize.
460 // Computes the memory size required to allocate sections with the given sizes,
461 // assuming that all sections are allocated with the given alignment
462 static uint64_t
463 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
464 Align Alignment) {
465 uint64_t TotalSize = 0;
466 for (uint64_t SectionSize : SectionSizes)
467 TotalSize += alignTo(SectionSize, Alignment);
468 return TotalSize;
471 static bool isRequiredForExecution(const SectionRef Section) {
472 const ObjectFile *Obj = Section.getObject();
473 if (isa<object::ELFObjectFileBase>(Obj))
474 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
475 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
476 const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
477 // Avoid loading zero-sized COFF sections.
478 // In PE files, VirtualSize gives the section size, and SizeOfRawData
479 // may be zero for sections with content. In Obj files, SizeOfRawData
480 // gives the section size, and VirtualSize is always zero. Hence
481 // the need to check for both cases below.
482 bool HasContent =
483 (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
484 bool IsDiscardable =
485 CoffSection->Characteristics &
486 (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
487 return HasContent && !IsDiscardable;
490 assert(isa<MachOObjectFile>(Obj));
491 return true;
494 static bool isReadOnlyData(const SectionRef Section) {
495 const ObjectFile *Obj = Section.getObject();
496 if (isa<object::ELFObjectFileBase>(Obj))
497 return !(ELFSectionRef(Section).getFlags() &
498 (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
499 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
500 return ((COFFObj->getCOFFSection(Section)->Characteristics &
501 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
502 | COFF::IMAGE_SCN_MEM_READ
503 | COFF::IMAGE_SCN_MEM_WRITE))
505 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
506 | COFF::IMAGE_SCN_MEM_READ));
508 assert(isa<MachOObjectFile>(Obj));
509 return false;
512 static bool isZeroInit(const SectionRef Section) {
513 const ObjectFile *Obj = Section.getObject();
514 if (isa<object::ELFObjectFileBase>(Obj))
515 return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
516 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
517 return COFFObj->getCOFFSection(Section)->Characteristics &
518 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
520 auto *MachO = cast<MachOObjectFile>(Obj);
521 unsigned SectionType = MachO->getSectionType(Section);
522 return SectionType == MachO::S_ZEROFILL ||
523 SectionType == MachO::S_GB_ZEROFILL;
526 static bool isTLS(const SectionRef Section) {
527 const ObjectFile *Obj = Section.getObject();
528 if (isa<object::ELFObjectFileBase>(Obj))
529 return ELFSectionRef(Section).getFlags() & ELF::SHF_TLS;
530 return false;
533 // Compute an upper bound of the memory size that is required to load all
534 // sections
535 Error RuntimeDyldImpl::computeTotalAllocSize(
536 const ObjectFile &Obj, uint64_t &CodeSize, Align &CodeAlign,
537 uint64_t &RODataSize, Align &RODataAlign, uint64_t &RWDataSize,
538 Align &RWDataAlign) {
539 // Compute the size of all sections required for execution
540 std::vector<uint64_t> CodeSectionSizes;
541 std::vector<uint64_t> ROSectionSizes;
542 std::vector<uint64_t> RWSectionSizes;
544 // Collect sizes of all sections to be loaded;
545 // also determine the max alignment of all sections
546 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
547 SI != SE; ++SI) {
548 const SectionRef &Section = *SI;
550 bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections;
552 // Consider only the sections that are required to be loaded for execution
553 if (IsRequired) {
554 uint64_t DataSize = Section.getSize();
555 Align Alignment = Section.getAlignment();
556 bool IsCode = Section.isText();
557 bool IsReadOnly = isReadOnlyData(Section);
558 bool IsTLS = isTLS(Section);
560 Expected<StringRef> NameOrErr = Section.getName();
561 if (!NameOrErr)
562 return NameOrErr.takeError();
563 StringRef Name = *NameOrErr;
565 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
567 uint64_t PaddingSize = 0;
568 if (Name == ".eh_frame")
569 PaddingSize += 4;
570 if (StubBufSize != 0)
571 PaddingSize += getStubAlignment().value() - 1;
573 uint64_t SectionSize = DataSize + PaddingSize + StubBufSize;
575 // The .eh_frame section (at least on Linux) needs an extra four bytes
576 // padded
577 // with zeroes added at the end. For MachO objects, this section has a
578 // slightly different name, so this won't have any effect for MachO
579 // objects.
