1 //===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the AArch64 implementation of TargetFrameLowering class.
11 // On AArch64, stack frames are structured as follows:
13 // The stack grows downward.
15 // All of the individual frame areas on the frame below are optional, i.e. it's
16 // possible to create a function so that the particular area isn't present
19 // At function entry, the "frame" looks as follows:
22 // |-----------------------------------|
24 // | arguments passed on the stack |
26 // |-----------------------------------| <- sp
30 // After the prologue has run, the frame has the following general structure.
31 // Note that this doesn't depict the case where a red-zone is used. Also,
32 // technically the last frame area (VLAs) doesn't get created until in the
33 // main function body, after the prologue is run. However, it's depicted here
37 // |-----------------------------------|
39 // | arguments passed on the stack |
41 // |-----------------------------------|
43 // | (Win64 only) varargs from reg |
45 // |-----------------------------------|
47 // | callee-saved gpr registers | <--.
48 // | | | On Darwin platforms these
49 // |- - - - - - - - - - - - - - - - - -| | callee saves are swapped,
50 // | prev_lr | | (frame record first)
52 // | async context if needed |
53 // | (a.k.a. "frame record") |
54 // |-----------------------------------| <- fp(=x29)
56 // | callee-saved fp/simd/SVE regs |
58 // |-----------------------------------|
60 // | SVE stack objects |
62 // |-----------------------------------|
63 // |.empty.space.to.make.part.below....|
64 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
65 // |.the.standard.16-byte.alignment....| compile time; if present)
66 // |-----------------------------------|
68 // | local variables of fixed size |
69 // | including spill slots |
70 // |-----------------------------------| <- bp(not defined by ABI,
71 // |.variable-sized.local.variables....| LLVM chooses X19)
72 // |.(VLAs)............................| (size of this area is unknown at
73 // |...................................| compile time)
74 // |-----------------------------------| <- sp
78 // To access the data in a frame, at-compile time, a constant offset must be
79 // computable from one of the pointers (fp, bp, sp) to access it. The size
80 // of the areas with a dotted background cannot be computed at compile-time
81 // if they are present, making it required to have all three of fp, bp and
82 // sp to be set up to be able to access all contents in the frame areas,
83 // assuming all of the frame areas are non-empty.
85 // For most functions, some of the frame areas are empty. For those functions,
86 // it may not be necessary to set up fp or bp:
87 // * A base pointer is definitely needed when there are both VLAs and local
88 // variables with more-than-default alignment requirements.
89 // * A frame pointer is definitely needed when there are local variables with
90 // more-than-default alignment requirements.
92 // For Darwin platforms the frame-record (fp, lr) is stored at the top of the
93 // callee-saved area, since the unwind encoding does not allow for encoding
94 // this dynamically and existing tools depend on this layout. For other
95 // platforms, the frame-record is stored at the bottom of the (gpr) callee-saved
96 // area to allow SVE stack objects (allocated directly below the callee-saves,
97 // if available) to be accessed directly from the framepointer.
98 // The SVE spill/fill instructions have VL-scaled addressing modes such
100 // ldr z8, [fp, #-7 mul vl]
101 // For SVE the size of the vector length (VL) is not known at compile-time, so
102 // '#-7 mul vl' is an offset that can only be evaluated at runtime. With this
103 // layout, we don't need to add an unscaled offset to the framepointer before
104 // accessing the SVE object in the frame.
106 // In some cases when a base pointer is not strictly needed, it is generated
107 // anyway when offsets from the frame pointer to access local variables become
108 // so large that the offset can't be encoded in the immediate fields of loads
111 // Outgoing function arguments must be at the bottom of the stack frame when
112 // calling another function. If we do not have variable-sized stack objects, we
113 // can allocate a "reserved call frame" area at the bottom of the local
114 // variable area, large enough for all outgoing calls. If we do have VLAs, then
115 // the stack pointer must be decremented and incremented around each call to
116 // make space for the arguments below the VLAs.
118 // FIXME: also explain the redzone concept.
120 // An example of the prologue:
127 // .cfi_personality 155, ___gxx_personality_v0
129 // .cfi_lsda 16, Lexception33
131 // stp xa,bx, [sp, -#offset]!
133 // stp x28, x27, [sp, #offset-32]
134 // stp fp, lr, [sp, #offset-16]
135 // add fp, sp, #offset - 16
139 // +-------------------------------------------+
140 // 10000 | ........ | ........ | ........ | ........ |
141 // 10004 | ........ | ........ | ........ | ........ |
142 // +-------------------------------------------+
143 // 10008 | ........ | ........ | ........ | ........ |
144 // 1000c | ........ | ........ | ........ | ........ |
145 // +===========================================+
146 // 10010 | X28 Register |
147 // 10014 | X28 Register |
148 // +-------------------------------------------+
149 // 10018 | X27 Register |
150 // 1001c | X27 Register |
151 // +===========================================+
152 // 10020 | Frame Pointer |
153 // 10024 | Frame Pointer |
154 // +-------------------------------------------+
155 // 10028 | Link Register |
156 // 1002c | Link Register |
157 // +===========================================+
158 // 10030 | ........ | ........ | ........ | ........ |
159 // 10034 | ........ | ........ | ........ | ........ |
160 // +-------------------------------------------+
161 // 10038 | ........ | ........ | ........ | ........ |
162 // 1003c | ........ | ........ | ........ | ........ |
163 // +-------------------------------------------+
165 // [sp] = 10030 :: >>initial value<<
166 // sp = 10020 :: stp fp, lr, [sp, #-16]!
167 // fp = sp == 10020 :: mov fp, sp
168 // [sp] == 10020 :: stp x28, x27, [sp, #-16]!
169 // sp == 10010 :: >>final value<<
171 // The frame pointer (w29) points to address 10020. If we use an offset of
172 // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24
173 // for w27, and -32 for w28:
176 // .cfi_def_cfa w29, 16
178 // .cfi_offset w30, -8
180 // .cfi_offset w29, -16
182 // .cfi_offset w27, -24
184 // .cfi_offset w28, -32
186 //===----------------------------------------------------------------------===//
188 #include "AArch64FrameLowering.h"
189 #include "AArch64InstrInfo.h"
190 #include "AArch64MachineFunctionInfo.h"
191 #include "AArch64RegisterInfo.h"
192 #include "AArch64Subtarget.h"
193 #include "AArch64TargetMachine.h"
194 #include "MCTargetDesc/AArch64AddressingModes.h"
195 #include "MCTargetDesc/AArch64MCTargetDesc.h"
196 #include "llvm/ADT/ScopeExit.h"
197 #include "llvm/ADT/SmallVector.h"
198 #include "llvm/ADT/Statistic.h"
199 #include "llvm/CodeGen/LivePhysRegs.h"
200 #include "llvm/CodeGen/MachineBasicBlock.h"
201 #include "llvm/CodeGen/MachineFrameInfo.h"
202 #include "llvm/CodeGen/MachineFunction.h"
203 #include "llvm/CodeGen/MachineInstr.h"
204 #include "llvm/CodeGen/MachineInstrBuilder.h"
205 #include "llvm/CodeGen/MachineMemOperand.h"
206 #include "llvm/CodeGen/MachineModuleInfo.h"
207 #include "llvm/CodeGen/MachineOperand.h"
208 #include "llvm/CodeGen/MachineRegisterInfo.h"
209 #include "llvm/CodeGen/RegisterScavenging.h"
210 #include "llvm/CodeGen/TargetInstrInfo.h"
211 #include "llvm/CodeGen/TargetRegisterInfo.h"
212 #include "llvm/CodeGen/TargetSubtargetInfo.h"
213 #include "llvm/CodeGen/WinEHFuncInfo.h"
214 #include "llvm/IR/Attributes.h"
215 #include "llvm/IR/CallingConv.h"
216 #include "llvm/IR/DataLayout.h"
217 #include "llvm/IR/DebugLoc.h"
218 #include "llvm/IR/Function.h"
219 #include "llvm/MC/MCAsmInfo.h"
220 #include "llvm/MC/MCDwarf.h"
221 #include "llvm/Support/CommandLine.h"
222 #include "llvm/Support/Debug.h"
223 #include "llvm/Support/ErrorHandling.h"
224 #include "llvm/Support/MathExtras.h"
225 #include "llvm/Support/raw_ostream.h"
226 #include "llvm/Target/TargetMachine.h"
227 #include "llvm/Target/TargetOptions.h"
234 using namespace llvm
;
236 #define DEBUG_TYPE "frame-info"
238 static cl::opt
<bool> EnableRedZone("aarch64-redzone",
239 cl::desc("enable use of redzone on AArch64"),
240 cl::init(false), cl::Hidden
);
243 ReverseCSRRestoreSeq("reverse-csr-restore-seq",
244 cl::desc("reverse the CSR restore sequence"),
245 cl::init(false), cl::Hidden
);
247 static cl::opt
<bool> StackTaggingMergeSetTag(
248 "stack-tagging-merge-settag",
249 cl::desc("merge settag instruction in function epilog"), cl::init(true),
252 static cl::opt
<bool> OrderFrameObjects("aarch64-order-frame-objects",
253 cl::desc("sort stack allocations"),
254 cl::init(true), cl::Hidden
);
256 cl::opt
<bool> EnableHomogeneousPrologEpilog(
257 "homogeneous-prolog-epilog", cl::Hidden
,
258 cl::desc("Emit homogeneous prologue and epilogue for the size "
259 "optimization (default = off)"));
261 STATISTIC(NumRedZoneFunctions
, "Number of functions using red zone");
263 /// Returns how much of the incoming argument stack area (in bytes) we should
264 /// clean up in an epilogue. For the C calling convention this will be 0, for
265 /// guaranteed tail call conventions it can be positive (a normal return or a
266 /// tail call to a function that uses less stack space for arguments) or
267 /// negative (for a tail call to a function that needs more stack space than us
269 static int64_t getArgumentStackToRestore(MachineFunction
&MF
,
270 MachineBasicBlock
&MBB
) {
271 MachineBasicBlock::iterator MBBI
= MBB
.getLastNonDebugInstr();
272 AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
273 bool IsTailCallReturn
= (MBB
.end() != MBBI
)
274 ? AArch64InstrInfo::isTailCallReturnInst(*MBBI
)
277 int64_t ArgumentPopSize
= 0;
278 if (IsTailCallReturn
) {
279 MachineOperand
&StackAdjust
= MBBI
->getOperand(1);
281 // For a tail-call in a callee-pops-arguments environment, some or all of
282 // the stack may actually be in use for the call's arguments, this is
283 // calculated during LowerCall and consumed here...
284 ArgumentPopSize
= StackAdjust
.getImm();
286 // ... otherwise the amount to pop is *all* of the argument space,
287 // conveniently stored in the MachineFunctionInfo by
288 // LowerFormalArguments. This will, of course, be zero for the C calling
290 ArgumentPopSize
= AFI
->getArgumentStackToRestore();
293 return ArgumentPopSize
;
296 static bool produceCompactUnwindFrame(MachineFunction
&MF
);
297 static bool needsWinCFI(const MachineFunction
&MF
);
298 static StackOffset
getSVEStackSize(const MachineFunction
&MF
);
299 static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock
*MBB
);
301 /// Returns true if a homogeneous prolog or epilog code can be emitted
302 /// for the size optimization. If possible, a frame helper call is injected.
303 /// When Exit block is given, this check is for epilog.
304 bool AArch64FrameLowering::homogeneousPrologEpilog(
305 MachineFunction
&MF
, MachineBasicBlock
*Exit
) const {
306 if (!MF
.getFunction().hasMinSize())
308 if (!EnableHomogeneousPrologEpilog
)
310 if (ReverseCSRRestoreSeq
)
315 // TODO: Window is supported yet.
318 // TODO: SVE is not supported yet.
319 if (getSVEStackSize(MF
))
322 // Bail on stack adjustment needed on return for simplicity.
323 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
324 const TargetRegisterInfo
*RegInfo
= MF
.getSubtarget().getRegisterInfo();
325 if (MFI
.hasVarSizedObjects() || RegInfo
->hasStackRealignment(MF
))
327 if (Exit
&& getArgumentStackToRestore(MF
, *Exit
))
330 auto *AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
331 if (AFI
->hasSwiftAsyncContext())
334 // If there are an odd number of GPRs before LR and FP in the CSRs list,
335 // they will not be paired into one RegPairInfo, which is incompatible with
336 // the assumption made by the homogeneous prolog epilog pass.
337 const MCPhysReg
*CSRegs
= MF
.getRegInfo().getCalleeSavedRegs();
338 unsigned NumGPRs
= 0;
339 for (unsigned I
= 0; CSRegs
[I
]; ++I
) {
340 Register Reg
= CSRegs
[I
];
341 if (Reg
== AArch64::LR
) {
342 assert(CSRegs
[I
+ 1] == AArch64::FP
);
343 if (NumGPRs
% 2 != 0)
347 if (AArch64::GPR64RegClass
.contains(Reg
))
354 /// Returns true if CSRs should be paired.
355 bool AArch64FrameLowering::producePairRegisters(MachineFunction
&MF
) const {
356 return produceCompactUnwindFrame(MF
) || homogeneousPrologEpilog(MF
);
359 /// This is the biggest offset to the stack pointer we can encode in aarch64
360 /// instructions (without using a separate calculation and a temp register).
361 /// Note that the exception here are vector stores/loads which cannot encode any
362 /// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()).
363 static const unsigned DefaultSafeSPDisplacement
= 255;
365 /// Look at each instruction that references stack frames and return the stack
366 /// size limit beyond which some of these instructions will require a scratch
367 /// register during their expansion later.
368 static unsigned estimateRSStackSizeLimit(MachineFunction
&MF
) {
369 // FIXME: For now, just conservatively guestimate based on unscaled indexing
370 // range. We'll end up allocating an unnecessary spill slot a lot, but
371 // realistically that's not a big deal at this stage of the game.
372 for (MachineBasicBlock
&MBB
: MF
) {
373 for (MachineInstr
&MI
: MBB
) {
374 if (MI
.isDebugInstr() || MI
.isPseudo() ||
375 MI
.getOpcode() == AArch64::ADDXri
||
376 MI
.getOpcode() == AArch64::ADDSXri
)
379 for (const MachineOperand
&MO
: MI
.operands()) {
384 if (isAArch64FrameOffsetLegal(MI
, Offset
, nullptr, nullptr, nullptr) ==
385 AArch64FrameOffsetCannotUpdate
)
390 return DefaultSafeSPDisplacement
;
394 AArch64FrameLowering::getStackIDForScalableVectors() const {
395 return TargetStackID::ScalableVector
;
398 /// Returns the size of the fixed object area (allocated next to sp on entry)
399 /// On Win64 this may include a var args area and an UnwindHelp object for EH.
400 static unsigned getFixedObjectSize(const MachineFunction
&MF
,
401 const AArch64FunctionInfo
*AFI
, bool IsWin64
,
403 if (!IsWin64
|| IsFunclet
) {
404 return AFI
->getTailCallReservedStack();
406 if (AFI
->getTailCallReservedStack() != 0)
407 report_fatal_error("cannot generate ABI-changing tail call for Win64");
408 // Var args are stored here in the primary function.
409 const unsigned VarArgsArea
= AFI
->getVarArgsGPRSize();
410 // To support EH funclets we allocate an UnwindHelp object
411 const unsigned UnwindHelpObject
= (MF
.hasEHFunclets() ? 8 : 0);
412 return alignTo(VarArgsArea
+ UnwindHelpObject
, 16);
416 /// Returns the size of the entire SVE stackframe (calleesaves + spills).
417 static StackOffset
getSVEStackSize(const MachineFunction
&MF
) {
418 const AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
419 return StackOffset::getScalable((int64_t)AFI
->getStackSizeSVE());
422 bool AArch64FrameLowering::canUseRedZone(const MachineFunction
&MF
) const {
426 // Don't use the red zone if the function explicitly asks us not to.
427 // This is typically used for kernel code.
428 const AArch64Subtarget
&Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
429 const unsigned RedZoneSize
=
430 Subtarget
.getTargetLowering()->getRedZoneSize(MF
.getFunction());
434 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
435 const AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
436 uint64_t NumBytes
= AFI
->getLocalStackSize();
438 return !(MFI
.hasCalls() || hasFP(MF
) || NumBytes
> RedZoneSize
||
439 getSVEStackSize(MF
));
442 /// hasFP - Return true if the specified function should have a dedicated frame
443 /// pointer register.
444 bool AArch64FrameLowering::hasFP(const MachineFunction
&MF
) const {
445 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
446 const TargetRegisterInfo
*RegInfo
= MF
.getSubtarget().getRegisterInfo();
448 // Win64 EH requires a frame pointer if funclets are present, as the locals
449 // are accessed off the frame pointer in both the parent function and the
451 if (MF
.hasEHFunclets())
453 // Retain behavior of always omitting the FP for leaf functions when possible.
454 if (MF
.getTarget().Options
.DisableFramePointerElim(MF
))
456 if (MFI
.hasVarSizedObjects() || MFI
.isFrameAddressTaken() ||
457 MFI
.hasStackMap() || MFI
.hasPatchPoint() ||
458 RegInfo
->hasStackRealignment(MF
))
460 // With large callframes around we may need to use FP to access the scavenging
461 // emergency spillslot.
463 // Unfortunately some calls to hasFP() like machine verifier ->
464 // getReservedReg() -> hasFP in the middle of global isel are too early
465 // to know the max call frame size. Hopefully conservatively returning "true"
466 // in those cases is fine.
467 // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs.
468 if (!MFI
.isMaxCallFrameSizeComputed() ||
469 MFI
.getMaxCallFrameSize() > DefaultSafeSPDisplacement
)
475 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
476 /// not required, we reserve argument space for call sites in the function
477 /// immediately on entry to the current function. This eliminates the need for
478 /// add/sub sp brackets around call sites. Returns true if the call frame is
479 /// included as part of the stack frame.
481 AArch64FrameLowering::hasReservedCallFrame(const MachineFunction
&MF
) const {
482 // The stack probing code for the dynamically allocated outgoing arguments
483 // area assumes that the stack is probed at the top - either by the prologue
484 // code, which issues a probe if `hasVarSizedObjects` return true, or by the
485 // most recent variable-sized object allocation. Changing the condition here
486 // may need to be followed up by changes to the probe issuing logic.
487 return !MF
.getFrameInfo().hasVarSizedObjects();
490 MachineBasicBlock::iterator
AArch64FrameLowering::eliminateCallFramePseudoInstr(
491 MachineFunction
&MF
, MachineBasicBlock
&MBB
,
492 MachineBasicBlock::iterator I
) const {
493 const AArch64InstrInfo
*TII
=
494 static_cast<const AArch64InstrInfo
*>(MF
.getSubtarget().getInstrInfo());
495 const AArch64TargetLowering
*TLI
=
496 MF
.getSubtarget
<AArch64Subtarget
>().getTargetLowering();
497 [[maybe_unused
]] MachineFrameInfo
&MFI
= MF
.getFrameInfo();
498 DebugLoc DL
= I
->getDebugLoc();
499 unsigned Opc
= I
->getOpcode();
500 bool IsDestroy
= Opc
== TII
->getCallFrameDestroyOpcode();
501 uint64_t CalleePopAmount
= IsDestroy
? I
->getOperand(1).getImm() : 0;
503 if (!hasReservedCallFrame(MF
)) {
504 int64_t Amount
= I
->getOperand(0).getImm();
505 Amount
= alignTo(Amount
, getStackAlign());
509 // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
510 // doesn't have to pop anything), then the first operand will be zero too so
511 // this adjustment is a no-op.
512 if (CalleePopAmount
== 0) {
513 // FIXME: in-function stack adjustment for calls is limited to 24-bits
514 // because there's no guaranteed temporary register available.
516 // ADD/SUB (immediate) has only LSL #0 and LSL #12 available.
517 // 1) For offset <= 12-bit, we use LSL #0
518 // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses
519 // LSL #0, and the other uses LSL #12.
521 // Most call frames will be allocated at the start of a function so
522 // this is OK, but it is a limitation that needs dealing with.
523 assert(Amount
> -0xffffff && Amount
< 0xffffff && "call frame too large");
525 if (TLI
->hasInlineStackProbe(MF
) &&
526 -Amount
>= AArch64::StackProbeMaxUnprobedStack
) {
527 // When stack probing is enabled, the decrement of SP may need to be
528 // probed. We only need to do this if the call site needs 1024 bytes of
529 // space or more, because a region smaller than that is allowed to be
530 // unprobed at an ABI boundary. We rely on the fact that SP has been
531 // probed exactly at this point, either by the prologue or most recent
532 // dynamic allocation.
533 assert(MFI
.hasVarSizedObjects() &&
534 "non-reserved call frame without var sized objects?");
535 Register ScratchReg
=
536 MF
.getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass
);
537 inlineStackProbeFixed(I
, ScratchReg
, -Amount
, StackOffset::get(0, 0));
539 emitFrameOffset(MBB
, I
, DL
, AArch64::SP
, AArch64::SP
,
540 StackOffset::getFixed(Amount
), TII
);
543 } else if (CalleePopAmount
!= 0) {
544 // If the calling convention demands that the callee pops arguments from the
545 // stack, we want to add it back if we have a reserved call frame.
546 assert(CalleePopAmount
< 0xffffff && "call frame too large");
547 emitFrameOffset(MBB
, I
, DL
, AArch64::SP
, AArch64::SP
,
548 StackOffset::getFixed(-(int64_t)CalleePopAmount
), TII
);
553 void AArch64FrameLowering::emitCalleeSavedGPRLocations(
554 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
) const {
555 MachineFunction
&MF
= *MBB
.getParent();
556 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
558 const std::vector
<CalleeSavedInfo
> &CSI
= MFI
.getCalleeSavedInfo();
562 const TargetSubtargetInfo
&STI
= MF
.getSubtarget();
563 const TargetRegisterInfo
&TRI
= *STI
.getRegisterInfo();
564 const TargetInstrInfo
&TII
= *STI
.getInstrInfo();
565 DebugLoc DL
= MBB
.findDebugLoc(MBBI
);
567 for (const auto &Info
: CSI
) {
568 if (MFI
.getStackID(Info
.getFrameIdx()) == TargetStackID::ScalableVector
)
571 assert(!Info
.isSpilledToReg() && "Spilling to registers not implemented");
572 unsigned DwarfReg
= TRI
.getDwarfRegNum(Info
.getReg(), true);
575 MFI
.getObjectOffset(Info
.getFrameIdx()) - getOffsetOfLocalArea();
576 unsigned CFIIndex
= MF
.addFrameInst(
577 MCCFIInstruction::createOffset(nullptr, DwarfReg
, Offset
));
578 BuildMI(MBB
, MBBI
, DL
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
579 .addCFIIndex(CFIIndex
)
580 .setMIFlags(MachineInstr::FrameSetup
);
584 void AArch64FrameLowering::emitCalleeSavedSVELocations(
585 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
) const {
586 MachineFunction
&MF
= *MBB
.getParent();
587 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
589 // Add callee saved registers to move list.
590 const std::vector
<CalleeSavedInfo
> &CSI
= MFI
.getCalleeSavedInfo();
594 const TargetSubtargetInfo
&STI
= MF
.getSubtarget();
595 const TargetRegisterInfo
&TRI
= *STI
.getRegisterInfo();
596 const TargetInstrInfo
&TII
= *STI
.getInstrInfo();
597 DebugLoc DL
= MBB
.findDebugLoc(MBBI
);
598 AArch64FunctionInfo
&AFI
= *MF
.getInfo
<AArch64FunctionInfo
>();
600 for (const auto &Info
: CSI
) {
601 if (!(MFI
.getStackID(Info
.getFrameIdx()) == TargetStackID::ScalableVector
))
604 // Not all unwinders may know about SVE registers, so assume the lowest
605 // common demoninator.
