[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / lib / Target / AArch64 / AArch64FrameLowering.cpp
blob732e787d2a321d0c534439d7c223a7b11811df8e
1 //===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the AArch64 implementation of TargetFrameLowering class.
11 // On AArch64, stack frames are structured as follows:
13 // The stack grows downward.
15 // All of the individual frame areas on the frame below are optional, i.e. it's
16 // possible to create a function so that the particular area isn't present
17 // in the frame.
19 // At function entry, the "frame" looks as follows:
21 // | | Higher address
22 // |-----------------------------------|
23 // | |
24 // | arguments passed on the stack |
25 // | |
26 // |-----------------------------------| <- sp
27 // | | Lower address
30 // After the prologue has run, the frame has the following general structure.
31 // Note that this doesn't depict the case where a red-zone is used. Also,
32 // technically the last frame area (VLAs) doesn't get created until in the
33 // main function body, after the prologue is run. However, it's depicted here
34 // for completeness.
36 // | | Higher address
37 // |-----------------------------------|
38 // | |
39 // | arguments passed on the stack |
40 // | |
41 // |-----------------------------------|
42 // | |
43 // | (Win64 only) varargs from reg |
44 // | |
45 // |-----------------------------------|
46 // | |
47 // | callee-saved gpr registers | <--.
48 // | | | On Darwin platforms these
49 // |- - - - - - - - - - - - - - - - - -| | callee saves are swapped,
50 // | prev_lr | | (frame record first)
51 // | prev_fp | <--'
52 // | async context if needed |
53 // | (a.k.a. "frame record") |
54 // |-----------------------------------| <- fp(=x29)
55 // | |
56 // | callee-saved fp/simd/SVE regs |
57 // | |
58 // |-----------------------------------|
59 // | |
60 // | SVE stack objects |
61 // | |
62 // |-----------------------------------|
63 // |.empty.space.to.make.part.below....|
64 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
65 // |.the.standard.16-byte.alignment....| compile time; if present)
66 // |-----------------------------------|
67 // | |
68 // | local variables of fixed size |
69 // | including spill slots |
70 // |-----------------------------------| <- bp(not defined by ABI,
71 // |.variable-sized.local.variables....| LLVM chooses X19)
72 // |.(VLAs)............................| (size of this area is unknown at
73 // |...................................| compile time)
74 // |-----------------------------------| <- sp
75 // | | Lower address
78 // To access the data in a frame, at-compile time, a constant offset must be
79 // computable from one of the pointers (fp, bp, sp) to access it. The size
80 // of the areas with a dotted background cannot be computed at compile-time
81 // if they are present, making it required to have all three of fp, bp and
82 // sp to be set up to be able to access all contents in the frame areas,
83 // assuming all of the frame areas are non-empty.
85 // For most functions, some of the frame areas are empty. For those functions,
86 // it may not be necessary to set up fp or bp:
87 // * A base pointer is definitely needed when there are both VLAs and local
88 // variables with more-than-default alignment requirements.
89 // * A frame pointer is definitely needed when there are local variables with
90 // more-than-default alignment requirements.
92 // For Darwin platforms the frame-record (fp, lr) is stored at the top of the
93 // callee-saved area, since the unwind encoding does not allow for encoding
94 // this dynamically and existing tools depend on this layout. For other
95 // platforms, the frame-record is stored at the bottom of the (gpr) callee-saved
96 // area to allow SVE stack objects (allocated directly below the callee-saves,
97 // if available) to be accessed directly from the framepointer.
98 // The SVE spill/fill instructions have VL-scaled addressing modes such
99 // as:
100 // ldr z8, [fp, #-7 mul vl]
101 // For SVE the size of the vector length (VL) is not known at compile-time, so
102 // '#-7 mul vl' is an offset that can only be evaluated at runtime. With this
103 // layout, we don't need to add an unscaled offset to the framepointer before
104 // accessing the SVE object in the frame.
106 // In some cases when a base pointer is not strictly needed, it is generated
107 // anyway when offsets from the frame pointer to access local variables become
108 // so large that the offset can't be encoded in the immediate fields of loads
109 // or stores.
111 // Outgoing function arguments must be at the bottom of the stack frame when
112 // calling another function. If we do not have variable-sized stack objects, we
113 // can allocate a "reserved call frame" area at the bottom of the local
114 // variable area, large enough for all outgoing calls. If we do have VLAs, then
115 // the stack pointer must be decremented and incremented around each call to
116 // make space for the arguments below the VLAs.
118 // FIXME: also explain the redzone concept.
120 // An example of the prologue:
122 // .globl __foo
123 // .align 2
124 // __foo:
125 // Ltmp0:
126 // .cfi_startproc
127 // .cfi_personality 155, ___gxx_personality_v0
128 // Leh_func_begin:
129 // .cfi_lsda 16, Lexception33
131 // stp xa,bx, [sp, -#offset]!
132 // ...
133 // stp x28, x27, [sp, #offset-32]
134 // stp fp, lr, [sp, #offset-16]
135 // add fp, sp, #offset - 16
136 // sub sp, sp, #1360
138 // The Stack:
139 // +-------------------------------------------+
140 // 10000 | ........ | ........ | ........ | ........ |
141 // 10004 | ........ | ........ | ........ | ........ |
142 // +-------------------------------------------+
143 // 10008 | ........ | ........ | ........ | ........ |
144 // 1000c | ........ | ........ | ........ | ........ |
145 // +===========================================+
146 // 10010 | X28 Register |
147 // 10014 | X28 Register |
148 // +-------------------------------------------+
149 // 10018 | X27 Register |
150 // 1001c | X27 Register |
151 // +===========================================+
152 // 10020 | Frame Pointer |
153 // 10024 | Frame Pointer |
154 // +-------------------------------------------+
155 // 10028 | Link Register |
156 // 1002c | Link Register |
157 // +===========================================+
158 // 10030 | ........ | ........ | ........ | ........ |
159 // 10034 | ........ | ........ | ........ | ........ |
160 // +-------------------------------------------+
161 // 10038 | ........ | ........ | ........ | ........ |
162 // 1003c | ........ | ........ | ........ | ........ |
163 // +-------------------------------------------+
165 // [sp] = 10030 :: >>initial value<<
166 // sp = 10020 :: stp fp, lr, [sp, #-16]!
167 // fp = sp == 10020 :: mov fp, sp
168 // [sp] == 10020 :: stp x28, x27, [sp, #-16]!
169 // sp == 10010 :: >>final value<<
171 // The frame pointer (w29) points to address 10020. If we use an offset of
172 // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24
173 // for w27, and -32 for w28:
175 // Ltmp1:
176 // .cfi_def_cfa w29, 16
177 // Ltmp2:
178 // .cfi_offset w30, -8
179 // Ltmp3:
180 // .cfi_offset w29, -16
181 // Ltmp4:
182 // .cfi_offset w27, -24
183 // Ltmp5:
184 // .cfi_offset w28, -32
186 //===----------------------------------------------------------------------===//
188 #include "AArch64FrameLowering.h"
189 #include "AArch64InstrInfo.h"
190 #include "AArch64MachineFunctionInfo.h"
191 #include "AArch64RegisterInfo.h"
192 #include "AArch64Subtarget.h"
193 #include "AArch64TargetMachine.h"
194 #include "MCTargetDesc/AArch64AddressingModes.h"
195 #include "MCTargetDesc/AArch64MCTargetDesc.h"
196 #include "llvm/ADT/ScopeExit.h"
197 #include "llvm/ADT/SmallVector.h"
198 #include "llvm/ADT/Statistic.h"
199 #include "llvm/CodeGen/LivePhysRegs.h"
200 #include "llvm/CodeGen/MachineBasicBlock.h"
201 #include "llvm/CodeGen/MachineFrameInfo.h"
202 #include "llvm/CodeGen/MachineFunction.h"
203 #include "llvm/CodeGen/MachineInstr.h"
204 #include "llvm/CodeGen/MachineInstrBuilder.h"
205 #include "llvm/CodeGen/MachineMemOperand.h"
206 #include "llvm/CodeGen/MachineModuleInfo.h"
207 #include "llvm/CodeGen/MachineOperand.h"
208 #include "llvm/CodeGen/MachineRegisterInfo.h"
209 #include "llvm/CodeGen/RegisterScavenging.h"
210 #include "llvm/CodeGen/TargetInstrInfo.h"
211 #include "llvm/CodeGen/TargetRegisterInfo.h"
212 #include "llvm/CodeGen/TargetSubtargetInfo.h"
213 #include "llvm/CodeGen/WinEHFuncInfo.h"
214 #include "llvm/IR/Attributes.h"
215 #include "llvm/IR/CallingConv.h"
216 #include "llvm/IR/DataLayout.h"
217 #include "llvm/IR/DebugLoc.h"
218 #include "llvm/IR/Function.h"
219 #include "llvm/MC/MCAsmInfo.h"
220 #include "llvm/MC/MCDwarf.h"
221 #include "llvm/Support/CommandLine.h"
222 #include "llvm/Support/Debug.h"
223 #include "llvm/Support/ErrorHandling.h"
224 #include "llvm/Support/MathExtras.h"
225 #include "llvm/Support/raw_ostream.h"
226 #include "llvm/Target/TargetMachine.h"
227 #include "llvm/Target/TargetOptions.h"
228 #include <cassert>
229 #include <cstdint>
230 #include <iterator>
231 #include <optional>
232 #include <vector>
234 using namespace llvm;
236 #define DEBUG_TYPE "frame-info"
238 static cl::opt<bool> EnableRedZone("aarch64-redzone",
239 cl::desc("enable use of redzone on AArch64"),
240 cl::init(false), cl::Hidden);
242 static cl::opt<bool>
243 ReverseCSRRestoreSeq("reverse-csr-restore-seq",
244 cl::desc("reverse the CSR restore sequence"),
245 cl::init(false), cl::Hidden);
247 static cl::opt<bool> StackTaggingMergeSetTag(
248 "stack-tagging-merge-settag",
249 cl::desc("merge settag instruction in function epilog"), cl::init(true),
250 cl::Hidden);
252 static cl::opt<bool> OrderFrameObjects("aarch64-order-frame-objects",
253 cl::desc("sort stack allocations"),
254 cl::init(true), cl::Hidden);
256 cl::opt<bool> EnableHomogeneousPrologEpilog(
257 "homogeneous-prolog-epilog", cl::Hidden,
258 cl::desc("Emit homogeneous prologue and epilogue for the size "
259 "optimization (default = off)"));
261 STATISTIC(NumRedZoneFunctions, "Number of functions using red zone");
263 /// Returns how much of the incoming argument stack area (in bytes) we should
264 /// clean up in an epilogue. For the C calling convention this will be 0, for
265 /// guaranteed tail call conventions it can be positive (a normal return or a
266 /// tail call to a function that uses less stack space for arguments) or
267 /// negative (for a tail call to a function that needs more stack space than us
268 /// for arguments).
269 static int64_t getArgumentStackToRestore(MachineFunction &MF,
270 MachineBasicBlock &MBB) {
271 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
272 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
273 bool IsTailCallReturn = (MBB.end() != MBBI)
274 ? AArch64InstrInfo::isTailCallReturnInst(*MBBI)
275 : false;
277 int64_t ArgumentPopSize = 0;
278 if (IsTailCallReturn) {
279 MachineOperand &StackAdjust = MBBI->getOperand(1);
281 // For a tail-call in a callee-pops-arguments environment, some or all of
282 // the stack may actually be in use for the call's arguments, this is
283 // calculated during LowerCall and consumed here...
284 ArgumentPopSize = StackAdjust.getImm();
285 } else {
286 // ... otherwise the amount to pop is *all* of the argument space,
287 // conveniently stored in the MachineFunctionInfo by
288 // LowerFormalArguments. This will, of course, be zero for the C calling
289 // convention.
290 ArgumentPopSize = AFI->getArgumentStackToRestore();
293 return ArgumentPopSize;
296 static bool produceCompactUnwindFrame(MachineFunction &MF);
297 static bool needsWinCFI(const MachineFunction &MF);
298 static StackOffset getSVEStackSize(const MachineFunction &MF);
299 static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB);
301 /// Returns true if a homogeneous prolog or epilog code can be emitted
302 /// for the size optimization. If possible, a frame helper call is injected.
303 /// When Exit block is given, this check is for epilog.
304 bool AArch64FrameLowering::homogeneousPrologEpilog(
305 MachineFunction &MF, MachineBasicBlock *Exit) const {
306 if (!MF.getFunction().hasMinSize())
307 return false;
308 if (!EnableHomogeneousPrologEpilog)
309 return false;
310 if (ReverseCSRRestoreSeq)
311 return false;
312 if (EnableRedZone)
313 return false;
315 // TODO: Window is supported yet.
316 if (needsWinCFI(MF))
317 return false;
318 // TODO: SVE is not supported yet.
319 if (getSVEStackSize(MF))
320 return false;
322 // Bail on stack adjustment needed on return for simplicity.
323 const MachineFrameInfo &MFI = MF.getFrameInfo();
324 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
325 if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF))
326 return false;
327 if (Exit && getArgumentStackToRestore(MF, *Exit))
328 return false;
330 auto *AFI = MF.getInfo<AArch64FunctionInfo>();
331 if (AFI->hasSwiftAsyncContext())
332 return false;
334 // If there are an odd number of GPRs before LR and FP in the CSRs list,
335 // they will not be paired into one RegPairInfo, which is incompatible with
336 // the assumption made by the homogeneous prolog epilog pass.
337 const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
338 unsigned NumGPRs = 0;
339 for (unsigned I = 0; CSRegs[I]; ++I) {
340 Register Reg = CSRegs[I];
341 if (Reg == AArch64::LR) {
342 assert(CSRegs[I + 1] == AArch64::FP);
343 if (NumGPRs % 2 != 0)
344 return false;
345 break;
347 if (AArch64::GPR64RegClass.contains(Reg))
348 ++NumGPRs;
351 return true;
354 /// Returns true if CSRs should be paired.
355 bool AArch64FrameLowering::producePairRegisters(MachineFunction &MF) const {
356 return produceCompactUnwindFrame(MF) || homogeneousPrologEpilog(MF);
359 /// This is the biggest offset to the stack pointer we can encode in aarch64
360 /// instructions (without using a separate calculation and a temp register).
361 /// Note that the exception here are vector stores/loads which cannot encode any
362 /// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()).
363 static const unsigned DefaultSafeSPDisplacement = 255;
365 /// Look at each instruction that references stack frames and return the stack
366 /// size limit beyond which some of these instructions will require a scratch
367 /// register during their expansion later.
368 static unsigned estimateRSStackSizeLimit(MachineFunction &MF) {
369 // FIXME: For now, just conservatively guestimate based on unscaled indexing
370 // range. We'll end up allocating an unnecessary spill slot a lot, but
371 // realistically that's not a big deal at this stage of the game.
372 for (MachineBasicBlock &MBB : MF) {
373 for (MachineInstr &MI : MBB) {
374 if (MI.isDebugInstr() || MI.isPseudo() ||
375 MI.getOpcode() == AArch64::ADDXri ||
376 MI.getOpcode() == AArch64::ADDSXri)
377 continue;
379 for (const MachineOperand &MO : MI.operands()) {
380 if (!MO.isFI())
381 continue;
383 StackOffset Offset;
384 if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) ==
385 AArch64FrameOffsetCannotUpdate)
386 return 0;
390 return DefaultSafeSPDisplacement;
393 TargetStackID::Value
394 AArch64FrameLowering::getStackIDForScalableVectors() const {
395 return TargetStackID::ScalableVector;
398 /// Returns the size of the fixed object area (allocated next to sp on entry)
399 /// On Win64 this may include a var args area and an UnwindHelp object for EH.
400 static unsigned getFixedObjectSize(const MachineFunction &MF,
401 const AArch64FunctionInfo *AFI, bool IsWin64,
402 bool IsFunclet) {
403 if (!IsWin64 || IsFunclet) {
404 return AFI->getTailCallReservedStack();
405 } else {
406 if (AFI->getTailCallReservedStack() != 0)
407 report_fatal_error("cannot generate ABI-changing tail call for Win64");
408 // Var args are stored here in the primary function.
409 const unsigned VarArgsArea = AFI->getVarArgsGPRSize();
410 // To support EH funclets we allocate an UnwindHelp object
411 const unsigned UnwindHelpObject = (MF.hasEHFunclets() ? 8 : 0);
412 return alignTo(VarArgsArea + UnwindHelpObject, 16);
416 /// Returns the size of the entire SVE stackframe (calleesaves + spills).
417 static StackOffset getSVEStackSize(const MachineFunction &MF) {
418 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
419 return StackOffset::getScalable((int64_t)AFI->getStackSizeSVE());
422 bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const {
423 if (!EnableRedZone)
424 return false;
426 // Don't use the red zone if the function explicitly asks us not to.
427 // This is typically used for kernel code.
428 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
429 const unsigned RedZoneSize =
430 Subtarget.getTargetLowering()->getRedZoneSize(MF.getFunction());
431 if (!RedZoneSize)
432 return false;
434 const MachineFrameInfo &MFI = MF.getFrameInfo();
435 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
436 uint64_t NumBytes = AFI->getLocalStackSize();
438 return !(MFI.hasCalls() || hasFP(MF) || NumBytes > RedZoneSize ||
439 getSVEStackSize(MF));
442 /// hasFP - Return true if the specified function should have a dedicated frame
443 /// pointer register.
444 bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const {
445 const MachineFrameInfo &MFI = MF.getFrameInfo();
446 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
448 // Win64 EH requires a frame pointer if funclets are present, as the locals
449 // are accessed off the frame pointer in both the parent function and the
450 // funclets.
451 if (MF.hasEHFunclets())
452 return true;
453 // Retain behavior of always omitting the FP for leaf functions when possible.
454 if (MF.getTarget().Options.DisableFramePointerElim(MF))
455 return true;
456 if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() ||
457 MFI.hasStackMap() || MFI.hasPatchPoint() ||
458 RegInfo->hasStackRealignment(MF))
459 return true;
460 // With large callframes around we may need to use FP to access the scavenging
461 // emergency spillslot.
463 // Unfortunately some calls to hasFP() like machine verifier ->
464 // getReservedReg() -> hasFP in the middle of global isel are too early
465 // to know the max call frame size. Hopefully conservatively returning "true"
466 // in those cases is fine.
467 // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs.
468 if (!MFI.isMaxCallFrameSizeComputed() ||
469 MFI.getMaxCallFrameSize() > DefaultSafeSPDisplacement)
470 return true;
472 return false;
475 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
476 /// not required, we reserve argument space for call sites in the function
477 /// immediately on entry to the current function. This eliminates the need for
478 /// add/sub sp brackets around call sites. Returns true if the call frame is
479 /// included as part of the stack frame.
480 bool
481 AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
482 // The stack probing code for the dynamically allocated outgoing arguments
483 // area assumes that the stack is probed at the top - either by the prologue
484 // code, which issues a probe if `hasVarSizedObjects` return true, or by the
485 // most recent variable-sized object allocation. Changing the condition here
486 // may need to be followed up by changes to the probe issuing logic.
487 return !MF.getFrameInfo().hasVarSizedObjects();
490 MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr(
491 MachineFunction &MF, MachineBasicBlock &MBB,
492 MachineBasicBlock::iterator I) const {
493 const AArch64InstrInfo *TII =
494 static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
495 const AArch64TargetLowering *TLI =
496 MF.getSubtarget<AArch64Subtarget>().getTargetLowering();
497 [[maybe_unused]] MachineFrameInfo &MFI = MF.getFrameInfo();
498 DebugLoc DL = I->getDebugLoc();
499 unsigned Opc = I->getOpcode();
500 bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode();
501 uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
503 if (!hasReservedCallFrame(MF)) {
504 int64_t Amount = I->getOperand(0).getImm();
505 Amount = alignTo(Amount, getStackAlign());
506 if (!IsDestroy)
507 Amount = -Amount;
509 // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
510 // doesn't have to pop anything), then the first operand will be zero too so
511 // this adjustment is a no-op.
512 if (CalleePopAmount == 0) {
513 // FIXME: in-function stack adjustment for calls is limited to 24-bits
514 // because there's no guaranteed temporary register available.
516 // ADD/SUB (immediate) has only LSL #0 and LSL #12 available.
517 // 1) For offset <= 12-bit, we use LSL #0
518 // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses
519 // LSL #0, and the other uses LSL #12.
521 // Most call frames will be allocated at the start of a function so
522 // this is OK, but it is a limitation that needs dealing with.
523 assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large");
525 if (TLI->hasInlineStackProbe(MF) &&
526 -Amount >= AArch64::StackProbeMaxUnprobedStack) {
527 // When stack probing is enabled, the decrement of SP may need to be
528 // probed. We only need to do this if the call site needs 1024 bytes of
529 // space or more, because a region smaller than that is allowed to be
530 // unprobed at an ABI boundary. We rely on the fact that SP has been
531 // probed exactly at this point, either by the prologue or most recent
532 // dynamic allocation.
533 assert(MFI.hasVarSizedObjects() &&
534 "non-reserved call frame without var sized objects?");
535 Register ScratchReg =
536 MF.getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass);
537 inlineStackProbeFixed(I, ScratchReg, -Amount, StackOffset::get(0, 0));
538 } else {
539 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
540 StackOffset::getFixed(Amount), TII);
543 } else if (CalleePopAmount != 0) {
544 // If the calling convention demands that the callee pops arguments from the
545 // stack, we want to add it back if we have a reserved call frame.
546 assert(CalleePopAmount < 0xffffff && "call frame too large");
547 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
548 StackOffset::getFixed(-(int64_t)CalleePopAmount), TII);
550 return MBB.erase(I);
553 void AArch64FrameLowering::emitCalleeSavedGPRLocations(
554 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
555 MachineFunction &MF = *MBB.getParent();
556 MachineFrameInfo &MFI = MF.getFrameInfo();
558 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
559 if (CSI.empty())
560 return;
562 const TargetSubtargetInfo &STI = MF.getSubtarget();
563 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
564 const TargetInstrInfo &TII = *STI.getInstrInfo();
565 DebugLoc DL = MBB.findDebugLoc(MBBI);
567 for (const auto &Info : CSI) {
568 if (MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector)
569 continue;
571 assert(!Info.isSpilledToReg() && "Spilling to registers not implemented");
572 unsigned DwarfReg = TRI.getDwarfRegNum(Info.getReg(), true);
574 int64_t Offset =
575 MFI.getObjectOffset(Info.getFrameIdx()) - getOffsetOfLocalArea();
576 unsigned CFIIndex = MF.addFrameInst(
577 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
578 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
579 .addCFIIndex(CFIIndex)
580 .setMIFlags(MachineInstr::FrameSetup);
584 void AArch64FrameLowering::emitCalleeSavedSVELocations(
585 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
586 MachineFunction &MF = *MBB.getParent();
587 MachineFrameInfo &MFI = MF.getFrameInfo();
589 // Add callee saved registers to move list.
590 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
591 if (CSI.empty())
592 return;
594 const TargetSubtargetInfo &STI = MF.getSubtarget();
595 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
596 const TargetInstrInfo &TII = *STI.getInstrInfo();
597 DebugLoc DL = MBB.findDebugLoc(MBBI);
598 AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
600 for (const auto &Info : CSI) {
601 if (!(MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector))
602 continue;
604 // Not all unwinders may know about SVE registers, so assume the lowest
605 // common demoninator.
