[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / lib / Target / NVPTX / NVPTXTargetMachine.cpp
blobfad69f5e80a7a8a47b604d58a83db269e2fab354
1 //===-- NVPTXTargetMachine.cpp - Define TargetMachine for NVPTX -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Top-level implementation for the NVPTX target.
11 //===----------------------------------------------------------------------===//
13 #include "NVPTXTargetMachine.h"
14 #include "NVPTX.h"
15 #include "NVPTXAliasAnalysis.h"
16 #include "NVPTXAllocaHoisting.h"
17 #include "NVPTXAtomicLower.h"
18 #include "NVPTXCtorDtorLowering.h"
19 #include "NVPTXLowerAggrCopies.h"
20 #include "NVPTXMachineFunctionInfo.h"
21 #include "NVPTXTargetObjectFile.h"
22 #include "NVPTXTargetTransformInfo.h"
23 #include "TargetInfo/NVPTXTargetInfo.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/CodeGen/TargetPassConfig.h"
28 #include "llvm/IR/IntrinsicsNVPTX.h"
29 #include "llvm/MC/TargetRegistry.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Passes/PassBuilder.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Target/TargetOptions.h"
35 #include "llvm/TargetParser/Triple.h"
36 #include "llvm/Transforms/Scalar.h"
37 #include "llvm/Transforms/Scalar/GVN.h"
38 #include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h"
39 #include <cassert>
40 #include <optional>
41 #include <string>
43 using namespace llvm;
45 // LSV is still relatively new; this switch lets us turn it off in case we
46 // encounter (or suspect) a bug.
47 static cl::opt<bool>
48 DisableLoadStoreVectorizer("disable-nvptx-load-store-vectorizer",
49 cl::desc("Disable load/store vectorizer"),
50 cl::init(false), cl::Hidden);
52 // TODO: Remove this flag when we are confident with no regressions.
53 static cl::opt<bool> DisableRequireStructuredCFG(
54 "disable-nvptx-require-structured-cfg",
55 cl::desc("Transitional flag to turn off NVPTX's requirement on preserving "
56 "structured CFG. The requirement should be disabled only when "
57 "unexpected regressions happen."),
58 cl::init(false), cl::Hidden);
60 static cl::opt<bool> UseShortPointersOpt(
61 "nvptx-short-ptr",
62 cl::desc(
63 "Use 32-bit pointers for accessing const/local/shared address spaces."),
64 cl::init(false), cl::Hidden);
66 namespace llvm {
68 void initializeGenericToNVVMLegacyPassPass(PassRegistry &);
69 void initializeNVPTXAllocaHoistingPass(PassRegistry &);
70 void initializeNVPTXAssignValidGlobalNamesPass(PassRegistry &);
71 void initializeNVPTXAtomicLowerPass(PassRegistry &);
72 void initializeNVPTXCtorDtorLoweringLegacyPass(PassRegistry &);
73 void initializeNVPTXLowerAggrCopiesPass(PassRegistry &);
74 void initializeNVPTXLowerAllocaPass(PassRegistry &);
75 void initializeNVPTXLowerUnreachablePass(PassRegistry &);
76 void initializeNVPTXCtorDtorLoweringLegacyPass(PassRegistry &);
77 void initializeNVPTXLowerArgsPass(PassRegistry &);
78 void initializeNVPTXProxyRegErasurePass(PassRegistry &);
79 void initializeNVVMIntrRangePass(PassRegistry &);
80 void initializeNVVMReflectPass(PassRegistry &);
81 void initializeNVPTXAAWrapperPassPass(PassRegistry &);
82 void initializeNVPTXExternalAAWrapperPass(PassRegistry &);
84 } // end namespace llvm
86 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeNVPTXTarget() {
87 // Register the target.
88 RegisterTargetMachine<NVPTXTargetMachine32> X(getTheNVPTXTarget32());
89 RegisterTargetMachine<NVPTXTargetMachine64> Y(getTheNVPTXTarget64());
91 PassRegistry &PR = *PassRegistry::getPassRegistry();
92 // FIXME: This pass is really intended to be invoked during IR optimization,
93 // but it's very NVPTX-specific.