580 if (Name == ".eh_frame")
581 SectionSize += 4;
583 if (!SectionSize)
584 SectionSize = 1;
586 if (IsCode) {
587 CodeAlign = std::max(CodeAlign, Alignment);
588 CodeSectionSizes.push_back(SectionSize);
589 } else if (IsReadOnly) {
590 RODataAlign = std::max(RODataAlign, Alignment);
591 ROSectionSizes.push_back(SectionSize);
592 } else if (!IsTLS) {
593 RWDataAlign = std::max(RWDataAlign, Alignment);
594 RWSectionSizes.push_back(SectionSize);
599 // Compute Global Offset Table size. If it is not zero we
600 // also update alignment, which is equal to a size of a
601 // single GOT entry.
602 if (unsigned GotSize = computeGOTSize(Obj)) {
603 RWSectionSizes.push_back(GotSize);
604 RWDataAlign = std::max(RWDataAlign, Align(getGOTEntrySize()));
607 // Compute the size of all common symbols
608 uint64_t CommonSize = 0;
609 Align CommonAlign;
610 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
611 ++I) {
612 Expected<uint32_t> FlagsOrErr = I->getFlags();
613 if (!FlagsOrErr)
614 // TODO: Test this error.
615 return FlagsOrErr.takeError();
616 if (*FlagsOrErr & SymbolRef::SF_Common) {
617 // Add the common symbols to a list. We'll allocate them all below.
618 uint64_t Size = I->getCommonSize();
619 Align Alignment = Align(I->getAlignment());
620 // If this is the first common symbol, use its alignment as the alignment
621 // for the common symbols section.
622 if (CommonSize == 0)
623 CommonAlign = Alignment;
624 CommonSize = alignTo(CommonSize, Alignment) + Size;
627 if (CommonSize != 0) {
628 RWSectionSizes.push_back(CommonSize);
629 RWDataAlign = std::max(RWDataAlign, CommonAlign);
632 if (!CodeSectionSizes.empty()) {
633 // Add 64 bytes for a potential IFunc resolver stub
634 CodeSectionSizes.push_back(64);
637 // Compute the required allocation space for each different type of sections
638 // (code, read-only data, read-write data) assuming that all sections are
639 // allocated with the max alignment. Note that we cannot compute with the
640 // individual alignments of the sections, because then the required size
641 // depends on the order, in which the sections are allocated.
642 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
643 RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
644 RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
646 return Error::success();
649 // compute GOT size
650 unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) {
651 size_t GotEntrySize = getGOTEntrySize();
652 if (!GotEntrySize)
653 return 0;
655 size_t GotSize = 0;
656 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
657 SI != SE; ++SI) {
659 for (const RelocationRef &Reloc : SI->relocations())
660 if (relocationNeedsGot(Reloc))
661 GotSize += GotEntrySize;
664 return GotSize;
667 // compute stub buffer size for the given section
668 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
669 const SectionRef &Section) {
670 if (!MemMgr.allowStubAllocation()) {
671 return 0;
674 unsigned StubSize = getMaxStubSize();
675 if (StubSize == 0) {
676 return 0;
678 // FIXME: this is an inefficient way to handle this. We should computed the
679 // necessary section allocation size in loadObject by walking all the sections
680 // once.
