[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / lib / Target / SystemZ / SystemZTargetTransformInfo.cpp
blob9370fb51a96c5692e59284e5bcc690962bcfcc98
1 //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a TargetTransformInfo analysis pass specific to the
10 // SystemZ target machine. It uses the target's detailed information to provide
11 // more precise answers to certain TTI queries, while letting the target
12 // independent and default TTI implementations handle the rest.
14 //===----------------------------------------------------------------------===//
16 #include "SystemZTargetTransformInfo.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/CodeGen/BasicTTIImpl.h"
19 #include "llvm/CodeGen/CostTable.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/IntrinsicInst.h"
22 #include "llvm/Support/Debug.h"
23 using namespace llvm;
25 #define DEBUG_TYPE "systemztti"
27 //===----------------------------------------------------------------------===//
29 // SystemZ cost model.
31 //===----------------------------------------------------------------------===//
33 static bool isUsedAsMemCpySource(const Value *V, bool &OtherUse) {
34 bool UsedAsMemCpySource = false;
35 for (const User *U : V->users())
36 if (const Instruction *User = dyn_cast<Instruction>(U)) {
37 if (isa<BitCastInst>(User) || isa<GetElementPtrInst>(User)) {
38 UsedAsMemCpySource |= isUsedAsMemCpySource(User, OtherUse);
39 continue;
41 if (const MemCpyInst *Memcpy = dyn_cast<MemCpyInst>(User)) {
42 if (Memcpy->getOperand(1) == V && !Memcpy->isVolatile()) {
43 UsedAsMemCpySource = true;
44 continue;
47 OtherUse = true;
49 return UsedAsMemCpySource;
52 unsigned SystemZTTIImpl::adjustInliningThreshold(const CallBase *CB) const {
53 unsigned Bonus = 0;
55 // Increase the threshold if an incoming argument is used only as a memcpy
56 // source.
57 if (Function *Callee = CB->getCalledFunction())
58 for (Argument &Arg : Callee->args()) {
59 bool OtherUse = false;
60 if (isUsedAsMemCpySource(&Arg, OtherUse) && !OtherUse)
61 Bonus += 150;
64 LLVM_DEBUG(if (Bonus)
65 dbgs() << "++ SZTTI Adding inlining bonus: " << Bonus << "\n";);
66 return Bonus;
69 InstructionCost SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
70 TTI::TargetCostKind CostKind) {
71 assert(Ty->isIntegerTy());
73 unsigned BitSize = Ty->getPrimitiveSizeInBits();
74 // There is no cost model for constants with a bit size of 0. Return TCC_Free
75 // here, so that constant hoisting will ignore this constant.
76 if (BitSize == 0)
77 return TTI::TCC_Free;
78 // No cost model for operations on integers larger than 128 bit implemented yet.
79 if ((!ST->hasVector() && BitSize > 64) || BitSize > 128)
80 return TTI::TCC_Free;
82 if (Imm == 0)
83 return TTI::TCC_Free;
85 if (Imm.getBitWidth() <= 64) {
86 // Constants loaded via lgfi.
87 if (isInt<32>(Imm.getSExtValue()))
88 return TTI::TCC_Basic;
89 // Constants loaded via llilf.
90 if (isUInt<32>(Imm.getZExtValue()))
91 return TTI::TCC_Basic;
92 // Constants loaded via llihf:
93 if ((Imm.getZExtValue() & 0xffffffff) == 0)
94 return TTI::TCC_Basic;
96 return 2 * TTI::TCC_Basic;
99 // i128 immediates loads from Constant Pool
100 return 2 * TTI::TCC_Basic;
103 InstructionCost SystemZTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
104 const APInt &Imm, Type *Ty,
105 TTI::TargetCostKind CostKind,
106 Instruction *Inst) {
107 assert(Ty->isIntegerTy());
109 unsigned BitSize = Ty->getPrimitiveSizeInBits();
110 // There is no cost model for constants with a bit size of 0. Return TCC_Free
111 // here, so that constant hoisting will ignore this constant.
112 if (BitSize == 0)
113 return TTI::TCC_Free;
114 // No cost model for operations on integers larger than 64 bit implemented yet.
115 if (BitSize > 64)
116 return TTI::TCC_Free;
118 switch (Opcode) {
119 default:
120 return TTI::TCC_Free;
121 case Instruction::GetElementPtr:
122 // Always hoist the base address of a GetElementPtr. This prevents the
123 // creation of new constants for every base constant that gets constant
124 // folded with the offset.
125 if (Idx == 0)
126 return 2 * TTI::TCC_Basic;
127 return TTI::TCC_Free;
128 case Instruction::Store:
129 if (Idx == 0 && Imm.getBitWidth() <= 64) {
130 // Any 8-bit immediate store can by implemented via mvi.
131 if (BitSize == 8)
132 return TTI::TCC_Free;
133 // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi.
134 if (isInt<16>(Imm.getSExtValue()))
135 return TTI::TCC_Free;
137 break;
138 case Instruction::ICmp:
139 if (Idx == 1 && Imm.getBitWidth() <= 64) {
140 // Comparisons against signed 32-bit immediates implemented via cgfi.
141 if (isInt<32>(Imm.getSExtValue()))
142 return TTI::TCC_Free;
143 // Comparisons against unsigned 32-bit immediates implemented via clgfi.
144 if (isUInt<32>(Imm.getZExtValue()))
145 return TTI::TCC_Free;
147 break;
148 case Instruction::Add:
149 case Instruction::Sub:
150 if (Idx == 1 && Imm.getBitWidth() <= 64) {
151 // We use algfi/slgfi to add/subtract 32-bit unsigned immediates.
152 if (isUInt<32>(Imm.getZExtValue()))
153 return TTI::TCC_Free;
154 // Or their negation, by swapping addition vs. subtraction.
155 if (isUInt<32>(-Imm.getSExtValue()))
156 return TTI::TCC_Free;
158 break;
159 case Instruction::Mul:
160 if (Idx == 1 && Imm.getBitWidth() <= 64) {
161 // We use msgfi to multiply by 32-bit signed immediates.