606 assert(!Info
.isSpilledToReg() && "Spilling to registers not implemented");
607 unsigned Reg
= Info
.getReg();
608 if (!static_cast<const AArch64RegisterInfo
&>(TRI
).regNeedsCFI(Reg
, Reg
))
612 StackOffset::getScalable(MFI
.getObjectOffset(Info
.getFrameIdx())) -
613 StackOffset::getFixed(AFI
.getCalleeSavedStackSize(MFI
));
615 unsigned CFIIndex
= MF
.addFrameInst(createCFAOffset(TRI
, Reg
, Offset
));
616 BuildMI(MBB
, MBBI
, DL
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
617 .addCFIIndex(CFIIndex
)
618 .setMIFlags(MachineInstr::FrameSetup
);
622 static void insertCFISameValue(const MCInstrDesc
&Desc
, MachineFunction
&MF
,
623 MachineBasicBlock
&MBB
,
624 MachineBasicBlock::iterator InsertPt
,
627 MF
.addFrameInst(MCCFIInstruction::createSameValue(nullptr, DwarfReg
));
628 BuildMI(MBB
, InsertPt
, DebugLoc(), Desc
).addCFIIndex(CFIIndex
);
631 void AArch64FrameLowering::resetCFIToInitialState(
632 MachineBasicBlock
&MBB
) const {
634 MachineFunction
&MF
= *MBB
.getParent();
635 const auto &Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
636 const TargetInstrInfo
&TII
= *Subtarget
.getInstrInfo();
638 static_cast<const AArch64RegisterInfo
&>(*Subtarget
.getRegisterInfo());
639 const auto &MFI
= *MF
.getInfo
<AArch64FunctionInfo
>();
641 const MCInstrDesc
&CFIDesc
= TII
.get(TargetOpcode::CFI_INSTRUCTION
);
644 // Reset the CFA to `SP + 0`.
645 MachineBasicBlock::iterator InsertPt
= MBB
.begin();
646 unsigned CFIIndex
= MF
.addFrameInst(MCCFIInstruction::cfiDefCfa(
647 nullptr, TRI
.getDwarfRegNum(AArch64::SP
, true), 0));
648 BuildMI(MBB
, InsertPt
, DL
, CFIDesc
).addCFIIndex(CFIIndex
);
650 // Flip the RA sign state.
651 if (MFI
.shouldSignReturnAddress(MF
)) {
652 CFIIndex
= MF
.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
653 BuildMI(MBB
, InsertPt
, DL
, CFIDesc
).addCFIIndex(CFIIndex
);
656 // Shadow call stack uses X18, reset it.
657 if (MFI
.needsShadowCallStackPrologueEpilogue(MF
))
658 insertCFISameValue(CFIDesc
, MF
, MBB
, InsertPt
,
659 TRI
.getDwarfRegNum(AArch64::X18
, true));
661 // Emit .cfi_same_value for callee-saved registers.
662 const std::vector
<CalleeSavedInfo
> &CSI
=
663 MF
.getFrameInfo().getCalleeSavedInfo();
664 for (const auto &Info
: CSI
) {
665 unsigned Reg
= Info
.getReg();
666 if (!TRI
.regNeedsCFI(Reg
, Reg
))
668 insertCFISameValue(CFIDesc
, MF
, MBB
, InsertPt
,
669 TRI
.getDwarfRegNum(Reg
, true));
673 static void emitCalleeSavedRestores(MachineBasicBlock
&MBB
,
674 MachineBasicBlock::iterator MBBI
,
676 MachineFunction
&MF
= *MBB
.getParent();
677 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
679 const std::vector
<CalleeSavedInfo
> &CSI
= MFI
.getCalleeSavedInfo();
683 const TargetSubtargetInfo
&STI
= MF
.getSubtarget();
684 const TargetRegisterInfo
&TRI
= *STI
.getRegisterInfo();
685 const TargetInstrInfo
&TII
= *STI
.getInstrInfo();
686 DebugLoc DL
= MBB
.findDebugLoc(MBBI
);
688 for (const auto &Info
: CSI
) {
690 (MFI
.getStackID(Info
.getFrameIdx()) == TargetStackID::ScalableVector
))
693 unsigned Reg
= Info
.getReg();
695 !static_cast<const AArch64RegisterInfo
&>(TRI
).regNeedsCFI(Reg
, Reg
))
698 unsigned CFIIndex
= MF
.addFrameInst(MCCFIInstruction::createRestore(
699 nullptr, TRI
.getDwarfRegNum(Info
.getReg(), true)));
700 BuildMI(MBB
, MBBI
, DL
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
701 .addCFIIndex(CFIIndex
)
702 .setMIFlags(MachineInstr::FrameDestroy
);
706 void AArch64FrameLowering::emitCalleeSavedGPRRestores(
707 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
) const {
708 emitCalleeSavedRestores(MBB
, MBBI
, false);
711 void AArch64FrameLowering::emitCalleeSavedSVERestores(
712 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
) const {
713 emitCalleeSavedRestores(MBB
, MBBI
, true);
716 // Return the maximum possible number of bytes for `Size` due to the
717 // architectural limit on the size of a SVE register.
718 static int64_t upperBound(StackOffset Size
) {
719 static const int64_t MAX_BYTES_PER_SCALABLE_BYTE
= 16;
720 return Size
.getScalable() * MAX_BYTES_PER_SCALABLE_BYTE
+ Size
.getFixed();
723 void AArch64FrameLowering::allocateStackSpace(
724 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
,
725 int64_t RealignmentPadding
, StackOffset AllocSize
, bool NeedsWinCFI
,
726 bool *HasWinCFI
, bool EmitCFI
, StackOffset InitialOffset
,
727 bool FollowupAllocs
) const {
733 MachineFunction
&MF
= *MBB
.getParent();
734 const AArch64Subtarget
&Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
735 const TargetInstrInfo
&TII
= *Subtarget
.getInstrInfo();
736 AArch64FunctionInfo
&AFI
= *MF
.getInfo
<AArch64FunctionInfo
>();
737 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
739 const int64_t MaxAlign
= MFI
.getMaxAlign().value();
740 const uint64_t AndMask
= ~(MaxAlign
- 1);
742 if (!Subtarget
.getTargetLowering()->hasInlineStackProbe(MF
)) {
743 Register TargetReg
= RealignmentPadding
744 ? findScratchNonCalleeSaveRegister(&MBB
)
746 // SUB Xd/SP, SP, AllocSize
747 emitFrameOffset(MBB
, MBBI
, DL
, TargetReg
, AArch64::SP
, -AllocSize
, &TII
,
748 MachineInstr::FrameSetup
, false, NeedsWinCFI
, HasWinCFI
,
749 EmitCFI
, InitialOffset
);
751 if (RealignmentPadding
) {
752 // AND SP, X9, 0b11111...0000
753 BuildMI(MBB
, MBBI
, DL
, TII
.get(AArch64::ANDXri
), AArch64::SP
)
754 .addReg(TargetReg
, RegState::Kill
)
755 .addImm(AArch64_AM::encodeLogicalImmediate(AndMask
, 64))
756 .setMIFlags(MachineInstr::FrameSetup
);
757 AFI
.setStackRealigned(true);
759 // No need for SEH instructions here; if we're realigning the stack,
760 // we've set a frame pointer and already finished the SEH prologue.
761 assert(!NeedsWinCFI
);
767 // Stack probing allocation.
770 // Fixed length allocation. If we don't need to re-align the stack and don't
771 // have SVE objects, we can use a more efficient sequence for stack probing.
772 if (AllocSize
.getScalable() == 0 && RealignmentPadding
== 0) {
773 Register ScratchReg
= findScratchNonCalleeSaveRegister(&MBB
);
774 assert(ScratchReg
!= AArch64::NoRegister
);
775 BuildMI(MBB
, MBBI
, DL
, TII
.get(AArch64::PROBED_STACKALLOC
))
777 .addImm(AllocSize
.getFixed())
778 .addImm(InitialOffset
.getFixed())
779 .addImm(InitialOffset
.getScalable());
780 // The fixed allocation may leave unprobed bytes at the top of the
781 // stack. If we have subsequent alocation (e.g. if we have variable-sized
782 // objects), we need to issue an extra probe, so these allocations start in
784 if (FollowupAllocs
) {
786 BuildMI(MBB
, MBBI
, DL
, TII
.get(AArch64::STRXui
))
787 .addReg(AArch64::XZR
)
790 .setMIFlags(MachineInstr::FrameSetup
);
796 // Variable length allocation.
798 // If the (unknown) allocation size cannot exceed the probe size, decrement
799 // the stack pointer right away.
800 int64_t ProbeSize
= AFI
.getStackProbeSize();
801 if (upperBound(AllocSize
) + RealignmentPadding
<= ProbeSize
) {
802 Register ScratchReg
= RealignmentPadding
803 ? findScratchNonCalleeSaveRegister(&MBB
)
805 assert(ScratchReg
!= AArch64::NoRegister
);
806 // SUB Xd, SP, AllocSize
807 emitFrameOffset(MBB
, MBBI
, DL
, ScratchReg
, AArch64::SP
, -AllocSize
, &TII
,
808 MachineInstr::FrameSetup
, false, NeedsWinCFI
, HasWinCFI
,
809 EmitCFI
, InitialOffset
);
810 if (RealignmentPadding
) {
811 // AND SP, Xn, 0b11111...0000
812 BuildMI(MBB
, MBBI
, DL
, TII
.get(AArch64::ANDXri
), AArch64::SP
)
813 .addReg(ScratchReg
, RegState::Kill
)
814 .addImm(AArch64_AM::encodeLogicalImmediate(AndMask
, 64))
815 .setMIFlags(MachineInstr::FrameSetup
);
816 AFI
.setStackRealigned(true);
818 if (FollowupAllocs
|| upperBound(AllocSize
) + RealignmentPadding
>
819 AArch64::StackProbeMaxUnprobedStack
) {
821 BuildMI(MBB
, MBBI
, DL
, TII
.get(AArch64::STRXui
))
822 .addReg(AArch64::XZR
)
825 .setMIFlags(MachineInstr::FrameSetup
);
830 // Emit a variable-length allocation probing loop.
831 // TODO: As an optimisation, the loop can be "unrolled" into a few parts,
832 // each of them guaranteed to adjust the stack by less than the probe size.
833 Register TargetReg
= findScratchNonCalleeSaveRegister(&MBB
);
834 assert(TargetReg
!= AArch64::NoRegister
);
835 // SUB Xd, SP, AllocSize
836 emitFrameOffset(MBB
, MBBI
, DL
, TargetReg
, AArch64::SP
, -AllocSize
, &TII
,
837 MachineInstr::FrameSetup
, false, NeedsWinCFI
, HasWinCFI
,
838 EmitCFI
, InitialOffset
);
839 if (RealignmentPadding
) {
840 // AND Xn, Xn, 0b11111...0000
841 BuildMI(MBB
, MBBI
, DL
, TII
.get(AArch64::ANDXri
), TargetReg
)
842 .addReg(TargetReg
, RegState::Kill
)
843 .addImm(AArch64_AM::encodeLogicalImmediate(AndMask
, 64))
844 .setMIFlags(MachineInstr::FrameSetup
);
847 BuildMI(MBB
, MBBI
, DL
, TII
.get(AArch64::PROBED_STACKALLOC_VAR
))
850 // Set the CFA register back to SP.
852 Subtarget
.getRegisterInfo()->getDwarfRegNum(AArch64::SP
, true);
854 MF
.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg
));
855 BuildMI(MBB
, MBBI
, DL
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
856 .addCFIIndex(CFIIndex
)
857 .setMIFlags(MachineInstr::FrameSetup
);
859 if (RealignmentPadding
)
860 AFI
.setStackRealigned(true);
863 static MCRegister
getRegisterOrZero(MCRegister Reg
, bool HasSVE
) {
866 // The called routine is expected to preserve r19-r28
867 // r29 and r30 are used as frame pointer and link register resp.
872 case AArch64::W##n: \
873 case AArch64::X##n: \
898 case AArch64::B##n: \
899 case AArch64::H##n: \
900 case AArch64::S##n: \
901 case AArch64::D##n: \
902 case AArch64::Q##n: \
903 return HasSVE ? AArch64::Z##n : AArch64::Q##n
940 void AArch64FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero
,
941 MachineBasicBlock
&MBB
) const {
943 MachineBasicBlock::iterator MBBI
= MBB
.getFirstTerminator();
947 if (MBBI
!= MBB
.end())
948 DL
= MBBI
->getDebugLoc();
950 const MachineFunction
&MF
= *MBB
.getParent();
951 const AArch64Subtarget
&STI
= MF
.getSubtarget
<AArch64Subtarget
>();
952 const AArch64RegisterInfo
&TRI
= *STI
.getRegisterInfo();
954 BitVector
GPRsToZero(TRI
.getNumRegs());
955 BitVector
FPRsToZero(TRI
.getNumRegs());
956 bool HasSVE
= STI
.hasSVE();
957 for (MCRegister Reg
: RegsToZero
.set_bits()) {
958 if (TRI
.isGeneralPurposeRegister(MF
, Reg
)) {
959 // For GPRs, we only care to clear out the 64-bit register.
960 if (MCRegister XReg
= getRegisterOrZero(Reg
, HasSVE
))
961 GPRsToZero
.set(XReg
);
962 } else if (AArch64::FPR128RegClass
.contains(Reg
) ||
963 AArch64::FPR64RegClass
.contains(Reg
) ||
964 AArch64::FPR32RegClass
.contains(Reg
) ||
965 AArch64::FPR16RegClass
.contains(Reg
) ||
966 AArch64::FPR8RegClass
.contains(Reg
)) {
968 if (MCRegister XReg
= getRegisterOrZero(Reg
, HasSVE
))
969 FPRsToZero
.set(XReg
);
973 const AArch64InstrInfo
&TII
= *STI
.getInstrInfo();
976 for (MCRegister Reg
: GPRsToZero
.set_bits())
977 TII
.buildClearRegister(Reg
, MBB
, MBBI
, DL
);
979 // Zero out FP/vector registers.
980 for (MCRegister Reg
: FPRsToZero
.set_bits())
981 TII
.buildClearRegister(Reg
, MBB
, MBBI
, DL
);
984 for (MCRegister PReg
:
985 {AArch64::P0
, AArch64::P1
, AArch64::P2
, AArch64::P3
, AArch64::P4
,
986 AArch64::P5
, AArch64::P6
, AArch64::P7
, AArch64::P8
, AArch64::P9
,
987 AArch64::P10
, AArch64::P11
, AArch64::P12
, AArch64::P13
, AArch64::P14
,
989 if (RegsToZero
[PReg
])
990 BuildMI(MBB
, MBBI
, DL
, TII
.get(AArch64::PFALSE
), PReg
);
995 static void getLiveRegsForEntryMBB(LivePhysRegs
&LiveRegs
,
996 const MachineBasicBlock
&MBB
) {
997 const MachineFunction
*MF
= MBB
.getParent();
998 LiveRegs
.addLiveIns(MBB
);
999 // Mark callee saved registers as used so we will not choose them.
1000 const MCPhysReg
*CSRegs
= MF
->getRegInfo().getCalleeSavedRegs();
1001 for (unsigned i
= 0; CSRegs
[i
]; ++i
)
1002 LiveRegs
.addReg(CSRegs
[i
]);
1005 // Find a scratch register that we can use at the start of the prologue to
1006 // re-align the stack pointer. We avoid using callee-save registers since they
1007 // may appear to be free when this is called from canUseAsPrologue (during
1008 // shrink wrapping), but then no longer be free when this is called from
1011 // FIXME: This is a bit conservative, since in the above case we could use one
1012 // of the callee-save registers as a scratch temp to re-align the stack pointer,
1013 // but we would then have to make sure that we were in fact saving at least one
1014 // callee-save register in the prologue, which is additional complexity that
1015 // doesn't seem worth the benefit.
1016 static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock
*MBB
) {
1017 MachineFunction
*MF
= MBB
->getParent();
1019 // If MBB is an entry block, use X9 as the scratch register
1020 if (&MF
->front() == MBB
)
1023 const AArch64Subtarget
&Subtarget
= MF
->getSubtarget
<AArch64Subtarget
>();
1024 const AArch64RegisterInfo
&TRI
= *Subtarget
.getRegisterInfo();
1025 LivePhysRegs
LiveRegs(TRI
);
1026 getLiveRegsForEntryMBB(LiveRegs
, *MBB
);
1028 // Prefer X9 since it was historically used for the prologue scratch reg.
1029 const MachineRegisterInfo
&MRI
= MF
->getRegInfo();
1030 if (LiveRegs
.available(MRI
, AArch64::X9
))
1033 for (unsigned Reg
: AArch64::GPR64RegClass
) {
1034 if (LiveRegs
.available(MRI
, Reg
))
1037 return AArch64::NoRegister
;
1040 bool AArch64FrameLowering::canUseAsPrologue(
1041 const MachineBasicBlock
&MBB
) const {
1042 const MachineFunction
*MF
= MBB
.getParent();
1043 MachineBasicBlock
*TmpMBB
= const_cast<MachineBasicBlock
*>(&MBB
);
1044 const AArch64Subtarget
&Subtarget
= MF
->getSubtarget
<AArch64Subtarget
>();
1045 const AArch64RegisterInfo
*RegInfo
= Subtarget
.getRegisterInfo();
1046 const AArch64TargetLowering
*TLI
= Subtarget
.getTargetLowering();
1047 const AArch64FunctionInfo
*AFI
= MF
->getInfo
<AArch64FunctionInfo
>();
1049 if (AFI
->hasSwiftAsyncContext()) {
1050 const AArch64RegisterInfo
&TRI
= *Subtarget
.getRegisterInfo();
1051 const MachineRegisterInfo
&MRI
= MF
->getRegInfo();
1052 LivePhysRegs
LiveRegs(TRI
);
1053 getLiveRegsForEntryMBB(LiveRegs
, MBB
);
1054 // The StoreSwiftAsyncContext clobbers X16 and X17. Make sure they are
1056 if (!LiveRegs
.available(MRI
, AArch64::X16
) ||
1057 !LiveRegs
.available(MRI
, AArch64::X17
))
1061 // Don't need a scratch register if we're not going to re-align the stack or
1062 // emit stack probes.
1063 if (!RegInfo
->hasStackRealignment(*MF
) && TLI
->hasInlineStackProbe(*MF
))
1065 // Otherwise, we can use any block as long as it has a scratch register
1067 return findScratchNonCalleeSaveRegister(TmpMBB
) != AArch64::NoRegister
;
1070 static bool windowsRequiresStackProbe(MachineFunction
&MF
,
1071 uint64_t StackSizeInBytes
) {
1072 const AArch64Subtarget
&Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
1073 const AArch64FunctionInfo
&MFI
= *MF
.getInfo
<AArch64FunctionInfo
>();
1074 // TODO: When implementing stack protectors, take that into account
1075 // for the probe threshold.
1076 return Subtarget
.isTargetWindows() && MFI
.hasStackProbing() &&
1077 StackSizeInBytes
>= uint64_t(MFI
.getStackProbeSize());
1080 static bool needsWinCFI(const MachineFunction
&MF
) {
1081 const Function
&F
= MF
.getFunction();
1082 return MF
.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
1083 F
.needsUnwindTableEntry();
1086 bool AArch64FrameLowering::shouldCombineCSRLocalStackBump(
1087 MachineFunction
&MF
, uint64_t StackBumpBytes
) const {
1088 AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
1089 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1090 const AArch64Subtarget
&Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
1091 const AArch64RegisterInfo
*RegInfo
= Subtarget
.getRegisterInfo();
1092 if (homogeneousPrologEpilog(MF
))
1095 if (AFI
->getLocalStackSize() == 0)
1098 // For WinCFI, if optimizing for size, prefer to not combine the stack bump
1099 // (to force a stp with predecrement) to match the packed unwind format,
1100 // provided that there actually are any callee saved registers to merge the
1102 // This is potentially marginally slower, but allows using the packed
1103 // unwind format for functions that both have a local area and callee saved
1104 // registers. Using the packed unwind format notably reduces the size of
1106 if (needsWinCFI(MF
) && AFI
->getCalleeSavedStackSize() > 0 &&
1107 MF
.getFunction().hasOptSize())
1110 // 512 is the maximum immediate for stp/ldp that will be used for
1111 // callee-save save/restores
1112 if (StackBumpBytes
>= 512 || windowsRequiresStackProbe(MF
, StackBumpBytes
))
1115 if (MFI
.hasVarSizedObjects())
1118 if (RegInfo
->hasStackRealignment(MF
))
1121 // This isn't strictly necessary, but it simplifies things a bit since the
1122 // current RedZone handling code assumes the SP is adjusted by the
1123 // callee-save save/restore code.
1124 if (canUseRedZone(MF
))
1127 // When there is an SVE area on the stack, always allocate the
1128 // callee-saves and spills/locals separately.
1129 if (getSVEStackSize(MF
))
1135 bool AArch64FrameLowering::shouldCombineCSRLocalStackBumpInEpilogue(
1136 MachineBasicBlock
&MBB
, unsigned StackBumpBytes
) const {
1137 if (!shouldCombineCSRLocalStackBump(*MBB
.getParent(), StackBumpBytes
))
1143 // Disable combined SP bump if the last instruction is an MTE tag store. It
1144 // is almost always better to merge SP adjustment into those instructions.
1145 MachineBasicBlock::iterator LastI
= MBB
.getFirstTerminator();
1146 MachineBasicBlock::iterator Begin
= MBB
.begin();
1147 while (LastI
!= Begin
) {
1149 if (LastI
->isTransient())
1151 if (!LastI
->getFlag(MachineInstr::FrameDestroy
))
1154 switch (LastI
->getOpcode()) {
1155 case AArch64::STGloop
:
1156 case AArch64::STZGloop
:
1158 case AArch64::STZGi
:
1159 case AArch64::ST2Gi
:
1160 case AArch64::STZ2Gi
:
1165 llvm_unreachable("unreachable");
1168 // Given a load or a store instruction, generate an appropriate unwinding SEH
1170 static MachineBasicBlock::iterator
InsertSEH(MachineBasicBlock::iterator MBBI
,
1171 const TargetInstrInfo
&TII
,
1172 MachineInstr::MIFlag Flag
) {
1173 unsigned Opc
= MBBI
->getOpcode();
1174 MachineBasicBlock
*MBB
= MBBI
->getParent();
1175 MachineFunction
&MF
= *MBB
->getParent();
1176 DebugLoc DL
= MBBI
->getDebugLoc();
1177 unsigned ImmIdx
= MBBI
->getNumOperands() - 1;
1178 int Imm
= MBBI
->getOperand(ImmIdx
).getImm();
1179 MachineInstrBuilder MIB
;
1180 const AArch64Subtarget
&Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
1181 const AArch64RegisterInfo
*RegInfo
= Subtarget
.getRegisterInfo();
1185 llvm_unreachable("No SEH Opcode for this instruction");
1186 case AArch64::LDPDpost
:
1189 case AArch64::STPDpre
: {
1190 unsigned Reg0
= RegInfo
->getSEHRegNum(MBBI
->getOperand(1).getReg());
1191 unsigned Reg1
= RegInfo
->getSEHRegNum(MBBI
->getOperand(2).getReg());
1192 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveFRegP_X
))
1199 case AArch64::LDPXpost
:
1202 case AArch64::STPXpre
: {
1203 Register Reg0
= MBBI
->getOperand(1).getReg();
1204 Register Reg1
= MBBI
->getOperand(2).getReg();
1205 if (Reg0
== AArch64::FP
&& Reg1
== AArch64::LR
)
1206 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveFPLR_X
))
1210 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveRegP_X
))
1211 .addImm(RegInfo
->getSEHRegNum(Reg0
))
1212 .addImm(RegInfo
->getSEHRegNum(Reg1
))
1217 case AArch64::LDRDpost
:
1220 case AArch64::STRDpre
: {
1221 unsigned Reg
= RegInfo
->getSEHRegNum(MBBI
->getOperand(1).getReg());
1222 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveFReg_X
))
1228 case AArch64::LDRXpost
:
1231 case AArch64::STRXpre
: {
1232 unsigned Reg
= RegInfo
->getSEHRegNum(MBBI
->getOperand(1).getReg());
1233 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveReg_X
))
1239 case AArch64::STPDi
:
1240 case AArch64::LDPDi
: {
1241 unsigned Reg0
= RegInfo
->getSEHRegNum(MBBI
->getOperand(0).getReg());
1242 unsigned Reg1
= RegInfo
->getSEHRegNum(MBBI
->getOperand(1).getReg());
1243 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveFRegP
))
1250 case AArch64::STPXi
:
1251 case AArch64::LDPXi
: {
1252 Register Reg0
= MBBI
->getOperand(0).getReg();
1253 Register Reg1
= MBBI
->getOperand(1).getReg();
1254 if (Reg0
== AArch64::FP
&& Reg1
== AArch64::LR
)
1255 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveFPLR
))
1259 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveRegP
))
1260 .addImm(RegInfo
->getSEHRegNum(Reg0
))
1261 .addImm(RegInfo
->getSEHRegNum(Reg1
))
1266 case AArch64::STRXui
:
1267 case AArch64::LDRXui
: {
1268 int Reg
= RegInfo
->getSEHRegNum(MBBI
->getOperand(0).getReg());
1269 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveReg
))
1275 case AArch64::STRDui
:
1276 case AArch64::LDRDui
: {
1277 unsigned Reg
= RegInfo
->getSEHRegNum(MBBI
->getOperand(0).getReg());
1278 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveFReg
))
1284 case AArch64::STPQi
:
1285 case AArch64::LDPQi
: {
1286 unsigned Reg0
= RegInfo
->getSEHRegNum(MBBI
->getOperand(0).getReg());
1287 unsigned Reg1
= RegInfo
->getSEHRegNum(MBBI
->getOperand(1).getReg());
1288 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveAnyRegQP
))
1295 case AArch64::LDPQpost
:
1298 case AArch64::STPQpre
: {
1299 unsigned Reg0
= RegInfo
->getSEHRegNum(MBBI
->getOperand(1).getReg());
1300 unsigned Reg1
= RegInfo
->getSEHRegNum(MBBI
->getOperand(2).getReg());
1301 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveAnyRegQPX
))
1309 auto I
= MBB
->insertAfter(MBBI
, MIB
);
1313 // Fix up the SEH opcode associated with the save/restore instruction.
