[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / lib / ProfileData / RawMemProfReader.cpp
blob0e2b8668bab72c9b7d4dcb096e728a2c64eae0ba
1 //===- RawMemProfReader.cpp - Instrumented memory profiling reader --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for reading MemProf profiling data.
11 //===----------------------------------------------------------------------===//
13 #include <algorithm>
14 #include <cstdint>
15 #include <memory>
16 #include <type_traits>
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
26 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
27 #include "llvm/DebugInfo/Symbolize/SymbolizableObjectFile.h"
28 #include "llvm/Object/Binary.h"
29 #include "llvm/Object/BuildID.h"
30 #include "llvm/Object/ELFObjectFile.h"
31 #include "llvm/Object/ObjectFile.h"
32 #include "llvm/ProfileData/InstrProf.h"
33 #include "llvm/ProfileData/MemProf.h"
34 #include "llvm/ProfileData/MemProfData.inc"
35 #include "llvm/ProfileData/RawMemProfReader.h"
36 #include "llvm/ProfileData/SampleProf.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/Endian.h"
39 #include "llvm/Support/Error.h"
40 #include "llvm/Support/MemoryBuffer.h"
41 #include "llvm/Support/Path.h"
43 #define DEBUG_TYPE "memprof"
45 namespace llvm {
46 namespace memprof {
47 namespace {
48 template <class T = uint64_t> inline T alignedRead(const char *Ptr) {
49 static_assert(std::is_pod<T>::value, "Not a pod type.");
50 assert(reinterpret_cast<size_t>(Ptr) % sizeof(T) == 0 && "Unaligned Read");
51 return *reinterpret_cast<const T *>(Ptr);
54 Error checkBuffer(const MemoryBuffer &Buffer) {
55 if (!RawMemProfReader::hasFormat(Buffer))
56 return make_error<InstrProfError>(instrprof_error::bad_magic);
58 if (Buffer.getBufferSize() == 0)
59 return make_error<InstrProfError>(instrprof_error::empty_raw_profile);
61 if (Buffer.getBufferSize() < sizeof(Header)) {
62 return make_error<InstrProfError>(instrprof_error::truncated);
65 // The size of the buffer can be > header total size since we allow repeated
66 // serialization of memprof profiles to the same file.
67 uint64_t TotalSize = 0;
68 const char *Next = Buffer.getBufferStart();
69 while (Next < Buffer.getBufferEnd()) {
70 auto *H = reinterpret_cast<const Header *>(Next);
71 if (H->Version != MEMPROF_RAW_VERSION) {
72 return make_error<InstrProfError>(instrprof_error::unsupported_version);
75 TotalSize += H->TotalSize;
76 Next += H->TotalSize;
79 if (Buffer.getBufferSize() != TotalSize) {
80 return make_error<InstrProfError>(instrprof_error::malformed);
82 return Error::success();
85 llvm::SmallVector<SegmentEntry> readSegmentEntries(const char *Ptr) {
86 using namespace support;
88 const uint64_t NumItemsToRead =
89 endian::readNext<uint64_t, llvm::endianness::little, unaligned>(Ptr);
90 llvm::SmallVector<SegmentEntry> Items;
91 for (uint64_t I = 0; I < NumItemsToRead; I++) {
92 Items.push_back(*reinterpret_cast<const SegmentEntry *>(
93 Ptr + I * sizeof(SegmentEntry)));
95 return Items;
98 llvm::SmallVector<std::pair<uint64_t, MemInfoBlock>>
99 readMemInfoBlocks(const char *Ptr) {
100 using namespace support;
102 const uint64_t NumItemsToRead =
103 endian::readNext<uint64_t, llvm::endianness::little, unaligned>(Ptr);
104 llvm::SmallVector<std::pair<uint64_t, MemInfoBlock>> Items;
105 for (uint64_t I = 0; I < NumItemsToRead; I++) {
106 const uint64_t Id =
107 endian::readNext<uint64_t, llvm::endianness::little, unaligned>(Ptr);
108 const MemInfoBlock MIB = *reinterpret_cast<const MemInfoBlock *>(Ptr);
109 Items.push_back({Id, MIB});
110 // Only increment by size of MIB since readNext implicitly increments.