162 if (isInt<32>(Imm.getSExtValue()))
163 return TTI::TCC_Free;
165 break;
166 case Instruction::Or:
167 case Instruction::Xor:
168 if (Idx == 1 && Imm.getBitWidth() <= 64) {
169 // Masks supported by oilf/xilf.
170 if (isUInt<32>(Imm.getZExtValue()))
171 return TTI::TCC_Free;
172 // Masks supported by oihf/xihf.
173 if ((Imm.getZExtValue() & 0xffffffff) == 0)
174 return TTI::TCC_Free;
176 break;
177 case Instruction::And:
178 if (Idx == 1 && Imm.getBitWidth() <= 64) {
179 // Any 32-bit AND operation can by implemented via nilf.
180 if (BitSize <= 32)
181 return TTI::TCC_Free;
182 // 64-bit masks supported by nilf.
183 if (isUInt<32>(~Imm.getZExtValue()))
184 return TTI::TCC_Free;
185 // 64-bit masks supported by nilh.
186 if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff)
187 return TTI::TCC_Free;
188 // Some 64-bit AND operations can be implemented via risbg.
189 const SystemZInstrInfo *TII = ST->getInstrInfo();
190 unsigned Start, End;
191 if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End))
192 return TTI::TCC_Free;
194 break;
195 case Instruction::Shl:
196 case Instruction::LShr:
197 case Instruction::AShr:
198 // Always return TCC_Free for the shift value of a shift instruction.
199 if (Idx == 1)
200 return TTI::TCC_Free;
201 break;
202 case Instruction::UDiv:
203 case Instruction::SDiv:
204 case Instruction::URem:
205 case Instruction::SRem:
206 case Instruction::Trunc:
207 case Instruction::ZExt:
208 case Instruction::SExt:
209 case Instruction::IntToPtr:
210 case Instruction::PtrToInt:
211 case Instruction::BitCast:
212 case Instruction::PHI:
213 case Instruction::Call:
214 case Instruction::Select:
215 case Instruction::Ret:
216 case Instruction::Load:
217 break;
220 return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind);
223 InstructionCost
224 SystemZTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
225 const APInt &Imm, Type *Ty,
226 TTI::TargetCostKind CostKind) {
227 assert(Ty->isIntegerTy());
229 unsigned BitSize = Ty->getPrimitiveSizeInBits();
230 // There is no cost model for constants with a bit size of 0. Return TCC_Free
231 // here, so that constant hoisting will ignore this constant.
232 if (BitSize == 0)
233 return TTI::TCC_Free;
234 // No cost model for operations on integers larger than 64 bit implemented yet.
235 if (BitSize > 64)
236 return TTI::TCC_Free;
238 switch (IID) {
239 default:
240 return TTI::TCC_Free;
241 case Intrinsic::sadd_with_overflow:
242 case Intrinsic::uadd_with_overflow:
243 case Intrinsic::ssub_with_overflow:
244 case Intrinsic::usub_with_overflow:
245 // These get expanded to include a normal addition/subtraction.
246 if (Idx == 1 && Imm.getBitWidth() <= 64) {
247 if (isUInt<32>(Imm.getZExtValue()))
248 return TTI::TCC_Free;
249 if (isUInt<32>(-Imm.getSExtValue()))
250 return TTI::TCC_Free;
252 break;
253 case Intrinsic::smul_with_overflow:
254 case Intrinsic::umul_with_overflow:
255 // These get expanded to include a normal multiplication.
256 if (Idx == 1 && Imm.getBitWidth() <= 64) {
257 if (isInt<32>(Imm.getSExtValue()))
258 return TTI::TCC_Free;
260 break;
261 case Intrinsic::experimental_stackmap:
262 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
263 return TTI::TCC_Free;
264 break;
265 case Intrinsic::experimental_patchpoint_void:
266 case Intrinsic::experimental_patchpoint_i64:
267 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
268 return TTI::TCC_Free;
269 break;
271 return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind);
274 TargetTransformInfo::PopcntSupportKind
275 SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) {
276 assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2");
277 if (ST->hasPopulationCount() && TyWidth <= 64)
278 return TTI::PSK_FastHardware;
279 return TTI::PSK_Software;
282 void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
283 TTI::UnrollingPreferences &UP,
284 OptimizationRemarkEmitter *ORE) {
285 // Find out if L contains a call, what the machine instruction count
286 // estimate is, and how many stores there are.
287 bool HasCall = false;
288 InstructionCost NumStores = 0;
289 for (auto &BB : L->blocks())
290 for (auto &I : *BB) {
291 if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) {
292 if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
293 if (isLoweredToCall(F))
294 HasCall = true;
295 if (F->getIntrinsicID() == Intrinsic::memcpy ||
296 F->getIntrinsicID() == Intrinsic::memset)
297 NumStores++;
298 } else { // indirect call.
299 HasCall = true;
302 if (isa<StoreInst>(&I)) {
303 Type *MemAccessTy = I.getOperand(0)->getType();
304 NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy,
305 std::nullopt, 0, TTI::TCK_RecipThroughput);
309 // The z13 processor will run out of store tags if too many stores
310 // are fed into it too quickly. Therefore make sure there are not
311 // too many stores in the resulting unrolled loop.
312 unsigned const NumStoresVal = *NumStores.getValue();
313 unsigned const Max = (NumStoresVal ? (12 / NumStoresVal) : UINT_MAX);
315 if (HasCall) {
316 // Only allow full unrolling if loop has any calls.
317 UP.FullUnrollMaxCount = Max;
318 UP.MaxCount = 1;
319 return;
322 UP.MaxCount = Max;
323 if (UP.MaxCount <= 1)
324 return;
326 // Allow partial and runtime trip count unrolling.
327 UP.Partial = UP.Runtime = true;
329 UP.PartialThreshold = 75;
330 UP.DefaultUnrollRuntimeCount = 4;
332 // Allow expensive instructions in the pre-header of the loop.
333 UP.AllowExpensiveTripCount = true;
335 UP.Force = true;
338 void SystemZTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
339 TTI::PeelingPreferences &PP) {
340 BaseT::getPeelingPreferences(L, SE, PP);
343 bool SystemZTTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
344 const TargetTransformInfo::LSRCost &C2) {
345 // SystemZ specific: check instruction count (first), and don't care about
346 // ImmCost, since offsets are checked explicitly.
