[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / lib / FuzzMutate / IRMutator.cpp
blobea630c4602ba45f9b95b0b87416e922bbfad12d1
1 //===-- IRMutator.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/FuzzMutate/IRMutator.h"
10 #include "llvm/ADT/STLExtras.h"
11 #include "llvm/ADT/SmallSet.h"
12 #include "llvm/Analysis/TargetLibraryInfo.h"
13 #include "llvm/Bitcode/BitcodeReader.h"
14 #include "llvm/Bitcode/BitcodeWriter.h"
15 #include "llvm/FuzzMutate/Operations.h"
16 #include "llvm/FuzzMutate/Random.h"
17 #include "llvm/FuzzMutate/RandomIRBuilder.h"
18 #include "llvm/IR/BasicBlock.h"
19 #include "llvm/IR/FMF.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/InstIterator.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/IR/Verifier.h"
26 #include "llvm/Support/MemoryBuffer.h"
27 #include "llvm/Support/SourceMgr.h"
28 #include "llvm/Transforms/Scalar/DCE.h"
29 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
30 #include <map>
31 #include <optional>
33 using namespace llvm;
35 void IRMutationStrategy::mutate(Module &M, RandomIRBuilder &IB) {
36 auto RS = makeSampler<Function *>(IB.Rand);
37 for (Function &F : M)
38 if (!F.isDeclaration())
39 RS.sample(&F, /*Weight=*/1);
41 while (RS.totalWeight() < IB.MinFunctionNum) {
42 Function *F = IB.createFunctionDefinition(M);
43 RS.sample(F, /*Weight=*/1);
45 mutate(*RS.getSelection(), IB);
48 void IRMutationStrategy::mutate(Function &F, RandomIRBuilder &IB) {
49 auto Range = make_filter_range(make_pointer_range(F),
50 [](BasicBlock *BB) { return !BB->isEHPad(); });
52 mutate(*makeSampler(IB.Rand, Range).getSelection(), IB);
55 void IRMutationStrategy::mutate(BasicBlock &BB, RandomIRBuilder &IB) {
56 mutate(*makeSampler(IB.Rand, make_pointer_range(BB)).getSelection(), IB);
59 size_t llvm::IRMutator::getModuleSize(const Module &M) {
60 return M.getInstructionCount() + M.size() + M.global_size() + M.alias_size();
63 void IRMutator::mutateModule(Module &M, int Seed, size_t MaxSize) {
64 std::vector<Type *> Types;
65 for (const auto &Getter : AllowedTypes)
66 Types.push_back(Getter(M.getContext()));
67 RandomIRBuilder IB(Seed, Types);
69 size_t CurSize = IRMutator::getModuleSize(M);
70 auto RS = makeSampler<IRMutationStrategy *>(IB.Rand);
71 for (const auto &Strategy : Strategies)
72 RS.sample(Strategy.get(),
73 Strategy->getWeight(CurSize, MaxSize, RS.totalWeight()));
74 if (RS.totalWeight() == 0)
75 return;
76 auto Strategy = RS.getSelection();
78 Strategy->mutate(M, IB);
81 static void eliminateDeadCode(Function &F) {
82 FunctionPassManager FPM;
83 FPM.addPass(DCEPass());
84 FunctionAnalysisManager FAM;
85 FAM.registerPass([&] { return TargetLibraryAnalysis(); });
86 FAM.registerPass([&] { return PassInstrumentationAnalysis(); });
87 FPM.run(F, FAM);
90 void InjectorIRStrategy::mutate(Function &F, RandomIRBuilder &IB) {
91 IRMutationStrategy::mutate(F, IB);
92 eliminateDeadCode(F);
95 std::vector<fuzzerop::OpDescriptor> InjectorIRStrategy::getDefaultOps() {
96 std::vector<fuzzerop::OpDescriptor> Ops;
97 describeFuzzerIntOps(Ops);
98 describeFuzzerFloatOps(Ops);
99 describeFuzzerControlFlowOps(Ops);
100 describeFuzzerPointerOps(Ops);
101 describeFuzzerAggregateOps(Ops);
102 describeFuzzerVectorOps(Ops);
103 return Ops;
106 std::optional<fuzzerop::OpDescriptor>
107 InjectorIRStrategy::chooseOperation(Value *Src, RandomIRBuilder &IB) {
108 auto OpMatchesPred = [&Src](fuzzerop::OpDescriptor &Op) {
109 return Op.SourcePreds[0].matches({}, Src);
111 auto RS = makeSampler(IB.Rand, make_filter_range(Operations, OpMatchesPred));
112 if (RS.isEmpty())
113 return std::nullopt;
114 return *RS;
117 static inline iterator_range<BasicBlock::iterator>
118 getInsertionRange(BasicBlock &BB) {
119 auto End = BB.getTerminatingMustTailCall() ? std::prev(BB.end()) : BB.end();
120 return make_range(BB.getFirstInsertionPt(), End);
123 void InjectorIRStrategy::mutate(BasicBlock &BB, RandomIRBuilder &IB) {
124 SmallVector<Instruction *, 32> Insts;
125 for (Instruction &I : getInsertionRange(BB))
126 Insts.push_back(&I);
127 if (Insts.size() < 1)
128 return;
130 // Choose an insertion point for our new instruction.