111 Ptr += sizeof(MemInfoBlock);
113 return Items;
116 CallStackMap readStackInfo(const char *Ptr) {
117 using namespace support;
119 const uint64_t NumItemsToRead =
120 endian::readNext<uint64_t, llvm::endianness::little, unaligned>(Ptr);
121 CallStackMap Items;
123 for (uint64_t I = 0; I < NumItemsToRead; I++) {
124 const uint64_t StackId =
125 endian::readNext<uint64_t, llvm::endianness::little, unaligned>(Ptr);
126 const uint64_t NumPCs =
127 endian::readNext<uint64_t, llvm::endianness::little, unaligned>(Ptr);
129 SmallVector<uint64_t> CallStack;
130 for (uint64_t J = 0; J < NumPCs; J++) {
131 CallStack.push_back(
132 endian::readNext<uint64_t, llvm::endianness::little, unaligned>(Ptr));
135 Items[StackId] = CallStack;
137 return Items;
140 // Merges the contents of stack information in \p From to \p To. Returns true if
141 // any stack ids observed previously map to a different set of program counter
142 // addresses.
143 bool mergeStackMap(const CallStackMap &From, CallStackMap &To) {
144 for (const auto &IdStack : From) {
145 auto I = To.find(IdStack.first);
146 if (I == To.end()) {
147 To[IdStack.first] = IdStack.second;
148 } else {
149 // Check that the PCs are the same (in order).
150 if (IdStack.second != I->second)
151 return true;
154 return false;
157 Error report(Error E, const StringRef Context) {
158 return joinErrors(createStringError(inconvertibleErrorCode(), Context),
159 std::move(E));
162 bool isRuntimePath(const StringRef Path) {
163 const StringRef Filename = llvm::sys::path::filename(Path);
164 // This list should be updated in case new files with additional interceptors
165 // are added to the memprof runtime.
166 return Filename.equals("memprof_malloc_linux.cpp") ||
167 Filename.equals("memprof_interceptors.cpp") ||
168 Filename.equals("memprof_new_delete.cpp");
171 std::string getBuildIdString(const SegmentEntry &Entry) {
172 // If the build id is unset print a helpful string instead of all zeros.
173 if (Entry.BuildIdSize == 0)
174 return "<None>";
176 std::string Str;
177 raw_string_ostream OS(Str);
178 for (size_t I = 0; I < Entry.BuildIdSize; I++) {
179 OS << format_hex_no_prefix(Entry.BuildId[I], 2);
181 return OS.str();
183 } // namespace
185 Expected<std::unique_ptr<RawMemProfReader>>
186 RawMemProfReader::create(const Twine &Path, const StringRef ProfiledBinary,
187 bool KeepName) {
188 auto BufferOr = MemoryBuffer::getFileOrSTDIN(Path);
189 if (std::error_code EC = BufferOr.getError())
190 return report(errorCodeToError(EC), Path.getSingleStringRef());
192 std::unique_ptr<MemoryBuffer> Buffer(BufferOr.get().release());
193 return create(std::move(Buffer), ProfiledBinary, KeepName);
196 Expected<std::unique_ptr<RawMemProfReader>>
197 RawMemProfReader::create(std::unique_ptr<MemoryBuffer> Buffer,
198 const StringRef ProfiledBinary, bool KeepName) {
199 if (Error E = checkBuffer(*Buffer))
200 return report(std::move(E), Buffer->getBufferIdentifier());
202 if (ProfiledBinary.empty()) {
203 // Peek the build ids to print a helpful error message.