681 unsigned StubBufSize = 0;
682 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
683 SI != SE; ++SI) {
685 Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
686 if (!RelSecOrErr)
687 report_fatal_error(Twine(toString(RelSecOrErr.takeError())));
689 section_iterator RelSecI = *RelSecOrErr;
690 if (!(RelSecI == Section))
691 continue;
693 for (const RelocationRef &Reloc : SI->relocations())
694 if (relocationNeedsStub(Reloc))
695 StubBufSize += StubSize;
698 // Get section data size and alignment
699 uint64_t DataSize = Section.getSize();
700 Align Alignment = Section.getAlignment();
702 // Add stubbuf size alignment
703 Align StubAlignment = getStubAlignment();
704 Align EndAlignment = commonAlignment(Alignment, DataSize);
705 if (StubAlignment > EndAlignment)
706 StubBufSize += StubAlignment.value() - EndAlignment.value();
707 return StubBufSize;
710 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
711 unsigned Size) const {
712 uint64_t Result = 0;
713 if (IsTargetLittleEndian) {
714 Src += Size - 1;
715 while (Size--)
716 Result = (Result << 8) | *Src--;
717 } else
718 while (Size--)
719 Result = (Result << 8) | *Src++;
721 return Result;
724 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
725 unsigned Size) const {
726 if (IsTargetLittleEndian) {
727 while (Size--) {
728 *Dst++ = Value & 0xFF;
729 Value >>= 8;
731 } else {
732 Dst += Size - 1;
733 while (Size--) {
734 *Dst-- = Value & 0xFF;
735 Value >>= 8;
740 Expected<JITSymbolFlags>
741 RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) {
742 return JITSymbolFlags::fromObjectSymbol(SR);
745 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
746 CommonSymbolList &SymbolsToAllocate,
747 uint64_t CommonSize,
748 uint32_t CommonAlign) {
749 if (SymbolsToAllocate.empty())
750 return Error::success();
752 // Allocate memory for the section
753 unsigned SectionID = Sections.size();
754 uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
755 "<common symbols>", false);
756 if (!Addr)
757 report_fatal_error("Unable to allocate memory for common symbols!");
758 uint64_t Offset = 0;
759 Sections.push_back(
760 SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
761 memset(Addr, 0, CommonSize);
763 LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
764 << " new addr: " << format("%p", Addr)
765 << " DataSize: " << CommonSize << "\n");
767 // Assign the address of each symbol
768 for (auto &Sym : SymbolsToAllocate) {
769 uint32_t Alignment = Sym.getAlignment();
770 uint64_t Size = Sym.getCommonSize();
771 StringRef Name;
772 if (auto NameOrErr = Sym.getName())
773 Name = *NameOrErr;
774 else
775 return NameOrErr.takeError();
776 if (Alignment) {
777 // This symbol has an alignment requirement.
778 uint64_t AlignOffset =
779 offsetToAlignment((uint64_t)Addr, Align(Alignment));
780 Addr += AlignOffset;
781 Offset += AlignOffset;
783 auto JITSymFlags = getJITSymbolFlags(Sym);
785 if (!JITSymFlags)
786 return JITSymFlags.takeError();
788 LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
789 << format("%p", Addr) << "\n");
790 if (!Name.empty()) // Skip absolute symbol relocations.
791 GlobalSymbolTable[Name] =
792 SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags));
793 Offset += Size;
794 Addr += Size;
797 return Error::success();
800 Expected<unsigned>
801 RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
802 const SectionRef &Section,
803 bool IsCode) {
804 StringRef data;
805 Align Alignment = Section.getAlignment();
807 unsigned PaddingSize = 0;
808 unsigned StubBufSize = 0;
809 bool IsRequired = isRequiredForExecution(Section);
810 bool IsVirtual = Section.isVirtual();
811 bool IsZeroInit = isZeroInit(Section);
812 bool IsReadOnly = isReadOnlyData(Section);
813 bool IsTLS = isTLS(Section);
814 uint64_t DataSize = Section.getSize();
816 Expected<StringRef> NameOrErr = Section.getName();
817 if (!NameOrErr)
818 return NameOrErr.takeError();
819 StringRef Name = *NameOrErr;
821 StubBufSize = computeSectionStubBufSize(Obj, Section);
823 // The .eh_frame section (at least on Linux) needs an extra four bytes padded
824 // with zeroes added at the end. For MachO objects, this section has a
825 // slightly different name, so this won't have any effect for MachO objects.
826 if (Name == ".eh_frame")
827 PaddingSize = 4;
829 uintptr_t Allocate;
830 unsigned SectionID = Sections.size();
831 uint8_t *Addr;
832 uint64_t LoadAddress = 0;
833 const char *pData = nullptr;
835 // If this section contains any bits (i.e. isn't a virtual or bss section),
836 // grab a reference to them.
837 if (!IsVirtual && !IsZeroInit) {
838 // In either case, set the location of the unrelocated section in memory,
839 // since we still process relocations for it even if we're not applying them.
840 if (Expected<StringRef> E = Section.getContents())
841 data = *E;
842 else
843 return E.takeError();
844 pData = data.data();
847 // If there are any stubs then the section alignment needs to be at least as
848 // high as stub alignment or padding calculations may by incorrect when the
849 // section is remapped.
850 if (StubBufSize != 0) {
851 Alignment = std::max(Alignment, getStubAlignment());
852 PaddingSize += getStubAlignment().value() - 1;
855 // Some sections, such as debug info, don't need to be loaded for execution.
856 // Process those only if explicitly requested.
