1 //===- AArch64ExpandImm.h - AArch64 Immediate Expansion -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the AArch64ExpandImm stuff.
11 //===----------------------------------------------------------------------===//
14 #include "AArch64ExpandImm.h"
15 #include "MCTargetDesc/AArch64AddressingModes.h"
18 using namespace llvm::AArch64_IMM
;
20 /// Helper function which extracts the specified 16-bit chunk from a
22 static uint64_t getChunk(uint64_t Imm
, unsigned ChunkIdx
) {
23 assert(ChunkIdx
< 4 && "Out of range chunk index specified!");
25 return (Imm
>> (ChunkIdx
* 16)) & 0xFFFF;
28 /// Check whether the given 16-bit chunk replicated to full 64-bit width
29 /// can be materialized with an ORR instruction.
30 static bool canUseOrr(uint64_t Chunk
, uint64_t &Encoding
) {
31 Chunk
= (Chunk
<< 48) | (Chunk
<< 32) | (Chunk
<< 16) | Chunk
;
33 return AArch64_AM::processLogicalImmediate(Chunk
, 64, Encoding
);
36 /// Check for identical 16-bit chunks within the constant and if so
37 /// materialize them with a single ORR instruction. The remaining one or two
38 /// 16-bit chunks will be materialized with MOVK instructions.
40 /// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order
41 /// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with
42 /// an ORR instruction.
43 static bool tryToreplicateChunks(uint64_t UImm
,
44 SmallVectorImpl
<ImmInsnModel
> &Insn
) {
45 using CountMap
= DenseMap
<uint64_t, unsigned>;
49 // Scan the constant and count how often every chunk occurs.
50 for (unsigned Idx
= 0; Idx
< 4; ++Idx
)
51 ++Counts
[getChunk(UImm
, Idx
)];
53 // Traverse the chunks to find one which occurs more than once.
54 for (const auto &Chunk
: Counts
) {
55 const uint64_t ChunkVal
= Chunk
.first
;
56 const unsigned Count
= Chunk
.second
;
58 uint64_t Encoding
= 0;
60 // We are looking for chunks which have two or three instances and can be
61 // materialized with an ORR instruction.
62 if ((Count
!= 2 && Count
!= 3) || !canUseOrr(ChunkVal
, Encoding
))
65 const bool CountThree
= Count
== 3;
67 Insn
.push_back({ AArch64::ORRXri
, 0, Encoding
});
69 unsigned ShiftAmt
= 0;
71 // Find the first chunk not materialized with the ORR instruction.
72 for (; ShiftAmt
< 64; ShiftAmt
+= 16) {
73 Imm16
= (UImm
>> ShiftAmt
) & 0xFFFF;
75 if (Imm16
!= ChunkVal
)
79 // Create the first MOVK instruction.
80 Insn
.push_back({ AArch64::MOVKXi
, Imm16
,
81 AArch64_AM::getShifterImm(AArch64_AM::LSL
, ShiftAmt
) });
83 // In case we have three instances the whole constant is now materialized
88 // Find the remaining chunk which needs to be materialized.
89 for (ShiftAmt
+= 16; ShiftAmt
< 64; ShiftAmt
+= 16) {
90 Imm16
= (UImm
>> ShiftAmt
) & 0xFFFF;
92 if (Imm16
!= ChunkVal
)
95 Insn
.push_back({ AArch64::MOVKXi
, Imm16
,
96 AArch64_AM::getShifterImm(AArch64_AM::LSL
, ShiftAmt
) });
103 /// Check whether this chunk matches the pattern '1...0...'. This pattern
104 /// starts a contiguous sequence of ones if we look at the bits from the LSB
106 static bool isStartChunk(uint64_t Chunk
) {
107 if (Chunk
== 0 || Chunk
== std::numeric_limits
<uint64_t>::max())
110 return isMask_64(~Chunk
);
113 /// Check whether this chunk matches the pattern '0...1...' This pattern
114 /// ends a contiguous sequence of ones if we look at the bits from the LSB
116 static bool isEndChunk(uint64_t Chunk
) {
117 if (Chunk
== 0 || Chunk
== std::numeric_limits
<uint64_t>::max())
120 return isMask_64(Chunk
);
123 /// Clear or set all bits in the chunk at the given index.
124 static uint64_t updateImm(uint64_t Imm
, unsigned Idx
, bool Clear
) {
125 const uint64_t Mask
= 0xFFFF;
128 // Clear chunk in the immediate.