204 const std::vector<std::string> BuildIds = peekBuildIds(Buffer.get());
205 std::string ErrorMessage(
206 R"(Path to profiled binary is empty, expected binary with one of the following build ids:
207 )");
208 for (const auto &Id : BuildIds) {
209 ErrorMessage += "\n BuildId: ";
210 ErrorMessage += Id;
212 return report(
213 make_error<StringError>(ErrorMessage, inconvertibleErrorCode()),
214 /*Context=*/"");
217 auto BinaryOr = llvm::object::createBinary(ProfiledBinary);
218 if (!BinaryOr) {
219 return report(BinaryOr.takeError(), ProfiledBinary);
222 // Use new here since constructor is private.
223 std::unique_ptr<RawMemProfReader> Reader(
224 new RawMemProfReader(std::move(BinaryOr.get()), KeepName));
225 if (Error E = Reader->initialize(std::move(Buffer))) {
226 return std::move(E);
228 return std::move(Reader);
231 bool RawMemProfReader::hasFormat(const StringRef Path) {
232 auto BufferOr = MemoryBuffer::getFileOrSTDIN(Path);
233 if (!BufferOr)
234 return false;
236 std::unique_ptr<MemoryBuffer> Buffer(BufferOr.get().release());
237 return hasFormat(*Buffer);
240 bool RawMemProfReader::hasFormat(const MemoryBuffer &Buffer) {
241 if (Buffer.getBufferSize() < sizeof(uint64_t))
242 return false;
243 // Aligned read to sanity check that the buffer was allocated with at least 8b
244 // alignment.
245 const uint64_t Magic = alignedRead(Buffer.getBufferStart());
246 return Magic == MEMPROF_RAW_MAGIC_64;
249 void RawMemProfReader::printYAML(raw_ostream &OS) {
250 uint64_t NumAllocFunctions = 0, NumMibInfo = 0;
251 for (const auto &KV : FunctionProfileData) {
252 const size_t NumAllocSites = KV.second.AllocSites.size();
253 if (NumAllocSites > 0) {
254 NumAllocFunctions++;
255 NumMibInfo += NumAllocSites;
259 OS << "MemprofProfile:\n";
260 OS << " Summary:\n";
261 OS << " Version: " << MEMPROF_RAW_VERSION << "\n";
262 OS << " NumSegments: " << SegmentInfo.size() << "\n";
263 OS << " NumMibInfo: " << NumMibInfo << "\n";
264 OS << " NumAllocFunctions: " << NumAllocFunctions << "\n";
265 OS << " NumStackOffsets: " << StackMap.size() << "\n";
266 // Print out the segment information.
267 OS << " Segments:\n";
268 for (const auto &Entry : SegmentInfo) {
269 OS << " -\n";
270 OS << " BuildId: " << getBuildIdString(Entry) << "\n";
271 OS << " Start: 0x" << llvm::utohexstr(Entry.Start) << "\n";
272 OS << " End: 0x" << llvm::utohexstr(Entry.End) << "\n";
273 OS << " Offset: 0x" << llvm::utohexstr(Entry.Offset) << "\n";
275 // Print out the merged contents of the profiles.
276 OS << " Records:\n";
277 for (const auto &Entry : *this) {
278 OS << " -\n";
279 OS << " FunctionGUID: " << Entry.first << "\n";
280 Entry.second.print(OS);
284 Error RawMemProfReader::initialize(std::unique_ptr<MemoryBuffer> DataBuffer) {
285 const StringRef FileName = Binary.getBinary()->getFileName();
287 auto *ElfObject = dyn_cast<object::ELFObjectFileBase>(Binary.getBinary());
288 if (!ElfObject) {
289 return report(make_error<StringError>(Twine("Not an ELF file: "),
290 inconvertibleErrorCode()),
291 FileName);
294 // Check whether the profiled binary was built with position independent code
295 // (PIC). Perform sanity checks for assumptions we rely on to simplify
296 // symbolization.