94 initializeNVVMReflectPass(PR);
95 initializeNVVMIntrRangePass(PR);
96 initializeGenericToNVVMLegacyPassPass(PR);
97 initializeNVPTXAllocaHoistingPass(PR);
98 initializeNVPTXAssignValidGlobalNamesPass(PR);
99 initializeNVPTXAtomicLowerPass(PR);
100 initializeNVPTXLowerArgsPass(PR);
101 initializeNVPTXLowerAllocaPass(PR);
102 initializeNVPTXLowerUnreachablePass(PR);
103 initializeNVPTXCtorDtorLoweringLegacyPass(PR);
104 initializeNVPTXLowerAggrCopiesPass(PR);
105 initializeNVPTXProxyRegErasurePass(PR);
106 initializeNVPTXDAGToDAGISelPass(PR);
107 initializeNVPTXAAWrapperPassPass(PR);
108 initializeNVPTXExternalAAWrapperPass(PR);
111 static std::string computeDataLayout(bool is64Bit, bool UseShortPointers) {
112 std::string Ret = "e";
114 if (!is64Bit)
115 Ret += "-p:32:32";
116 else if (UseShortPointers)
117 Ret += "-p3:32:32-p4:32:32-p5:32:32";
119 Ret += "-i64:64-i128:128-v16:16-v32:32-n16:32:64";
121 return Ret;
124 NVPTXTargetMachine::NVPTXTargetMachine(const Target &T, const Triple &TT,
125 StringRef CPU, StringRef FS,
126 const TargetOptions &Options,
127 std::optional<Reloc::Model> RM,
128 std::optional<CodeModel::Model> CM,
129 CodeGenOptLevel OL, bool is64bit)
130 // The pic relocation model is used regardless of what the client has
131 // specified, as it is the only relocation model currently supported.
132 : LLVMTargetMachine(T, computeDataLayout(is64bit, UseShortPointersOpt), TT,
133 CPU, FS, Options, Reloc::PIC_,
134 getEffectiveCodeModel(CM, CodeModel::Small), OL),
135 is64bit(is64bit), UseShortPointers(UseShortPointersOpt),
136 TLOF(std::make_unique<NVPTXTargetObjectFile>()),
137 Subtarget(TT, std::string(CPU), std::string(FS), *this),
138 StrPool(StrAlloc) {
139 if (TT.getOS() == Triple::NVCL)
140 drvInterface = NVPTX::NVCL;
141 else
142 drvInterface = NVPTX::CUDA;
143 if (!DisableRequireStructuredCFG)
144 setRequiresStructuredCFG(true);
145 initAsmInfo();
148 NVPTXTargetMachine::~NVPTXTargetMachine() = default;
150 void NVPTXTargetMachine32::anchor() {}
152 NVPTXTargetMachine32::NVPTXTargetMachine32(const Target &T, const Triple &TT,
153 StringRef CPU, StringRef FS,
154 const TargetOptions &Options,
155 std::optional<Reloc::Model> RM,
156 std::optional<CodeModel::Model> CM,
157 CodeGenOptLevel OL, bool JIT)
158 : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
160 void NVPTXTargetMachine64::anchor() {}
162 NVPTXTargetMachine64::NVPTXTargetMachine64(const Target &T, const Triple &TT,
163 StringRef CPU, StringRef FS,
164 const TargetOptions &Options,
165 std::optional<Reloc::Model> RM,
166 std::optional<CodeModel::Model> CM,
167 CodeGenOptLevel OL, bool JIT)
168 : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
170 namespace {
172 class NVPTXPassConfig : public TargetPassConfig {
173 public:
174 NVPTXPassConfig(NVPTXTargetMachine &TM, PassManagerBase &PM)
175 : TargetPassConfig(TM, PM) {}
177 NVPTXTargetMachine &getNVPTXTargetMachine() const {
178 return getTM<NVPTXTargetMachine>();
181 void addIRPasses() override;
182 bool addInstSelector() override;
183 void addPreRegAlloc() override;
184 void addPostRegAlloc() override;
185 void addMachineSSAOptimization() override;
187 FunctionPass *createTargetRegisterAllocator(bool) override;
188 void addFastRegAlloc() override;
189 void addOptimizedRegAlloc() override;
191 bool addRegAssignAndRewriteFast() override {
192 llvm_unreachable("should not be used");
195 bool addRegAssignAndRewriteOptimized() override {
196 llvm_unreachable("should not be used");
199 private:
200 // If the opt level is aggressive, add GVN; otherwise, add EarlyCSE. This
201 // function is only called in opt mode.
