[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / lib / Target / X86 / X86InterleavedAccess.cpp
blob47c3eca7b6bdf8dbd1a55a72195c5da05ec4e33c
1 //===- X86InterleavedAccess.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file contains the X86 implementation of the interleaved accesses
11 /// optimization generating X86-specific instructions/intrinsics for
12 /// interleaved access groups.
14 //===----------------------------------------------------------------------===//
16 #include "X86ISelLowering.h"
17 #include "X86Subtarget.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/VectorUtils.h"
21 #include "llvm/CodeGen/MachineValueType.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/Instruction.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/IR/Value.h"
31 #include "llvm/Support/Casting.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <cmath>
35 #include <cstdint>
37 using namespace llvm;
39 namespace {
41 /// This class holds necessary information to represent an interleaved
42 /// access group and supports utilities to lower the group into
43 /// X86-specific instructions/intrinsics.
44 /// E.g. A group of interleaving access loads (Factor = 2; accessing every
45 /// other element)
46 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
47 /// %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <0, 2, 4, 6>
48 /// %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <1, 3, 5, 7>
49 class X86InterleavedAccessGroup {
50 /// Reference to the wide-load instruction of an interleaved access
51 /// group.
52 Instruction *const Inst;
54 /// Reference to the shuffle(s), consumer(s) of the (load) 'Inst'.
55 ArrayRef<ShuffleVectorInst *> Shuffles;
57 /// Reference to the starting index of each user-shuffle.
58 ArrayRef<unsigned> Indices;
60 /// Reference to the interleaving stride in terms of elements.
61 const unsigned Factor;
63 /// Reference to the underlying target.
64 const X86Subtarget &Subtarget;
66 const DataLayout &DL;
68 IRBuilder<> &Builder;
70 /// Breaks down a vector \p 'Inst' of N elements into \p NumSubVectors
71 /// sub vectors of type \p T. Returns the sub-vectors in \p DecomposedVectors.
72 void decompose(Instruction *Inst, unsigned NumSubVectors, FixedVectorType *T,
73 SmallVectorImpl<Instruction *> &DecomposedVectors);
75 /// Performs matrix transposition on a 4x4 matrix \p InputVectors and
76 /// returns the transposed-vectors in \p TransposedVectors.
77 /// E.g.
78 /// InputVectors:
79 /// In-V0 = p1, p2, p3, p4
80 /// In-V1 = q1, q2, q3, q4
81 /// In-V2 = r1, r2, r3, r4
82 /// In-V3 = s1, s2, s3, s4
83 /// OutputVectors:
84 /// Out-V0 = p1, q1, r1, s1
85 /// Out-V1 = p2, q2, r2, s2
86 /// Out-V2 = p3, q3, r3, s3
87 /// Out-V3 = P4, q4, r4, s4
88 void transpose_4x4(ArrayRef<Instruction *> InputVectors,
89 SmallVectorImpl<Value *> &TransposedMatrix);
90 void interleave8bitStride4(ArrayRef<Instruction *> InputVectors,
91 SmallVectorImpl<Value *> &TransposedMatrix,
92 unsigned NumSubVecElems);
93 void interleave8bitStride4VF8(ArrayRef<Instruction *> InputVectors,
94 SmallVectorImpl<Value *> &TransposedMatrix);
95 void interleave8bitStride3(ArrayRef<Instruction *> InputVectors,
96 SmallVectorImpl<Value *> &TransposedMatrix,
97 unsigned NumSubVecElems);
98 void deinterleave8bitStride3(ArrayRef<Instruction *> InputVectors,
99 SmallVectorImpl<Value *> &TransposedMatrix,
100 unsigned NumSubVecElems);
102 public:
103 /// In order to form an interleaved access group X86InterleavedAccessGroup
104 /// requires a wide-load instruction \p 'I', a group of interleaved-vectors
105 /// \p Shuffs, reference to the first indices of each interleaved-vector
106 /// \p 'Ind' and the interleaving stride factor \p F. In order to generate
107 /// X86-specific instructions/intrinsics it also requires the underlying
108 /// target information \p STarget.
109 explicit X86InterleavedAccessGroup(Instruction *I,
110 ArrayRef<ShuffleVectorInst *> Shuffs,
111 ArrayRef<unsigned> Ind, const unsigned F,
112 const X86Subtarget &STarget,
113 IRBuilder<> &B)
114 : Inst(I), Shuffles(Shuffs), Indices(Ind), Factor(F), Subtarget(STarget),
115 DL(Inst->getModule()->getDataLayout()), Builder(B) {}
117 /// Returns true if this interleaved access group can be lowered into
118 /// x86-specific instructions/intrinsics, false otherwise.
119 bool isSupported() const;
121 /// Lowers this interleaved access group into X86-specific
122 /// instructions/intrinsics.
123 bool lowerIntoOptimizedSequence();
126 } // end anonymous namespace
128 bool X86InterleavedAccessGroup::isSupported() const {
129 VectorType *ShuffleVecTy = Shuffles[0]->getType();
130 Type *ShuffleEltTy = ShuffleVecTy->getElementType();
131 unsigned ShuffleElemSize = DL.getTypeSizeInBits(ShuffleEltTy);
132 unsigned WideInstSize;
134 // Currently, lowering is supported for the following vectors:
135 // Stride 4:
136 // 1. Store and load of 4-element vectors of 64 bits on AVX.