297 auto* Elf64LEObject = llvm::cast<llvm::object::ELF64LEObjectFile>(ElfObject);
298 const llvm::object::ELF64LEFile& ElfFile = Elf64LEObject->getELFFile();
299 auto PHdrsOr = ElfFile.program_headers();
300 if (!PHdrsOr)
301 return report(
302 make_error<StringError>(Twine("Could not read program headers: "),
303 inconvertibleErrorCode()),
304 FileName);
306 int NumExecutableSegments = 0;
307 for (const auto &Phdr : *PHdrsOr) {
308 if (Phdr.p_type == ELF::PT_LOAD) {
309 if (Phdr.p_flags & ELF::PF_X) {
310 // We assume only one text segment in the main binary for simplicity and
311 // reduce the overhead of checking multiple ranges during symbolization.
312 if (++NumExecutableSegments > 1) {
313 return report(
314 make_error<StringError>(
315 "Expect only one executable load segment in the binary",
316 inconvertibleErrorCode()),
317 FileName);
319 // Segment will always be loaded at a page boundary, expect it to be
320 // aligned already. Assume 4K pagesize for the machine from which the
321 // profile has been collected. This should be fine for now, in case we
322 // want to support other pagesizes it can be recorded in the raw profile
323 // during collection.
324 PreferredTextSegmentAddress = Phdr.p_vaddr;
325 assert(Phdr.p_vaddr == (Phdr.p_vaddr & ~(0x1000 - 1U)) &&
326 "Expect p_vaddr to always be page aligned");
327 assert(Phdr.p_offset == 0 && "Expect p_offset = 0 for symbolization.");
332 auto Triple = ElfObject->makeTriple();
333 if (!Triple.isX86())
334 return report(make_error<StringError>(Twine("Unsupported target: ") +
335 Triple.getArchName(),
336 inconvertibleErrorCode()),
337 FileName);
339 // Process the raw profile.
340 if (Error E = readRawProfile(std::move(DataBuffer)))
341 return E;
343 if (Error E = setupForSymbolization())
344 return E;
346 auto *Object = cast<object::ObjectFile>(Binary.getBinary());
347 std::unique_ptr<DIContext> Context = DWARFContext::create(
348 *Object, DWARFContext::ProcessDebugRelocations::Process);
350 auto SOFOr = symbolize::SymbolizableObjectFile::create(
351 Object, std::move(Context), /*UntagAddresses=*/false);
352 if (!SOFOr)
353 return report(SOFOr.takeError(), FileName);
354 auto Symbolizer = std::move(SOFOr.get());
356 // The symbolizer ownership is moved into symbolizeAndFilterStackFrames so
357 // that it is freed automatically at the end, when it is no longer used. This
358 // reduces peak memory since it won't be live while also mapping the raw
359 // profile into records afterwards.
360 if (Error E = symbolizeAndFilterStackFrames(std::move(Symbolizer)))
361 return E;
363 return mapRawProfileToRecords();
366 Error RawMemProfReader::setupForSymbolization() {
367 auto *Object = cast<object::ObjectFile>(Binary.getBinary());
368 object::BuildIDRef BinaryId = object::getBuildID(Object);
369 if (BinaryId.empty())
370 return make_error<StringError>(Twine("No build id found in binary ") +
371 Binary.getBinary()->getFileName(),
372 inconvertibleErrorCode());
374 int NumMatched = 0;
375 for (const auto &Entry : SegmentInfo) {
376 llvm::ArrayRef<uint8_t> SegmentId(Entry.BuildId, Entry.BuildIdSize);
377 if (BinaryId == SegmentId) {
378 // We assume only one text segment in the main binary for simplicity and
379 // reduce the overhead of checking multiple ranges during symbolization.
380 if (++NumMatched > 1) {
381 return make_error<StringError>(
382 "We expect only one executable segment in the profiled binary",
383 inconvertibleErrorCode());
385 ProfiledTextSegmentStart = Entry.Start;
386 ProfiledTextSegmentEnd = Entry.End;
389 assert(NumMatched != 0 && "No matching executable segments in segment info.");
390 assert((PreferredTextSegmentAddress == 0 ||
391 (PreferredTextSegmentAddress == ProfiledTextSegmentStart)) &&
392 "Expect text segment address to be 0 or equal to profiled text "
393 "segment start.");
394 return Error::success();
397 Error RawMemProfReader::mapRawProfileToRecords() {
398 // Hold a mapping from function to each callsite location we encounter within
399 // it that is part of some dynamic allocation context. The location is stored
400 // as a pointer to a symbolized list of inline frames.