1314 static void fixupSEHOpcode(MachineBasicBlock::iterator MBBI
,
1315 unsigned LocalStackSize
) {
1316 MachineOperand
*ImmOpnd
= nullptr;
1317 unsigned ImmIdx
= MBBI
->getNumOperands() - 1;
1318 switch (MBBI
->getOpcode()) {
1320 llvm_unreachable("Fix the offset in the SEH instruction");
1321 case AArch64::SEH_SaveFPLR
:
1322 case AArch64::SEH_SaveRegP
:
1323 case AArch64::SEH_SaveReg
:
1324 case AArch64::SEH_SaveFRegP
:
1325 case AArch64::SEH_SaveFReg
:
1326 case AArch64::SEH_SaveAnyRegQP
:
1327 case AArch64::SEH_SaveAnyRegQPX
:
1328 ImmOpnd
= &MBBI
->getOperand(ImmIdx
);
1332 ImmOpnd
->setImm(ImmOpnd
->getImm() + LocalStackSize
);
1335 // Convert callee-save register save/restore instruction to do stack pointer
1336 // decrement/increment to allocate/deallocate the callee-save stack area by
1337 // converting store/load to use pre/post increment version.
1338 static MachineBasicBlock::iterator
convertCalleeSaveRestoreToSPPrePostIncDec(
1339 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
,
1340 const DebugLoc
&DL
, const TargetInstrInfo
*TII
, int CSStackSizeInc
,
1341 bool NeedsWinCFI
, bool *HasWinCFI
, bool EmitCFI
,
1342 MachineInstr::MIFlag FrameFlag
= MachineInstr::FrameSetup
,
1343 int CFAOffset
= 0) {
1345 switch (MBBI
->getOpcode()) {
1347 llvm_unreachable("Unexpected callee-save save/restore opcode!");
1348 case AArch64::STPXi
:
1349 NewOpc
= AArch64::STPXpre
;
1351 case AArch64::STPDi
:
1352 NewOpc
= AArch64::STPDpre
;
1354 case AArch64::STPQi
:
1355 NewOpc
= AArch64::STPQpre
;
1357 case AArch64::STRXui
:
1358 NewOpc
= AArch64::STRXpre
;
1360 case AArch64::STRDui
:
1361 NewOpc
= AArch64::STRDpre
;
1363 case AArch64::STRQui
:
1364 NewOpc
= AArch64::STRQpre
;
1366 case AArch64::LDPXi
:
1367 NewOpc
= AArch64::LDPXpost
;
1369 case AArch64::LDPDi
:
1370 NewOpc
= AArch64::LDPDpost
;
1372 case AArch64::LDPQi
:
1373 NewOpc
= AArch64::LDPQpost
;
1375 case AArch64::LDRXui
:
1376 NewOpc
= AArch64::LDRXpost
;
1378 case AArch64::LDRDui
:
1379 NewOpc
= AArch64::LDRDpost
;
1381 case AArch64::LDRQui
:
1382 NewOpc
= AArch64::LDRQpost
;
1385 // Get rid of the SEH code associated with the old instruction.
1387 auto SEH
= std::next(MBBI
);
1388 if (AArch64InstrInfo::isSEHInstruction(*SEH
))
1389 SEH
->eraseFromParent();
1392 TypeSize Scale
= TypeSize::getFixed(1), Width
= TypeSize::getFixed(0);
1393 int64_t MinOffset
, MaxOffset
;
1394 bool Success
= static_cast<const AArch64InstrInfo
*>(TII
)->getMemOpInfo(
1395 NewOpc
, Scale
, Width
, MinOffset
, MaxOffset
);
1397 assert(Success
&& "unknown load/store opcode");
1399 // If the first store isn't right where we want SP then we can't fold the
1400 // update in so create a normal arithmetic instruction instead.
1401 MachineFunction
&MF
= *MBB
.getParent();
1402 if (MBBI
->getOperand(MBBI
->getNumOperands() - 1).getImm() != 0 ||
1403 CSStackSizeInc
< MinOffset
|| CSStackSizeInc
> MaxOffset
) {
1404 emitFrameOffset(MBB
, MBBI
, DL
, AArch64::SP
, AArch64::SP
,
1405 StackOffset::getFixed(CSStackSizeInc
), TII
, FrameFlag
,
1406 false, false, nullptr, EmitCFI
,
1407 StackOffset::getFixed(CFAOffset
));
1409 return std::prev(MBBI
);
1412 MachineInstrBuilder MIB
= BuildMI(MBB
, MBBI
, DL
, TII
->get(NewOpc
));
1413 MIB
.addReg(AArch64::SP
, RegState::Define
);
1415 // Copy all operands other than the immediate offset.
1416 unsigned OpndIdx
= 0;
1417 for (unsigned OpndEnd
= MBBI
->getNumOperands() - 1; OpndIdx
< OpndEnd
;
1419 MIB
.add(MBBI
->getOperand(OpndIdx
));
1421 assert(MBBI
->getOperand(OpndIdx
).getImm() == 0 &&
1422 "Unexpected immediate offset in first/last callee-save save/restore "
1424 assert(MBBI
->getOperand(OpndIdx
- 1).getReg() == AArch64::SP
&&
1425 "Unexpected base register in callee-save save/restore instruction!");
1426 assert(CSStackSizeInc
% Scale
== 0);
1427 MIB
.addImm(CSStackSizeInc
/ (int)Scale
);
1429 MIB
.setMIFlags(MBBI
->getFlags());
1430 MIB
.setMemRefs(MBBI
->memoperands());
1432 // Generate a new SEH code that corresponds to the new instruction.
1435 InsertSEH(*MIB
, *TII
, FrameFlag
);
1439 unsigned CFIIndex
= MF
.addFrameInst(
1440 MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset
- CSStackSizeInc
));
1441 BuildMI(MBB
, MBBI
, DL
, TII
->get(TargetOpcode::CFI_INSTRUCTION
))
1442 .addCFIIndex(CFIIndex
)
1443 .setMIFlags(FrameFlag
);
1446 return std::prev(MBB
.erase(MBBI
));
1449 // Fixup callee-save register save/restore instructions to take into account
1450 // combined SP bump by adding the local stack size to the stack offsets.
1451 static void fixupCalleeSaveRestoreStackOffset(MachineInstr
&MI
,
1452 uint64_t LocalStackSize
,
1455 if (AArch64InstrInfo::isSEHInstruction(MI
))
1458 unsigned Opc
= MI
.getOpcode();
1461 case AArch64::STPXi
:
1462 case AArch64::STRXui
:
1463 case AArch64::STPDi
:
1464 case AArch64::STRDui
:
1465 case AArch64::LDPXi
:
1466 case AArch64::LDRXui
:
1467 case AArch64::LDPDi
:
1468 case AArch64::LDRDui
:
1471 case AArch64::STPQi
:
1472 case AArch64::STRQui
:
1473 case AArch64::LDPQi
:
1474 case AArch64::LDRQui
:
1478 llvm_unreachable("Unexpected callee-save save/restore opcode!");
1481 unsigned OffsetIdx
= MI
.getNumExplicitOperands() - 1;
1482 assert(MI
.getOperand(OffsetIdx
- 1).getReg() == AArch64::SP
&&
1483 "Unexpected base register in callee-save save/restore instruction!");
1484 // Last operand is immediate offset that needs fixing.
1485 MachineOperand
&OffsetOpnd
= MI
.getOperand(OffsetIdx
);
1486 // All generated opcodes have scaled offsets.
1487 assert(LocalStackSize
% Scale
== 0);
1488 OffsetOpnd
.setImm(OffsetOpnd
.getImm() + LocalStackSize
/ Scale
);
1492 auto MBBI
= std::next(MachineBasicBlock::iterator(MI
));
1493 assert(MBBI
!= MI
.getParent()->end() && "Expecting a valid instruction");
1494 assert(AArch64InstrInfo::isSEHInstruction(*MBBI
) &&
1495 "Expecting a SEH instruction");
1496 fixupSEHOpcode(MBBI
, LocalStackSize
);
1500 static bool isTargetWindows(const MachineFunction
&MF
) {
1501 return MF
.getSubtarget
<AArch64Subtarget
>().isTargetWindows();
1504 // Convenience function to determine whether I is an SVE callee save.
1505 static bool IsSVECalleeSave(MachineBasicBlock::iterator I
) {
1506 switch (I
->getOpcode()) {
1509 case AArch64::STR_ZXI
:
1510 case AArch64::STR_PXI
:
1511 case AArch64::LDR_ZXI
:
1512 case AArch64::LDR_PXI
:
1513 return I
->getFlag(MachineInstr::FrameSetup
) ||
1514 I
->getFlag(MachineInstr::FrameDestroy
);
1518 static void emitShadowCallStackPrologue(const TargetInstrInfo
&TII
,
1519 MachineFunction
&MF
,
1520 MachineBasicBlock
&MBB
,
1521 MachineBasicBlock::iterator MBBI
,
1522 const DebugLoc
&DL
, bool NeedsWinCFI
,
1523 bool NeedsUnwindInfo
) {
1524 // Shadow call stack prolog: str x30, [x18], #8
1525 BuildMI(MBB
, MBBI
, DL
, TII
.get(AArch64::STRXpost
))
1526 .addReg(AArch64::X18
, RegState::Define
)
1527 .addReg(AArch64::LR
)
1528 .addReg(AArch64::X18
)
1530 .setMIFlag(MachineInstr::FrameSetup
);
1532 // This instruction also makes x18 live-in to the entry block.
1533 MBB
.addLiveIn(AArch64::X18
);
1536 BuildMI(MBB
, MBBI
, DL
, TII
.get(AArch64::SEH_Nop
))
1537 .setMIFlag(MachineInstr::FrameSetup
);
1539 if (NeedsUnwindInfo
) {
1540 // Emit a CFI instruction that causes 8 to be subtracted from the value of
1541 // x18 when unwinding past this frame.
1542 static const char CFIInst
[] = {
1543 dwarf::DW_CFA_val_expression
,
1546 static_cast<char>(unsigned(dwarf::DW_OP_breg18
)),
1547 static_cast<char>(-8) & 0x7f, // addend (sleb128)
1549 unsigned CFIIndex
= MF
.addFrameInst(MCCFIInstruction::createEscape(
1550 nullptr, StringRef(CFIInst
, sizeof(CFIInst
))));
1551 BuildMI(MBB
, MBBI
, DL
, TII
.get(AArch64::CFI_INSTRUCTION
))
1552 .addCFIIndex(CFIIndex
)
1553 .setMIFlag(MachineInstr::FrameSetup
);
1557 static void emitShadowCallStackEpilogue(const TargetInstrInfo
&TII
,
1558 MachineFunction
&MF
,
1559 MachineBasicBlock
&MBB
,
1560 MachineBasicBlock::iterator MBBI
,
1561 const DebugLoc
&DL
) {
1562 // Shadow call stack epilog: ldr x30, [x18, #-8]!
1563 BuildMI(MBB
, MBBI
, DL
, TII
.get(AArch64::LDRXpre
))
1564 .addReg(AArch64::X18
, RegState::Define
)
1565 .addReg(AArch64::LR
, RegState::Define
)
1566 .addReg(AArch64::X18
)
1568 .setMIFlag(MachineInstr::FrameDestroy
);
1570 if (MF
.getInfo
<AArch64FunctionInfo
>()->needsAsyncDwarfUnwindInfo(MF
)) {
1572 MF
.addFrameInst(MCCFIInstruction::createRestore(nullptr, 18));
1573 BuildMI(MBB
, MBBI
, DL
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
1574 .addCFIIndex(CFIIndex
)
1575 .setMIFlags(MachineInstr::FrameDestroy
);
1579 // Define the current CFA rule to use the provided FP.
1580 static void emitDefineCFAWithFP(MachineFunction
&MF
, MachineBasicBlock
&MBB
,
1581 MachineBasicBlock::iterator MBBI
,
1582 const DebugLoc
&DL
, unsigned FixedObject
) {
1583 const AArch64Subtarget
&STI
= MF
.getSubtarget
<AArch64Subtarget
>();
1584 const AArch64RegisterInfo
*TRI
= STI
.getRegisterInfo();
1585 const TargetInstrInfo
*TII
= STI
.getInstrInfo();
1586 AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
1588 const int OffsetToFirstCalleeSaveFromFP
=
1589 AFI
->getCalleeSaveBaseToFrameRecordOffset() -
1590 AFI
->getCalleeSavedStackSize();
1591 Register FramePtr
= TRI
->getFrameRegister(MF
);
1592 unsigned Reg
= TRI
->getDwarfRegNum(FramePtr
, true);
1593 unsigned CFIIndex
= MF
.addFrameInst(MCCFIInstruction::cfiDefCfa(
1594 nullptr, Reg
, FixedObject
- OffsetToFirstCalleeSaveFromFP
));
1595 BuildMI(MBB
, MBBI
, DL
, TII
->get(TargetOpcode::CFI_INSTRUCTION
))
1596 .addCFIIndex(CFIIndex
)
1597 .setMIFlags(MachineInstr::FrameSetup
);
1601 /// Collect live registers from the end of \p MI's parent up to (including) \p
1602 /// MI in \p LiveRegs.
1603 static void getLivePhysRegsUpTo(MachineInstr
&MI
, const TargetRegisterInfo
&TRI
,
1604 LivePhysRegs
&LiveRegs
) {
1606 MachineBasicBlock
&MBB
= *MI
.getParent();
1607 LiveRegs
.addLiveOuts(MBB
);
1608 for (const MachineInstr
&MI
:
1609 reverse(make_range(MI
.getIterator(), MBB
.instr_end())))
1610 LiveRegs
.stepBackward(MI
);
1614 void AArch64FrameLowering::emitPrologue(MachineFunction
&MF
,
1615 MachineBasicBlock
&MBB
) const {
1616 MachineBasicBlock::iterator MBBI
= MBB
.begin();
1617 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1618 const Function
&F
= MF
.getFunction();
1619 const AArch64Subtarget
&Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
1620 const AArch64RegisterInfo
*RegInfo
= Subtarget
.getRegisterInfo();
1621 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1623 MachineModuleInfo
&MMI
= MF
.getMMI();
1624 AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
1625 bool EmitCFI
= AFI
->needsDwarfUnwindInfo(MF
);
1626 bool EmitAsyncCFI
= AFI
->needsAsyncDwarfUnwindInfo(MF
);
1627 bool HasFP
= hasFP(MF
);
1628 bool NeedsWinCFI
= needsWinCFI(MF
);
1629 bool HasWinCFI
= false;
1630 auto Cleanup
= make_scope_exit([&]() { MF
.setHasWinCFI(HasWinCFI
); });
1632 MachineBasicBlock::iterator End
= MBB
.end();
1634 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
1635 // Collect live register from the end of MBB up to the start of the existing
1636 // frame setup instructions.
1637 MachineBasicBlock::iterator NonFrameStart
= MBB
.begin();
1638 while (NonFrameStart
!= End
&&
1639 NonFrameStart
->getFlag(MachineInstr::FrameSetup
))
1642 LivePhysRegs
LiveRegs(*TRI
);
1643 if (NonFrameStart
!= MBB
.end()) {
1644 getLivePhysRegsUpTo(*NonFrameStart
, *TRI
, LiveRegs
);
1645 // Ignore registers used for stack management for now.
1646 LiveRegs
.removeReg(AArch64::SP
);
1647 LiveRegs
.removeReg(AArch64::X19
);
1648 LiveRegs
.removeReg(AArch64::FP
);
1649 LiveRegs
.removeReg(AArch64::LR
);
1652 auto VerifyClobberOnExit
= make_scope_exit([&]() {
1653 if (NonFrameStart
== MBB
.end())
1655 // Check if any of the newly instructions clobber any of the live registers.
1656 for (MachineInstr
&MI
:
1657 make_range(MBB
.instr_begin(), NonFrameStart
->getIterator())) {
1658 for (auto &Op
: MI
.operands())
1659 if (Op
.isReg() && Op
.isDef())
1660 assert(!LiveRegs
.contains(Op
.getReg()) &&
1661 "live register clobbered by inserted prologue instructions");
1666 bool IsFunclet
= MBB
.isEHFuncletEntry();
1668 // At this point, we're going to decide whether or not the function uses a
1669 // redzone. In most cases, the function doesn't have a redzone so let's
1670 // assume that's false and set it to true in the case that there's a redzone.
1671 AFI
->setHasRedZone(false);
1673 // Debug location must be unknown since the first debug location is used
1674 // to determine the end of the prologue.
1677 const auto &MFnI
= *MF
.getInfo
<AArch64FunctionInfo
>();
1678 if (MFnI
.needsShadowCallStackPrologueEpilogue(MF
))
1679 emitShadowCallStackPrologue(*TII
, MF
, MBB
, MBBI
, DL
, NeedsWinCFI
,
1680 MFnI
.needsDwarfUnwindInfo(MF
));
1682 if (MFnI
.shouldSignReturnAddress(MF
)) {
1683 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::PAUTH_PROLOGUE
))
1684 .setMIFlag(MachineInstr::FrameSetup
);
1686 HasWinCFI
= true; // AArch64PointerAuth pass will insert SEH_PACSignLR
1689 if (EmitCFI
&& MFnI
.isMTETagged()) {
1690 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::EMITMTETAGGED
))
1691 .setMIFlag(MachineInstr::FrameSetup
);
1694 // We signal the presence of a Swift extended frame to external tools by
1695 // storing FP with 0b0001 in bits 63:60. In normal userland operation a simple
1696 // ORR is sufficient, it is assumed a Swift kernel would initialize the TBI
1697 // bits so that is still true.
1698 if (HasFP
&& AFI
->hasSwiftAsyncContext()) {
1699 switch (MF
.getTarget().Options
.SwiftAsyncFramePointer
) {
1700 case SwiftAsyncFramePointerMode::DeploymentBased
:
1701 if (Subtarget
.swiftAsyncContextIsDynamicallySet()) {
1702 // The special symbol below is absolute and has a *value* that can be
1703 // combined with the frame pointer to signal an extended frame.
1704 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::LOADgot
), AArch64::X16
)
1705 .addExternalSymbol("swift_async_extendedFramePointerFlags",
1708 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_Nop
))
1709 .setMIFlags(MachineInstr::FrameSetup
);
1712 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::ORRXrs
), AArch64::FP
)
1713 .addUse(AArch64::FP
)
1714 .addUse(AArch64::X16
)
1715 .addImm(Subtarget
.isTargetILP32() ? 32 : 0);
1717 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_Nop
))
1718 .setMIFlags(MachineInstr::FrameSetup
);
1725 case SwiftAsyncFramePointerMode::Always
:
1726 // ORR x29, x29, #0x1000_0000_0000_0000
1727 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::ORRXri
), AArch64::FP
)
1728 .addUse(AArch64::FP
)
1730 .setMIFlag(MachineInstr::FrameSetup
);
1732 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_Nop
))
1733 .setMIFlags(MachineInstr::FrameSetup
);
1738 case SwiftAsyncFramePointerMode::Never
:
1743 // All calls are tail calls in GHC calling conv, and functions have no
1744 // prologue/epilogue.
1745 if (MF
.getFunction().getCallingConv() == CallingConv::GHC
)
1748 // Set tagged base pointer to the requested stack slot.
1749 // Ideally it should match SP value after prologue.
1750 std::optional
<int> TBPI
= AFI
->getTaggedBasePointerIndex();
1752 AFI
->setTaggedBasePointerOffset(-MFI
.getObjectOffset(*TBPI
));
1754 AFI
->setTaggedBasePointerOffset(MFI
.getStackSize());
1756 const StackOffset
&SVEStackSize
= getSVEStackSize(MF
);
1758 // getStackSize() includes all the locals in its size calculation. We don't
1759 // include these locals when computing the stack size of a funclet, as they
1760 // are allocated in the parent's stack frame and accessed via the frame
1761 // pointer from the funclet. We only save the callee saved registers in the
1762 // funclet, which are really the callee saved registers of the parent
1763 // function, including the funclet.
1764 int64_t NumBytes
= IsFunclet
? getWinEHFuncletFrameSize(MF
)
1765 : MFI
.getStackSize();
1766 if (!AFI
->hasStackFrame() && !windowsRequiresStackProbe(MF
, NumBytes
)) {
1767 assert(!HasFP
&& "unexpected function without stack frame but with FP");
1768 assert(!SVEStackSize
&&
1769 "unexpected function without stack frame but with SVE objects");
1770 // All of the stack allocation is for locals.
1771 AFI
->setLocalStackSize(NumBytes
);
1774 // REDZONE: If the stack size is less than 128 bytes, we don't need
1775 // to actually allocate.
1776 if (canUseRedZone(MF
)) {
1777 AFI
->setHasRedZone(true);
1778 ++NumRedZoneFunctions
;
1780 emitFrameOffset(MBB
, MBBI
, DL
, AArch64::SP
, AArch64::SP
,
1781 StackOffset::getFixed(-NumBytes
), TII
,
1782 MachineInstr::FrameSetup
, false, NeedsWinCFI
, &HasWinCFI
);
1784 // Label used to tie together the PROLOG_LABEL and the MachineMoves.
1785 MCSymbol
*FrameLabel
= MMI
.getContext().createTempSymbol();
1786 // Encode the stack size of the leaf function.
1787 unsigned CFIIndex
= MF
.addFrameInst(
1788 MCCFIInstruction::cfiDefCfaOffset(FrameLabel
, NumBytes
));
1789 BuildMI(MBB
, MBBI
, DL
, TII
->get(TargetOpcode::CFI_INSTRUCTION
))
1790 .addCFIIndex(CFIIndex
)
1791 .setMIFlags(MachineInstr::FrameSetup
);
1797 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_PrologEnd
))
1798 .setMIFlag(MachineInstr::FrameSetup
);
1805 Subtarget
.isCallingConvWin64(MF
.getFunction().getCallingConv());
1806 unsigned FixedObject
= getFixedObjectSize(MF
, AFI
, IsWin64
, IsFunclet
);
1808 auto PrologueSaveSize
= AFI
->getCalleeSavedStackSize() + FixedObject
;
1809 // All of the remaining stack allocations are for locals.
1810 AFI
->setLocalStackSize(NumBytes
- PrologueSaveSize
);
1811 bool CombineSPBump
= shouldCombineCSRLocalStackBump(MF
, NumBytes
);
1812 bool HomPrologEpilog
= homogeneousPrologEpilog(MF
);
1813 if (CombineSPBump
) {
1814 assert(!SVEStackSize
&& "Cannot combine SP bump with SVE");
1815 emitFrameOffset(MBB
, MBBI
, DL
, AArch64::SP
, AArch64::SP
,
1816 StackOffset::getFixed(-NumBytes
), TII
,
1817 MachineInstr::FrameSetup
, false, NeedsWinCFI
, &HasWinCFI
,
1820 } else if (HomPrologEpilog
) {
1821 // Stack has been already adjusted.