202 void addEarlyCSEOrGVNPass();
204 // Add passes that propagate special memory spaces.
205 void addAddressSpaceInferencePasses();
207 // Add passes that perform straight-line scalar optimizations.
208 void addStraightLineScalarOptimizationPasses();
211 } // end anonymous namespace
213 TargetPassConfig *NVPTXTargetMachine::createPassConfig(PassManagerBase &PM) {
214 return new NVPTXPassConfig(*this, PM);
217 MachineFunctionInfo *NVPTXTargetMachine::createMachineFunctionInfo(
218 BumpPtrAllocator &Allocator, const Function &F,
219 const TargetSubtargetInfo *STI) const {
220 return NVPTXMachineFunctionInfo::create<NVPTXMachineFunctionInfo>(Allocator,
221 F, STI);
224 void NVPTXTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) {
225 AAM.registerFunctionAnalysis<NVPTXAA>();
228 void NVPTXTargetMachine::registerPassBuilderCallbacks(
229 PassBuilder &PB, bool PopulateClassToPassNames) {
230 PB.registerPipelineParsingCallback(
231 [](StringRef PassName, FunctionPassManager &PM,
232 ArrayRef<PassBuilder::PipelineElement>) {
233 if (PassName == "nvvm-reflect") {
234 PM.addPass(NVVMReflectPass());
235 return true;
237 if (PassName == "nvvm-intr-range") {
238 PM.addPass(NVVMIntrRangePass());
239 return true;
241 return false;
244 PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) {
245 FAM.registerPass([&] { return NVPTXAA(); });
248 PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) {
249 if (AAName == "nvptx-aa") {
250 AAM.registerFunctionAnalysis<NVPTXAA>();
251 return true;
253 return false;
256 PB.registerPipelineParsingCallback(
257 [](StringRef PassName, ModulePassManager &PM,
258 ArrayRef<PassBuilder::PipelineElement>) {
259 if (PassName == "nvptx-lower-ctor-dtor") {
260 PM.addPass(NVPTXCtorDtorLoweringPass());
261 return true;
263 if (PassName == "generic-to-nvvm") {
264 PM.addPass(GenericToNVVMPass());
265 return true;
267 return false;
270 PB.registerPipelineStartEPCallback(
271 [this](ModulePassManager &PM, OptimizationLevel Level) {
272 FunctionPassManager FPM;
273 FPM.addPass(NVVMReflectPass(Subtarget.getSmVersion()));
274 // FIXME: NVVMIntrRangePass is causing numerical discrepancies,
275 // investigate and re-enable.
276 // FPM.addPass(NVVMIntrRangePass(Subtarget.getSmVersion()));
277 PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
281 TargetTransformInfo
282 NVPTXTargetMachine::getTargetTransformInfo(const Function &F) const {
283 return TargetTransformInfo(NVPTXTTIImpl(this, F));
286 std::pair<const Value *, unsigned>
287 NVPTXTargetMachine::getPredicatedAddrSpace(const Value *V) const {
288 if (auto *II = dyn_cast<IntrinsicInst>(V)) {
289 switch (II->getIntrinsicID()) {
290 case Intrinsic::nvvm_isspacep_const:
291 return std::make_pair(II->getArgOperand(0), llvm::ADDRESS_SPACE_CONST);
292 case Intrinsic::nvvm_isspacep_global:
293 return std::make_pair(II->getArgOperand(0), llvm::ADDRESS_SPACE_GLOBAL);
294 case Intrinsic::nvvm_isspacep_local:
295 return std::make_pair(II->getArgOperand(0), llvm::ADDRESS_SPACE_LOCAL);
296 case Intrinsic::nvvm_isspacep_shared:
297 case Intrinsic::nvvm_isspacep_shared_cluster:
298 return std::make_pair(II->getArgOperand(0), llvm::ADDRESS_SPACE_SHARED);
299 default:
300 break;
303 return std::make_pair(nullptr, -1);
306 void NVPTXPassConfig::addEarlyCSEOrGVNPass() {
307 if (getOptLevel() == CodeGenOptLevel::Aggressive)
308 addPass(createGVNPass());
309 else
310 addPass(createEarlyCSEPass());
313 void NVPTXPassConfig::addAddressSpaceInferencePasses() {
314 // NVPTXLowerArgs emits alloca for byval parameters which can often
315 // be eliminated by SROA.