857 if (IsRequired || ProcessAllSections) {
858 Allocate = DataSize + PaddingSize + StubBufSize;
859 if (!Allocate)
860 Allocate = 1;
861 if (IsTLS) {
862 auto TLSSection = MemMgr.allocateTLSSection(Allocate, Alignment.value(),
863 SectionID, Name);
864 Addr = TLSSection.InitializationImage;
865 LoadAddress = TLSSection.Offset;
866 } else if (IsCode) {
867 Addr = MemMgr.allocateCodeSection(Allocate, Alignment.value(), SectionID,
868 Name);
869 } else {
870 Addr = MemMgr.allocateDataSection(Allocate, Alignment.value(), SectionID,
871 Name, IsReadOnly);
873 if (!Addr)
874 report_fatal_error("Unable to allocate section memory!");
876 // Zero-initialize or copy the data from the image
877 if (IsZeroInit || IsVirtual)
878 memset(Addr, 0, DataSize);
879 else
880 memcpy(Addr, pData, DataSize);
882 // Fill in any extra bytes we allocated for padding
883 if (PaddingSize != 0) {
884 memset(Addr + DataSize, 0, PaddingSize);
885 // Update the DataSize variable to include padding.
886 DataSize += PaddingSize;
888 // Align DataSize to stub alignment if we have any stubs (PaddingSize will
889 // have been increased above to account for this).
890 if (StubBufSize > 0)
891 DataSize &= -(uint64_t)getStubAlignment().value();
894 LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: "
895 << Name << " obj addr: " << format("%p", pData)
896 << " new addr: " << format("%p", Addr) << " DataSize: "
897 << DataSize << " StubBufSize: " << StubBufSize
898 << " Allocate: " << Allocate << "\n");
899 } else {
900 // Even if we didn't load the section, we need to record an entry for it
901 // to handle later processing (and by 'handle' I mean don't do anything
902 // with these sections).
903 Allocate = 0;
904 Addr = nullptr;
905 LLVM_DEBUG(
906 dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
907 << " obj addr: " << format("%p", data.data()) << " new addr: 0"
908 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
909 << " Allocate: " << Allocate << "\n");
912 Sections.push_back(
913 SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
915 // The load address of a TLS section is not equal to the address of its
916 // initialization image
917 if (IsTLS)
918 Sections.back().setLoadAddress(LoadAddress);
919 // Debug info sections are linked as if their load address was zero
920 if (!IsRequired)
921 Sections.back().setLoadAddress(0);
923 return SectionID;
926 Expected<unsigned>
927 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
928 const SectionRef &Section,
929 bool IsCode,
930 ObjSectionToIDMap &LocalSections) {
932 unsigned SectionID = 0;
933 ObjSectionToIDMap::iterator i = LocalSections.find(Section);
934 if (i != LocalSections.end())
935 SectionID = i->second;
936 else {
937 if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
938 SectionID = *SectionIDOrErr;
939 else
940 return SectionIDOrErr.takeError();
941 LocalSections[Section] = SectionID;
943 return SectionID;
946 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
947 unsigned SectionID) {
948 Relocations[SectionID].push_back(RE);
951 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
952 StringRef SymbolName) {
953 // Relocation by symbol. If the symbol is found in the global symbol table,
954 // create an appropriate section relocation. Otherwise, add it to
955 // ExternalSymbolRelocations.
956 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
957 if (Loc == GlobalSymbolTable.end()) {
958 ExternalSymbolRelocations[SymbolName].push_back(RE);
959 } else {
960 assert(!SymbolName.empty() &&
961 "Empty symbol should not be in GlobalSymbolTable");
962 // Copy the RE since we want to modify its addend.
963 RelocationEntry RECopy = RE;
964 const auto &SymInfo = Loc->second;
965 RECopy.Addend += SymInfo.getOffset();
966 Relocations[SymInfo.getSectionID()].push_back(RECopy);
970 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
971 unsigned AbiVariant) {
972 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be ||
973 Arch == Triple::aarch64_32) {
974 // This stub has to be able to access the full address space,
975 // since symbol lookup won't necessarily find a handy, in-range,
976 // PLT stub for functions which could be anywhere.
977 // Stub can use ip0 (== x16) to calculate address
978 writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr>
979 writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr>
980 writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr>
981 writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
982 writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
984 return Addr;
985 } else if (Arch == Triple::arm || Arch == Triple::armeb) {
986 // TODO: There is only ARM far stub now. We should add the Thumb stub,
987 // and stubs for branches Thumb - ARM and ARM - Thumb.
988 writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4]
989 return Addr + 4;
990 } else if (IsMipsO32ABI || IsMipsN32ABI) {
991 // 0: 3c190000 lui t9,%hi(addr).