606 assert(!Info.isSpilledToReg() && "Spilling to registers not implemented");
607 unsigned Reg = Info.getReg();
608 if (!static_cast<const AArch64RegisterInfo &>(TRI).regNeedsCFI(Reg, Reg))
609 continue;
611 StackOffset Offset =
612 StackOffset::getScalable(MFI.getObjectOffset(Info.getFrameIdx())) -
613 StackOffset::getFixed(AFI.getCalleeSavedStackSize(MFI));
615 unsigned CFIIndex = MF.addFrameInst(createCFAOffset(TRI, Reg, Offset));
616 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
617 .addCFIIndex(CFIIndex)
618 .setMIFlags(MachineInstr::FrameSetup);
622 static void insertCFISameValue(const MCInstrDesc &Desc, MachineFunction &MF,
623 MachineBasicBlock &MBB,
624 MachineBasicBlock::iterator InsertPt,
625 unsigned DwarfReg) {
626 unsigned CFIIndex =
627 MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, DwarfReg));
628 BuildMI(MBB, InsertPt, DebugLoc(), Desc).addCFIIndex(CFIIndex);
631 void AArch64FrameLowering::resetCFIToInitialState(
632 MachineBasicBlock &MBB) const {
634 MachineFunction &MF = *MBB.getParent();
635 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
636 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
637 const auto &TRI =
638 static_cast<const AArch64RegisterInfo &>(*Subtarget.getRegisterInfo());
639 const auto &MFI = *MF.getInfo<AArch64FunctionInfo>();
641 const MCInstrDesc &CFIDesc = TII.get(TargetOpcode::CFI_INSTRUCTION);
642 DebugLoc DL;
644 // Reset the CFA to `SP + 0`.
645 MachineBasicBlock::iterator InsertPt = MBB.begin();
646 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
647 nullptr, TRI.getDwarfRegNum(AArch64::SP, true), 0));
648 BuildMI(MBB, InsertPt, DL, CFIDesc).addCFIIndex(CFIIndex);
650 // Flip the RA sign state.
651 if (MFI.shouldSignReturnAddress(MF)) {
652 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
653 BuildMI(MBB, InsertPt, DL, CFIDesc).addCFIIndex(CFIIndex);
656 // Shadow call stack uses X18, reset it.
657 if (MFI.needsShadowCallStackPrologueEpilogue(MF))
658 insertCFISameValue(CFIDesc, MF, MBB, InsertPt,
659 TRI.getDwarfRegNum(AArch64::X18, true));
661 // Emit .cfi_same_value for callee-saved registers.
662 const std::vector<CalleeSavedInfo> &CSI =
663 MF.getFrameInfo().getCalleeSavedInfo();
664 for (const auto &Info : CSI) {
665 unsigned Reg = Info.getReg();
666 if (!TRI.regNeedsCFI(Reg, Reg))
667 continue;
668 insertCFISameValue(CFIDesc, MF, MBB, InsertPt,
669 TRI.getDwarfRegNum(Reg, true));
673 static void emitCalleeSavedRestores(MachineBasicBlock &MBB,
674 MachineBasicBlock::iterator MBBI,
675 bool SVE) {
676 MachineFunction &MF = *MBB.getParent();
677 MachineFrameInfo &MFI = MF.getFrameInfo();
679 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
680 if (CSI.empty())
681 return;
683 const TargetSubtargetInfo &STI = MF.getSubtarget();
684 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
685 const TargetInstrInfo &TII = *STI.getInstrInfo();
686 DebugLoc DL = MBB.findDebugLoc(MBBI);
688 for (const auto &Info : CSI) {
689 if (SVE !=
690 (MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector))
691 continue;
693 unsigned Reg = Info.getReg();
694 if (SVE &&
695 !static_cast<const AArch64RegisterInfo &>(TRI).regNeedsCFI(Reg, Reg))
696 continue;
698 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(
699 nullptr, TRI.getDwarfRegNum(Info.getReg(), true)));
700 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
701 .addCFIIndex(CFIIndex)
702 .setMIFlags(MachineInstr::FrameDestroy);
706 void AArch64FrameLowering::emitCalleeSavedGPRRestores(
707 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
708 emitCalleeSavedRestores(MBB, MBBI, false);
711 void AArch64FrameLowering::emitCalleeSavedSVERestores(
712 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
713 emitCalleeSavedRestores(MBB, MBBI, true);
716 // Return the maximum possible number of bytes for `Size` due to the
717 // architectural limit on the size of a SVE register.
718 static int64_t upperBound(StackOffset Size) {
719 static const int64_t MAX_BYTES_PER_SCALABLE_BYTE = 16;
720 return Size.getScalable() * MAX_BYTES_PER_SCALABLE_BYTE + Size.getFixed();
723 void AArch64FrameLowering::allocateStackSpace(
724 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
725 int64_t RealignmentPadding, StackOffset AllocSize, bool NeedsWinCFI,
726 bool *HasWinCFI, bool EmitCFI, StackOffset InitialOffset,
727 bool FollowupAllocs) const {
729 if (!AllocSize)
730 return;
732 DebugLoc DL;
733 MachineFunction &MF = *MBB.getParent();
734 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
735 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
736 AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
737 const MachineFrameInfo &MFI = MF.getFrameInfo();
739 const int64_t MaxAlign = MFI.getMaxAlign().value();
740 const uint64_t AndMask = ~(MaxAlign - 1);
742 if (!Subtarget.getTargetLowering()->hasInlineStackProbe(MF)) {
743 Register TargetReg = RealignmentPadding
744 ? findScratchNonCalleeSaveRegister(&MBB)
745 : AArch64::SP;
746 // SUB Xd/SP, SP, AllocSize
747 emitFrameOffset(MBB, MBBI, DL, TargetReg, AArch64::SP, -AllocSize, &TII,
748 MachineInstr::FrameSetup, false, NeedsWinCFI, HasWinCFI,
749 EmitCFI, InitialOffset);
751 if (RealignmentPadding) {
752 // AND SP, X9, 0b11111...0000
753 BuildMI(MBB, MBBI, DL, TII.get(AArch64::ANDXri), AArch64::SP)
754 .addReg(TargetReg, RegState::Kill)
755 .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64))
756 .setMIFlags(MachineInstr::FrameSetup);
757 AFI.setStackRealigned(true);
759 // No need for SEH instructions here; if we're realigning the stack,
760 // we've set a frame pointer and already finished the SEH prologue.
761 assert(!NeedsWinCFI);
763 return;
767 // Stack probing allocation.
770 // Fixed length allocation. If we don't need to re-align the stack and don't
771 // have SVE objects, we can use a more efficient sequence for stack probing.
772 if (AllocSize.getScalable() == 0 && RealignmentPadding == 0) {
773 Register ScratchReg = findScratchNonCalleeSaveRegister(&MBB);
774 assert(ScratchReg != AArch64::NoRegister);
775 BuildMI(MBB, MBBI, DL, TII.get(AArch64::PROBED_STACKALLOC))
776 .addDef(ScratchReg)
777 .addImm(AllocSize.getFixed())
778 .addImm(InitialOffset.getFixed())
779 .addImm(InitialOffset.getScalable());
780 // The fixed allocation may leave unprobed bytes at the top of the
781 // stack. If we have subsequent alocation (e.g. if we have variable-sized
782 // objects), we need to issue an extra probe, so these allocations start in
783 // a known state.
784 if (FollowupAllocs) {
785 // STR XZR, [SP]
786 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STRXui))
787 .addReg(AArch64::XZR)
788 .addReg(AArch64::SP)
789 .addImm(0)
790 .setMIFlags(MachineInstr::FrameSetup);
793 return;
796 // Variable length allocation.
798 // If the (unknown) allocation size cannot exceed the probe size, decrement
799 // the stack pointer right away.
800 int64_t ProbeSize = AFI.getStackProbeSize();
801 if (upperBound(AllocSize) + RealignmentPadding <= ProbeSize) {
802 Register ScratchReg = RealignmentPadding
803 ? findScratchNonCalleeSaveRegister(&MBB)
804 : AArch64::SP;
805 assert(ScratchReg != AArch64::NoRegister);
806 // SUB Xd, SP, AllocSize
807 emitFrameOffset(MBB, MBBI, DL, ScratchReg, AArch64::SP, -AllocSize, &TII,
808 MachineInstr::FrameSetup, false, NeedsWinCFI, HasWinCFI,
809 EmitCFI, InitialOffset);
810 if (RealignmentPadding) {
811 // AND SP, Xn, 0b11111...0000
812 BuildMI(MBB, MBBI, DL, TII.get(AArch64::ANDXri), AArch64::SP)
813 .addReg(ScratchReg, RegState::Kill)
814 .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64))
815 .setMIFlags(MachineInstr::FrameSetup);
816 AFI.setStackRealigned(true);
818 if (FollowupAllocs || upperBound(AllocSize) + RealignmentPadding >
819 AArch64::StackProbeMaxUnprobedStack) {
820 // STR XZR, [SP]
821 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STRXui))
822 .addReg(AArch64::XZR)
823 .addReg(AArch64::SP)
824 .addImm(0)
825 .setMIFlags(MachineInstr::FrameSetup);
827 return;
830 // Emit a variable-length allocation probing loop.
831 // TODO: As an optimisation, the loop can be "unrolled" into a few parts,
832 // each of them guaranteed to adjust the stack by less than the probe size.
833 Register TargetReg = findScratchNonCalleeSaveRegister(&MBB);
834 assert(TargetReg != AArch64::NoRegister);
835 // SUB Xd, SP, AllocSize
836 emitFrameOffset(MBB, MBBI, DL, TargetReg, AArch64::SP, -AllocSize, &TII,
837 MachineInstr::FrameSetup, false, NeedsWinCFI, HasWinCFI,
838 EmitCFI, InitialOffset);
839 if (RealignmentPadding) {
840 // AND Xn, Xn, 0b11111...0000
841 BuildMI(MBB, MBBI, DL, TII.get(AArch64::ANDXri), TargetReg)
842 .addReg(TargetReg, RegState::Kill)
843 .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64))
844 .setMIFlags(MachineInstr::FrameSetup);
847 BuildMI(MBB, MBBI, DL, TII.get(AArch64::PROBED_STACKALLOC_VAR))
848 .addReg(TargetReg);
849 if (EmitCFI) {
850 // Set the CFA register back to SP.
851 unsigned Reg =
852 Subtarget.getRegisterInfo()->getDwarfRegNum(AArch64::SP, true);
853 unsigned CFIIndex =
854 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
855 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
856 .addCFIIndex(CFIIndex)
857 .setMIFlags(MachineInstr::FrameSetup);
859 if (RealignmentPadding)
860 AFI.setStackRealigned(true);
863 static MCRegister getRegisterOrZero(MCRegister Reg, bool HasSVE) {
864 switch (Reg.id()) {
865 default:
866 // The called routine is expected to preserve r19-r28
867 // r29 and r30 are used as frame pointer and link register resp.
868 return 0;
870 // GPRs
871 #define CASE(n) \
872 case AArch64::W##n: \
873 case AArch64::X##n: \
874 return AArch64::X##n
875 CASE(0);
876 CASE(1);
877 CASE(2);
878 CASE(3);
879 CASE(4);
880 CASE(5);
881 CASE(6);
882 CASE(7);
883 CASE(8);
884 CASE(9);
885 CASE(10);
886 CASE(11);
887 CASE(12);
888 CASE(13);
889 CASE(14);
890 CASE(15);
891 CASE(16);
892 CASE(17);
893 CASE(18);
894 #undef CASE
896 // FPRs
897 #define CASE(n) \
898 case AArch64::B##n: \
899 case AArch64::H##n: \
900 case AArch64::S##n: \
901 case AArch64::D##n: \
902 case AArch64::Q##n: \
903 return HasSVE ? AArch64::Z##n : AArch64::Q##n
904 CASE(0);
905 CASE(1);
906 CASE(2);
907 CASE(3);
908 CASE(4);
909 CASE(5);
910 CASE(6);
911 CASE(7);
912 CASE(8);
913 CASE(9);
914 CASE(10);
915 CASE(11);
916 CASE(12);
917 CASE(13);
918 CASE(14);
919 CASE(15);
920 CASE(16);
921 CASE(17);
922 CASE(18);
923 CASE(19);
924 CASE(20);
925 CASE(21);
926 CASE(22);
927 CASE(23);
928 CASE(24);
929 CASE(25);
930 CASE(26);
931 CASE(27);
932 CASE(28);
933 CASE(29);
934 CASE(30);
935 CASE(31);
936 #undef CASE
940 void AArch64FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero,
941 MachineBasicBlock &MBB) const {
942 // Insertion point.
943 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
945 // Fake a debug loc.
946 DebugLoc DL;
947 if (MBBI != MBB.end())
948 DL = MBBI->getDebugLoc();
950 const MachineFunction &MF = *MBB.getParent();
951 const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>();
952 const AArch64RegisterInfo &TRI = *STI.getRegisterInfo();
954 BitVector GPRsToZero(TRI.getNumRegs());
955 BitVector FPRsToZero(TRI.getNumRegs());
956 bool HasSVE = STI.hasSVE();
957 for (MCRegister Reg : RegsToZero.set_bits()) {
958 if (TRI.isGeneralPurposeRegister(MF, Reg)) {
959 // For GPRs, we only care to clear out the 64-bit register.
960 if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE))
961 GPRsToZero.set(XReg);
962 } else if (AArch64::FPR128RegClass.contains(Reg) ||
963 AArch64::FPR64RegClass.contains(Reg) ||
964 AArch64::FPR32RegClass.contains(Reg) ||
965 AArch64::FPR16RegClass.contains(Reg) ||
966 AArch64::FPR8RegClass.contains(Reg)) {
967 // For FPRs,
968 if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE))
969 FPRsToZero.set(XReg);
973 const AArch64InstrInfo &TII = *STI.getInstrInfo();
975 // Zero out GPRs.
976 for (MCRegister Reg : GPRsToZero.set_bits())
977 TII.buildClearRegister(Reg, MBB, MBBI, DL);
979 // Zero out FP/vector registers.
980 for (MCRegister Reg : FPRsToZero.set_bits())
981 TII.buildClearRegister(Reg, MBB, MBBI, DL);
983 if (HasSVE) {
984 for (MCRegister PReg :
985 {AArch64::P0, AArch64::P1, AArch64::P2, AArch64::P3, AArch64::P4,
986 AArch64::P5, AArch64::P6, AArch64::P7, AArch64::P8, AArch64::P9,
987 AArch64::P10, AArch64::P11, AArch64::P12, AArch64::P13, AArch64::P14,
988 AArch64::P15}) {
989 if (RegsToZero[PReg])
990 BuildMI(MBB, MBBI, DL, TII.get(AArch64::PFALSE), PReg);
995 static void getLiveRegsForEntryMBB(LivePhysRegs &LiveRegs,
996 const MachineBasicBlock &MBB) {
997 const MachineFunction *MF = MBB.getParent();
998 LiveRegs.addLiveIns(MBB);
999 // Mark callee saved registers as used so we will not choose them.
1000 const MCPhysReg *CSRegs = MF->getRegInfo().getCalleeSavedRegs();
1001 for (unsigned i = 0; CSRegs[i]; ++i)
1002 LiveRegs.addReg(CSRegs[i]);
1005 // Find a scratch register that we can use at the start of the prologue to
1006 // re-align the stack pointer. We avoid using callee-save registers since they
1007 // may appear to be free when this is called from canUseAsPrologue (during
1008 // shrink wrapping), but then no longer be free when this is called from
1009 // emitPrologue.
1011 // FIXME: This is a bit conservative, since in the above case we could use one
1012 // of the callee-save registers as a scratch temp to re-align the stack pointer,
1013 // but we would then have to make sure that we were in fact saving at least one
1014 // callee-save register in the prologue, which is additional complexity that
1015 // doesn't seem worth the benefit.
1016 static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) {
1017 MachineFunction *MF = MBB->getParent();
1019 // If MBB is an entry block, use X9 as the scratch register
1020 if (&MF->front() == MBB)
1021 return AArch64::X9;
1023 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
1024 const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo();
1025 LivePhysRegs LiveRegs(TRI);
1026 getLiveRegsForEntryMBB(LiveRegs, *MBB);
1028 // Prefer X9 since it was historically used for the prologue scratch reg.
1029 const MachineRegisterInfo &MRI = MF->getRegInfo();
1030 if (LiveRegs.available(MRI, AArch64::X9))
1031 return AArch64::X9;
1033 for (unsigned Reg : AArch64::GPR64RegClass) {
1034 if (LiveRegs.available(MRI, Reg))
1035 return Reg;
1037 return AArch64::NoRegister;
1040 bool AArch64FrameLowering::canUseAsPrologue(
1041 const MachineBasicBlock &MBB) const {
1042 const MachineFunction *MF = MBB.getParent();
1043 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
1044 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
1045 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1046 const AArch64TargetLowering *TLI = Subtarget.getTargetLowering();
1047 const AArch64FunctionInfo *AFI = MF->getInfo<AArch64FunctionInfo>();
1049 if (AFI->hasSwiftAsyncContext()) {
1050 const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo();
1051 const MachineRegisterInfo &MRI = MF->getRegInfo();
1052 LivePhysRegs LiveRegs(TRI);
1053 getLiveRegsForEntryMBB(LiveRegs, MBB);
1054 // The StoreSwiftAsyncContext clobbers X16 and X17. Make sure they are
1055 // available.
1056 if (!LiveRegs.available(MRI, AArch64::X16) ||
1057 !LiveRegs.available(MRI, AArch64::X17))
1058 return false;
1061 // Don't need a scratch register if we're not going to re-align the stack or
1062 // emit stack probes.
1063 if (!RegInfo->hasStackRealignment(*MF) && TLI->hasInlineStackProbe(*MF))
1064 return true;
1065 // Otherwise, we can use any block as long as it has a scratch register
1066 // available.
1067 return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister;
1070 static bool windowsRequiresStackProbe(MachineFunction &MF,
1071 uint64_t StackSizeInBytes) {
1072 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1073 const AArch64FunctionInfo &MFI = *MF.getInfo<AArch64FunctionInfo>();
1074 // TODO: When implementing stack protectors, take that into account
1075 // for the probe threshold.
1076 return Subtarget.isTargetWindows() && MFI.hasStackProbing() &&
1077 StackSizeInBytes >= uint64_t(MFI.getStackProbeSize());
1080 static bool needsWinCFI(const MachineFunction &MF) {
1081 const Function &F = MF.getFunction();
1082 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
1083 F.needsUnwindTableEntry();
1086 bool AArch64FrameLowering::shouldCombineCSRLocalStackBump(
1087 MachineFunction &MF, uint64_t StackBumpBytes) const {
1088 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1089 const MachineFrameInfo &MFI = MF.getFrameInfo();
1090 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1091 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1092 if (homogeneousPrologEpilog(MF))
1093 return false;
1095 if (AFI->getLocalStackSize() == 0)
1096 return false;
1098 // For WinCFI, if optimizing for size, prefer to not combine the stack bump
1099 // (to force a stp with predecrement) to match the packed unwind format,
1100 // provided that there actually are any callee saved registers to merge the
1101 // decrement with.
1102 // This is potentially marginally slower, but allows using the packed
1103 // unwind format for functions that both have a local area and callee saved
1104 // registers. Using the packed unwind format notably reduces the size of
1105 // the unwind info.
1106 if (needsWinCFI(MF) && AFI->getCalleeSavedStackSize() > 0 &&
1107 MF.getFunction().hasOptSize())
1108 return false;
1110 // 512 is the maximum immediate for stp/ldp that will be used for
1111 // callee-save save/restores
1112 if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes))
1113 return false;
1115 if (MFI.hasVarSizedObjects())
1116 return false;
1118 if (RegInfo->hasStackRealignment(MF))
1119 return false;
1121 // This isn't strictly necessary, but it simplifies things a bit since the
1122 // current RedZone handling code assumes the SP is adjusted by the
1123 // callee-save save/restore code.
1124 if (canUseRedZone(MF))
1125 return false;
1127 // When there is an SVE area on the stack, always allocate the
1128 // callee-saves and spills/locals separately.
1129 if (getSVEStackSize(MF))
1130 return false;
1132 return true;
1135 bool AArch64FrameLowering::shouldCombineCSRLocalStackBumpInEpilogue(
1136 MachineBasicBlock &MBB, unsigned StackBumpBytes) const {
1137 if (!shouldCombineCSRLocalStackBump(*MBB.getParent(), StackBumpBytes))
1138 return false;
1140 if (MBB.empty())
1141 return true;
1143 // Disable combined SP bump if the last instruction is an MTE tag store. It
1144 // is almost always better to merge SP adjustment into those instructions.
1145 MachineBasicBlock::iterator LastI = MBB.getFirstTerminator();
1146 MachineBasicBlock::iterator Begin = MBB.begin();
1147 while (LastI != Begin) {
1148 --LastI;
1149 if (LastI->isTransient())
1150 continue;
1151 if (!LastI->getFlag(MachineInstr::FrameDestroy))
1152 break;
1154 switch (LastI->getOpcode()) {
1155 case AArch64::STGloop:
1156 case AArch64::STZGloop:
1157 case AArch64::STGi:
1158 case AArch64::STZGi:
1159 case AArch64::ST2Gi:
1160 case AArch64::STZ2Gi:
1161 return false;
1162 default:
1163 return true;
1165 llvm_unreachable("unreachable");
1168 // Given a load or a store instruction, generate an appropriate unwinding SEH
1169 // code on Windows.