316 addPass(createSROAPass());
317 addPass(createNVPTXLowerAllocaPass());
318 addPass(createInferAddressSpacesPass());
319 addPass(createNVPTXAtomicLowerPass());
322 void NVPTXPassConfig::addStraightLineScalarOptimizationPasses() {
323 addPass(createSeparateConstOffsetFromGEPPass());
324 addPass(createSpeculativeExecutionPass());
325 // ReassociateGEPs exposes more opportunites for SLSR. See
326 // the example in reassociate-geps-and-slsr.ll.
327 addPass(createStraightLineStrengthReducePass());
328 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
329 // EarlyCSE can reuse. GVN generates significantly better code than EarlyCSE
330 // for some of our benchmarks.
331 addEarlyCSEOrGVNPass();
332 // Run NaryReassociate after EarlyCSE/GVN to be more effective.
333 addPass(createNaryReassociatePass());
334 // NaryReassociate on GEPs creates redundant common expressions, so run
335 // EarlyCSE after it.
336 addPass(createEarlyCSEPass());
339 void NVPTXPassConfig::addIRPasses() {
340 // The following passes are known to not play well with virtual regs hanging
341 // around after register allocation (which in our case, is *all* registers).
342 // We explicitly disable them here. We do, however, need some functionality
343 // of the PrologEpilogCodeInserter pass, so we emulate that behavior in the
344 // NVPTXPrologEpilog pass (see NVPTXPrologEpilogPass.cpp).
345 disablePass(&PrologEpilogCodeInserterID);
346 disablePass(&MachineLateInstrsCleanupID);
347 disablePass(&MachineCopyPropagationID);
348 disablePass(&TailDuplicateID);
349 disablePass(&StackMapLivenessID);
350 disablePass(&LiveDebugValuesID);
351 disablePass(&PostRAMachineSinkingID);
352 disablePass(&PostRASchedulerID);
353 disablePass(&FuncletLayoutID);
354 disablePass(&PatchableFunctionID);
355 disablePass(&ShrinkWrapID);
357 addPass(createNVPTXAAWrapperPass());
358 addPass(createExternalAAWrapperPass([](Pass &P, Function &, AAResults &AAR) {
359 if (auto *WrapperPass = P.getAnalysisIfAvailable<NVPTXAAWrapperPass>())
360 AAR.addAAResult(WrapperPass->getResult());
361 }));
363 // NVVMReflectPass is added in addEarlyAsPossiblePasses, so hopefully running
364 // it here does nothing. But since we need it for correctness when lowering
365 // to NVPTX, run it here too, in case whoever built our pass pipeline didn't
366 // call addEarlyAsPossiblePasses.
367 const NVPTXSubtarget &ST = *getTM<NVPTXTargetMachine>().getSubtargetImpl();
368 addPass(createNVVMReflectPass(ST.getSmVersion()));
370 if (getOptLevel() != CodeGenOptLevel::None)
371 addPass(createNVPTXImageOptimizerPass());
372 addPass(createNVPTXAssignValidGlobalNamesPass());
373 addPass(createGenericToNVVMLegacyPass());
375 // NVPTXLowerArgs is required for correctness and should be run right
376 // before the address space inference passes.
377 addPass(createNVPTXLowerArgsPass());
378 if (getOptLevel() != CodeGenOptLevel::None) {
379 addAddressSpaceInferencePasses();
380 addStraightLineScalarOptimizationPasses();
383 addPass(createAtomicExpandPass());
384 addPass(createNVPTXCtorDtorLoweringLegacyPass());
386 // === LSR and other generic IR passes ===
387 TargetPassConfig::addIRPasses();
388 // EarlyCSE is not always strong enough to clean up what LSR produces. For
389 // example, GVN can combine
391 // %0 = add %a, %b
392 // %1 = add %b, %a
394 // and
396 // %0 = shl nsw %a, 2
397 // %1 = shl %a, 2
399 // but EarlyCSE can do neither of them.