131 size_t IP = uniform<size_t>(IB.Rand, 0, Insts.size() - 1);
133 auto InstsBefore = ArrayRef(Insts).slice(0, IP);
134 auto InstsAfter = ArrayRef(Insts).slice(IP);
136 // Choose a source, which will be used to constrain the operation selection.
137 SmallVector<Value *, 2> Srcs;
138 Srcs.push_back(IB.findOrCreateSource(BB, InstsBefore));
140 // Choose an operation that's constrained to be valid for the type of the
141 // source, collect any other sources it needs, and then build it.
142 auto OpDesc = chooseOperation(Srcs[0], IB);
143 // Bail if no operation was found
144 if (!OpDesc)
145 return;
147 for (const auto &Pred : ArrayRef(OpDesc->SourcePreds).slice(1))
148 Srcs.push_back(IB.findOrCreateSource(BB, InstsBefore, Srcs, Pred));
150 if (Value *Op = OpDesc->BuilderFunc(Srcs, Insts[IP])) {
151 // Find a sink and wire up the results of the operation.
152 IB.connectToSink(BB, InstsAfter, Op);
156 uint64_t InstDeleterIRStrategy::getWeight(size_t CurrentSize, size_t MaxSize,
157 uint64_t CurrentWeight) {
158 // If we have less than 200 bytes, panic and try to always delete.
159 if (CurrentSize > MaxSize - 200)
160 return CurrentWeight ? CurrentWeight * 100 : 1;
161 // Draw a line starting from when we only have 1k left and increasing linearly
162 // to double the current weight.
163 int64_t Line = (-2 * static_cast<int64_t>(CurrentWeight)) *
164 (static_cast<int64_t>(MaxSize) -
165 static_cast<int64_t>(CurrentSize) - 1000) /
166 1000;
167 // Clamp negative weights to zero.
168 if (Line < 0)
169 return 0;
170 return Line;
173 void InstDeleterIRStrategy::mutate(Function &F, RandomIRBuilder &IB) {
174 auto RS = makeSampler<Instruction *>(IB.Rand);
175 for (Instruction &Inst : instructions(F)) {
176 // TODO: We can't handle these instructions.
177 if (Inst.isTerminator() || Inst.isEHPad() || Inst.isSwiftError() ||
178 isa<PHINode>(Inst))
179 continue;
181 RS.sample(&Inst, /*Weight=*/1);
183 if (RS.isEmpty())
184 return;
186 // Delete the instruction.
187 mutate(*RS.getSelection(), IB);
188 // Clean up any dead code that's left over after removing the instruction.
189 eliminateDeadCode(F);
192 void InstDeleterIRStrategy::mutate(Instruction &Inst, RandomIRBuilder &IB) {
193 assert(!Inst.isTerminator() && "Deleting terminators invalidates CFG");
195 if (Inst.getType()->isVoidTy()) {
196 // Instructions with void type (ie, store) have no uses to worry about. Just
197 // erase it and move on.
198 Inst.eraseFromParent();
199 return;
202 // Otherwise we need to find some other value with the right type to keep the
203 // users happy.
