1 //===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// This file defines the pass that looks through the machine instructions
10 /// late in the compilation, and finds byte or word instructions that
11 /// can be profitably replaced with 32 bit instructions that give equivalent
12 /// results for the bits of the results that are used. There are two possible
13 /// reasons to do this.
15 /// One reason is to avoid false-dependences on the upper portions
16 /// of the registers. Only instructions that have a destination register
17 /// which is not in any of the source registers can be affected by this.
18 /// Any instruction where one of the source registers is also the destination
19 /// register is unaffected, because it has a true dependence on the source
20 /// register already. So, this consideration primarily affects load
21 /// instructions and register-to-register moves. It would
22 /// seem like cmov(s) would also be affected, but because of the way cmov is
23 /// really implemented by most machines as reading both the destination and
24 /// and source registers, and then "merging" the two based on a condition,
25 /// it really already should be considered as having a true dependence on the
26 /// destination register as well.
28 /// The other reason to do this is for potential code size savings. Word
29 /// operations need an extra override byte compared to their 32 bit
30 /// versions. So this can convert many word operations to their larger
31 /// size, saving a byte in encoding. This could introduce partial register
32 /// dependences where none existed however. As an example take:
35 /// now if this were to get transformed into
38 /// because the addl encodes shorter than the addw, this would introduce
39 /// a use of a register that was only partially written earlier. On older
40 /// Intel processors this can be quite a performance penalty, so this should
41 /// probably only be done when it can be proven that a new partial dependence
42 /// wouldn't be created, or when your know a newer processor is being
43 /// targeted, or when optimizing for minimum code size.
45 //===----------------------------------------------------------------------===//
48 #include "X86InstrInfo.h"
49 #include "X86Subtarget.h"
50 #include "llvm/ADT/Statistic.h"
51 #include "llvm/Analysis/ProfileSummaryInfo.h"
52 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
53 #include "llvm/CodeGen/LiveRegUnits.h"
54 #include "llvm/CodeGen/MachineFunctionPass.h"
55 #include "llvm/CodeGen/MachineInstrBuilder.h"
56 #include "llvm/CodeGen/MachineLoopInfo.h"
57 #include "llvm/CodeGen/MachineRegisterInfo.h"
58 #include "llvm/CodeGen/MachineSizeOpts.h"
59 #include "llvm/CodeGen/Passes.h"
60 #include "llvm/CodeGen/TargetInstrInfo.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/raw_ostream.h"
65 #define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup"
66 #define FIXUPBW_NAME "x86-fixup-bw-insts"
68 #define DEBUG_TYPE FIXUPBW_NAME
70 // Option to allow this optimization pass to have fine-grained control.
72 FixupBWInsts("fixup-byte-word-insts",
73 cl::desc("Change byte and word instructions to larger sizes"),
74 cl::init(true), cl::Hidden
);
77 class FixupBWInstPass
: public MachineFunctionPass
{
78 /// Loop over all of the instructions in the basic block replacing applicable
79 /// byte or word instructions with better alternatives.
80 void processBasicBlock(MachineFunction
&MF
, MachineBasicBlock
&MBB
);
82 /// This returns the 32 bit super reg of the original destination register of
83 /// the MachineInstr passed in, if that super register is dead just prior to
84 /// \p OrigMI. Otherwise it returns Register().
85 Register
getSuperRegDestIfDead(MachineInstr
*OrigMI
) const;
87 /// Change the MachineInstr \p MI into the equivalent extending load to 32 bit
88 /// register if it is safe to do so. Return the replacement instruction if
89 /// OK, otherwise return nullptr.
90 MachineInstr
*tryReplaceLoad(unsigned New32BitOpcode
, MachineInstr
*MI
) const;
92 /// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is
93 /// safe to do so. Return the replacement instruction if OK, otherwise return
95 MachineInstr
*tryReplaceCopy(MachineInstr
*MI
) const;
97 /// Change the MachineInstr \p MI into the equivalent extend to 32 bit
98 /// register if it is safe to do so. Return the replacement instruction if
99 /// OK, otherwise return nullptr.