1170 static MachineBasicBlock::iterator InsertSEH(MachineBasicBlock::iterator MBBI,
1171 const TargetInstrInfo &TII,
1172 MachineInstr::MIFlag Flag) {
1173 unsigned Opc = MBBI->getOpcode();
1174 MachineBasicBlock *MBB = MBBI->getParent();
1175 MachineFunction &MF = *MBB->getParent();
1176 DebugLoc DL = MBBI->getDebugLoc();
1177 unsigned ImmIdx = MBBI->getNumOperands() - 1;
1178 int Imm = MBBI->getOperand(ImmIdx).getImm();
1179 MachineInstrBuilder MIB;
1180 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1181 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1183 switch (Opc) {
1184 default:
1185 llvm_unreachable("No SEH Opcode for this instruction");
1186 case AArch64::LDPDpost:
1187 Imm = -Imm;
1188 [[fallthrough]];
1189 case AArch64::STPDpre: {
1190 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1191 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg());
1192 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP_X))
1193 .addImm(Reg0)
1194 .addImm(Reg1)
1195 .addImm(Imm * 8)
1196 .setMIFlag(Flag);
1197 break;
1199 case AArch64::LDPXpost:
1200 Imm = -Imm;
1201 [[fallthrough]];
1202 case AArch64::STPXpre: {
1203 Register Reg0 = MBBI->getOperand(1).getReg();
1204 Register Reg1 = MBBI->getOperand(2).getReg();
1205 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
1206 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR_X))
1207 .addImm(Imm * 8)
1208 .setMIFlag(Flag);
1209 else
1210 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP_X))
1211 .addImm(RegInfo->getSEHRegNum(Reg0))
1212 .addImm(RegInfo->getSEHRegNum(Reg1))
1213 .addImm(Imm * 8)
1214 .setMIFlag(Flag);
1215 break;
1217 case AArch64::LDRDpost:
1218 Imm = -Imm;
1219 [[fallthrough]];
1220 case AArch64::STRDpre: {
1221 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1222 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg_X))
1223 .addImm(Reg)
1224 .addImm(Imm)
1225 .setMIFlag(Flag);
1226 break;
1228 case AArch64::LDRXpost:
1229 Imm = -Imm;
1230 [[fallthrough]];
1231 case AArch64::STRXpre: {
1232 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1233 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg_X))
1234 .addImm(Reg)
1235 .addImm(Imm)
1236 .setMIFlag(Flag);
1237 break;
1239 case AArch64::STPDi:
1240 case AArch64::LDPDi: {
1241 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1242 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1243 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP))
1244 .addImm(Reg0)
1245 .addImm(Reg1)
1246 .addImm(Imm * 8)
1247 .setMIFlag(Flag);
1248 break;
1250 case AArch64::STPXi:
1251 case AArch64::LDPXi: {
1252 Register Reg0 = MBBI->getOperand(0).getReg();
1253 Register Reg1 = MBBI->getOperand(1).getReg();
1254 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
1255 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR))
1256 .addImm(Imm * 8)
1257 .setMIFlag(Flag);
1258 else
1259 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP))
1260 .addImm(RegInfo->getSEHRegNum(Reg0))
1261 .addImm(RegInfo->getSEHRegNum(Reg1))
1262 .addImm(Imm * 8)
1263 .setMIFlag(Flag);
1264 break;
1266 case AArch64::STRXui:
1267 case AArch64::LDRXui: {
1268 int Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1269 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg))
1270 .addImm(Reg)
1271 .addImm(Imm * 8)
1272 .setMIFlag(Flag);
1273 break;
1275 case AArch64::STRDui:
1276 case AArch64::LDRDui: {
1277 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1278 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg))
1279 .addImm(Reg)
1280 .addImm(Imm * 8)
1281 .setMIFlag(Flag);
1282 break;
1284 case AArch64::STPQi:
1285 case AArch64::LDPQi: {
1286 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1287 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1288 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveAnyRegQP))
1289 .addImm(Reg0)
1290 .addImm(Reg1)
1291 .addImm(Imm * 16)
1292 .setMIFlag(Flag);
1293 break;
1295 case AArch64::LDPQpost:
1296 Imm = -Imm;
1297 LLVM_FALLTHROUGH;
1298 case AArch64::STPQpre: {
1299 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1300 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg());
1301 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveAnyRegQPX))
1302 .addImm(Reg0)
1303 .addImm(Reg1)
1304 .addImm(Imm * 16)
1305 .setMIFlag(Flag);
1306 break;
1309 auto I = MBB->insertAfter(MBBI, MIB);
1310 return I;
1313 // Fix up the SEH opcode associated with the save/restore instruction.
1314 static void fixupSEHOpcode(MachineBasicBlock::iterator MBBI,
1315 unsigned LocalStackSize) {
1316 MachineOperand *ImmOpnd = nullptr;
1317 unsigned ImmIdx = MBBI->getNumOperands() - 1;
1318 switch (MBBI->getOpcode()) {
1319 default:
1320 llvm_unreachable("Fix the offset in the SEH instruction");
1321 case AArch64::SEH_SaveFPLR:
1322 case AArch64::SEH_SaveRegP:
1323 case AArch64::SEH_SaveReg:
1324 case AArch64::SEH_SaveFRegP:
1325 case AArch64::SEH_SaveFReg:
1326 case AArch64::SEH_SaveAnyRegQP:
1327 case AArch64::SEH_SaveAnyRegQPX:
1328 ImmOpnd = &MBBI->getOperand(ImmIdx);
1329 break;
1331 if (ImmOpnd)
1332 ImmOpnd->setImm(ImmOpnd->getImm() + LocalStackSize);
1335 // Convert callee-save register save/restore instruction to do stack pointer
1336 // decrement/increment to allocate/deallocate the callee-save stack area by
1337 // converting store/load to use pre/post increment version.
1338 static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec(
1339 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
1340 const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc,
1341 bool NeedsWinCFI, bool *HasWinCFI, bool EmitCFI,
1342 MachineInstr::MIFlag FrameFlag = MachineInstr::FrameSetup,
1343 int CFAOffset = 0) {
1344 unsigned NewOpc;
1345 switch (MBBI->getOpcode()) {
1346 default:
1347 llvm_unreachable("Unexpected callee-save save/restore opcode!");
1348 case AArch64::STPXi:
1349 NewOpc = AArch64::STPXpre;
1350 break;
1351 case AArch64::STPDi:
1352 NewOpc = AArch64::STPDpre;
1353 break;
1354 case AArch64::STPQi:
1355 NewOpc = AArch64::STPQpre;
1356 break;
1357 case AArch64::STRXui:
1358 NewOpc = AArch64::STRXpre;
1359 break;
1360 case AArch64::STRDui:
1361 NewOpc = AArch64::STRDpre;
1362 break;
1363 case AArch64::STRQui:
1364 NewOpc = AArch64::STRQpre;
1365 break;
1366 case AArch64::LDPXi:
1367 NewOpc = AArch64::LDPXpost;
1368 break;
1369 case AArch64::LDPDi:
1370 NewOpc = AArch64::LDPDpost;
1371 break;
1372 case AArch64::LDPQi:
1373 NewOpc = AArch64::LDPQpost;
1374 break;
1375 case AArch64::LDRXui:
1376 NewOpc = AArch64::LDRXpost;
1377 break;
1378 case AArch64::LDRDui:
1379 NewOpc = AArch64::LDRDpost;
1380 break;
1381 case AArch64::LDRQui:
1382 NewOpc = AArch64::LDRQpost;
1383 break;
1385 // Get rid of the SEH code associated with the old instruction.
1386 if (NeedsWinCFI) {
1387 auto SEH = std::next(MBBI);
1388 if (AArch64InstrInfo::isSEHInstruction(*SEH))
1389 SEH->eraseFromParent();
1392 TypeSize Scale = TypeSize::getFixed(1), Width = TypeSize::getFixed(0);
1393 int64_t MinOffset, MaxOffset;
1394 bool Success = static_cast<const AArch64InstrInfo *>(TII)->getMemOpInfo(
1395 NewOpc, Scale, Width, MinOffset, MaxOffset);
1396 (void)Success;
1397 assert(Success && "unknown load/store opcode");
1399 // If the first store isn't right where we want SP then we can't fold the
1400 // update in so create a normal arithmetic instruction instead.
1401 MachineFunction &MF = *MBB.getParent();
1402 if (MBBI->getOperand(MBBI->getNumOperands() - 1).getImm() != 0 ||
1403 CSStackSizeInc < MinOffset || CSStackSizeInc > MaxOffset) {
1404 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1405 StackOffset::getFixed(CSStackSizeInc), TII, FrameFlag,
1406 false, false, nullptr, EmitCFI,
1407 StackOffset::getFixed(CFAOffset));
1409 return std::prev(MBBI);
1412 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc));
1413 MIB.addReg(AArch64::SP, RegState::Define);
1415 // Copy all operands other than the immediate offset.
1416 unsigned OpndIdx = 0;
1417 for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd;
1418 ++OpndIdx)
1419 MIB.add(MBBI->getOperand(OpndIdx));
1421 assert(MBBI->getOperand(OpndIdx).getImm() == 0 &&
1422 "Unexpected immediate offset in first/last callee-save save/restore "
1423 "instruction!");
1424 assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP &&
1425 "Unexpected base register in callee-save save/restore instruction!");
1426 assert(CSStackSizeInc % Scale == 0);
1427 MIB.addImm(CSStackSizeInc / (int)Scale);
1429 MIB.setMIFlags(MBBI->getFlags());
1430 MIB.setMemRefs(MBBI->memoperands());
1432 // Generate a new SEH code that corresponds to the new instruction.
1433 if (NeedsWinCFI) {
1434 *HasWinCFI = true;
1435 InsertSEH(*MIB, *TII, FrameFlag);
1438 if (EmitCFI) {
1439 unsigned CFIIndex = MF.addFrameInst(
1440 MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset - CSStackSizeInc));
1441 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1442 .addCFIIndex(CFIIndex)
1443 .setMIFlags(FrameFlag);
1446 return std::prev(MBB.erase(MBBI));
1449 // Fixup callee-save register save/restore instructions to take into account
1450 // combined SP bump by adding the local stack size to the stack offsets.
1451 static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI,
1452 uint64_t LocalStackSize,
1453 bool NeedsWinCFI,
1454 bool *HasWinCFI) {
1455 if (AArch64InstrInfo::isSEHInstruction(MI))
1456 return;
1458 unsigned Opc = MI.getOpcode();
1459 unsigned Scale;
1460 switch (Opc) {
1461 case AArch64::STPXi:
1462 case AArch64::STRXui:
1463 case AArch64::STPDi:
1464 case AArch64::STRDui:
1465 case AArch64::LDPXi:
1466 case AArch64::LDRXui:
1467 case AArch64::LDPDi:
1468 case AArch64::LDRDui:
1469 Scale = 8;
1470 break;
1471 case AArch64::STPQi:
1472 case AArch64::STRQui:
1473 case AArch64::LDPQi:
1474 case AArch64::LDRQui:
1475 Scale = 16;
1476 break;
1477 default:
1478 llvm_unreachable("Unexpected callee-save save/restore opcode!");
1481 unsigned OffsetIdx = MI.getNumExplicitOperands() - 1;
1482 assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP &&
1483 "Unexpected base register in callee-save save/restore instruction!");
1484 // Last operand is immediate offset that needs fixing.
1485 MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx);
1486 // All generated opcodes have scaled offsets.
1487 assert(LocalStackSize % Scale == 0);
1488 OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / Scale);
1490 if (NeedsWinCFI) {
1491 *HasWinCFI = true;
1492 auto MBBI = std::next(MachineBasicBlock::iterator(MI));
1493 assert(MBBI != MI.getParent()->end() && "Expecting a valid instruction");
1494 assert(AArch64InstrInfo::isSEHInstruction(*MBBI) &&
1495 "Expecting a SEH instruction");
1496 fixupSEHOpcode(MBBI, LocalStackSize);
1500 static bool isTargetWindows(const MachineFunction &MF) {
1501 return MF.getSubtarget<AArch64Subtarget>().isTargetWindows();
1504 // Convenience function to determine whether I is an SVE callee save.
1505 static bool IsSVECalleeSave(MachineBasicBlock::iterator I) {
1506 switch (I->getOpcode()) {
1507 default:
1508 return false;
1509 case AArch64::STR_ZXI:
1510 case AArch64::STR_PXI:
1511 case AArch64::LDR_ZXI:
1512 case AArch64::LDR_PXI:
1513 return I->getFlag(MachineInstr::FrameSetup) ||
1514 I->getFlag(MachineInstr::FrameDestroy);
1518 static void emitShadowCallStackPrologue(const TargetInstrInfo &TII,
1519 MachineFunction &MF,
1520 MachineBasicBlock &MBB,
1521 MachineBasicBlock::iterator MBBI,
1522 const DebugLoc &DL, bool NeedsWinCFI,
1523 bool NeedsUnwindInfo) {
1524 // Shadow call stack prolog: str x30, [x18], #8
1525 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STRXpost))
1526 .addReg(AArch64::X18, RegState::Define)
1527 .addReg(AArch64::LR)
1528 .addReg(AArch64::X18)
1529 .addImm(8)
1530 .setMIFlag(MachineInstr::FrameSetup);
1532 // This instruction also makes x18 live-in to the entry block.
1533 MBB.addLiveIn(AArch64::X18);
1535 if (NeedsWinCFI)
1536 BuildMI(MBB, MBBI, DL, TII.get(AArch64::SEH_Nop))
1537 .setMIFlag(MachineInstr::FrameSetup);
1539 if (NeedsUnwindInfo) {
1540 // Emit a CFI instruction that causes 8 to be subtracted from the value of
1541 // x18 when unwinding past this frame.
1542 static const char CFIInst[] = {
1543 dwarf::DW_CFA_val_expression,
1544 18, // register
1545 2, // length
1546 static_cast<char>(unsigned(dwarf::DW_OP_breg18)),
1547 static_cast<char>(-8) & 0x7f, // addend (sleb128)
1549 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(
1550 nullptr, StringRef(CFIInst, sizeof(CFIInst))));
1551 BuildMI(MBB, MBBI, DL, TII.get(AArch64::CFI_INSTRUCTION))
1552 .addCFIIndex(CFIIndex)
1553 .setMIFlag(MachineInstr::FrameSetup);
1557 static void emitShadowCallStackEpilogue(const TargetInstrInfo &TII,
1558 MachineFunction &MF,
1559 MachineBasicBlock &MBB,
1560 MachineBasicBlock::iterator MBBI,
1561 const DebugLoc &DL) {
1562 // Shadow call stack epilog: ldr x30, [x18, #-8]!
1563 BuildMI(MBB, MBBI, DL, TII.get(AArch64::LDRXpre))
1564 .addReg(AArch64::X18, RegState::Define)
1565 .addReg(AArch64::LR, RegState::Define)
1566 .addReg(AArch64::X18)
1567 .addImm(-8)
1568 .setMIFlag(MachineInstr::FrameDestroy);
1570 if (MF.getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(MF)) {
1571 unsigned CFIIndex =
1572 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, 18));
1573 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
1574 .addCFIIndex(CFIIndex)
1575 .setMIFlags(MachineInstr::FrameDestroy);
1579 // Define the current CFA rule to use the provided FP.
1580 static void emitDefineCFAWithFP(MachineFunction &MF, MachineBasicBlock &MBB,
1581 MachineBasicBlock::iterator MBBI,
1582 const DebugLoc &DL, unsigned FixedObject) {
1583 const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>();
1584 const AArch64RegisterInfo *TRI = STI.getRegisterInfo();
1585 const TargetInstrInfo *TII = STI.getInstrInfo();
1586 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1588 const int OffsetToFirstCalleeSaveFromFP =
1589 AFI->getCalleeSaveBaseToFrameRecordOffset() -
1590 AFI->getCalleeSavedStackSize();
1591 Register FramePtr = TRI->getFrameRegister(MF);
1592 unsigned Reg = TRI->getDwarfRegNum(FramePtr, true);
1593 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
1594 nullptr, Reg, FixedObject - OffsetToFirstCalleeSaveFromFP));
1595 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1596 .addCFIIndex(CFIIndex)
1597 .setMIFlags(MachineInstr::FrameSetup);
1600 #ifndef NDEBUG
1601 /// Collect live registers from the end of \p MI's parent up to (including) \p
1602 /// MI in \p LiveRegs.
1603 static void getLivePhysRegsUpTo(MachineInstr &MI, const TargetRegisterInfo &TRI,
1604 LivePhysRegs &LiveRegs) {
1606 MachineBasicBlock &MBB = *MI.getParent();
1607 LiveRegs.addLiveOuts(MBB);
1608 for (const MachineInstr &MI :
1609 reverse(make_range(MI.getIterator(), MBB.instr_end())))
1610 LiveRegs.stepBackward(MI);
1612 #endif
1614 void AArch64FrameLowering::emitPrologue(MachineFunction &MF,
1615 MachineBasicBlock &MBB) const {
1616 MachineBasicBlock::iterator MBBI = MBB.begin();
1617 const MachineFrameInfo &MFI = MF.getFrameInfo();
1618 const Function &F = MF.getFunction();
1619 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1620 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1621 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1623 MachineModuleInfo &MMI = MF.getMMI();
1624 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1625 bool EmitCFI = AFI->needsDwarfUnwindInfo(MF);
1626 bool EmitAsyncCFI = AFI->needsAsyncDwarfUnwindInfo(MF);
1627 bool HasFP = hasFP(MF);
1628 bool NeedsWinCFI = needsWinCFI(MF);
1629 bool HasWinCFI = false;
1630 auto Cleanup = make_scope_exit([&]() { MF.setHasWinCFI(HasWinCFI); });
1632 MachineBasicBlock::iterator End = MBB.end();
1633 #ifndef NDEBUG
1634 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1635 // Collect live register from the end of MBB up to the start of the existing
1636 // frame setup instructions.
1637 MachineBasicBlock::iterator NonFrameStart = MBB.begin();
1638 while (NonFrameStart != End &&
1639 NonFrameStart->getFlag(MachineInstr::FrameSetup))
1640 ++NonFrameStart;
1642 LivePhysRegs LiveRegs(*TRI);
1643 if (NonFrameStart != MBB.end()) {
1644 getLivePhysRegsUpTo(*NonFrameStart, *TRI, LiveRegs);
1645 // Ignore registers used for stack management for now.
1646 LiveRegs.removeReg(AArch64::SP);
1647 LiveRegs.removeReg(AArch64::X19);
1648 LiveRegs.removeReg(AArch64::FP);
1649 LiveRegs.removeReg(AArch64::LR);
1652 auto VerifyClobberOnExit = make_scope_exit([&]() {
1653 if (NonFrameStart == MBB.end())
1654 return;
1655 // Check if any of the newly instructions clobber any of the live registers.
1656 for (MachineInstr &MI :
1657 make_range(MBB.instr_begin(), NonFrameStart->getIterator())) {
1658 for (auto &Op : MI.operands())
1659 if (Op.isReg() && Op.isDef())
1660 assert(!LiveRegs.contains(Op.getReg()) &&
1661 "live register clobbered by inserted prologue instructions");
1664 #endif
1666 bool IsFunclet = MBB.isEHFuncletEntry();
1668 // At this point, we're going to decide whether or not the function uses a
1669 // redzone. In most cases, the function doesn't have a redzone so let's
1670 // assume that's false and set it to true in the case that there's a redzone.
1671 AFI->setHasRedZone(false);
1673 // Debug location must be unknown since the first debug location is used
1674 // to determine the end of the prologue.
1675 DebugLoc DL;
1677 const auto &MFnI = *MF.getInfo<AArch64FunctionInfo>();
1678 if (MFnI.needsShadowCallStackPrologueEpilogue(MF))
1679 emitShadowCallStackPrologue(*TII, MF, MBB, MBBI, DL, NeedsWinCFI,
1680 MFnI.needsDwarfUnwindInfo(MF));
1682 if (MFnI.shouldSignReturnAddress(MF)) {
1683 BuildMI(MBB, MBBI, DL, TII->get(AArch64::PAUTH_PROLOGUE))
1684 .setMIFlag(MachineInstr::FrameSetup);
1685 if (NeedsWinCFI)
1686 HasWinCFI = true; // AArch64PointerAuth pass will insert SEH_PACSignLR
1689 if (EmitCFI && MFnI.isMTETagged()) {
1690 BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITMTETAGGED))
1691 .setMIFlag(MachineInstr::FrameSetup);
1694 // We signal the presence of a Swift extended frame to external tools by
1695 // storing FP with 0b0001 in bits 63:60. In normal userland operation a simple
1696 // ORR is sufficient, it is assumed a Swift kernel would initialize the TBI
1697 // bits so that is still true.
1698 if (HasFP && AFI->hasSwiftAsyncContext()) {
1699 switch (MF.getTarget().Options.SwiftAsyncFramePointer) {
1700 case SwiftAsyncFramePointerMode::DeploymentBased:
1701 if (Subtarget.swiftAsyncContextIsDynamicallySet()) {
1702 // The special symbol below is absolute and has a *value* that can be
1703 // combined with the frame pointer to signal an extended frame.
1704 BuildMI(MBB, MBBI, DL, TII->get(AArch64::LOADgot), AArch64::X16)
1705 .addExternalSymbol("swift_async_extendedFramePointerFlags",
1706 AArch64II::MO_GOT);
1707 if (NeedsWinCFI) {
1708 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1709 .setMIFlags(MachineInstr::FrameSetup);
1710 HasWinCFI = true;
1712 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ORRXrs), AArch64::FP)
1713 .addUse(AArch64::FP)
1714 .addUse(AArch64::X16)
1715 .addImm(Subtarget.isTargetILP32() ? 32 : 0);
1716 if (NeedsWinCFI) {
1717 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1718 .setMIFlags(MachineInstr::FrameSetup);
1719 HasWinCFI = true;
1721 break;
1723 [[fallthrough]];
1725 case SwiftAsyncFramePointerMode::Always:
1726 // ORR x29, x29, #0x1000_0000_0000_0000
1727 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ORRXri), AArch64::FP)
1728 .addUse(AArch64::FP)
1729 .addImm(0x1100)
1730 .setMIFlag(MachineInstr::FrameSetup);
1731 if (NeedsWinCFI) {
1732 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1733 .setMIFlags(MachineInstr::FrameSetup);
1734 HasWinCFI = true;
1736 break;
1738 case SwiftAsyncFramePointerMode::Never:
1739 break;
1743 // All calls are tail calls in GHC calling conv, and functions have no
1744 // prologue/epilogue.
1745 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1746 return;
1748 // Set tagged base pointer to the requested stack slot.
1749 // Ideally it should match SP value after prologue.
1750 std::optional<int> TBPI = AFI->getTaggedBasePointerIndex();
1751 if (TBPI)
1752 AFI->setTaggedBasePointerOffset(-MFI.getObjectOffset(*TBPI));
1753 else
1754 AFI->setTaggedBasePointerOffset(MFI.getStackSize());
1756 const StackOffset &SVEStackSize = getSVEStackSize(MF);
1758 // getStackSize() includes all the locals in its size calculation. We don't
1759 // include these locals when computing the stack size of a funclet, as they
1760 // are allocated in the parent's stack frame and accessed via the frame
1761 // pointer from the funclet. We only save the callee saved registers in the
1762 // funclet, which are really the callee saved registers of the parent
1763 // function, including the funclet.
1764 int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF)
1765 : MFI.getStackSize();
1766 if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) {
1767 assert(!HasFP && "unexpected function without stack frame but with FP");
1768 assert(!SVEStackSize &&
1769 "unexpected function without stack frame but with SVE objects");
1770 // All of the stack allocation is for locals.
1771 AFI->setLocalStackSize(NumBytes);
1772 if (!NumBytes)
1773 return;
1774 // REDZONE: If the stack size is less than 128 bytes, we don't need
1775 // to actually allocate.
1776 if (canUseRedZone(MF)) {
1777 AFI->setHasRedZone(true);
1778 ++NumRedZoneFunctions;
1779 } else {
1780 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1781 StackOffset::getFixed(-NumBytes), TII,
1782 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI);
1783 if (EmitCFI) {
1784 // Label used to tie together the PROLOG_LABEL and the MachineMoves.
1785 MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
1786 // Encode the stack size of the leaf function.
1787 unsigned CFIIndex = MF.addFrameInst(
1788 MCCFIInstruction::cfiDefCfaOffset(FrameLabel, NumBytes));
1789 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1790 .addCFIIndex(CFIIndex)
1791 .setMIFlags(MachineInstr::FrameSetup);
1795 if (NeedsWinCFI) {
1796 HasWinCFI = true;
1797 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1798 .setMIFlag(MachineInstr::FrameSetup);
1801 return;
1804 bool IsWin64 =
1805 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
1806 unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet);
1808 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
1809 // All of the remaining stack allocations are for locals.
