[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / lib / Target / MSP430 / MSP430ISelLowering.cpp
blobfc066f001316d45b7f5fb790ad1a3aad0119dfb6
1 //===-- MSP430ISelLowering.cpp - MSP430 DAG Lowering Implementation ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the MSP430TargetLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "MSP430ISelLowering.h"
14 #include "MSP430.h"
15 #include "MSP430MachineFunctionInfo.h"
16 #include "MSP430Subtarget.h"
17 #include "MSP430TargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
24 #include "llvm/CodeGen/ValueTypes.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalAlias.h"
29 #include "llvm/IR/GlobalVariable.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 using namespace llvm;
37 #define DEBUG_TYPE "msp430-lower"
39 static cl::opt<bool>MSP430NoLegalImmediate(
40 "msp430-no-legal-immediate", cl::Hidden,
41 cl::desc("Enable non legal immediates (for testing purposes only)"),
42 cl::init(false));
44 MSP430TargetLowering::MSP430TargetLowering(const TargetMachine &TM,
45 const MSP430Subtarget &STI)
46 : TargetLowering(TM) {
48 // Set up the register classes.
49 addRegisterClass(MVT::i8, &MSP430::GR8RegClass);
50 addRegisterClass(MVT::i16, &MSP430::GR16RegClass);
52 // Compute derived properties from the register classes
53 computeRegisterProperties(STI.getRegisterInfo());
55 // Provide all sorts of operation actions
56 setStackPointerRegisterToSaveRestore(MSP430::SP);
57 setBooleanContents(ZeroOrOneBooleanContent);
58 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
60 // We have post-incremented loads / stores.
61 setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
62 setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
64 for (MVT VT : MVT::integer_valuetypes()) {
65 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
66 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
67 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
68 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
69 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand);
72 // We don't have any truncstores
73 setTruncStoreAction(MVT::i16, MVT::i8, Expand);
75 setOperationAction(ISD::SRA, MVT::i8, Custom);
76 setOperationAction(ISD::SHL, MVT::i8, Custom);
77 setOperationAction(ISD::SRL, MVT::i8, Custom);
78 setOperationAction(ISD::SRA, MVT::i16, Custom);
79 setOperationAction(ISD::SHL, MVT::i16, Custom);
80 setOperationAction(ISD::SRL, MVT::i16, Custom);
81 setOperationAction(ISD::ROTL, MVT::i8, Expand);
82 setOperationAction(ISD::ROTR, MVT::i8, Expand);
83 setOperationAction(ISD::ROTL, MVT::i16, Expand);
84 setOperationAction(ISD::ROTR, MVT::i16, Expand);
85 setOperationAction(ISD::GlobalAddress, MVT::i16, Custom);
86 setOperationAction(ISD::ExternalSymbol, MVT::i16, Custom);
87 setOperationAction(ISD::BlockAddress, MVT::i16, Custom);
88 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
89 setOperationAction(ISD::BR_CC, MVT::i8, Custom);
90 setOperationAction(ISD::BR_CC, MVT::i16, Custom);
91 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
92 setOperationAction(ISD::SETCC, MVT::i8, Custom);
93 setOperationAction(ISD::SETCC, MVT::i16, Custom);
94 setOperationAction(ISD::SELECT, MVT::i8, Expand);
95 setOperationAction(ISD::SELECT, MVT::i16, Expand);
96 setOperationAction(ISD::SELECT_CC, MVT::i8, Custom);
97 setOperationAction(ISD::SELECT_CC, MVT::i16, Custom);
98 setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Custom);
99 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
100 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
101 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
102 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
104 setOperationAction(ISD::CTTZ, MVT::i8, Expand);
105 setOperationAction(ISD::CTTZ, MVT::i16, Expand);
106 setOperationAction(ISD::CTLZ, MVT::i8, Expand);
107 setOperationAction(ISD::CTLZ, MVT::i16, Expand);
108 setOperationAction(ISD::CTPOP, MVT::i8, Expand);
109 setOperationAction(ISD::CTPOP, MVT::i16, Expand);
111 setOperationAction(ISD::SHL_PARTS, MVT::i8, Expand);
112 setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand);
113 setOperationAction(ISD::SRL_PARTS, MVT::i8, Expand);
114 setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand);
115 setOperationAction(ISD::SRA_PARTS, MVT::i8, Expand);
116 setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand);
118 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
120 // FIXME: Implement efficiently multiplication by a constant
121 setOperationAction(ISD::MUL, MVT::i8, Promote);
122 setOperationAction(ISD::MULHS, MVT::i8, Promote);
123 setOperationAction(ISD::MULHU, MVT::i8, Promote);
124 setOperationAction(ISD::SMUL_LOHI, MVT::i8, Promote);
125 setOperationAction(ISD::UMUL_LOHI, MVT::i8, Promote);
126 setOperationAction(ISD::MUL, MVT::i16, LibCall);
127 setOperationAction(ISD::MULHS, MVT::i16, Expand);
128 setOperationAction(ISD::MULHU, MVT::i16, Expand);
129 setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand);
130 setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand);
132 setOperationAction(ISD::UDIV, MVT::i8, Promote);
133 setOperationAction(ISD::UDIVREM, MVT::i8, Promote);
134 setOperationAction(ISD::UREM, MVT::i8, Promote);
135 setOperationAction(ISD::SDIV, MVT::i8, Promote);
136 setOperationAction(ISD::SDIVREM, MVT::i8, Promote);
137 setOperationAction(ISD::SREM, MVT::i8, Promote);
138 setOperationAction(ISD::UDIV, MVT::i16, LibCall);
139 setOperationAction(ISD::UDIVREM, MVT::i16, Expand);
140 setOperationAction(ISD::UREM, MVT::i16, LibCall);
141 setOperationAction(ISD::SDIV, MVT::i16, LibCall);
142 setOperationAction(ISD::SDIVREM, MVT::i16, Expand);
143 setOperationAction(ISD::SREM, MVT::i16, LibCall);
145 // varargs support
146 setOperationAction(ISD::VASTART, MVT::Other, Custom);
147 setOperationAction(ISD::VAARG, MVT::Other, Expand);
148 setOperationAction(ISD::VAEND, MVT::Other, Expand);
149 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
150 setOperationAction(ISD::JumpTable, MVT::i16, Custom);
152 // EABI Libcalls - EABI Section 6.2
153 const struct {
154 const RTLIB::Libcall Op;
155 const char * const Name;
156 const ISD::CondCode Cond;
157 } LibraryCalls[] = {
158 // Floating point conversions - EABI Table 6
159 { RTLIB::FPROUND_F64_F32, "__mspabi_cvtdf", ISD::SETCC_INVALID },
160 { RTLIB::FPEXT_F32_F64, "__mspabi_cvtfd", ISD::SETCC_INVALID },