992 // 4: 27390000 addiu t9,t9,%lo(addr).
993 // 8: 03200008 jr t9.
994 // c: 00000000 nop.
995 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
996 const unsigned NopInstr = 0x0;
997 unsigned JrT9Instr = 0x03200008;
998 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 ||
999 (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
1000 JrT9Instr = 0x03200009;
1002 writeBytesUnaligned(LuiT9Instr, Addr, 4);
1003 writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4);
1004 writeBytesUnaligned(JrT9Instr, Addr + 8, 4);
1005 writeBytesUnaligned(NopInstr, Addr + 12, 4);
1006 return Addr;
1007 } else if (IsMipsN64ABI) {
1008 // 0: 3c190000 lui t9,%highest(addr).
1009 // 4: 67390000 daddiu t9,t9,%higher(addr).
1010 // 8: 0019CC38 dsll t9,t9,16.
1011 // c: 67390000 daddiu t9,t9,%hi(addr).
1012 // 10: 0019CC38 dsll t9,t9,16.
1013 // 14: 67390000 daddiu t9,t9,%lo(addr).
1014 // 18: 03200008 jr t9.
1015 // 1c: 00000000 nop.
1016 const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000,
1017 DsllT9Instr = 0x19CC38;
1018 const unsigned NopInstr = 0x0;
1019 unsigned JrT9Instr = 0x03200008;
1020 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
1021 JrT9Instr = 0x03200009;
1023 writeBytesUnaligned(LuiT9Instr, Addr, 4);
1024 writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4);
1025 writeBytesUnaligned(DsllT9Instr, Addr + 8, 4);
1026 writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4);
1027 writeBytesUnaligned(DsllT9Instr, Addr + 16, 4);
1028 writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4);
1029 writeBytesUnaligned(JrT9Instr, Addr + 24, 4);
1030 writeBytesUnaligned(NopInstr, Addr + 28, 4);
1031 return Addr;
1032 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1033 // Depending on which version of the ELF ABI is in use, we need to
1034 // generate one of two variants of the stub. They both start with
1035 // the same sequence to load the target address into r12.
1036 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr)
1037 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr)
1038 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32
1039 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr)
1040 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr)
1041 if (AbiVariant == 2) {
1042 // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
1043 // The address is already in r12 as required by the ABI. Branch to it.
1044 writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1)
1045 writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
1046 writeInt32BE(Addr+28, 0x4E800420); // bctr
1047 } else {
1048 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
1049 // Load the function address on r11 and sets it to control register. Also
1050 // loads the function TOC in r2 and environment pointer to r11.
1051 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1)
1052 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12)
1053 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12)
1054 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
1055 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2)
1056 writeInt32BE(Addr+40, 0x4E800420); // bctr
1058 return Addr;
1059 } else if (Arch == Triple::systemz) {
1060 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8
1061 writeInt16BE(Addr+2, 0x0000);
1062 writeInt16BE(Addr+4, 0x0004);
1063 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1
1064 // 8-byte address stored at Addr + 8
1065 return Addr;
1066 } else if (Arch == Triple::x86_64) {
1067 *Addr = 0xFF; // jmp
1068 *(Addr+1) = 0x25; // rip
1069 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
1070 } else if (Arch == Triple::x86) {
1071 *Addr = 0xE9; // 32-bit pc-relative jump.
1073 return Addr;
1076 // Assign an address to a symbol name and resolve all the relocations
1077 // associated with it.
1078 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
1079 uint64_t Addr) {
1080 // The address to use for relocation resolution is not
1081 // the address of the local section buffer. We must be doing
1082 // a remote execution environment of some sort. Relocations can't
1083 // be applied until all the sections have been moved. The client must
1084 // trigger this with a call to MCJIT::finalize() or
1085 // RuntimeDyld::resolveRelocations().
1087 // Addr is a uint64_t because we can't assume the pointer width
1088 // of the target is the same as that of the host. Just use a generic
1089 // "big enough" type.