100 MachineInstr
*tryReplaceExtend(unsigned New32BitOpcode
,
101 MachineInstr
*MI
) const;
103 // Change the MachineInstr \p MI into an eqivalent 32 bit instruction if
104 // possible. Return the replacement instruction if OK, return nullptr
106 MachineInstr
*tryReplaceInstr(MachineInstr
*MI
, MachineBasicBlock
&MBB
) const;
111 StringRef
getPassName() const override
{ return FIXUPBW_DESC
; }
113 FixupBWInstPass() : MachineFunctionPass(ID
) { }
115 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
116 AU
.addRequired
<MachineLoopInfo
>(); // Machine loop info is used to
117 // guide some heuristics.
118 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
119 AU
.addRequired
<LazyMachineBlockFrequencyInfoPass
>();
120 MachineFunctionPass::getAnalysisUsage(AU
);
123 /// Loop over all of the basic blocks, replacing byte and word instructions by
124 /// equivalent 32 bit instructions where performance or code size can be
126 bool runOnMachineFunction(MachineFunction
&MF
) override
;
128 MachineFunctionProperties
getRequiredProperties() const override
{
129 return MachineFunctionProperties().set(
130 MachineFunctionProperties::Property::NoVRegs
);
134 MachineFunction
*MF
= nullptr;
136 /// Machine instruction info used throughout the class.
137 const X86InstrInfo
*TII
= nullptr;
139 const TargetRegisterInfo
*TRI
= nullptr;
141 /// Local member for function's OptForSize attribute.
142 bool OptForSize
= false;
144 /// Machine loop info used for guiding some heruistics.
145 MachineLoopInfo
*MLI
= nullptr;
147 /// Register Liveness information after the current instruction.
148 LiveRegUnits LiveUnits
;
150 ProfileSummaryInfo
*PSI
= nullptr;
151 MachineBlockFrequencyInfo
*MBFI
= nullptr;
153 char FixupBWInstPass::ID
= 0;
156 INITIALIZE_PASS(FixupBWInstPass
, FIXUPBW_NAME
, FIXUPBW_DESC
, false, false)
158 FunctionPass
*llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); }
160 bool FixupBWInstPass::runOnMachineFunction(MachineFunction
&MF
) {
161 if (!FixupBWInsts
|| skipFunction(MF
.getFunction()))
165 TII
= MF
.getSubtarget
<X86Subtarget
>().getInstrInfo();
166 TRI
= MF
.getRegInfo().getTargetRegisterInfo();
167 MLI
= &getAnalysis
<MachineLoopInfo
>();
168 PSI
= &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
169 MBFI
= (PSI
&& PSI
->hasProfileSummary()) ?
170 &getAnalysis
<LazyMachineBlockFrequencyInfoPass
>().getBFI() :
172 LiveUnits
.init(TII
->getRegisterInfo());
174 LLVM_DEBUG(dbgs() << "Start X86FixupBWInsts\n";);
176 // Process all basic blocks.
178 processBasicBlock(MF
, MBB
);
180 LLVM_DEBUG(dbgs() << "End X86FixupBWInsts\n";);
185 /// Check if after \p OrigMI the only portion of super register
186 /// of the destination register of \p OrigMI that is alive is that
187 /// destination register.
189 /// If so, return that super register in \p SuperDestReg.
190 Register
FixupBWInstPass::getSuperRegDestIfDead(MachineInstr
*OrigMI
) const {
191 const X86RegisterInfo
*TRI
= &TII
->getRegisterInfo();
192 Register OrigDestReg
= OrigMI
->getOperand(0).getReg();
193 Register SuperDestReg
= getX86SubSuperRegister(OrigDestReg
, 32);
194 assert(SuperDestReg
.isValid() && "Invalid Operand");
196 const auto SubRegIdx
= TRI
->getSubRegIndex(SuperDestReg
, OrigDestReg
);
198 // Make sure that the sub-register that this instruction has as its
199 // destination is the lowest order sub-register of the super-register.