137 // 2. Store of 16/32-element vectors of 8 bits on AVX.
138 // Stride 3:
139 // 1. Load of 16/32-element vectors of 8 bits on AVX.
140 if (!Subtarget.hasAVX() || (Factor != 4 && Factor != 3))
141 return false;
143 if (isa<LoadInst>(Inst)) {
144 WideInstSize = DL.getTypeSizeInBits(Inst->getType());
145 if (cast<LoadInst>(Inst)->getPointerAddressSpace())
146 return false;
147 } else
148 WideInstSize = DL.getTypeSizeInBits(Shuffles[0]->getType());
150 // We support shuffle represents stride 4 for byte type with size of
151 // WideInstSize.
152 if (ShuffleElemSize == 64 && WideInstSize == 1024 && Factor == 4)
153 return true;
155 if (ShuffleElemSize == 8 && isa<StoreInst>(Inst) && Factor == 4 &&
156 (WideInstSize == 256 || WideInstSize == 512 || WideInstSize == 1024 ||
157 WideInstSize == 2048))
158 return true;
160 if (ShuffleElemSize == 8 && Factor == 3 &&
161 (WideInstSize == 384 || WideInstSize == 768 || WideInstSize == 1536))
162 return true;
164 return false;
167 void X86InterleavedAccessGroup::decompose(
168 Instruction *VecInst, unsigned NumSubVectors, FixedVectorType *SubVecTy,
169 SmallVectorImpl<Instruction *> &DecomposedVectors) {
170 assert((isa<LoadInst>(VecInst) || isa<ShuffleVectorInst>(VecInst)) &&
171 "Expected Load or Shuffle");
173 Type *VecWidth = VecInst->getType();
174 (void)VecWidth;
175 assert(VecWidth->isVectorTy() &&
176 DL.getTypeSizeInBits(VecWidth) >=
177 DL.getTypeSizeInBits(SubVecTy) * NumSubVectors &&
178 "Invalid Inst-size!!!");
180 if (auto *SVI = dyn_cast<ShuffleVectorInst>(VecInst)) {
181 Value *Op0 = SVI->getOperand(0);
182 Value *Op1 = SVI->getOperand(1);
184 // Generate N(= NumSubVectors) shuffles of T(= SubVecTy) type.
185 for (unsigned i = 0; i < NumSubVectors; ++i)
186 DecomposedVectors.push_back(
187 cast<ShuffleVectorInst>(Builder.CreateShuffleVector(
188 Op0, Op1,
189 createSequentialMask(Indices[i], SubVecTy->getNumElements(),
190 0))));
191 return;
194 // Decompose the load instruction.
195 LoadInst *LI = cast<LoadInst>(VecInst);
196 Type *VecBaseTy;
197 unsigned int NumLoads = NumSubVectors;
198 // In the case of stride 3 with a vector of 32 elements load the information
199 // in the following way:
200 // [0,1...,VF/2-1,VF/2+VF,VF/2+VF+1,...,2VF-1]
201 unsigned VecLength = DL.getTypeSizeInBits(VecWidth);
202 Value *VecBasePtr = LI->getPointerOperand();
203 if (VecLength == 768 || VecLength == 1536) {
204 VecBaseTy = FixedVectorType::get(Type::getInt8Ty(LI->getContext()), 16);
205 NumLoads = NumSubVectors * (VecLength / 384);
206 } else {
207 VecBaseTy = SubVecTy;
209 // Generate N loads of T type.
210 assert(VecBaseTy->getPrimitiveSizeInBits().isKnownMultipleOf(8) &&
211 "VecBaseTy's size must be a multiple of 8");
212 const Align FirstAlignment = LI->getAlign();
213 const Align SubsequentAlignment = commonAlignment(
214 FirstAlignment, VecBaseTy->getPrimitiveSizeInBits().getFixedValue() / 8);
215 Align Alignment = FirstAlignment;
216 for (unsigned i = 0; i < NumLoads; i++) {
217 // TODO: Support inbounds GEP.
218 Value *NewBasePtr =
219 Builder.CreateGEP(VecBaseTy, VecBasePtr, Builder.getInt32(i));
220 Instruction *NewLoad =
221 Builder.CreateAlignedLoad(VecBaseTy, NewBasePtr, Alignment);
222 DecomposedVectors.push_back(NewLoad);
223 Alignment = SubsequentAlignment;
227 // Changing the scale of the vector type by reducing the number of elements and
228 // doubling the scalar size.
229 static MVT scaleVectorType(MVT VT) {
230 unsigned ScalarSize = VT.getVectorElementType().getScalarSizeInBits() * 2;
231 return MVT::getVectorVT(MVT::getIntegerVT(ScalarSize),
232 VT.getVectorNumElements() / 2);
235 static constexpr int Concat[] = {
236 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
237 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
238 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
239 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63};
241 // genShuffleBland - Creates shuffle according to two vectors.This function is
242 // only works on instructions with lane inside 256 registers. According to
243 // the mask 'Mask' creates a new Mask 'Out' by the offset of the mask. The
244 // offset amount depends on the two integer, 'LowOffset' and 'HighOffset'.