1822 NumBytes
-= PrologueSaveSize
;
1823 } else if (PrologueSaveSize
!= 0) {
1824 MBBI
= convertCalleeSaveRestoreToSPPrePostIncDec(
1825 MBB
, MBBI
, DL
, TII
, -PrologueSaveSize
, NeedsWinCFI
, &HasWinCFI
,
1827 NumBytes
-= PrologueSaveSize
;
1829 assert(NumBytes
>= 0 && "Negative stack allocation size!?");
1831 // Move past the saves of the callee-saved registers, fixing up the offsets
1832 // and pre-inc if we decided to combine the callee-save and local stack
1833 // pointer bump above.
1834 while (MBBI
!= End
&& MBBI
->getFlag(MachineInstr::FrameSetup
) &&
1835 !IsSVECalleeSave(MBBI
)) {
1837 fixupCalleeSaveRestoreStackOffset(*MBBI
, AFI
->getLocalStackSize(),
1838 NeedsWinCFI
, &HasWinCFI
);
1842 // For funclets the FP belongs to the containing function.
1843 if (!IsFunclet
&& HasFP
) {
1844 // Only set up FP if we actually need to.
1845 int64_t FPOffset
= AFI
->getCalleeSaveBaseToFrameRecordOffset();
1848 FPOffset
+= AFI
->getLocalStackSize();
1850 if (AFI
->hasSwiftAsyncContext()) {
1851 // Before we update the live FP we have to ensure there's a valid (or
1852 // null) asynchronous context in its slot just before FP in the frame
1853 // record, so store it now.
1854 const auto &Attrs
= MF
.getFunction().getAttributes();
1855 bool HaveInitialContext
= Attrs
.hasAttrSomewhere(Attribute::SwiftAsync
);
1856 if (HaveInitialContext
)
1857 MBB
.addLiveIn(AArch64::X22
);
1858 Register Reg
= HaveInitialContext
? AArch64::X22
: AArch64::XZR
;
1859 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::StoreSwiftAsyncContext
))
1861 .addUse(AArch64::SP
)
1862 .addImm(FPOffset
- 8)
1863 .setMIFlags(MachineInstr::FrameSetup
);
1865 // WinCFI and arm64e, where StoreSwiftAsyncContext is expanded
1866 // to multiple instructions, should be mutually-exclusive.
1867 assert(Subtarget
.getTargetTriple().getArchName() != "arm64e");
1868 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_Nop
))
1869 .setMIFlags(MachineInstr::FrameSetup
);
1874 if (HomPrologEpilog
) {
1877 assert(Prolog
->getOpcode() == AArch64::HOM_Prolog
);
1878 Prolog
->addOperand(MachineOperand::CreateImm(FPOffset
));
1880 // Issue sub fp, sp, FPOffset or
1881 // mov fp,sp when FPOffset is zero.
1882 // Note: All stores of callee-saved registers are marked as "FrameSetup".
1883 // This code marks the instruction(s) that set the FP also.
1884 emitFrameOffset(MBB
, MBBI
, DL
, AArch64::FP
, AArch64::SP
,
1885 StackOffset::getFixed(FPOffset
), TII
,
1886 MachineInstr::FrameSetup
, false, NeedsWinCFI
, &HasWinCFI
);
1887 if (NeedsWinCFI
&& HasWinCFI
) {
1888 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_PrologEnd
))
1889 .setMIFlag(MachineInstr::FrameSetup
);
1890 // After setting up the FP, the rest of the prolog doesn't need to be
1891 // included in the SEH unwind info.
1892 NeedsWinCFI
= false;
1896 emitDefineCFAWithFP(MF
, MBB
, MBBI
, DL
, FixedObject
);
1899 // Now emit the moves for whatever callee saved regs we have (including FP,
1900 // LR if those are saved). Frame instructions for SVE register are emitted
1901 // later, after the instruction which actually save SVE regs.
1903 emitCalleeSavedGPRLocations(MBB
, MBBI
);
1905 // Alignment is required for the parent frame, not the funclet
1906 const bool NeedsRealignment
=
1907 NumBytes
&& !IsFunclet
&& RegInfo
->hasStackRealignment(MF
);
1908 const int64_t RealignmentPadding
=
1909 (NeedsRealignment
&& MFI
.getMaxAlign() > Align(16))
1910 ? MFI
.getMaxAlign().value() - 16
1913 if (windowsRequiresStackProbe(MF
, NumBytes
+ RealignmentPadding
)) {
1914 uint64_t NumWords
= (NumBytes
+ RealignmentPadding
) >> 4;
1917 // alloc_l can hold at most 256MB, so assume that NumBytes doesn't
1918 // exceed this amount. We need to move at most 2^24 - 1 into x15.
1919 // This is at most two instructions, MOVZ follwed by MOVK.
1920 // TODO: Fix to use multiple stack alloc unwind codes for stacks
1921 // exceeding 256MB in size.
1922 if (NumBytes
>= (1 << 28))
1923 report_fatal_error("Stack size cannot exceed 256MB for stack "
1924 "unwinding purposes");
1926 uint32_t LowNumWords
= NumWords
& 0xFFFF;
1927 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::MOVZXi
), AArch64::X15
)
1928 .addImm(LowNumWords
)
1929 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL
, 0))
1930 .setMIFlag(MachineInstr::FrameSetup
);
1931 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_Nop
))
1932 .setMIFlag(MachineInstr::FrameSetup
);
1933 if ((NumWords
& 0xFFFF0000) != 0) {
1934 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::MOVKXi
), AArch64::X15
)
1935 .addReg(AArch64::X15
)
1936 .addImm((NumWords
& 0xFFFF0000) >> 16) // High half
1937 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL
, 16))
1938 .setMIFlag(MachineInstr::FrameSetup
);
1939 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_Nop
))
1940 .setMIFlag(MachineInstr::FrameSetup
);
1943 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::MOVi64imm
), AArch64::X15
)
1945 .setMIFlags(MachineInstr::FrameSetup
);
1948 const char* ChkStk
= Subtarget
.getChkStkName();
1949 switch (MF
.getTarget().getCodeModel()) {
1950 case CodeModel::Tiny
:
1951 case CodeModel::Small
:
1952 case CodeModel::Medium
:
1953 case CodeModel::Kernel
:
1954 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::BL
))
1955 .addExternalSymbol(ChkStk
)
1956 .addReg(AArch64::X15
, RegState::Implicit
)
1957 .addReg(AArch64::X16
, RegState::Implicit
| RegState::Define
| RegState::Dead
)
1958 .addReg(AArch64::X17
, RegState::Implicit
| RegState::Define
| RegState::Dead
)
1959 .addReg(AArch64::NZCV
, RegState::Implicit
| RegState::Define
| RegState::Dead
)
1960 .setMIFlags(MachineInstr::FrameSetup
);
1963 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_Nop
))
1964 .setMIFlag(MachineInstr::FrameSetup
);
1967 case CodeModel::Large
:
1968 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::MOVaddrEXT
))
1969 .addReg(AArch64::X16
, RegState::Define
)
1970 .addExternalSymbol(ChkStk
)
1971 .addExternalSymbol(ChkStk
)
1972 .setMIFlags(MachineInstr::FrameSetup
);
1975 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_Nop
))
1976 .setMIFlag(MachineInstr::FrameSetup
);
1979 BuildMI(MBB
, MBBI
, DL
, TII
->get(getBLRCallOpcode(MF
)))
1980 .addReg(AArch64::X16
, RegState::Kill
)
1981 .addReg(AArch64::X15
, RegState::Implicit
| RegState::Define
)
1982 .addReg(AArch64::X16
, RegState::Implicit
| RegState::Define
| RegState::Dead
)
1983 .addReg(AArch64::X17
, RegState::Implicit
| RegState::Define
| RegState::Dead
)
1984 .addReg(AArch64::NZCV
, RegState::Implicit
| RegState::Define
| RegState::Dead
)
1985 .setMIFlags(MachineInstr::FrameSetup
);
1988 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_Nop
))
1989 .setMIFlag(MachineInstr::FrameSetup
);
1994 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SUBXrx64
), AArch64::SP
)
1995 .addReg(AArch64::SP
, RegState::Kill
)
1996 .addReg(AArch64::X15
, RegState::Kill
)
1997 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX
, 4))
1998 .setMIFlags(MachineInstr::FrameSetup
);
2001 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_StackAlloc
))
2003 .setMIFlag(MachineInstr::FrameSetup
);
2007 if (RealignmentPadding
> 0) {
2008 if (RealignmentPadding
>= 4096) {
2009 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::MOVi64imm
))
2010 .addReg(AArch64::X16
, RegState::Define
)
2011 .addImm(RealignmentPadding
)
2012 .setMIFlags(MachineInstr::FrameSetup
);
2013 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::ADDXrx64
), AArch64::X15
)
2014 .addReg(AArch64::SP
)
2015 .addReg(AArch64::X16
, RegState::Kill
)
2016 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX
, 0))
2017 .setMIFlag(MachineInstr::FrameSetup
);
2019 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::ADDXri
), AArch64::X15
)
2020 .addReg(AArch64::SP
)
2021 .addImm(RealignmentPadding
)
2023 .setMIFlag(MachineInstr::FrameSetup
);
2026 uint64_t AndMask
= ~(MFI
.getMaxAlign().value() - 1);
2027 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::ANDXri
), AArch64::SP
)
2028 .addReg(AArch64::X15
, RegState::Kill
)
2029 .addImm(AArch64_AM::encodeLogicalImmediate(AndMask
, 64));
2030 AFI
->setStackRealigned(true);
2032 // No need for SEH instructions here; if we're realigning the stack,
2033 // we've set a frame pointer and already finished the SEH prologue.
2034 assert(!NeedsWinCFI
);
2038 StackOffset SVECalleeSavesSize
= {}, SVELocalsSize
= SVEStackSize
;
2039 MachineBasicBlock::iterator CalleeSavesBegin
= MBBI
, CalleeSavesEnd
= MBBI
;
2041 // Process the SVE callee-saves to determine what space needs to be
2043 if (int64_t CalleeSavedSize
= AFI
->getSVECalleeSavedStackSize()) {
2044 LLVM_DEBUG(dbgs() << "SVECalleeSavedStackSize = " << CalleeSavedSize
2046 // Find callee save instructions in frame.
2047 CalleeSavesBegin
= MBBI
;
2048 assert(IsSVECalleeSave(CalleeSavesBegin
) && "Unexpected instruction");
2049 while (IsSVECalleeSave(MBBI
) && MBBI
!= MBB
.getFirstTerminator())
2051 CalleeSavesEnd
= MBBI
;
2053 SVECalleeSavesSize
= StackOffset::getScalable(CalleeSavedSize
);
2054 SVELocalsSize
= SVEStackSize
- SVECalleeSavesSize
;
2057 // Allocate space for the callee saves (if any).
2058 StackOffset CFAOffset
=
2059 StackOffset::getFixed((int64_t)MFI
.getStackSize() - NumBytes
);
2060 StackOffset LocalsSize
= SVELocalsSize
+ StackOffset::getFixed(NumBytes
);
2061 allocateStackSpace(MBB
, CalleeSavesBegin
, 0, SVECalleeSavesSize
, false,
2062 nullptr, EmitAsyncCFI
&& !HasFP
, CFAOffset
,
2063 MFI
.hasVarSizedObjects() || LocalsSize
);
2064 CFAOffset
+= SVECalleeSavesSize
;
2067 emitCalleeSavedSVELocations(MBB
, CalleeSavesEnd
);
2069 // Allocate space for the rest of the frame including SVE locals. Align the
2070 // stack as necessary.
2071 assert(!(canUseRedZone(MF
) && NeedsRealignment
) &&
2072 "Cannot use redzone with stack realignment");
2073 if (!canUseRedZone(MF
)) {
2074 // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have
2075 // the correct value here, as NumBytes also includes padding bytes,
2076 // which shouldn't be counted here.
2077 allocateStackSpace(MBB
, CalleeSavesEnd
, RealignmentPadding
,
2078 SVELocalsSize
+ StackOffset::getFixed(NumBytes
),
2079 NeedsWinCFI
, &HasWinCFI
, EmitAsyncCFI
&& !HasFP
,
2080 CFAOffset
, MFI
.hasVarSizedObjects());
2083 // If we need a base pointer, set it up here. It's whatever the value of the
2084 // stack pointer is at this point. Any variable size objects will be allocated
2085 // after this, so we can still use the base pointer to reference locals.
2087 // FIXME: Clarify FrameSetup flags here.
2088 // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is
2090 // For funclets the BP belongs to the containing function.
2091 if (!IsFunclet
&& RegInfo
->hasBasePointer(MF
)) {
2092 TII
->copyPhysReg(MBB
, MBBI
, DL
, RegInfo
->getBaseRegister(), AArch64::SP
,
2096 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_Nop
))
2097 .setMIFlag(MachineInstr::FrameSetup
);
2101 // The very last FrameSetup instruction indicates the end of prologue. Emit a
2102 // SEH opcode indicating the prologue end.
2103 if (NeedsWinCFI
&& HasWinCFI
) {
2104 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_PrologEnd
))
2105 .setMIFlag(MachineInstr::FrameSetup
);
2108 // SEH funclets are passed the frame pointer in X1. If the parent
2109 // function uses the base register, then the base register is used
2110 // directly, and is not retrieved from X1.
2111 if (IsFunclet
&& F
.hasPersonalityFn()) {
2112 EHPersonality Per
= classifyEHPersonality(F
.getPersonalityFn());
2113 if (isAsynchronousEHPersonality(Per
)) {
2114 BuildMI(MBB
, MBBI
, DL
, TII
->get(TargetOpcode::COPY
), AArch64::FP
)
2115 .addReg(AArch64::X1
)
2116 .setMIFlag(MachineInstr::FrameSetup
);
2117 MBB
.addLiveIn(AArch64::X1
);
2121 if (EmitCFI
&& !EmitAsyncCFI
) {
2123 emitDefineCFAWithFP(MF
, MBB
, MBBI
, DL
, FixedObject
);
2125 StackOffset TotalSize
=
2126 SVEStackSize
+ StackOffset::getFixed((int64_t)MFI
.getStackSize());
2127 unsigned CFIIndex
= MF
.addFrameInst(createDefCFA(
2128 *RegInfo
, /*FrameReg=*/AArch64::SP
, /*Reg=*/AArch64::SP
, TotalSize
,
2129 /*LastAdjustmentWasScalable=*/false));
2130 BuildMI(MBB
, MBBI
, DL
, TII
->get(TargetOpcode::CFI_INSTRUCTION
))
2131 .addCFIIndex(CFIIndex
)
2132 .setMIFlags(MachineInstr::FrameSetup
);
2134 emitCalleeSavedGPRLocations(MBB
, MBBI
);
2135 emitCalleeSavedSVELocations(MBB
, MBBI
);
2139 static bool isFuncletReturnInstr(const MachineInstr
&MI
) {
2140 switch (MI
.getOpcode()) {
2143 case AArch64::CATCHRET
:
2144 case AArch64::CLEANUPRET
:
2149 void AArch64FrameLowering::emitEpilogue(MachineFunction
&MF
,
2150 MachineBasicBlock
&MBB
) const {
2151 MachineBasicBlock::iterator MBBI
= MBB
.getLastNonDebugInstr();
2152 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2153 AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
2154 const AArch64Subtarget
&Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
2155 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
2157 bool NeedsWinCFI
= needsWinCFI(MF
);
2158 bool EmitCFI
= AFI
->needsAsyncDwarfUnwindInfo(MF
);
2159 bool HasWinCFI
= false;
2160 bool IsFunclet
= false;
2162 if (MBB
.end() != MBBI
) {
2163 DL
= MBBI
->getDebugLoc();
2164 IsFunclet
= isFuncletReturnInstr(*MBBI
);
2167 MachineBasicBlock::iterator EpilogStartI
= MBB
.end();
2169 auto FinishingTouches
= make_scope_exit([&]() {
2170 if (AFI
->shouldSignReturnAddress(MF
)) {
2171 BuildMI(MBB
, MBB
.getFirstTerminator(), DL
,
2172 TII
->get(AArch64::PAUTH_EPILOGUE
))
2173 .setMIFlag(MachineInstr::FrameDestroy
);
2175 HasWinCFI
= true; // AArch64PointerAuth pass will insert SEH_PACSignLR
2177 if (AFI
->needsShadowCallStackPrologueEpilogue(MF
))
2178 emitShadowCallStackEpilogue(*TII
, MF
, MBB
, MBB
.getFirstTerminator(), DL
);
2180 emitCalleeSavedGPRRestores(MBB
, MBB
.getFirstTerminator());
2182 BuildMI(MBB
, MBB
.getFirstTerminator(), DL
,
2183 TII
->get(AArch64::SEH_EpilogEnd
))
2184 .setMIFlag(MachineInstr::FrameDestroy
);
2185 if (!MF
.hasWinCFI())
2186 MF
.setHasWinCFI(true);
2189 assert(EpilogStartI
!= MBB
.end());
2191 MBB
.erase(EpilogStartI
);
2195 int64_t NumBytes
= IsFunclet
? getWinEHFuncletFrameSize(MF
)
2196 : MFI
.getStackSize();
2198 // All calls are tail calls in GHC calling conv, and functions have no
2199 // prologue/epilogue.
2200 if (MF
.getFunction().getCallingConv() == CallingConv::GHC
)
2203 // How much of the stack used by incoming arguments this function is expected
2204 // to restore in this particular epilogue.
2205 int64_t ArgumentStackToRestore
= getArgumentStackToRestore(MF
, MBB
);
2207 Subtarget
.isCallingConvWin64(MF
.getFunction().getCallingConv());
2208 unsigned FixedObject
= getFixedObjectSize(MF
, AFI
, IsWin64
, IsFunclet
);
2210 int64_t AfterCSRPopSize
= ArgumentStackToRestore
;
2211 auto PrologueSaveSize
= AFI
->getCalleeSavedStackSize() + FixedObject
;
2212 // We cannot rely on the local stack size set in emitPrologue if the function
2213 // has funclets, as funclets have different local stack size requirements, and
2214 // the current value set in emitPrologue may be that of the containing
2216 if (MF
.hasEHFunclets())
2217 AFI
->setLocalStackSize(NumBytes
- PrologueSaveSize
);
2218 if (homogeneousPrologEpilog(MF
, &MBB
)) {
2219 assert(!NeedsWinCFI
);
2220 auto LastPopI
= MBB
.getFirstTerminator();
2221 if (LastPopI
!= MBB
.begin()) {
2222 auto HomogeneousEpilog
= std::prev(LastPopI
);
2223 if (HomogeneousEpilog
->getOpcode() == AArch64::HOM_Epilog
)
2224 LastPopI
= HomogeneousEpilog
;
2227 // Adjust local stack
2228 emitFrameOffset(MBB
, LastPopI
, DL
, AArch64::SP
, AArch64::SP
,
2229 StackOffset::getFixed(AFI
->getLocalStackSize()), TII
,
2230 MachineInstr::FrameDestroy
, false, NeedsWinCFI
, &HasWinCFI
);
2232 // SP has been already adjusted while restoring callee save regs.
2233 // We've bailed-out the case with adjusting SP for arguments.
2234 assert(AfterCSRPopSize
== 0);
2237 bool CombineSPBump
= shouldCombineCSRLocalStackBumpInEpilogue(MBB
, NumBytes
);
2238 // Assume we can't combine the last pop with the sp restore.
2240 bool CombineAfterCSRBump
= false;
2241 if (!CombineSPBump
&& PrologueSaveSize
!= 0) {
2242 MachineBasicBlock::iterator Pop
= std::prev(MBB
.getFirstTerminator());
2243 while (Pop
->getOpcode() == TargetOpcode::CFI_INSTRUCTION
||
2244 AArch64InstrInfo::isSEHInstruction(*Pop
))
2245 Pop
= std::prev(Pop
);
2246 // Converting the last ldp to a post-index ldp is valid only if the last
2247 // ldp's offset is 0.
2248 const MachineOperand
&OffsetOp
= Pop
->getOperand(Pop
->getNumOperands() - 1);
2249 // If the offset is 0 and the AfterCSR pop is not actually trying to
2250 // allocate more stack for arguments (in space that an untimely interrupt
2251 // may clobber), convert it to a post-index ldp.
2252 if (OffsetOp
.getImm() == 0 && AfterCSRPopSize
>= 0) {
2253 convertCalleeSaveRestoreToSPPrePostIncDec(
2254 MBB
, Pop
, DL
, TII
, PrologueSaveSize
, NeedsWinCFI
, &HasWinCFI
, EmitCFI
,
2255 MachineInstr::FrameDestroy
, PrologueSaveSize
);
2257 // If not, make sure to emit an add after the last ldp.
2258 // We're doing this by transfering the size to be restored from the
2259 // adjustment *before* the CSR pops to the adjustment *after* the CSR
2261 AfterCSRPopSize
+= PrologueSaveSize
;
2262 CombineAfterCSRBump
= true;
2266 // Move past the restores of the callee-saved registers.
2267 // If we plan on combining the sp bump of the local stack size and the callee
2268 // save stack size, we might need to adjust the CSR save and restore offsets.
2269 MachineBasicBlock::iterator LastPopI
= MBB
.getFirstTerminator();
2270 MachineBasicBlock::iterator Begin
= MBB
.begin();
2271 while (LastPopI
!= Begin
) {
2273 if (!LastPopI
->getFlag(MachineInstr::FrameDestroy
) ||
2274 IsSVECalleeSave(LastPopI
)) {
2277 } else if (CombineSPBump
)
2278 fixupCalleeSaveRestoreStackOffset(*LastPopI
, AFI
->getLocalStackSize(),
2279 NeedsWinCFI
, &HasWinCFI
);
2283 // Note that there are cases where we insert SEH opcodes in the
2284 // epilogue when we had no SEH opcodes in the prologue. For
2285 // example, when there is no stack frame but there are stack
2286 // arguments. Insert the SEH_EpilogStart and remove it later if it
2287 // we didn't emit any SEH opcodes to avoid generating WinCFI for
2288 // functions that don't need it.
2289 BuildMI(MBB
, LastPopI
, DL
, TII
->get(AArch64::SEH_EpilogStart
))
2290 .setMIFlag(MachineInstr::FrameDestroy
);
2291 EpilogStartI
= LastPopI
;
2295 if (hasFP(MF
) && AFI
->hasSwiftAsyncContext()) {
2296 switch (MF
.getTarget().Options
.SwiftAsyncFramePointer
) {
2297 case SwiftAsyncFramePointerMode::DeploymentBased
:
2298 // Avoid the reload as it is GOT relative, and instead fall back to the
2299 // hardcoded value below. This allows a mismatch between the OS and
2300 // application without immediately terminating on the difference.
2302 case SwiftAsyncFramePointerMode::Always
:
2303 // We need to reset FP to its untagged state on return. Bit 60 is
2304 // currently used to show the presence of an extended frame.
2306 // BIC x29, x29, #0x1000_0000_0000_0000
2307 BuildMI(MBB
, MBB
.getFirstTerminator(), DL
, TII
->get(AArch64::ANDXri
),
2309 .addUse(AArch64::FP
)
2311 .setMIFlag(MachineInstr::FrameDestroy
);
2313 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_Nop
))
2314 .setMIFlags(MachineInstr::FrameDestroy
);
2319 case SwiftAsyncFramePointerMode::Never
:
2324 const StackOffset
&SVEStackSize
= getSVEStackSize(MF
);
2326 // If there is a single SP update, insert it before the ret and we're done.
2327 if (CombineSPBump
) {
2328 assert(!SVEStackSize
&& "Cannot combine SP bump with SVE");
2330 // When we are about to restore the CSRs, the CFA register is SP again.