129 Imm
&= ~(Mask
<< (Idx
* 16));
131 // Set all bits in the immediate for the particular chunk.
132 Imm
|= Mask
<< (Idx
* 16);
137 /// Check whether the constant contains a sequence of contiguous ones,
138 /// which might be interrupted by one or two chunks. If so, materialize the
139 /// sequence of contiguous ones with an ORR instruction.
140 /// Materialize the chunks which are either interrupting the sequence or outside
141 /// of the sequence with a MOVK instruction.
143 /// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk
144 /// which ends the sequence (0...1...). Then we are looking for constants which
145 /// contain at least one S and E chunk.
146 /// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|.
148 /// We are also looking for constants like |S|A|B|E| where the contiguous
149 /// sequence of ones wraps around the MSB into the LSB.
150 static bool trySequenceOfOnes(uint64_t UImm
,
151 SmallVectorImpl
<ImmInsnModel
> &Insn
) {
152 const int NotSet
= -1;
153 const uint64_t Mask
= 0xFFFF;
155 int StartIdx
= NotSet
;
157 // Try to find the chunks which start/end a contiguous sequence of ones.
158 for (int Idx
= 0; Idx
< 4; ++Idx
) {
159 int64_t Chunk
= getChunk(UImm
, Idx
);
160 // Sign extend the 16-bit chunk to 64-bit.
161 Chunk
= (Chunk
<< 48) >> 48;
163 if (isStartChunk(Chunk
))
165 else if (isEndChunk(Chunk
))
169 // Early exit in case we can't find a start/end chunk.
170 if (StartIdx
== NotSet
|| EndIdx
== NotSet
)
173 // Outside of the contiguous sequence of ones everything needs to be zero.
174 uint64_t Outside
= 0;
175 // Chunks between the start and end chunk need to have all their bits set.
176 uint64_t Inside
= Mask
;
178 // If our contiguous sequence of ones wraps around from the MSB into the LSB,
179 // just swap indices and pretend we are materializing a contiguous sequence
180 // of zeros surrounded by a contiguous sequence of ones.
181 if (StartIdx
> EndIdx
) {
182 std::swap(StartIdx
, EndIdx
);
183 std::swap(Outside
, Inside
);
186 uint64_t OrrImm
= UImm
;
187 int FirstMovkIdx
= NotSet
;
188 int SecondMovkIdx
= NotSet
;
190 // Find out which chunks we need to patch up to obtain a contiguous sequence
192 for (int Idx
= 0; Idx
< 4; ++Idx
) {
193 const uint64_t Chunk
= getChunk(UImm
, Idx
);
195 // Check whether we are looking at a chunk which is not part of the
196 // contiguous sequence of ones.
197 if ((Idx
< StartIdx
|| EndIdx
< Idx
) && Chunk
!= Outside
) {
198 OrrImm
= updateImm(OrrImm
, Idx
, Outside
== 0);
200 // Remember the index we need to patch.
201 if (FirstMovkIdx
== NotSet
)
206 // Check whether we are looking a chunk which is part of the contiguous
208 } else if (Idx
> StartIdx
&& Idx
< EndIdx
&& Chunk
!= Inside
) {
209 OrrImm
= updateImm(OrrImm
, Idx
, Inside
!= Mask
);
211 // Remember the index we need to patch.
212 if (FirstMovkIdx
== NotSet
)
218 assert(FirstMovkIdx
!= NotSet
&& "Constant materializable with single ORR!");
220 // Create the ORR-immediate instruction.
221 uint64_t Encoding
= 0;
222 AArch64_AM::processLogicalImmediate(OrrImm
, 64, Encoding
);
223 Insn
.push_back({ AArch64::ORRXri
, 0, Encoding
});
225 const bool SingleMovk
= SecondMovkIdx
== NotSet
;
226 Insn
.push_back({ AArch64::MOVKXi
, getChunk(UImm
, FirstMovkIdx
),
227 AArch64_AM::getShifterImm(AArch64_AM::LSL
,
228 FirstMovkIdx
* 16) });
230 // Early exit in case we only need to emit a single MOVK instruction.
234 // Create the second MOVK instruction.