204 auto Pred = fuzzerop::onlyType(Inst.getType());
205 auto RS = makeSampler<Value *>(IB.Rand);
206 SmallVector<Instruction *, 32> InstsBefore;
207 BasicBlock *BB = Inst.getParent();
208 for (auto I = BB->getFirstInsertionPt(), E = Inst.getIterator(); I != E;
209 ++I) {
210 if (Pred.matches({}, &*I))
211 RS.sample(&*I, /*Weight=*/1);
212 InstsBefore.push_back(&*I);
214 if (!RS)
215 RS.sample(IB.newSource(*BB, InstsBefore, {}, Pred), /*Weight=*/1);
217 Inst.replaceAllUsesWith(RS.getSelection());
218 Inst.eraseFromParent();
221 void InstModificationIRStrategy::mutate(Instruction &Inst,
222 RandomIRBuilder &IB) {
223 SmallVector<std::function<void()>, 8> Modifications;
224 CmpInst *CI = nullptr;
225 GetElementPtrInst *GEP = nullptr;
226 switch (Inst.getOpcode()) {
227 default:
228 break;
229 // Add nsw, nuw flag
230 case Instruction::Add:
231 case Instruction::Mul:
232 case Instruction::Sub:
233 case Instruction::Shl:
234 Modifications.push_back(
235 [&Inst]() { Inst.setHasNoSignedWrap(!Inst.hasNoSignedWrap()); });
236 Modifications.push_back(
237 [&Inst]() { Inst.setHasNoUnsignedWrap(!Inst.hasNoUnsignedWrap()); });
238 break;
239 case Instruction::ICmp:
240 CI = cast<ICmpInst>(&Inst);
241 for (unsigned p = CmpInst::FIRST_ICMP_PREDICATE;
242 p <= CmpInst::LAST_ICMP_PREDICATE; p++) {
243 Modifications.push_back(
244 [CI, p]() { CI->setPredicate(static_cast<CmpInst::Predicate>(p)); });
246 break;
247 // Add inbound flag.
248 case Instruction::GetElementPtr:
249 GEP = cast<GetElementPtrInst>(&Inst);
250 Modifications.push_back(
251 [GEP]() { GEP->setIsInBounds(!GEP->isInBounds()); });
252 break;
253 // Add exact flag.
254 case Instruction::UDiv:
255 case Instruction::SDiv:
256 case Instruction::LShr:
257 case Instruction::AShr:
258 Modifications.push_back([&Inst] { Inst.setIsExact(!Inst.isExact()); });
259 break;
261 case Instruction::FCmp:
262 CI = cast<FCmpInst>(&Inst);
263 for (unsigned p = CmpInst::FIRST_FCMP_PREDICATE;
264 p <= CmpInst::LAST_FCMP_PREDICATE; p++) {
265 Modifications.push_back(
266 [CI, p]() { CI->setPredicate(static_cast<CmpInst::Predicate>(p)); });
268 break;
271 // Add fast math flag if possible.
272 if (isa<FPMathOperator>(&Inst)) {
273 // Try setting everything unless they are already on.
274 Modifications.push_back(
275 [&Inst] { Inst.setFast(!Inst.getFastMathFlags().all()); });
276 // Try unsetting everything unless they are already off.
277 Modifications.push_back(
278 [&Inst] { Inst.setFast(!Inst.getFastMathFlags().none()); });
279 // Individual setting by flipping the bit
280 Modifications.push_back(
281 [&Inst] { Inst.setHasAllowReassoc(!Inst.hasAllowReassoc()); });
282 Modifications.push_back([&Inst] { Inst.setHasNoNaNs(!Inst.hasNoNaNs()); });
283 Modifications.push_back([&Inst] { Inst.setHasNoInfs(!Inst.hasNoInfs()); });
284 Modifications.push_back(
285 [&Inst] { Inst.setHasNoSignedZeros(!Inst.hasNoSignedZeros()); });
286 Modifications.push_back(
287 [&Inst] { Inst.setHasAllowReciprocal(!Inst.hasAllowReciprocal()); });
288 Modifications.push_back(
289 [&Inst] { Inst.setHasAllowContract(!Inst.hasAllowContract()); });
290 Modifications.push_back(
291 [&Inst] { Inst.setHasApproxFunc(!Inst.hasApproxFunc()); });
294 // Randomly switch operands of instructions
295 std::pair<int, int> NoneItem({-1, -1}), ShuffleItems(NoneItem);
296 switch (Inst.getOpcode()) {
297 case Instruction::SDiv:
298 case Instruction::UDiv:
299 case Instruction::SRem:
300 case Instruction::URem:
301 case Instruction::FDiv:
302 case Instruction::FRem: {
303 // Verify that the after shuffle the second operand is not
304 // constant 0.