161 // The following is NOT implemented in libgcc
162 //{ RTLIB::FPTOSINT_F64_I16, "__mspabi_fixdi", ISD::SETCC_INVALID },
163 { RTLIB::FPTOSINT_F64_I32, "__mspabi_fixdli", ISD::SETCC_INVALID },
164 { RTLIB::FPTOSINT_F64_I64, "__mspabi_fixdlli", ISD::SETCC_INVALID },
165 // The following is NOT implemented in libgcc
166 //{ RTLIB::FPTOUINT_F64_I16, "__mspabi_fixdu", ISD::SETCC_INVALID },
167 { RTLIB::FPTOUINT_F64_I32, "__mspabi_fixdul", ISD::SETCC_INVALID },
168 { RTLIB::FPTOUINT_F64_I64, "__mspabi_fixdull", ISD::SETCC_INVALID },
169 // The following is NOT implemented in libgcc
170 //{ RTLIB::FPTOSINT_F32_I16, "__mspabi_fixfi", ISD::SETCC_INVALID },
171 { RTLIB::FPTOSINT_F32_I32, "__mspabi_fixfli", ISD::SETCC_INVALID },
172 { RTLIB::FPTOSINT_F32_I64, "__mspabi_fixflli", ISD::SETCC_INVALID },
173 // The following is NOT implemented in libgcc
174 //{ RTLIB::FPTOUINT_F32_I16, "__mspabi_fixfu", ISD::SETCC_INVALID },
175 { RTLIB::FPTOUINT_F32_I32, "__mspabi_fixful", ISD::SETCC_INVALID },
176 { RTLIB::FPTOUINT_F32_I64, "__mspabi_fixfull", ISD::SETCC_INVALID },
177 // TODO The following IS implemented in libgcc
178 //{ RTLIB::SINTTOFP_I16_F64, "__mspabi_fltid", ISD::SETCC_INVALID },
179 { RTLIB::SINTTOFP_I32_F64, "__mspabi_fltlid", ISD::SETCC_INVALID },
180 // TODO The following IS implemented in libgcc but is not in the EABI
181 { RTLIB::SINTTOFP_I64_F64, "__mspabi_fltllid", ISD::SETCC_INVALID },
182 // TODO The following IS implemented in libgcc
183 //{ RTLIB::UINTTOFP_I16_F64, "__mspabi_fltud", ISD::SETCC_INVALID },
184 { RTLIB::UINTTOFP_I32_F64, "__mspabi_fltuld", ISD::SETCC_INVALID },
185 // The following IS implemented in libgcc but is not in the EABI
186 { RTLIB::UINTTOFP_I64_F64, "__mspabi_fltulld", ISD::SETCC_INVALID },
187 // TODO The following IS implemented in libgcc
188 //{ RTLIB::SINTTOFP_I16_F32, "__mspabi_fltif", ISD::SETCC_INVALID },
189 { RTLIB::SINTTOFP_I32_F32, "__mspabi_fltlif", ISD::SETCC_INVALID },
190 // TODO The following IS implemented in libgcc but is not in the EABI
191 { RTLIB::SINTTOFP_I64_F32, "__mspabi_fltllif", ISD::SETCC_INVALID },
192 // TODO The following IS implemented in libgcc
193 //{ RTLIB::UINTTOFP_I16_F32, "__mspabi_fltuf", ISD::SETCC_INVALID },
194 { RTLIB::UINTTOFP_I32_F32, "__mspabi_fltulf", ISD::SETCC_INVALID },
195 // The following IS implemented in libgcc but is not in the EABI
196 { RTLIB::UINTTOFP_I64_F32, "__mspabi_fltullf", ISD::SETCC_INVALID },
198 // Floating point comparisons - EABI Table 7
199 { RTLIB::OEQ_F64, "__mspabi_cmpd", ISD::SETEQ },
200 { RTLIB::UNE_F64, "__mspabi_cmpd", ISD::SETNE },
201 { RTLIB::OGE_F64, "__mspabi_cmpd", ISD::SETGE },
202 { RTLIB::OLT_F64, "__mspabi_cmpd", ISD::SETLT },
203 { RTLIB::OLE_F64, "__mspabi_cmpd", ISD::SETLE },
204 { RTLIB::OGT_F64, "__mspabi_cmpd", ISD::SETGT },
205 { RTLIB::OEQ_F32, "__mspabi_cmpf", ISD::SETEQ },
206 { RTLIB::UNE_F32, "__mspabi_cmpf", ISD::SETNE },
207 { RTLIB::OGE_F32, "__mspabi_cmpf", ISD::SETGE },
208 { RTLIB::OLT_F32, "__mspabi_cmpf", ISD::SETLT },
209 { RTLIB::OLE_F32, "__mspabi_cmpf", ISD::SETLE },
210 { RTLIB::OGT_F32, "__mspabi_cmpf", ISD::SETGT },
212 // Floating point arithmetic - EABI Table 8
213 { RTLIB::ADD_F64, "__mspabi_addd", ISD::SETCC_INVALID },
214 { RTLIB::ADD_F32, "__mspabi_addf", ISD::SETCC_INVALID },
215 { RTLIB::DIV_F64, "__mspabi_divd", ISD::SETCC_INVALID },
216 { RTLIB::DIV_F32, "__mspabi_divf", ISD::SETCC_INVALID },
217 { RTLIB::MUL_F64, "__mspabi_mpyd", ISD::SETCC_INVALID },
218 { RTLIB::MUL_F32, "__mspabi_mpyf", ISD::SETCC_INVALID },
219 { RTLIB::SUB_F64, "__mspabi_subd", ISD::SETCC_INVALID },
220 { RTLIB::SUB_F32, "__mspabi_subf", ISD::SETCC_INVALID },
221 // The following are NOT implemented in libgcc
222 // { RTLIB::NEG_F64, "__mspabi_negd", ISD::SETCC_INVALID },
223 // { RTLIB::NEG_F32, "__mspabi_negf", ISD::SETCC_INVALID },
225 // Universal Integer Operations - EABI Table 9
226 { RTLIB::SDIV_I16, "__mspabi_divi", ISD::SETCC_INVALID },
227 { RTLIB::SDIV_I32, "__mspabi_divli", ISD::SETCC_INVALID },
228 { RTLIB::SDIV_I64, "__mspabi_divlli", ISD::SETCC_INVALID },
229 { RTLIB::UDIV_I16, "__mspabi_divu", ISD::SETCC_INVALID },
230 { RTLIB::UDIV_I32, "__mspabi_divul", ISD::SETCC_INVALID },
231 { RTLIB::UDIV_I64, "__mspabi_divull", ISD::SETCC_INVALID },
232 { RTLIB::SREM_I16, "__mspabi_remi", ISD::SETCC_INVALID },
233 { RTLIB::SREM_I32, "__mspabi_remli", ISD::SETCC_INVALID },
234 { RTLIB::SREM_I64, "__mspabi_remlli", ISD::SETCC_INVALID },
235 { RTLIB::UREM_I16, "__mspabi_remu", ISD::SETCC_INVALID },
236 { RTLIB::UREM_I32, "__mspabi_remul", ISD::SETCC_INVALID },
237 { RTLIB::UREM_I64, "__mspabi_remull", ISD::SETCC_INVALID },
239 // Bitwise Operations - EABI Table 10
240 // TODO: __mspabi_[srli/srai/slli] ARE implemented in libgcc
241 { RTLIB::SRL_I32, "__mspabi_srll", ISD::SETCC_INVALID },
242 { RTLIB::SRA_I32, "__mspabi_sral", ISD::SETCC_INVALID },
243 { RTLIB::SHL_I32, "__mspabi_slll", ISD::SETCC_INVALID },
244 // __mspabi_[srlll/srall/sllll/rlli/rlll] are NOT implemented in libgcc
248 for (const auto &LC : LibraryCalls) {
249 setLibcallName(LC.Op, LC.Name);
250 if (LC.Cond != ISD::SETCC_INVALID)
251 setCmpLibcallCC(LC.Op, LC.Cond);
254 if (STI.hasHWMult16()) {
255 const struct {
256 const RTLIB::Libcall Op;
257 const char * const Name;
258 } LibraryCalls[] = {
259 // Integer Multiply - EABI Table 9
260 { RTLIB::MUL_I16, "__mspabi_mpyi_hw" },
261 { RTLIB::MUL_I32, "__mspabi_mpyl_hw" },
262 { RTLIB::MUL_I64, "__mspabi_mpyll_hw" },
263 // TODO The __mspabi_mpysl*_hw functions ARE implemented in libgcc
264 // TODO The __mspabi_mpyul*_hw functions ARE implemented in libgcc
266 for (const auto &LC : LibraryCalls) {
267 setLibcallName(LC.Op, LC.Name);
269 } else if (STI.hasHWMult32()) {
270 const struct {
271 const RTLIB::Libcall Op;
272 const char * const Name;
273 } LibraryCalls[] = {
274 // Integer Multiply - EABI Table 9
275 { RTLIB::MUL_I16, "__mspabi_mpyi_hw" },
276 { RTLIB::MUL_I32, "__mspabi_mpyl_hw32" },
277 { RTLIB::MUL_I64, "__mspabi_mpyll_hw32" },
278 // TODO The __mspabi_mpysl*_hw32 functions ARE implemented in libgcc
279 // TODO The __mspabi_mpyul*_hw32 functions ARE implemented in libgcc
281 for (const auto &LC : LibraryCalls) {
282 setLibcallName(LC.Op, LC.Name);
284 } else if (STI.hasHWMultF5()) {
285 const struct {
286 const RTLIB::Libcall Op;