235 Insn
.push_back({ AArch64::MOVKXi
, getChunk(UImm
, SecondMovkIdx
),
236 AArch64_AM::getShifterImm(AArch64_AM::LSL
,
237 SecondMovkIdx
* 16) });
242 static uint64_t GetRunOfOnesStartingAt(uint64_t V
, uint64_t StartPosition
) {
243 uint64_t NumOnes
= llvm::countr_one(V
>> StartPosition
);
245 uint64_t UnshiftedOnes
;
247 UnshiftedOnes
= ~0ULL;
249 UnshiftedOnes
= (1ULL << NumOnes
) - 1;
251 return UnshiftedOnes
<< StartPosition
;
254 static uint64_t MaximallyReplicateSubImmediate(uint64_t V
, uint64_t Subset
) {
255 uint64_t Result
= Subset
;
257 // 64, 32, 16, 8, 4, 2
258 for (uint64_t i
= 0; i
< 6; ++i
) {
259 uint64_t Rotation
= 1ULL << (6 - i
);
260 uint64_t Closure
= Result
| llvm::rotl
<uint64_t>(Result
, Rotation
);
261 if (Closure
!= (Closure
& V
)) {
270 // Find the logical immediate that covers the most bits in RemainingBits,
271 // allowing for additional bits to be set that were set in OriginalBits.
272 static uint64_t maximalLogicalImmWithin(uint64_t RemainingBits
,
273 uint64_t OriginalBits
) {
274 // Find the first set bit.
275 uint32_t Position
= llvm::countr_zero(RemainingBits
);
277 // Get the first run of set bits.
278 uint64_t FirstRun
= GetRunOfOnesStartingAt(OriginalBits
, Position
);
280 // Replicate the run as many times as possible, as long as the bits are set in
282 uint64_t MaximalImm
= MaximallyReplicateSubImmediate(OriginalBits
, FirstRun
);
287 static std::optional
<std::pair
<uint64_t, uint64_t>>
288 decomposeIntoOrrOfLogicalImmediates(uint64_t UImm
) {
289 if (UImm
== 0 || ~UImm
== 0)
292 // Make sure we don't have a run of ones split around the rotation boundary.
293 uint32_t InitialTrailingOnes
= llvm::countr_one(UImm
);
294 uint64_t RotatedBits
= llvm::rotr
<uint64_t>(UImm
, InitialTrailingOnes
);
296 // Find the largest logical immediate that fits within the full immediate.
297 uint64_t MaximalImm1
= maximalLogicalImmWithin(RotatedBits
, RotatedBits
);
299 // Remove all bits that are set by this mask.
300 uint64_t RemainingBits
= RotatedBits
& ~MaximalImm1
;
302 // Find the largest logical immediate covering the remaining bits, allowing
303 // for additional bits to be set that were also set in the original immediate.
304 uint64_t MaximalImm2
= maximalLogicalImmWithin(RemainingBits
, RotatedBits
);
306 // If any bits still haven't been covered, then give up.
307 if (RemainingBits
& ~MaximalImm2
)
310 // Make sure to un-rotate the immediates.
311 return std::make_pair(rotl(MaximalImm1
, InitialTrailingOnes
),
312 rotl(MaximalImm2
, InitialTrailingOnes
));
315 // Attempt to expand an immediate as the ORR of a pair of logical immediates.
316 static bool tryOrrOfLogicalImmediates(uint64_t UImm
,
317 SmallVectorImpl
<ImmInsnModel
> &Insn
) {
318 auto MaybeDecomposition
= decomposeIntoOrrOfLogicalImmediates(UImm
);
319 if (MaybeDecomposition
== std::nullopt
)
321 uint64_t Imm1
= MaybeDecomposition
->first
;
322 uint64_t Imm2
= MaybeDecomposition
->second
;
324 uint64_t Encoding1
, Encoding2
;
325 bool Imm1Success
= AArch64_AM::processLogicalImmediate(Imm1
, 64, Encoding1
);
326 bool Imm2Success
= AArch64_AM::processLogicalImmediate(Imm2
, 64, Encoding2
);
328 if (Imm1Success
&& Imm2Success
) {
329 // Create the ORR-immediate instructions.
330 Insn
.push_back({AArch64::ORRXri
, 0, Encoding1
});
331 Insn
.push_back({AArch64::ORRXri
, 1, Encoding2
});
338 // Attempt to expand an immediate as the AND of a pair of logical immediates.
339 // This is done by applying DeMorgan's law, under which logical immediates
341 static bool tryAndOfLogicalImmediates(uint64_t UImm
,
342 SmallVectorImpl
<ImmInsnModel
> &Insn
) {
343 // Apply DeMorgan's law to turn this into an ORR problem.
