[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / lib / Target / X86 / X86MCInstLower.cpp
blob58ebe023cd61eca9cc9d8d8529c7173cd5821d9d
1 //===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains code to lower X86 MachineInstrs to their corresponding
10 // MCInst records.
12 //===----------------------------------------------------------------------===//
14 #include "MCTargetDesc/X86ATTInstPrinter.h"
15 #include "MCTargetDesc/X86BaseInfo.h"
16 #include "MCTargetDesc/X86EncodingOptimization.h"
17 #include "MCTargetDesc/X86InstComments.h"
18 #include "MCTargetDesc/X86ShuffleDecode.h"
19 #include "MCTargetDesc/X86TargetStreamer.h"
20 #include "X86AsmPrinter.h"
21 #include "X86MachineFunctionInfo.h"
22 #include "X86RegisterInfo.h"
23 #include "X86ShuffleDecodeConstantPool.h"
24 #include "X86Subtarget.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/GlobalValue.h"
34 #include "llvm/IR/Mangler.h"
35 #include "llvm/MC/MCAsmInfo.h"
36 #include "llvm/MC/MCCodeEmitter.h"
37 #include "llvm/MC/MCContext.h"
38 #include "llvm/MC/MCExpr.h"
39 #include "llvm/MC/MCFixup.h"
40 #include "llvm/MC/MCInst.h"
41 #include "llvm/MC/MCInstBuilder.h"
42 #include "llvm/MC/MCSection.h"
43 #include "llvm/MC/MCSectionELF.h"
44 #include "llvm/MC/MCStreamer.h"
45 #include "llvm/MC/MCSymbol.h"
46 #include "llvm/MC/MCSymbolELF.h"
47 #include "llvm/MC/TargetRegistry.h"
48 #include "llvm/Target/TargetLoweringObjectFile.h"
49 #include "llvm/Target/TargetMachine.h"
50 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
51 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h"
52 #include <string>
54 using namespace llvm;
56 namespace {
58 /// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst.
59 class X86MCInstLower {
60 MCContext &Ctx;
61 const MachineFunction &MF;
62 const TargetMachine &TM;
63 const MCAsmInfo &MAI;
64 X86AsmPrinter &AsmPrinter;
66 public:
67 X86MCInstLower(const MachineFunction &MF, X86AsmPrinter &asmprinter);
69 std::optional<MCOperand> LowerMachineOperand(const MachineInstr *MI,
70 const MachineOperand &MO) const;
71 void Lower(const MachineInstr *MI, MCInst &OutMI) const;
73 MCSymbol *GetSymbolFromOperand(const MachineOperand &MO) const;
74 MCOperand LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const;
76 private:
77 MachineModuleInfoMachO &getMachOMMI() const;
80 } // end anonymous namespace
82 /// A RAII helper which defines a region of instructions which can't have
83 /// padding added between them for correctness.
84 struct NoAutoPaddingScope {
85 MCStreamer &OS;
86 const bool OldAllowAutoPadding;
87 NoAutoPaddingScope(MCStreamer &OS)
88 : OS(OS), OldAllowAutoPadding(OS.getAllowAutoPadding()) {
89 changeAndComment(false);
91 ~NoAutoPaddingScope() { changeAndComment(OldAllowAutoPadding); }
92 void changeAndComment(bool b) {
93 if (b == OS.getAllowAutoPadding())
94 return;
95 OS.setAllowAutoPadding(b);
96 if (b)
97 OS.emitRawComment("autopadding");
98 else
99 OS.emitRawComment("noautopadding");
103 // Emit a minimal sequence of nops spanning NumBytes bytes.