401 using LocationPtr = const llvm::SmallVector<FrameId> *;
402 llvm::MapVector<GlobalValue::GUID, llvm::SetVector<LocationPtr>>
403 PerFunctionCallSites;
405 // Convert the raw profile callstack data into memprof records. While doing so
406 // keep track of related contexts so that we can fill these in later.
407 for (const auto &Entry : CallstackProfileData) {
408 const uint64_t StackId = Entry.first;
410 auto It = StackMap.find(StackId);
411 if (It == StackMap.end())
412 return make_error<InstrProfError>(
413 instrprof_error::malformed,
414 "memprof callstack record does not contain id: " + Twine(StackId));
416 // Construct the symbolized callstack.
417 llvm::SmallVector<FrameId> Callstack;
418 Callstack.reserve(It->getSecond().size());
420 llvm::ArrayRef<uint64_t> Addresses = It->getSecond();
421 for (size_t I = 0; I < Addresses.size(); I++) {
422 const uint64_t Address = Addresses[I];
423 assert(SymbolizedFrame.count(Address) > 0 &&
424 "Address not found in SymbolizedFrame map");
425 const SmallVector<FrameId> &Frames = SymbolizedFrame[Address];
427 assert(!idToFrame(Frames.back()).IsInlineFrame &&
428 "The last frame should not be inlined");
430 // Record the callsites for each function. Skip the first frame of the
431 // first address since it is the allocation site itself that is recorded
432 // as an alloc site.
433 for (size_t J = 0; J < Frames.size(); J++) {
434 if (I == 0 && J == 0)
435 continue;
436 // We attach the entire bottom-up frame here for the callsite even
437 // though we only need the frames up to and including the frame for
438 // Frames[J].Function. This will enable better deduplication for
439 // compression in the future.
440 const GlobalValue::GUID Guid = idToFrame(Frames[J]).Function;
441 PerFunctionCallSites[Guid].insert(&Frames);
444 // Add all the frames to the current allocation callstack.
445 Callstack.append(Frames.begin(), Frames.end());
448 // We attach the memprof record to each function bottom-up including the
449 // first non-inline frame.
450 for (size_t I = 0; /*Break out using the condition below*/; I++) {
451 const Frame &F = idToFrame(Callstack[I]);
452 auto Result =
453 FunctionProfileData.insert({F.Function, IndexedMemProfRecord()});
454 IndexedMemProfRecord &Record = Result.first->second;
455 Record.AllocSites.emplace_back(Callstack, Entry.second);
457 if (!F.IsInlineFrame)
458 break;
462 // Fill in the related callsites per function.
463 for (const auto &[Id, Locs] : PerFunctionCallSites) {
464 // Some functions may have only callsite data and no allocation data. Here
465 // we insert a new entry for callsite data if we need to.
466 auto Result = FunctionProfileData.insert({Id, IndexedMemProfRecord()});
467 IndexedMemProfRecord &Record = Result.first->second;
468 for (LocationPtr Loc : Locs) {
469 Record.CallSites.push_back(*Loc);
473 return Error::success();
476 Error RawMemProfReader::symbolizeAndFilterStackFrames(
477 std::unique_ptr<llvm::symbolize::SymbolizableModule> Symbolizer) {
478 // The specifier to use when symbolization is requested.
479 const DILineInfoSpecifier Specifier(
480 DILineInfoSpecifier::FileLineInfoKind::RawValue,
481 DILineInfoSpecifier::FunctionNameKind::LinkageName);
483 // For entries where all PCs in the callstack are discarded, we erase the
484 // entry from the stack map.
485 llvm::SmallVector<uint64_t> EntriesToErase;
486 // We keep track of all prior discarded entries so that we can avoid invoking
487 // the symbolizer for such entries.