1810 AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
1811 bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes);
1812 bool HomPrologEpilog = homogeneousPrologEpilog(MF);
1813 if (CombineSPBump) {
1814 assert(!SVEStackSize && "Cannot combine SP bump with SVE");
1815 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1816 StackOffset::getFixed(-NumBytes), TII,
1817 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI,
1818 EmitAsyncCFI);
1819 NumBytes = 0;
1820 } else if (HomPrologEpilog) {
1821 // Stack has been already adjusted.
1822 NumBytes -= PrologueSaveSize;
1823 } else if (PrologueSaveSize != 0) {
1824 MBBI = convertCalleeSaveRestoreToSPPrePostIncDec(
1825 MBB, MBBI, DL, TII, -PrologueSaveSize, NeedsWinCFI, &HasWinCFI,
1826 EmitAsyncCFI);
1827 NumBytes -= PrologueSaveSize;
1829 assert(NumBytes >= 0 && "Negative stack allocation size!?");
1831 // Move past the saves of the callee-saved registers, fixing up the offsets
1832 // and pre-inc if we decided to combine the callee-save and local stack
1833 // pointer bump above.
1834 while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup) &&
1835 !IsSVECalleeSave(MBBI)) {
1836 if (CombineSPBump)
1837 fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize(),
1838 NeedsWinCFI, &HasWinCFI);
1839 ++MBBI;
1842 // For funclets the FP belongs to the containing function.
1843 if (!IsFunclet && HasFP) {
1844 // Only set up FP if we actually need to.
1845 int64_t FPOffset = AFI->getCalleeSaveBaseToFrameRecordOffset();
1847 if (CombineSPBump)
1848 FPOffset += AFI->getLocalStackSize();
1850 if (AFI->hasSwiftAsyncContext()) {
1851 // Before we update the live FP we have to ensure there's a valid (or
1852 // null) asynchronous context in its slot just before FP in the frame
1853 // record, so store it now.
1854 const auto &Attrs = MF.getFunction().getAttributes();
1855 bool HaveInitialContext = Attrs.hasAttrSomewhere(Attribute::SwiftAsync);
1856 if (HaveInitialContext)
1857 MBB.addLiveIn(AArch64::X22);
1858 Register Reg = HaveInitialContext ? AArch64::X22 : AArch64::XZR;
1859 BuildMI(MBB, MBBI, DL, TII->get(AArch64::StoreSwiftAsyncContext))
1860 .addUse(Reg)
1861 .addUse(AArch64::SP)
1862 .addImm(FPOffset - 8)
1863 .setMIFlags(MachineInstr::FrameSetup);
1864 if (NeedsWinCFI) {
1865 // WinCFI and arm64e, where StoreSwiftAsyncContext is expanded
1866 // to multiple instructions, should be mutually-exclusive.
1867 assert(Subtarget.getTargetTriple().getArchName() != "arm64e");
1868 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1869 .setMIFlags(MachineInstr::FrameSetup);
1870 HasWinCFI = true;
1874 if (HomPrologEpilog) {
1875 auto Prolog = MBBI;
1876 --Prolog;
1877 assert(Prolog->getOpcode() == AArch64::HOM_Prolog);
1878 Prolog->addOperand(MachineOperand::CreateImm(FPOffset));
1879 } else {
1880 // Issue sub fp, sp, FPOffset or
1881 // mov fp,sp when FPOffset is zero.
1882 // Note: All stores of callee-saved registers are marked as "FrameSetup".
1883 // This code marks the instruction(s) that set the FP also.
1884 emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP,
1885 StackOffset::getFixed(FPOffset), TII,
1886 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI);
1887 if (NeedsWinCFI && HasWinCFI) {
1888 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1889 .setMIFlag(MachineInstr::FrameSetup);
1890 // After setting up the FP, the rest of the prolog doesn't need to be
1891 // included in the SEH unwind info.
1892 NeedsWinCFI = false;
1895 if (EmitAsyncCFI)
1896 emitDefineCFAWithFP(MF, MBB, MBBI, DL, FixedObject);
1899 // Now emit the moves for whatever callee saved regs we have (including FP,
1900 // LR if those are saved). Frame instructions for SVE register are emitted
1901 // later, after the instruction which actually save SVE regs.
1902 if (EmitAsyncCFI)
1903 emitCalleeSavedGPRLocations(MBB, MBBI);
1905 // Alignment is required for the parent frame, not the funclet
1906 const bool NeedsRealignment =
1907 NumBytes && !IsFunclet && RegInfo->hasStackRealignment(MF);
1908 const int64_t RealignmentPadding =
1909 (NeedsRealignment && MFI.getMaxAlign() > Align(16))
1910 ? MFI.getMaxAlign().value() - 16
1911 : 0;
1913 if (windowsRequiresStackProbe(MF, NumBytes + RealignmentPadding)) {
1914 uint64_t NumWords = (NumBytes + RealignmentPadding) >> 4;
1915 if (NeedsWinCFI) {
1916 HasWinCFI = true;
1917 // alloc_l can hold at most 256MB, so assume that NumBytes doesn't
1918 // exceed this amount. We need to move at most 2^24 - 1 into x15.
1919 // This is at most two instructions, MOVZ follwed by MOVK.
1920 // TODO: Fix to use multiple stack alloc unwind codes for stacks
1921 // exceeding 256MB in size.
1922 if (NumBytes >= (1 << 28))
1923 report_fatal_error("Stack size cannot exceed 256MB for stack "
1924 "unwinding purposes");
1926 uint32_t LowNumWords = NumWords & 0xFFFF;
1927 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVZXi), AArch64::X15)
1928 .addImm(LowNumWords)
1929 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
1930 .setMIFlag(MachineInstr::FrameSetup);
1931 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1932 .setMIFlag(MachineInstr::FrameSetup);
1933 if ((NumWords & 0xFFFF0000) != 0) {
1934 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVKXi), AArch64::X15)
1935 .addReg(AArch64::X15)
1936 .addImm((NumWords & 0xFFFF0000) >> 16) // High half
1937 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 16))
1938 .setMIFlag(MachineInstr::FrameSetup);
1939 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1940 .setMIFlag(MachineInstr::FrameSetup);
1942 } else {
1943 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15)
1944 .addImm(NumWords)
1945 .setMIFlags(MachineInstr::FrameSetup);
1948 const char* ChkStk = Subtarget.getChkStkName();
1949 switch (MF.getTarget().getCodeModel()) {
1950 case CodeModel::Tiny:
1951 case CodeModel::Small:
1952 case CodeModel::Medium:
1953 case CodeModel::Kernel:
1954 BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL))
1955 .addExternalSymbol(ChkStk)
1956 .addReg(AArch64::X15, RegState::Implicit)
1957 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
1958 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
1959 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
1960 .setMIFlags(MachineInstr::FrameSetup);
1961 if (NeedsWinCFI) {
1962 HasWinCFI = true;
1963 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1964 .setMIFlag(MachineInstr::FrameSetup);
1966 break;
1967 case CodeModel::Large:
1968 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT))
1969 .addReg(AArch64::X16, RegState::Define)
1970 .addExternalSymbol(ChkStk)
1971 .addExternalSymbol(ChkStk)
1972 .setMIFlags(MachineInstr::FrameSetup);
1973 if (NeedsWinCFI) {
1974 HasWinCFI = true;
1975 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1976 .setMIFlag(MachineInstr::FrameSetup);
1979 BuildMI(MBB, MBBI, DL, TII->get(getBLRCallOpcode(MF)))
1980 .addReg(AArch64::X16, RegState::Kill)
1981 .addReg(AArch64::X15, RegState::Implicit | RegState::Define)
1982 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
1983 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
1984 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
1985 .setMIFlags(MachineInstr::FrameSetup);
1986 if (NeedsWinCFI) {
1987 HasWinCFI = true;
1988 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1989 .setMIFlag(MachineInstr::FrameSetup);
1991 break;
1994 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP)
1995 .addReg(AArch64::SP, RegState::Kill)
1996 .addReg(AArch64::X15, RegState::Kill)
1997 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4))
1998 .setMIFlags(MachineInstr::FrameSetup);
1999 if (NeedsWinCFI) {
2000 HasWinCFI = true;
2001 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc))
2002 .addImm(NumBytes)
2003 .setMIFlag(MachineInstr::FrameSetup);
2005 NumBytes = 0;
2007 if (RealignmentPadding > 0) {
2008 if (RealignmentPadding >= 4096) {
2009 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm))
2010 .addReg(AArch64::X16, RegState::Define)
2011 .addImm(RealignmentPadding)
2012 .setMIFlags(MachineInstr::FrameSetup);
2013 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ADDXrx64), AArch64::X15)
2014 .addReg(AArch64::SP)
2015 .addReg(AArch64::X16, RegState::Kill)
2016 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 0))
2017 .setMIFlag(MachineInstr::FrameSetup);
2018 } else {
2019 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ADDXri), AArch64::X15)
2020 .addReg(AArch64::SP)
2021 .addImm(RealignmentPadding)
2022 .addImm(0)
2023 .setMIFlag(MachineInstr::FrameSetup);
2026 uint64_t AndMask = ~(MFI.getMaxAlign().value() - 1);
2027 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP)
2028 .addReg(AArch64::X15, RegState::Kill)
2029 .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64));
2030 AFI->setStackRealigned(true);
2032 // No need for SEH instructions here; if we're realigning the stack,
2033 // we've set a frame pointer and already finished the SEH prologue.
2034 assert(!NeedsWinCFI);
2038 StackOffset SVECalleeSavesSize = {}, SVELocalsSize = SVEStackSize;
2039 MachineBasicBlock::iterator CalleeSavesBegin = MBBI, CalleeSavesEnd = MBBI;
2041 // Process the SVE callee-saves to determine what space needs to be
2042 // allocated.
2043 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
2044 LLVM_DEBUG(dbgs() << "SVECalleeSavedStackSize = " << CalleeSavedSize
2045 << "\n");
2046 // Find callee save instructions in frame.
2047 CalleeSavesBegin = MBBI;
2048 assert(IsSVECalleeSave(CalleeSavesBegin) && "Unexpected instruction");
2049 while (IsSVECalleeSave(MBBI) && MBBI != MBB.getFirstTerminator())
2050 ++MBBI;
2051 CalleeSavesEnd = MBBI;
2053 SVECalleeSavesSize = StackOffset::getScalable(CalleeSavedSize);
2054 SVELocalsSize = SVEStackSize - SVECalleeSavesSize;
2057 // Allocate space for the callee saves (if any).
2058 StackOffset CFAOffset =
2059 StackOffset::getFixed((int64_t)MFI.getStackSize() - NumBytes);
2060 StackOffset LocalsSize = SVELocalsSize + StackOffset::getFixed(NumBytes);
2061 allocateStackSpace(MBB, CalleeSavesBegin, 0, SVECalleeSavesSize, false,
2062 nullptr, EmitAsyncCFI && !HasFP, CFAOffset,
2063 MFI.hasVarSizedObjects() || LocalsSize);
2064 CFAOffset += SVECalleeSavesSize;
2066 if (EmitAsyncCFI)
2067 emitCalleeSavedSVELocations(MBB, CalleeSavesEnd);
2069 // Allocate space for the rest of the frame including SVE locals. Align the
2070 // stack as necessary.
2071 assert(!(canUseRedZone(MF) && NeedsRealignment) &&
2072 "Cannot use redzone with stack realignment");
2073 if (!canUseRedZone(MF)) {
2074 // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have
2075 // the correct value here, as NumBytes also includes padding bytes,
2076 // which shouldn't be counted here.
2077 allocateStackSpace(MBB, CalleeSavesEnd, RealignmentPadding,
2078 SVELocalsSize + StackOffset::getFixed(NumBytes),
2079 NeedsWinCFI, &HasWinCFI, EmitAsyncCFI && !HasFP,
2080 CFAOffset, MFI.hasVarSizedObjects());
2083 // If we need a base pointer, set it up here. It's whatever the value of the
2084 // stack pointer is at this point. Any variable size objects will be allocated
2085 // after this, so we can still use the base pointer to reference locals.
2087 // FIXME: Clarify FrameSetup flags here.
2088 // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is
2089 // needed.
2090 // For funclets the BP belongs to the containing function.
2091 if (!IsFunclet && RegInfo->hasBasePointer(MF)) {
2092 TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP,
2093 false);
2094 if (NeedsWinCFI) {
2095 HasWinCFI = true;
2096 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
2097 .setMIFlag(MachineInstr::FrameSetup);
2101 // The very last FrameSetup instruction indicates the end of prologue. Emit a
2102 // SEH opcode indicating the prologue end.
2103 if (NeedsWinCFI && HasWinCFI) {
2104 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
2105 .setMIFlag(MachineInstr::FrameSetup);
2108 // SEH funclets are passed the frame pointer in X1. If the parent
2109 // function uses the base register, then the base register is used
2110 // directly, and is not retrieved from X1.
2111 if (IsFunclet && F.hasPersonalityFn()) {
2112 EHPersonality Per = classifyEHPersonality(F.getPersonalityFn());
2113 if (isAsynchronousEHPersonality(Per)) {
2114 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::COPY), AArch64::FP)
2115 .addReg(AArch64::X1)
2116 .setMIFlag(MachineInstr::FrameSetup);
2117 MBB.addLiveIn(AArch64::X1);
2121 if (EmitCFI && !EmitAsyncCFI) {
2122 if (HasFP) {
2123 emitDefineCFAWithFP(MF, MBB, MBBI, DL, FixedObject);
2124 } else {
2125 StackOffset TotalSize =
2126 SVEStackSize + StackOffset::getFixed((int64_t)MFI.getStackSize());
2127 unsigned CFIIndex = MF.addFrameInst(createDefCFA(
2128 *RegInfo, /*FrameReg=*/AArch64::SP, /*Reg=*/AArch64::SP, TotalSize,
2129 /*LastAdjustmentWasScalable=*/false));
2130 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
2131 .addCFIIndex(CFIIndex)
2132 .setMIFlags(MachineInstr::FrameSetup);
2134 emitCalleeSavedGPRLocations(MBB, MBBI);
2135 emitCalleeSavedSVELocations(MBB, MBBI);
2139 static bool isFuncletReturnInstr(const MachineInstr &MI) {
2140 switch (MI.getOpcode()) {
2141 default:
2142 return false;
2143 case AArch64::CATCHRET:
2144 case AArch64::CLEANUPRET:
2145 return true;
2149 void AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
2150 MachineBasicBlock &MBB) const {
2151 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
2152 MachineFrameInfo &MFI = MF.getFrameInfo();
2153 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2154 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2155 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
2156 DebugLoc DL;
2157 bool NeedsWinCFI = needsWinCFI(MF);
2158 bool EmitCFI = AFI->needsAsyncDwarfUnwindInfo(MF);
2159 bool HasWinCFI = false;
2160 bool IsFunclet = false;
2162 if (MBB.end() != MBBI) {
2163 DL = MBBI->getDebugLoc();
2164 IsFunclet = isFuncletReturnInstr(*MBBI);
2167 MachineBasicBlock::iterator EpilogStartI = MBB.end();
2169 auto FinishingTouches = make_scope_exit([&]() {
2170 if (AFI->shouldSignReturnAddress(MF)) {
2171 BuildMI(MBB, MBB.getFirstTerminator(), DL,
2172 TII->get(AArch64::PAUTH_EPILOGUE))
2173 .setMIFlag(MachineInstr::FrameDestroy);
2174 if (NeedsWinCFI)
2175 HasWinCFI = true; // AArch64PointerAuth pass will insert SEH_PACSignLR
2177 if (AFI->needsShadowCallStackPrologueEpilogue(MF))
2178 emitShadowCallStackEpilogue(*TII, MF, MBB, MBB.getFirstTerminator(), DL);
2179 if (EmitCFI)
2180 emitCalleeSavedGPRRestores(MBB, MBB.getFirstTerminator());
2181 if (HasWinCFI) {
2182 BuildMI(MBB, MBB.getFirstTerminator(), DL,
2183 TII->get(AArch64::SEH_EpilogEnd))
2184 .setMIFlag(MachineInstr::FrameDestroy);
2185 if (!MF.hasWinCFI())
2186 MF.setHasWinCFI(true);
2188 if (NeedsWinCFI) {
2189 assert(EpilogStartI != MBB.end());
2190 if (!HasWinCFI)
2191 MBB.erase(EpilogStartI);
2195 int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF)
2196 : MFI.getStackSize();
2198 // All calls are tail calls in GHC calling conv, and functions have no
2199 // prologue/epilogue.
2200 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
2201 return;
2203 // How much of the stack used by incoming arguments this function is expected
2204 // to restore in this particular epilogue.
2205 int64_t ArgumentStackToRestore = getArgumentStackToRestore(MF, MBB);
2206 bool IsWin64 =
2207 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
2208 unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet);
2210 int64_t AfterCSRPopSize = ArgumentStackToRestore;
2211 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
2212 // We cannot rely on the local stack size set in emitPrologue if the function
2213 // has funclets, as funclets have different local stack size requirements, and
2214 // the current value set in emitPrologue may be that of the containing
2215 // function.
2216 if (MF.hasEHFunclets())
2217 AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
2218 if (homogeneousPrologEpilog(MF, &MBB)) {
2219 assert(!NeedsWinCFI);
2220 auto LastPopI = MBB.getFirstTerminator();
2221 if (LastPopI != MBB.begin()) {
2222 auto HomogeneousEpilog = std::prev(LastPopI);
2223 if (HomogeneousEpilog->getOpcode() == AArch64::HOM_Epilog)
2224 LastPopI = HomogeneousEpilog;
2227 // Adjust local stack
2228 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
2229 StackOffset::getFixed(AFI->getLocalStackSize()), TII,
2230 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
2232 // SP has been already adjusted while restoring callee save regs.
2233 // We've bailed-out the case with adjusting SP for arguments.
2234 assert(AfterCSRPopSize == 0);
2235 return;
2237 bool CombineSPBump = shouldCombineCSRLocalStackBumpInEpilogue(MBB, NumBytes);
2238 // Assume we can't combine the last pop with the sp restore.
2240 bool CombineAfterCSRBump = false;
2241 if (!CombineSPBump && PrologueSaveSize != 0) {
2242 MachineBasicBlock::iterator Pop = std::prev(MBB.getFirstTerminator());
2243 while (Pop->getOpcode() == TargetOpcode::CFI_INSTRUCTION ||
2244 AArch64InstrInfo::isSEHInstruction(*Pop))
2245 Pop = std::prev(Pop);
2246 // Converting the last ldp to a post-index ldp is valid only if the last
2247 // ldp's offset is 0.
2248 const MachineOperand &OffsetOp = Pop->getOperand(Pop->getNumOperands() - 1);
2249 // If the offset is 0 and the AfterCSR pop is not actually trying to
2250 // allocate more stack for arguments (in space that an untimely interrupt
2251 // may clobber), convert it to a post-index ldp.
2252 if (OffsetOp.getImm() == 0 && AfterCSRPopSize >= 0) {
2253 convertCalleeSaveRestoreToSPPrePostIncDec(
2254 MBB, Pop, DL, TII, PrologueSaveSize, NeedsWinCFI, &HasWinCFI, EmitCFI,
2255 MachineInstr::FrameDestroy, PrologueSaveSize);
2256 } else {
2257 // If not, make sure to emit an add after the last ldp.
2258 // We're doing this by transfering the size to be restored from the
2259 // adjustment *before* the CSR pops to the adjustment *after* the CSR
2260 // pops.
2261 AfterCSRPopSize += PrologueSaveSize;
2262 CombineAfterCSRBump = true;
2266 // Move past the restores of the callee-saved registers.
2267 // If we plan on combining the sp bump of the local stack size and the callee
2268 // save stack size, we might need to adjust the CSR save and restore offsets.
2269 MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator();
2270 MachineBasicBlock::iterator Begin = MBB.begin();
2271 while (LastPopI != Begin) {
2272 --LastPopI;
2273 if (!LastPopI->getFlag(MachineInstr::FrameDestroy) ||
2274 IsSVECalleeSave(LastPopI)) {
2275 ++LastPopI;
2276 break;
2277 } else if (CombineSPBump)
2278 fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize(),
2279 NeedsWinCFI, &HasWinCFI);
2282 if (NeedsWinCFI) {
2283 // Note that there are cases where we insert SEH opcodes in the
2284 // epilogue when we had no SEH opcodes in the prologue. For
2285 // example, when there is no stack frame but there are stack
2286 // arguments. Insert the SEH_EpilogStart and remove it later if it
2287 // we didn't emit any SEH opcodes to avoid generating WinCFI for
2288 // functions that don't need it.
2289 BuildMI(MBB, LastPopI, DL, TII->get(AArch64::SEH_EpilogStart))
2290 .setMIFlag(MachineInstr::FrameDestroy);
2291 EpilogStartI = LastPopI;
2292 --EpilogStartI;
2295 if (hasFP(MF) && AFI->hasSwiftAsyncContext()) {
2296 switch (MF.getTarget().Options.SwiftAsyncFramePointer) {
2297 case SwiftAsyncFramePointerMode::DeploymentBased:
2298 // Avoid the reload as it is GOT relative, and instead fall back to the
2299 // hardcoded value below. This allows a mismatch between the OS and
2300 // application without immediately terminating on the difference.
2301 [[fallthrough]];
2302 case SwiftAsyncFramePointerMode::Always:
2303 // We need to reset FP to its untagged state on return. Bit 60 is
2304 // currently used to show the presence of an extended frame.
2306 // BIC x29, x29, #0x1000_0000_0000_0000
2307 BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::ANDXri),
2308 AArch64::FP)
2309 .addUse(AArch64::FP)
2310 .addImm(0x10fe)
2311 .setMIFlag(MachineInstr::FrameDestroy);
2312 if (NeedsWinCFI) {
2313 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
2314 .setMIFlags(MachineInstr::FrameDestroy);
2315 HasWinCFI = true;
2317 break;
2319 case SwiftAsyncFramePointerMode::Never:
2320 break;
2324 const StackOffset &SVEStackSize = getSVEStackSize(MF);
2326 // If there is a single SP update, insert it before the ret and we're done.
2327 if (CombineSPBump) {
2328 assert(!SVEStackSize && "Cannot combine SP bump with SVE");
2330 // When we are about to restore the CSRs, the CFA register is SP again.
2331 if (EmitCFI && hasFP(MF)) {
2332 const AArch64RegisterInfo &RegInfo = *Subtarget.getRegisterInfo();
2333 unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true);
2334 unsigned CFIIndex =
2335 MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, NumBytes));
2336 BuildMI(MBB, LastPopI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
2337 .addCFIIndex(CFIIndex)
2338 .setMIFlags(MachineInstr::FrameDestroy);
2341 emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
2342 StackOffset::getFixed(NumBytes + (int64_t)AfterCSRPopSize),
2343 TII, MachineInstr::FrameDestroy, false, NeedsWinCFI,
2344 &HasWinCFI, EmitCFI, StackOffset::getFixed(NumBytes));
2345 return;
2348 NumBytes -= PrologueSaveSize;
2349 assert(NumBytes >= 0 && "Negative stack allocation size!?");
2351 // Process the SVE callee-saves to determine what space needs to be
2352 // deallocated.