305 Value *Operand = Inst.getOperand(0);
306 if (Constant *C = dyn_cast<Constant>(Operand)) {
307 if (!C->isZeroValue()) {
308 ShuffleItems = {0, 1};
311 break;
313 case Instruction::Select:
314 ShuffleItems = {1, 2};
315 break;
316 case Instruction::Add:
317 case Instruction::Sub:
318 case Instruction::Mul:
319 case Instruction::Shl:
320 case Instruction::LShr:
321 case Instruction::AShr:
322 case Instruction::And:
323 case Instruction::Or:
324 case Instruction::Xor:
325 case Instruction::FAdd:
326 case Instruction::FSub:
327 case Instruction::FMul:
328 case Instruction::ICmp:
329 case Instruction::FCmp:
330 case Instruction::ShuffleVector:
331 ShuffleItems = {0, 1};
332 break;
334 if (ShuffleItems != NoneItem) {
335 Modifications.push_back([&Inst, &ShuffleItems]() {
336 Value *Op0 = Inst.getOperand(ShuffleItems.first);
337 Inst.setOperand(ShuffleItems.first, Inst.getOperand(ShuffleItems.second));
338 Inst.setOperand(ShuffleItems.second, Op0);
342 auto RS = makeSampler(IB.Rand, Modifications);
343 if (RS)
344 RS.getSelection()();
347 /// Return a case value that is not already taken to make sure we don't have two
348 /// cases with same value.
349 static uint64_t getUniqueCaseValue(SmallSet<uint64_t, 4> &CasesTaken,
350 uint64_t MaxValue, RandomIRBuilder &IB) {
351 uint64_t tmp;
352 do {
353 tmp = uniform<uint64_t>(IB.Rand, 0, MaxValue);
354 } while (CasesTaken.count(tmp) != 0);
355 CasesTaken.insert(tmp);
356 return tmp;
359 void InsertFunctionStrategy::mutate(BasicBlock &BB, RandomIRBuilder &IB) {
360 Module *M = BB.getParent()->getParent();
361 // If nullptr is selected, we will create a new function declaration.
362 SmallVector<Function *, 32> Functions({nullptr});
363 for (Function &F : M->functions()) {
364 Functions.push_back(&F);
367 auto RS = makeSampler(IB.Rand, Functions);
368 Function *F = RS.getSelection();
369 // Some functions accept metadata type or token type as arguments.
370 // We don't call those functions for now.
371 // For example, `@llvm.dbg.declare(metadata, metadata, metadata)`
372 // https://llvm.org/docs/SourceLevelDebugging.html#llvm-dbg-declare
373 auto IsUnsupportedTy = [](Type *T) {
374 return T->isMetadataTy() || T->isTokenTy();
376 if (!F || IsUnsupportedTy(F->getReturnType()) ||
377 any_of(F->getFunctionType()->params(), IsUnsupportedTy)) {
378 F = IB.createFunctionDeclaration(*M);
381 FunctionType *FTy = F->getFunctionType();
382 SmallVector<fuzzerop::SourcePred, 2> SourcePreds;
383 if (!F->arg_empty()) {
384 for (Type *ArgTy : FTy->params()) {
385 SourcePreds.push_back(fuzzerop::onlyType(ArgTy));
388 bool isRetVoid = (F->getReturnType() == Type::getVoidTy(M->getContext()));
389 auto BuilderFunc = [FTy, F, isRetVoid](ArrayRef<Value *> Srcs,
390 Instruction *Inst) {
391 StringRef Name = isRetVoid ? nullptr : "C";
392 CallInst *Call = CallInst::Create(FTy, F, Srcs, Name, Inst);
393 // Don't return this call inst if it return void as it can't be sinked.
394 return isRetVoid ? nullptr : Call;
397 SmallVector<Instruction *, 32> Insts;
398 for (Instruction &I : getInsertionRange(BB))
399 Insts.push_back(&I);
400 if (Insts.size() < 1)
401 return;
403 // Choose an insertion point for our new call instruction.
404 uint64_t IP = uniform<uint64_t>(IB.Rand, 0, Insts.size() - 1);
406 auto InstsBefore = ArrayRef(Insts).slice(0, IP);
407 auto InstsAfter = ArrayRef(Insts).slice(IP);
409 // Choose a source, which will be used to constrain the operation selection.
410 SmallVector<Value *, 2> Srcs;
412 for (const auto &Pred : ArrayRef(SourcePreds)) {
413 Srcs.push_back(IB.findOrCreateSource(BB, InstsBefore, Srcs, Pred));
416 if (Value *Op = BuilderFunc(Srcs, Insts[IP])) {
417 // Find a sink and wire up the results of the operation.