488 llvm::DenseSet<uint64_t> AllVAddrsToDiscard;
489 for (auto &Entry : StackMap) {
490 for (const uint64_t VAddr : Entry.getSecond()) {
491 // Check if we have already symbolized and cached the result or if we
492 // don't want to attempt symbolization since we know this address is bad.
493 // In this case the address is also removed from the current callstack.
494 if (SymbolizedFrame.count(VAddr) > 0 ||
495 AllVAddrsToDiscard.contains(VAddr))
496 continue;
498 Expected<DIInliningInfo> DIOr = Symbolizer->symbolizeInlinedCode(
499 getModuleOffset(VAddr), Specifier, /*UseSymbolTable=*/false);
500 if (!DIOr)
501 return DIOr.takeError();
502 DIInliningInfo DI = DIOr.get();
504 // Drop frames which we can't symbolize or if they belong to the runtime.
505 if (DI.getFrame(0).FunctionName == DILineInfo::BadString ||
506 isRuntimePath(DI.getFrame(0).FileName)) {
507 AllVAddrsToDiscard.insert(VAddr);
508 continue;
511 for (size_t I = 0, NumFrames = DI.getNumberOfFrames(); I < NumFrames;
512 I++) {
513 const auto &DIFrame = DI.getFrame(I);
514 const uint64_t Guid =
515 IndexedMemProfRecord::getGUID(DIFrame.FunctionName);
516 const Frame F(Guid, DIFrame.Line - DIFrame.StartLine, DIFrame.Column,
517 // Only the last entry is not an inlined location.
518 I != NumFrames - 1);
519 // Here we retain a mapping from the GUID to canonical symbol name
520 // instead of adding it to the frame object directly to reduce memory
521 // overhead. This is because there can be many unique frames,
522 // particularly for callsite frames.
523 if (KeepSymbolName) {
524 StringRef CanonicalName =
525 sampleprof::FunctionSamples::getCanonicalFnName(
526 DIFrame.FunctionName);
527 GuidToSymbolName.insert({Guid, CanonicalName.str()});
530 const FrameId Hash = F.hash();
531 IdToFrame.insert({Hash, F});
532 SymbolizedFrame[VAddr].push_back(Hash);
536 auto &CallStack = Entry.getSecond();
537 llvm::erase_if(CallStack, [&AllVAddrsToDiscard](const uint64_t A) {
538 return AllVAddrsToDiscard.contains(A);
540 if (CallStack.empty())
541 EntriesToErase.push_back(Entry.getFirst());
544 // Drop the entries where the callstack is empty.
545 for (const uint64_t Id : EntriesToErase) {
546 StackMap.erase(Id);
547 CallstackProfileData.erase(Id);
550 if (StackMap.empty())
551 return make_error<InstrProfError>(
552 instrprof_error::malformed,
553 "no entries in callstack map after symbolization");
555 return Error::success();
558 std::vector<std::string>
559 RawMemProfReader::peekBuildIds(MemoryBuffer *DataBuffer) {
560 const char *Next = DataBuffer->getBufferStart();
561 // Use a set + vector since a profile file may contain multiple raw profile
562 // dumps, each with segment information. We want them unique and in order they
563 // were stored in the profile; the profiled binary should be the first entry.
564 // The runtime uses dl_iterate_phdr and the "... first object visited by
565 // callback is the main program."