2353 StackOffset DeallocateBefore = {}, DeallocateAfter = SVEStackSize;
2354 MachineBasicBlock::iterator RestoreBegin = LastPopI, RestoreEnd = LastPopI;
2355 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
2356 RestoreBegin = std::prev(RestoreEnd);
2357 while (RestoreBegin != MBB.begin() &&
2358 IsSVECalleeSave(std::prev(RestoreBegin)))
2359 --RestoreBegin;
2361 assert(IsSVECalleeSave(RestoreBegin) &&
2362 IsSVECalleeSave(std::prev(RestoreEnd)) && "Unexpected instruction");
2364 StackOffset CalleeSavedSizeAsOffset =
2365 StackOffset::getScalable(CalleeSavedSize);
2366 DeallocateBefore = SVEStackSize - CalleeSavedSizeAsOffset;
2367 DeallocateAfter = CalleeSavedSizeAsOffset;
2370 // Deallocate the SVE area.
2371 if (SVEStackSize) {
2372 // If we have stack realignment or variable sized objects on the stack,
2373 // restore the stack pointer from the frame pointer prior to SVE CSR
2374 // restoration.
2375 if (AFI->isStackRealigned() || MFI.hasVarSizedObjects()) {
2376 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
2377 // Set SP to start of SVE callee-save area from which they can
2378 // be reloaded. The code below will deallocate the stack space
2379 // space by moving FP -> SP.
2380 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::FP,
2381 StackOffset::getScalable(-CalleeSavedSize), TII,
2382 MachineInstr::FrameDestroy);
2384 } else {
2385 if (AFI->getSVECalleeSavedStackSize()) {
2386 // Deallocate the non-SVE locals first before we can deallocate (and
2387 // restore callee saves) from the SVE area.
2388 emitFrameOffset(
2389 MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
2390 StackOffset::getFixed(NumBytes), TII, MachineInstr::FrameDestroy,
2391 false, false, nullptr, EmitCFI && !hasFP(MF),
2392 SVEStackSize + StackOffset::getFixed(NumBytes + PrologueSaveSize));
2393 NumBytes = 0;
2396 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
2397 DeallocateBefore, TII, MachineInstr::FrameDestroy, false,
2398 false, nullptr, EmitCFI && !hasFP(MF),
2399 SVEStackSize +
2400 StackOffset::getFixed(NumBytes + PrologueSaveSize));
2402 emitFrameOffset(MBB, RestoreEnd, DL, AArch64::SP, AArch64::SP,
2403 DeallocateAfter, TII, MachineInstr::FrameDestroy, false,
2404 false, nullptr, EmitCFI && !hasFP(MF),
2405 DeallocateAfter +
2406 StackOffset::getFixed(NumBytes + PrologueSaveSize));
2408 if (EmitCFI)
2409 emitCalleeSavedSVERestores(MBB, RestoreEnd);
2412 if (!hasFP(MF)) {
2413 bool RedZone = canUseRedZone(MF);
2414 // If this was a redzone leaf function, we don't need to restore the
2415 // stack pointer (but we may need to pop stack args for fastcc).
2416 if (RedZone && AfterCSRPopSize == 0)
2417 return;
2419 // Pop the local variables off the stack. If there are no callee-saved
2420 // registers, it means we are actually positioned at the terminator and can
2421 // combine stack increment for the locals and the stack increment for
2422 // callee-popped arguments into (possibly) a single instruction and be done.
2423 bool NoCalleeSaveRestore = PrologueSaveSize == 0;
2424 int64_t StackRestoreBytes = RedZone ? 0 : NumBytes;
2425 if (NoCalleeSaveRestore)
2426 StackRestoreBytes += AfterCSRPopSize;
2428 emitFrameOffset(
2429 MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
2430 StackOffset::getFixed(StackRestoreBytes), TII,
2431 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI, EmitCFI,
2432 StackOffset::getFixed((RedZone ? 0 : NumBytes) + PrologueSaveSize));
2434 // If we were able to combine the local stack pop with the argument pop,
2435 // then we're done.
2436 if (NoCalleeSaveRestore || AfterCSRPopSize == 0) {
2437 return;
2440 NumBytes = 0;
2443 // Restore the original stack pointer.
2444 // FIXME: Rather than doing the math here, we should instead just use
2445 // non-post-indexed loads for the restores if we aren't actually going to
2446 // be able to save any instructions.
2447 if (!IsFunclet && (MFI.hasVarSizedObjects() || AFI->isStackRealigned())) {
2448 emitFrameOffset(
2449 MBB, LastPopI, DL, AArch64::SP, AArch64::FP,
2450 StackOffset::getFixed(-AFI->getCalleeSaveBaseToFrameRecordOffset()),
2451 TII, MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
2452 } else if (NumBytes)
2453 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
2454 StackOffset::getFixed(NumBytes), TII,
2455 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
2457 // When we are about to restore the CSRs, the CFA register is SP again.
2458 if (EmitCFI && hasFP(MF)) {
2459 const AArch64RegisterInfo &RegInfo = *Subtarget.getRegisterInfo();
2460 unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true);
2461 unsigned CFIIndex = MF.addFrameInst(
2462 MCCFIInstruction::cfiDefCfa(nullptr, Reg, PrologueSaveSize));
2463 BuildMI(MBB, LastPopI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
2464 .addCFIIndex(CFIIndex)
2465 .setMIFlags(MachineInstr::FrameDestroy);
2468 // This must be placed after the callee-save restore code because that code
2469 // assumes the SP is at the same location as it was after the callee-save save
2470 // code in the prologue.
2471 if (AfterCSRPopSize) {
2472 assert(AfterCSRPopSize > 0 && "attempting to reallocate arg stack that an "
2473 "interrupt may have clobbered");
2475 emitFrameOffset(
2476 MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
2477 StackOffset::getFixed(AfterCSRPopSize), TII, MachineInstr::FrameDestroy,
2478 false, NeedsWinCFI, &HasWinCFI, EmitCFI,
2479 StackOffset::getFixed(CombineAfterCSRBump ? PrologueSaveSize : 0));
2483 bool AArch64FrameLowering::enableCFIFixup(MachineFunction &MF) const {
2484 return TargetFrameLowering::enableCFIFixup(MF) &&
2485 MF.getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(MF);
2488 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
2489 /// debug info. It's the same as what we use for resolving the code-gen
2490 /// references for now. FIXME: This can go wrong when references are
2491 /// SP-relative and simple call frames aren't used.
2492 StackOffset
2493 AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
2494 Register &FrameReg) const {
2495 return resolveFrameIndexReference(
2496 MF, FI, FrameReg,
2497 /*PreferFP=*/
2498 MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress),
2499 /*ForSimm=*/false);
2502 StackOffset
2503 AArch64FrameLowering::getNonLocalFrameIndexReference(const MachineFunction &MF,
2504 int FI) const {
2505 return StackOffset::getFixed(getSEHFrameIndexOffset(MF, FI));
2508 static StackOffset getFPOffset(const MachineFunction &MF,
2509 int64_t ObjectOffset) {
2510 const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2511 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2512 bool IsWin64 =
2513 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
2514 unsigned FixedObject =
2515 getFixedObjectSize(MF, AFI, IsWin64, /*IsFunclet=*/false);
2516 int64_t CalleeSaveSize = AFI->getCalleeSavedStackSize(MF.getFrameInfo());
2517 int64_t FPAdjust =
2518 CalleeSaveSize - AFI->getCalleeSaveBaseToFrameRecordOffset();
2519 return StackOffset::getFixed(ObjectOffset + FixedObject + FPAdjust);
2522 static StackOffset getStackOffset(const MachineFunction &MF,
2523 int64_t ObjectOffset) {
2524 const auto &MFI = MF.getFrameInfo();
2525 return StackOffset::getFixed(ObjectOffset + (int64_t)MFI.getStackSize());
2528 // TODO: This function currently does not work for scalable vectors.
2529 int AArch64FrameLowering::getSEHFrameIndexOffset(const MachineFunction &MF,
2530 int FI) const {
2531 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
2532 MF.getSubtarget().getRegisterInfo());
2533 int ObjectOffset = MF.getFrameInfo().getObjectOffset(FI);
2534 return RegInfo->getLocalAddressRegister(MF) == AArch64::FP
2535 ? getFPOffset(MF, ObjectOffset).getFixed()
2536 : getStackOffset(MF, ObjectOffset).getFixed();
2539 StackOffset AArch64FrameLowering::resolveFrameIndexReference(
2540 const MachineFunction &MF, int FI, Register &FrameReg, bool PreferFP,
2541 bool ForSimm) const {
2542 const auto &MFI = MF.getFrameInfo();
2543 int64_t ObjectOffset = MFI.getObjectOffset(FI);
2544 bool isFixed = MFI.isFixedObjectIndex(FI);
2545 bool isSVE = MFI.getStackID(FI) == TargetStackID::ScalableVector;
2546 return resolveFrameOffsetReference(MF, ObjectOffset, isFixed, isSVE, FrameReg,
2547 PreferFP, ForSimm);
2550 StackOffset AArch64FrameLowering::resolveFrameOffsetReference(
2551 const MachineFunction &MF, int64_t ObjectOffset, bool isFixed, bool isSVE,
2552 Register &FrameReg, bool PreferFP, bool ForSimm) const {
2553 const auto &MFI = MF.getFrameInfo();
2554 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
2555 MF.getSubtarget().getRegisterInfo());
2556 const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2557 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2559 int64_t FPOffset = getFPOffset(MF, ObjectOffset).getFixed();
2560 int64_t Offset = getStackOffset(MF, ObjectOffset).getFixed();
2561 bool isCSR =
2562 !isFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI));
2564 const StackOffset &SVEStackSize = getSVEStackSize(MF);
2566 // Use frame pointer to reference fixed objects. Use it for locals if
2567 // there are VLAs or a dynamically realigned SP (and thus the SP isn't
2568 // reliable as a base). Make sure useFPForScavengingIndex() does the
2569 // right thing for the emergency spill slot.
2570 bool UseFP = false;
2571 if (AFI->hasStackFrame() && !isSVE) {
2572 // We shouldn't prefer using the FP to access fixed-sized stack objects when
2573 // there are scalable (SVE) objects in between the FP and the fixed-sized
2574 // objects.
2575 PreferFP &= !SVEStackSize;
2577 // Note: Keeping the following as multiple 'if' statements rather than
2578 // merging to a single expression for readability.
2580 // Argument access should always use the FP.
2581 if (isFixed) {
2582 UseFP = hasFP(MF);
2583 } else if (isCSR && RegInfo->hasStackRealignment(MF)) {
2584 // References to the CSR area must use FP if we're re-aligning the stack
2585 // since the dynamically-sized alignment padding is between the SP/BP and
2586 // the CSR area.
2587 assert(hasFP(MF) && "Re-aligned stack must have frame pointer");
2588 UseFP = true;
2589 } else if (hasFP(MF) && !RegInfo->hasStackRealignment(MF)) {
2590 // If the FPOffset is negative and we're producing a signed immediate, we
2591 // have to keep in mind that the available offset range for negative
2592 // offsets is smaller than for positive ones. If an offset is available
2593 // via the FP and the SP, use whichever is closest.
2594 bool FPOffsetFits = !ForSimm || FPOffset >= -256;
2595 PreferFP |= Offset > -FPOffset && !SVEStackSize;
2597 if (MFI.hasVarSizedObjects()) {
2598 // If we have variable sized objects, we can use either FP or BP, as the
2599 // SP offset is unknown. We can use the base pointer if we have one and
2600 // FP is not preferred. If not, we're stuck with using FP.
2601 bool CanUseBP = RegInfo->hasBasePointer(MF);
2602 if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best.
2603 UseFP = PreferFP;
2604 else if (!CanUseBP) // Can't use BP. Forced to use FP.
2605 UseFP = true;
2606 // else we can use BP and FP, but the offset from FP won't fit.
2607 // That will make us scavenge registers which we can probably avoid by
2608 // using BP. If it won't fit for BP either, we'll scavenge anyway.
2609 } else if (FPOffset >= 0) {
2610 // Use SP or FP, whichever gives us the best chance of the offset
2611 // being in range for direct access. If the FPOffset is positive,
2612 // that'll always be best, as the SP will be even further away.
2613 UseFP = true;
2614 } else if (MF.hasEHFunclets() && !RegInfo->hasBasePointer(MF)) {
2615 // Funclets access the locals contained in the parent's stack frame
2616 // via the frame pointer, so we have to use the FP in the parent
2617 // function.
2618 (void) Subtarget;
2619 assert(
2620 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()) &&
2621 "Funclets should only be present on Win64");
2622 UseFP = true;
2623 } else {
2624 // We have the choice between FP and (SP or BP).
2625 if (FPOffsetFits && PreferFP) // If FP is the best fit, use it.
2626 UseFP = true;
2631 assert(
2632 ((isFixed || isCSR) || !RegInfo->hasStackRealignment(MF) || !UseFP) &&
2633 "In the presence of dynamic stack pointer realignment, "
2634 "non-argument/CSR objects cannot be accessed through the frame pointer");
2636 if (isSVE) {
2637 StackOffset FPOffset =
2638 StackOffset::get(-AFI->getCalleeSaveBaseToFrameRecordOffset(), ObjectOffset);
2639 StackOffset SPOffset =
2640 SVEStackSize +
2641 StackOffset::get(MFI.getStackSize() - AFI->getCalleeSavedStackSize(),
2642 ObjectOffset);
2643 // Always use the FP for SVE spills if available and beneficial.
2644 if (hasFP(MF) && (SPOffset.getFixed() ||
2645 FPOffset.getScalable() < SPOffset.getScalable() ||
2646 RegInfo->hasStackRealignment(MF))) {
2647 FrameReg = RegInfo->getFrameRegister(MF);
2648 return FPOffset;
2651 FrameReg = RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister()
2652 : (unsigned)AArch64::SP;
2653 return SPOffset;
2656 StackOffset ScalableOffset = {};
2657 if (UseFP && !(isFixed || isCSR))
2658 ScalableOffset = -SVEStackSize;
2659 if (!UseFP && (isFixed || isCSR))
2660 ScalableOffset = SVEStackSize;
2662 if (UseFP) {
2663 FrameReg = RegInfo->getFrameRegister(MF);
2664 return StackOffset::getFixed(FPOffset) + ScalableOffset;
2667 // Use the base pointer if we have one.
2668 if (RegInfo->hasBasePointer(MF))
2669 FrameReg = RegInfo->getBaseRegister();
2670 else {
2671 assert(!MFI.hasVarSizedObjects() &&
2672 "Can't use SP when we have var sized objects.");
2673 FrameReg = AArch64::SP;
2674 // If we're using the red zone for this function, the SP won't actually
2675 // be adjusted, so the offsets will be negative. They're also all
2676 // within range of the signed 9-bit immediate instructions.
2677 if (canUseRedZone(MF))
2678 Offset -= AFI->getLocalStackSize();
2681 return StackOffset::getFixed(Offset) + ScalableOffset;
2684 static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) {
2685 // Do not set a kill flag on values that are also marked as live-in. This
2686 // happens with the @llvm-returnaddress intrinsic and with arguments passed in
2687 // callee saved registers.
2688 // Omitting the kill flags is conservatively correct even if the live-in
2689 // is not used after all.
2690 bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg);
2691 return getKillRegState(!IsLiveIn);
2694 static bool produceCompactUnwindFrame(MachineFunction &MF) {
2695 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2696 AttributeList Attrs = MF.getFunction().getAttributes();
2697 return Subtarget.isTargetMachO() &&
2698 !(Subtarget.getTargetLowering()->supportSwiftError() &&
2699 Attrs.hasAttrSomewhere(Attribute::SwiftError)) &&
2700 MF.getFunction().getCallingConv() != CallingConv::SwiftTail;
2703 static bool invalidateWindowsRegisterPairing(unsigned Reg1, unsigned Reg2,
2704 bool NeedsWinCFI, bool IsFirst,
2705 const TargetRegisterInfo *TRI) {
2706 // If we are generating register pairs for a Windows function that requires
2707 // EH support, then pair consecutive registers only. There are no unwind
2708 // opcodes for saves/restores of non-consectuve register pairs.
2709 // The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x,
2710 // save_lrpair.
2711 // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling
2713 if (Reg2 == AArch64::FP)
2714 return true;
2715 if (!NeedsWinCFI)
2716 return false;
2717 if (TRI->getEncodingValue(Reg2) == TRI->getEncodingValue(Reg1) + 1)
2718 return false;
2719 // If pairing a GPR with LR, the pair can be described by the save_lrpair
2720 // opcode. If this is the first register pair, it would end up with a
2721 // predecrement, but there's no save_lrpair_x opcode, so we can only do this
2722 // if LR is paired with something else than the first register.
2723 // The save_lrpair opcode requires the first register to be an odd one.
2724 if (Reg1 >= AArch64::X19 && Reg1 <= AArch64::X27 &&
2725 (Reg1 - AArch64::X19) % 2 == 0 && Reg2 == AArch64::LR && !IsFirst)
2726 return false;
2727 return true;
2730 /// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction.
2731 /// WindowsCFI requires that only consecutive registers can be paired.
2732 /// LR and FP need to be allocated together when the frame needs to save
2733 /// the frame-record. This means any other register pairing with LR is invalid.
2734 static bool invalidateRegisterPairing(unsigned Reg1, unsigned Reg2,
2735 bool UsesWinAAPCS, bool NeedsWinCFI,
2736 bool NeedsFrameRecord, bool IsFirst,
2737 const TargetRegisterInfo *TRI) {
2738 if (UsesWinAAPCS)
2739 return invalidateWindowsRegisterPairing(Reg1, Reg2, NeedsWinCFI, IsFirst,
2740 TRI);
2742 // If we need to store the frame record, don't pair any register
2743 // with LR other than FP.
2744 if (NeedsFrameRecord)
2745 return Reg2 == AArch64::LR;
2747 return false;
2750 namespace {
2752 struct RegPairInfo {
2753 unsigned Reg1 = AArch64::NoRegister;
2754 unsigned Reg2 = AArch64::NoRegister;
2755 int FrameIdx;
2756 int Offset;
2757 enum RegType { GPR, FPR64, FPR128, PPR, ZPR } Type;
2759 RegPairInfo() = default;
2761 bool isPaired() const { return Reg2 != AArch64::NoRegister; }
2763 unsigned getScale() const {
2764 switch (Type) {
2765 case PPR:
2766 return 2;
2767 case GPR:
2768 case FPR64:
2769 return 8;
2770 case ZPR:
2771 case FPR128:
2772 return 16;
2774 llvm_unreachable("Unsupported type");
2777 bool isScalable() const { return Type == PPR || Type == ZPR; }
2780 } // end anonymous namespace
2782 static void computeCalleeSaveRegisterPairs(
2783 MachineFunction &MF, ArrayRef<CalleeSavedInfo> CSI,
2784 const TargetRegisterInfo *TRI, SmallVectorImpl<RegPairInfo> &RegPairs,
2785 bool NeedsFrameRecord) {
2787 if (CSI.empty())
2788 return;
2790 bool IsWindows = isTargetWindows(MF);
2791 bool NeedsWinCFI = needsWinCFI(MF);
2792 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2793 MachineFrameInfo &MFI = MF.getFrameInfo();
2794 CallingConv::ID CC = MF.getFunction().getCallingConv();
2795 unsigned Count = CSI.size();
2796 (void)CC;
2797 // MachO's compact unwind format relies on all registers being stored in
2798 // pairs.
2799 assert((!produceCompactUnwindFrame(MF) || CC == CallingConv::PreserveMost ||
2800 CC == CallingConv::PreserveAll || CC == CallingConv::CXX_FAST_TLS ||
2801 CC == CallingConv::Win64 || (Count & 1) == 0) &&
2802 "Odd number of callee-saved regs to spill!");
2803 int ByteOffset = AFI->getCalleeSavedStackSize();
2804 int StackFillDir = -1;
2805 int RegInc = 1;
2806 unsigned FirstReg = 0;
2807 if (NeedsWinCFI) {
2808 // For WinCFI, fill the stack from the bottom up.
2809 ByteOffset = 0;
2810 StackFillDir = 1;
2811 // As the CSI array is reversed to match PrologEpilogInserter, iterate
2812 // backwards, to pair up registers starting from lower numbered registers.
2813 RegInc = -1;
2814 FirstReg = Count - 1;
2816 int ScalableByteOffset = AFI->getSVECalleeSavedStackSize();
2817 bool NeedGapToAlignStack = AFI->hasCalleeSaveStackFreeSpace();
2819 // When iterating backwards, the loop condition relies on unsigned wraparound.
2820 for (unsigned i = FirstReg; i < Count; i += RegInc) {
2821 RegPairInfo RPI;
2822 RPI.Reg1 = CSI[i].getReg();
2824 if (AArch64::GPR64RegClass.contains(RPI.Reg1))
2825 RPI.Type = RegPairInfo::GPR;
2826 else if (AArch64::FPR64RegClass.contains(RPI.Reg1))
2827 RPI.Type = RegPairInfo::FPR64;
2828 else if (AArch64::FPR128RegClass.contains(RPI.Reg1))
2829 RPI.Type = RegPairInfo::FPR128;
2830 else if (AArch64::ZPRRegClass.contains(RPI.Reg1))
2831 RPI.Type = RegPairInfo::ZPR;
2832 else if (AArch64::PPRRegClass.contains(RPI.Reg1))
2833 RPI.Type = RegPairInfo::PPR;
2834 else
2835 llvm_unreachable("Unsupported register class.");
2837 // Add the next reg to the pair if it is in the same register class.
2838 if (unsigned(i + RegInc) < Count) {
2839 Register NextReg = CSI[i + RegInc].getReg();
2840 bool IsFirst = i == FirstReg;
2841 switch (RPI.Type) {
2842 case RegPairInfo::GPR:
2843 if (AArch64::GPR64RegClass.contains(NextReg) &&
2844 !invalidateRegisterPairing(RPI.Reg1, NextReg, IsWindows,
2845 NeedsWinCFI, NeedsFrameRecord, IsFirst,
2846 TRI))
2847 RPI.Reg2 = NextReg;
2848 break;
2849 case RegPairInfo::FPR64:
2850 if (AArch64::FPR64RegClass.contains(NextReg) &&
2851 !invalidateWindowsRegisterPairing(RPI.Reg1, NextReg, NeedsWinCFI,
2852 IsFirst, TRI))
2853 RPI.Reg2 = NextReg;
2854 break;
2855 case RegPairInfo::FPR128:
2856 if (AArch64::FPR128RegClass.contains(NextReg))
2857 RPI.Reg2 = NextReg;
2858 break;
2859 case RegPairInfo::PPR:
2860 case RegPairInfo::ZPR:
2861 break;
2865 // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
2866 // list to come in sorted by frame index so that we can issue the store
2867 // pair instructions directly. Assert if we see anything otherwise.
2869 // The order of the registers in the list is controlled by
2870 // getCalleeSavedRegs(), so they will always be in-order, as well.