344 auto MaybeDecomposition
= decomposeIntoOrrOfLogicalImmediates(~UImm
);
345 if (MaybeDecomposition
== std::nullopt
)
347 uint64_t Imm1
= MaybeDecomposition
->first
;
348 uint64_t Imm2
= MaybeDecomposition
->second
;
350 uint64_t Encoding1
, Encoding2
;
351 bool Imm1Success
= AArch64_AM::processLogicalImmediate(~Imm1
, 64, Encoding1
);
352 bool Imm2Success
= AArch64_AM::processLogicalImmediate(~Imm2
, 64, Encoding2
);
354 if (Imm1Success
&& Imm2Success
) {
355 // Materialize Imm1, the LHS of the AND
356 Insn
.push_back({AArch64::ORRXri
, 0, Encoding1
});
357 // AND Imm1 with Imm2
358 Insn
.push_back({AArch64::ANDXri
, 1, Encoding2
});
365 // Check whether the constant can be represented by exclusive-or of two 64-bit
366 // logical immediates. If so, materialize it with an ORR instruction followed
367 // by an EOR instruction.
369 // This encoding allows all remaining repeated byte patterns, and many repeated
370 // 16-bit values, to be encoded without needing four instructions. It can also
371 // represent some irregular bitmasks (although those would mostly only need
372 // three instructions otherwise).
373 static bool tryEorOfLogicalImmediates(uint64_t Imm
,
374 SmallVectorImpl
<ImmInsnModel
> &Insn
) {
375 // Determine the larger repetition size of the two possible logical
376 // immediates, by finding the repetition size of Imm.
377 unsigned BigSize
= 64;
381 uint64_t Mask
= (1ULL << BigSize
) - 1;
383 if ((Imm
& Mask
) != ((Imm
>> BigSize
) & Mask
)) {
387 } while (BigSize
> 2);
389 uint64_t BigMask
= ((uint64_t)-1LL) >> (64 - BigSize
);
391 // Find the last bit of each run of ones, circularly. For runs which wrap
392 // around from bit 0 to bit 63, this is the bit before the most-significant
393 // zero, otherwise it is the least-significant bit in the run of ones.
394 uint64_t RunStarts
= Imm
& ~rotl
<uint64_t>(Imm
, 1);
396 // Find the smaller repetition size of the two possible logical immediates by
397 // counting the number of runs of one-bits within the BigSize-bit value. Both
398 // sizes may be the same. The EOR may add one or subtract one from the
399 // power-of-two count that can be represented by a logical immediate, or it
400 // may be left unchanged.
401 int RunsPerBigChunk
= popcount(RunStarts
& BigMask
);
403 static const int8_t BigToSmallSizeTable
[32] = {
404 -1, -1, 0, 1, 2, 2, -1, 3, 3, 3, -1, -1, -1, -1, -1, 4,
405 4, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 5,
408 int BigToSmallShift
= BigToSmallSizeTable
[RunsPerBigChunk
];
410 // Early-exit if the big chunk couldn't be a power-of-two number of runs
411 // EORed with another single run.
412 if (BigToSmallShift
== -1)
415 unsigned SmallSize
= BigSize
>> BigToSmallShift
;
417 // 64-bit values with a bit set every (1 << index) bits.
418 static const uint64_t RepeatedOnesTable
[] = {
419 0xffffffffffffffff, 0x5555555555555555, 0x1111111111111111,
420 0x0101010101010101, 0x0001000100010001, 0x0000000100000001,
424 // This RepeatedOnesTable lookup is a faster implementation of the division
425 // 0xffffffffffffffff / ((1 << SmallSize) - 1), and can be thought of as
426 // dividing the 64-bit value into fields of width SmallSize, and placing a
427 // one in the least significant bit of each field.
428 uint64_t SmallOnes
= RepeatedOnesTable
[countr_zero(SmallSize
)];
430 // Now we try to find the number of ones in each of the smaller repetitions,
431 // by looking at runs of ones in Imm. This can take three attempts, as the
432 // EOR may have changed the length of the first two runs we find.
434 // Rotate a run of ones so we can count the number of trailing set bits.