287 const char * const Name;
288 } LibraryCalls[] = {
289 // Integer Multiply - EABI Table 9
290 { RTLIB::MUL_I16, "__mspabi_mpyi_f5hw" },
291 { RTLIB::MUL_I32, "__mspabi_mpyl_f5hw" },
292 { RTLIB::MUL_I64, "__mspabi_mpyll_f5hw" },
293 // TODO The __mspabi_mpysl*_f5hw functions ARE implemented in libgcc
294 // TODO The __mspabi_mpyul*_f5hw functions ARE implemented in libgcc
296 for (const auto &LC : LibraryCalls) {
297 setLibcallName(LC.Op, LC.Name);
299 } else { // NoHWMult
300 const struct {
301 const RTLIB::Libcall Op;
302 const char * const Name;
303 } LibraryCalls[] = {
304 // Integer Multiply - EABI Table 9
305 { RTLIB::MUL_I16, "__mspabi_mpyi" },
306 { RTLIB::MUL_I32, "__mspabi_mpyl" },
307 { RTLIB::MUL_I64, "__mspabi_mpyll" },
308 // The __mspabi_mpysl* functions are NOT implemented in libgcc
309 // The __mspabi_mpyul* functions are NOT implemented in libgcc
311 for (const auto &LC : LibraryCalls) {
312 setLibcallName(LC.Op, LC.Name);
314 setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::MSP430_BUILTIN);
317 // Several of the runtime library functions use a special calling conv
318 setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::MSP430_BUILTIN);
319 setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::MSP430_BUILTIN);
320 setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::MSP430_BUILTIN);
321 setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::MSP430_BUILTIN);
322 setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::MSP430_BUILTIN);
323 setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::MSP430_BUILTIN);
324 setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::MSP430_BUILTIN);
325 setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::MSP430_BUILTIN);
326 setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::MSP430_BUILTIN);
327 setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::MSP430_BUILTIN);
328 setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::MSP430_BUILTIN);
329 setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::MSP430_BUILTIN);
330 setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::MSP430_BUILTIN);
331 setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::MSP430_BUILTIN);
332 // TODO: __mspabi_srall, __mspabi_srlll, __mspabi_sllll
334 setMinFunctionAlignment(Align(2));
335 setPrefFunctionAlignment(Align(2));
336 setMaxAtomicSizeInBitsSupported(0);
339 SDValue MSP430TargetLowering::LowerOperation(SDValue Op,
340 SelectionDAG &DAG) const {
341 switch (Op.getOpcode()) {
342 case ISD::SHL: // FALLTHROUGH
343 case ISD::SRL:
344 case ISD::SRA: return LowerShifts(Op, DAG);
345 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
346 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
347 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
348 case ISD::SETCC: return LowerSETCC(Op, DAG);
349 case ISD::BR_CC: return LowerBR_CC(Op, DAG);
350 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
351 case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, DAG);
352 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
353 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
354 case ISD::VASTART: return LowerVASTART(Op, DAG);
355 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
356 default:
357 llvm_unreachable("unimplemented operand");
361 // Define non profitable transforms into shifts
362 bool MSP430TargetLowering::shouldAvoidTransformToShift(EVT VT,
363 unsigned Amount) const {
364 return !(Amount == 8 || Amount == 9 || Amount<=2);
367 // Implemented to verify test case assertions in
368 // tests/codegen/msp430/shift-amount-threshold-b.ll
369 bool MSP430TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
370 if (MSP430NoLegalImmediate)
371 return Immed >= -32 && Immed < 32;
372 return TargetLowering::isLegalICmpImmediate(Immed);
375 //===----------------------------------------------------------------------===//
376 // MSP430 Inline Assembly Support
377 //===----------------------------------------------------------------------===//
379 /// getConstraintType - Given a constraint letter, return the type of
380 /// constraint it is for this target.
381 TargetLowering::ConstraintType
382 MSP430TargetLowering::getConstraintType(StringRef Constraint) const {
383 if (Constraint.size() == 1) {
384 switch (Constraint[0]) {
385 case 'r':
386 return C_RegisterClass;
387 default:
388 break;
391 return TargetLowering::getConstraintType(Constraint);
394 std::pair<unsigned, const TargetRegisterClass *>
395 MSP430TargetLowering::getRegForInlineAsmConstraint(
396 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
397 if (Constraint.size() == 1) {
398 // GCC Constraint Letters
399 switch (Constraint[0]) {
400 default: break;
401 case 'r': // GENERAL_REGS
402 if (VT == MVT::i8)
403 return std::make_pair(0U, &MSP430::GR8RegClass);
405 return std::make_pair(0U, &MSP430::GR16RegClass);
409 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
412 //===----------------------------------------------------------------------===//
413 // Calling Convention Implementation
414 //===----------------------------------------------------------------------===//
416 #include "MSP430GenCallingConv.inc"
418 /// For each argument in a function store the number of pieces it is composed
419 /// of.
420 template<typename ArgT>
421 static void ParseFunctionArgs(const SmallVectorImpl<ArgT> &Args,
422 SmallVectorImpl<unsigned> &Out) {
423 unsigned CurrentArgIndex;
425 if (Args.empty())
426 return;
428 CurrentArgIndex = Args[0].OrigArgIndex;
429 Out.push_back(0);
431 for (auto &Arg : Args) {
432 if (CurrentArgIndex == Arg.OrigArgIndex) {
433 Out.back() += 1;
434 } else {
435 Out.push_back(1);
436 CurrentArgIndex = Arg.OrigArgIndex;
441 static void AnalyzeVarArgs(CCState &State,
442 const SmallVectorImpl<ISD::OutputArg> &Outs) {
443 State.AnalyzeCallOperands(Outs, CC_MSP430_AssignStack);
446 static void AnalyzeVarArgs(CCState &State,
447 const SmallVectorImpl<ISD::InputArg> &Ins) {
448 State.AnalyzeFormalArguments(Ins, CC_MSP430_AssignStack);
451 /// Analyze incoming and outgoing function arguments. We need custom C++ code
452 /// to handle special constraints in the ABI like reversing the order of the
453 /// pieces of splitted arguments. In addition, all pieces of a certain argument
454 /// have to be passed either using registers or the stack but never mixing both.