347 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
348 C1.NumIVMuls, C1.NumBaseAdds,
349 C1.ScaleCost, C1.SetupCost) <
350 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
351 C2.NumIVMuls, C2.NumBaseAdds,
352 C2.ScaleCost, C2.SetupCost);
355 unsigned SystemZTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
356 bool Vector = (ClassID == 1);
357 if (!Vector)
358 // Discount the stack pointer. Also leave out %r0, since it can't
359 // be used in an address.
360 return 14;
361 if (ST->hasVector())
362 return 32;
363 return 0;
366 TypeSize
367 SystemZTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
368 switch (K) {
369 case TargetTransformInfo::RGK_Scalar:
370 return TypeSize::getFixed(64);
371 case TargetTransformInfo::RGK_FixedWidthVector:
372 return TypeSize::getFixed(ST->hasVector() ? 128 : 0);
373 case TargetTransformInfo::RGK_ScalableVector:
374 return TypeSize::getScalable(0);
377 llvm_unreachable("Unsupported register kind");
380 unsigned SystemZTTIImpl::getMinPrefetchStride(unsigned NumMemAccesses,
381 unsigned NumStridedMemAccesses,
382 unsigned NumPrefetches,
383 bool HasCall) const {
384 // Don't prefetch a loop with many far apart accesses.
385 if (NumPrefetches > 16)
386 return UINT_MAX;
388 // Emit prefetch instructions for smaller strides in cases where we think
389 // the hardware prefetcher might not be able to keep up.
390 if (NumStridedMemAccesses > 32 && !HasCall &&
391 (NumMemAccesses - NumStridedMemAccesses) * 32 <= NumStridedMemAccesses)
392 return 1;
394 return ST->hasMiscellaneousExtensions3() ? 8192 : 2048;
397 bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
398 EVT VT = TLI->getValueType(DL, DataType);
399 return (VT.isScalarInteger() && TLI->isTypeLegal(VT));
402 // Return the bit size for the scalar type or vector element
403 // type. getScalarSizeInBits() returns 0 for a pointer type.
404 static unsigned getScalarSizeInBits(Type *Ty) {
405 unsigned Size =
406 (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits());
407 assert(Size > 0 && "Element must have non-zero size.");
408 return Size;
411 // getNumberOfParts() calls getTypeLegalizationCost() which splits the vector
412 // type until it is legal. This would e.g. return 4 for <6 x i64>, instead of
413 // 3.
414 static unsigned getNumVectorRegs(Type *Ty) {
415 auto *VTy = cast<FixedVectorType>(Ty);
416 unsigned WideBits = getScalarSizeInBits(Ty) * VTy->getNumElements();
417 assert(WideBits > 0 && "Could not compute size of vector");
418 return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U));
421 InstructionCost SystemZTTIImpl::getArithmeticInstrCost(
422 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
423 TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
424 ArrayRef<const Value *> Args,
425 const Instruction *CxtI) {
427 // TODO: Handle more cost kinds.
428 if (CostKind != TTI::TCK_RecipThroughput)
429 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
430 Op2Info, Args, CxtI);
432 // TODO: return a good value for BB-VECTORIZER that includes the
433 // immediate loads, which we do not want to count for the loop
434 // vectorizer, since they are hopefully hoisted out of the loop. This
435 // would require a new parameter 'InLoop', but not sure if constant
436 // args are common enough to motivate this.
438 unsigned ScalarBits = Ty->getScalarSizeInBits();
440 // There are thre cases of division and remainder: Dividing with a register
441 // needs a divide instruction. A divisor which is a power of two constant
442 // can be implemented with a sequence of shifts. Any other constant needs a
443 // multiply and shifts.
444 const unsigned DivInstrCost = 20;
445 const unsigned DivMulSeqCost = 10;
446 const unsigned SDivPow2Cost = 4;
448 bool SignedDivRem =
449 Opcode == Instruction::SDiv || Opcode == Instruction::SRem;
450 bool UnsignedDivRem =
451 Opcode == Instruction::UDiv || Opcode == Instruction::URem;
453 // Check for a constant divisor.
454 bool DivRemConst = false;
455 bool DivRemConstPow2 = false;
456 if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) {
457 if (const Constant *C = dyn_cast<Constant>(Args[1])) {
458 const ConstantInt *CVal =
459 (C->getType()->isVectorTy()
460 ? dyn_cast_or_null<const ConstantInt>(C->getSplatValue())
461 : dyn_cast<const ConstantInt>(C));
462 if (CVal && (CVal->getValue().isPowerOf2() ||
463 CVal->getValue().isNegatedPowerOf2()))
464 DivRemConstPow2 = true;
465 else
466 DivRemConst = true;
470 if (!Ty->isVectorTy()) {
471 // These FP operations are supported with a dedicated instruction for
472 // float, double and fp128 (base implementation assumes float generally
473 // costs 2).
474 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
475 Opcode == Instruction::FMul || Opcode == Instruction::FDiv)
476 return 1;
478 // There is no native support for FRem.
479 if (Opcode == Instruction::FRem)
480 return LIBCALL_COST;
482 // Give discount for some combined logical operations if supported.
483 if (Args.size() == 2) {
484 if (Opcode == Instruction::Xor) {
485 for (const Value *A : Args) {
486 if (const Instruction *I = dyn_cast<Instruction>(A))
487 if (I->hasOneUse() &&
488 (I->getOpcode() == Instruction::Or ||
489 I->getOpcode() == Instruction::And ||
490 I->getOpcode() == Instruction::Xor))
491 if ((ScalarBits <= 64 && ST->hasMiscellaneousExtensions3()) ||
492 (isInt128InVR(Ty) &&
493 (I->getOpcode() == Instruction::Or || ST->hasVectorEnhancements1())))
494 return 0;
497 else if (Opcode == Instruction::And || Opcode == Instruction::Or) {
498 for (const Value *A : Args) {
499 if (const Instruction *I = dyn_cast<Instruction>(A))
500 if ((I->hasOneUse() && I->getOpcode() == Instruction::Xor) &&
501 ((ScalarBits <= 64 && ST->hasMiscellaneousExtensions3()) ||
502 (isInt128InVR(Ty) &&
503 (Opcode == Instruction::And || ST->hasVectorEnhancements1()))))
504 return 0;
509 // Or requires one instruction, although it has custom handling for i64.