1090 LLVM_DEBUG(
1091 dbgs() << "Reassigning address for section " << SectionID << " ("
1092 << Sections[SectionID].getName() << "): "
1093 << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())
1094 << " -> " << format("0x%016" PRIx64, Addr) << "\n");
1095 Sections[SectionID].setLoadAddress(Addr);
1098 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
1099 uint64_t Value) {
1100 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1101 const RelocationEntry &RE = Relocs[i];
1102 // Ignore relocations for sections that were not loaded
1103 if (RE.SectionID != AbsoluteSymbolSection &&
1104 Sections[RE.SectionID].getAddress() == nullptr)
1105 continue;
1106 resolveRelocation(RE, Value);
1110 void RuntimeDyldImpl::applyExternalSymbolRelocations(
1111 const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) {
1112 for (auto &RelocKV : ExternalSymbolRelocations) {
1113 StringRef Name = RelocKV.first();
1114 RelocationList &Relocs = RelocKV.second;
1115 if (Name.size() == 0) {
1116 // This is an absolute symbol, use an address of zero.
1117 LLVM_DEBUG(dbgs() << "Resolving absolute relocations."
1118 << "\n");
1119 resolveRelocationList(Relocs, 0);
1120 } else {
1121 uint64_t Addr = 0;
1122 JITSymbolFlags Flags;
1123 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
1124 if (Loc == GlobalSymbolTable.end()) {
1125 auto RRI = ExternalSymbolMap.find(Name);
1126 assert(RRI != ExternalSymbolMap.end() && "No result for symbol");
1127 Addr = RRI->second.getAddress();
1128 Flags = RRI->second.getFlags();
1129 } else {
1130 // We found the symbol in our global table. It was probably in a
1131 // Module that we loaded previously.
1132 const auto &SymInfo = Loc->second;
1133 Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
1134 SymInfo.getOffset();
1135 Flags = SymInfo.getFlags();
1138 // FIXME: Implement error handling that doesn't kill the host program!
1139 if (!Addr && !Resolver.allowsZeroSymbols())
1140 report_fatal_error(Twine("Program used external function '") + Name +
1141 "' which could not be resolved!");
1143 // If Resolver returned UINT64_MAX, the client wants to handle this symbol
1144 // manually and we shouldn't resolve its relocations.
1145 if (Addr != UINT64_MAX) {
1147 // Tweak the address based on the symbol flags if necessary.
1148 // For example, this is used by RuntimeDyldMachOARM to toggle the low bit
1149 // if the target symbol is Thumb.
1150 Addr = modifyAddressBasedOnFlags(Addr, Flags);
1152 LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
1153 << format("0x%lx", Addr) << "\n");
1154 resolveRelocationList(Relocs, Addr);
1158 ExternalSymbolRelocations.clear();
1161 Error RuntimeDyldImpl::resolveExternalSymbols() {
1162 StringMap<JITEvaluatedSymbol> ExternalSymbolMap;
1164 // Resolution can trigger emission of more symbols, so iterate until
1165 // we've resolved *everything*.
1167 JITSymbolResolver::LookupSet ResolvedSymbols;
1169 while (true) {
1170 JITSymbolResolver::LookupSet NewSymbols;
1172 for (auto &RelocKV : ExternalSymbolRelocations) {
1173 StringRef Name = RelocKV.first();
1174 if (!Name.empty() && !GlobalSymbolTable.count(Name) &&
1175 !ResolvedSymbols.count(Name))
1176 NewSymbols.insert(Name);
1179 if (NewSymbols.empty())
1180 break;
1182 #ifdef _MSC_VER
1183 using ExpectedLookupResult =
1184 MSVCPExpected<JITSymbolResolver::LookupResult>;
1185 #else
1186 using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>;
1187 #endif
1189 auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>();
1190 auto NewSymbolsF = NewSymbolsP->get_future();
1191 Resolver.lookup(NewSymbols,
1192 [=](Expected<JITSymbolResolver::LookupResult> Result) {
1193 NewSymbolsP->set_value(std::move(Result));
1196 auto NewResolverResults = NewSymbolsF.get();
1198 if (!NewResolverResults)
1199 return NewResolverResults.takeError();
1201 assert(NewResolverResults->size() == NewSymbols.size() &&
1202 "Should have errored on unresolved symbols");
1204 for (auto &RRKV : *NewResolverResults) {
1205 assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?");
1206 ExternalSymbolMap.insert(RRKV);
1207 ResolvedSymbols.insert(RRKV.first);
1212 applyExternalSymbolRelocations(ExternalSymbolMap);
1214 return Error::success();
1217 void RuntimeDyldImpl::finalizeAsync(
1218 std::unique_ptr<RuntimeDyldImpl> This,
1219 unique_function<void(object::OwningBinary<object::ObjectFile>,
1220 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)>
1221 OnEmitted,
1222 object::OwningBinary<object::ObjectFile> O,
1223 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> Info) {
1225 auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This));
1226 auto PostResolveContinuation =
1227 [SharedThis, OnEmitted = std::move(OnEmitted), O = std::move(O),
1228 Info = std::move(Info)](
1229 Expected<JITSymbolResolver::LookupResult> Result) mutable {
1230 if (!Result) {
1231 OnEmitted(std::move(O), std::move(Info), Result.takeError());
1232 return;
1235 /// Copy the result into a StringMap, where the keys are held by value.