2331 if (EmitCFI
&& hasFP(MF
)) {
2332 const AArch64RegisterInfo
&RegInfo
= *Subtarget
.getRegisterInfo();
2333 unsigned Reg
= RegInfo
.getDwarfRegNum(AArch64::SP
, true);
2335 MF
.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg
, NumBytes
));
2336 BuildMI(MBB
, LastPopI
, DL
, TII
->get(TargetOpcode::CFI_INSTRUCTION
))
2337 .addCFIIndex(CFIIndex
)
2338 .setMIFlags(MachineInstr::FrameDestroy
);
2341 emitFrameOffset(MBB
, MBB
.getFirstTerminator(), DL
, AArch64::SP
, AArch64::SP
,
2342 StackOffset::getFixed(NumBytes
+ (int64_t)AfterCSRPopSize
),
2343 TII
, MachineInstr::FrameDestroy
, false, NeedsWinCFI
,
2344 &HasWinCFI
, EmitCFI
, StackOffset::getFixed(NumBytes
));
2348 NumBytes
-= PrologueSaveSize
;
2349 assert(NumBytes
>= 0 && "Negative stack allocation size!?");
2351 // Process the SVE callee-saves to determine what space needs to be
2353 StackOffset DeallocateBefore
= {}, DeallocateAfter
= SVEStackSize
;
2354 MachineBasicBlock::iterator RestoreBegin
= LastPopI
, RestoreEnd
= LastPopI
;
2355 if (int64_t CalleeSavedSize
= AFI
->getSVECalleeSavedStackSize()) {
2356 RestoreBegin
= std::prev(RestoreEnd
);
2357 while (RestoreBegin
!= MBB
.begin() &&
2358 IsSVECalleeSave(std::prev(RestoreBegin
)))
2361 assert(IsSVECalleeSave(RestoreBegin
) &&
2362 IsSVECalleeSave(std::prev(RestoreEnd
)) && "Unexpected instruction");
2364 StackOffset CalleeSavedSizeAsOffset
=
2365 StackOffset::getScalable(CalleeSavedSize
);
2366 DeallocateBefore
= SVEStackSize
- CalleeSavedSizeAsOffset
;
2367 DeallocateAfter
= CalleeSavedSizeAsOffset
;
2370 // Deallocate the SVE area.
2372 // If we have stack realignment or variable sized objects on the stack,
2373 // restore the stack pointer from the frame pointer prior to SVE CSR
2375 if (AFI
->isStackRealigned() || MFI
.hasVarSizedObjects()) {
2376 if (int64_t CalleeSavedSize
= AFI
->getSVECalleeSavedStackSize()) {
2377 // Set SP to start of SVE callee-save area from which they can
2378 // be reloaded. The code below will deallocate the stack space
2379 // space by moving FP -> SP.
2380 emitFrameOffset(MBB
, RestoreBegin
, DL
, AArch64::SP
, AArch64::FP
,
2381 StackOffset::getScalable(-CalleeSavedSize
), TII
,
2382 MachineInstr::FrameDestroy
);
2385 if (AFI
->getSVECalleeSavedStackSize()) {
2386 // Deallocate the non-SVE locals first before we can deallocate (and
2387 // restore callee saves) from the SVE area.
2389 MBB
, RestoreBegin
, DL
, AArch64::SP
, AArch64::SP
,
2390 StackOffset::getFixed(NumBytes
), TII
, MachineInstr::FrameDestroy
,
2391 false, false, nullptr, EmitCFI
&& !hasFP(MF
),
2392 SVEStackSize
+ StackOffset::getFixed(NumBytes
+ PrologueSaveSize
));
2396 emitFrameOffset(MBB
, RestoreBegin
, DL
, AArch64::SP
, AArch64::SP
,
2397 DeallocateBefore
, TII
, MachineInstr::FrameDestroy
, false,
2398 false, nullptr, EmitCFI
&& !hasFP(MF
),
2400 StackOffset::getFixed(NumBytes
+ PrologueSaveSize
));
2402 emitFrameOffset(MBB
, RestoreEnd
, DL
, AArch64::SP
, AArch64::SP
,
2403 DeallocateAfter
, TII
, MachineInstr::FrameDestroy
, false,
2404 false, nullptr, EmitCFI
&& !hasFP(MF
),
2406 StackOffset::getFixed(NumBytes
+ PrologueSaveSize
));
2409 emitCalleeSavedSVERestores(MBB
, RestoreEnd
);
2413 bool RedZone
= canUseRedZone(MF
);
2414 // If this was a redzone leaf function, we don't need to restore the
2415 // stack pointer (but we may need to pop stack args for fastcc).
2416 if (RedZone
&& AfterCSRPopSize
== 0)
2419 // Pop the local variables off the stack. If there are no callee-saved
2420 // registers, it means we are actually positioned at the terminator and can
2421 // combine stack increment for the locals and the stack increment for
2422 // callee-popped arguments into (possibly) a single instruction and be done.
2423 bool NoCalleeSaveRestore
= PrologueSaveSize
== 0;
2424 int64_t StackRestoreBytes
= RedZone
? 0 : NumBytes
;
2425 if (NoCalleeSaveRestore
)
2426 StackRestoreBytes
+= AfterCSRPopSize
;
2429 MBB
, LastPopI
, DL
, AArch64::SP
, AArch64::SP
,
2430 StackOffset::getFixed(StackRestoreBytes
), TII
,
2431 MachineInstr::FrameDestroy
, false, NeedsWinCFI
, &HasWinCFI
, EmitCFI
,
2432 StackOffset::getFixed((RedZone
? 0 : NumBytes
) + PrologueSaveSize
));
2434 // If we were able to combine the local stack pop with the argument pop,
2436 if (NoCalleeSaveRestore
|| AfterCSRPopSize
== 0) {
2443 // Restore the original stack pointer.
2444 // FIXME: Rather than doing the math here, we should instead just use
2445 // non-post-indexed loads for the restores if we aren't actually going to
2446 // be able to save any instructions.
2447 if (!IsFunclet
&& (MFI
.hasVarSizedObjects() || AFI
->isStackRealigned())) {
2449 MBB
, LastPopI
, DL
, AArch64::SP
, AArch64::FP
,
2450 StackOffset::getFixed(-AFI
->getCalleeSaveBaseToFrameRecordOffset()),
2451 TII
, MachineInstr::FrameDestroy
, false, NeedsWinCFI
, &HasWinCFI
);
2452 } else if (NumBytes
)
2453 emitFrameOffset(MBB
, LastPopI
, DL
, AArch64::SP
, AArch64::SP
,
2454 StackOffset::getFixed(NumBytes
), TII
,
2455 MachineInstr::FrameDestroy
, false, NeedsWinCFI
, &HasWinCFI
);
2457 // When we are about to restore the CSRs, the CFA register is SP again.
2458 if (EmitCFI
&& hasFP(MF
)) {
2459 const AArch64RegisterInfo
&RegInfo
= *Subtarget
.getRegisterInfo();
2460 unsigned Reg
= RegInfo
.getDwarfRegNum(AArch64::SP
, true);
2461 unsigned CFIIndex
= MF
.addFrameInst(
2462 MCCFIInstruction::cfiDefCfa(nullptr, Reg
, PrologueSaveSize
));
2463 BuildMI(MBB
, LastPopI
, DL
, TII
->get(TargetOpcode::CFI_INSTRUCTION
))
2464 .addCFIIndex(CFIIndex
)
2465 .setMIFlags(MachineInstr::FrameDestroy
);
2468 // This must be placed after the callee-save restore code because that code
2469 // assumes the SP is at the same location as it was after the callee-save save
2470 // code in the prologue.
2471 if (AfterCSRPopSize
) {
2472 assert(AfterCSRPopSize
> 0 && "attempting to reallocate arg stack that an "
2473 "interrupt may have clobbered");
2476 MBB
, MBB
.getFirstTerminator(), DL
, AArch64::SP
, AArch64::SP
,
2477 StackOffset::getFixed(AfterCSRPopSize
), TII
, MachineInstr::FrameDestroy
,
2478 false, NeedsWinCFI
, &HasWinCFI
, EmitCFI
,
2479 StackOffset::getFixed(CombineAfterCSRBump
? PrologueSaveSize
: 0));
2483 bool AArch64FrameLowering::enableCFIFixup(MachineFunction
&MF
) const {
2484 return TargetFrameLowering::enableCFIFixup(MF
) &&
2485 MF
.getInfo
<AArch64FunctionInfo
>()->needsAsyncDwarfUnwindInfo(MF
);
2488 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
2489 /// debug info. It's the same as what we use for resolving the code-gen
2490 /// references for now. FIXME: This can go wrong when references are
2491 /// SP-relative and simple call frames aren't used.
2493 AArch64FrameLowering::getFrameIndexReference(const MachineFunction
&MF
, int FI
,
2494 Register
&FrameReg
) const {
2495 return resolveFrameIndexReference(
2498 MF
.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress
),
2503 AArch64FrameLowering::getNonLocalFrameIndexReference(const MachineFunction
&MF
,
2505 return StackOffset::getFixed(getSEHFrameIndexOffset(MF
, FI
));
2508 static StackOffset
getFPOffset(const MachineFunction
&MF
,
2509 int64_t ObjectOffset
) {
2510 const auto *AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
2511 const auto &Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
2513 Subtarget
.isCallingConvWin64(MF
.getFunction().getCallingConv());
2514 unsigned FixedObject
=
2515 getFixedObjectSize(MF
, AFI
, IsWin64
, /*IsFunclet=*/false);
2516 int64_t CalleeSaveSize
= AFI
->getCalleeSavedStackSize(MF
.getFrameInfo());
2518 CalleeSaveSize
- AFI
->getCalleeSaveBaseToFrameRecordOffset();
2519 return StackOffset::getFixed(ObjectOffset
+ FixedObject
+ FPAdjust
);
2522 static StackOffset
getStackOffset(const MachineFunction
&MF
,
2523 int64_t ObjectOffset
) {
2524 const auto &MFI
= MF
.getFrameInfo();
2525 return StackOffset::getFixed(ObjectOffset
+ (int64_t)MFI
.getStackSize());
2528 // TODO: This function currently does not work for scalable vectors.
2529 int AArch64FrameLowering::getSEHFrameIndexOffset(const MachineFunction
&MF
,
2531 const auto *RegInfo
= static_cast<const AArch64RegisterInfo
*>(
2532 MF
.getSubtarget().getRegisterInfo());
2533 int ObjectOffset
= MF
.getFrameInfo().getObjectOffset(FI
);
2534 return RegInfo
->getLocalAddressRegister(MF
) == AArch64::FP
2535 ? getFPOffset(MF
, ObjectOffset
).getFixed()
2536 : getStackOffset(MF
, ObjectOffset
).getFixed();
2539 StackOffset
AArch64FrameLowering::resolveFrameIndexReference(
2540 const MachineFunction
&MF
, int FI
, Register
&FrameReg
, bool PreferFP
,
2541 bool ForSimm
) const {
2542 const auto &MFI
= MF
.getFrameInfo();
2543 int64_t ObjectOffset
= MFI
.getObjectOffset(FI
);
2544 bool isFixed
= MFI
.isFixedObjectIndex(FI
);
2545 bool isSVE
= MFI
.getStackID(FI
) == TargetStackID::ScalableVector
;
2546 return resolveFrameOffsetReference(MF
, ObjectOffset
, isFixed
, isSVE
, FrameReg
,
2550 StackOffset
AArch64FrameLowering::resolveFrameOffsetReference(
2551 const MachineFunction
&MF
, int64_t ObjectOffset
, bool isFixed
, bool isSVE
,
2552 Register
&FrameReg
, bool PreferFP
, bool ForSimm
) const {
2553 const auto &MFI
= MF
.getFrameInfo();
2554 const auto *RegInfo
= static_cast<const AArch64RegisterInfo
*>(
2555 MF
.getSubtarget().getRegisterInfo());
2556 const auto *AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
2557 const auto &Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
2559 int64_t FPOffset
= getFPOffset(MF
, ObjectOffset
).getFixed();
2560 int64_t Offset
= getStackOffset(MF
, ObjectOffset
).getFixed();
2562 !isFixed
&& ObjectOffset
>= -((int)AFI
->getCalleeSavedStackSize(MFI
));
2564 const StackOffset
&SVEStackSize
= getSVEStackSize(MF
);
2566 // Use frame pointer to reference fixed objects. Use it for locals if
2567 // there are VLAs or a dynamically realigned SP (and thus the SP isn't
2568 // reliable as a base). Make sure useFPForScavengingIndex() does the
2569 // right thing for the emergency spill slot.
2571 if (AFI
->hasStackFrame() && !isSVE
) {
2572 // We shouldn't prefer using the FP to access fixed-sized stack objects when
2573 // there are scalable (SVE) objects in between the FP and the fixed-sized
2575 PreferFP
&= !SVEStackSize
;
2577 // Note: Keeping the following as multiple 'if' statements rather than
2578 // merging to a single expression for readability.
2580 // Argument access should always use the FP.
2583 } else if (isCSR
&& RegInfo
->hasStackRealignment(MF
)) {
2584 // References to the CSR area must use FP if we're re-aligning the stack
2585 // since the dynamically-sized alignment padding is between the SP/BP and
2587 assert(hasFP(MF
) && "Re-aligned stack must have frame pointer");
2589 } else if (hasFP(MF
) && !RegInfo
->hasStackRealignment(MF
)) {
2590 // If the FPOffset is negative and we're producing a signed immediate, we
2591 // have to keep in mind that the available offset range for negative
2592 // offsets is smaller than for positive ones. If an offset is available
2593 // via the FP and the SP, use whichever is closest.
2594 bool FPOffsetFits
= !ForSimm
|| FPOffset
>= -256;
2595 PreferFP
|= Offset
> -FPOffset
&& !SVEStackSize
;
2597 if (MFI
.hasVarSizedObjects()) {
2598 // If we have variable sized objects, we can use either FP or BP, as the
2599 // SP offset is unknown. We can use the base pointer if we have one and
2600 // FP is not preferred. If not, we're stuck with using FP.
2601 bool CanUseBP
= RegInfo
->hasBasePointer(MF
);
2602 if (FPOffsetFits
&& CanUseBP
) // Both are ok. Pick the best.
2604 else if (!CanUseBP
) // Can't use BP. Forced to use FP.
2606 // else we can use BP and FP, but the offset from FP won't fit.
2607 // That will make us scavenge registers which we can probably avoid by
2608 // using BP. If it won't fit for BP either, we'll scavenge anyway.
2609 } else if (FPOffset
>= 0) {
2610 // Use SP or FP, whichever gives us the best chance of the offset
2611 // being in range for direct access. If the FPOffset is positive,
2612 // that'll always be best, as the SP will be even further away.
2614 } else if (MF
.hasEHFunclets() && !RegInfo
->hasBasePointer(MF
)) {
2615 // Funclets access the locals contained in the parent's stack frame
2616 // via the frame pointer, so we have to use the FP in the parent
2620 Subtarget
.isCallingConvWin64(MF
.getFunction().getCallingConv()) &&
2621 "Funclets should only be present on Win64");
2624 // We have the choice between FP and (SP or BP).
2625 if (FPOffsetFits
&& PreferFP
) // If FP is the best fit, use it.
2632 ((isFixed
|| isCSR
) || !RegInfo
->hasStackRealignment(MF
) || !UseFP
) &&
2633 "In the presence of dynamic stack pointer realignment, "
2634 "non-argument/CSR objects cannot be accessed through the frame pointer");
2637 StackOffset FPOffset
=
2638 StackOffset::get(-AFI
->getCalleeSaveBaseToFrameRecordOffset(), ObjectOffset
);
2639 StackOffset SPOffset
=
2641 StackOffset::get(MFI
.getStackSize() - AFI
->getCalleeSavedStackSize(),
2643 // Always use the FP for SVE spills if available and beneficial.
2644 if (hasFP(MF
) && (SPOffset
.getFixed() ||
2645 FPOffset
.getScalable() < SPOffset
.getScalable() ||
2646 RegInfo
->hasStackRealignment(MF
))) {
2647 FrameReg
= RegInfo
->getFrameRegister(MF
);
2651 FrameReg
= RegInfo
->hasBasePointer(MF
) ? RegInfo
->getBaseRegister()
2652 : (unsigned)AArch64::SP
;
2656 StackOffset ScalableOffset
= {};
2657 if (UseFP
&& !(isFixed
|| isCSR
))
2658 ScalableOffset
= -SVEStackSize
;
2659 if (!UseFP
&& (isFixed
|| isCSR
))
2660 ScalableOffset
= SVEStackSize
;
2663 FrameReg
= RegInfo
->getFrameRegister(MF
);
2664 return StackOffset::getFixed(FPOffset
) + ScalableOffset
;
2667 // Use the base pointer if we have one.
2668 if (RegInfo
->hasBasePointer(MF
))
2669 FrameReg
= RegInfo
->getBaseRegister();
2671 assert(!MFI
.hasVarSizedObjects() &&
2672 "Can't use SP when we have var sized objects.");
2673 FrameReg
= AArch64::SP
;
2674 // If we're using the red zone for this function, the SP won't actually
2675 // be adjusted, so the offsets will be negative. They're also all
2676 // within range of the signed 9-bit immediate instructions.
2677 if (canUseRedZone(MF
))
2678 Offset
-= AFI
->getLocalStackSize();
2681 return StackOffset::getFixed(Offset
) + ScalableOffset
;
2684 static unsigned getPrologueDeath(MachineFunction
&MF
, unsigned Reg
) {
2685 // Do not set a kill flag on values that are also marked as live-in. This
2686 // happens with the @llvm-returnaddress intrinsic and with arguments passed in
2687 // callee saved registers.
2688 // Omitting the kill flags is conservatively correct even if the live-in
2689 // is not used after all.
2690 bool IsLiveIn
= MF
.getRegInfo().isLiveIn(Reg
);
2691 return getKillRegState(!IsLiveIn
);
2694 static bool produceCompactUnwindFrame(MachineFunction
&MF
) {
2695 const AArch64Subtarget
&Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
2696 AttributeList Attrs
= MF
.getFunction().getAttributes();
2697 return Subtarget
.isTargetMachO() &&
2698 !(Subtarget
.getTargetLowering()->supportSwiftError() &&
2699 Attrs
.hasAttrSomewhere(Attribute::SwiftError
)) &&
2700 MF
.getFunction().getCallingConv() != CallingConv::SwiftTail
;
2703 static bool invalidateWindowsRegisterPairing(unsigned Reg1
, unsigned Reg2
,
2704 bool NeedsWinCFI
, bool IsFirst
,
2705 const TargetRegisterInfo
*TRI
) {
2706 // If we are generating register pairs for a Windows function that requires
2707 // EH support, then pair consecutive registers only. There are no unwind
2708 // opcodes for saves/restores of non-consectuve register pairs.
2709 // The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x,
2711 // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling
2713 if (Reg2
== AArch64::FP
)
2717 if (TRI
->getEncodingValue(Reg2
) == TRI
->getEncodingValue(Reg1
) + 1)
2719 // If pairing a GPR with LR, the pair can be described by the save_lrpair
2720 // opcode. If this is the first register pair, it would end up with a
2721 // predecrement, but there's no save_lrpair_x opcode, so we can only do this
2722 // if LR is paired with something else than the first register.
2723 // The save_lrpair opcode requires the first register to be an odd one.
2724 if (Reg1
>= AArch64::X19
&& Reg1
<= AArch64::X27
&&
2725 (Reg1
- AArch64::X19
) % 2 == 0 && Reg2
== AArch64::LR
&& !IsFirst
)
2730 /// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction.
2731 /// WindowsCFI requires that only consecutive registers can be paired.
2732 /// LR and FP need to be allocated together when the frame needs to save
2733 /// the frame-record. This means any other register pairing with LR is invalid.
2734 static bool invalidateRegisterPairing(unsigned Reg1
, unsigned Reg2
,
2735 bool UsesWinAAPCS
, bool NeedsWinCFI
,
2736 bool NeedsFrameRecord
, bool IsFirst
,
2737 const TargetRegisterInfo
*TRI
) {
2739 return invalidateWindowsRegisterPairing(Reg1
, Reg2
, NeedsWinCFI
, IsFirst
,
2742 // If we need to store the frame record, don't pair any register
2743 // with LR other than FP.
2744 if (NeedsFrameRecord
)
2745 return Reg2
== AArch64::LR
;
2752 struct RegPairInfo
{
2753 unsigned Reg1
= AArch64::NoRegister
;
2754 unsigned Reg2
= AArch64::NoRegister
;
2757 enum RegType
{ GPR
, FPR64
, FPR128
, PPR
, ZPR
} Type
;
2759 RegPairInfo() = default;
2761 bool isPaired() const { return Reg2
!= AArch64::NoRegister
; }
2763 unsigned getScale() const {
2774 llvm_unreachable("Unsupported type");
2777 bool isScalable() const { return Type
== PPR
|| Type
== ZPR
; }
2780 } // end anonymous namespace
2782 static void computeCalleeSaveRegisterPairs(
2783 MachineFunction
&MF
, ArrayRef
<CalleeSavedInfo
> CSI
,
2784 const TargetRegisterInfo
*TRI
, SmallVectorImpl
<RegPairInfo
> &RegPairs
,
2785 bool NeedsFrameRecord
) {
2790 bool IsWindows
= isTargetWindows(MF
);
2791 bool NeedsWinCFI
= needsWinCFI(MF
);
2792 AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
2793 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2794 CallingConv::ID CC
= MF
.getFunction().getCallingConv();
2795 unsigned Count
= CSI
.size();
2797 // MachO's compact unwind format relies on all registers being stored in
2799 assert((!produceCompactUnwindFrame(MF
) || CC
== CallingConv::PreserveMost
||
2800 CC
== CallingConv::PreserveAll
|| CC
== CallingConv::CXX_FAST_TLS
||
2801 CC
== CallingConv::Win64
|| (Count
& 1) == 0) &&
2802 "Odd number of callee-saved regs to spill!");
2803 int ByteOffset
= AFI
->getCalleeSavedStackSize();
2804 int StackFillDir
= -1;
2806 unsigned FirstReg
= 0;
2808 // For WinCFI, fill the stack from the bottom up.
2811 // As the CSI array is reversed to match PrologEpilogInserter, iterate
2812 // backwards, to pair up registers starting from lower numbered registers.
2814 FirstReg
= Count
- 1;
2816 int ScalableByteOffset
= AFI
->getSVECalleeSavedStackSize();
2817 bool NeedGapToAlignStack
= AFI
->hasCalleeSaveStackFreeSpace();
2819 // When iterating backwards, the loop condition relies on unsigned wraparound.
2820 for (unsigned i
= FirstReg
; i
< Count
; i
+= RegInc
) {
2822 RPI
.Reg1
= CSI
[i
].getReg();
2824 if (AArch64::GPR64RegClass
.contains(RPI
.Reg1
))
2825 RPI
.Type
= RegPairInfo::GPR
;
2826 else if (AArch64::FPR64RegClass
.contains(RPI
.Reg1
))
2827 RPI
.Type
= RegPairInfo::FPR64
;
2828 else if (AArch64::FPR128RegClass
.contains(RPI
.Reg1
))
2829 RPI
.Type
= RegPairInfo::FPR128
;
2830 else if (AArch64::ZPRRegClass
.contains(RPI
.Reg1
))
2831 RPI
.Type
= RegPairInfo::ZPR
;
2832 else if (AArch64::PPRRegClass
.contains(RPI
.Reg1
))
2833 RPI
.Type
= RegPairInfo::PPR
;
2835 llvm_unreachable("Unsupported register class.");
2837 // Add the next reg to the pair if it is in the same register class.
2838 if (unsigned(i
+ RegInc
) < Count
) {
2839 Register NextReg
= CSI
[i
+ RegInc
].getReg();
2840 bool IsFirst
= i
== FirstReg
;
2842 case RegPairInfo::GPR
:
2843 if (AArch64::GPR64RegClass
.contains(NextReg
) &&
2844 !invalidateRegisterPairing(RPI
.Reg1
, NextReg
, IsWindows
,
2845 NeedsWinCFI
, NeedsFrameRecord
, IsFirst
,
2849 case RegPairInfo::FPR64
:
2850 if (AArch64::FPR64RegClass
.contains(NextReg
) &&
2851 !invalidateWindowsRegisterPairing(RPI
.Reg1
, NextReg
, NeedsWinCFI
,
2855 case RegPairInfo::FPR128
:
2856 if (AArch64::FPR128RegClass
.contains(NextReg
))
2859 case RegPairInfo::PPR
:
2860 case RegPairInfo::ZPR
:
2865 // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
2866 // list to come in sorted by frame index so that we can issue the store
2867 // pair instructions directly. Assert if we see anything otherwise.
2869 // The order of the registers in the list is controlled by
2870 // getCalleeSavedRegs(), so they will always be in-order, as well.