245 // Where the 'LowOffset' refers to the first vector and the highOffset refers to
246 // the second vector.
247 // |a0....a5,b0....b4,c0....c4|a16..a21,b16..b20,c16..c20|
248 // |c5...c10,a5....a9,b5....b9|c21..c26,a22..a26,b21..b25|
249 // |b10..b15,c11..c15,a10..a15|b26..b31,c27..c31,a27..a31|
250 // For the sequence to work as a mirror to the load.
251 // We must consider the elements order as above.
252 // In this function we are combining two types of shuffles.
253 // The first one is vpshufed and the second is a type of "blend" shuffle.
254 // By computing the shuffle on a sequence of 16 elements(one lane) and add the
255 // correct offset. We are creating a vpsuffed + blend sequence between two
256 // shuffles.
257 static void genShuffleBland(MVT VT, ArrayRef<int> Mask,
258 SmallVectorImpl<int> &Out, int LowOffset,
259 int HighOffset) {
260 assert(VT.getSizeInBits() >= 256 &&
261 "This function doesn't accept width smaller then 256");
262 unsigned NumOfElm = VT.getVectorNumElements();
263 for (int I : Mask)
264 Out.push_back(I + LowOffset);
265 for (int I : Mask)
266 Out.push_back(I + HighOffset + NumOfElm);
269 // reorderSubVector returns the data to is the original state. And de-facto is
270 // the opposite of the function concatSubVector.
272 // For VecElems = 16
273 // Invec[0] - |0| TransposedMatrix[0] - |0|
274 // Invec[1] - |1| => TransposedMatrix[1] - |1|
275 // Invec[2] - |2| TransposedMatrix[2] - |2|
277 // For VecElems = 32
278 // Invec[0] - |0|3| TransposedMatrix[0] - |0|1|
279 // Invec[1] - |1|4| => TransposedMatrix[1] - |2|3|
280 // Invec[2] - |2|5| TransposedMatrix[2] - |4|5|
282 // For VecElems = 64
283 // Invec[0] - |0|3|6|9 | TransposedMatrix[0] - |0|1|2 |3 |
284 // Invec[1] - |1|4|7|10| => TransposedMatrix[1] - |4|5|6 |7 |
285 // Invec[2] - |2|5|8|11| TransposedMatrix[2] - |8|9|10|11|
287 static void reorderSubVector(MVT VT, SmallVectorImpl<Value *> &TransposedMatrix,
288 ArrayRef<Value *> Vec, ArrayRef<int> VPShuf,
289 unsigned VecElems, unsigned Stride,
290 IRBuilder<> &Builder) {
292 if (VecElems == 16) {
293 for (unsigned i = 0; i < Stride; i++)
294 TransposedMatrix[i] = Builder.CreateShuffleVector(Vec[i], VPShuf);
295 return;
298 SmallVector<int, 32> OptimizeShuf;
299 Value *Temp[8];
301 for (unsigned i = 0; i < (VecElems / 16) * Stride; i += 2) {
302 genShuffleBland(VT, VPShuf, OptimizeShuf, (i / Stride) * 16,
303 (i + 1) / Stride * 16);
304 Temp[i / 2] = Builder.CreateShuffleVector(
305 Vec[i % Stride], Vec[(i + 1) % Stride], OptimizeShuf);
306 OptimizeShuf.clear();
309 if (VecElems == 32) {
310 std::copy(Temp, Temp + Stride, TransposedMatrix.begin());
311 return;
312 } else
313 for (unsigned i = 0; i < Stride; i++)
314 TransposedMatrix[i] =
315 Builder.CreateShuffleVector(Temp[2 * i], Temp[2 * i + 1], Concat);
318 void X86InterleavedAccessGroup::interleave8bitStride4VF8(
319 ArrayRef<Instruction *> Matrix,
320 SmallVectorImpl<Value *> &TransposedMatrix) {
321 // Assuming we start from the following vectors:
322 // Matrix[0]= c0 c1 c2 c3 c4 ... c7
323 // Matrix[1]= m0 m1 m2 m3 m4 ... m7
324 // Matrix[2]= y0 y1 y2 y3 y4 ... y7
325 // Matrix[3]= k0 k1 k2 k3 k4 ... k7
327 MVT VT = MVT::v8i16;
328 TransposedMatrix.resize(2);
329 SmallVector<int, 16> MaskLow;
330 SmallVector<int, 32> MaskLowTemp1, MaskLowWord;
331 SmallVector<int, 32> MaskHighTemp1, MaskHighWord;
333 for (unsigned i = 0; i < 8; ++i) {
334 MaskLow.push_back(i);
335 MaskLow.push_back(i + 8);
338 createUnpackShuffleMask(VT, MaskLowTemp1, true, false);
339 createUnpackShuffleMask(VT, MaskHighTemp1, false, false);