435 int Rotation
= countr_zero(RunStarts
);
436 uint64_t RotatedImm
= rotr
<uint64_t>(Imm
, Rotation
);
437 for (int Attempt
= 0; Attempt
< 3; ++Attempt
) {
438 unsigned RunLength
= countr_one(RotatedImm
);
440 // Construct candidate values BigImm and SmallImm, such that if these two
441 // values are encodable, we have a solution. (SmallImm is constructed to be
442 // encodable, but this isn't guaranteed when RunLength >= SmallSize)
444 rotl
<uint64_t>((SmallOnes
<< RunLength
) - SmallOnes
, Rotation
);
445 uint64_t BigImm
= Imm
^ SmallImm
;
447 uint64_t BigEncoding
= 0;
448 uint64_t SmallEncoding
= 0;
449 if (AArch64_AM::processLogicalImmediate(BigImm
, 64, BigEncoding
) &&
450 AArch64_AM::processLogicalImmediate(SmallImm
, 64, SmallEncoding
)) {
451 Insn
.push_back({AArch64::ORRXri
, 0, SmallEncoding
});
452 Insn
.push_back({AArch64::EORXri
, 1, BigEncoding
});
456 // Rotate to the next run of ones
457 Rotation
+= countr_zero(rotr
<uint64_t>(RunStarts
, Rotation
) & ~1);
458 RotatedImm
= rotr
<uint64_t>(Imm
, Rotation
);
464 /// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to a
465 /// MOVZ or MOVN of width BitSize followed by up to 3 MOVK instructions.
466 static inline void expandMOVImmSimple(uint64_t Imm
, unsigned BitSize
,
467 unsigned OneChunks
, unsigned ZeroChunks
,
468 SmallVectorImpl
<ImmInsnModel
> &Insn
) {
469 const unsigned Mask
= 0xFFFF;
471 // Use a MOVZ or MOVN instruction to set the high bits, followed by one or
472 // more MOVK instructions to insert additional 16-bit portions into the
476 // Use MOVN to materialize the high bits if we have more all one chunks
477 // than all zero chunks.
478 if (OneChunks
> ZeroChunks
) {
485 Imm
&= (1LL << 32) - 1;
486 FirstOpc
= (isNeg
? AArch64::MOVNWi
: AArch64::MOVZWi
);
488 FirstOpc
= (isNeg
? AArch64::MOVNXi
: AArch64::MOVZXi
);
490 unsigned Shift
= 0; // LSL amount for high bits with MOVZ/MOVN
491 unsigned LastShift
= 0; // LSL amount for last MOVK
493 unsigned LZ
= llvm::countl_zero(Imm
);
494 unsigned TZ
= llvm::countr_zero(Imm
);
495 Shift
= (TZ
/ 16) * 16;
496 LastShift
= ((63 - LZ
) / 16) * 16;
498 unsigned Imm16
= (Imm
>> Shift
) & Mask
;
500 Insn
.push_back({ FirstOpc
, Imm16
,
501 AArch64_AM::getShifterImm(AArch64_AM::LSL
, Shift
) });
503 if (Shift
== LastShift
)
506 // If a MOVN was used for the high bits of a negative value, flip the rest
507 // of the bits back for use with MOVK.
511 unsigned Opc
= (BitSize
== 32 ? AArch64::MOVKWi
: AArch64::MOVKXi
);
512 while (Shift
< LastShift
) {
514 Imm16
= (Imm
>> Shift
) & Mask
;
515 if (Imm16
== (isNeg
? Mask
: 0))
516 continue; // This 16-bit portion is already set correctly.
518 Insn
.push_back({ Opc
, Imm16
,
519 AArch64_AM::getShifterImm(AArch64_AM::LSL
, Shift
) });
523 /// Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more
524 /// real move-immediate instructions to synthesize the immediate.
525 void AArch64_IMM::expandMOVImm(uint64_t Imm
, unsigned BitSize
,
526 SmallVectorImpl
<ImmInsnModel
> &Insn
) {
527 const unsigned Mask
= 0xFFFF;
529 // Scan the immediate and count the number of 16-bit chunks which are either
530 // all ones or all zeros.
531 unsigned OneChunks
= 0;
532 unsigned ZeroChunks
= 0;
533 for (unsigned Shift
= 0; Shift
< BitSize
; Shift
+= 16) {
534 const unsigned Chunk
= (Imm
>> Shift
) & Mask
;
541 // Prefer MOVZ/MOVN over ORR because of the rules for the "mov" alias.