510 if (Opcode == Instruction::Or)
511 return 1;
513 if (Opcode == Instruction::Xor && ScalarBits == 1) {
514 if (ST->hasLoadStoreOnCond2())
515 return 5; // 2 * (li 0; loc 1); xor
516 return 7; // 2 * ipm sequences ; xor ; shift ; compare
519 if (DivRemConstPow2)
520 return (SignedDivRem ? SDivPow2Cost : 1);
521 if (DivRemConst)
522 return DivMulSeqCost;
523 if (SignedDivRem || UnsignedDivRem)
524 return DivInstrCost;
526 else if (ST->hasVector()) {
527 auto *VTy = cast<FixedVectorType>(Ty);
528 unsigned VF = VTy->getNumElements();
529 unsigned NumVectors = getNumVectorRegs(Ty);
531 // These vector operations are custom handled, but are still supported
532 // with one instruction per vector, regardless of element size.
533 if (Opcode == Instruction::Shl || Opcode == Instruction::LShr ||
534 Opcode == Instruction::AShr) {
535 return NumVectors;
538 if (DivRemConstPow2)
539 return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1));
540 if (DivRemConst) {
541 SmallVector<Type *> Tys(Args.size(), Ty);
542 return VF * DivMulSeqCost +
543 getScalarizationOverhead(VTy, Args, Tys, CostKind);
545 if ((SignedDivRem || UnsignedDivRem) && VF > 4)
546 // Temporary hack: disable high vectorization factors with integer
547 // division/remainder, which will get scalarized and handled with
548 // GR128 registers. The mischeduler is not clever enough to avoid
549 // spilling yet.
550 return 1000;
552 // These FP operations are supported with a single vector instruction for
553 // double (base implementation assumes float generally costs 2). For
554 // FP128, the scalar cost is 1, and there is no overhead since the values
555 // are already in scalar registers.
556 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
557 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) {
558 switch (ScalarBits) {
559 case 32: {
560 // The vector enhancements facility 1 provides v4f32 instructions.
561 if (ST->hasVectorEnhancements1())
562 return NumVectors;
563 // Return the cost of multiple scalar invocation plus the cost of
564 // inserting and extracting the values.
565 InstructionCost ScalarCost =
566 getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind);
567 SmallVector<Type *> Tys(Args.size(), Ty);
568 InstructionCost Cost =
569 (VF * ScalarCost) +
570 getScalarizationOverhead(VTy, Args, Tys, CostKind);
571 // FIXME: VF 2 for these FP operations are currently just as
572 // expensive as for VF 4.
573 if (VF == 2)
574 Cost *= 2;
575 return Cost;
577 case 64:
578 case 128:
579 return NumVectors;
580 default:
581 break;
585 // There is no native support for FRem.
586 if (Opcode == Instruction::FRem) {
587 SmallVector<Type *> Tys(Args.size(), Ty);
588 InstructionCost Cost = (VF * LIBCALL_COST) +
589 getScalarizationOverhead(VTy, Args, Tys, CostKind);
590 // FIXME: VF 2 for float is currently just as expensive as for VF 4.
591 if (VF == 2 && ScalarBits == 32)
592 Cost *= 2;
593 return Cost;
597 // Fallback to the default implementation.
598 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
599 Args, CxtI);
602 InstructionCost SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
603 VectorType *Tp,
604 ArrayRef<int> Mask,
605 TTI::TargetCostKind CostKind,
606 int Index, VectorType *SubTp,
607 ArrayRef<const Value *> Args) {
608 Kind = improveShuffleKindFromMask(Kind, Mask, Tp, Index, SubTp);
609 if (ST->hasVector()) {
610 unsigned NumVectors = getNumVectorRegs(Tp);
612 // TODO: Since fp32 is expanded, the shuffle cost should always be 0.
614 // FP128 values are always in scalar registers, so there is no work
615 // involved with a shuffle, except for broadcast. In that case register
616 // moves are done with a single instruction per element.
617 if (Tp->getScalarType()->isFP128Ty())
618 return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0);
620 switch (Kind) {
621 case TargetTransformInfo::SK_ExtractSubvector:
622 // ExtractSubvector Index indicates start offset.
624 // Extracting a subvector from first index is a noop.
625 return (Index == 0 ? 0 : NumVectors);
627 case TargetTransformInfo::SK_Broadcast:
628 // Loop vectorizer calls here to figure out the extra cost of
629 // broadcasting a loaded value to all elements of a vector. Since vlrep
630 // loads and replicates with a single instruction, adjust the returned
631 // value.
632 return NumVectors - 1;
634 default:
636 // SystemZ supports single instruction permutation / replication.
637 return NumVectors;
641 return BaseT::getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp);
644 // Return the log2 difference of the element sizes of the two vector types.
645 static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) {
646 unsigned Bits0 = Ty0->getScalarSizeInBits();
647 unsigned Bits1 = Ty1->getScalarSizeInBits();
649 if (Bits1 > Bits0)
650 return (Log2_32(Bits1) - Log2_32(Bits0));
652 return (Log2_32(Bits0) - Log2_32(Bits1));
655 // Return the number of instructions needed to truncate SrcTy to DstTy.
656 unsigned SystemZTTIImpl::
657 getVectorTruncCost(Type *SrcTy, Type *DstTy) {
658 assert (SrcTy->isVectorTy() && DstTy->isVectorTy());
659 assert(SrcTy->getPrimitiveSizeInBits().getFixedValue() >
660 DstTy->getPrimitiveSizeInBits().getFixedValue() &&
661 "Packing must reduce size of vector type.");
662 assert(cast<FixedVectorType>(SrcTy)->getNumElements() ==
663 cast<FixedVectorType>(DstTy)->getNumElements() &&
664 "Packing should not change number of elements.");
666 // TODO: Since fp32 is expanded, the extract cost should always be 0.