455 template<typename ArgT>
456 static void AnalyzeArguments(CCState &State,
457 SmallVectorImpl<CCValAssign> &ArgLocs,
458 const SmallVectorImpl<ArgT> &Args) {
459 static const MCPhysReg CRegList[] = {
460 MSP430::R12, MSP430::R13, MSP430::R14, MSP430::R15
462 static const unsigned CNbRegs = std::size(CRegList);
463 static const MCPhysReg BuiltinRegList[] = {
464 MSP430::R8, MSP430::R9, MSP430::R10, MSP430::R11,
465 MSP430::R12, MSP430::R13, MSP430::R14, MSP430::R15
467 static const unsigned BuiltinNbRegs = std::size(BuiltinRegList);
469 ArrayRef<MCPhysReg> RegList;
470 unsigned NbRegs;
472 bool Builtin = (State.getCallingConv() == CallingConv::MSP430_BUILTIN);
473 if (Builtin) {
474 RegList = BuiltinRegList;
475 NbRegs = BuiltinNbRegs;
476 } else {
477 RegList = CRegList;
478 NbRegs = CNbRegs;
481 if (State.isVarArg()) {
482 AnalyzeVarArgs(State, Args);
483 return;
486 SmallVector<unsigned, 4> ArgsParts;
487 ParseFunctionArgs(Args, ArgsParts);
489 if (Builtin) {
490 assert(ArgsParts.size() == 2 &&
491 "Builtin calling convention requires two arguments");
494 unsigned RegsLeft = NbRegs;
495 bool UsedStack = false;
496 unsigned ValNo = 0;
498 for (unsigned i = 0, e = ArgsParts.size(); i != e; i++) {
499 MVT ArgVT = Args[ValNo].VT;
500 ISD::ArgFlagsTy ArgFlags = Args[ValNo].Flags;
501 MVT LocVT = ArgVT;
502 CCValAssign::LocInfo LocInfo = CCValAssign::Full;
504 // Promote i8 to i16
505 if (LocVT == MVT::i8) {
506 LocVT = MVT::i16;
507 if (ArgFlags.isSExt())
508 LocInfo = CCValAssign::SExt;
509 else if (ArgFlags.isZExt())
510 LocInfo = CCValAssign::ZExt;
511 else
512 LocInfo = CCValAssign::AExt;
515 // Handle byval arguments
516 if (ArgFlags.isByVal()) {
517 State.HandleByVal(ValNo++, ArgVT, LocVT, LocInfo, 2, Align(2), ArgFlags);
518 continue;
521 unsigned Parts = ArgsParts[i];
523 if (Builtin) {
524 assert(Parts == 4 &&
525 "Builtin calling convention requires 64-bit arguments");
528 if (!UsedStack && Parts == 2 && RegsLeft == 1) {
529 // Special case for 32-bit register split, see EABI section 3.3.3
530 unsigned Reg = State.AllocateReg(RegList);
531 State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo));
532 RegsLeft -= 1;
534 UsedStack = true;
535 CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State);
536 } else if (Parts <= RegsLeft) {
537 for (unsigned j = 0; j < Parts; j++) {
538 unsigned Reg = State.AllocateReg(RegList);
539 State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo));
540 RegsLeft--;
542 } else {
543 UsedStack = true;
544 for (unsigned j = 0; j < Parts; j++)
545 CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State);
550 static void AnalyzeRetResult(CCState &State,
551 const SmallVectorImpl<ISD::InputArg> &Ins) {
552 State.AnalyzeCallResult(Ins, RetCC_MSP430);
555 static void AnalyzeRetResult(CCState &State,
556 const SmallVectorImpl<ISD::OutputArg> &Outs) {
557 State.AnalyzeReturn(Outs, RetCC_MSP430);
560 template<typename ArgT>
561 static void AnalyzeReturnValues(CCState &State,
562 SmallVectorImpl<CCValAssign> &RVLocs,
563 const SmallVectorImpl<ArgT> &Args) {
564 AnalyzeRetResult(State, Args);
567 SDValue MSP430TargetLowering::LowerFormalArguments(
568 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
569 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
570 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
572 switch (CallConv) {
573 default:
574 report_fatal_error("Unsupported calling convention");
575 case CallingConv::C:
576 case CallingConv::Fast:
577 return LowerCCCArguments(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals);
578 case CallingConv::MSP430_INTR:
579 if (Ins.empty())
580 return Chain;
581 report_fatal_error("ISRs cannot have arguments");
585 SDValue
586 MSP430TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
587 SmallVectorImpl<SDValue> &InVals) const {
588 SelectionDAG &DAG = CLI.DAG;
589 SDLoc &dl = CLI.DL;
590 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
591 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
592 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
593 SDValue Chain = CLI.Chain;
594 SDValue Callee = CLI.Callee;
595 bool &isTailCall = CLI.IsTailCall;
596 CallingConv::ID CallConv = CLI.CallConv;
597 bool isVarArg = CLI.IsVarArg;
599 // MSP430 target does not yet support tail call optimization.
600 isTailCall = false;
602 switch (CallConv) {
603 default:
604 report_fatal_error("Unsupported calling convention");
605 case CallingConv::MSP430_BUILTIN:
606 case CallingConv::Fast:
607 case CallingConv::C:
608 return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
609 Outs, OutVals, Ins, dl, DAG, InVals);
610 case CallingConv::MSP430_INTR:
611 report_fatal_error("ISRs cannot be called directly");
615 /// LowerCCCArguments - transform physical registers into virtual registers and
616 /// generate load operations for arguments places on the stack.
617 // FIXME: struct return stuff
618 SDValue MSP430TargetLowering::LowerCCCArguments(
619 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
620 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
621 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
622 MachineFunction &MF = DAG.getMachineFunction();
623 MachineFrameInfo &MFI = MF.getFrameInfo();
624 MachineRegisterInfo &RegInfo = MF.getRegInfo();
625 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
627 // Assign locations to all of the incoming arguments.
628 SmallVector<CCValAssign, 16> ArgLocs;
629 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
630 *DAG.getContext());
631 AnalyzeArguments(CCInfo, ArgLocs, Ins);
633 // Create frame index for the start of the first vararg value
634 if (isVarArg) {
635 unsigned Offset = CCInfo.getStackSize();
636 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, Offset, true));
639 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
640 CCValAssign &VA = ArgLocs[i];
641 if (VA.isRegLoc()) {
642 // Arguments passed in registers
643 EVT RegVT = VA.getLocVT();
644 switch (RegVT.getSimpleVT().SimpleTy) {
645 default:
647 #ifndef NDEBUG
648 errs() << "LowerFormalArguments Unhandled argument type: "
649 << RegVT << "\n";
650 #endif
651 llvm_unreachable(nullptr);
653 case MVT::i16:
654 Register VReg = RegInfo.createVirtualRegister(&MSP430::GR16RegClass);
655 RegInfo.addLiveIn(VA.getLocReg(), VReg);
656 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
658 // If this is an 8-bit value, it is really passed promoted to 16
659 // bits. Insert an assert[sz]ext to capture this, then truncate to the
660 // right size.
661 if (VA.getLocInfo() == CCValAssign::SExt)
662 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
663 DAG.getValueType(VA.getValVT()));
664 else if (VA.getLocInfo() == CCValAssign::ZExt)
665 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
666 DAG.getValueType(VA.getValVT()));
668 if (VA.getLocInfo() != CCValAssign::Full)
669 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
671 InVals.push_back(ArgValue);
673 } else {
674 // Only arguments passed on the stack should make it here.
675 assert(VA.isMemLoc());
677 SDValue InVal;
678 ISD::ArgFlagsTy Flags = Ins[i].Flags;
680 if (Flags.isByVal()) {
681 MVT PtrVT = VA.getLocVT();
682 int FI = MFI.CreateFixedObject(Flags.getByValSize(),
683 VA.getLocMemOffset(), true);
684 InVal = DAG.getFrameIndex(FI, PtrVT);
685 } else {
686 // Load the argument to a virtual register
687 unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
688 if (ObjSize > 2) {
689 errs() << "LowerFormalArguments Unhandled argument type: "
690 << VA.getLocVT() << "\n";
692 // Create the frame index object for this incoming parameter...
693 int FI = MFI.CreateFixedObject(ObjSize, VA.getLocMemOffset(), true);
695 // Create the SelectionDAG nodes corresponding to a load
696 //from this parameter
697 SDValue FIN = DAG.getFrameIndex(FI, MVT::i16);
698 InVal = DAG.getLoad(
699 VA.getLocVT(), dl, Chain, FIN,
700 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
703 InVals.push_back(InVal);
707 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
708 if (Ins[i].Flags.isSRet()) {
709 Register Reg = FuncInfo->getSRetReturnReg();
710 if (!Reg) {
711 Reg = MF.getRegInfo().createVirtualRegister(
712 getRegClassFor(MVT::i16));
713 FuncInfo->setSRetReturnReg(Reg);
715 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[i]);
716 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
720 return Chain;
723 bool
724 MSP430TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
725 MachineFunction &MF,
726 bool IsVarArg,
727 const SmallVectorImpl<ISD::OutputArg> &Outs,
728 LLVMContext &Context) const {
729 SmallVector<CCValAssign, 16> RVLocs;
730 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
731 return CCInfo.CheckReturn(Outs, RetCC_MSP430);
734 SDValue
735 MSP430TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
736 bool isVarArg,
737 const SmallVectorImpl<ISD::OutputArg> &Outs,
738 const SmallVectorImpl<SDValue> &OutVals,
739 const SDLoc &dl, SelectionDAG &DAG) const {
741 MachineFunction &MF = DAG.getMachineFunction();
743 // CCValAssign - represent the assignment of the return value to a location
744 SmallVector<CCValAssign, 16> RVLocs;
746 // ISRs cannot return any value.