418 IB.connectToSink(BB, InstsAfter, Op);
422 void InsertCFGStrategy::mutate(BasicBlock &BB, RandomIRBuilder &IB) {
423 SmallVector<Instruction *, 32> Insts;
424 for (Instruction &I : getInsertionRange(BB))
425 Insts.push_back(&I);
426 if (Insts.size() < 1)
427 return;
429 // Choose a point where we split the block.
430 uint64_t IP = uniform<uint64_t>(IB.Rand, 0, Insts.size() - 1);
431 auto InstsBeforeSplit = ArrayRef(Insts).slice(0, IP);
433 // `Sink` inherits Blocks' terminator, `Source` will have a BranchInst
434 // directly jumps to `Sink`. Here, we have to create a new terminator for
435 // `Source`.
436 BasicBlock *Block = Insts[IP]->getParent();
437 BasicBlock *Source = Block;
438 BasicBlock *Sink = Block->splitBasicBlock(Insts[IP], "BB");
440 Function *F = BB.getParent();
441 LLVMContext &C = F->getParent()->getContext();
442 // A coin decides if it is branch or switch
443 if (uniform<uint64_t>(IB.Rand, 0, 1)) {
444 // Branch
445 BasicBlock *IfTrue = BasicBlock::Create(C, "T", F);
446 BasicBlock *IfFalse = BasicBlock::Create(C, "F", F);
447 Value *Cond =
448 IB.findOrCreateSource(*Source, InstsBeforeSplit, {},
449 fuzzerop::onlyType(Type::getInt1Ty(C)), false);
450 BranchInst *Branch = BranchInst::Create(IfTrue, IfFalse, Cond);
451 // Remove the old terminator.
452 ReplaceInstWithInst(Source->getTerminator(), Branch);
453 // Connect these blocks to `Sink`
454 connectBlocksToSink({IfTrue, IfFalse}, Sink, IB);
455 } else {
456 // Switch
457 // Determine Integer type, it IS possible we use a boolean to switch.
458 auto RS =
459 makeSampler(IB.Rand, make_filter_range(IB.KnownTypes, [](Type *Ty) {
460 return Ty->isIntegerTy();
461 }));
462 assert(RS && "There is no integer type in all allowed types, is the "
463 "setting correct?");
464 Type *Ty = RS.getSelection();
465 IntegerType *IntTy = cast<IntegerType>(Ty);
467 uint64_t BitSize = IntTy->getBitWidth();
468 uint64_t MaxCaseVal =
469 (BitSize >= 64) ? (uint64_t)-1 : ((uint64_t)1 << BitSize) - 1;
470 // Create Switch inst in Block
471 Value *Cond = IB.findOrCreateSource(*Source, InstsBeforeSplit, {},
472 fuzzerop::onlyType(IntTy), false);
473 BasicBlock *DefaultBlock = BasicBlock::Create(C, "SW_D", F);
474 uint64_t NumCases = uniform<uint64_t>(IB.Rand, 1, MaxNumCases);
475 NumCases = (NumCases > MaxCaseVal) ? MaxCaseVal + 1 : NumCases;
476 SwitchInst *Switch = SwitchInst::Create(Cond, DefaultBlock, NumCases);
477 // Remove the old terminator.
478 ReplaceInstWithInst(Source->getTerminator(), Switch);
480 // Create blocks, for each block assign a case value.
481 SmallVector<BasicBlock *, 4> Blocks({DefaultBlock});
482 SmallSet<uint64_t, 4> CasesTaken;
483 for (uint64_t i = 0; i < NumCases; i++) {
484 uint64_t CaseVal = getUniqueCaseValue(CasesTaken, MaxCaseVal, IB);
485 BasicBlock *CaseBlock = BasicBlock::Create(C, "SW_C", F);
486 ConstantInt *OnValue = ConstantInt::get(IntTy, CaseVal);
487 Switch->addCase(OnValue, CaseBlock);
488 Blocks.push_back(CaseBlock);
491 // Connect these blocks to `Sink`
492 connectBlocksToSink(Blocks, Sink, IB);
496 /// The caller has to guarantee that these blocks are "empty", i.e. it doesn't
497 /// even have terminator.