2871 assert((!RPI
.isPaired() ||
2872 (CSI
[i
].getFrameIdx() + RegInc
== CSI
[i
+ RegInc
].getFrameIdx())) &&
2873 "Out of order callee saved regs!");
2875 assert((!RPI
.isPaired() || !NeedsFrameRecord
|| RPI
.Reg2
!= AArch64::FP
||
2876 RPI
.Reg1
== AArch64::LR
) &&
2877 "FrameRecord must be allocated together with LR");
2879 // Windows AAPCS has FP and LR reversed.
2880 assert((!RPI
.isPaired() || !NeedsFrameRecord
|| RPI
.Reg1
!= AArch64::FP
||
2881 RPI
.Reg2
== AArch64::LR
) &&
2882 "FrameRecord must be allocated together with LR");
2884 // MachO's compact unwind format relies on all registers being stored in
2885 // adjacent register pairs.
2886 assert((!produceCompactUnwindFrame(MF
) || CC
== CallingConv::PreserveMost
||
2887 CC
== CallingConv::PreserveAll
|| CC
== CallingConv::CXX_FAST_TLS
||
2888 CC
== CallingConv::Win64
||
2890 ((RPI
.Reg1
== AArch64::LR
&& RPI
.Reg2
== AArch64::FP
) ||
2891 RPI
.Reg1
+ 1 == RPI
.Reg2
))) &&
2892 "Callee-save registers not saved as adjacent register pair!");
2894 RPI
.FrameIdx
= CSI
[i
].getFrameIdx();
2896 RPI
.isPaired()) // RPI.FrameIdx must be the lower index of the pair
2897 RPI
.FrameIdx
= CSI
[i
+ RegInc
].getFrameIdx();
2899 int Scale
= RPI
.getScale();
2901 int OffsetPre
= RPI
.isScalable() ? ScalableByteOffset
: ByteOffset
;
2902 assert(OffsetPre
% Scale
== 0);
2904 if (RPI
.isScalable())
2905 ScalableByteOffset
+= StackFillDir
* Scale
;
2907 ByteOffset
+= StackFillDir
* (RPI
.isPaired() ? 2 * Scale
: Scale
);
2909 // Swift's async context is directly before FP, so allocate an extra
2911 if (NeedsFrameRecord
&& AFI
->hasSwiftAsyncContext() &&
2912 ((!IsWindows
&& RPI
.Reg2
== AArch64::FP
) ||
2913 (IsWindows
&& RPI
.Reg2
== AArch64::LR
)))
2914 ByteOffset
+= StackFillDir
* 8;
2916 assert(!(RPI
.isScalable() && RPI
.isPaired()) &&
2917 "Paired spill/fill instructions don't exist for SVE vectors");
2919 // Round up size of non-pair to pair size if we need to pad the
2920 // callee-save area to ensure 16-byte alignment.
2921 if (NeedGapToAlignStack
&& !NeedsWinCFI
&&
2922 !RPI
.isScalable() && RPI
.Type
!= RegPairInfo::FPR128
&&
2923 !RPI
.isPaired() && ByteOffset
% 16 != 0) {
2924 ByteOffset
+= 8 * StackFillDir
;
2925 assert(MFI
.getObjectAlign(RPI
.FrameIdx
) <= Align(16));
2926 // A stack frame with a gap looks like this, bottom up:
2927 // d9, d8. x21, gap, x20, x19.
2928 // Set extra alignment on the x21 object to create the gap above it.
2929 MFI
.setObjectAlignment(RPI
.FrameIdx
, Align(16));
2930 NeedGapToAlignStack
= false;
2933 int OffsetPost
= RPI
.isScalable() ? ScalableByteOffset
: ByteOffset
;
2934 assert(OffsetPost
% Scale
== 0);
2935 // If filling top down (default), we want the offset after incrementing it.
2936 // If filling bottom up (WinCFI) we need the original offset.
2937 int Offset
= NeedsWinCFI
? OffsetPre
: OffsetPost
;
2939 // The FP, LR pair goes 8 bytes into our expanded 24-byte slot so that the
2940 // Swift context can directly precede FP.
2941 if (NeedsFrameRecord
&& AFI
->hasSwiftAsyncContext() &&
2942 ((!IsWindows
&& RPI
.Reg2
== AArch64::FP
) ||
2943 (IsWindows
&& RPI
.Reg2
== AArch64::LR
)))
2945 RPI
.Offset
= Offset
/ Scale
;
2947 assert(((!RPI
.isScalable() && RPI
.Offset
>= -64 && RPI
.Offset
<= 63) ||
2948 (RPI
.isScalable() && RPI
.Offset
>= -256 && RPI
.Offset
<= 255)) &&
2949 "Offset out of bounds for LDP/STP immediate");
2951 // Save the offset to frame record so that the FP register can point to the
2952 // innermost frame record (spilled FP and LR registers).
2953 if (NeedsFrameRecord
&& ((!IsWindows
&& RPI
.Reg1
== AArch64::LR
&&
2954 RPI
.Reg2
== AArch64::FP
) ||
2955 (IsWindows
&& RPI
.Reg1
== AArch64::FP
&&
2956 RPI
.Reg2
== AArch64::LR
)))
2957 AFI
->setCalleeSaveBaseToFrameRecordOffset(Offset
);
2959 RegPairs
.push_back(RPI
);
2964 // If we need an alignment gap in the stack, align the topmost stack
2965 // object. A stack frame with a gap looks like this, bottom up:
2966 // x19, d8. d9, gap.
2967 // Set extra alignment on the topmost stack object (the first element in
2968 // CSI, which goes top down), to create the gap above it.
2969 if (AFI
->hasCalleeSaveStackFreeSpace())
2970 MFI
.setObjectAlignment(CSI
[0].getFrameIdx(), Align(16));
2971 // We iterated bottom up over the registers; flip RegPairs back to top
2973 std::reverse(RegPairs
.begin(), RegPairs
.end());
2977 bool AArch64FrameLowering::spillCalleeSavedRegisters(
2978 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
,
2979 ArrayRef
<CalleeSavedInfo
> CSI
, const TargetRegisterInfo
*TRI
) const {
2980 MachineFunction
&MF
= *MBB
.getParent();
2981 const TargetInstrInfo
&TII
= *MF
.getSubtarget().getInstrInfo();
2982 bool NeedsWinCFI
= needsWinCFI(MF
);
2984 SmallVector
<RegPairInfo
, 8> RegPairs
;
2986 computeCalleeSaveRegisterPairs(MF
, CSI
, TRI
, RegPairs
, hasFP(MF
));
2988 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
2989 if (homogeneousPrologEpilog(MF
)) {
2990 auto MIB
= BuildMI(MBB
, MI
, DL
, TII
.get(AArch64::HOM_Prolog
))
2991 .setMIFlag(MachineInstr::FrameSetup
);
2993 for (auto &RPI
: RegPairs
) {
2994 MIB
.addReg(RPI
.Reg1
);
2995 MIB
.addReg(RPI
.Reg2
);
2997 // Update register live in.
2998 if (!MRI
.isReserved(RPI
.Reg1
))
2999 MBB
.addLiveIn(RPI
.Reg1
);
3000 if (RPI
.isPaired() && !MRI
.isReserved(RPI
.Reg2
))
3001 MBB
.addLiveIn(RPI
.Reg2
);
3005 for (const RegPairInfo
&RPI
: llvm::reverse(RegPairs
)) {
3006 unsigned Reg1
= RPI
.Reg1
;
3007 unsigned Reg2
= RPI
.Reg2
;
3010 // Issue sequence of spills for cs regs. The first spill may be converted
3011 // to a pre-decrement store later by emitPrologue if the callee-save stack
3012 // area allocation can't be combined with the local stack area allocation.
3014 // stp x22, x21, [sp, #0] // addImm(+0)
3015 // stp x20, x19, [sp, #16] // addImm(+2)
3016 // stp fp, lr, [sp, #32] // addImm(+4)
3017 // Rationale: This sequence saves uop updates compared to a sequence of
3018 // pre-increment spills like stp xi,xj,[sp,#-16]!
3019 // Note: Similar rationale and sequence for restores in epilog.
3023 case RegPairInfo::GPR
:
3024 StrOpc
= RPI
.isPaired() ? AArch64::STPXi
: AArch64::STRXui
;
3026 Alignment
= Align(8);
3028 case RegPairInfo::FPR64
:
3029 StrOpc
= RPI
.isPaired() ? AArch64::STPDi
: AArch64::STRDui
;
3031 Alignment
= Align(8);
3033 case RegPairInfo::FPR128
:
3034 StrOpc
= RPI
.isPaired() ? AArch64::STPQi
: AArch64::STRQui
;
3036 Alignment
= Align(16);
3038 case RegPairInfo::ZPR
:
3039 StrOpc
= AArch64::STR_ZXI
;
3041 Alignment
= Align(16);
3043 case RegPairInfo::PPR
:
3044 StrOpc
= AArch64::STR_PXI
;
3046 Alignment
= Align(2);
3049 LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1
, TRI
);
3050 if (RPI
.isPaired()) dbgs() << ", " << printReg(Reg2
, TRI
);
3051 dbgs() << ") -> fi#(" << RPI
.FrameIdx
;
3052 if (RPI
.isPaired()) dbgs() << ", " << RPI
.FrameIdx
+ 1;
3055 assert((!NeedsWinCFI
|| !(Reg1
== AArch64::LR
&& Reg2
== AArch64::FP
)) &&
3056 "Windows unwdinding requires a consecutive (FP,LR) pair");
3057 // Windows unwind codes require consecutive registers if registers are
3058 // paired. Make the switch here, so that the code below will save (x,x+1)
3060 unsigned FrameIdxReg1
= RPI
.FrameIdx
;
3061 unsigned FrameIdxReg2
= RPI
.FrameIdx
+ 1;
3062 if (NeedsWinCFI
&& RPI
.isPaired()) {
3063 std::swap(Reg1
, Reg2
);
3064 std::swap(FrameIdxReg1
, FrameIdxReg2
);
3066 MachineInstrBuilder MIB
= BuildMI(MBB
, MI
, DL
, TII
.get(StrOpc
));
3067 if (!MRI
.isReserved(Reg1
))
3068 MBB
.addLiveIn(Reg1
);
3069 if (RPI
.isPaired()) {
3070 if (!MRI
.isReserved(Reg2
))
3071 MBB
.addLiveIn(Reg2
);
3072 MIB
.addReg(Reg2
, getPrologueDeath(MF
, Reg2
));
3073 MIB
.addMemOperand(MF
.getMachineMemOperand(
3074 MachinePointerInfo::getFixedStack(MF
, FrameIdxReg2
),
3075 MachineMemOperand::MOStore
, Size
, Alignment
));
3077 MIB
.addReg(Reg1
, getPrologueDeath(MF
, Reg1
))
3078 .addReg(AArch64::SP
)
3079 .addImm(RPI
.Offset
) // [sp, #offset*scale],
3080 // where factor*scale is implicit
3081 .setMIFlag(MachineInstr::FrameSetup
);
3082 MIB
.addMemOperand(MF
.getMachineMemOperand(
3083 MachinePointerInfo::getFixedStack(MF
, FrameIdxReg1
),
3084 MachineMemOperand::MOStore
, Size
, Alignment
));
3086 InsertSEH(MIB
, TII
, MachineInstr::FrameSetup
);
3088 // Update the StackIDs of the SVE stack slots.
3089 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3090 if (RPI
.Type
== RegPairInfo::ZPR
|| RPI
.Type
== RegPairInfo::PPR
)
3091 MFI
.setStackID(RPI
.FrameIdx
, TargetStackID::ScalableVector
);
3097 bool AArch64FrameLowering::restoreCalleeSavedRegisters(
3098 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
,
3099 MutableArrayRef
<CalleeSavedInfo
> CSI
, const TargetRegisterInfo
*TRI
) const {
3100 MachineFunction
&MF
= *MBB
.getParent();
3101 const TargetInstrInfo
&TII
= *MF
.getSubtarget().getInstrInfo();
3103 SmallVector
<RegPairInfo
, 8> RegPairs
;
3104 bool NeedsWinCFI
= needsWinCFI(MF
);
3106 if (MBBI
!= MBB
.end())
3107 DL
= MBBI
->getDebugLoc();
3109 computeCalleeSaveRegisterPairs(MF
, CSI
, TRI
, RegPairs
, hasFP(MF
));
3111 auto EmitMI
= [&](const RegPairInfo
&RPI
) -> MachineBasicBlock::iterator
{
3112 unsigned Reg1
= RPI
.Reg1
;
3113 unsigned Reg2
= RPI
.Reg2
;
3115 // Issue sequence of restores for cs regs. The last restore may be converted
3116 // to a post-increment load later by emitEpilogue if the callee-save stack
3117 // area allocation can't be combined with the local stack area allocation.
3119 // ldp fp, lr, [sp, #32] // addImm(+4)
3120 // ldp x20, x19, [sp, #16] // addImm(+2)
3121 // ldp x22, x21, [sp, #0] // addImm(+0)
3122 // Note: see comment in spillCalleeSavedRegisters()
3127 case RegPairInfo::GPR
:
3128 LdrOpc
= RPI
.isPaired() ? AArch64::LDPXi
: AArch64::LDRXui
;
3130 Alignment
= Align(8);
3132 case RegPairInfo::FPR64
:
3133 LdrOpc
= RPI
.isPaired() ? AArch64::LDPDi
: AArch64::LDRDui
;
3135 Alignment
= Align(8);
3137 case RegPairInfo::FPR128
:
3138 LdrOpc
= RPI
.isPaired() ? AArch64::LDPQi
: AArch64::LDRQui
;
3140 Alignment
= Align(16);
3142 case RegPairInfo::ZPR
:
3143 LdrOpc
= AArch64::LDR_ZXI
;
3145 Alignment
= Align(16);
3147 case RegPairInfo::PPR
:
3148 LdrOpc
= AArch64::LDR_PXI
;
3150 Alignment
= Align(2);
3153 LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1
, TRI
);
3154 if (RPI
.isPaired()) dbgs() << ", " << printReg(Reg2
, TRI
);
3155 dbgs() << ") -> fi#(" << RPI
.FrameIdx
;
3156 if (RPI
.isPaired()) dbgs() << ", " << RPI
.FrameIdx
+ 1;
3159 // Windows unwind codes require consecutive registers if registers are
3160 // paired. Make the switch here, so that the code below will save (x,x+1)
3162 unsigned FrameIdxReg1
= RPI
.FrameIdx
;
3163 unsigned FrameIdxReg2
= RPI
.FrameIdx
+ 1;
3164 if (NeedsWinCFI
&& RPI
.isPaired()) {
3165 std::swap(Reg1
, Reg2
);
3166 std::swap(FrameIdxReg1
, FrameIdxReg2
);
3168 MachineInstrBuilder MIB
= BuildMI(MBB
, MBBI
, DL
, TII
.get(LdrOpc
));
3169 if (RPI
.isPaired()) {
3170 MIB
.addReg(Reg2
, getDefRegState(true));
3171 MIB
.addMemOperand(MF
.getMachineMemOperand(
3172 MachinePointerInfo::getFixedStack(MF
, FrameIdxReg2
),
3173 MachineMemOperand::MOLoad
, Size
, Alignment
));
3175 MIB
.addReg(Reg1
, getDefRegState(true))
3176 .addReg(AArch64::SP
)
3177 .addImm(RPI
.Offset
) // [sp, #offset*scale]
3178 // where factor*scale is implicit
3179 .setMIFlag(MachineInstr::FrameDestroy
);
3180 MIB
.addMemOperand(MF
.getMachineMemOperand(
3181 MachinePointerInfo::getFixedStack(MF
, FrameIdxReg1
),
3182 MachineMemOperand::MOLoad
, Size
, Alignment
));
3184 InsertSEH(MIB
, TII
, MachineInstr::FrameDestroy
);
3186 return MIB
->getIterator();
3189 // SVE objects are always restored in reverse order.
3190 for (const RegPairInfo
&RPI
: reverse(RegPairs
))
3191 if (RPI
.isScalable())
3194 if (homogeneousPrologEpilog(MF
, &MBB
)) {
3195 auto MIB
= BuildMI(MBB
, MBBI
, DL
, TII
.get(AArch64::HOM_Epilog
))
3196 .setMIFlag(MachineInstr::FrameDestroy
);
3197 for (auto &RPI
: RegPairs
) {
3198 MIB
.addReg(RPI
.Reg1
, RegState::Define
);
3199 MIB
.addReg(RPI
.Reg2
, RegState::Define
);
3204 if (ReverseCSRRestoreSeq
) {
3205 MachineBasicBlock::iterator First
= MBB
.end();
3206 for (const RegPairInfo
&RPI
: reverse(RegPairs
)) {
3207 if (RPI
.isScalable())
3209 MachineBasicBlock::iterator It
= EmitMI(RPI
);
3210 if (First
== MBB
.end())
3213 if (First
!= MBB
.end())
3214 MBB
.splice(MBBI
, &MBB
, First
);
3216 for (const RegPairInfo
&RPI
: RegPairs
) {
3217 if (RPI
.isScalable())
3226 void AArch64FrameLowering::determineCalleeSaves(MachineFunction
&MF
,
3227 BitVector
&SavedRegs
,
3228 RegScavenger
*RS
) const {
3229 // All calls are tail calls in GHC calling conv, and functions have no
3230 // prologue/epilogue.
3231 if (MF
.getFunction().getCallingConv() == CallingConv::GHC
)
3234 TargetFrameLowering::determineCalleeSaves(MF
, SavedRegs
, RS
);
3235 const AArch64RegisterInfo
*RegInfo
= static_cast<const AArch64RegisterInfo
*>(
3236 MF
.getSubtarget().getRegisterInfo());
3237 const AArch64Subtarget
&Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
3238 AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
3239 unsigned UnspilledCSGPR
= AArch64::NoRegister
;
3240 unsigned UnspilledCSGPRPaired
= AArch64::NoRegister
;
3242 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3243 const MCPhysReg
*CSRegs
= MF
.getRegInfo().getCalleeSavedRegs();
3245 unsigned BasePointerReg
= RegInfo
->hasBasePointer(MF
)
3246 ? RegInfo
->getBaseRegister()
3247 : (unsigned)AArch64::NoRegister
;
3249 unsigned ExtraCSSpill
= 0;
3250 bool HasUnpairedGPR64
= false;
3251 // Figure out which callee-saved registers to save/restore.
3252 for (unsigned i
= 0; CSRegs
[i
]; ++i
) {
3253 const unsigned Reg
= CSRegs
[i
];
3255 // Add the base pointer register to SavedRegs if it is callee-save.
3256 if (Reg
== BasePointerReg
)
3259 bool RegUsed
= SavedRegs
.test(Reg
);
3260 unsigned PairedReg
= AArch64::NoRegister
;
3261 const bool RegIsGPR64
= AArch64::GPR64RegClass
.contains(Reg
);
3262 if (RegIsGPR64
|| AArch64::FPR64RegClass
.contains(Reg
) ||
3263 AArch64::FPR128RegClass
.contains(Reg
)) {
3264 // Compensate for odd numbers of GP CSRs.
3265 // For now, all the known cases of odd number of CSRs are of GPRs.
3266 if (HasUnpairedGPR64
)
3267 PairedReg
= CSRegs
[i
% 2 == 0 ? i
- 1 : i
+ 1];
3269 PairedReg
= CSRegs
[i
^ 1];
3272 // If the function requires all the GP registers to save (SavedRegs),
3273 // and there are an odd number of GP CSRs at the same time (CSRegs),
3274 // PairedReg could be in a different register class from Reg, which would
3275 // lead to a FPR (usually D8) accidentally being marked saved.
3276 if (RegIsGPR64
&& !AArch64::GPR64RegClass
.contains(PairedReg
)) {
3277 PairedReg
= AArch64::NoRegister
;
3278 HasUnpairedGPR64
= true;
3280 assert(PairedReg
== AArch64::NoRegister
||
3281 AArch64::GPR64RegClass
.contains(Reg
, PairedReg
) ||
3282 AArch64::FPR64RegClass
.contains(Reg
, PairedReg
) ||
3283 AArch64::FPR128RegClass
.contains(Reg
, PairedReg
));
3286 if (AArch64::GPR64RegClass
.contains(Reg
) &&
3287 !RegInfo
->isReservedReg(MF
, Reg
)) {
3288 UnspilledCSGPR
= Reg
;
3289 UnspilledCSGPRPaired
= PairedReg
;
3294 // MachO's compact unwind format relies on all registers being stored in
3296 // FIXME: the usual format is actually better if unwinding isn't needed.
3297 if (producePairRegisters(MF
) && PairedReg
!= AArch64::NoRegister
&&
3298 !SavedRegs
.test(PairedReg
)) {
3299 SavedRegs
.set(PairedReg
);
3300 if (AArch64::GPR64RegClass
.contains(PairedReg
) &&
3301 !RegInfo
->isReservedReg(MF
, PairedReg
))
3302 ExtraCSSpill
= PairedReg
;
3306 if (MF
.getFunction().getCallingConv() == CallingConv::Win64
&&
3307 !Subtarget
.isTargetWindows()) {
3308 // For Windows calling convention on a non-windows OS, where X18 is treated
3309 // as reserved, back up X18 when entering non-windows code (marked with the
3310 // Windows calling convention) and restore when returning regardless of
3311 // whether the individual function uses it - it might call other functions
3313 SavedRegs
.set(AArch64::X18
);
3316 // Calculates the callee saved stack size.
3317 unsigned CSStackSize
= 0;
3318 unsigned SVECSStackSize
= 0;
3319 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
3320 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
3321 for (unsigned Reg
: SavedRegs
.set_bits()) {
3322 auto RegSize
= TRI
->getRegSizeInBits(Reg
, MRI
) / 8;
3323 if (AArch64::PPRRegClass
.contains(Reg
) ||
3324 AArch64::ZPRRegClass
.contains(Reg
))
3325 SVECSStackSize
+= RegSize
;
3327 CSStackSize
+= RegSize
;
3330 // Save number of saved regs, so we can easily update CSStackSize later.
3331 unsigned NumSavedRegs
= SavedRegs
.count();
3333 // The frame record needs to be created by saving the appropriate registers
3334 uint64_t EstimatedStackSize
= MFI
.estimateStackSize(MF
);
3336 windowsRequiresStackProbe(MF
, EstimatedStackSize
+ CSStackSize
+ 16)) {
3337 SavedRegs
.set(AArch64::FP
);
3338 SavedRegs
.set(AArch64::LR
);
3341 LLVM_DEBUG(dbgs() << "*** determineCalleeSaves\nSaved CSRs:";
3343 : SavedRegs
.set_bits()) dbgs()
3344 << ' ' << printReg(Reg
, RegInfo
);
3347 // If any callee-saved registers are used, the frame cannot be eliminated.
3348 int64_t SVEStackSize
=
3349 alignTo(SVECSStackSize
+ estimateSVEStackObjectOffsets(MFI
), 16);
3350 bool CanEliminateFrame
= (SavedRegs
.count() == 0) && !SVEStackSize
;
3352 // The CSR spill slots have not been allocated yet, so estimateStackSize
3353 // won't include them.
3354 unsigned EstimatedStackSizeLimit
= estimateRSStackSizeLimit(MF
);
3356 // We may address some of the stack above the canonical frame address, either
3357 // for our own arguments or during a call. Include that in calculating whether
3358 // we have complicated addressing concerns.
3359 int64_t CalleeStackUsed
= 0;
3360 for (int I
= MFI
.getObjectIndexBegin(); I
!= 0; ++I
) {
3361 int64_t FixedOff
= MFI
.getObjectOffset(I
);
3362 if (FixedOff
> CalleeStackUsed
) CalleeStackUsed
= FixedOff
;
3365 // Conservatively always assume BigStack when there are SVE spills.
3366 bool BigStack
= SVEStackSize
|| (EstimatedStackSize
+ CSStackSize
+
3367 CalleeStackUsed
) > EstimatedStackSizeLimit
;
3368 if (BigStack
|| !CanEliminateFrame
|| RegInfo
->cannotEliminateFrame(MF
))
3369 AFI
->setHasStackFrame(true);
3371 // Estimate if we might need to scavenge a register at some point in order
3372 // to materialize a stack offset. If so, either spill one additional
3373 // callee-saved register or reserve a special spill slot to facilitate
3374 // register scavenging. If we already spilled an extra callee-saved register
3375 // above to keep the number of spills even, we don't need to do anything else
3378 if (!ExtraCSSpill
&& UnspilledCSGPR
!= AArch64::NoRegister
) {
3379 LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR
, RegInfo
)
3380 << " to get a scratch register.\n");
3381 SavedRegs
.set(UnspilledCSGPR
);
3382 ExtraCSSpill
= UnspilledCSGPR
;
3384 // MachO's compact unwind format relies on all registers being stored in
3385 // pairs, so if we need to spill one extra for BigStack, then we need to
3387 if (producePairRegisters(MF
)) {
3388 if (UnspilledCSGPRPaired
== AArch64::NoRegister
) {
3389 // Failed to make a pair for compact unwind format, revert spilling.