1236 StringMap<JITEvaluatedSymbol> Resolved;
1237 for (auto &KV : *Result)
1238 Resolved[KV.first] = KV.second;
1240 SharedThis->applyExternalSymbolRelocations(Resolved);
1241 SharedThis->resolveLocalRelocations();
1242 SharedThis->registerEHFrames();
1243 std::string ErrMsg;
1244 if (SharedThis->MemMgr.finalizeMemory(&ErrMsg))
1245 OnEmitted(std::move(O), std::move(Info),
1246 make_error<StringError>(std::move(ErrMsg),
1247 inconvertibleErrorCode()));
1248 else
1249 OnEmitted(std::move(O), std::move(Info), Error::success());
1252 JITSymbolResolver::LookupSet Symbols;
1254 for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) {
1255 StringRef Name = RelocKV.first();
1256 if (Name.empty()) // Skip absolute symbol relocations.
1257 continue;
1258 assert(!SharedThis->GlobalSymbolTable.count(Name) &&
1259 "Name already processed. RuntimeDyld instances can not be re-used "
1260 "when finalizing with finalizeAsync.");
1261 Symbols.insert(Name);
1264 if (!Symbols.empty()) {
1265 SharedThis->Resolver.lookup(Symbols, std::move(PostResolveContinuation));
1266 } else
1267 PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>());
1270 //===----------------------------------------------------------------------===//
1271 // RuntimeDyld class implementation
1273 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
1274 const object::SectionRef &Sec) const {
1276 auto I = ObjSecToIDMap.find(Sec);
1277 if (I != ObjSecToIDMap.end())
1278 return RTDyld.Sections[I->second].getLoadAddress();
1280 return 0;
1283 RuntimeDyld::MemoryManager::TLSSection
1284 RuntimeDyld::MemoryManager::allocateTLSSection(uintptr_t Size,
1285 unsigned Alignment,
1286 unsigned SectionID,
1287 StringRef SectionName) {
1288 report_fatal_error("allocation of TLS not implemented");
1291 void RuntimeDyld::MemoryManager::anchor() {}
1292 void JITSymbolResolver::anchor() {}
1293 void LegacyJITSymbolResolver::anchor() {}
1295 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
1296 JITSymbolResolver &Resolver)
1297 : MemMgr(MemMgr), Resolver(Resolver) {
1298 // FIXME: There's a potential issue lurking here if a single instance of
1299 // RuntimeDyld is used to load multiple objects. The current implementation
1300 // associates a single memory manager with a RuntimeDyld instance. Even
1301 // though the public class spawns a new 'impl' instance for each load,
1302 // they share a single memory manager. This can become a problem when page
1303 // permissions are applied.