668 unsigned NumParts = getNumVectorRegs(SrcTy);
669 if (NumParts <= 2)
670 // Up to 2 vector registers can be truncated efficiently with pack or
671 // permute. The latter requires an immediate mask to be loaded, which
672 // typically gets hoisted out of a loop. TODO: return a good value for
673 // BB-VECTORIZER that includes the immediate loads, which we do not want
674 // to count for the loop vectorizer.
675 return 1;
677 unsigned Cost = 0;
678 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
679 unsigned VF = cast<FixedVectorType>(SrcTy)->getNumElements();
680 for (unsigned P = 0; P < Log2Diff; ++P) {
681 if (NumParts > 1)
682 NumParts /= 2;
683 Cost += NumParts;
686 // Currently, a general mix of permutes and pack instructions is output by
687 // isel, which follow the cost computation above except for this case which
688 // is one instruction less:
689 if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 &&
690 DstTy->getScalarSizeInBits() == 8)
691 Cost--;
693 return Cost;
696 // Return the cost of converting a vector bitmask produced by a compare
697 // (SrcTy), to the type of the select or extend instruction (DstTy).
698 unsigned SystemZTTIImpl::
699 getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) {
700 assert (SrcTy->isVectorTy() && DstTy->isVectorTy() &&
701 "Should only be called with vector types.");
703 unsigned PackCost = 0;
704 unsigned SrcScalarBits = SrcTy->getScalarSizeInBits();
705 unsigned DstScalarBits = DstTy->getScalarSizeInBits();
706 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
707 if (SrcScalarBits > DstScalarBits)
708 // The bitmask will be truncated.
709 PackCost = getVectorTruncCost(SrcTy, DstTy);
710 else if (SrcScalarBits < DstScalarBits) {
711 unsigned DstNumParts = getNumVectorRegs(DstTy);
712 // Each vector select needs its part of the bitmask unpacked.
713 PackCost = Log2Diff * DstNumParts;
714 // Extra cost for moving part of mask before unpacking.
715 PackCost += DstNumParts - 1;
718 return PackCost;
721 // Return the type of the compared operands. This is needed to compute the
722 // cost for a Select / ZExt or SExt instruction.
723 static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) {
724 Type *OpTy = nullptr;
725 if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0)))
726 OpTy = CI->getOperand(0)->getType();
727 else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0)))
728 if (LogicI->getNumOperands() == 2)
729 if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0)))
730 if (isa<CmpInst>(LogicI->getOperand(1)))
731 OpTy = CI0->getOperand(0)->getType();
733 if (OpTy != nullptr) {
734 if (VF == 1) {
735 assert (!OpTy->isVectorTy() && "Expected scalar type");
736 return OpTy;
738 // Return the potentially vectorized type based on 'I' and 'VF'. 'I' may
739 // be either scalar or already vectorized with a same or lesser VF.
740 Type *ElTy = OpTy->getScalarType();
741 return FixedVectorType::get(ElTy, VF);
744 return nullptr;
747 // Get the cost of converting a boolean vector to a vector with same width
748 // and element size as Dst, plus the cost of zero extending if needed.
749 unsigned SystemZTTIImpl::
750 getBoolVecToIntConversionCost(unsigned Opcode, Type *Dst,
751 const Instruction *I) {
752 auto *DstVTy = cast<FixedVectorType>(Dst);
753 unsigned VF = DstVTy->getNumElements();
754 unsigned Cost = 0;
755 // If we know what the widths of the compared operands, get any cost of
756 // converting it to match Dst. Otherwise assume same widths.
757 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
758 if (CmpOpTy != nullptr)
759 Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst);
760 if (Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP)
761 // One 'vn' per dst vector with an immediate mask.
762 Cost += getNumVectorRegs(Dst);
763 return Cost;
766 InstructionCost SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
767 Type *Src,
768 TTI::CastContextHint CCH,
769 TTI::TargetCostKind CostKind,
770 const Instruction *I) {
771 // FIXME: Can the logic below also be used for these cost kinds?
772 if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) {
773 auto BaseCost = BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
774 return BaseCost == 0 ? BaseCost : 1;
777 unsigned DstScalarBits = Dst->getScalarSizeInBits();
778 unsigned SrcScalarBits = Src->getScalarSizeInBits();
780 if (!Src->isVectorTy()) {
781 assert (!Dst->isVectorTy());
783 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) {
784 if (Src->isIntegerTy(128))
785 return LIBCALL_COST;
786 if (SrcScalarBits >= 32 ||
787 (I != nullptr && isa<LoadInst>(I->getOperand(0))))
788 return 1;
789 return SrcScalarBits > 1 ? 2 /*i8/i16 extend*/ : 5 /*branch seq.*/;
792 if ((Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) &&
793 Dst->isIntegerTy(128))
794 return LIBCALL_COST;
796 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt)) {
797 if (Src->isIntegerTy(1)) {
798 if (DstScalarBits == 128)
799 return 5 /*branch seq.*/;
801 if (ST->hasLoadStoreOnCond2())
802 return 2; // li 0; loc 1
804 // This should be extension of a compare i1 result, which is done with
805 // ipm and a varying sequence of instructions.
806 unsigned Cost = 0;
807 if (Opcode == Instruction::SExt)
808 Cost = (DstScalarBits < 64 ? 3 : 4);
809 if (Opcode == Instruction::ZExt)
810 Cost = 3;
811 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr);
812 if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy())
813 // If operands of an fp-type was compared, this costs +1.
814 Cost++;
815 return Cost;
817 else if (isInt128InVR(Dst)) {
818 // Extensions from GPR to i128 (in VR) typically costs two instructions,
819 // but a zero-extending load would be just one extra instruction.
820 if (Opcode == Instruction::ZExt && I != nullptr)
821 if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0)))
822 if (Ld->hasOneUse())
823 return 1;
824 return 2;
828 if (Opcode == Instruction::Trunc && isInt128InVR(Src) && I != nullptr) {
829 if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0)))
830 if (Ld->hasOneUse())
831 return 0; // Will be converted to GPR load.