3390 if (produceCompactUnwindFrame(MF
)) {
3391 SavedRegs
.reset(UnspilledCSGPR
);
3392 ExtraCSSpill
= AArch64::NoRegister
;
3395 SavedRegs
.set(UnspilledCSGPRPaired
);
3399 // If we didn't find an extra callee-saved register to spill, create
3400 // an emergency spill slot.
3401 if (!ExtraCSSpill
|| MF
.getRegInfo().isPhysRegUsed(ExtraCSSpill
)) {
3402 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
3403 const TargetRegisterClass
&RC
= AArch64::GPR64RegClass
;
3404 unsigned Size
= TRI
->getSpillSize(RC
);
3405 Align Alignment
= TRI
->getSpillAlign(RC
);
3406 int FI
= MFI
.CreateStackObject(Size
, Alignment
, false);
3407 RS
->addScavengingFrameIndex(FI
);
3408 LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI
3409 << " as the emergency spill slot.\n");
3413 // Adding the size of additional 64bit GPR saves.
3414 CSStackSize
+= 8 * (SavedRegs
.count() - NumSavedRegs
);
3416 // A Swift asynchronous context extends the frame record with a pointer
3417 // directly before FP.
3418 if (hasFP(MF
) && AFI
->hasSwiftAsyncContext())
3421 uint64_t AlignedCSStackSize
= alignTo(CSStackSize
, 16);
3422 LLVM_DEBUG(dbgs() << "Estimated stack frame size: "
3423 << EstimatedStackSize
+ AlignedCSStackSize
3426 assert((!MFI
.isCalleeSavedInfoValid() ||
3427 AFI
->getCalleeSavedStackSize() == AlignedCSStackSize
) &&
3428 "Should not invalidate callee saved info");
3430 // Round up to register pair alignment to avoid additional SP adjustment
3432 AFI
->setCalleeSavedStackSize(AlignedCSStackSize
);
3433 AFI
->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize
!= CSStackSize
);
3434 AFI
->setSVECalleeSavedStackSize(alignTo(SVECSStackSize
, 16));
3437 bool AArch64FrameLowering::assignCalleeSavedSpillSlots(
3438 MachineFunction
&MF
, const TargetRegisterInfo
*RegInfo
,
3439 std::vector
<CalleeSavedInfo
> &CSI
, unsigned &MinCSFrameIndex
,
3440 unsigned &MaxCSFrameIndex
) const {
3441 bool NeedsWinCFI
= needsWinCFI(MF
);
3442 // To match the canonical windows frame layout, reverse the list of
3443 // callee saved registers to get them laid out by PrologEpilogInserter
3444 // in the right order. (PrologEpilogInserter allocates stack objects top
3445 // down. Windows canonical prologs store higher numbered registers at
3446 // the top, thus have the CSI array start from the highest registers.)
3448 std::reverse(CSI
.begin(), CSI
.end());
3451 return true; // Early exit if no callee saved registers are modified!
3453 // Now that we know which registers need to be saved and restored, allocate
3454 // stack slots for them.
3455 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3456 auto *AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
3458 bool UsesWinAAPCS
= isTargetWindows(MF
);
3459 if (UsesWinAAPCS
&& hasFP(MF
) && AFI
->hasSwiftAsyncContext()) {
3460 int FrameIdx
= MFI
.CreateStackObject(8, Align(16), true);
3461 AFI
->setSwiftAsyncContextFrameIdx(FrameIdx
);
3462 if ((unsigned)FrameIdx
< MinCSFrameIndex
) MinCSFrameIndex
= FrameIdx
;
3463 if ((unsigned)FrameIdx
> MaxCSFrameIndex
) MaxCSFrameIndex
= FrameIdx
;
3466 for (auto &CS
: CSI
) {
3467 Register Reg
= CS
.getReg();
3468 const TargetRegisterClass
*RC
= RegInfo
->getMinimalPhysRegClass(Reg
);
3470 unsigned Size
= RegInfo
->getSpillSize(*RC
);
3471 Align
Alignment(RegInfo
->getSpillAlign(*RC
));
3472 int FrameIdx
= MFI
.CreateStackObject(Size
, Alignment
, true);
3473 CS
.setFrameIdx(FrameIdx
);
3475 if ((unsigned)FrameIdx
< MinCSFrameIndex
) MinCSFrameIndex
= FrameIdx
;
3476 if ((unsigned)FrameIdx
> MaxCSFrameIndex
) MaxCSFrameIndex
= FrameIdx
;
3478 // Grab 8 bytes below FP for the extended asynchronous frame info.
3479 if (hasFP(MF
) && AFI
->hasSwiftAsyncContext() && !UsesWinAAPCS
&&
3480 Reg
== AArch64::FP
) {
3481 FrameIdx
= MFI
.CreateStackObject(8, Alignment
, true);
3482 AFI
->setSwiftAsyncContextFrameIdx(FrameIdx
);
3483 if ((unsigned)FrameIdx
< MinCSFrameIndex
) MinCSFrameIndex
= FrameIdx
;
3484 if ((unsigned)FrameIdx
> MaxCSFrameIndex
) MaxCSFrameIndex
= FrameIdx
;
3490 bool AArch64FrameLowering::enableStackSlotScavenging(
3491 const MachineFunction
&MF
) const {
3492 const AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
3493 // If the function has streaming-mode changes, don't scavenge a
3494 // spillslot in the callee-save area, as that might require an
3495 // 'addvl' in the streaming-mode-changing call-sequence when the
3496 // function doesn't use a FP.
3497 if (AFI
->hasStreamingModeChanges() && !hasFP(MF
))
3499 return AFI
->hasCalleeSaveStackFreeSpace();
3502 /// returns true if there are any SVE callee saves.
3503 static bool getSVECalleeSaveSlotRange(const MachineFrameInfo
&MFI
,
3504 int &Min
, int &Max
) {
3505 Min
= std::numeric_limits
<int>::max();
3506 Max
= std::numeric_limits
<int>::min();
3508 if (!MFI
.isCalleeSavedInfoValid())
3511 const std::vector
<CalleeSavedInfo
> &CSI
= MFI
.getCalleeSavedInfo();
3512 for (auto &CS
: CSI
) {
3513 if (AArch64::ZPRRegClass
.contains(CS
.getReg()) ||
3514 AArch64::PPRRegClass
.contains(CS
.getReg())) {
3515 assert((Max
== std::numeric_limits
<int>::min() ||
3516 Max
+ 1 == CS
.getFrameIdx()) &&
3517 "SVE CalleeSaves are not consecutive");
3519 Min
= std::min(Min
, CS
.getFrameIdx());
3520 Max
= std::max(Max
, CS
.getFrameIdx());
3523 return Min
!= std::numeric_limits
<int>::max();
3526 // Process all the SVE stack objects and determine offsets for each
3527 // object. If AssignOffsets is true, the offsets get assigned.
3528 // Fills in the first and last callee-saved frame indices into
3529 // Min/MaxCSFrameIndex, respectively.
3530 // Returns the size of the stack.
3531 static int64_t determineSVEStackObjectOffsets(MachineFrameInfo
&MFI
,
3532 int &MinCSFrameIndex
,
3533 int &MaxCSFrameIndex
,
3534 bool AssignOffsets
) {
3536 // First process all fixed stack objects.
3537 for (int I
= MFI
.getObjectIndexBegin(); I
!= 0; ++I
)
3538 assert(MFI
.getStackID(I
) != TargetStackID::ScalableVector
&&
3539 "SVE vectors should never be passed on the stack by value, only by "
3543 auto Assign
= [&MFI
](int FI
, int64_t Offset
) {
3544 LLVM_DEBUG(dbgs() << "alloc FI(" << FI
<< ") at SP[" << Offset
<< "]\n");
3545 MFI
.setObjectOffset(FI
, Offset
);
3550 // Then process all callee saved slots.
3551 if (getSVECalleeSaveSlotRange(MFI
, MinCSFrameIndex
, MaxCSFrameIndex
)) {
3552 // Assign offsets to the callee save slots.
3553 for (int I
= MinCSFrameIndex
; I
<= MaxCSFrameIndex
; ++I
) {
3554 Offset
+= MFI
.getObjectSize(I
);
3555 Offset
= alignTo(Offset
, MFI
.getObjectAlign(I
));
3561 // Ensure that the Callee-save area is aligned to 16bytes.
3562 Offset
= alignTo(Offset
, Align(16U));
3564 // Create a buffer of SVE objects to allocate and sort it.
3565 SmallVector
<int, 8> ObjectsToAllocate
;
3566 // If we have a stack protector, and we've previously decided that we have SVE
3567 // objects on the stack and thus need it to go in the SVE stack area, then it
3568 // needs to go first.
3569 int StackProtectorFI
= -1;
3570 if (MFI
.hasStackProtectorIndex()) {
3571 StackProtectorFI
= MFI
.getStackProtectorIndex();
3572 if (MFI
.getStackID(StackProtectorFI
) == TargetStackID::ScalableVector
)
3573 ObjectsToAllocate
.push_back(StackProtectorFI
);
3575 for (int I
= 0, E
= MFI
.getObjectIndexEnd(); I
!= E
; ++I
) {
3576 unsigned StackID
= MFI
.getStackID(I
);
3577 if (StackID
!= TargetStackID::ScalableVector
)
3579 if (I
== StackProtectorFI
)
3581 if (MaxCSFrameIndex
>= I
&& I
>= MinCSFrameIndex
)
3583 if (MFI
.isDeadObjectIndex(I
))
3586 ObjectsToAllocate
.push_back(I
);
3589 // Allocate all SVE locals and spills
3590 for (unsigned FI
: ObjectsToAllocate
) {
3591 Align Alignment
= MFI
.getObjectAlign(FI
);
3592 // FIXME: Given that the length of SVE vectors is not necessarily a power of
3593 // two, we'd need to align every object dynamically at runtime if the
3594 // alignment is larger than 16. This is not yet supported.
3595 if (Alignment
> Align(16))
3597 "Alignment of scalable vectors > 16 bytes is not yet supported");
3599 Offset
= alignTo(Offset
+ MFI
.getObjectSize(FI
), Alignment
);
3601 Assign(FI
, -Offset
);
3607 int64_t AArch64FrameLowering::estimateSVEStackObjectOffsets(
3608 MachineFrameInfo
&MFI
) const {
3609 int MinCSFrameIndex
, MaxCSFrameIndex
;
3610 return determineSVEStackObjectOffsets(MFI
, MinCSFrameIndex
, MaxCSFrameIndex
, false);
3613 int64_t AArch64FrameLowering::assignSVEStackObjectOffsets(
3614 MachineFrameInfo
&MFI
, int &MinCSFrameIndex
, int &MaxCSFrameIndex
) const {
3615 return determineSVEStackObjectOffsets(MFI
, MinCSFrameIndex
, MaxCSFrameIndex
,
3619 void AArch64FrameLowering::processFunctionBeforeFrameFinalized(
3620 MachineFunction
&MF
, RegScavenger
*RS
) const {
3621 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3623 assert(getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown
&&
3624 "Upwards growing stack unsupported");
3626 int MinCSFrameIndex
, MaxCSFrameIndex
;
3627 int64_t SVEStackSize
=
3628 assignSVEStackObjectOffsets(MFI
, MinCSFrameIndex
, MaxCSFrameIndex
);
3630 AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
3631 AFI
->setStackSizeSVE(alignTo(SVEStackSize
, 16U));
3632 AFI
->setMinMaxSVECSFrameIndex(MinCSFrameIndex
, MaxCSFrameIndex
);
3634 // If this function isn't doing Win64-style C++ EH, we don't need to do
3636 if (!MF
.hasEHFunclets())
3638 const TargetInstrInfo
&TII
= *MF
.getSubtarget().getInstrInfo();
3639 WinEHFuncInfo
&EHInfo
= *MF
.getWinEHFuncInfo();
3641 MachineBasicBlock
&MBB
= MF
.front();
3642 auto MBBI
= MBB
.begin();
3643 while (MBBI
!= MBB
.end() && MBBI
->getFlag(MachineInstr::FrameSetup
))
3646 // Create an UnwindHelp object.
3647 // The UnwindHelp object is allocated at the start of the fixed object area
3648 int64_t FixedObject
=
3649 getFixedObjectSize(MF
, AFI
, /*IsWin64*/ true, /*IsFunclet*/ false);
3650 int UnwindHelpFI
= MFI
.CreateFixedObject(/*Size*/ 8,
3651 /*SPOffset*/ -FixedObject
,
3652 /*IsImmutable=*/false);
3653 EHInfo
.UnwindHelpFrameIdx
= UnwindHelpFI
;
3655 // We need to store -2 into the UnwindHelp object at the start of the
3658 RS
->enterBasicBlockEnd(MBB
);
3660 Register DstReg
= RS
->FindUnusedReg(&AArch64::GPR64commonRegClass
);
3661 assert(DstReg
&& "There must be a free register after frame setup");
3662 BuildMI(MBB
, MBBI
, DL
, TII
.get(AArch64::MOVi64imm
), DstReg
).addImm(-2);
3663 BuildMI(MBB
, MBBI
, DL
, TII
.get(AArch64::STURXi
))
3664 .addReg(DstReg
, getKillRegState(true))
3665 .addFrameIndex(UnwindHelpFI
)
3670 struct TagStoreInstr
{
3672 int64_t Offset
, Size
;
3673 explicit TagStoreInstr(MachineInstr
*MI
, int64_t Offset
, int64_t Size
)
3674 : MI(MI
), Offset(Offset
), Size(Size
) {}
3677 class TagStoreEdit
{
3678 MachineFunction
*MF
;
3679 MachineBasicBlock
*MBB
;
3680 MachineRegisterInfo
*MRI
;
3681 // Tag store instructions that are being replaced.
3682 SmallVector
<TagStoreInstr
, 8> TagStores
;
3683 // Combined memref arguments of the above instructions.
3684 SmallVector
<MachineMemOperand
*, 8> CombinedMemRefs
;
3686 // Replace allocation tags in [FrameReg + FrameRegOffset, FrameReg +
3687 // FrameRegOffset + Size) with the address tag of SP.
3689 StackOffset FrameRegOffset
;
3691 // If not std::nullopt, move FrameReg to (FrameReg + FrameRegUpdate) at the
3693 std::optional
<int64_t> FrameRegUpdate
;
3694 // MIFlags for any FrameReg updating instructions.
3695 unsigned FrameRegUpdateFlags
;
3697 // Use zeroing instruction variants.
3701 void emitUnrolled(MachineBasicBlock::iterator InsertI
);
3702 void emitLoop(MachineBasicBlock::iterator InsertI
);
3705 TagStoreEdit(MachineBasicBlock
*MBB
, bool ZeroData
)
3706 : MBB(MBB
), ZeroData(ZeroData
) {
3707 MF
= MBB
->getParent();
3708 MRI
= &MF
->getRegInfo();
3710 // Add an instruction to be replaced. Instructions must be added in the
3711 // ascending order of Offset, and have to be adjacent.
3712 void addInstruction(TagStoreInstr I
) {
3713 assert((TagStores
.empty() ||
3714 TagStores
.back().Offset
+ TagStores
.back().Size
== I
.Offset
) &&
3715 "Non-adjacent tag store instructions.");
3716 TagStores
.push_back(I
);
3718 void clear() { TagStores
.clear(); }
3719 // Emit equivalent code at the given location, and erase the current set of
3720 // instructions. May skip if the replacement is not profitable. May invalidate
3721 // the input iterator and replace it with a valid one.
3722 void emitCode(MachineBasicBlock::iterator
&InsertI
,
3723 const AArch64FrameLowering
*TFI
, bool TryMergeSPUpdate
);
3726 void TagStoreEdit::emitUnrolled(MachineBasicBlock::iterator InsertI
) {
3727 const AArch64InstrInfo
*TII
=
3728 MF
->getSubtarget
<AArch64Subtarget
>().getInstrInfo();
3730 const int64_t kMinOffset
= -256 * 16;
3731 const int64_t kMaxOffset
= 255 * 16;
3733 Register BaseReg
= FrameReg
;
3734 int64_t BaseRegOffsetBytes
= FrameRegOffset
.getFixed();
3735 if (BaseRegOffsetBytes
< kMinOffset
||
3736 BaseRegOffsetBytes
+ (Size
- Size
% 32) > kMaxOffset
||
3737 // BaseReg can be FP, which is not necessarily aligned to 16-bytes. In
3738 // that case, BaseRegOffsetBytes will not be aligned to 16 bytes, which
3739 // is required for the offset of ST2G.
3740 BaseRegOffsetBytes
% 16 != 0) {
3741 Register ScratchReg
= MRI
->createVirtualRegister(&AArch64::GPR64RegClass
);
3742 emitFrameOffset(*MBB
, InsertI
, DL
, ScratchReg
, BaseReg
,
3743 StackOffset::getFixed(BaseRegOffsetBytes
), TII
);
3744 BaseReg
= ScratchReg
;
3745 BaseRegOffsetBytes
= 0;
3748 MachineInstr
*LastI
= nullptr;
3750 int64_t InstrSize
= (Size
> 16) ? 32 : 16;
3753 ? (ZeroData
? AArch64::STZGi
: AArch64::STGi
)
3754 : (ZeroData
? AArch64::STZ2Gi
: AArch64::ST2Gi
);
3755 assert(BaseRegOffsetBytes
% 16 == 0);
3756 MachineInstr
*I
= BuildMI(*MBB
, InsertI
, DL
, TII
->get(Opcode
))
3757 .addReg(AArch64::SP
)
3759 .addImm(BaseRegOffsetBytes
/ 16)
3760 .setMemRefs(CombinedMemRefs
);
3761 // A store to [BaseReg, #0] should go last for an opportunity to fold the
3762 // final SP adjustment in the epilogue.
3763 if (BaseRegOffsetBytes
== 0)
3765 BaseRegOffsetBytes
+= InstrSize
;
3770 MBB
->splice(InsertI
, MBB
, LastI
);
3773 void TagStoreEdit::emitLoop(MachineBasicBlock::iterator InsertI
) {
3774 const AArch64InstrInfo
*TII
=
3775 MF
->getSubtarget
<AArch64Subtarget
>().getInstrInfo();
3777 Register BaseReg
= FrameRegUpdate
3779 : MRI
->createVirtualRegister(&AArch64::GPR64RegClass
);
3780 Register SizeReg
= MRI
->createVirtualRegister(&AArch64::GPR64RegClass
);
3782 emitFrameOffset(*MBB
, InsertI
, DL
, BaseReg
, FrameReg
, FrameRegOffset
, TII
);
3784 int64_t LoopSize
= Size
;
3785 // If the loop size is not a multiple of 32, split off one 16-byte store at
3786 // the end to fold BaseReg update into.
3787 if (FrameRegUpdate
&& *FrameRegUpdate
)
3788 LoopSize
-= LoopSize
% 32;
3789 MachineInstr
*LoopI
= BuildMI(*MBB
, InsertI
, DL
,
3790 TII
->get(ZeroData
? AArch64::STZGloop_wback
3791 : AArch64::STGloop_wback
))
3796 .setMemRefs(CombinedMemRefs
);
3798 LoopI
->setFlags(FrameRegUpdateFlags
);
3800 int64_t ExtraBaseRegUpdate
=
3801 FrameRegUpdate
? (*FrameRegUpdate
- FrameRegOffset
.getFixed() - Size
) : 0;
3802 if (LoopSize
< Size
) {
3803 assert(FrameRegUpdate
);
3804 assert(Size
- LoopSize
== 16);
3805 // Tag 16 more bytes at BaseReg and update BaseReg.
3806 BuildMI(*MBB
, InsertI
, DL
,
3807 TII
->get(ZeroData
? AArch64::STZGPostIndex
: AArch64::STGPostIndex
))
3811 .addImm(1 + ExtraBaseRegUpdate
/ 16)
3812 .setMemRefs(CombinedMemRefs
)
3813 .setMIFlags(FrameRegUpdateFlags
);
3814 } else if (ExtraBaseRegUpdate
) {
3818 TII
->get(ExtraBaseRegUpdate
> 0 ? AArch64::ADDXri
: AArch64::SUBXri
))
3821 .addImm(std::abs(ExtraBaseRegUpdate
))
3823 .setMIFlags(FrameRegUpdateFlags
);
3827 // Check if *II is a register update that can be merged into STGloop that ends
3828 // at (Reg + Size). RemainingOffset is the required adjustment to Reg after the
3830 bool canMergeRegUpdate(MachineBasicBlock::iterator II
, unsigned Reg
,
3831 int64_t Size
, int64_t *TotalOffset
) {
3832 MachineInstr
&MI
= *II
;
3833 if ((MI
.getOpcode() == AArch64::ADDXri
||
3834 MI
.getOpcode() == AArch64::SUBXri
) &&
3835 MI
.getOperand(0).getReg() == Reg
&& MI
.getOperand(1).getReg() == Reg
) {
3836 unsigned Shift
= AArch64_AM::getShiftValue(MI
.getOperand(3).getImm());
3837 int64_t Offset
= MI
.getOperand(2).getImm() << Shift
;
3838 if (MI
.getOpcode() == AArch64::SUBXri
)
3840 int64_t AbsPostOffset
= std::abs(Offset
- Size
);
3841 const int64_t kMaxOffset
=
3842 0xFFF; // Max encoding for unshifted ADDXri / SUBXri
3843 if (AbsPostOffset
<= kMaxOffset
&& AbsPostOffset
% 16 == 0) {
3844 *TotalOffset
= Offset
;
3851 void mergeMemRefs(const SmallVectorImpl
<TagStoreInstr
> &TSE
,
3852 SmallVectorImpl
<MachineMemOperand
*> &MemRefs
) {
3854 for (auto &TS
: TSE
) {
3855 MachineInstr
*MI
= TS
.MI
;
3856 // An instruction without memory operands may access anything. Be
3857 // conservative and return an empty list.
3858 if (MI
->memoperands_empty()) {
3862 MemRefs
.append(MI
->memoperands_begin(), MI
->memoperands_end());
3866 void TagStoreEdit::emitCode(MachineBasicBlock::iterator
&InsertI
,
3867 const AArch64FrameLowering
*TFI
,
3868 bool TryMergeSPUpdate
) {
3869 if (TagStores
.empty())
3871 TagStoreInstr
&FirstTagStore
= TagStores
[0];
3872 TagStoreInstr
&LastTagStore
= TagStores
[TagStores
.size() - 1];
3873 Size
= LastTagStore
.Offset
- FirstTagStore
.Offset
+ LastTagStore
.Size
;
3874 DL
= TagStores
[0].MI
->getDebugLoc();
3877 FrameRegOffset
= TFI
->resolveFrameOffsetReference(
3878 *MF
, FirstTagStore
.Offset
, false /*isFixed*/, false /*isSVE*/, Reg
,
3879 /*PreferFP=*/false, /*ForSimm=*/true);
3881 FrameRegUpdate
= std::nullopt
;
3883 mergeMemRefs(TagStores
, CombinedMemRefs
);
3885 LLVM_DEBUG(dbgs() << "Replacing adjacent STG instructions:\n";
3886 for (const auto &Instr
3887 : TagStores
) { dbgs() << " " << *Instr
.MI
; });
3889 // Size threshold where a loop becomes shorter than a linear sequence of
3890 // tagging instructions.
3891 const int kSetTagLoopThreshold
= 176;
3892 if (Size
< kSetTagLoopThreshold
) {
3893 if (TagStores
.size() < 2)
3895 emitUnrolled(InsertI
);
3897 MachineInstr
*UpdateInstr
= nullptr;
3898 int64_t TotalOffset
= 0;
3899 if (TryMergeSPUpdate
) {
3900 // See if we can merge base register update into the STGloop.