566 // https://man7.org/linux/man-pages/man3/dl_iterate_phdr.3.html
567 std::vector<std::string> BuildIds;
568 llvm::SmallSet<std::string, 10> BuildIdsSet;
569 while (Next < DataBuffer->getBufferEnd()) {
570 auto *Header = reinterpret_cast<const memprof::Header *>(Next);
572 const llvm::SmallVector<SegmentEntry> Entries =
573 readSegmentEntries(Next + Header->SegmentOffset);
575 for (const auto &Entry : Entries) {
576 const std::string Id = getBuildIdString(Entry);
577 if (BuildIdsSet.contains(Id))
578 continue;
579 BuildIds.push_back(Id);
580 BuildIdsSet.insert(Id);
583 Next += Header->TotalSize;
585 return BuildIds;
588 Error RawMemProfReader::readRawProfile(
589 std::unique_ptr<MemoryBuffer> DataBuffer) {
590 const char *Next = DataBuffer->getBufferStart();
592 while (Next < DataBuffer->getBufferEnd()) {
593 auto *Header = reinterpret_cast<const memprof::Header *>(Next);
595 // Read in the segment information, check whether its the same across all
596 // profiles in this binary file.
597 const llvm::SmallVector<SegmentEntry> Entries =
598 readSegmentEntries(Next + Header->SegmentOffset);
599 if (!SegmentInfo.empty() && SegmentInfo != Entries) {
600 // We do not expect segment information to change when deserializing from
601 // the same binary profile file. This can happen if dynamic libraries are
602 // loaded/unloaded between profile dumping.
603 return make_error<InstrProfError>(
604 instrprof_error::malformed,
605 "memprof raw profile has different segment information");
607 SegmentInfo.assign(Entries.begin(), Entries.end());
609 // Read in the MemInfoBlocks. Merge them based on stack id - we assume that
610 // raw profiles in the same binary file are from the same process so the
611 // stackdepot ids are the same.
612 for (const auto &Value : readMemInfoBlocks(Next + Header->MIBOffset)) {
613 if (CallstackProfileData.count(Value.first)) {
614 CallstackProfileData[Value.first].Merge(Value.second);
615 } else {
616 CallstackProfileData[Value.first] = Value.second;
620 // Read in the callstack for each ids. For multiple raw profiles in the same
621 // file, we expect that the callstack is the same for a unique id.
622 const CallStackMap CSM = readStackInfo(Next + Header->StackOffset);
623 if (StackMap.empty()) {
624 StackMap = CSM;
625 } else {
626 if (mergeStackMap(CSM, StackMap))
627 return make_error<InstrProfError>(
628 instrprof_error::malformed,
629 "memprof raw profile got different call stack for same id");
632 Next += Header->TotalSize;
635 return Error::success();
638 object::SectionedAddress
639 RawMemProfReader::getModuleOffset(const uint64_t VirtualAddress) {
640 if (VirtualAddress > ProfiledTextSegmentStart &&
641 VirtualAddress <= ProfiledTextSegmentEnd) {
642 // For PIE binaries, the preferred address is zero and we adjust the virtual
643 // address by start of the profiled segment assuming that the offset of the
644 // segment in the binary is zero. For non-PIE binaries the preferred and
645 // profiled segment addresses should be equal and this is a no-op.
646 const uint64_t AdjustedAddress =
647 VirtualAddress + PreferredTextSegmentAddress - ProfiledTextSegmentStart;
648 return object::SectionedAddress{AdjustedAddress};
650 // Addresses which do not originate from the profiled text segment in the
651 // binary are not adjusted. These will fail symbolization and be filtered out
652 // during processing.
653 return object::SectionedAddress{VirtualAddress};
656 Error RawMemProfReader::readNextRecord(
657 GuidMemProfRecordPair &GuidRecord,
658 std::function<const Frame(const FrameId)> Callback) {
659 // Create a new callback for the RawMemProfRecord iterator so that we can
660 // provide the symbol name if the reader was initialized with KeepSymbolName =
661 // true. This is useful for debugging and testing.
662 auto IdToFrameCallback = [this](const FrameId Id) {
663 Frame F = this->idToFrame(Id);
664 if (!this->KeepSymbolName)
665 return F;
666 auto Iter = this->GuidToSymbolName.find(F.Function);
667 assert(Iter != this->GuidToSymbolName.end());
668 F.SymbolName = Iter->getSecond();
669 return F;
671 return MemProfReader::readNextRecord(GuidRecord, IdToFrameCallback);
673 } // namespace memprof
674 } // namespace llvm