104 static void emitX86Nops(MCStreamer &OS, unsigned NumBytes,
105 const X86Subtarget *Subtarget);
107 void X86AsmPrinter::StackMapShadowTracker::count(MCInst &Inst,
108 const MCSubtargetInfo &STI,
109 MCCodeEmitter *CodeEmitter) {
110 if (InShadow) {
111 SmallString<256> Code;
112 SmallVector<MCFixup, 4> Fixups;
113 CodeEmitter->encodeInstruction(Inst, Code, Fixups, STI);
114 CurrentShadowSize += Code.size();
115 if (CurrentShadowSize >= RequiredShadowSize)
116 InShadow = false; // The shadow is big enough. Stop counting.
120 void X86AsmPrinter::StackMapShadowTracker::emitShadowPadding(
121 MCStreamer &OutStreamer, const MCSubtargetInfo &STI) {
122 if (InShadow && CurrentShadowSize < RequiredShadowSize) {
123 InShadow = false;
124 emitX86Nops(OutStreamer, RequiredShadowSize - CurrentShadowSize,
125 &MF->getSubtarget<X86Subtarget>());
129 void X86AsmPrinter::EmitAndCountInstruction(MCInst &Inst) {
130 OutStreamer->emitInstruction(Inst, getSubtargetInfo());
131 SMShadowTracker.count(Inst, getSubtargetInfo(), CodeEmitter.get());
134 X86MCInstLower::X86MCInstLower(const MachineFunction &mf,
135 X86AsmPrinter &asmprinter)
136 : Ctx(mf.getContext()), MF(mf), TM(mf.getTarget()), MAI(*TM.getMCAsmInfo()),
137 AsmPrinter(asmprinter) {}
139 MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const {
140 return MF.getMMI().getObjFileInfo<MachineModuleInfoMachO>();
143 /// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol
144 /// operand to an MCSymbol.
145 MCSymbol *X86MCInstLower::GetSymbolFromOperand(const MachineOperand &MO) const {
146 const Triple &TT = TM.getTargetTriple();
147 if (MO.isGlobal() && TT.isOSBinFormatELF())
148 return AsmPrinter.getSymbolPreferLocal(*MO.getGlobal());
150 const DataLayout &DL = MF.getDataLayout();
151 assert((MO.isGlobal() || MO.isSymbol() || MO.isMBB()) &&
152 "Isn't a symbol reference");
154 MCSymbol *Sym = nullptr;
155 SmallString<128> Name;
156 StringRef Suffix;
158 switch (MO.getTargetFlags()) {
159 case X86II::MO_DLLIMPORT:
160 // Handle dllimport linkage.
161 Name += "__imp_";
162 break;
163 case X86II::MO_COFFSTUB:
164 Name += ".refptr.";
165 break;
166 case X86II::MO_DARWIN_NONLAZY:
167 case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
168 Suffix = "$non_lazy_ptr";
169 break;
172 if (!Suffix.empty())
173 Name += DL.getPrivateGlobalPrefix();
175 if (MO.isGlobal()) {
176 const GlobalValue *GV = MO.getGlobal();
177 AsmPrinter.getNameWithPrefix(Name, GV);
178 } else if (MO.isSymbol()) {
179 Mangler::getNameWithPrefix(Name, MO.getSymbolName(), DL);
180 } else if (MO.isMBB()) {
181 assert(Suffix.empty());
182 Sym = MO.getMBB()->getSymbol();
185 Name += Suffix;
186 if (!Sym)
187 Sym = Ctx.getOrCreateSymbol(Name);
189 // If the target flags on the operand changes the name of the symbol, do that
190 // before we return the symbol.
191 switch (MO.getTargetFlags()) {
192 default:
193 break;
194 case X86II::MO_COFFSTUB: {
195 MachineModuleInfoCOFF &MMICOFF =
196 MF.getMMI().getObjFileInfo<MachineModuleInfoCOFF>();
197 MachineModuleInfoImpl::StubValueTy &StubSym = MMICOFF.getGVStubEntry(Sym);
198 if (!StubSym.getPointer()) {
199 assert(MO.isGlobal() && "Extern symbol not handled yet");
200 StubSym = MachineModuleInfoImpl::StubValueTy(
201 AsmPrinter.getSymbol(MO.getGlobal()), true);
203 break;
205 case X86II::MO_DARWIN_NONLAZY:
206 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: {
207 MachineModuleInfoImpl::StubValueTy &StubSym =
208 getMachOMMI().getGVStubEntry(Sym);
209 if (!StubSym.getPointer()) {
210 assert(MO.isGlobal() && "Extern symbol not handled yet");
211 StubSym = MachineModuleInfoImpl::StubValueTy(
212 AsmPrinter.getSymbol(MO.getGlobal()),
213 !MO.getGlobal()->hasInternalLinkage());
215 break;
219 return Sym;
222 MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO,
223 MCSymbol *Sym) const {
224 // FIXME: We would like an efficient form for this, so we don't have to do a
225 // lot of extra uniquing.