747 if (CallConv == CallingConv::MSP430_INTR && !Outs.empty())
748 report_fatal_error("ISRs cannot return any value");
750 // CCState - Info about the registers and stack slot.
751 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
752 *DAG.getContext());
754 // Analize return values.
755 AnalyzeReturnValues(CCInfo, RVLocs, Outs);
757 SDValue Glue;
758 SmallVector<SDValue, 4> RetOps(1, Chain);
760 // Copy the result values into the output registers.
761 for (unsigned i = 0; i != RVLocs.size(); ++i) {
762 CCValAssign &VA = RVLocs[i];
763 assert(VA.isRegLoc() && "Can only return in registers!");
765 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
766 OutVals[i], Glue);
768 // Guarantee that all emitted copies are stuck together,
769 // avoiding something bad.
770 Glue = Chain.getValue(1);
771 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
774 if (MF.getFunction().hasStructRetAttr()) {
775 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
776 Register Reg = FuncInfo->getSRetReturnReg();
778 if (!Reg)
779 llvm_unreachable("sret virtual register not created in entry block");
781 MVT PtrVT = getFrameIndexTy(DAG.getDataLayout());
782 SDValue Val =
783 DAG.getCopyFromReg(Chain, dl, Reg, PtrVT);
784 unsigned R12 = MSP430::R12;
786 Chain = DAG.getCopyToReg(Chain, dl, R12, Val, Glue);
787 Glue = Chain.getValue(1);
788 RetOps.push_back(DAG.getRegister(R12, PtrVT));
791 unsigned Opc = (CallConv == CallingConv::MSP430_INTR ?
792 MSP430ISD::RETI_GLUE : MSP430ISD::RET_GLUE);
794 RetOps[0] = Chain; // Update chain.
796 // Add the glue if we have it.
797 if (Glue.getNode())
798 RetOps.push_back(Glue);
800 return DAG.getNode(Opc, dl, MVT::Other, RetOps);
803 /// LowerCCCCallTo - functions arguments are copied from virtual regs to
804 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
805 SDValue MSP430TargetLowering::LowerCCCCallTo(
806 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
807 bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs,
808 const SmallVectorImpl<SDValue> &OutVals,
809 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
810 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
811 // Analyze operands of the call, assigning locations to each operand.
812 SmallVector<CCValAssign, 16> ArgLocs;
813 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
814 *DAG.getContext());
815 AnalyzeArguments(CCInfo, ArgLocs, Outs);
817 // Get a count of how many bytes are to be pushed on the stack.
818 unsigned NumBytes = CCInfo.getStackSize();
819 MVT PtrVT = getFrameIndexTy(DAG.getDataLayout());
821 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
823 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
824 SmallVector<SDValue, 12> MemOpChains;
825 SDValue StackPtr;
827 // Walk the register/memloc assignments, inserting copies/loads.
828 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
829 CCValAssign &VA = ArgLocs[i];
831 SDValue Arg = OutVals[i];
833 // Promote the value if needed.
834 switch (VA.getLocInfo()) {
835 default: llvm_unreachable("Unknown loc info!");
836 case CCValAssign::Full: break;
837 case CCValAssign::SExt:
838 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
839 break;
840 case CCValAssign::ZExt:
841 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
842 break;
843 case CCValAssign::AExt:
844 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
845 break;
848 // Arguments that can be passed on register must be kept at RegsToPass
849 // vector
850 if (VA.isRegLoc()) {
851 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
852 } else {
853 assert(VA.isMemLoc());
855 if (!StackPtr.getNode())
856 StackPtr = DAG.getCopyFromReg(Chain, dl, MSP430::SP, PtrVT);
858 SDValue PtrOff =
859 DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
860 DAG.getIntPtrConstant(VA.getLocMemOffset(), dl));
862 SDValue MemOp;
863 ISD::ArgFlagsTy Flags = Outs[i].Flags;
865 if (Flags.isByVal()) {
866 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i16);
867 MemOp = DAG.getMemcpy(
868 Chain, dl, PtrOff, Arg, SizeNode, Flags.getNonZeroByValAlign(),
869 /*isVolatile*/ false,
870 /*AlwaysInline=*/true,
871 /*isTailCall=*/false, MachinePointerInfo(), MachinePointerInfo());
872 } else {
873 MemOp = DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
876 MemOpChains.push_back(MemOp);
880 // Transform all store nodes into one single node because all store nodes are
881 // independent of each other.
882 if (!MemOpChains.empty())
883 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
885 // Build a sequence of copy-to-reg nodes chained together with token chain and
886 // flag operands which copy the outgoing args into registers. The InGlue in
887 // necessary since all emitted instructions must be stuck together.
888 SDValue InGlue;
889 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
890 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
891 RegsToPass[i].second, InGlue);
892 InGlue = Chain.getValue(1);
895 // If the callee is a GlobalAddress node (quite common, every direct call is)
896 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
897 // Likewise ExternalSymbol -> TargetExternalSymbol.
898 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
899 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i16);
900 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
901 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i16);
903 // Returns a chain & a flag for retval copy to use.
904 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
905 SmallVector<SDValue, 8> Ops;
906 Ops.push_back(Chain);
907 Ops.push_back(Callee);
909 // Add argument registers to the end of the list so that they are
910 // known live into the call.
911 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
912 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
913 RegsToPass[i].second.getValueType()));
915 if (InGlue.getNode())
916 Ops.push_back(InGlue);
918 Chain = DAG.getNode(MSP430ISD::CALL, dl, NodeTys, Ops);
919 InGlue = Chain.getValue(1);
921 // Create the CALLSEQ_END node.
922 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, dl);
923 InGlue = Chain.getValue(1);
925 // Handle result values, copying them out of physregs into vregs that we
926 // return.
927 return LowerCallResult(Chain, InGlue, CallConv, isVarArg, Ins, dl,
928 DAG, InVals);
931 /// LowerCallResult - Lower the result values of a call into the
932 /// appropriate copies out of appropriate physical registers.
934 SDValue MSP430TargetLowering::LowerCallResult(
935 SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool isVarArg,
936 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
937 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
939 // Assign locations to each value returned by this call.
940 SmallVector<CCValAssign, 16> RVLocs;
941 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
942 *DAG.getContext());
944 AnalyzeReturnValues(CCInfo, RVLocs, Ins);
946 // Copy all of the result registers out of their specified physreg.
947 for (unsigned i = 0; i != RVLocs.size(); ++i) {
948 Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
949 RVLocs[i].getValVT(), InGlue).getValue(1);
950 InGlue = Chain.getValue(2);
951 InVals.push_back(Chain.getValue(0));
954 return Chain;
957 SDValue MSP430TargetLowering::LowerShifts(SDValue Op,
958 SelectionDAG &DAG) const {
959 unsigned Opc = Op.getOpcode();
960 SDNode* N = Op.getNode();
961 EVT VT = Op.getValueType();
962 SDLoc dl(N);
964 // Expand non-constant shifts to loops:
965 if (!isa<ConstantSDNode>(N->getOperand(1)))
966 return Op;
968 uint64_t ShiftAmount = N->getConstantOperandVal(1);
970 // Expand the stuff into sequence of shifts.
971 SDValue Victim = N->getOperand(0);
973 if (ShiftAmount >= 8) {
974 assert(VT == MVT::i16 && "Can not shift i8 by 8 and more");
975 switch(Opc) {
976 default:
977 llvm_unreachable("Unknown shift");
978 case ISD::SHL:
979 // foo << (8 + N) => swpb(zext(foo)) << N
980 Victim = DAG.getZeroExtendInReg(Victim, dl, MVT::i8);
981 Victim = DAG.getNode(ISD::BSWAP, dl, VT, Victim);
982 break;
983 case ISD::SRA:
984 case ISD::SRL:
985 // foo >> (8 + N) => sxt(swpb(foo)) >> N
986 Victim = DAG.getNode(ISD::BSWAP, dl, VT, Victim);
987 Victim = (Opc == ISD::SRA)
988 ? DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Victim,
989 DAG.getValueType(MVT::i8))
990 : DAG.getZeroExtendInReg(Victim, dl, MVT::i8);
991 break;
993 ShiftAmount -= 8;
996 if (Opc == ISD::SRL && ShiftAmount) {
997 // Emit a special goodness here:
998 // srl A, 1 => clrc; rrc A
999 Victim = DAG.getNode(MSP430ISD::RRCL, dl, VT, Victim);
1000 ShiftAmount -= 1;
1003 while (ShiftAmount--)
1004 Victim = DAG.getNode((Opc == ISD::SHL ? MSP430ISD::RLA : MSP430ISD::RRA),
1005 dl, VT, Victim);
1007 return Victim;
1010 SDValue MSP430TargetLowering::LowerGlobalAddress(SDValue Op,
1011 SelectionDAG &DAG) const {
1012 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1013 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
1014 EVT PtrVT = Op.getValueType();
1016 // Create the TargetGlobalAddress node, folding in the constant offset.