498 void InsertCFGStrategy::connectBlocksToSink(ArrayRef<BasicBlock *> Blocks,
499 BasicBlock *Sink,
500 RandomIRBuilder &IB) {
501 uint64_t DirectSinkIdx = uniform<uint64_t>(IB.Rand, 0, Blocks.size() - 1);
502 for (uint64_t i = 0; i < Blocks.size(); i++) {
503 // We have at least one block that directly goes to sink.
504 CFGToSink ToSink = (i == DirectSinkIdx)
505 ? CFGToSink::DirectSink
506 : static_cast<CFGToSink>(uniform<uint64_t>(
507 IB.Rand, 0, CFGToSink::EndOfCFGToLink - 1));
508 BasicBlock *BB = Blocks[i];
509 Function *F = BB->getParent();
510 LLVMContext &C = F->getParent()->getContext();
511 switch (ToSink) {
512 case CFGToSink::Return: {
513 Type *RetTy = F->getReturnType();
514 Value *RetValue = nullptr;
515 if (!RetTy->isVoidTy())
516 RetValue =
517 IB.findOrCreateSource(*BB, {}, {}, fuzzerop::onlyType(RetTy));
518 ReturnInst::Create(C, RetValue, BB);
519 break;
521 case CFGToSink::DirectSink: {
522 BranchInst::Create(Sink, BB);
523 break;
525 case CFGToSink::SinkOrSelfLoop: {
526 SmallVector<BasicBlock *, 2> Branches({Sink, BB});
527 // A coin decides which block is true branch.
528 uint64_t coin = uniform<uint64_t>(IB.Rand, 0, 1);
529 Value *Cond = IB.findOrCreateSource(
530 *BB, {}, {}, fuzzerop::onlyType(Type::getInt1Ty(C)), false);
531 BranchInst::Create(Branches[coin], Branches[1 - coin], Cond, BB);
532 break;
534 case CFGToSink::EndOfCFGToLink:
535 llvm_unreachable("EndOfCFGToLink executed, something's wrong.");
540 void InsertPHIStrategy::mutate(BasicBlock &BB, RandomIRBuilder &IB) {
541 // Can't insert PHI node to entry node.
542 if (&BB == &BB.getParent()->getEntryBlock())
543 return;
544 Type *Ty = IB.randomType();
545 PHINode *PHI = PHINode::Create(Ty, llvm::pred_size(&BB), "", &BB.front());
547 // Use a map to make sure the same incoming basic block has the same value.
548 DenseMap<BasicBlock *, Value *> IncomingValues;
549 for (BasicBlock *Pred : predecessors(&BB)) {
550 Value *Src = IncomingValues[Pred];
551 // If `Pred` is not in the map yet, we'll get a nullptr.
552 if (!Src) {
553 SmallVector<Instruction *, 32> Insts;
554 for (auto I = Pred->begin(); I != Pred->end(); ++I)
555 Insts.push_back(&*I);
556 // There is no need to inform IB what previously used values are if we are
557 // using `onlyType`
558 Src = IB.findOrCreateSource(*Pred, Insts, {}, fuzzerop::onlyType(Ty));
559 IncomingValues[Pred] = Src;
561 PHI->addIncoming(Src, Pred);
563 SmallVector<Instruction *, 32> InstsAfter;
564 for (Instruction &I : getInsertionRange(BB))
565 InstsAfter.push_back(&I);
566 IB.connectToSink(BB, InstsAfter, PHI);
569 void SinkInstructionStrategy::mutate(Function &F, RandomIRBuilder &IB) {
570 for (BasicBlock &BB : F) {
571 this->mutate(BB, IB);
574 void SinkInstructionStrategy::mutate(BasicBlock &BB, RandomIRBuilder &IB) {
575 SmallVector<Instruction *, 32> Insts;
576 for (Instruction &I : getInsertionRange(BB))
577 Insts.push_back(&I);
578 if (Insts.size() < 1)
579 return;
580 // Choose an Instruction to mutate.
581 uint64_t Idx = uniform<uint64_t>(IB.Rand, 0, Insts.size() - 1);
582 Instruction *Inst = Insts[Idx];
583 // `Idx + 1` so we don't sink to ourselves.
584 auto InstsAfter = ArrayRef(Insts).slice(Idx + 1);
585 Type *Ty = Inst->getType();
586 // Don't sink terminators, void function calls, token, etc.
587 if (!Ty->isVoidTy() && !Ty->isTokenTy())
588 // Find a new sink and wire up the results of the operation.