3901 // This is done in AArch64LoadStoreOptimizer for "normal" stores,
3902 // but STGloop is way too unusual for that, and also it only
3903 // realistically happens in function epilogue. Also, STGloop is expanded
3904 // before that pass.
3905 if (InsertI
!= MBB
->end() &&
3906 canMergeRegUpdate(InsertI
, FrameReg
, FrameRegOffset
.getFixed() + Size
,
3908 UpdateInstr
= &*InsertI
++;
3909 LLVM_DEBUG(dbgs() << "Folding SP update into loop:\n "
3914 if (!UpdateInstr
&& TagStores
.size() < 2)
3918 FrameRegUpdate
= TotalOffset
;
3919 FrameRegUpdateFlags
= UpdateInstr
->getFlags();
3923 UpdateInstr
->eraseFromParent();
3926 for (auto &TS
: TagStores
)
3927 TS
.MI
->eraseFromParent();
3930 bool isMergeableStackTaggingInstruction(MachineInstr
&MI
, int64_t &Offset
,
3931 int64_t &Size
, bool &ZeroData
) {
3932 MachineFunction
&MF
= *MI
.getParent()->getParent();
3933 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3935 unsigned Opcode
= MI
.getOpcode();
3936 ZeroData
= (Opcode
== AArch64::STZGloop
|| Opcode
== AArch64::STZGi
||
3937 Opcode
== AArch64::STZ2Gi
);
3939 if (Opcode
== AArch64::STGloop
|| Opcode
== AArch64::STZGloop
) {
3940 if (!MI
.getOperand(0).isDead() || !MI
.getOperand(1).isDead())
3942 if (!MI
.getOperand(2).isImm() || !MI
.getOperand(3).isFI())
3944 Offset
= MFI
.getObjectOffset(MI
.getOperand(3).getIndex());
3945 Size
= MI
.getOperand(2).getImm();
3949 if (Opcode
== AArch64::STGi
|| Opcode
== AArch64::STZGi
)
3951 else if (Opcode
== AArch64::ST2Gi
|| Opcode
== AArch64::STZ2Gi
)
3956 if (MI
.getOperand(0).getReg() != AArch64::SP
|| !MI
.getOperand(1).isFI())
3959 Offset
= MFI
.getObjectOffset(MI
.getOperand(1).getIndex()) +
3960 16 * MI
.getOperand(2).getImm();
3964 // Detect a run of memory tagging instructions for adjacent stack frame slots,
3965 // and replace them with a shorter instruction sequence:
3966 // * replace STG + STG with ST2G
3967 // * replace STGloop + STGloop with STGloop
3968 // This code needs to run when stack slot offsets are already known, but before
3969 // FrameIndex operands in STG instructions are eliminated.
3970 MachineBasicBlock::iterator
tryMergeAdjacentSTG(MachineBasicBlock::iterator II
,
3971 const AArch64FrameLowering
*TFI
,
3974 int64_t Size
, Offset
;
3975 MachineInstr
&MI
= *II
;
3976 MachineBasicBlock
*MBB
= MI
.getParent();
3977 MachineBasicBlock::iterator NextI
= ++II
;
3978 if (&MI
== &MBB
->instr_back())
3980 if (!isMergeableStackTaggingInstruction(MI
, Offset
, Size
, FirstZeroData
))
3983 SmallVector
<TagStoreInstr
, 4> Instrs
;
3984 Instrs
.emplace_back(&MI
, Offset
, Size
);
3986 constexpr int kScanLimit
= 10;
3988 for (MachineBasicBlock::iterator E
= MBB
->end();
3989 NextI
!= E
&& Count
< kScanLimit
; ++NextI
) {
3990 MachineInstr
&MI
= *NextI
;
3992 int64_t Size
, Offset
;
3993 // Collect instructions that update memory tags with a FrameIndex operand
3994 // and (when applicable) constant size, and whose output registers are dead
3995 // (the latter is almost always the case in practice). Since these
3996 // instructions effectively have no inputs or outputs, we are free to skip
3997 // any non-aliasing instructions in between without tracking used registers.
3998 if (isMergeableStackTaggingInstruction(MI
, Offset
, Size
, ZeroData
)) {
3999 if (ZeroData
!= FirstZeroData
)
4001 Instrs
.emplace_back(&MI
, Offset
, Size
);
4005 // Only count non-transient, non-tagging instructions toward the scan
4007 if (!MI
.isTransient())
4010 // Just in case, stop before the epilogue code starts.
4011 if (MI
.getFlag(MachineInstr::FrameSetup
) ||
4012 MI
.getFlag(MachineInstr::FrameDestroy
))
4015 // Reject anything that may alias the collected instructions.
4016 if (MI
.mayLoadOrStore() || MI
.hasUnmodeledSideEffects())
4020 // New code will be inserted after the last tagging instruction we've found.
4021 MachineBasicBlock::iterator InsertI
= Instrs
.back().MI
;
4023 // All the gathered stack tag instructions are merged and placed after
4024 // last tag store in the list. The check should be made if the nzcv
4025 // flag is live at the point where we are trying to insert. Otherwise
4026 // the nzcv flag might get clobbered if any stg loops are present.
4028 // FIXME : This approach of bailing out from merge is conservative in
4029 // some ways like even if stg loops are not present after merge the
4030 // insert list, this liveness check is done (which is not needed).
4031 LivePhysRegs
LiveRegs(*(MBB
->getParent()->getSubtarget().getRegisterInfo()));
4032 LiveRegs
.addLiveOuts(*MBB
);
4033 for (auto I
= MBB
->rbegin();; ++I
) {
4034 MachineInstr
&MI
= *I
;
4037 LiveRegs
.stepBackward(*I
);
4040 if (LiveRegs
.contains(AArch64::NZCV
))
4043 llvm::stable_sort(Instrs
,
4044 [](const TagStoreInstr
&Left
, const TagStoreInstr
&Right
) {
4045 return Left
.Offset
< Right
.Offset
;
4048 // Make sure that we don't have any overlapping stores.
4049 int64_t CurOffset
= Instrs
[0].Offset
;
4050 for (auto &Instr
: Instrs
) {
4051 if (CurOffset
> Instr
.Offset
)
4053 CurOffset
= Instr
.Offset
+ Instr
.Size
;
4056 // Find contiguous runs of tagged memory and emit shorter instruction
4057 // sequencies for them when possible.
4058 TagStoreEdit
TSE(MBB
, FirstZeroData
);
4059 std::optional
<int64_t> EndOffset
;
4060 for (auto &Instr
: Instrs
) {
4061 if (EndOffset
&& *EndOffset
!= Instr
.Offset
) {
4063 TSE
.emitCode(InsertI
, TFI
, /*TryMergeSPUpdate = */ false);
4067 TSE
.addInstruction(Instr
);
4068 EndOffset
= Instr
.Offset
+ Instr
.Size
;
4071 const MachineFunction
*MF
= MBB
->getParent();
4072 // Multiple FP/SP updates in a loop cannot be described by CFI instructions.
4074 InsertI
, TFI
, /*TryMergeSPUpdate = */
4075 !MF
->getInfo
<AArch64FunctionInfo
>()->needsAsyncDwarfUnwindInfo(*MF
));
4081 void AArch64FrameLowering::processFunctionBeforeFrameIndicesReplaced(
4082 MachineFunction
&MF
, RegScavenger
*RS
= nullptr) const {
4083 if (StackTaggingMergeSetTag
)
4085 for (MachineBasicBlock::iterator II
= BB
.begin(); II
!= BB
.end();)
4086 II
= tryMergeAdjacentSTG(II
, this, RS
);
4089 /// For Win64 AArch64 EH, the offset to the Unwind object is from the SP
4090 /// before the update. This is easily retrieved as it is exactly the offset
4091 /// that is set in processFunctionBeforeFrameFinalized.
4092 StackOffset
AArch64FrameLowering::getFrameIndexReferencePreferSP(
4093 const MachineFunction
&MF
, int FI
, Register
&FrameReg
,
4094 bool IgnoreSPUpdates
) const {
4095 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4096 if (IgnoreSPUpdates
) {
4097 LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI
<< " is "
4098 << MFI
.getObjectOffset(FI
) << "\n");
4099 FrameReg
= AArch64::SP
;
4100 return StackOffset::getFixed(MFI
.getObjectOffset(FI
));
4103 // Go to common code if we cannot provide sp + offset.
4104 if (MFI
.hasVarSizedObjects() ||
4105 MF
.getInfo
<AArch64FunctionInfo
>()->getStackSizeSVE() ||
4106 MF
.getSubtarget().getRegisterInfo()->hasStackRealignment(MF
))
4107 return getFrameIndexReference(MF
, FI
, FrameReg
);
4109 FrameReg
= AArch64::SP
;
4110 return getStackOffset(MF
, MFI
.getObjectOffset(FI
));
4113 /// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve
4114 /// the parent's frame pointer
4115 unsigned AArch64FrameLowering::getWinEHParentFrameOffset(
4116 const MachineFunction
&MF
) const {
4120 /// Funclets only need to account for space for the callee saved registers,
4121 /// as the locals are accounted for in the parent's stack frame.
4122 unsigned AArch64FrameLowering::getWinEHFuncletFrameSize(
4123 const MachineFunction
&MF
) const {
4124 // This is the size of the pushed CSRs.
4126 MF
.getInfo
<AArch64FunctionInfo
>()->getCalleeSavedStackSize();
4127 // This is the amount of stack a funclet needs to allocate.
4128 return alignTo(CSSize
+ MF
.getFrameInfo().getMaxCallFrameSize(),
4133 struct FrameObject
{
4134 bool IsValid
= false;
4135 // Index of the object in MFI.
4136 int ObjectIndex
= 0;
4137 // Group ID this object belongs to.
4138 int GroupIndex
= -1;
4139 // This object should be placed first (closest to SP).
4140 bool ObjectFirst
= false;
4141 // This object's group (which always contains the object with
4142 // ObjectFirst==true) should be placed first.
4143 bool GroupFirst
= false;
4146 class GroupBuilder
{
4147 SmallVector
<int, 8> CurrentMembers
;
4148 int NextGroupIndex
= 0;
4149 std::vector
<FrameObject
> &Objects
;
4152 GroupBuilder(std::vector
<FrameObject
> &Objects
) : Objects(Objects
) {}
4153 void AddMember(int Index
) { CurrentMembers
.push_back(Index
); }
4154 void EndCurrentGroup() {
4155 if (CurrentMembers
.size() > 1) {
4156 // Create a new group with the current member list. This might remove them
4157 // from their pre-existing groups. That's OK, dealing with overlapping
4158 // groups is too hard and unlikely to make a difference.
4159 LLVM_DEBUG(dbgs() << "group:");
4160 for (int Index
: CurrentMembers
) {
4161 Objects
[Index
].GroupIndex
= NextGroupIndex
;
4162 LLVM_DEBUG(dbgs() << " " << Index
);
4164 LLVM_DEBUG(dbgs() << "\n");
4167 CurrentMembers
.clear();
4171 bool FrameObjectCompare(const FrameObject
&A
, const FrameObject
&B
) {
4172 // Objects at a lower index are closer to FP; objects at a higher index are
4175 // For consistency in our comparison, all invalid objects are placed
4176 // at the end. This also allows us to stop walking when we hit the
4177 // first invalid item after it's all sorted.
4179 // The "first" object goes first (closest to SP), followed by the members of
4180 // the "first" group.
4182 // The rest are sorted by the group index to keep the groups together.
4183 // Higher numbered groups are more likely to be around longer (i.e. untagged
4184 // in the function epilogue and not at some earlier point). Place them closer
4187 // If all else equal, sort by the object index to keep the objects in the
4189 return std::make_tuple(!A
.IsValid
, A
.ObjectFirst
, A
.GroupFirst
, A
.GroupIndex
,
4191 std::make_tuple(!B
.IsValid
, B
.ObjectFirst
, B
.GroupFirst
, B
.GroupIndex
,
4196 void AArch64FrameLowering::orderFrameObjects(
4197 const MachineFunction
&MF
, SmallVectorImpl
<int> &ObjectsToAllocate
) const {
4198 if (!OrderFrameObjects
|| ObjectsToAllocate
.empty())
4201 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4202 std::vector
<FrameObject
> FrameObjects(MFI
.getObjectIndexEnd());
4203 for (auto &Obj
: ObjectsToAllocate
) {
4204 FrameObjects
[Obj
].IsValid
= true;
4205 FrameObjects
[Obj
].ObjectIndex
= Obj
;
4208 // Identify stack slots that are tagged at the same time.
4209 GroupBuilder
GB(FrameObjects
);
4210 for (auto &MBB
: MF
) {
4211 for (auto &MI
: MBB
) {
4212 if (MI
.isDebugInstr())
4215 switch (MI
.getOpcode()) {
4216 case AArch64::STGloop
:
4217 case AArch64::STZGloop
:
4221 case AArch64::STZGi
:
4222 case AArch64::ST2Gi
:
4223 case AArch64::STZ2Gi
:
4232 const MachineOperand
&MO
= MI
.getOperand(OpIndex
);
4234 int FI
= MO
.getIndex();
4235 if (FI
>= 0 && FI
< MFI
.getObjectIndexEnd() &&
4236 FrameObjects
[FI
].IsValid
)
4241 // If this is a stack tagging instruction for a slot that is not part of a
4242 // group yet, either start a new group or add it to the current one.
4244 GB
.AddMember(TaggedFI
);
4246 GB
.EndCurrentGroup();
4248 // Groups should never span multiple basic blocks.
4249 GB
.EndCurrentGroup();
4252 // If the function's tagged base pointer is pinned to a stack slot, we want to
4253 // put that slot first when possible. This will likely place it at SP + 0,
4254 // and save one instruction when generating the base pointer because IRG does
4255 // not allow an immediate offset.
4256 const AArch64FunctionInfo
&AFI
= *MF
.getInfo
<AArch64FunctionInfo
>();
4257 std::optional
<int> TBPI
= AFI
.getTaggedBasePointerIndex();
4259 FrameObjects
[*TBPI
].ObjectFirst
= true;
4260 FrameObjects
[*TBPI
].GroupFirst
= true;
4261 int FirstGroupIndex
= FrameObjects
[*TBPI
].GroupIndex
;
4262 if (FirstGroupIndex
>= 0)
4263 for (FrameObject
&Object
: FrameObjects
)
4264 if (Object
.GroupIndex
== FirstGroupIndex
)
4265 Object
.GroupFirst
= true;
4268 llvm::stable_sort(FrameObjects
, FrameObjectCompare
);
4271 for (auto &Obj
: FrameObjects
) {
4272 // All invalid items are sorted at the end, so it's safe to stop.
4275 ObjectsToAllocate
[i
++] = Obj
.ObjectIndex
;
4278 LLVM_DEBUG(dbgs() << "Final frame order:\n"; for (auto &Obj
4282 dbgs() << " " << Obj
.ObjectIndex
<< ": group " << Obj
.GroupIndex
;
4283 if (Obj
.ObjectFirst
)
4284 dbgs() << ", first";
4286 dbgs() << ", group-first";
4291 /// Emit a loop to decrement SP until it is equal to TargetReg, with probes at
4292 /// least every ProbeSize bytes. Returns an iterator of the first instruction
4293 /// after the loop. The difference between SP and TargetReg must be an exact
4294 /// multiple of ProbeSize.
4295 MachineBasicBlock::iterator
4296 AArch64FrameLowering::inlineStackProbeLoopExactMultiple(
4297 MachineBasicBlock::iterator MBBI
, int64_t ProbeSize
,
4298 Register TargetReg
) const {
4299 MachineBasicBlock
&MBB
= *MBBI
->getParent();
4300 MachineFunction
&MF
= *MBB
.getParent();
4301 const AArch64InstrInfo
*TII
=
4302 MF
.getSubtarget
<AArch64Subtarget
>().getInstrInfo();
4303 DebugLoc DL
= MBB
.findDebugLoc(MBBI
);
4305 MachineFunction::iterator MBBInsertPoint
= std::next(MBB
.getIterator());
4306 MachineBasicBlock
*LoopMBB
= MF
.CreateMachineBasicBlock(MBB
.getBasicBlock());
4307 MF
.insert(MBBInsertPoint
, LoopMBB
);
4308 MachineBasicBlock
*ExitMBB
= MF
.CreateMachineBasicBlock(MBB
.getBasicBlock());
4309 MF
.insert(MBBInsertPoint
, ExitMBB
);
4311 // SUB SP, SP, #ProbeSize (or equivalent if ProbeSize is not encodable
4313 emitFrameOffset(*LoopMBB
, LoopMBB
->end(), DL
, AArch64::SP
, AArch64::SP
,
4314 StackOffset::getFixed(-ProbeSize
), TII
,
4315 MachineInstr::FrameSetup
);
4317 BuildMI(*LoopMBB
, LoopMBB
->end(), DL
, TII
->get(AArch64::STRXui
))
4318 .addReg(AArch64::XZR
)
4319 .addReg(AArch64::SP
)
4321 .setMIFlags(MachineInstr::FrameSetup
);
4322 // CMP SP, TargetReg
4323 BuildMI(*LoopMBB
, LoopMBB
->end(), DL
, TII
->get(AArch64::SUBSXrx64
),
4325 .addReg(AArch64::SP
)
4327 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX
, 0))
4328 .setMIFlags(MachineInstr::FrameSetup
);
4330 BuildMI(*LoopMBB
, LoopMBB
->end(), DL
, TII
->get(AArch64::Bcc
))
4331 .addImm(AArch64CC::NE
)
4333 .setMIFlags(MachineInstr::FrameSetup
);
4335 LoopMBB
->addSuccessor(ExitMBB
);
4336 LoopMBB
->addSuccessor(LoopMBB
);
4337 // Synthesize the exit MBB.
4338 ExitMBB
->splice(ExitMBB
->end(), &MBB
, MBBI
, MBB
.end());
4339 ExitMBB
->transferSuccessorsAndUpdatePHIs(&MBB
);
4340 MBB
.addSuccessor(LoopMBB
);
4342 bool anyChange
= false;
4344 anyChange
= recomputeLiveIns(*ExitMBB
) || recomputeLiveIns(*LoopMBB
);
4345 } while (anyChange
);
4347 return ExitMBB
->begin();
4350 void AArch64FrameLowering::inlineStackProbeFixed(
4351 MachineBasicBlock::iterator MBBI
, Register ScratchReg
, int64_t FrameSize
,
4352 StackOffset CFAOffset
) const {
4353 MachineBasicBlock
*MBB
= MBBI
->getParent();
4354 MachineFunction
&MF
= *MBB
->getParent();
4355 const AArch64InstrInfo
*TII
=
4356 MF
.getSubtarget
<AArch64Subtarget
>().getInstrInfo();
4357 AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
4358 bool EmitAsyncCFI
= AFI
->needsAsyncDwarfUnwindInfo(MF
);
4359 bool HasFP
= hasFP(MF
);
4362 int64_t ProbeSize
= MF
.getInfo
<AArch64FunctionInfo
>()->getStackProbeSize();
4363 int64_t NumBlocks
= FrameSize
/ ProbeSize
;
4364 int64_t ResidualSize
= FrameSize
% ProbeSize
;
4366 LLVM_DEBUG(dbgs() << "Stack probing: total " << FrameSize
<< " bytes, "
4367 << NumBlocks
<< " blocks of " << ProbeSize
4368 << " bytes, plus " << ResidualSize
<< " bytes\n");
4370 // Decrement SP by NumBlock * ProbeSize bytes, with either unrolled or
4372 if (NumBlocks
<= AArch64::StackProbeMaxLoopUnroll
) {
4373 for (int i
= 0; i
< NumBlocks
; ++i
) {
4374 // SUB SP, SP, #ProbeSize (or equivalent if ProbeSize is not
4375 // encodable in a SUB).
4376 emitFrameOffset(*MBB
, MBBI
, DL
, AArch64::SP
, AArch64::SP
,
4377 StackOffset::getFixed(-ProbeSize
), TII
,
4378 MachineInstr::FrameSetup
, false, false, nullptr,
4379 EmitAsyncCFI
&& !HasFP
, CFAOffset
);
4380 CFAOffset
+= StackOffset::getFixed(ProbeSize
);
4382 BuildMI(*MBB
, MBBI
, DL
, TII
->get(AArch64::STRXui
))
4383 .addReg(AArch64::XZR
)
4384 .addReg(AArch64::SP
)
4386 .setMIFlags(MachineInstr::FrameSetup
);
4388 } else if (NumBlocks
!= 0) {
4389 // SUB ScratchReg, SP, #FrameSize (or equivalent if FrameSize is not
4390 // encodable in ADD). ScrathReg may temporarily become the CFA register.
4391 emitFrameOffset(*MBB
, MBBI
, DL
, ScratchReg
, AArch64::SP
,
4392 StackOffset::getFixed(-ProbeSize
* NumBlocks
), TII
,
4393 MachineInstr::FrameSetup
, false, false, nullptr,
4394 EmitAsyncCFI
&& !HasFP
, CFAOffset
);
4395 CFAOffset
+= StackOffset::getFixed(ProbeSize
* NumBlocks
);
4396 MBBI
= inlineStackProbeLoopExactMultiple(MBBI
, ProbeSize
, ScratchReg
);
4397 MBB
= MBBI
->getParent();
4398 if (EmitAsyncCFI
&& !HasFP
) {
4399 // Set the CFA register back to SP.
4400 const AArch64RegisterInfo
&RegInfo
=
4401 *MF
.getSubtarget
<AArch64Subtarget
>().getRegisterInfo();
4402 unsigned Reg
= RegInfo
.getDwarfRegNum(AArch64::SP
, true);
4404 MF
.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg
));
4405 BuildMI(*MBB
, MBBI
, DL
, TII
->get(TargetOpcode::CFI_INSTRUCTION
))
4406 .addCFIIndex(CFIIndex
)
4407 .setMIFlags(MachineInstr::FrameSetup
);
4411 if (ResidualSize
!= 0) {
4412 // SUB SP, SP, #ResidualSize (or equivalent if ResidualSize is not encodable
4414 emitFrameOffset(*MBB
, MBBI
, DL
, AArch64::SP
, AArch64::SP
,
4415 StackOffset::getFixed(-ResidualSize
), TII
,
4416 MachineInstr::FrameSetup
, false, false, nullptr,
4417 EmitAsyncCFI
&& !HasFP
, CFAOffset
);
4418 if (ResidualSize
> AArch64::StackProbeMaxUnprobedStack
) {
4420 BuildMI(*MBB
, MBBI
, DL
, TII
->get(AArch64::STRXui
))
4421 .addReg(AArch64::XZR
)
4422 .addReg(AArch64::SP
)
4424 .setMIFlags(MachineInstr::FrameSetup
);
4429 void AArch64FrameLowering::inlineStackProbe(MachineFunction
&MF
,
4430 MachineBasicBlock
&MBB
) const {
4431 // Get the instructions that need to be replaced. We emit at most two of
4432 // these. Remember them in order to avoid complications coming from the need
4433 // to traverse the block while potentially creating more blocks.
4434 SmallVector
<MachineInstr
*, 4> ToReplace
;
4435 for (MachineInstr
&MI
: MBB
)
4436 if (MI
.getOpcode() == AArch64::PROBED_STACKALLOC
||
4437 MI
.getOpcode() == AArch64::PROBED_STACKALLOC_VAR
)
4438 ToReplace
.push_back(&MI
);
4440 for (MachineInstr
*MI
: ToReplace
) {
4441 if (MI
->getOpcode() == AArch64::PROBED_STACKALLOC
) {
4442 Register ScratchReg
= MI
->getOperand(0).getReg();
4443 int64_t FrameSize
= MI
->getOperand(1).getImm();
4444 StackOffset CFAOffset
= StackOffset::get(MI
->getOperand(2).getImm(),
4445 MI
->getOperand(3).getImm());
4446 inlineStackProbeFixed(MI
->getIterator(), ScratchReg
, FrameSize
,
4449 assert(MI
->getOpcode() == AArch64::PROBED_STACKALLOC_VAR
&&
4450 "Stack probe pseudo-instruction expected");
4451 const AArch64InstrInfo
*TII
=
4452 MI
->getMF()->getSubtarget
<AArch64Subtarget
>().getInstrInfo();
4453 Register TargetReg
= MI
->getOperand(0).getReg();
4454 (void)TII
->probedStackAlloc(MI
->getIterator(), TargetReg
, true);
4456 MI
->eraseFromParent();