832 bool OnlyTruncatingStores = true;
833 for (const User *U : I->users())
834 if (!isa<StoreInst>(U)) {
835 OnlyTruncatingStores = false;
836 break;
838 if (OnlyTruncatingStores)
839 return 0;
840 return 2; // Vector element extraction.
843 else if (ST->hasVector()) {
844 // Vector to scalar cast.
845 auto *SrcVecTy = cast<FixedVectorType>(Src);
846 auto *DstVecTy = dyn_cast<FixedVectorType>(Dst);
847 if (!DstVecTy) {
848 // TODO: tune vector-to-scalar cast.
849 return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
851 unsigned VF = SrcVecTy->getNumElements();
852 unsigned NumDstVectors = getNumVectorRegs(Dst);
853 unsigned NumSrcVectors = getNumVectorRegs(Src);
855 if (Opcode == Instruction::Trunc) {
856 if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits())
857 return 0; // Check for NOOP conversions.
858 return getVectorTruncCost(Src, Dst);
861 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
862 if (SrcScalarBits >= 8) {
863 // ZExt will use either a single unpack or a vector permute.
864 if (Opcode == Instruction::ZExt)
865 return NumDstVectors;
867 // SExt will be handled with one unpack per doubling of width.
868 unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst);
870 // For types that spans multiple vector registers, some additional
871 // instructions are used to setup the unpacking.
872 unsigned NumSrcVectorOps =
873 (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors)
874 : (NumDstVectors / 2));
876 return (NumUnpacks * NumDstVectors) + NumSrcVectorOps;
878 else if (SrcScalarBits == 1)
879 return getBoolVecToIntConversionCost(Opcode, Dst, I);
882 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP ||
883 Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) {
884 // TODO: Fix base implementation which could simplify things a bit here
885 // (seems to miss on differentiating on scalar/vector types).
887 // Only 64 bit vector conversions are natively supported before z15.
888 if (DstScalarBits == 64 || ST->hasVectorEnhancements2()) {
889 if (SrcScalarBits == DstScalarBits)
890 return NumDstVectors;
892 if (SrcScalarBits == 1)
893 return getBoolVecToIntConversionCost(Opcode, Dst, I) + NumDstVectors;
896 // Return the cost of multiple scalar invocation plus the cost of
897 // inserting and extracting the values. Base implementation does not
898 // realize float->int gets scalarized.
899 InstructionCost ScalarCost = getCastInstrCost(
900 Opcode, Dst->getScalarType(), Src->getScalarType(), CCH, CostKind);
901 InstructionCost TotCost = VF * ScalarCost;
902 bool NeedsInserts = true, NeedsExtracts = true;
903 // FP128 registers do not get inserted or extracted.
904 if (DstScalarBits == 128 &&
905 (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP))
906 NeedsInserts = false;
907 if (SrcScalarBits == 128 &&
908 (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI))
909 NeedsExtracts = false;
911 TotCost += getScalarizationOverhead(SrcVecTy, /*Insert*/ false,
912 NeedsExtracts, CostKind);
913 TotCost += getScalarizationOverhead(DstVecTy, NeedsInserts,
914 /*Extract*/ false, CostKind);
916 // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4.
917 if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32)
918 TotCost *= 2;
920 return TotCost;
923 if (Opcode == Instruction::FPTrunc) {
924 if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements.
925 return VF /*ldxbr/lexbr*/ +
926 getScalarizationOverhead(DstVecTy, /*Insert*/ true,
927 /*Extract*/ false, CostKind);
928 else // double -> float
929 return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/);
932 if (Opcode == Instruction::FPExt) {
933 if (SrcScalarBits == 32 && DstScalarBits == 64) {
934 // float -> double is very rare and currently unoptimized. Instead of
935 // using vldeb, which can do two at a time, all conversions are
936 // scalarized.
937 return VF * 2;
939 // -> fp128. VF * lxdb/lxeb + extraction of elements.
940 return VF + getScalarizationOverhead(SrcVecTy, /*Insert*/ false,
941 /*Extract*/ true, CostKind);
945 return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
948 // Scalar i8 / i16 operations will typically be made after first extending
949 // the operands to i32.
950 static unsigned getOperandsExtensionCost(const Instruction *I) {
951 unsigned ExtCost = 0;
952 for (Value *Op : I->operands())
953 // A load of i8 or i16 sign/zero extends to i32.
954 if (!isa<LoadInst>(Op) && !isa<ConstantInt>(Op))
955 ExtCost++;
957 return ExtCost;
960 InstructionCost SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
961 Type *CondTy,
962 CmpInst::Predicate VecPred,
963 TTI::TargetCostKind CostKind,
964 const Instruction *I) {
965 if (CostKind != TTI::TCK_RecipThroughput)
966 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind);
968 if (!ValTy->isVectorTy()) {
969 switch (Opcode) {
970 case Instruction::ICmp: {
971 // A loaded value compared with 0 with multiple users becomes Load and
972 // Test. The load is then not foldable, so return 0 cost for the ICmp.
973 unsigned ScalarBits = ValTy->getScalarSizeInBits();
974 if (I != nullptr && (ScalarBits == 32 || ScalarBits == 64))
975 if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0)))
976 if (const ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1)))
977 if (!Ld->hasOneUse() && Ld->getParent() == I->getParent() &&
978 C->isZero())
979 return 0;
981 unsigned Cost = 1;
982 if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16)
983 Cost += (I != nullptr ? getOperandsExtensionCost(I) : 2);
984 return Cost;
986 case Instruction::Select:
987 if (ValTy->isFloatingPointTy() || isInt128InVR(ValTy))
988 return 4; // No LOC for FP / i128 - costs a conditional jump.
989 return 1; // Load On Condition / Select Register.
992 else if (ST->hasVector()) {
993 unsigned VF = cast<FixedVectorType>(ValTy)->getNumElements();
995 // Called with a compare instruction.
996 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
997 unsigned PredicateExtraCost = 0;
998 if (I != nullptr) {
999 // Some predicates cost one or two extra instructions.