200 // If it isn't, then the register isn't really dead even if the
201 // super-register is considered dead.
202 if (SubRegIdx
== X86::sub_8bit_hi
)
205 // Test all regunits of the super register that are not part of the
206 // sub register. If none of them are live then the super register is safe to
208 bool SuperIsLive
= false;
209 auto Range
= TRI
->regunits(OrigDestReg
);
210 MCRegUnitIterator I
= Range
.begin(), E
= Range
.end();
211 for (MCRegUnit S
: TRI
->regunits(SuperDestReg
)) {
212 I
= std::lower_bound(I
, E
, S
);
213 if ((I
== E
|| *I
> S
) && LiveUnits
.getBitVector().test(S
)) {
221 // If we get here, the super-register destination (or some part of it) is
222 // marked as live after the original instruction.
224 // The X86 backend does not have subregister liveness tracking enabled,
225 // so liveness information might be overly conservative. Specifically, the
226 // super register might be marked as live because it is implicitly defined
227 // by the instruction we are examining.
229 // However, for some specific instructions (this pass only cares about MOVs)
230 // we can produce more precise results by analysing that MOV's operands.
232 // Indeed, if super-register is not live before the mov it means that it
233 // was originally <read-undef> and so we are free to modify these
234 // undef upper bits. That may happen in case where the use is in another MBB
235 // and the vreg/physreg corresponding to the move has higher width than
236 // necessary (e.g. due to register coalescing with a "truncate" copy).
237 // So, we would like to handle patterns like this:
239 // %bb.2: derived from LLVM BB %if.then
241 // Predecessors according to CFG: %bb.0
242 // %ax<def> = MOV16rm killed %rdi, 1, %noreg, 0, %noreg, implicit-def %eax
243 // ; No implicit %eax
244 // Successors according to CFG: %bb.3(?%)
246 // %bb.3: derived from LLVM BB %if.end
247 // Live Ins: %eax Only %ax is actually live
248 // Predecessors according to CFG: %bb.2 %bb.1
249 // %ax = KILL %ax, implicit killed %eax
251 unsigned Opc
= OrigMI
->getOpcode(); (void)Opc
;
252 // These are the opcodes currently known to work with the code below, if
253 // something // else will be added we need to ensure that new opcode has the
255 if (Opc
!= X86::MOV8rm
&& Opc
!= X86::MOV16rm
&& Opc
!= X86::MOV8rr
&&
259 bool IsDefined
= false;
260 for (auto &MO
: OrigMI
->implicit_operands()) {
264 assert((MO
.isDef() || MO
.isUse()) && "Expected Def or Use only!");
266 if (MO
.isDef() && TRI
->isSuperRegisterEq(OrigDestReg
, MO
.getReg()))
269 // If MO is a use of any part of the destination register but is not equal
270 // to OrigDestReg or one of its subregisters, we cannot use SuperDestReg.
271 // For example, if OrigDestReg is %al then an implicit use of %ah, %ax,
272 // %eax, or %rax will prevent us from using the %eax register.
273 if (MO
.isUse() && !TRI
->isSubRegisterEq(OrigDestReg
, MO
.getReg()) &&
274 TRI
->regsOverlap(SuperDestReg
, MO
.getReg()))
277 // Reg is not Imp-def'ed -> it's live both before/after the instruction.
281 // Otherwise, the Reg is not live before the MI and the MOV can't
282 // make it really live, so it's in fact dead even after the MI.
286 MachineInstr
*FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode
,
287 MachineInstr
*MI
) const {
288 // We are going to try to rewrite this load to a larger zero-extending
289 // load. This is safe if all portions of the 32 bit super-register
290 // of the original destination register, except for the original destination
291 // register are dead. getSuperRegDestIfDead checks that.