400 if (getOptLevel() != CodeGenOptLevel::None) {
401 addEarlyCSEOrGVNPass();
402 if (!DisableLoadStoreVectorizer)
403 addPass(createLoadStoreVectorizerPass());
404 addPass(createSROAPass());
407 const auto &Options = getNVPTXTargetMachine().Options;
408 addPass(createNVPTXLowerUnreachablePass(Options.TrapUnreachable,
409 Options.NoTrapAfterNoreturn));
412 bool NVPTXPassConfig::addInstSelector() {
413 const NVPTXSubtarget &ST = *getTM<NVPTXTargetMachine>().getSubtargetImpl();
415 addPass(createLowerAggrCopies());
416 addPass(createAllocaHoisting());
417 addPass(createNVPTXISelDag(getNVPTXTargetMachine(), getOptLevel()));
419 if (!ST.hasImageHandles())
420 addPass(createNVPTXReplaceImageHandlesPass());
422 return false;
425 void NVPTXPassConfig::addPreRegAlloc() {
426 // Remove Proxy Register pseudo instructions used to keep `callseq_end` alive.
427 addPass(createNVPTXProxyRegErasurePass());
430 void NVPTXPassConfig::addPostRegAlloc() {
431 addPass(createNVPTXPrologEpilogPass());
432 if (getOptLevel() != CodeGenOptLevel::None) {
433 // NVPTXPrologEpilogPass calculates frame object offset and replace frame
434 // index with VRFrame register. NVPTXPeephole need to be run after that and
435 // will replace VRFrame with VRFrameLocal when possible.
436 addPass(createNVPTXPeephole());
440 FunctionPass *NVPTXPassConfig::createTargetRegisterAllocator(bool) {
441 return nullptr; // No reg alloc
444 void NVPTXPassConfig::addFastRegAlloc() {
445 addPass(&PHIEliminationID);
446 addPass(&TwoAddressInstructionPassID);
449 void NVPTXPassConfig::addOptimizedRegAlloc() {
450 addPass(&ProcessImplicitDefsID);
451 addPass(&LiveVariablesID);
452 addPass(&MachineLoopInfoID);
453 addPass(&PHIEliminationID);
455 addPass(&TwoAddressInstructionPassID);
456 addPass(&RegisterCoalescerID);
458 // PreRA instruction scheduling.
459 if (addPass(&MachineSchedulerID))
460 printAndVerify("After Machine Scheduling");
462 addPass(&StackSlotColoringID);
464 // FIXME: Needs physical registers
465 // addPass(&MachineLICMID);
467 printAndVerify("After StackSlotColoring");
470 void NVPTXPassConfig::addMachineSSAOptimization() {
471 // Pre-ra tail duplication.
472 if (addPass(&EarlyTailDuplicateID))
473 printAndVerify("After Pre-RegAlloc TailDuplicate");
475 // Optimize PHIs before DCE: removing dead PHI cycles may make more
476 // instructions dead.
477 addPass(&OptimizePHIsID);
479 // This pass merges large allocas. StackSlotColoring is a different pass
480 // which merges spill slots.
481 addPass(&StackColoringID);
483 // If the target requests it, assign local variables to stack slots relative
484 // to one another and simplify frame index references where possible.
485 addPass(&LocalStackSlotAllocationID);
487 // With optimization, dead code should already be eliminated. However
488 // there is one known exception: lowered code for arguments that are only
489 // used by tail calls, where the tail calls reuse the incoming stack
490 // arguments directly (see t11 in test/CodeGen/X86/sibcall.ll).
491 addPass(&DeadMachineInstructionElimID);
492 printAndVerify("After codegen DCE pass");
494 // Allow targets to insert passes that improve instruction level parallelism,
495 // like if-conversion. Such passes will typically need dominator trees and
496 // loop info, just like LICM and CSE below.
497 if (addILPOpts())
498 printAndVerify("After ILP optimizations");
500 addPass(&EarlyMachineLICMID);
501 addPass(&MachineCSEID);
503 addPass(&MachineSinkingID);
504 printAndVerify("After Machine LICM, CSE and Sinking passes");
506 addPass(&PeepholeOptimizerID);
507 printAndVerify("After codegen peephole optimization pass");