1017 SDValue Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op), PtrVT, Offset);
1018 return DAG.getNode(MSP430ISD::Wrapper, SDLoc(Op), PtrVT, Result);
1021 SDValue MSP430TargetLowering::LowerExternalSymbol(SDValue Op,
1022 SelectionDAG &DAG) const {
1023 SDLoc dl(Op);
1024 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
1025 EVT PtrVT = Op.getValueType();
1026 SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT);
1028 return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result);
1031 SDValue MSP430TargetLowering::LowerBlockAddress(SDValue Op,
1032 SelectionDAG &DAG) const {
1033 SDLoc dl(Op);
1034 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1035 EVT PtrVT = Op.getValueType();
1036 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
1038 return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result);
1041 static SDValue EmitCMP(SDValue &LHS, SDValue &RHS, SDValue &TargetCC,
1042 ISD::CondCode CC, const SDLoc &dl, SelectionDAG &DAG) {
1043 // FIXME: Handle bittests someday
1044 assert(!LHS.getValueType().isFloatingPoint() && "We don't handle FP yet");
1046 // FIXME: Handle jump negative someday
1047 MSP430CC::CondCodes TCC = MSP430CC::COND_INVALID;
1048 switch (CC) {
1049 default: llvm_unreachable("Invalid integer condition!");
1050 case ISD::SETEQ:
1051 TCC = MSP430CC::COND_E; // aka COND_Z
1052 // Minor optimization: if LHS is a constant, swap operands, then the
1053 // constant can be folded into comparison.
1054 if (LHS.getOpcode() == ISD::Constant)
1055 std::swap(LHS, RHS);
1056 break;
1057 case ISD::SETNE:
1058 TCC = MSP430CC::COND_NE; // aka COND_NZ
1059 // Minor optimization: if LHS is a constant, swap operands, then the
1060 // constant can be folded into comparison.
1061 if (LHS.getOpcode() == ISD::Constant)
1062 std::swap(LHS, RHS);
1063 break;
1064 case ISD::SETULE:
1065 std::swap(LHS, RHS);
1066 [[fallthrough]];
1067 case ISD::SETUGE:
1068 // Turn lhs u>= rhs with lhs constant into rhs u< lhs+1, this allows us to
1069 // fold constant into instruction.
1070 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
1071 LHS = RHS;
1072 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
1073 TCC = MSP430CC::COND_LO;
1074 break;
1076 TCC = MSP430CC::COND_HS; // aka COND_C
1077 break;
1078 case ISD::SETUGT:
1079 std::swap(LHS, RHS);
1080 [[fallthrough]];
1081 case ISD::SETULT:
1082 // Turn lhs u< rhs with lhs constant into rhs u>= lhs+1, this allows us to
1083 // fold constant into instruction.
1084 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
1085 LHS = RHS;
1086 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
1087 TCC = MSP430CC::COND_HS;
1088 break;
1090 TCC = MSP430CC::COND_LO; // aka COND_NC
1091 break;
1092 case ISD::SETLE:
1093 std::swap(LHS, RHS);
1094 [[fallthrough]];
1095 case ISD::SETGE:
1096 // Turn lhs >= rhs with lhs constant into rhs < lhs+1, this allows us to
1097 // fold constant into instruction.
1098 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
1099 LHS = RHS;
1100 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
1101 TCC = MSP430CC::COND_L;
1102 break;
1104 TCC = MSP430CC::COND_GE;
1105 break;
1106 case ISD::SETGT:
1107 std::swap(LHS, RHS);
1108 [[fallthrough]];
1109 case ISD::SETLT:
1110 // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
1111 // fold constant into instruction.
1112 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
1113 LHS = RHS;
1114 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
1115 TCC = MSP430CC::COND_GE;
1116 break;
1118 TCC = MSP430CC::COND_L;
1119 break;
1122 TargetCC = DAG.getConstant(TCC, dl, MVT::i8);
1123 return DAG.getNode(MSP430ISD::CMP, dl, MVT::Glue, LHS, RHS);
1127 SDValue MSP430TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1128 SDValue Chain = Op.getOperand(0);
1129 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1130 SDValue LHS = Op.getOperand(2);
1131 SDValue RHS = Op.getOperand(3);
1132 SDValue Dest = Op.getOperand(4);
1133 SDLoc dl (Op);
1135 SDValue TargetCC;
1136 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
1138 return DAG.getNode(MSP430ISD::BR_CC, dl, Op.getValueType(),
1139 Chain, Dest, TargetCC, Flag);
1142 SDValue MSP430TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1143 SDValue LHS = Op.getOperand(0);
1144 SDValue RHS = Op.getOperand(1);
1145 SDLoc dl (Op);
1147 // If we are doing an AND and testing against zero, then the CMP
1148 // will not be generated. The AND (or BIT) will generate the condition codes,
1149 // but they are different from CMP.
1150 // FIXME: since we're doing a post-processing, use a pseudoinstr here, so
1151 // lowering & isel wouldn't diverge.
1152 bool andCC = isNullConstant(RHS) && LHS.hasOneUse() &&
1153 (LHS.getOpcode() == ISD::AND ||
1154 (LHS.getOpcode() == ISD::TRUNCATE &&
1155 LHS.getOperand(0).getOpcode() == ISD::AND));
1156 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1157 SDValue TargetCC;
1158 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
1160 // Get the condition codes directly from the status register, if its easy.
1161 // Otherwise a branch will be generated. Note that the AND and BIT
1162 // instructions generate different flags than CMP, the carry bit can be used
1163 // for NE/EQ.
1164 bool Invert = false;
1165 bool Shift = false;
1166 bool Convert = true;
1167 switch (TargetCC->getAsZExtVal()) {
1168 default:
1169 Convert = false;
1170 break;
1171 case MSP430CC::COND_HS:
1172 // Res = SR & 1, no processing is required
1173 break;
1174 case MSP430CC::COND_LO:
1175 // Res = ~(SR & 1)
1176 Invert = true;
1177 break;
1178 case MSP430CC::COND_NE:
1179 if (andCC) {
1180 // C = ~Z, thus Res = SR & 1, no processing is required
1181 } else {
1182 // Res = ~((SR >> 1) & 1)
1183 Shift = true;
1184 Invert = true;
1186 break;
1187 case MSP430CC::COND_E:
1188 Shift = true;
1189 // C = ~Z for AND instruction, thus we can put Res = ~(SR & 1), however,
1190 // Res = (SR >> 1) & 1 is 1 word shorter.
1191 break;
1193 EVT VT = Op.getValueType();
1194 SDValue One = DAG.getConstant(1, dl, VT);
1195 if (Convert) {
1196 SDValue SR = DAG.getCopyFromReg(DAG.getEntryNode(), dl, MSP430::SR,
1197 MVT::i16, Flag);
1198 if (Shift)
1199 // FIXME: somewhere this is turned into a SRL, lower it MSP specific?