340 narrowShuffleMaskElts(2, MaskHighTemp1, MaskHighWord);
341 narrowShuffleMaskElts(2, MaskLowTemp1, MaskLowWord);
342 // IntrVec1Low = c0 m0 c1 m1 c2 m2 c3 m3 c4 m4 c5 m5 c6 m6 c7 m7
343 // IntrVec2Low = y0 k0 y1 k1 y2 k2 y3 k3 y4 k4 y5 k5 y6 k6 y7 k7
344 Value *IntrVec1Low =
345 Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskLow);
346 Value *IntrVec2Low =
347 Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskLow);
349 // TransposedMatrix[0] = c0 m0 y0 k0 c1 m1 y1 k1 c2 m2 y2 k2 c3 m3 y3 k3
350 // TransposedMatrix[1] = c4 m4 y4 k4 c5 m5 y5 k5 c6 m6 y6 k6 c7 m7 y7 k7
352 TransposedMatrix[0] =
353 Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskLowWord);
354 TransposedMatrix[1] =
355 Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskHighWord);
358 void X86InterleavedAccessGroup::interleave8bitStride4(
359 ArrayRef<Instruction *> Matrix, SmallVectorImpl<Value *> &TransposedMatrix,
360 unsigned NumOfElm) {
361 // Example: Assuming we start from the following vectors:
362 // Matrix[0]= c0 c1 c2 c3 c4 ... c31
363 // Matrix[1]= m0 m1 m2 m3 m4 ... m31
364 // Matrix[2]= y0 y1 y2 y3 y4 ... y31
365 // Matrix[3]= k0 k1 k2 k3 k4 ... k31
367 MVT VT = MVT::getVectorVT(MVT::i8, NumOfElm);
368 MVT HalfVT = scaleVectorType(VT);
370 TransposedMatrix.resize(4);
371 SmallVector<int, 32> MaskHigh;
372 SmallVector<int, 32> MaskLow;
373 SmallVector<int, 32> LowHighMask[2];
374 SmallVector<int, 32> MaskHighTemp;
375 SmallVector<int, 32> MaskLowTemp;
377 // MaskHighTemp and MaskLowTemp built in the vpunpckhbw and vpunpcklbw X86
378 // shuffle pattern.
380 createUnpackShuffleMask(VT, MaskLow, true, false);
381 createUnpackShuffleMask(VT, MaskHigh, false, false);
383 // MaskHighTemp1 and MaskLowTemp1 built in the vpunpckhdw and vpunpckldw X86
384 // shuffle pattern.
386 createUnpackShuffleMask(HalfVT, MaskLowTemp, true, false);
387 createUnpackShuffleMask(HalfVT, MaskHighTemp, false, false);
388 narrowShuffleMaskElts(2, MaskLowTemp, LowHighMask[0]);
389 narrowShuffleMaskElts(2, MaskHighTemp, LowHighMask[1]);
391 // IntrVec1Low = c0 m0 c1 m1 ... c7 m7 | c16 m16 c17 m17 ... c23 m23
392 // IntrVec1High = c8 m8 c9 m9 ... c15 m15 | c24 m24 c25 m25 ... c31 m31
393 // IntrVec2Low = y0 k0 y1 k1 ... y7 k7 | y16 k16 y17 k17 ... y23 k23
394 // IntrVec2High = y8 k8 y9 k9 ... y15 k15 | y24 k24 y25 k25 ... y31 k31
395 Value *IntrVec[4];
397 IntrVec[0] = Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskLow);
398 IntrVec[1] = Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskHigh);
399 IntrVec[2] = Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskLow);
400 IntrVec[3] = Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskHigh);
402 // cmyk4 cmyk5 cmyk6 cmyk7 | cmyk20 cmyk21 cmyk22 cmyk23
403 // cmyk12 cmyk13 cmyk14 cmyk15 | cmyk28 cmyk29 cmyk30 cmyk31
404 // cmyk0 cmyk1 cmyk2 cmyk3 | cmyk16 cmyk17 cmyk18 cmyk19
405 // cmyk8 cmyk9 cmyk10 cmyk11 | cmyk24 cmyk25 cmyk26 cmyk27
407 Value *VecOut[4];
408 for (int i = 0; i < 4; i++)
409 VecOut[i] = Builder.CreateShuffleVector(IntrVec[i / 2], IntrVec[i / 2 + 2],
410 LowHighMask[i % 2]);
412 // cmyk0 cmyk1 cmyk2 cmyk3 | cmyk4 cmyk5 cmyk6 cmyk7
413 // cmyk8 cmyk9 cmyk10 cmyk11 | cmyk12 cmyk13 cmyk14 cmyk15
414 // cmyk16 cmyk17 cmyk18 cmyk19 | cmyk20 cmyk21 cmyk22 cmyk23
415 // cmyk24 cmyk25 cmyk26 cmyk27 | cmyk28 cmyk29 cmyk30 cmyk31
417 if (VT == MVT::v16i8) {
418 std::copy(VecOut, VecOut + 4, TransposedMatrix.begin());
419 return;
422 reorderSubVector(VT, TransposedMatrix, VecOut, ArrayRef(Concat, 16), NumOfElm,
423 4, Builder);
426 // createShuffleStride returns shuffle mask of size N.