542 if ((BitSize
/ 16) - OneChunks
<= 1 || (BitSize
/ 16) - ZeroChunks
<= 1) {
543 expandMOVImmSimple(Imm
, BitSize
, OneChunks
, ZeroChunks
, Insn
);
548 uint64_t UImm
= Imm
<< (64 - BitSize
) >> (64 - BitSize
);
550 if (AArch64_AM::processLogicalImmediate(UImm
, BitSize
, Encoding
)) {
551 unsigned Opc
= (BitSize
== 32 ? AArch64::ORRWri
: AArch64::ORRXri
);
552 Insn
.push_back({ Opc
, 0, Encoding
});
556 // One to up three instruction sequences.
558 // Prefer MOVZ/MOVN followed by MOVK; it's more readable, and possibly the
559 // fastest sequence with fast literal generation.
560 if (OneChunks
>= (BitSize
/ 16) - 2 || ZeroChunks
>= (BitSize
/ 16) - 2) {
561 expandMOVImmSimple(Imm
, BitSize
, OneChunks
, ZeroChunks
, Insn
);
565 assert(BitSize
== 64 && "All 32-bit immediates can be expanded with a"
568 // Try other two-instruction sequences.
570 // 64-bit ORR followed by MOVK.
571 // We try to construct the ORR immediate in three different ways: either we
572 // zero out the chunk which will be replaced, we fill the chunk which will
573 // be replaced with ones, or we take the bit pattern from the other half of
574 // the 64-bit immediate. This is comprehensive because of the way ORR
575 // immediates are constructed.
576 for (unsigned Shift
= 0; Shift
< BitSize
; Shift
+= 16) {
577 uint64_t ShiftedMask
= (0xFFFFULL
<< Shift
);
578 uint64_t ZeroChunk
= UImm
& ~ShiftedMask
;
579 uint64_t OneChunk
= UImm
| ShiftedMask
;
580 uint64_t RotatedImm
= (UImm
<< 32) | (UImm
>> 32);
581 uint64_t ReplicateChunk
= ZeroChunk
| (RotatedImm
& ShiftedMask
);
582 if (AArch64_AM::processLogicalImmediate(ZeroChunk
, BitSize
, Encoding
) ||
583 AArch64_AM::processLogicalImmediate(OneChunk
, BitSize
, Encoding
) ||
584 AArch64_AM::processLogicalImmediate(ReplicateChunk
, BitSize
,
586 // Create the ORR-immediate instruction.
587 Insn
.push_back({ AArch64::ORRXri
, 0, Encoding
});
589 // Create the MOVK instruction.
590 const unsigned Imm16
= getChunk(UImm
, Shift
/ 16);
591 Insn
.push_back({ AArch64::MOVKXi
, Imm16
,
592 AArch64_AM::getShifterImm(AArch64_AM::LSL
, Shift
) });
597 // Attempt to use a sequence of two ORR-immediate instructions.
598 if (tryOrrOfLogicalImmediates(Imm
, Insn
))
601 // Attempt to use a sequence of ORR-immediate followed by AND-immediate.
602 if (tryAndOfLogicalImmediates(Imm
, Insn
))
605 // Attempt to use a sequence of ORR-immediate followed by EOR-immediate.
606 if (tryEorOfLogicalImmediates(UImm
, Insn
))
609 // FIXME: Add more two-instruction sequences.
611 // Three instruction sequences.
613 // Prefer MOVZ/MOVN followed by two MOVK; it's more readable, and possibly
614 // the fastest sequence with fast literal generation. (If neither MOVK is
615 // part of a fast literal generation pair, it could be slower than the
616 // four-instruction sequence, but we won't worry about that for now.)
617 if (OneChunks
|| ZeroChunks
) {
618 expandMOVImmSimple(Imm
, BitSize
, OneChunks
, ZeroChunks
, Insn
);
622 // Check for identical 16-bit chunks within the constant and if so materialize
623 // them with a single ORR instruction. The remaining one or two 16-bit chunks
624 // will be materialized with MOVK instructions.
625 if (BitSize
== 64 && tryToreplicateChunks(UImm
, Insn
))
628 // Check whether the constant contains a sequence of contiguous ones, which
629 // might be interrupted by one or two chunks. If so, materialize the sequence
630 // of contiguous ones with an ORR instruction. Materialize the chunks which
631 // are either interrupting the sequence or outside of the sequence with a
633 if (BitSize
== 64 && trySequenceOfOnes(UImm
, Insn
))
636 // We found no possible two or three instruction sequence; use the general
637 // four-instruction sequence.
638 expandMOVImmSimple(Imm
, BitSize
, OneChunks
, ZeroChunks
, Insn
);