2871 assert((!RPI.isPaired() ||
2872 (CSI[i].getFrameIdx() + RegInc == CSI[i + RegInc].getFrameIdx())) &&
2873 "Out of order callee saved regs!");
2875 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP ||
2876 RPI.Reg1 == AArch64::LR) &&
2877 "FrameRecord must be allocated together with LR");
2879 // Windows AAPCS has FP and LR reversed.
2880 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg1 != AArch64::FP ||
2881 RPI.Reg2 == AArch64::LR) &&
2882 "FrameRecord must be allocated together with LR");
2884 // MachO's compact unwind format relies on all registers being stored in
2885 // adjacent register pairs.
2886 assert((!produceCompactUnwindFrame(MF) || CC == CallingConv::PreserveMost ||
2887 CC == CallingConv::PreserveAll || CC == CallingConv::CXX_FAST_TLS ||
2888 CC == CallingConv::Win64 ||
2889 (RPI.isPaired() &&
2890 ((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) ||
2891 RPI.Reg1 + 1 == RPI.Reg2))) &&
2892 "Callee-save registers not saved as adjacent register pair!");
2894 RPI.FrameIdx = CSI[i].getFrameIdx();
2895 if (NeedsWinCFI &&
2896 RPI.isPaired()) // RPI.FrameIdx must be the lower index of the pair
2897 RPI.FrameIdx = CSI[i + RegInc].getFrameIdx();
2899 int Scale = RPI.getScale();
2901 int OffsetPre = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
2902 assert(OffsetPre % Scale == 0);
2904 if (RPI.isScalable())
2905 ScalableByteOffset += StackFillDir * Scale;
2906 else
2907 ByteOffset += StackFillDir * (RPI.isPaired() ? 2 * Scale : Scale);
2909 // Swift's async context is directly before FP, so allocate an extra
2910 // 8 bytes for it.
2911 if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() &&
2912 ((!IsWindows && RPI.Reg2 == AArch64::FP) ||
2913 (IsWindows && RPI.Reg2 == AArch64::LR)))
2914 ByteOffset += StackFillDir * 8;
2916 assert(!(RPI.isScalable() && RPI.isPaired()) &&
2917 "Paired spill/fill instructions don't exist for SVE vectors");
2919 // Round up size of non-pair to pair size if we need to pad the
2920 // callee-save area to ensure 16-byte alignment.
2921 if (NeedGapToAlignStack && !NeedsWinCFI &&
2922 !RPI.isScalable() && RPI.Type != RegPairInfo::FPR128 &&
2923 !RPI.isPaired() && ByteOffset % 16 != 0) {
2924 ByteOffset += 8 * StackFillDir;
2925 assert(MFI.getObjectAlign(RPI.FrameIdx) <= Align(16));
2926 // A stack frame with a gap looks like this, bottom up:
2927 // d9, d8. x21, gap, x20, x19.
2928 // Set extra alignment on the x21 object to create the gap above it.
2929 MFI.setObjectAlignment(RPI.FrameIdx, Align(16));
2930 NeedGapToAlignStack = false;
2933 int OffsetPost = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
2934 assert(OffsetPost % Scale == 0);
2935 // If filling top down (default), we want the offset after incrementing it.
2936 // If filling bottom up (WinCFI) we need the original offset.
2937 int Offset = NeedsWinCFI ? OffsetPre : OffsetPost;
2939 // The FP, LR pair goes 8 bytes into our expanded 24-byte slot so that the
2940 // Swift context can directly precede FP.
2941 if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() &&
2942 ((!IsWindows && RPI.Reg2 == AArch64::FP) ||
2943 (IsWindows && RPI.Reg2 == AArch64::LR)))
2944 Offset += 8;
2945 RPI.Offset = Offset / Scale;
2947 assert(((!RPI.isScalable() && RPI.Offset >= -64 && RPI.Offset <= 63) ||
2948 (RPI.isScalable() && RPI.Offset >= -256 && RPI.Offset <= 255)) &&
2949 "Offset out of bounds for LDP/STP immediate");
2951 // Save the offset to frame record so that the FP register can point to the
2952 // innermost frame record (spilled FP and LR registers).
2953 if (NeedsFrameRecord && ((!IsWindows && RPI.Reg1 == AArch64::LR &&
2954 RPI.Reg2 == AArch64::FP) ||
2955 (IsWindows && RPI.Reg1 == AArch64::FP &&
2956 RPI.Reg2 == AArch64::LR)))
2957 AFI->setCalleeSaveBaseToFrameRecordOffset(Offset);
2959 RegPairs.push_back(RPI);
2960 if (RPI.isPaired())
2961 i += RegInc;
2963 if (NeedsWinCFI) {
2964 // If we need an alignment gap in the stack, align the topmost stack
2965 // object. A stack frame with a gap looks like this, bottom up:
2966 // x19, d8. d9, gap.
2967 // Set extra alignment on the topmost stack object (the first element in
2968 // CSI, which goes top down), to create the gap above it.
2969 if (AFI->hasCalleeSaveStackFreeSpace())
2970 MFI.setObjectAlignment(CSI[0].getFrameIdx(), Align(16));
2971 // We iterated bottom up over the registers; flip RegPairs back to top
2972 // down order.
2973 std::reverse(RegPairs.begin(), RegPairs.end());
2977 bool AArch64FrameLowering::spillCalleeSavedRegisters(
2978 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2979 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2980 MachineFunction &MF = *MBB.getParent();
2981 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2982 bool NeedsWinCFI = needsWinCFI(MF);
2983 DebugLoc DL;
2984 SmallVector<RegPairInfo, 8> RegPairs;
2986 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, hasFP(MF));
2988 const MachineRegisterInfo &MRI = MF.getRegInfo();
2989 if (homogeneousPrologEpilog(MF)) {
2990 auto MIB = BuildMI(MBB, MI, DL, TII.get(AArch64::HOM_Prolog))
2991 .setMIFlag(MachineInstr::FrameSetup);
2993 for (auto &RPI : RegPairs) {
2994 MIB.addReg(RPI.Reg1);
2995 MIB.addReg(RPI.Reg2);
2997 // Update register live in.
2998 if (!MRI.isReserved(RPI.Reg1))
2999 MBB.addLiveIn(RPI.Reg1);
3000 if (RPI.isPaired() && !MRI.isReserved(RPI.Reg2))
3001 MBB.addLiveIn(RPI.Reg2);
3003 return true;
3005 for (const RegPairInfo &RPI : llvm::reverse(RegPairs)) {
3006 unsigned Reg1 = RPI.Reg1;
3007 unsigned Reg2 = RPI.Reg2;
3008 unsigned StrOpc;
3010 // Issue sequence of spills for cs regs. The first spill may be converted
3011 // to a pre-decrement store later by emitPrologue if the callee-save stack
3012 // area allocation can't be combined with the local stack area allocation.
3013 // For example:
3014 // stp x22, x21, [sp, #0] // addImm(+0)
3015 // stp x20, x19, [sp, #16] // addImm(+2)
3016 // stp fp, lr, [sp, #32] // addImm(+4)
3017 // Rationale: This sequence saves uop updates compared to a sequence of
3018 // pre-increment spills like stp xi,xj,[sp,#-16]!
3019 // Note: Similar rationale and sequence for restores in epilog.
3020 unsigned Size;
3021 Align Alignment;
3022 switch (RPI.Type) {
3023 case RegPairInfo::GPR:
3024 StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui;
3025 Size = 8;
3026 Alignment = Align(8);
3027 break;
3028 case RegPairInfo::FPR64:
3029 StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui;
3030 Size = 8;
3031 Alignment = Align(8);
3032 break;
3033 case RegPairInfo::FPR128:
3034 StrOpc = RPI.isPaired() ? AArch64::STPQi : AArch64::STRQui;
3035 Size = 16;
3036 Alignment = Align(16);
3037 break;
3038 case RegPairInfo::ZPR:
3039 StrOpc = AArch64::STR_ZXI;
3040 Size = 16;
3041 Alignment = Align(16);
3042 break;
3043 case RegPairInfo::PPR:
3044 StrOpc = AArch64::STR_PXI;
3045 Size = 2;
3046 Alignment = Align(2);
3047 break;
3049 LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI);
3050 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
3051 dbgs() << ") -> fi#(" << RPI.FrameIdx;
3052 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
3053 dbgs() << ")\n");
3055 assert((!NeedsWinCFI || !(Reg1 == AArch64::LR && Reg2 == AArch64::FP)) &&
3056 "Windows unwdinding requires a consecutive (FP,LR) pair");
3057 // Windows unwind codes require consecutive registers if registers are
3058 // paired. Make the switch here, so that the code below will save (x,x+1)
3059 // and not (x+1,x).
3060 unsigned FrameIdxReg1 = RPI.FrameIdx;
3061 unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
3062 if (NeedsWinCFI && RPI.isPaired()) {
3063 std::swap(Reg1, Reg2);
3064 std::swap(FrameIdxReg1, FrameIdxReg2);
3066 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
3067 if (!MRI.isReserved(Reg1))
3068 MBB.addLiveIn(Reg1);
3069 if (RPI.isPaired()) {
3070 if (!MRI.isReserved(Reg2))
3071 MBB.addLiveIn(Reg2);
3072 MIB.addReg(Reg2, getPrologueDeath(MF, Reg2));
3073 MIB.addMemOperand(MF.getMachineMemOperand(
3074 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
3075 MachineMemOperand::MOStore, Size, Alignment));
3077 MIB.addReg(Reg1, getPrologueDeath(MF, Reg1))
3078 .addReg(AArch64::SP)
3079 .addImm(RPI.Offset) // [sp, #offset*scale],
3080 // where factor*scale is implicit
3081 .setMIFlag(MachineInstr::FrameSetup);
3082 MIB.addMemOperand(MF.getMachineMemOperand(
3083 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
3084 MachineMemOperand::MOStore, Size, Alignment));
3085 if (NeedsWinCFI)
3086 InsertSEH(MIB, TII, MachineInstr::FrameSetup);
3088 // Update the StackIDs of the SVE stack slots.
3089 MachineFrameInfo &MFI = MF.getFrameInfo();
3090 if (RPI.Type == RegPairInfo::ZPR || RPI.Type == RegPairInfo::PPR)
3091 MFI.setStackID(RPI.FrameIdx, TargetStackID::ScalableVector);
3094 return true;
3097 bool AArch64FrameLowering::restoreCalleeSavedRegisters(
3098 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
3099 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
3100 MachineFunction &MF = *MBB.getParent();
3101 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
3102 DebugLoc DL;
3103 SmallVector<RegPairInfo, 8> RegPairs;
3104 bool NeedsWinCFI = needsWinCFI(MF);
3106 if (MBBI != MBB.end())
3107 DL = MBBI->getDebugLoc();
3109 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, hasFP(MF));
3111 auto EmitMI = [&](const RegPairInfo &RPI) -> MachineBasicBlock::iterator {
3112 unsigned Reg1 = RPI.Reg1;
3113 unsigned Reg2 = RPI.Reg2;
3115 // Issue sequence of restores for cs regs. The last restore may be converted
3116 // to a post-increment load later by emitEpilogue if the callee-save stack
3117 // area allocation can't be combined with the local stack area allocation.
3118 // For example:
3119 // ldp fp, lr, [sp, #32] // addImm(+4)
3120 // ldp x20, x19, [sp, #16] // addImm(+2)
3121 // ldp x22, x21, [sp, #0] // addImm(+0)
3122 // Note: see comment in spillCalleeSavedRegisters()
3123 unsigned LdrOpc;
3124 unsigned Size;
3125 Align Alignment;
3126 switch (RPI.Type) {
3127 case RegPairInfo::GPR:
3128 LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui;
3129 Size = 8;
3130 Alignment = Align(8);
3131 break;
3132 case RegPairInfo::FPR64:
3133 LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui;
3134 Size = 8;
3135 Alignment = Align(8);
3136 break;
3137 case RegPairInfo::FPR128:
3138 LdrOpc = RPI.isPaired() ? AArch64::LDPQi : AArch64::LDRQui;
3139 Size = 16;
3140 Alignment = Align(16);
3141 break;
3142 case RegPairInfo::ZPR:
3143 LdrOpc = AArch64::LDR_ZXI;
3144 Size = 16;
3145 Alignment = Align(16);
3146 break;
3147 case RegPairInfo::PPR:
3148 LdrOpc = AArch64::LDR_PXI;
3149 Size = 2;
3150 Alignment = Align(2);
3151 break;
3153 LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI);
3154 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
3155 dbgs() << ") -> fi#(" << RPI.FrameIdx;
3156 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
3157 dbgs() << ")\n");
3159 // Windows unwind codes require consecutive registers if registers are
3160 // paired. Make the switch here, so that the code below will save (x,x+1)
3161 // and not (x+1,x).
3162 unsigned FrameIdxReg1 = RPI.FrameIdx;
3163 unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
3164 if (NeedsWinCFI && RPI.isPaired()) {
3165 std::swap(Reg1, Reg2);
3166 std::swap(FrameIdxReg1, FrameIdxReg2);
3168 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get(LdrOpc));
3169 if (RPI.isPaired()) {
3170 MIB.addReg(Reg2, getDefRegState(true));
3171 MIB.addMemOperand(MF.getMachineMemOperand(
3172 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
3173 MachineMemOperand::MOLoad, Size, Alignment));
3175 MIB.addReg(Reg1, getDefRegState(true))
3176 .addReg(AArch64::SP)
3177 .addImm(RPI.Offset) // [sp, #offset*scale]
3178 // where factor*scale is implicit
3179 .setMIFlag(MachineInstr::FrameDestroy);
3180 MIB.addMemOperand(MF.getMachineMemOperand(
3181 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
3182 MachineMemOperand::MOLoad, Size, Alignment));
3183 if (NeedsWinCFI)
3184 InsertSEH(MIB, TII, MachineInstr::FrameDestroy);
3186 return MIB->getIterator();
3189 // SVE objects are always restored in reverse order.
3190 for (const RegPairInfo &RPI : reverse(RegPairs))
3191 if (RPI.isScalable())
3192 EmitMI(RPI);
3194 if (homogeneousPrologEpilog(MF, &MBB)) {
3195 auto MIB = BuildMI(MBB, MBBI, DL, TII.get(AArch64::HOM_Epilog))
3196 .setMIFlag(MachineInstr::FrameDestroy);
3197 for (auto &RPI : RegPairs) {
3198 MIB.addReg(RPI.Reg1, RegState::Define);
3199 MIB.addReg(RPI.Reg2, RegState::Define);
3201 return true;
3204 if (ReverseCSRRestoreSeq) {
3205 MachineBasicBlock::iterator First = MBB.end();
3206 for (const RegPairInfo &RPI : reverse(RegPairs)) {
3207 if (RPI.isScalable())
3208 continue;
3209 MachineBasicBlock::iterator It = EmitMI(RPI);
3210 if (First == MBB.end())
3211 First = It;
3213 if (First != MBB.end())
3214 MBB.splice(MBBI, &MBB, First);
3215 } else {
3216 for (const RegPairInfo &RPI : RegPairs) {
3217 if (RPI.isScalable())
3218 continue;
3219 (void)EmitMI(RPI);
3223 return true;
3226 void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF,
3227 BitVector &SavedRegs,
3228 RegScavenger *RS) const {
3229 // All calls are tail calls in GHC calling conv, and functions have no
3230 // prologue/epilogue.
3231 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
3232 return;
3234 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
3235 const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
3236 MF.getSubtarget().getRegisterInfo());
3237 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
3238 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3239 unsigned UnspilledCSGPR = AArch64::NoRegister;
3240 unsigned UnspilledCSGPRPaired = AArch64::NoRegister;
3242 MachineFrameInfo &MFI = MF.getFrameInfo();
3243 const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
3245 unsigned BasePointerReg = RegInfo->hasBasePointer(MF)
3246 ? RegInfo->getBaseRegister()
3247 : (unsigned)AArch64::NoRegister;
3249 unsigned ExtraCSSpill = 0;
3250 bool HasUnpairedGPR64 = false;
3251 // Figure out which callee-saved registers to save/restore.
3252 for (unsigned i = 0; CSRegs[i]; ++i) {
3253 const unsigned Reg = CSRegs[i];
3255 // Add the base pointer register to SavedRegs if it is callee-save.
3256 if (Reg == BasePointerReg)
3257 SavedRegs.set(Reg);
3259 bool RegUsed = SavedRegs.test(Reg);
3260 unsigned PairedReg = AArch64::NoRegister;
3261 const bool RegIsGPR64 = AArch64::GPR64RegClass.contains(Reg);
3262 if (RegIsGPR64 || AArch64::FPR64RegClass.contains(Reg) ||
3263 AArch64::FPR128RegClass.contains(Reg)) {
3264 // Compensate for odd numbers of GP CSRs.
3265 // For now, all the known cases of odd number of CSRs are of GPRs.
3266 if (HasUnpairedGPR64)
3267 PairedReg = CSRegs[i % 2 == 0 ? i - 1 : i + 1];
3268 else
3269 PairedReg = CSRegs[i ^ 1];
3272 // If the function requires all the GP registers to save (SavedRegs),
3273 // and there are an odd number of GP CSRs at the same time (CSRegs),
3274 // PairedReg could be in a different register class from Reg, which would
3275 // lead to a FPR (usually D8) accidentally being marked saved.
3276 if (RegIsGPR64 && !AArch64::GPR64RegClass.contains(PairedReg)) {
3277 PairedReg = AArch64::NoRegister;
3278 HasUnpairedGPR64 = true;
3280 assert(PairedReg == AArch64::NoRegister ||
3281 AArch64::GPR64RegClass.contains(Reg, PairedReg) ||
3282 AArch64::FPR64RegClass.contains(Reg, PairedReg) ||
3283 AArch64::FPR128RegClass.contains(Reg, PairedReg));
3285 if (!RegUsed) {
3286 if (AArch64::GPR64RegClass.contains(Reg) &&
3287 !RegInfo->isReservedReg(MF, Reg)) {
3288 UnspilledCSGPR = Reg;
3289 UnspilledCSGPRPaired = PairedReg;
3291 continue;
3294 // MachO's compact unwind format relies on all registers being stored in
3295 // pairs.
3296 // FIXME: the usual format is actually better if unwinding isn't needed.
3297 if (producePairRegisters(MF) && PairedReg != AArch64::NoRegister &&
3298 !SavedRegs.test(PairedReg)) {
3299 SavedRegs.set(PairedReg);
3300 if (AArch64::GPR64RegClass.contains(PairedReg) &&
3301 !RegInfo->isReservedReg(MF, PairedReg))
3302 ExtraCSSpill = PairedReg;
3306 if (MF.getFunction().getCallingConv() == CallingConv::Win64 &&
3307 !Subtarget.isTargetWindows()) {
3308 // For Windows calling convention on a non-windows OS, where X18 is treated
3309 // as reserved, back up X18 when entering non-windows code (marked with the
3310 // Windows calling convention) and restore when returning regardless of
3311 // whether the individual function uses it - it might call other functions
3312 // that clobber it.
3313 SavedRegs.set(AArch64::X18);
3316 // Calculates the callee saved stack size.
3317 unsigned CSStackSize = 0;
3318 unsigned SVECSStackSize = 0;
3319 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3320 const MachineRegisterInfo &MRI = MF.getRegInfo();
3321 for (unsigned Reg : SavedRegs.set_bits()) {
3322 auto RegSize = TRI->getRegSizeInBits(Reg, MRI) / 8;
3323 if (AArch64::PPRRegClass.contains(Reg) ||
3324 AArch64::ZPRRegClass.contains(Reg))
3325 SVECSStackSize += RegSize;
3326 else
3327 CSStackSize += RegSize;
3330 // Save number of saved regs, so we can easily update CSStackSize later.
3331 unsigned NumSavedRegs = SavedRegs.count();
3333 // The frame record needs to be created by saving the appropriate registers
3334 uint64_t EstimatedStackSize = MFI.estimateStackSize(MF);
3335 if (hasFP(MF) ||
3336 windowsRequiresStackProbe(MF, EstimatedStackSize + CSStackSize + 16)) {
3337 SavedRegs.set(AArch64::FP);
3338 SavedRegs.set(AArch64::LR);
3341 LLVM_DEBUG(dbgs() << "*** determineCalleeSaves\nSaved CSRs:";
3342 for (unsigned Reg
3343 : SavedRegs.set_bits()) dbgs()
3344 << ' ' << printReg(Reg, RegInfo);
3345 dbgs() << "\n";);
3347 // If any callee-saved registers are used, the frame cannot be eliminated.
3348 int64_t SVEStackSize =
3349 alignTo(SVECSStackSize + estimateSVEStackObjectOffsets(MFI), 16);
3350 bool CanEliminateFrame = (SavedRegs.count() == 0) && !SVEStackSize;
3352 // The CSR spill slots have not been allocated yet, so estimateStackSize
3353 // won't include them.
3354 unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF);
3356 // We may address some of the stack above the canonical frame address, either
3357 // for our own arguments or during a call. Include that in calculating whether
3358 // we have complicated addressing concerns.
3359 int64_t CalleeStackUsed = 0;
3360 for (int I = MFI.getObjectIndexBegin(); I != 0; ++I) {
3361 int64_t FixedOff = MFI.getObjectOffset(I);
3362 if (FixedOff > CalleeStackUsed) CalleeStackUsed = FixedOff;
3365 // Conservatively always assume BigStack when there are SVE spills.
3366 bool BigStack = SVEStackSize || (EstimatedStackSize + CSStackSize +
3367 CalleeStackUsed) > EstimatedStackSizeLimit;
3368 if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF))
3369 AFI->setHasStackFrame(true);
3371 // Estimate if we might need to scavenge a register at some point in order
3372 // to materialize a stack offset. If so, either spill one additional
3373 // callee-saved register or reserve a special spill slot to facilitate
3374 // register scavenging. If we already spilled an extra callee-saved register
3375 // above to keep the number of spills even, we don't need to do anything else
3376 // here.
3377 if (BigStack) {
3378 if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) {
3379 LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo)
3380 << " to get a scratch register.\n");
3381 SavedRegs.set(UnspilledCSGPR);
3382 ExtraCSSpill = UnspilledCSGPR;
3384 // MachO's compact unwind format relies on all registers being stored in
3385 // pairs, so if we need to spill one extra for BigStack, then we need to
3386 // store the pair.
3387 if (producePairRegisters(MF)) {
3388 if (UnspilledCSGPRPaired == AArch64::NoRegister) {
3389 // Failed to make a pair for compact unwind format, revert spilling.
3390 if (produceCompactUnwindFrame(MF)) {
3391 SavedRegs.reset(UnspilledCSGPR);
3392 ExtraCSSpill = AArch64::NoRegister;
3394 } else
3395 SavedRegs.set(UnspilledCSGPRPaired);
3399 // If we didn't find an extra callee-saved register to spill, create
3400 // an emergency spill slot.
3401 if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) {
3402 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3403 const TargetRegisterClass &RC = AArch64::GPR64RegClass;
3404 unsigned Size = TRI->getSpillSize(RC);
3405 Align Alignment = TRI->getSpillAlign(RC);
3406 int FI = MFI.CreateStackObject(Size, Alignment, false);
3407 RS->addScavengingFrameIndex(FI);
3408 LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI
3409 << " as the emergency spill slot.\n");
3413 // Adding the size of additional 64bit GPR saves.