427 // The shuffle pattern is as following :
428 // {0, Stride%(VF/Lane), (2*Stride%(VF/Lane))...(VF*Stride/Lane)%(VF/Lane),
429 // (VF/ Lane) ,(VF / Lane)+Stride%(VF/Lane),...,
430 // (VF / Lane)+(VF*Stride/Lane)%(VF/Lane)}
431 // Where Lane is the # of lanes in a register:
432 // VectorSize = 128 => Lane = 1
433 // VectorSize = 256 => Lane = 2
434 // For example shuffle pattern for VF 16 register size 256 -> lanes = 2
435 // {<[0|3|6|1|4|7|2|5]-[8|11|14|9|12|15|10|13]>}
436 static void createShuffleStride(MVT VT, int Stride,
437 SmallVectorImpl<int> &Mask) {
438 int VectorSize = VT.getSizeInBits();
439 int VF = VT.getVectorNumElements();
440 int LaneCount = std::max(VectorSize / 128, 1);
441 for (int Lane = 0; Lane < LaneCount; Lane++)
442 for (int i = 0, LaneSize = VF / LaneCount; i != LaneSize; ++i)
443 Mask.push_back((i * Stride) % LaneSize + LaneSize * Lane);
446 // setGroupSize sets 'SizeInfo' to the size(number of elements) of group
447 // inside mask a shuffleMask. A mask contains exactly 3 groups, where
448 // each group is a monotonically increasing sequence with stride 3.
449 // For example shuffleMask {0,3,6,1,4,7,2,5} => {3,3,2}
450 static void setGroupSize(MVT VT, SmallVectorImpl<int> &SizeInfo) {
451 int VectorSize = VT.getSizeInBits();
452 int VF = VT.getVectorNumElements() / std::max(VectorSize / 128, 1);
453 for (int i = 0, FirstGroupElement = 0; i < 3; i++) {
454 int GroupSize = std::ceil((VF - FirstGroupElement) / 3.0);
455 SizeInfo.push_back(GroupSize);
456 FirstGroupElement = ((GroupSize)*3 + FirstGroupElement) % VF;
460 // DecodePALIGNRMask returns the shuffle mask of vpalign instruction.
461 // vpalign works according to lanes
462 // Where Lane is the # of lanes in a register:
463 // VectorWide = 128 => Lane = 1
464 // VectorWide = 256 => Lane = 2
465 // For Lane = 1 shuffle pattern is: {DiffToJump,...,DiffToJump+VF-1}.
466 // For Lane = 2 shuffle pattern is:
467 // {DiffToJump,...,VF/2-1,VF,...,DiffToJump+VF-1}.
468 // Imm variable sets the offset amount. The result of the
469 // function is stored inside ShuffleMask vector and it built as described in
470 // the begin of the description. AlignDirection is a boolean that indicates the
471 // direction of the alignment. (false - align to the "right" side while true -
472 // align to the "left" side)
473 static void DecodePALIGNRMask(MVT VT, unsigned Imm,
474 SmallVectorImpl<int> &ShuffleMask,
475 bool AlignDirection = true, bool Unary = false) {
476 unsigned NumElts = VT.getVectorNumElements();
477 unsigned NumLanes = std::max((int)VT.getSizeInBits() / 128, 1);
478 unsigned NumLaneElts = NumElts / NumLanes;
480 Imm = AlignDirection ? Imm : (NumLaneElts - Imm);
481 unsigned Offset = Imm * (VT.getScalarSizeInBits() / 8);
483 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
484 for (unsigned i = 0; i != NumLaneElts; ++i) {
485 unsigned Base = i + Offset;
486 // if i+offset is out of this lane then we actually need the other source
487 // If Unary the other source is the first source.
488 if (Base >= NumLaneElts)
489 Base = Unary ? Base % NumLaneElts : Base + NumElts - NumLaneElts;
490 ShuffleMask.push_back(Base + l);
495 // concatSubVector - The function rebuilds the data to a correct expected
496 // order. An assumption(The shape of the matrix) was taken for the
497 // deinterleaved to work with lane's instructions like 'vpalign' or 'vphuf'.
498 // This function ensures that the data is built in correct way for the lane
499 // instructions. Each lane inside the vector is a 128-bit length.
501 // The 'InVec' argument contains the data in increasing order. In InVec[0] You
502 // can find the first 128 bit data. The number of different lanes inside a
503 // vector depends on the 'VecElems'.In general, the formula is
504 // VecElems * type / 128. The size of the array 'InVec' depends and equal to
505 // 'VecElems'.