292 Register NewDestReg
= getSuperRegDestIfDead(MI
);
296 // Safe to change the instruction.
297 MachineInstrBuilder MIB
=
298 BuildMI(*MF
, MIMetadata(*MI
), TII
->get(New32BitOpcode
), NewDestReg
);
300 unsigned NumArgs
= MI
->getNumOperands();
301 for (unsigned i
= 1; i
< NumArgs
; ++i
)
302 MIB
.add(MI
->getOperand(i
));
304 MIB
.setMemRefs(MI
->memoperands());
306 // If it was debug tracked, record a substitution.
307 if (unsigned OldInstrNum
= MI
->peekDebugInstrNum()) {
308 unsigned Subreg
= TRI
->getSubRegIndex(MIB
->getOperand(0).getReg(),
309 MI
->getOperand(0).getReg());
310 unsigned NewInstrNum
= MIB
->getDebugInstrNum(*MF
);
311 MF
->makeDebugValueSubstitution({OldInstrNum
, 0}, {NewInstrNum
, 0}, Subreg
);
317 MachineInstr
*FixupBWInstPass::tryReplaceCopy(MachineInstr
*MI
) const {
318 assert(MI
->getNumExplicitOperands() == 2);
319 auto &OldDest
= MI
->getOperand(0);
320 auto &OldSrc
= MI
->getOperand(1);
322 Register NewDestReg
= getSuperRegDestIfDead(MI
);
326 Register NewSrcReg
= getX86SubSuperRegister(OldSrc
.getReg(), 32);
327 assert(NewSrcReg
.isValid() && "Invalid Operand");
329 // This is only correct if we access the same subregister index: otherwise,
330 // we could try to replace "movb %ah, %al" with "movl %eax, %eax".
331 const X86RegisterInfo
*TRI
= &TII
->getRegisterInfo();
332 if (TRI
->getSubRegIndex(NewSrcReg
, OldSrc
.getReg()) !=
333 TRI
->getSubRegIndex(NewDestReg
, OldDest
.getReg()))
336 // Safe to change the instruction.
337 // Don't set src flags, as we don't know if we're also killing the superreg.
338 // However, the superregister might not be defined; make it explicit that
339 // we don't care about the higher bits by reading it as Undef, and adding
340 // an imp-use on the original subregister.
341 MachineInstrBuilder MIB
=
342 BuildMI(*MF
, MIMetadata(*MI
), TII
->get(X86::MOV32rr
), NewDestReg
)
343 .addReg(NewSrcReg
, RegState::Undef
)
344 .addReg(OldSrc
.getReg(), RegState::Implicit
);
346 // Drop imp-defs/uses that would be redundant with the new def/use.
347 for (auto &Op
: MI
->implicit_operands())
348 if (Op
.getReg() != (Op
.isDef() ? NewDestReg
: NewSrcReg
))
354 MachineInstr
*FixupBWInstPass::tryReplaceExtend(unsigned New32BitOpcode
,
355 MachineInstr
*MI
) const {
356 Register NewDestReg
= getSuperRegDestIfDead(MI
);
360 // Don't interfere with formation of CBW instructions which should be a
361 // shorter encoding than even the MOVSX32rr8. It's also immune to partial
362 // merge issues on Intel CPUs.
363 if (MI
->getOpcode() == X86::MOVSX16rr8
&&
364 MI
->getOperand(0).getReg() == X86::AX
&&
365 MI
->getOperand(1).getReg() == X86::AL
)
368 // Safe to change the instruction.