1000 switch (cast<CmpInst>(I)->getPredicate()) {
1001 case CmpInst::Predicate::ICMP_NE:
1002 case CmpInst::Predicate::ICMP_UGE:
1003 case CmpInst::Predicate::ICMP_ULE:
1004 case CmpInst::Predicate::ICMP_SGE:
1005 case CmpInst::Predicate::ICMP_SLE:
1006 PredicateExtraCost = 1;
1007 break;
1008 case CmpInst::Predicate::FCMP_ONE:
1009 case CmpInst::Predicate::FCMP_ORD:
1010 case CmpInst::Predicate::FCMP_UEQ:
1011 case CmpInst::Predicate::FCMP_UNO:
1012 PredicateExtraCost = 2;
1013 break;
1014 default:
1015 break;
1019 // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of
1020 // floats. FIXME: <2 x float> generates same code as <4 x float>.
1021 unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1);
1022 unsigned NumVecs_cmp = getNumVectorRegs(ValTy);
1024 unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost));
1025 return Cost;
1027 else { // Called with a select instruction.
1028 assert (Opcode == Instruction::Select);
1030 // We can figure out the extra cost of packing / unpacking if the
1031 // instruction was passed and the compare instruction is found.
1032 unsigned PackCost = 0;
1033 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
1034 if (CmpOpTy != nullptr)
1035 PackCost =
1036 getVectorBitmaskConversionCost(CmpOpTy, ValTy);
1038 return getNumVectorRegs(ValTy) /*vsel*/ + PackCost;
1042 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind);
1045 InstructionCost SystemZTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
1046 TTI::TargetCostKind CostKind,
1047 unsigned Index, Value *Op0,
1048 Value *Op1) {
1049 // vlvgp will insert two grs into a vector register, so only count half the
1050 // number of instructions.
1051 if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64))
1052 return ((Index % 2 == 0) ? 1 : 0);
1054 if (Opcode == Instruction::ExtractElement) {
1055 int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1);
1057 // Give a slight penalty for moving out of vector pipeline to FXU unit.
1058 if (Index == 0 && Val->isIntOrIntVectorTy())
1059 Cost += 1;
1061 return Cost;
1064 return BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
1067 // Check if a load may be folded as a memory operand in its user.
1068 bool SystemZTTIImpl::
1069 isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) {
1070 if (!Ld->hasOneUse())
1071 return false;
1072 FoldedValue = Ld;
1073 const Instruction *UserI = cast<Instruction>(*Ld->user_begin());
1074 unsigned LoadedBits = getScalarSizeInBits(Ld->getType());
1075 unsigned TruncBits = 0;
1076 unsigned SExtBits = 0;
1077 unsigned ZExtBits = 0;
1078 if (UserI->hasOneUse()) {
1079 unsigned UserBits = UserI->getType()->getScalarSizeInBits();
1080 if (isa<TruncInst>(UserI))
1081 TruncBits = UserBits;
1082 else if (isa<SExtInst>(UserI))
1083 SExtBits = UserBits;
1084 else if (isa<ZExtInst>(UserI))
1085 ZExtBits = UserBits;
1087 if (TruncBits || SExtBits || ZExtBits) {
1088 FoldedValue = UserI;
1089 UserI = cast<Instruction>(*UserI->user_begin());
1090 // Load (single use) -> trunc/extend (single use) -> UserI
1092 if ((UserI->getOpcode() == Instruction::Sub ||
1093 UserI->getOpcode() == Instruction::SDiv ||
1094 UserI->getOpcode() == Instruction::UDiv) &&
1095 UserI->getOperand(1) != FoldedValue)
1096 return false; // Not commutative, only RHS foldable.
1097 // LoadOrTruncBits holds the number of effectively loaded bits, but 0 if an
1098 // extension was made of the load.
1099 unsigned LoadOrTruncBits =
1100 ((SExtBits || ZExtBits) ? 0 : (TruncBits ? TruncBits : LoadedBits));
1101 switch (UserI->getOpcode()) {
1102 case Instruction::Add: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64
1103 case Instruction::Sub:
1104 case Instruction::ICmp:
1105 if (LoadedBits == 32 && ZExtBits == 64)
1106 return true;
1107 [[fallthrough]];
1108 case Instruction::Mul: // SE: 16->32, 32->64, z14:16->64
1109 if (UserI->getOpcode() != Instruction::ICmp) {
1110 if (LoadedBits == 16 &&
1111 (SExtBits == 32 ||
1112 (SExtBits == 64 && ST->hasMiscellaneousExtensions2())))
1113 return true;
1114 if (LoadOrTruncBits == 16)
1115 return true;
1117 [[fallthrough]];
1118 case Instruction::SDiv:// SE: 32->64
1119 if (LoadedBits == 32 && SExtBits == 64)
1120 return true;
1121 [[fallthrough]];
1122 case Instruction::UDiv:
1123 case Instruction::And:
1124 case Instruction::Or:
1125 case Instruction::Xor:
1126 // This also makes sense for float operations, but disabled for now due
1127 // to regressions.
1128 // case Instruction::FCmp:
1129 // case Instruction::FAdd:
1130 // case Instruction::FSub:
1131 // case Instruction::FMul:
1132 // case Instruction::FDiv:
1134 // All possible extensions of memory checked above.
1136 // Comparison between memory and immediate.
1137 if (UserI->getOpcode() == Instruction::ICmp)
1138 if (ConstantInt *CI = dyn_cast<ConstantInt>(UserI->getOperand(1)))
1139 if (CI->getValue().isIntN(16))
1140 return true;
1141 return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64);
1142 break;
1144 return false;
1147 static bool isBswapIntrinsicCall(const Value *V) {
1148 if (const Instruction *I = dyn_cast<Instruction>(V))
1149 if (auto *CI = dyn_cast<CallInst>(I))
1150 if (auto *F = CI->getCalledFunction())
1151 if (F->getIntrinsicID() == Intrinsic::bswap)
1152 return true;
1153 return false;
1156 InstructionCost SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
1157 MaybeAlign Alignment,
1158 unsigned AddressSpace,
1159 TTI::TargetCostKind CostKind,
1160 TTI::OperandValueInfo OpInfo,
1161 const Instruction *I) {
1162 assert(!Src->isVoidTy() && "Invalid type");
1164 // TODO: Handle other cost kinds.