507 // For VecElems = 16
508 // Invec[0] - |0| Vec[0] - |0|
509 // Invec[1] - |1| => Vec[1] - |1|
510 // Invec[2] - |2| Vec[2] - |2|
512 // For VecElems = 32
513 // Invec[0] - |0|1| Vec[0] - |0|3|
514 // Invec[1] - |2|3| => Vec[1] - |1|4|
515 // Invec[2] - |4|5| Vec[2] - |2|5|
517 // For VecElems = 64
518 // Invec[0] - |0|1|2 |3 | Vec[0] - |0|3|6|9 |
519 // Invec[1] - |4|5|6 |7 | => Vec[1] - |1|4|7|10|
520 // Invec[2] - |8|9|10|11| Vec[2] - |2|5|8|11|
522 static void concatSubVector(Value **Vec, ArrayRef<Instruction *> InVec,
523 unsigned VecElems, IRBuilder<> &Builder) {
524 if (VecElems == 16) {
525 for (int i = 0; i < 3; i++)
526 Vec[i] = InVec[i];
527 return;
530 for (unsigned j = 0; j < VecElems / 32; j++)
531 for (int i = 0; i < 3; i++)
532 Vec[i + j * 3] = Builder.CreateShuffleVector(
533 InVec[j * 6 + i], InVec[j * 6 + i + 3], ArrayRef(Concat, 32));
535 if (VecElems == 32)
536 return;
538 for (int i = 0; i < 3; i++)
539 Vec[i] = Builder.CreateShuffleVector(Vec[i], Vec[i + 3], Concat);
542 void X86InterleavedAccessGroup::deinterleave8bitStride3(
543 ArrayRef<Instruction *> InVec, SmallVectorImpl<Value *> &TransposedMatrix,
544 unsigned VecElems) {
545 // Example: Assuming we start from the following vectors:
546 // Matrix[0]= a0 b0 c0 a1 b1 c1 a2 b2
547 // Matrix[1]= c2 a3 b3 c3 a4 b4 c4 a5
548 // Matrix[2]= b5 c5 a6 b6 c6 a7 b7 c7
550 TransposedMatrix.resize(3);
551 SmallVector<int, 32> VPShuf;
552 SmallVector<int, 32> VPAlign[2];
553 SmallVector<int, 32> VPAlign2;
554 SmallVector<int, 32> VPAlign3;
555 SmallVector<int, 3> GroupSize;
556 Value *Vec[6], *TempVector[3];
558 MVT VT = MVT::getVT(Shuffles[0]->getType());
560 createShuffleStride(VT, 3, VPShuf);
561 setGroupSize(VT, GroupSize);
563 for (int i = 0; i < 2; i++)
564 DecodePALIGNRMask(VT, GroupSize[2 - i], VPAlign[i], false);
566 DecodePALIGNRMask(VT, GroupSize[2] + GroupSize[1], VPAlign2, true, true);
567 DecodePALIGNRMask(VT, GroupSize[1], VPAlign3, true, true);
569 concatSubVector(Vec, InVec, VecElems, Builder);
570 // Vec[0]= a0 a1 a2 b0 b1 b2 c0 c1
571 // Vec[1]= c2 c3 c4 a3 a4 a5 b3 b4
572 // Vec[2]= b5 b6 b7 c5 c6 c7 a6 a7
574 for (int i = 0; i < 3; i++)
575 Vec[i] = Builder.CreateShuffleVector(Vec[i], VPShuf);
577 // TempVector[0]= a6 a7 a0 a1 a2 b0 b1 b2
578 // TempVector[1]= c0 c1 c2 c3 c4 a3 a4 a5
579 // TempVector[2]= b3 b4 b5 b6 b7 c5 c6 c7
581 for (int i = 0; i < 3; i++)
582 TempVector[i] =
583 Builder.CreateShuffleVector(Vec[(i + 2) % 3], Vec[i], VPAlign[0]);
585 // Vec[0]= a3 a4 a5 a6 a7 a0 a1 a2
586 // Vec[1]= c5 c6 c7 c0 c1 c2 c3 c4
587 // Vec[2]= b0 b1 b2 b3 b4 b5 b6 b7
589 for (int i = 0; i < 3; i++)
590 Vec[i] = Builder.CreateShuffleVector(TempVector[(i + 1) % 3], TempVector[i],
591 VPAlign[1]);
593 // TransposedMatrix[0]= a0 a1 a2 a3 a4 a5 a6 a7
594 // TransposedMatrix[1]= b0 b1 b2 b3 b4 b5 b6 b7
595 // TransposedMatrix[2]= c0 c1 c2 c3 c4 c5 c6 c7
597 Value *TempVec = Builder.CreateShuffleVector(Vec[1], VPAlign3);
598 TransposedMatrix[0] = Builder.CreateShuffleVector(Vec[0], VPAlign2);
599 TransposedMatrix[1] = VecElems == 8 ? Vec[2] : TempVec;
600 TransposedMatrix[2] = VecElems == 8 ? TempVec : Vec[2];
603 // group2Shuffle reorder the shuffle stride back into continuous order.
604 // For example For VF16 with Mask1 = {0,3,6,9,12,15,2,5,8,11,14,1,4,7,10,13} =>
605 // MaskResult = {0,11,6,1,12,7,2,13,8,3,14,9,4,15,10,5}.
606 static void group2Shuffle(MVT VT, SmallVectorImpl<int> &Mask,
607 SmallVectorImpl<int> &Output) {
608 int IndexGroup[3] = {0, 0, 0};
609 int Index = 0;
610 int VectorWidth = VT.getSizeInBits();
611 int VF = VT.getVectorNumElements();
612 // Find the index of the different groups.