589 IB.connectToSink(BB, InstsAfter, Inst);
592 void ShuffleBlockStrategy::mutate(BasicBlock &BB, RandomIRBuilder &IB) {
593 // A deterministic alternative to SmallPtrSet with the same lookup
594 // performance.
595 std::map<size_t, Instruction *> AliveInsts;
596 std::map<Instruction *, size_t> AliveInstsLookup;
597 size_t InsertIdx = 0;
598 for (auto &I : make_early_inc_range(make_range(
599 BB.getFirstInsertionPt(), BB.getTerminator()->getIterator()))) {
600 // First gather all instructions that can be shuffled. Don't take
601 // terminator.
602 AliveInsts.insert({InsertIdx, &I});
603 AliveInstsLookup.insert({&I, InsertIdx++});
604 // Then remove these instructions from the block
605 I.removeFromParent();
608 // Shuffle these instructions using topological sort.
609 // Returns false if all current instruction's dependencies in this block have
610 // been shuffled. If so, this instruction can be shuffled too.
611 auto hasAliveParent = [&AliveInsts, &AliveInstsLookup](size_t Index) {
612 for (Value *O : AliveInsts[Index]->operands()) {
613 Instruction *P = dyn_cast<Instruction>(O);
614 if (P && AliveInstsLookup.count(P))
615 return true;
617 return false;
619 // Get all alive instructions that depend on the current instruction.
620 // Takes Instruction* instead of index because the instruction is already
621 // shuffled.
622 auto getAliveChildren = [&AliveInstsLookup](Instruction *I) {
623 SmallSetVector<size_t, 8> Children;
624 for (Value *U : I->users()) {
625 Instruction *P = dyn_cast<Instruction>(U);
626 if (P && AliveInstsLookup.count(P))
627 Children.insert(AliveInstsLookup[P]);
629 return Children;
631 SmallSet<size_t, 8> RootIndices;
632 SmallVector<Instruction *, 8> Insts;
633 for (const auto &[Index, Inst] : AliveInsts) {
634 if (!hasAliveParent(Index))
635 RootIndices.insert(Index);
637 // Topological sort by randomly selecting a node without a parent, or root.
638 while (!RootIndices.empty()) {
639 auto RS = makeSampler<size_t>(IB.Rand);
640 for (size_t RootIdx : RootIndices)
641 RS.sample(RootIdx, 1);
642 size_t RootIdx = RS.getSelection();
644 RootIndices.erase(RootIdx);
645 Instruction *Root = AliveInsts[RootIdx];
646 AliveInsts.erase(RootIdx);
647 AliveInstsLookup.erase(Root);
648 Insts.push_back(Root);
650 for (size_t Child : getAliveChildren(Root)) {
651 if (!hasAliveParent(Child)) {
652 RootIndices.insert(Child);
657 Instruction *Terminator = BB.getTerminator();
658 // Then put instructions back.
659 for (Instruction *I : Insts) {
660 I->insertBefore(Terminator);
664 std::unique_ptr<Module> llvm::parseModule(const uint8_t *Data, size_t Size,
665 LLVMContext &Context) {
667 if (Size <= 1)
668 // We get bogus data given an empty corpus - just create a new module.
669 return std::make_unique<Module>("M", Context);
671 auto Buffer = MemoryBuffer::getMemBuffer(
672 StringRef(reinterpret_cast<const char *>(Data), Size), "Fuzzer input",
673 /*RequiresNullTerminator=*/false);
675 SMDiagnostic Err;
676 auto M = parseBitcodeFile(Buffer->getMemBufferRef(), Context);
677 if (Error E = M.takeError()) {
678 errs() << toString(std::move(E)) << "\n";
679 return nullptr;
681 return std::move(M.get());
684 size_t llvm::writeModule(const Module &M, uint8_t *Dest, size_t MaxSize) {
685 std::string Buf;
687 raw_string_ostream OS(Buf);
688 WriteBitcodeToFile(M, OS);
690 if (Buf.size() > MaxSize)
691 return 0;
692 memcpy(Dest, Buf.data(), Buf.size());
693 return Buf.size();
696 std::unique_ptr<Module> llvm::parseAndVerify(const uint8_t *Data, size_t Size,
697 LLVMContext &Context) {
698 auto M = parseModule(Data, Size, Context);
699 if (!M || verifyModule(*M, &errs()))
700 return nullptr;
702 return M;