3414 CSStackSize += 8 * (SavedRegs.count() - NumSavedRegs);
3416 // A Swift asynchronous context extends the frame record with a pointer
3417 // directly before FP.
3418 if (hasFP(MF) && AFI->hasSwiftAsyncContext())
3419 CSStackSize += 8;
3421 uint64_t AlignedCSStackSize = alignTo(CSStackSize, 16);
3422 LLVM_DEBUG(dbgs() << "Estimated stack frame size: "
3423 << EstimatedStackSize + AlignedCSStackSize
3424 << " bytes.\n");
3426 assert((!MFI.isCalleeSavedInfoValid() ||
3427 AFI->getCalleeSavedStackSize() == AlignedCSStackSize) &&
3428 "Should not invalidate callee saved info");
3430 // Round up to register pair alignment to avoid additional SP adjustment
3431 // instructions.
3432 AFI->setCalleeSavedStackSize(AlignedCSStackSize);
3433 AFI->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize != CSStackSize);
3434 AFI->setSVECalleeSavedStackSize(alignTo(SVECSStackSize, 16));
3437 bool AArch64FrameLowering::assignCalleeSavedSpillSlots(
3438 MachineFunction &MF, const TargetRegisterInfo *RegInfo,
3439 std::vector<CalleeSavedInfo> &CSI, unsigned &MinCSFrameIndex,
3440 unsigned &MaxCSFrameIndex) const {
3441 bool NeedsWinCFI = needsWinCFI(MF);
3442 // To match the canonical windows frame layout, reverse the list of
3443 // callee saved registers to get them laid out by PrologEpilogInserter
3444 // in the right order. (PrologEpilogInserter allocates stack objects top
3445 // down. Windows canonical prologs store higher numbered registers at
3446 // the top, thus have the CSI array start from the highest registers.)
3447 if (NeedsWinCFI)
3448 std::reverse(CSI.begin(), CSI.end());
3450 if (CSI.empty())
3451 return true; // Early exit if no callee saved registers are modified!
3453 // Now that we know which registers need to be saved and restored, allocate
3454 // stack slots for them.
3455 MachineFrameInfo &MFI = MF.getFrameInfo();
3456 auto *AFI = MF.getInfo<AArch64FunctionInfo>();
3458 bool UsesWinAAPCS = isTargetWindows(MF);
3459 if (UsesWinAAPCS && hasFP(MF) && AFI->hasSwiftAsyncContext()) {
3460 int FrameIdx = MFI.CreateStackObject(8, Align(16), true);
3461 AFI->setSwiftAsyncContextFrameIdx(FrameIdx);
3462 if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
3463 if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
3466 for (auto &CS : CSI) {
3467 Register Reg = CS.getReg();
3468 const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg);
3470 unsigned Size = RegInfo->getSpillSize(*RC);
3471 Align Alignment(RegInfo->getSpillAlign(*RC));
3472 int FrameIdx = MFI.CreateStackObject(Size, Alignment, true);
3473 CS.setFrameIdx(FrameIdx);
3475 if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
3476 if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
3478 // Grab 8 bytes below FP for the extended asynchronous frame info.
3479 if (hasFP(MF) && AFI->hasSwiftAsyncContext() && !UsesWinAAPCS &&
3480 Reg == AArch64::FP) {
3481 FrameIdx = MFI.CreateStackObject(8, Alignment, true);
3482 AFI->setSwiftAsyncContextFrameIdx(FrameIdx);
3483 if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
3484 if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
3487 return true;
3490 bool AArch64FrameLowering::enableStackSlotScavenging(
3491 const MachineFunction &MF) const {
3492 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3493 // If the function has streaming-mode changes, don't scavenge a
3494 // spillslot in the callee-save area, as that might require an
3495 // 'addvl' in the streaming-mode-changing call-sequence when the
3496 // function doesn't use a FP.
3497 if (AFI->hasStreamingModeChanges() && !hasFP(MF))
3498 return false;
3499 return AFI->hasCalleeSaveStackFreeSpace();
3502 /// returns true if there are any SVE callee saves.
3503 static bool getSVECalleeSaveSlotRange(const MachineFrameInfo &MFI,
3504 int &Min, int &Max) {
3505 Min = std::numeric_limits<int>::max();
3506 Max = std::numeric_limits<int>::min();
3508 if (!MFI.isCalleeSavedInfoValid())
3509 return false;
3511 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
3512 for (auto &CS : CSI) {
3513 if (AArch64::ZPRRegClass.contains(CS.getReg()) ||
3514 AArch64::PPRRegClass.contains(CS.getReg())) {
3515 assert((Max == std::numeric_limits<int>::min() ||
3516 Max + 1 == CS.getFrameIdx()) &&
3517 "SVE CalleeSaves are not consecutive");
3519 Min = std::min(Min, CS.getFrameIdx());
3520 Max = std::max(Max, CS.getFrameIdx());
3523 return Min != std::numeric_limits<int>::max();
3526 // Process all the SVE stack objects and determine offsets for each
3527 // object. If AssignOffsets is true, the offsets get assigned.
3528 // Fills in the first and last callee-saved frame indices into
3529 // Min/MaxCSFrameIndex, respectively.
3530 // Returns the size of the stack.
3531 static int64_t determineSVEStackObjectOffsets(MachineFrameInfo &MFI,
3532 int &MinCSFrameIndex,
3533 int &MaxCSFrameIndex,
3534 bool AssignOffsets) {
3535 #ifndef NDEBUG
3536 // First process all fixed stack objects.
3537 for (int I = MFI.getObjectIndexBegin(); I != 0; ++I)
3538 assert(MFI.getStackID(I) != TargetStackID::ScalableVector &&
3539 "SVE vectors should never be passed on the stack by value, only by "
3540 "reference.");
3541 #endif
3543 auto Assign = [&MFI](int FI, int64_t Offset) {
3544 LLVM_DEBUG(dbgs() << "alloc FI(" << FI << ") at SP[" << Offset << "]\n");
3545 MFI.setObjectOffset(FI, Offset);
3548 int64_t Offset = 0;
3550 // Then process all callee saved slots.
3551 if (getSVECalleeSaveSlotRange(MFI, MinCSFrameIndex, MaxCSFrameIndex)) {
3552 // Assign offsets to the callee save slots.
3553 for (int I = MinCSFrameIndex; I <= MaxCSFrameIndex; ++I) {
3554 Offset += MFI.getObjectSize(I);
3555 Offset = alignTo(Offset, MFI.getObjectAlign(I));
3556 if (AssignOffsets)
3557 Assign(I, -Offset);
3561 // Ensure that the Callee-save area is aligned to 16bytes.
3562 Offset = alignTo(Offset, Align(16U));
3564 // Create a buffer of SVE objects to allocate and sort it.
3565 SmallVector<int, 8> ObjectsToAllocate;
3566 // If we have a stack protector, and we've previously decided that we have SVE
3567 // objects on the stack and thus need it to go in the SVE stack area, then it
3568 // needs to go first.
3569 int StackProtectorFI = -1;
3570 if (MFI.hasStackProtectorIndex()) {
3571 StackProtectorFI = MFI.getStackProtectorIndex();
3572 if (MFI.getStackID(StackProtectorFI) == TargetStackID::ScalableVector)
3573 ObjectsToAllocate.push_back(StackProtectorFI);
3575 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
3576 unsigned StackID = MFI.getStackID(I);
3577 if (StackID != TargetStackID::ScalableVector)
3578 continue;
3579 if (I == StackProtectorFI)
3580 continue;
3581 if (MaxCSFrameIndex >= I && I >= MinCSFrameIndex)
3582 continue;
3583 if (MFI.isDeadObjectIndex(I))
3584 continue;
3586 ObjectsToAllocate.push_back(I);
3589 // Allocate all SVE locals and spills
3590 for (unsigned FI : ObjectsToAllocate) {
3591 Align Alignment = MFI.getObjectAlign(FI);
3592 // FIXME: Given that the length of SVE vectors is not necessarily a power of
3593 // two, we'd need to align every object dynamically at runtime if the
3594 // alignment is larger than 16. This is not yet supported.
3595 if (Alignment > Align(16))
3596 report_fatal_error(
3597 "Alignment of scalable vectors > 16 bytes is not yet supported");
3599 Offset = alignTo(Offset + MFI.getObjectSize(FI), Alignment);
3600 if (AssignOffsets)
3601 Assign(FI, -Offset);
3604 return Offset;
3607 int64_t AArch64FrameLowering::estimateSVEStackObjectOffsets(
3608 MachineFrameInfo &MFI) const {
3609 int MinCSFrameIndex, MaxCSFrameIndex;
3610 return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, false);
3613 int64_t AArch64FrameLowering::assignSVEStackObjectOffsets(
3614 MachineFrameInfo &MFI, int &MinCSFrameIndex, int &MaxCSFrameIndex) const {
3615 return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex,
3616 true);
3619 void AArch64FrameLowering::processFunctionBeforeFrameFinalized(
3620 MachineFunction &MF, RegScavenger *RS) const {
3621 MachineFrameInfo &MFI = MF.getFrameInfo();
3623 assert(getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown &&
3624 "Upwards growing stack unsupported");
3626 int MinCSFrameIndex, MaxCSFrameIndex;
3627 int64_t SVEStackSize =
3628 assignSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex);
3630 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3631 AFI->setStackSizeSVE(alignTo(SVEStackSize, 16U));
3632 AFI->setMinMaxSVECSFrameIndex(MinCSFrameIndex, MaxCSFrameIndex);
3634 // If this function isn't doing Win64-style C++ EH, we don't need to do
3635 // anything.
3636 if (!MF.hasEHFunclets())
3637 return;
3638 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
3639 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
3641 MachineBasicBlock &MBB = MF.front();
3642 auto MBBI = MBB.begin();
3643 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
3644 ++MBBI;
3646 // Create an UnwindHelp object.
3647 // The UnwindHelp object is allocated at the start of the fixed object area
3648 int64_t FixedObject =
3649 getFixedObjectSize(MF, AFI, /*IsWin64*/ true, /*IsFunclet*/ false);
3650 int UnwindHelpFI = MFI.CreateFixedObject(/*Size*/ 8,
3651 /*SPOffset*/ -FixedObject,
3652 /*IsImmutable=*/false);
3653 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
3655 // We need to store -2 into the UnwindHelp object at the start of the
3656 // function.
3657 DebugLoc DL;
3658 RS->enterBasicBlockEnd(MBB);
3659 RS->backward(MBBI);
3660 Register DstReg = RS->FindUnusedReg(&AArch64::GPR64commonRegClass);
3661 assert(DstReg && "There must be a free register after frame setup");
3662 BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), DstReg).addImm(-2);
3663 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STURXi))
3664 .addReg(DstReg, getKillRegState(true))
3665 .addFrameIndex(UnwindHelpFI)
3666 .addImm(0);
3669 namespace {
3670 struct TagStoreInstr {
3671 MachineInstr *MI;
3672 int64_t Offset, Size;
3673 explicit TagStoreInstr(MachineInstr *MI, int64_t Offset, int64_t Size)
3674 : MI(MI), Offset(Offset), Size(Size) {}
3677 class TagStoreEdit {
3678 MachineFunction *MF;
3679 MachineBasicBlock *MBB;
3680 MachineRegisterInfo *MRI;
3681 // Tag store instructions that are being replaced.
3682 SmallVector<TagStoreInstr, 8> TagStores;
3683 // Combined memref arguments of the above instructions.
3684 SmallVector<MachineMemOperand *, 8> CombinedMemRefs;
3686 // Replace allocation tags in [FrameReg + FrameRegOffset, FrameReg +
3687 // FrameRegOffset + Size) with the address tag of SP.
3688 Register FrameReg;
3689 StackOffset FrameRegOffset;
3690 int64_t Size;
3691 // If not std::nullopt, move FrameReg to (FrameReg + FrameRegUpdate) at the
3692 // end.
3693 std::optional<int64_t> FrameRegUpdate;
3694 // MIFlags for any FrameReg updating instructions.
3695 unsigned FrameRegUpdateFlags;
3697 // Use zeroing instruction variants.
3698 bool ZeroData;
3699 DebugLoc DL;
3701 void emitUnrolled(MachineBasicBlock::iterator InsertI);
3702 void emitLoop(MachineBasicBlock::iterator InsertI);
3704 public:
3705 TagStoreEdit(MachineBasicBlock *MBB, bool ZeroData)
3706 : MBB(MBB), ZeroData(ZeroData) {
3707 MF = MBB->getParent();
3708 MRI = &MF->getRegInfo();
3710 // Add an instruction to be replaced. Instructions must be added in the
3711 // ascending order of Offset, and have to be adjacent.
3712 void addInstruction(TagStoreInstr I) {
3713 assert((TagStores.empty() ||
3714 TagStores.back().Offset + TagStores.back().Size == I.Offset) &&
3715 "Non-adjacent tag store instructions.");
3716 TagStores.push_back(I);
3718 void clear() { TagStores.clear(); }
3719 // Emit equivalent code at the given location, and erase the current set of
3720 // instructions. May skip if the replacement is not profitable. May invalidate
3721 // the input iterator and replace it with a valid one.
3722 void emitCode(MachineBasicBlock::iterator &InsertI,
3723 const AArch64FrameLowering *TFI, bool TryMergeSPUpdate);
3726 void TagStoreEdit::emitUnrolled(MachineBasicBlock::iterator InsertI) {
3727 const AArch64InstrInfo *TII =
3728 MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
3730 const int64_t kMinOffset = -256 * 16;
3731 const int64_t kMaxOffset = 255 * 16;
3733 Register BaseReg = FrameReg;
3734 int64_t BaseRegOffsetBytes = FrameRegOffset.getFixed();
3735 if (BaseRegOffsetBytes < kMinOffset ||
3736 BaseRegOffsetBytes + (Size - Size % 32) > kMaxOffset ||
3737 // BaseReg can be FP, which is not necessarily aligned to 16-bytes. In
3738 // that case, BaseRegOffsetBytes will not be aligned to 16 bytes, which
3739 // is required for the offset of ST2G.
3740 BaseRegOffsetBytes % 16 != 0) {
3741 Register ScratchReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass);
3742 emitFrameOffset(*MBB, InsertI, DL, ScratchReg, BaseReg,
3743 StackOffset::getFixed(BaseRegOffsetBytes), TII);
3744 BaseReg = ScratchReg;
3745 BaseRegOffsetBytes = 0;
3748 MachineInstr *LastI = nullptr;
3749 while (Size) {
3750 int64_t InstrSize = (Size > 16) ? 32 : 16;
3751 unsigned Opcode =
3752 InstrSize == 16
3753 ? (ZeroData ? AArch64::STZGi : AArch64::STGi)
3754 : (ZeroData ? AArch64::STZ2Gi : AArch64::ST2Gi);
3755 assert(BaseRegOffsetBytes % 16 == 0);
3756 MachineInstr *I = BuildMI(*MBB, InsertI, DL, TII->get(Opcode))
3757 .addReg(AArch64::SP)
3758 .addReg(BaseReg)
3759 .addImm(BaseRegOffsetBytes / 16)
3760 .setMemRefs(CombinedMemRefs);
3761 // A store to [BaseReg, #0] should go last for an opportunity to fold the
3762 // final SP adjustment in the epilogue.
3763 if (BaseRegOffsetBytes == 0)
3764 LastI = I;
3765 BaseRegOffsetBytes += InstrSize;
3766 Size -= InstrSize;
3769 if (LastI)
3770 MBB->splice(InsertI, MBB, LastI);
3773 void TagStoreEdit::emitLoop(MachineBasicBlock::iterator InsertI) {
3774 const AArch64InstrInfo *TII =
3775 MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
3777 Register BaseReg = FrameRegUpdate
3778 ? FrameReg
3779 : MRI->createVirtualRegister(&AArch64::GPR64RegClass);
3780 Register SizeReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass);
3782 emitFrameOffset(*MBB, InsertI, DL, BaseReg, FrameReg, FrameRegOffset, TII);
3784 int64_t LoopSize = Size;
3785 // If the loop size is not a multiple of 32, split off one 16-byte store at
3786 // the end to fold BaseReg update into.
3787 if (FrameRegUpdate && *FrameRegUpdate)
3788 LoopSize -= LoopSize % 32;
3789 MachineInstr *LoopI = BuildMI(*MBB, InsertI, DL,
3790 TII->get(ZeroData ? AArch64::STZGloop_wback
3791 : AArch64::STGloop_wback))
3792 .addDef(SizeReg)
3793 .addDef(BaseReg)
3794 .addImm(LoopSize)
3795 .addReg(BaseReg)
3796 .setMemRefs(CombinedMemRefs);
3797 if (FrameRegUpdate)
3798 LoopI->setFlags(FrameRegUpdateFlags);
3800 int64_t ExtraBaseRegUpdate =
3801 FrameRegUpdate ? (*FrameRegUpdate - FrameRegOffset.getFixed() - Size) : 0;
3802 if (LoopSize < Size) {
3803 assert(FrameRegUpdate);
3804 assert(Size - LoopSize == 16);
3805 // Tag 16 more bytes at BaseReg and update BaseReg.
3806 BuildMI(*MBB, InsertI, DL,
3807 TII->get(ZeroData ? AArch64::STZGPostIndex : AArch64::STGPostIndex))
3808 .addDef(BaseReg)
3809 .addReg(BaseReg)
3810 .addReg(BaseReg)
3811 .addImm(1 + ExtraBaseRegUpdate / 16)
3812 .setMemRefs(CombinedMemRefs)
3813 .setMIFlags(FrameRegUpdateFlags);
3814 } else if (ExtraBaseRegUpdate) {
3815 // Update BaseReg.
3816 BuildMI(
3817 *MBB, InsertI, DL,
3818 TII->get(ExtraBaseRegUpdate > 0 ? AArch64::ADDXri : AArch64::SUBXri))
3819 .addDef(BaseReg)
3820 .addReg(BaseReg)
3821 .addImm(std::abs(ExtraBaseRegUpdate))
3822 .addImm(0)
3823 .setMIFlags(FrameRegUpdateFlags);
3827 // Check if *II is a register update that can be merged into STGloop that ends
3828 // at (Reg + Size). RemainingOffset is the required adjustment to Reg after the
3829 // end of the loop.
3830 bool canMergeRegUpdate(MachineBasicBlock::iterator II, unsigned Reg,
3831 int64_t Size, int64_t *TotalOffset) {
3832 MachineInstr &MI = *II;
3833 if ((MI.getOpcode() == AArch64::ADDXri ||
3834 MI.getOpcode() == AArch64::SUBXri) &&
3835 MI.getOperand(0).getReg() == Reg && MI.getOperand(1).getReg() == Reg) {
3836 unsigned Shift = AArch64_AM::getShiftValue(MI.getOperand(3).getImm());
3837 int64_t Offset = MI.getOperand(2).getImm() << Shift;
3838 if (MI.getOpcode() == AArch64::SUBXri)
3839 Offset = -Offset;
3840 int64_t AbsPostOffset = std::abs(Offset - Size);
3841 const int64_t kMaxOffset =
3842 0xFFF; // Max encoding for unshifted ADDXri / SUBXri
3843 if (AbsPostOffset <= kMaxOffset && AbsPostOffset % 16 == 0) {
3844 *TotalOffset = Offset;
3845 return true;
3848 return false;
3851 void mergeMemRefs(const SmallVectorImpl<TagStoreInstr> &TSE,
3852 SmallVectorImpl<MachineMemOperand *> &MemRefs) {
3853 MemRefs.clear();
3854 for (auto &TS : TSE) {
3855 MachineInstr *MI = TS.MI;
3856 // An instruction without memory operands may access anything. Be
3857 // conservative and return an empty list.
3858 if (MI->memoperands_empty()) {
3859 MemRefs.clear();
3860 return;
3862 MemRefs.append(MI->memoperands_begin(), MI->memoperands_end());
3866 void TagStoreEdit::emitCode(MachineBasicBlock::iterator &InsertI,
3867 const AArch64FrameLowering *TFI,
3868 bool TryMergeSPUpdate) {
3869 if (TagStores.empty())
3870 return;
3871 TagStoreInstr &FirstTagStore = TagStores[0];
3872 TagStoreInstr &LastTagStore = TagStores[TagStores.size() - 1];
3873 Size = LastTagStore.Offset - FirstTagStore.Offset + LastTagStore.Size;
3874 DL = TagStores[0].MI->getDebugLoc();
3876 Register Reg;
3877 FrameRegOffset = TFI->resolveFrameOffsetReference(
3878 *MF, FirstTagStore.Offset, false /*isFixed*/, false /*isSVE*/, Reg,
3879 /*PreferFP=*/false, /*ForSimm=*/true);
3880 FrameReg = Reg;
3881 FrameRegUpdate = std::nullopt;
3883 mergeMemRefs(TagStores, CombinedMemRefs);
3885 LLVM_DEBUG(dbgs() << "Replacing adjacent STG instructions:\n";
3886 for (const auto &Instr
3887 : TagStores) { dbgs() << " " << *Instr.MI; });
3889 // Size threshold where a loop becomes shorter than a linear sequence of
3890 // tagging instructions.
3891 const int kSetTagLoopThreshold = 176;
3892 if (Size < kSetTagLoopThreshold) {
3893 if (TagStores.size() < 2)
3894 return;
3895 emitUnrolled(InsertI);
3896 } else {
3897 MachineInstr *UpdateInstr = nullptr;
3898 int64_t TotalOffset = 0;
3899 if (TryMergeSPUpdate) {
3900 // See if we can merge base register update into the STGloop.
3901 // This is done in AArch64LoadStoreOptimizer for "normal" stores,
3902 // but STGloop is way too unusual for that, and also it only
3903 // realistically happens in function epilogue. Also, STGloop is expanded
3904 // before that pass.