613 int Lane = (VectorWidth / 128 > 0) ? VectorWidth / 128 : 1;
614 for (int i = 0; i < 3; i++) {
615 IndexGroup[(Index * 3) % (VF / Lane)] = Index;
616 Index += Mask[i];
618 // According to the index compute the convert mask.
619 for (int i = 0; i < VF / Lane; i++) {
620 Output.push_back(IndexGroup[i % 3]);
621 IndexGroup[i % 3]++;
625 void X86InterleavedAccessGroup::interleave8bitStride3(
626 ArrayRef<Instruction *> InVec, SmallVectorImpl<Value *> &TransposedMatrix,
627 unsigned VecElems) {
628 // Example: Assuming we start from the following vectors:
629 // Matrix[0]= a0 a1 a2 a3 a4 a5 a6 a7
630 // Matrix[1]= b0 b1 b2 b3 b4 b5 b6 b7
631 // Matrix[2]= c0 c1 c2 c3 c3 a7 b7 c7
633 TransposedMatrix.resize(3);
634 SmallVector<int, 3> GroupSize;
635 SmallVector<int, 32> VPShuf;
636 SmallVector<int, 32> VPAlign[3];
637 SmallVector<int, 32> VPAlign2;
638 SmallVector<int, 32> VPAlign3;
640 Value *Vec[3], *TempVector[3];
641 MVT VT = MVT::getVectorVT(MVT::i8, VecElems);
643 setGroupSize(VT, GroupSize);
645 for (int i = 0; i < 3; i++)
646 DecodePALIGNRMask(VT, GroupSize[i], VPAlign[i]);
648 DecodePALIGNRMask(VT, GroupSize[1] + GroupSize[2], VPAlign2, false, true);
649 DecodePALIGNRMask(VT, GroupSize[1], VPAlign3, false, true);
651 // Vec[0]= a3 a4 a5 a6 a7 a0 a1 a2
652 // Vec[1]= c5 c6 c7 c0 c1 c2 c3 c4
653 // Vec[2]= b0 b1 b2 b3 b4 b5 b6 b7
655 Vec[0] = Builder.CreateShuffleVector(InVec[0], VPAlign2);
656 Vec[1] = Builder.CreateShuffleVector(InVec[1], VPAlign3);
657 Vec[2] = InVec[2];
659 // Vec[0]= a6 a7 a0 a1 a2 b0 b1 b2
660 // Vec[1]= c0 c1 c2 c3 c4 a3 a4 a5
661 // Vec[2]= b3 b4 b5 b6 b7 c5 c6 c7
663 for (int i = 0; i < 3; i++)
664 TempVector[i] =
665 Builder.CreateShuffleVector(Vec[i], Vec[(i + 2) % 3], VPAlign[1]);
667 // Vec[0]= a0 a1 a2 b0 b1 b2 c0 c1
668 // Vec[1]= c2 c3 c4 a3 a4 a5 b3 b4
669 // Vec[2]= b5 b6 b7 c5 c6 c7 a6 a7
671 for (int i = 0; i < 3; i++)
672 Vec[i] = Builder.CreateShuffleVector(TempVector[i], TempVector[(i + 1) % 3],
673 VPAlign[2]);
675 // TransposedMatrix[0] = a0 b0 c0 a1 b1 c1 a2 b2
676 // TransposedMatrix[1] = c2 a3 b3 c3 a4 b4 c4 a5
677 // TransposedMatrix[2] = b5 c5 a6 b6 c6 a7 b7 c7
679 unsigned NumOfElm = VT.getVectorNumElements();
680 group2Shuffle(VT, GroupSize, VPShuf);
681 reorderSubVector(VT, TransposedMatrix, Vec, VPShuf, NumOfElm, 3, Builder);
684 void X86InterleavedAccessGroup::transpose_4x4(
685 ArrayRef<Instruction *> Matrix,
686 SmallVectorImpl<Value *> &TransposedMatrix) {
687 assert(Matrix.size() == 4 && "Invalid matrix size");
688 TransposedMatrix.resize(4);
690 // dst = src1[0,1],src2[0,1]
691 static constexpr int IntMask1[] = {0, 1, 4, 5};
692 ArrayRef<int> Mask = ArrayRef(IntMask1, 4);
693 Value *IntrVec1 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask);
694 Value *IntrVec2 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask);
696 // dst = src1[2,3],src2[2,3]
697 static constexpr int IntMask2[] = {2, 3, 6, 7};
698 Mask = ArrayRef(IntMask2, 4);
699 Value *IntrVec3 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask);
700 Value *IntrVec4 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask);
702 // dst = src1[0],src2[0],src1[2],src2[2]
703 static constexpr int IntMask3[] = {0, 4, 2, 6};
704 Mask = ArrayRef(IntMask3, 4);
705 TransposedMatrix[0] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask);
706 TransposedMatrix[2] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask);
708 // dst = src1[1],src2[1],src1[3],src2[3]
709 static constexpr int IntMask4[] = {1, 5, 3, 7};
710 Mask = ArrayRef(IntMask4, 4);
711 TransposedMatrix[1] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask);
712 TransposedMatrix[3] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask);
715 // Lowers this interleaved access group into X86-specific
716 // instructions/intrinsics.