1200 SR = DAG.getNode(ISD::SRA, dl, MVT::i16, SR, One);
1201 SR = DAG.getNode(ISD::AND, dl, MVT::i16, SR, One);
1202 if (Invert)
1203 SR = DAG.getNode(ISD::XOR, dl, MVT::i16, SR, One);
1204 return SR;
1205 } else {
1206 SDValue Zero = DAG.getConstant(0, dl, VT);
1207 SDValue Ops[] = {One, Zero, TargetCC, Flag};
1208 return DAG.getNode(MSP430ISD::SELECT_CC, dl, Op.getValueType(), Ops);
1212 SDValue MSP430TargetLowering::LowerSELECT_CC(SDValue Op,
1213 SelectionDAG &DAG) const {
1214 SDValue LHS = Op.getOperand(0);
1215 SDValue RHS = Op.getOperand(1);
1216 SDValue TrueV = Op.getOperand(2);
1217 SDValue FalseV = Op.getOperand(3);
1218 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1219 SDLoc dl (Op);
1221 SDValue TargetCC;
1222 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
1224 SDValue Ops[] = {TrueV, FalseV, TargetCC, Flag};
1226 return DAG.getNode(MSP430ISD::SELECT_CC, dl, Op.getValueType(), Ops);
1229 SDValue MSP430TargetLowering::LowerSIGN_EXTEND(SDValue Op,
1230 SelectionDAG &DAG) const {
1231 SDValue Val = Op.getOperand(0);
1232 EVT VT = Op.getValueType();
1233 SDLoc dl(Op);
1235 assert(VT == MVT::i16 && "Only support i16 for now!");
1237 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT,
1238 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Val),
1239 DAG.getValueType(Val.getValueType()));
1242 SDValue
1243 MSP430TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
1244 MachineFunction &MF = DAG.getMachineFunction();
1245 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
1246 int ReturnAddrIndex = FuncInfo->getRAIndex();
1247 MVT PtrVT = getFrameIndexTy(MF.getDataLayout());
1249 if (ReturnAddrIndex == 0) {
1250 // Set up a frame object for the return address.
1251 uint64_t SlotSize = PtrVT.getStoreSize();
1252 ReturnAddrIndex = MF.getFrameInfo().CreateFixedObject(SlotSize, -SlotSize,
1253 true);
1254 FuncInfo->setRAIndex(ReturnAddrIndex);
1257 return DAG.getFrameIndex(ReturnAddrIndex, PtrVT);
1260 SDValue MSP430TargetLowering::LowerRETURNADDR(SDValue Op,
1261 SelectionDAG &DAG) const {
1262 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1263 MFI.setReturnAddressIsTaken(true);
1265 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1266 return SDValue();
1268 unsigned Depth = Op.getConstantOperandVal(0);
1269 SDLoc dl(Op);
1270 EVT PtrVT = Op.getValueType();
1272 if (Depth > 0) {
1273 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1274 SDValue Offset =
1275 DAG.getConstant(PtrVT.getStoreSize(), dl, MVT::i16);
1276 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1277 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
1278 MachinePointerInfo());
1281 // Just load the return address.
1282 SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
1283 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
1284 MachinePointerInfo());
1287 SDValue MSP430TargetLowering::LowerFRAMEADDR(SDValue Op,
1288 SelectionDAG &DAG) const {
1289 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1290 MFI.setFrameAddressIsTaken(true);
1292 EVT VT = Op.getValueType();
1293 SDLoc dl(Op); // FIXME probably not meaningful
1294 unsigned Depth = Op.getConstantOperandVal(0);
1295 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1296 MSP430::R4, VT);
1297 while (Depth--)
1298 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
1299 MachinePointerInfo());
1300 return FrameAddr;
1303 SDValue MSP430TargetLowering::LowerVASTART(SDValue Op,
1304 SelectionDAG &DAG) const {
1305 MachineFunction &MF = DAG.getMachineFunction();
1306 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
1308 SDValue Ptr = Op.getOperand(1);
1309 EVT PtrVT = Ptr.getValueType();
1311 // Frame index of first vararg argument
1312 SDValue FrameIndex =
1313 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1314 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1316 // Create a store of the frame index to the location operand
1317 return DAG.getStore(Op.getOperand(0), SDLoc(Op), FrameIndex, Ptr,
1318 MachinePointerInfo(SV));
1321 SDValue MSP430TargetLowering::LowerJumpTable(SDValue Op,
1322 SelectionDAG &DAG) const {
1323 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1324 EVT PtrVT = Op.getValueType();
1325 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1326 return DAG.getNode(MSP430ISD::Wrapper, SDLoc(JT), PtrVT, Result);
1329 /// getPostIndexedAddressParts - returns true by value, base pointer and
1330 /// offset pointer and addressing mode by reference if this node can be
1331 /// combined with a load / store to form a post-indexed load / store.
1332 bool MSP430TargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
1333 SDValue &Base,
1334 SDValue &Offset,
1335 ISD::MemIndexedMode &AM,
1336 SelectionDAG &DAG) const {
1338 LoadSDNode *LD = cast<LoadSDNode>(N);
1339 if (LD->getExtensionType() != ISD::NON_EXTLOAD)
1340 return false;
1342 EVT VT = LD->getMemoryVT();
1343 if (VT != MVT::i8 && VT != MVT::i16)
1344 return false;
1346 if (Op->getOpcode() != ISD::ADD)
1347 return false;
1349 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
1350 uint64_t RHSC = RHS->getZExtValue();
1351 if ((VT == MVT::i16 && RHSC != 2) ||
1352 (VT == MVT::i8 && RHSC != 1))
1353 return false;
1355 Base = Op->getOperand(0);
1356 Offset = DAG.getConstant(RHSC, SDLoc(N), VT);
1357 AM = ISD::POST_INC;
1358 return true;
1361 return false;
1365 const char *MSP430TargetLowering::getTargetNodeName(unsigned Opcode) const {
1366 switch ((MSP430ISD::NodeType)Opcode) {
1367 case MSP430ISD::FIRST_NUMBER: break;
1368 case MSP430ISD::RET_GLUE: return "MSP430ISD::RET_GLUE";
1369 case MSP430ISD::RETI_GLUE: return "MSP430ISD::RETI_GLUE";
1370 case MSP430ISD::RRA: return "MSP430ISD::RRA";
1371 case MSP430ISD::RLA: return "MSP430ISD::RLA";
1372 case MSP430ISD::RRC: return "MSP430ISD::RRC";
1373 case MSP430ISD::RRCL: return "MSP430ISD::RRCL";
1374 case MSP430ISD::CALL: return "MSP430ISD::CALL";
1375 case MSP430ISD::Wrapper: return "MSP430ISD::Wrapper";
1376 case MSP430ISD::BR_CC: return "MSP430ISD::BR_CC";
1377 case MSP430ISD::CMP: return "MSP430ISD::CMP";
1378 case MSP430ISD::SETCC: return "MSP430ISD::SETCC";
1379 case MSP430ISD::SELECT_CC: return "MSP430ISD::SELECT_CC";
1380 case MSP430ISD::DADD: return "MSP430ISD::DADD";
1382 return nullptr;
1385 bool MSP430TargetLowering::isTruncateFree(Type *Ty1,
1386 Type *Ty2) const {
1387 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
1388 return false;
1390 return (Ty1->getPrimitiveSizeInBits().getFixedValue() >
1391 Ty2->getPrimitiveSizeInBits().getFixedValue());
1394 bool MSP430TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
1395 if (!VT1.isInteger() || !VT2.isInteger())
1396 return false;
1398 return (VT1.getFixedSizeInBits() > VT2.getFixedSizeInBits());
1401 bool MSP430TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
1402 // MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
1403 return false && Ty1->isIntegerTy(8) && Ty2->isIntegerTy(16);
1406 bool MSP430TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
1407 // MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
1408 return false && VT1 == MVT::i8 && VT2 == MVT::i16;
1411 //===----------------------------------------------------------------------===//
1412 // Other Lowering Code
1413 //===----------------------------------------------------------------------===//
1415 MachineBasicBlock *
1416 MSP430TargetLowering::EmitShiftInstr(MachineInstr &MI,
1417 MachineBasicBlock *BB) const {
1418 MachineFunction *F = BB->getParent();
1419 MachineRegisterInfo &RI = F->getRegInfo();
1420 DebugLoc dl = MI.getDebugLoc();
1421 const TargetInstrInfo &TII = *F->getSubtarget().getInstrInfo();
1423 unsigned Opc;
1424 bool ClearCarry = false;
1425 const TargetRegisterClass * RC;
1426 switch (MI.getOpcode()) {
1427 default: llvm_unreachable("Invalid shift opcode!");
1428 case MSP430::Shl8:
1429 Opc = MSP430::ADD8rr;
1430 RC = &MSP430::GR8RegClass;
1431 break;
1432 case MSP430::Shl16:
1433 Opc = MSP430::ADD16rr;
1434 RC = &MSP430::GR16RegClass;
1435 break;
1436 case MSP430::Sra8:
1437 Opc = MSP430::RRA8r;
1438 RC = &MSP430::GR8RegClass;
1439 break;
1440 case MSP430::Sra16:
1441 Opc = MSP430::RRA16r;
1442 RC = &MSP430::GR16RegClass;
1443 break;
1444 case MSP430::Srl8:
1445 ClearCarry = true;
1446 Opc = MSP430::RRC8r;
1447 RC = &MSP430::GR8RegClass;
1448 break;
1449 case MSP430::Srl16:
1450 ClearCarry = true;
1451 Opc = MSP430::RRC16r;
1452 RC = &MSP430::GR16RegClass;
1453 break;
1454 case MSP430::Rrcl8:
1455 case MSP430::Rrcl16: {
1456 BuildMI(*BB, MI, dl, TII.get(MSP430::BIC16rc), MSP430::SR)
1457 .addReg(MSP430::SR).addImm(1);
1458 Register SrcReg = MI.getOperand(1).getReg();
1459 Register DstReg = MI.getOperand(0).getReg();
1460 unsigned RrcOpc = MI.getOpcode() == MSP430::Rrcl16
1461 ? MSP430::RRC16r : MSP430::RRC8r;
1462 BuildMI(*BB, MI, dl, TII.get(RrcOpc), DstReg)
1463 .addReg(SrcReg);