1304 Dyld = nullptr;
1305 ProcessAllSections = false;
1308 RuntimeDyld::~RuntimeDyld() = default;
1310 static std::unique_ptr<RuntimeDyldCOFF>
1311 createRuntimeDyldCOFF(
1312 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1313 JITSymbolResolver &Resolver, bool ProcessAllSections,
1314 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1315 std::unique_ptr<RuntimeDyldCOFF> Dyld =
1316 RuntimeDyldCOFF::create(Arch, MM, Resolver);
1317 Dyld->setProcessAllSections(ProcessAllSections);
1318 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1319 return Dyld;
1322 static std::unique_ptr<RuntimeDyldELF>
1323 createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1324 JITSymbolResolver &Resolver, bool ProcessAllSections,
1325 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1326 std::unique_ptr<RuntimeDyldELF> Dyld =
1327 RuntimeDyldELF::create(Arch, MM, Resolver);
1328 Dyld->setProcessAllSections(ProcessAllSections);
1329 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1330 return Dyld;
1333 static std::unique_ptr<RuntimeDyldMachO>
1334 createRuntimeDyldMachO(
1335 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1336 JITSymbolResolver &Resolver,
1337 bool ProcessAllSections,
1338 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1339 std::unique_ptr<RuntimeDyldMachO> Dyld =
1340 RuntimeDyldMachO::create(Arch, MM, Resolver);
1341 Dyld->setProcessAllSections(ProcessAllSections);
1342 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1343 return Dyld;
1346 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
1347 RuntimeDyld::loadObject(const ObjectFile &Obj) {
1348 if (!Dyld) {
1349 if (Obj.isELF())
1350 Dyld =
1351 createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()),
1352 MemMgr, Resolver, ProcessAllSections,
1353 std::move(NotifyStubEmitted));
1354 else if (Obj.isMachO())
1355 Dyld = createRuntimeDyldMachO(
1356 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1357 ProcessAllSections, std::move(NotifyStubEmitted));
1358 else if (Obj.isCOFF())
1359 Dyld = createRuntimeDyldCOFF(
1360 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1361 ProcessAllSections, std::move(NotifyStubEmitted));
1362 else
1363 report_fatal_error("Incompatible object format!");
1366 if (!Dyld->isCompatibleFile(Obj))
1367 report_fatal_error("Incompatible object format!");
1369 auto LoadedObjInfo = Dyld->loadObject(Obj);
1370 MemMgr.notifyObjectLoaded(*this, Obj);
1371 return LoadedObjInfo;
1374 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
1375 if (!Dyld)
1376 return nullptr;
1377 return Dyld->getSymbolLocalAddress(Name);
1380 unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const {
1381 assert(Dyld && "No RuntimeDyld instance attached");
1382 return Dyld->getSymbolSectionID(Name);
1385 JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const {
1386 if (!Dyld)
1387 return nullptr;
1388 return Dyld->getSymbol(Name);
1391 std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const {
1392 if (!Dyld)
1393 return std::map<StringRef, JITEvaluatedSymbol>();
1394 return Dyld->getSymbolTable();
1397 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
1399 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
1400 Dyld->reassignSectionAddress(SectionID, Addr);
1403 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
1404 uint64_t TargetAddress) {
1405 Dyld->mapSectionAddress(LocalAddress, TargetAddress);
1408 bool RuntimeDyld::hasError() { return Dyld->hasError(); }
1410 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
1412 void RuntimeDyld::finalizeWithMemoryManagerLocking() {
1413 bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
1414 MemMgr.FinalizationLocked = true;
1415 resolveRelocations();
1416 registerEHFrames();
1417 if (!MemoryFinalizationLocked) {
1418 MemMgr.finalizeMemory();
1419 MemMgr.FinalizationLocked = false;
1423 StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const {
1424 assert(Dyld && "No Dyld instance attached");
1425 return Dyld->getSectionContent(SectionID);
1428 uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const {
1429 assert(Dyld && "No Dyld instance attached");
1430 return Dyld->getSectionLoadAddress(SectionID);
1433 void RuntimeDyld::registerEHFrames() {
1434 if (Dyld)
1435 Dyld->registerEHFrames();
1438 void RuntimeDyld::deregisterEHFrames() {
1439 if (Dyld)
1440 Dyld->deregisterEHFrames();
1442 // FIXME: Kill this with fire once we have a new JIT linker: this is only here
1443 // so that we can re-use RuntimeDyld's implementation without twisting the
1444 // interface any further for ORC's purposes.
1445 void jitLinkForORC(
1446 object::OwningBinary<object::ObjectFile> O,
1447 RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver,
1448 bool ProcessAllSections,
1449 unique_function<Error(const object::ObjectFile &Obj,
1450 RuntimeDyld::LoadedObjectInfo &LoadedObj,
1451 std::map<StringRef, JITEvaluatedSymbol>)>
1452 OnLoaded,
1453 unique_function<void(object::OwningBinary<object::ObjectFile>,
1454 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)>
1455 OnEmitted) {
1457 RuntimeDyld RTDyld(MemMgr, Resolver);
1458 RTDyld.setProcessAllSections(ProcessAllSections);
1460 auto Info = RTDyld.loadObject(*O.getBinary());
1462 if (RTDyld.hasError()) {
1463 OnEmitted(std::move(O), std::move(Info),
1464 make_error<StringError>(RTDyld.getErrorString(),
1465 inconvertibleErrorCode()));
1466 return;
1469 if (auto Err = OnLoaded(*O.getBinary(), *Info, RTDyld.getSymbolTable()))
1470 OnEmitted(std::move(O), std::move(Info), std::move(Err));
1472 RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted),
1473 std::move(O), std::move(Info));
1476 } // end namespace llvm