717 bool X86InterleavedAccessGroup::lowerIntoOptimizedSequence() {
718 SmallVector<Instruction *, 4> DecomposedVectors;
719 SmallVector<Value *, 4> TransposedVectors;
720 auto *ShuffleTy = cast<FixedVectorType>(Shuffles[0]->getType());
722 if (isa<LoadInst>(Inst)) {
723 auto *ShuffleEltTy = cast<FixedVectorType>(Inst->getType());
724 unsigned NumSubVecElems = ShuffleEltTy->getNumElements() / Factor;
725 switch (NumSubVecElems) {
726 default:
727 return false;
728 case 4:
729 case 8:
730 case 16:
731 case 32:
732 case 64:
733 if (ShuffleTy->getNumElements() != NumSubVecElems)
734 return false;
735 break;
738 // Try to generate target-sized register(/instruction).
739 decompose(Inst, Factor, ShuffleTy, DecomposedVectors);
741 // Perform matrix-transposition in order to compute interleaved
742 // results by generating some sort of (optimized) target-specific
743 // instructions.
745 if (NumSubVecElems == 4)
746 transpose_4x4(DecomposedVectors, TransposedVectors);
747 else
748 deinterleave8bitStride3(DecomposedVectors, TransposedVectors,
749 NumSubVecElems);
751 // Now replace the unoptimized-interleaved-vectors with the
752 // transposed-interleaved vectors.
753 for (unsigned i = 0, e = Shuffles.size(); i < e; ++i)
754 Shuffles[i]->replaceAllUsesWith(TransposedVectors[Indices[i]]);
756 return true;
759 Type *ShuffleEltTy = ShuffleTy->getElementType();
760 unsigned NumSubVecElems = ShuffleTy->getNumElements() / Factor;
762 // Lower the interleaved stores:
763 // 1. Decompose the interleaved wide shuffle into individual shuffle
764 // vectors.
765 decompose(Shuffles[0], Factor,
766 FixedVectorType::get(ShuffleEltTy, NumSubVecElems),
767 DecomposedVectors);
769 // 2. Transpose the interleaved-vectors into vectors of contiguous
770 // elements.
771 switch (NumSubVecElems) {
772 case 4:
773 transpose_4x4(DecomposedVectors, TransposedVectors);
774 break;
775 case 8:
776 interleave8bitStride4VF8(DecomposedVectors, TransposedVectors);
777 break;
778 case 16:
779 case 32:
780 case 64:
781 if (Factor == 4)
782 interleave8bitStride4(DecomposedVectors, TransposedVectors,
783 NumSubVecElems);
784 if (Factor == 3)
785 interleave8bitStride3(DecomposedVectors, TransposedVectors,
786 NumSubVecElems);
787 break;
788 default:
789 return false;
792 // 3. Concatenate the contiguous-vectors back into a wide vector.
793 Value *WideVec = concatenateVectors(Builder, TransposedVectors);
795 // 4. Generate a store instruction for wide-vec.
796 StoreInst *SI = cast<StoreInst>(Inst);
797 Builder.CreateAlignedStore(WideVec, SI->getPointerOperand(), SI->getAlign());
799 return true;
802 // Lower interleaved load(s) into target specific instructions/
803 // intrinsics. Lowering sequence varies depending on the vector-types, factor,
804 // number of shuffles and ISA.
805 // Currently, lowering is supported for 4x64 bits with Factor = 4 on AVX.
806 bool X86TargetLowering::lowerInterleavedLoad(
807 LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
808 ArrayRef<unsigned> Indices, unsigned Factor) const {
809 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
810 "Invalid interleave factor");
811 assert(!Shuffles.empty() && "Empty shufflevector input");
812 assert(Shuffles.size() == Indices.size() &&
813 "Unmatched number of shufflevectors and indices");
815 // Create an interleaved access group.
816 IRBuilder<> Builder(LI);
817 X86InterleavedAccessGroup Grp(LI, Shuffles, Indices, Factor, Subtarget,
818 Builder);
820 return Grp.isSupported() && Grp.lowerIntoOptimizedSequence();
823 bool X86TargetLowering::lowerInterleavedStore(StoreInst *SI,
824 ShuffleVectorInst *SVI,
825 unsigned Factor) const {
826 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
827 "Invalid interleave factor");
829 assert(cast<FixedVectorType>(SVI->getType())->getNumElements() % Factor ==
830 0 &&
831 "Invalid interleaved store");
833 // Holds the indices of SVI that correspond to the starting index of each
834 // interleaved shuffle.
835 SmallVector<unsigned, 4> Indices;
836 auto Mask = SVI->getShuffleMask();
837 for (unsigned i = 0; i < Factor; i++)
838 Indices.push_back(Mask[i]);
840 ArrayRef<ShuffleVectorInst *> Shuffles = ArrayRef(SVI);
842 // Create an interleaved access group.
843 IRBuilder<> Builder(SI);
844 X86InterleavedAccessGroup Grp(SI, Shuffles, Indices, Factor, Subtarget,
845 Builder);
847 return Grp.isSupported() && Grp.lowerIntoOptimizedSequence();