1464 MI.eraseFromParent(); // The pseudo instruction is gone now.
1465 return BB;
1469 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1470 MachineFunction::iterator I = ++BB->getIterator();
1472 // Create loop block
1473 MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
1474 MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB);
1476 F->insert(I, LoopBB);
1477 F->insert(I, RemBB);
1479 // Update machine-CFG edges by transferring all successors of the current
1480 // block to the block containing instructions after shift.
1481 RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
1482 BB->end());
1483 RemBB->transferSuccessorsAndUpdatePHIs(BB);
1485 // Add edges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB
1486 BB->addSuccessor(LoopBB);
1487 BB->addSuccessor(RemBB);
1488 LoopBB->addSuccessor(RemBB);
1489 LoopBB->addSuccessor(LoopBB);
1491 Register ShiftAmtReg = RI.createVirtualRegister(&MSP430::GR8RegClass);
1492 Register ShiftAmtReg2 = RI.createVirtualRegister(&MSP430::GR8RegClass);
1493 Register ShiftReg = RI.createVirtualRegister(RC);
1494 Register ShiftReg2 = RI.createVirtualRegister(RC);
1495 Register ShiftAmtSrcReg = MI.getOperand(2).getReg();
1496 Register SrcReg = MI.getOperand(1).getReg();
1497 Register DstReg = MI.getOperand(0).getReg();
1499 // BB:
1500 // cmp 0, N
1501 // je RemBB
1502 BuildMI(BB, dl, TII.get(MSP430::CMP8ri))
1503 .addReg(ShiftAmtSrcReg).addImm(0);
1504 BuildMI(BB, dl, TII.get(MSP430::JCC))
1505 .addMBB(RemBB)
1506 .addImm(MSP430CC::COND_E);
1508 // LoopBB:
1509 // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
1510 // ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB]
1511 // ShiftReg2 = shift ShiftReg
1512 // ShiftAmt2 = ShiftAmt - 1;
1513 BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftReg)
1514 .addReg(SrcReg).addMBB(BB)
1515 .addReg(ShiftReg2).addMBB(LoopBB);
1516 BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftAmtReg)
1517 .addReg(ShiftAmtSrcReg).addMBB(BB)
1518 .addReg(ShiftAmtReg2).addMBB(LoopBB);
1519 if (ClearCarry)
1520 BuildMI(LoopBB, dl, TII.get(MSP430::BIC16rc), MSP430::SR)
1521 .addReg(MSP430::SR).addImm(1);
1522 if (Opc == MSP430::ADD8rr || Opc == MSP430::ADD16rr)
1523 BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2)
1524 .addReg(ShiftReg)
1525 .addReg(ShiftReg);
1526 else
1527 BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2)
1528 .addReg(ShiftReg);
1529 BuildMI(LoopBB, dl, TII.get(MSP430::SUB8ri), ShiftAmtReg2)
1530 .addReg(ShiftAmtReg).addImm(1);
1531 BuildMI(LoopBB, dl, TII.get(MSP430::JCC))
1532 .addMBB(LoopBB)
1533 .addImm(MSP430CC::COND_NE);
1535 // RemBB:
1536 // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
1537 BuildMI(*RemBB, RemBB->begin(), dl, TII.get(MSP430::PHI), DstReg)
1538 .addReg(SrcReg).addMBB(BB)
1539 .addReg(ShiftReg2).addMBB(LoopBB);
1541 MI.eraseFromParent(); // The pseudo instruction is gone now.
1542 return RemBB;
1545 MachineBasicBlock *
1546 MSP430TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1547 MachineBasicBlock *BB) const {
1548 unsigned Opc = MI.getOpcode();
1550 if (Opc == MSP430::Shl8 || Opc == MSP430::Shl16 ||
1551 Opc == MSP430::Sra8 || Opc == MSP430::Sra16 ||
1552 Opc == MSP430::Srl8 || Opc == MSP430::Srl16 ||
1553 Opc == MSP430::Rrcl8 || Opc == MSP430::Rrcl16)
1554 return EmitShiftInstr(MI, BB);
1556 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
1557 DebugLoc dl = MI.getDebugLoc();
1559 assert((Opc == MSP430::Select16 || Opc == MSP430::Select8) &&
1560 "Unexpected instr type to insert");
1562 // To "insert" a SELECT instruction, we actually have to insert the diamond
1563 // control-flow pattern. The incoming instruction knows the destination vreg
1564 // to set, the condition code register to branch on, the true/false values to
1565 // select between, and a branch opcode to use.
1566 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1567 MachineFunction::iterator I = ++BB->getIterator();
1569 // thisMBB:
1570 // ...
1571 // TrueVal = ...
1572 // cmpTY ccX, r1, r2
1573 // jCC copy1MBB
1574 // fallthrough --> copy0MBB
1575 MachineBasicBlock *thisMBB = BB;
1576 MachineFunction *F = BB->getParent();
1577 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1578 MachineBasicBlock *copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);
1579 F->insert(I, copy0MBB);
1580 F->insert(I, copy1MBB);
1581 // Update machine-CFG edges by transferring all successors of the current
1582 // block to the new block which will contain the Phi node for the select.
1583 copy1MBB->splice(copy1MBB->begin(), BB,
1584 std::next(MachineBasicBlock::iterator(MI)), BB->end());
1585 copy1MBB->transferSuccessorsAndUpdatePHIs(BB);
1586 // Next, add the true and fallthrough blocks as its successors.
1587 BB->addSuccessor(copy0MBB);
1588 BB->addSuccessor(copy1MBB);
1590 BuildMI(BB, dl, TII.get(MSP430::JCC))
1591 .addMBB(copy1MBB)
1592 .addImm(MI.getOperand(3).getImm());
1594 // copy0MBB:
1595 // %FalseValue = ...
1596 // # fallthrough to copy1MBB
1597 BB = copy0MBB;
1599 // Update machine-CFG edges
1600 BB->addSuccessor(copy1MBB);
1602 // copy1MBB:
1603 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1604 // ...
1605 BB = copy1MBB;
1606 BuildMI(*BB, BB->begin(), dl, TII.get(MSP430::PHI), MI.getOperand(0).getReg())
1607 .addReg(MI.getOperand(2).getReg())
1608 .addMBB(copy0MBB)
1609 .addReg(MI.getOperand(1).getReg())
1610 .addMBB(thisMBB);
1612 MI.eraseFromParent(); // The pseudo instruction is gone now.
1613 return BB;