3905 if (InsertI != MBB->end() &&
3906 canMergeRegUpdate(InsertI, FrameReg, FrameRegOffset.getFixed() + Size,
3907 &TotalOffset)) {
3908 UpdateInstr = &*InsertI++;
3909 LLVM_DEBUG(dbgs() << "Folding SP update into loop:\n "
3910 << *UpdateInstr);
3914 if (!UpdateInstr && TagStores.size() < 2)
3915 return;
3917 if (UpdateInstr) {
3918 FrameRegUpdate = TotalOffset;
3919 FrameRegUpdateFlags = UpdateInstr->getFlags();
3921 emitLoop(InsertI);
3922 if (UpdateInstr)
3923 UpdateInstr->eraseFromParent();
3926 for (auto &TS : TagStores)
3927 TS.MI->eraseFromParent();
3930 bool isMergeableStackTaggingInstruction(MachineInstr &MI, int64_t &Offset,
3931 int64_t &Size, bool &ZeroData) {
3932 MachineFunction &MF = *MI.getParent()->getParent();
3933 const MachineFrameInfo &MFI = MF.getFrameInfo();
3935 unsigned Opcode = MI.getOpcode();
3936 ZeroData = (Opcode == AArch64::STZGloop || Opcode == AArch64::STZGi ||
3937 Opcode == AArch64::STZ2Gi);
3939 if (Opcode == AArch64::STGloop || Opcode == AArch64::STZGloop) {
3940 if (!MI.getOperand(0).isDead() || !MI.getOperand(1).isDead())
3941 return false;
3942 if (!MI.getOperand(2).isImm() || !MI.getOperand(3).isFI())
3943 return false;
3944 Offset = MFI.getObjectOffset(MI.getOperand(3).getIndex());
3945 Size = MI.getOperand(2).getImm();
3946 return true;
3949 if (Opcode == AArch64::STGi || Opcode == AArch64::STZGi)
3950 Size = 16;
3951 else if (Opcode == AArch64::ST2Gi || Opcode == AArch64::STZ2Gi)
3952 Size = 32;
3953 else
3954 return false;
3956 if (MI.getOperand(0).getReg() != AArch64::SP || !MI.getOperand(1).isFI())
3957 return false;
3959 Offset = MFI.getObjectOffset(MI.getOperand(1).getIndex()) +
3960 16 * MI.getOperand(2).getImm();
3961 return true;
3964 // Detect a run of memory tagging instructions for adjacent stack frame slots,
3965 // and replace them with a shorter instruction sequence:
3966 // * replace STG + STG with ST2G
3967 // * replace STGloop + STGloop with STGloop
3968 // This code needs to run when stack slot offsets are already known, but before
3969 // FrameIndex operands in STG instructions are eliminated.
3970 MachineBasicBlock::iterator tryMergeAdjacentSTG(MachineBasicBlock::iterator II,
3971 const AArch64FrameLowering *TFI,
3972 RegScavenger *RS) {
3973 bool FirstZeroData;
3974 int64_t Size, Offset;
3975 MachineInstr &MI = *II;
3976 MachineBasicBlock *MBB = MI.getParent();
3977 MachineBasicBlock::iterator NextI = ++II;
3978 if (&MI == &MBB->instr_back())
3979 return II;
3980 if (!isMergeableStackTaggingInstruction(MI, Offset, Size, FirstZeroData))
3981 return II;
3983 SmallVector<TagStoreInstr, 4> Instrs;
3984 Instrs.emplace_back(&MI, Offset, Size);
3986 constexpr int kScanLimit = 10;
3987 int Count = 0;
3988 for (MachineBasicBlock::iterator E = MBB->end();
3989 NextI != E && Count < kScanLimit; ++NextI) {
3990 MachineInstr &MI = *NextI;
3991 bool ZeroData;
3992 int64_t Size, Offset;
3993 // Collect instructions that update memory tags with a FrameIndex operand
3994 // and (when applicable) constant size, and whose output registers are dead
3995 // (the latter is almost always the case in practice). Since these
3996 // instructions effectively have no inputs or outputs, we are free to skip
3997 // any non-aliasing instructions in between without tracking used registers.
3998 if (isMergeableStackTaggingInstruction(MI, Offset, Size, ZeroData)) {
3999 if (ZeroData != FirstZeroData)
4000 break;
4001 Instrs.emplace_back(&MI, Offset, Size);
4002 continue;
4005 // Only count non-transient, non-tagging instructions toward the scan
4006 // limit.
4007 if (!MI.isTransient())
4008 ++Count;
4010 // Just in case, stop before the epilogue code starts.
4011 if (MI.getFlag(MachineInstr::FrameSetup) ||
4012 MI.getFlag(MachineInstr::FrameDestroy))
4013 break;
4015 // Reject anything that may alias the collected instructions.
4016 if (MI.mayLoadOrStore() || MI.hasUnmodeledSideEffects())
4017 break;
4020 // New code will be inserted after the last tagging instruction we've found.
4021 MachineBasicBlock::iterator InsertI = Instrs.back().MI;
4023 // All the gathered stack tag instructions are merged and placed after
4024 // last tag store in the list. The check should be made if the nzcv
4025 // flag is live at the point where we are trying to insert. Otherwise
4026 // the nzcv flag might get clobbered if any stg loops are present.
4028 // FIXME : This approach of bailing out from merge is conservative in
4029 // some ways like even if stg loops are not present after merge the
4030 // insert list, this liveness check is done (which is not needed).
4031 LivePhysRegs LiveRegs(*(MBB->getParent()->getSubtarget().getRegisterInfo()));
4032 LiveRegs.addLiveOuts(*MBB);
4033 for (auto I = MBB->rbegin();; ++I) {
4034 MachineInstr &MI = *I;
4035 if (MI == InsertI)
4036 break;
4037 LiveRegs.stepBackward(*I);
4039 InsertI++;
4040 if (LiveRegs.contains(AArch64::NZCV))
4041 return InsertI;
4043 llvm::stable_sort(Instrs,
4044 [](const TagStoreInstr &Left, const TagStoreInstr &Right) {
4045 return Left.Offset < Right.Offset;
4048 // Make sure that we don't have any overlapping stores.
4049 int64_t CurOffset = Instrs[0].Offset;
4050 for (auto &Instr : Instrs) {
4051 if (CurOffset > Instr.Offset)
4052 return NextI;
4053 CurOffset = Instr.Offset + Instr.Size;
4056 // Find contiguous runs of tagged memory and emit shorter instruction
4057 // sequencies for them when possible.
4058 TagStoreEdit TSE(MBB, FirstZeroData);
4059 std::optional<int64_t> EndOffset;
4060 for (auto &Instr : Instrs) {
4061 if (EndOffset && *EndOffset != Instr.Offset) {
4062 // Found a gap.
4063 TSE.emitCode(InsertI, TFI, /*TryMergeSPUpdate = */ false);
4064 TSE.clear();
4067 TSE.addInstruction(Instr);
4068 EndOffset = Instr.Offset + Instr.Size;
4071 const MachineFunction *MF = MBB->getParent();
4072 // Multiple FP/SP updates in a loop cannot be described by CFI instructions.
4073 TSE.emitCode(
4074 InsertI, TFI, /*TryMergeSPUpdate = */
4075 !MF->getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(*MF));
4077 return InsertI;
4079 } // namespace
4081 void AArch64FrameLowering::processFunctionBeforeFrameIndicesReplaced(
4082 MachineFunction &MF, RegScavenger *RS = nullptr) const {
4083 if (StackTaggingMergeSetTag)
4084 for (auto &BB : MF)
4085 for (MachineBasicBlock::iterator II = BB.begin(); II != BB.end();)
4086 II = tryMergeAdjacentSTG(II, this, RS);
4089 /// For Win64 AArch64 EH, the offset to the Unwind object is from the SP
4090 /// before the update. This is easily retrieved as it is exactly the offset
4091 /// that is set in processFunctionBeforeFrameFinalized.
4092 StackOffset AArch64FrameLowering::getFrameIndexReferencePreferSP(
4093 const MachineFunction &MF, int FI, Register &FrameReg,
4094 bool IgnoreSPUpdates) const {
4095 const MachineFrameInfo &MFI = MF.getFrameInfo();
4096 if (IgnoreSPUpdates) {
4097 LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI << " is "
4098 << MFI.getObjectOffset(FI) << "\n");
4099 FrameReg = AArch64::SP;
4100 return StackOffset::getFixed(MFI.getObjectOffset(FI));
4103 // Go to common code if we cannot provide sp + offset.
4104 if (MFI.hasVarSizedObjects() ||
4105 MF.getInfo<AArch64FunctionInfo>()->getStackSizeSVE() ||
4106 MF.getSubtarget().getRegisterInfo()->hasStackRealignment(MF))
4107 return getFrameIndexReference(MF, FI, FrameReg);
4109 FrameReg = AArch64::SP;
4110 return getStackOffset(MF, MFI.getObjectOffset(FI));
4113 /// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve
4114 /// the parent's frame pointer
4115 unsigned AArch64FrameLowering::getWinEHParentFrameOffset(
4116 const MachineFunction &MF) const {
4117 return 0;
4120 /// Funclets only need to account for space for the callee saved registers,
4121 /// as the locals are accounted for in the parent's stack frame.
4122 unsigned AArch64FrameLowering::getWinEHFuncletFrameSize(
4123 const MachineFunction &MF) const {
4124 // This is the size of the pushed CSRs.
4125 unsigned CSSize =
4126 MF.getInfo<AArch64FunctionInfo>()->getCalleeSavedStackSize();
4127 // This is the amount of stack a funclet needs to allocate.
4128 return alignTo(CSSize + MF.getFrameInfo().getMaxCallFrameSize(),
4129 getStackAlign());
4132 namespace {
4133 struct FrameObject {
4134 bool IsValid = false;
4135 // Index of the object in MFI.
4136 int ObjectIndex = 0;
4137 // Group ID this object belongs to.
4138 int GroupIndex = -1;
4139 // This object should be placed first (closest to SP).
4140 bool ObjectFirst = false;
4141 // This object's group (which always contains the object with
4142 // ObjectFirst==true) should be placed first.
4143 bool GroupFirst = false;
4146 class GroupBuilder {
4147 SmallVector<int, 8> CurrentMembers;
4148 int NextGroupIndex = 0;
4149 std::vector<FrameObject> &Objects;
4151 public:
4152 GroupBuilder(std::vector<FrameObject> &Objects) : Objects(Objects) {}
4153 void AddMember(int Index) { CurrentMembers.push_back(Index); }
4154 void EndCurrentGroup() {
4155 if (CurrentMembers.size() > 1) {
4156 // Create a new group with the current member list. This might remove them
4157 // from their pre-existing groups. That's OK, dealing with overlapping
4158 // groups is too hard and unlikely to make a difference.
4159 LLVM_DEBUG(dbgs() << "group:");
4160 for (int Index : CurrentMembers) {
4161 Objects[Index].GroupIndex = NextGroupIndex;
4162 LLVM_DEBUG(dbgs() << " " << Index);
4164 LLVM_DEBUG(dbgs() << "\n");
4165 NextGroupIndex++;
4167 CurrentMembers.clear();
4171 bool FrameObjectCompare(const FrameObject &A, const FrameObject &B) {
4172 // Objects at a lower index are closer to FP; objects at a higher index are
4173 // closer to SP.
4175 // For consistency in our comparison, all invalid objects are placed
4176 // at the end. This also allows us to stop walking when we hit the
4177 // first invalid item after it's all sorted.
4179 // The "first" object goes first (closest to SP), followed by the members of
4180 // the "first" group.
4182 // The rest are sorted by the group index to keep the groups together.
4183 // Higher numbered groups are more likely to be around longer (i.e. untagged
4184 // in the function epilogue and not at some earlier point). Place them closer
4185 // to SP.
4187 // If all else equal, sort by the object index to keep the objects in the
4188 // original order.
4189 return std::make_tuple(!A.IsValid, A.ObjectFirst, A.GroupFirst, A.GroupIndex,
4190 A.ObjectIndex) <
4191 std::make_tuple(!B.IsValid, B.ObjectFirst, B.GroupFirst, B.GroupIndex,
4192 B.ObjectIndex);
4194 } // namespace
4196 void AArch64FrameLowering::orderFrameObjects(
4197 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
4198 if (!OrderFrameObjects || ObjectsToAllocate.empty())
4199 return;
4201 const MachineFrameInfo &MFI = MF.getFrameInfo();
4202 std::vector<FrameObject> FrameObjects(MFI.getObjectIndexEnd());
4203 for (auto &Obj : ObjectsToAllocate) {
4204 FrameObjects[Obj].IsValid = true;
4205 FrameObjects[Obj].ObjectIndex = Obj;
4208 // Identify stack slots that are tagged at the same time.
4209 GroupBuilder GB(FrameObjects);
4210 for (auto &MBB : MF) {
4211 for (auto &MI : MBB) {
4212 if (MI.isDebugInstr())
4213 continue;
4214 int OpIndex;
4215 switch (MI.getOpcode()) {
4216 case AArch64::STGloop:
4217 case AArch64::STZGloop:
4218 OpIndex = 3;
4219 break;
4220 case AArch64::STGi:
4221 case AArch64::STZGi:
4222 case AArch64::ST2Gi:
4223 case AArch64::STZ2Gi:
4224 OpIndex = 1;
4225 break;
4226 default:
4227 OpIndex = -1;
4230 int TaggedFI = -1;
4231 if (OpIndex >= 0) {
4232 const MachineOperand &MO = MI.getOperand(OpIndex);
4233 if (MO.isFI()) {
4234 int FI = MO.getIndex();
4235 if (FI >= 0 && FI < MFI.getObjectIndexEnd() &&
4236 FrameObjects[FI].IsValid)
4237 TaggedFI = FI;
4241 // If this is a stack tagging instruction for a slot that is not part of a
4242 // group yet, either start a new group or add it to the current one.
4243 if (TaggedFI >= 0)
4244 GB.AddMember(TaggedFI);
4245 else
4246 GB.EndCurrentGroup();
4248 // Groups should never span multiple basic blocks.
4249 GB.EndCurrentGroup();
4252 // If the function's tagged base pointer is pinned to a stack slot, we want to
4253 // put that slot first when possible. This will likely place it at SP + 0,
4254 // and save one instruction when generating the base pointer because IRG does
4255 // not allow an immediate offset.
4256 const AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
4257 std::optional<int> TBPI = AFI.getTaggedBasePointerIndex();
4258 if (TBPI) {
4259 FrameObjects[*TBPI].ObjectFirst = true;
4260 FrameObjects[*TBPI].GroupFirst = true;
4261 int FirstGroupIndex = FrameObjects[*TBPI].GroupIndex;
4262 if (FirstGroupIndex >= 0)
4263 for (FrameObject &Object : FrameObjects)
4264 if (Object.GroupIndex == FirstGroupIndex)
4265 Object.GroupFirst = true;
4268 llvm::stable_sort(FrameObjects, FrameObjectCompare);
4270 int i = 0;
4271 for (auto &Obj : FrameObjects) {
4272 // All invalid items are sorted at the end, so it's safe to stop.
4273 if (!Obj.IsValid)
4274 break;
4275 ObjectsToAllocate[i++] = Obj.ObjectIndex;
4278 LLVM_DEBUG(dbgs() << "Final frame order:\n"; for (auto &Obj
4279 : FrameObjects) {
4280 if (!Obj.IsValid)
4281 break;
4282 dbgs() << " " << Obj.ObjectIndex << ": group " << Obj.GroupIndex;
4283 if (Obj.ObjectFirst)
4284 dbgs() << ", first";
4285 if (Obj.GroupFirst)
4286 dbgs() << ", group-first";
4287 dbgs() << "\n";
4291 /// Emit a loop to decrement SP until it is equal to TargetReg, with probes at
4292 /// least every ProbeSize bytes. Returns an iterator of the first instruction
4293 /// after the loop. The difference between SP and TargetReg must be an exact
4294 /// multiple of ProbeSize.
4295 MachineBasicBlock::iterator
4296 AArch64FrameLowering::inlineStackProbeLoopExactMultiple(
4297 MachineBasicBlock::iterator MBBI, int64_t ProbeSize,
4298 Register TargetReg) const {
4299 MachineBasicBlock &MBB = *MBBI->getParent();
4300 MachineFunction &MF = *MBB.getParent();
4301 const AArch64InstrInfo *TII =
4302 MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
4303 DebugLoc DL = MBB.findDebugLoc(MBBI);
4305 MachineFunction::iterator MBBInsertPoint = std::next(MBB.getIterator());
4306 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(MBB.getBasicBlock());
4307 MF.insert(MBBInsertPoint, LoopMBB);
4308 MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(MBB.getBasicBlock());
4309 MF.insert(MBBInsertPoint, ExitMBB);
4311 // SUB SP, SP, #ProbeSize (or equivalent if ProbeSize is not encodable
4312 // in SUB).
4313 emitFrameOffset(*LoopMBB, LoopMBB->end(), DL, AArch64::SP, AArch64::SP,
4314 StackOffset::getFixed(-ProbeSize), TII,
4315 MachineInstr::FrameSetup);
4316 // STR XZR, [SP]
4317 BuildMI(*LoopMBB, LoopMBB->end(), DL, TII->get(AArch64::STRXui))
4318 .addReg(AArch64::XZR)
4319 .addReg(AArch64::SP)
4320 .addImm(0)
4321 .setMIFlags(MachineInstr::FrameSetup);
4322 // CMP SP, TargetReg
4323 BuildMI(*LoopMBB, LoopMBB->end(), DL, TII->get(AArch64::SUBSXrx64),
4324 AArch64::XZR)
4325 .addReg(AArch64::SP)
4326 .addReg(TargetReg)
4327 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 0))
4328 .setMIFlags(MachineInstr::FrameSetup);
4329 // B.CC Loop
4330 BuildMI(*LoopMBB, LoopMBB->end(), DL, TII->get(AArch64::Bcc))
4331 .addImm(AArch64CC::NE)
4332 .addMBB(LoopMBB)
4333 .setMIFlags(MachineInstr::FrameSetup);
4335 LoopMBB->addSuccessor(ExitMBB);
4336 LoopMBB->addSuccessor(LoopMBB);
4337 // Synthesize the exit MBB.
4338 ExitMBB->splice(ExitMBB->end(), &MBB, MBBI, MBB.end());
4339 ExitMBB->transferSuccessorsAndUpdatePHIs(&MBB);
4340 MBB.addSuccessor(LoopMBB);
4341 // Update liveins.
4342 bool anyChange = false;
4343 do {
4344 anyChange = recomputeLiveIns(*ExitMBB) || recomputeLiveIns(*LoopMBB);
4345 } while (anyChange);
4347 return ExitMBB->begin();
4350 void AArch64FrameLowering::inlineStackProbeFixed(
4351 MachineBasicBlock::iterator MBBI, Register ScratchReg, int64_t FrameSize,
4352 StackOffset CFAOffset) const {
4353 MachineBasicBlock *MBB = MBBI->getParent();
4354 MachineFunction &MF = *MBB->getParent();
4355 const AArch64InstrInfo *TII =
4356 MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
4357 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
4358 bool EmitAsyncCFI = AFI->needsAsyncDwarfUnwindInfo(MF);
4359 bool HasFP = hasFP(MF);
4361 DebugLoc DL;
4362 int64_t ProbeSize = MF.getInfo<AArch64FunctionInfo>()->getStackProbeSize();
4363 int64_t NumBlocks = FrameSize / ProbeSize;
4364 int64_t ResidualSize = FrameSize % ProbeSize;
4366 LLVM_DEBUG(dbgs() << "Stack probing: total " << FrameSize << " bytes, "
4367 << NumBlocks << " blocks of " << ProbeSize
4368 << " bytes, plus " << ResidualSize << " bytes\n");
4370 // Decrement SP by NumBlock * ProbeSize bytes, with either unrolled or
4371 // ordinary loop.
4372 if (NumBlocks <= AArch64::StackProbeMaxLoopUnroll) {
4373 for (int i = 0; i < NumBlocks; ++i) {
4374 // SUB SP, SP, #ProbeSize (or equivalent if ProbeSize is not
4375 // encodable in a SUB).
4376 emitFrameOffset(*MBB, MBBI, DL, AArch64::SP, AArch64::SP,
4377 StackOffset::getFixed(-ProbeSize), TII,
4378 MachineInstr::FrameSetup, false, false, nullptr,
4379 EmitAsyncCFI && !HasFP, CFAOffset);
4380 CFAOffset += StackOffset::getFixed(ProbeSize);
4381 // STR XZR, [SP]
4382 BuildMI(*MBB, MBBI, DL, TII->get(AArch64::STRXui))
4383 .addReg(AArch64::XZR)
4384 .addReg(AArch64::SP)
4385 .addImm(0)
4386 .setMIFlags(MachineInstr::FrameSetup);
4388 } else if (NumBlocks != 0) {
4389 // SUB ScratchReg, SP, #FrameSize (or equivalent if FrameSize is not
4390 // encodable in ADD). ScrathReg may temporarily become the CFA register.
4391 emitFrameOffset(*MBB, MBBI, DL, ScratchReg, AArch64::SP,
4392 StackOffset::getFixed(-ProbeSize * NumBlocks), TII,
4393 MachineInstr::FrameSetup, false, false, nullptr,
4394 EmitAsyncCFI && !HasFP, CFAOffset);
4395 CFAOffset += StackOffset::getFixed(ProbeSize * NumBlocks);
4396 MBBI = inlineStackProbeLoopExactMultiple(MBBI, ProbeSize, ScratchReg);
4397 MBB = MBBI->getParent();
4398 if (EmitAsyncCFI && !HasFP) {
4399 // Set the CFA register back to SP.
4400 const AArch64RegisterInfo &RegInfo =
4401 *MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
4402 unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true);
4403 unsigned CFIIndex =
4404 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
4405 BuildMI(*MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
4406 .addCFIIndex(CFIIndex)
4407 .setMIFlags(MachineInstr::FrameSetup);
4411 if (ResidualSize != 0) {
4412 // SUB SP, SP, #ResidualSize (or equivalent if ResidualSize is not encodable
4413 // in SUB).
4414 emitFrameOffset(*MBB, MBBI, DL, AArch64::SP, AArch64::SP,
4415 StackOffset::getFixed(-ResidualSize), TII,
4416 MachineInstr::FrameSetup, false, false, nullptr,
4417 EmitAsyncCFI && !HasFP, CFAOffset);
4418 if (ResidualSize > AArch64::StackProbeMaxUnprobedStack) {
4419 // STR XZR, [SP]
4420 BuildMI(*MBB, MBBI, DL, TII->get(AArch64::STRXui))
4421 .addReg(AArch64::XZR)
4422 .addReg(AArch64::SP)
4423 .addImm(0)
4424 .setMIFlags(MachineInstr::FrameSetup);
4429 void AArch64FrameLowering::inlineStackProbe(MachineFunction &MF,
4430 MachineBasicBlock &MBB) const {
4431 // Get the instructions that need to be replaced. We emit at most two of
4432 // these. Remember them in order to avoid complications coming from the need
4433 // to traverse the block while potentially creating more blocks.
4434 SmallVector<MachineInstr *, 4> ToReplace;
4435 for (MachineInstr &MI : MBB)
4436 if (MI.getOpcode() == AArch64::PROBED_STACKALLOC ||
4437 MI.getOpcode() == AArch64::PROBED_STACKALLOC_VAR)
4438 ToReplace.push_back(&MI);
4440 for (MachineInstr *MI : ToReplace) {
4441 if (MI->getOpcode() == AArch64::PROBED_STACKALLOC) {
4442 Register ScratchReg = MI->getOperand(0).getReg();
4443 int64_t FrameSize = MI->getOperand(1).getImm();
4444 StackOffset CFAOffset = StackOffset::get(MI->getOperand(2).getImm(),
4445 MI->getOperand(3).getImm());
4446 inlineStackProbeFixed(MI->getIterator(), ScratchReg, FrameSize,
4447 CFAOffset);
4448 } else {
4449 assert(MI->getOpcode() == AArch64::PROBED_STACKALLOC_VAR &&
4450 "Stack probe pseudo-instruction expected");
4451 const AArch64InstrInfo *TII =
4452 MI->getMF()->getSubtarget<AArch64Subtarget>().getInstrInfo();
4453 Register TargetReg = MI->getOperand(0).getReg();
4454 (void)TII->probedStackAlloc(MI->getIterator(), TargetReg, true);
4456 MI->eraseFromParent();