369 MachineInstrBuilder MIB
=
370 BuildMI(*MF
, MIMetadata(*MI
), TII
->get(New32BitOpcode
), NewDestReg
);
372 unsigned NumArgs
= MI
->getNumOperands();
373 for (unsigned i
= 1; i
< NumArgs
; ++i
)
374 MIB
.add(MI
->getOperand(i
));
376 MIB
.setMemRefs(MI
->memoperands());
378 if (unsigned OldInstrNum
= MI
->peekDebugInstrNum()) {
379 unsigned Subreg
= TRI
->getSubRegIndex(MIB
->getOperand(0).getReg(),
380 MI
->getOperand(0).getReg());
381 unsigned NewInstrNum
= MIB
->getDebugInstrNum(*MF
);
382 MF
->makeDebugValueSubstitution({OldInstrNum
, 0}, {NewInstrNum
, 0}, Subreg
);
388 MachineInstr
*FixupBWInstPass::tryReplaceInstr(MachineInstr
*MI
,
389 MachineBasicBlock
&MBB
) const {
390 // See if this is an instruction of the type we are currently looking for.
391 switch (MI
->getOpcode()) {
394 // Replace 8-bit loads with the zero-extending version if not optimizing
395 // for size. The extending op is cheaper across a wide range of uarch and
396 // it avoids a potentially expensive partial register stall. It takes an
397 // extra byte to encode, however, so don't do this when optimizing for size.
399 return tryReplaceLoad(X86::MOVZX32rm8
, MI
);
403 // Always try to replace 16 bit load with 32 bit zero extending.
404 // Code size is the same, and there is sometimes a perf advantage
405 // from eliminating a false dependence on the upper portion of
407 return tryReplaceLoad(X86::MOVZX32rm16
, MI
);
411 // Always try to replace 8/16 bit copies with a 32 bit copy.
412 // Code size is either less (16) or equal (8), and there is sometimes a
413 // perf advantage from eliminating a false dependence on the upper portion
415 return tryReplaceCopy(MI
);
417 case X86::MOVSX16rr8
:
418 return tryReplaceExtend(X86::MOVSX32rr8
, MI
);
419 case X86::MOVSX16rm8
:
420 return tryReplaceExtend(X86::MOVSX32rm8
, MI
);
421 case X86::MOVZX16rr8
:
422 return tryReplaceExtend(X86::MOVZX32rr8
, MI
);
423 case X86::MOVZX16rm8
:
424 return tryReplaceExtend(X86::MOVZX32rm8
, MI
);
427 // nothing to do here.
434 void FixupBWInstPass::processBasicBlock(MachineFunction
&MF
,
435 MachineBasicBlock
&MBB
) {
437 // This algorithm doesn't delete the instructions it is replacing
438 // right away. By leaving the existing instructions in place, the
439 // register liveness information doesn't change, and this makes the
440 // analysis that goes on be better than if the replaced instructions
441 // were immediately removed.
443 // This algorithm always creates a replacement instruction
444 // and notes that and the original in a data structure, until the
445 // whole BB has been analyzed. This keeps the replacement instructions
446 // from making it seem as if the larger register might be live.
447 SmallVector
<std::pair
<MachineInstr
*, MachineInstr
*>, 8> MIReplacements
;
449 // Start computing liveness for this block. We iterate from the end to be able
450 // to update this for each instruction.
452 // We run after PEI, so we need to AddPristinesAndCSRs.
453 LiveUnits
.addLiveOuts(MBB
);
455 OptForSize
= MF
.getFunction().hasOptSize() ||
456 llvm::shouldOptimizeForSize(&MBB
, PSI
, MBFI
);
458 for (MachineInstr
&MI
: llvm::reverse(MBB
)) {
459 if (MachineInstr
*NewMI
= tryReplaceInstr(&MI
, MBB
))
460 MIReplacements
.push_back(std::make_pair(&MI
, NewMI
));
462 // We're done with this instruction, update liveness for the next one.
463 LiveUnits
.stepBackward(MI
);
466 while (!MIReplacements
.empty()) {
467 MachineInstr
*MI
= MIReplacements
.back().first
;
468 MachineInstr
*NewMI
= MIReplacements
.back().second
;
469 MIReplacements
.pop_back();
470 MBB
.insert(MI
, NewMI
);