1165 if (CostKind != TTI::TCK_RecipThroughput)
1166 return 1;
1168 if (!Src->isVectorTy() && Opcode == Instruction::Load && I != nullptr) {
1169 // Store the load or its truncated or extended value in FoldedValue.
1170 const Instruction *FoldedValue = nullptr;
1171 if (isFoldableLoad(cast<LoadInst>(I), FoldedValue)) {
1172 const Instruction *UserI = cast<Instruction>(*FoldedValue->user_begin());
1173 assert (UserI->getNumOperands() == 2 && "Expected a binop.");
1175 // UserI can't fold two loads, so in that case return 0 cost only
1176 // half of the time.
1177 for (unsigned i = 0; i < 2; ++i) {
1178 if (UserI->getOperand(i) == FoldedValue)
1179 continue;
1181 if (Instruction *OtherOp = dyn_cast<Instruction>(UserI->getOperand(i))){
1182 LoadInst *OtherLoad = dyn_cast<LoadInst>(OtherOp);
1183 if (!OtherLoad &&
1184 (isa<TruncInst>(OtherOp) || isa<SExtInst>(OtherOp) ||
1185 isa<ZExtInst>(OtherOp)))
1186 OtherLoad = dyn_cast<LoadInst>(OtherOp->getOperand(0));
1187 if (OtherLoad && isFoldableLoad(OtherLoad, FoldedValue/*dummy*/))
1188 return i == 0; // Both operands foldable.
1192 return 0; // Only I is foldable in user.
1196 // Type legalization (via getNumberOfParts) can't handle structs
1197 if (TLI->getValueType(DL, Src, true) == MVT::Other)
1198 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1199 CostKind);
1201 // FP128 is a legal type but kept in a register pair on older CPUs.
1202 if (Src->isFP128Ty() && !ST->hasVectorEnhancements1())
1203 return 2;
1205 unsigned NumOps =
1206 (Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src));
1208 // Store/Load reversed saves one instruction.
1209 if (((!Src->isVectorTy() && NumOps == 1) || ST->hasVectorEnhancements2()) &&
1210 I != nullptr) {
1211 if (Opcode == Instruction::Load && I->hasOneUse()) {
1212 const Instruction *LdUser = cast<Instruction>(*I->user_begin());
1213 // In case of load -> bswap -> store, return normal cost for the load.
1214 if (isBswapIntrinsicCall(LdUser) &&
1215 (!LdUser->hasOneUse() || !isa<StoreInst>(*LdUser->user_begin())))
1216 return 0;
1218 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
1219 const Value *StoredVal = SI->getValueOperand();
1220 if (StoredVal->hasOneUse() && isBswapIntrinsicCall(StoredVal))
1221 return 0;
1225 return NumOps;
1228 // The generic implementation of getInterleavedMemoryOpCost() is based on
1229 // adding costs of the memory operations plus all the extracts and inserts
1230 // needed for using / defining the vector operands. The SystemZ version does
1231 // roughly the same but bases the computations on vector permutations
1232 // instead.
1233 InstructionCost SystemZTTIImpl::getInterleavedMemoryOpCost(
1234 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1235 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
1236 bool UseMaskForCond, bool UseMaskForGaps) {
1237 if (UseMaskForCond || UseMaskForGaps)
1238 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
1239 Alignment, AddressSpace, CostKind,
1240 UseMaskForCond, UseMaskForGaps);
1241 assert(isa<VectorType>(VecTy) &&
1242 "Expect a vector type for interleaved memory op");
1244 unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements();
1245 assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor");
1246 unsigned VF = NumElts / Factor;
1247 unsigned NumEltsPerVecReg = (128U / getScalarSizeInBits(VecTy));
1248 unsigned NumVectorMemOps = getNumVectorRegs(VecTy);
1249 unsigned NumPermutes = 0;
1251 if (Opcode == Instruction::Load) {
1252 // Loading interleave groups may have gaps, which may mean fewer
1253 // loads. Find out how many vectors will be loaded in total, and in how
1254 // many of them each value will be in.
1255 BitVector UsedInsts(NumVectorMemOps, false);
1256 std::vector<BitVector> ValueVecs(Factor, BitVector(NumVectorMemOps, false));
1257 for (unsigned Index : Indices)
1258 for (unsigned Elt = 0; Elt < VF; ++Elt) {
1259 unsigned Vec = (Index + Elt * Factor) / NumEltsPerVecReg;
1260 UsedInsts.set(Vec);
1261 ValueVecs[Index].set(Vec);
1263 NumVectorMemOps = UsedInsts.count();
1265 for (unsigned Index : Indices) {
1266 // Estimate that each loaded source vector containing this Index
1267 // requires one operation, except that vperm can handle two input
1268 // registers first time for each dst vector.
1269 unsigned NumSrcVecs = ValueVecs[Index].count();
1270 unsigned NumDstVecs = divideCeil(VF * getScalarSizeInBits(VecTy), 128U);
1271 assert (NumSrcVecs >= NumDstVecs && "Expected at least as many sources");
1272 NumPermutes += std::max(1U, NumSrcVecs - NumDstVecs);
1274 } else {
1275 // Estimate the permutes for each stored vector as the smaller of the
1276 // number of elements and the number of source vectors. Subtract one per
1277 // dst vector for vperm (S.A.).
1278 unsigned NumSrcVecs = std::min(NumEltsPerVecReg, Factor);
1279 unsigned NumDstVecs = NumVectorMemOps;
1280 NumPermutes += (NumDstVecs * NumSrcVecs) - NumDstVecs;
1283 // Cost of load/store operations and the permutations needed.
1284 return NumVectorMemOps + NumPermutes;
1287 static int getVectorIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy) {
1288 if (RetTy->isVectorTy() && ID == Intrinsic::bswap)
1289 return getNumVectorRegs(RetTy); // VPERM
1290 return -1;
1293 InstructionCost
1294 SystemZTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
1295 TTI::TargetCostKind CostKind) {
1296 InstructionCost Cost =
1297 getVectorIntrinsicInstrCost(ICA.getID(), ICA.getReturnType());
1298 if (Cost != -1)
1299 return Cost;
1300 return BaseT::getIntrinsicInstrCost(ICA, CostKind);