226 const MCExpr *Expr = nullptr;
227 MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None;
229 switch (MO.getTargetFlags()) {
230 default:
231 llvm_unreachable("Unknown target flag on GV operand");
232 case X86II::MO_NO_FLAG: // No flag.
233 // These affect the name of the symbol, not any suffix.
234 case X86II::MO_DARWIN_NONLAZY:
235 case X86II::MO_DLLIMPORT:
236 case X86II::MO_COFFSTUB:
237 break;
239 case X86II::MO_TLVP:
240 RefKind = MCSymbolRefExpr::VK_TLVP;
241 break;
242 case X86II::MO_TLVP_PIC_BASE:
243 Expr = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx);
244 // Subtract the pic base.
245 Expr = MCBinaryExpr::createSub(
246 Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx);
247 break;
248 case X86II::MO_SECREL:
249 RefKind = MCSymbolRefExpr::VK_SECREL;
250 break;
251 case X86II::MO_TLSGD:
252 RefKind = MCSymbolRefExpr::VK_TLSGD;
253 break;
254 case X86II::MO_TLSLD:
255 RefKind = MCSymbolRefExpr::VK_TLSLD;
256 break;
257 case X86II::MO_TLSLDM:
258 RefKind = MCSymbolRefExpr::VK_TLSLDM;
259 break;
260 case X86II::MO_GOTTPOFF:
261 RefKind = MCSymbolRefExpr::VK_GOTTPOFF;
262 break;
263 case X86II::MO_INDNTPOFF:
264 RefKind = MCSymbolRefExpr::VK_INDNTPOFF;
265 break;
266 case X86II::MO_TPOFF:
267 RefKind = MCSymbolRefExpr::VK_TPOFF;
268 break;
269 case X86II::MO_DTPOFF:
270 RefKind = MCSymbolRefExpr::VK_DTPOFF;
271 break;
272 case X86II::MO_NTPOFF:
273 RefKind = MCSymbolRefExpr::VK_NTPOFF;
274 break;
275 case X86II::MO_GOTNTPOFF:
276 RefKind = MCSymbolRefExpr::VK_GOTNTPOFF;
277 break;
278 case X86II::MO_GOTPCREL:
279 RefKind = MCSymbolRefExpr::VK_GOTPCREL;
280 break;
281 case X86II::MO_GOTPCREL_NORELAX:
282 RefKind = MCSymbolRefExpr::VK_GOTPCREL_NORELAX;
283 break;
284 case X86II::MO_GOT:
285 RefKind = MCSymbolRefExpr::VK_GOT;
286 break;
287 case X86II::MO_GOTOFF:
288 RefKind = MCSymbolRefExpr::VK_GOTOFF;
289 break;
290 case X86II::MO_PLT:
291 RefKind = MCSymbolRefExpr::VK_PLT;
292 break;
293 case X86II::MO_ABS8:
294 RefKind = MCSymbolRefExpr::VK_X86_ABS8;
295 break;
296 case X86II::MO_PIC_BASE_OFFSET:
297 case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
298 Expr = MCSymbolRefExpr::create(Sym, Ctx);
299 // Subtract the pic base.
300 Expr = MCBinaryExpr::createSub(
301 Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx);
302 if (MO.isJTI()) {
303 assert(MAI.doesSetDirectiveSuppressReloc());
304 // If .set directive is supported, use it to reduce the number of
305 // relocations the assembler will generate for differences between
306 // local labels. This is only safe when the symbols are in the same
307 // section so we are restricting it to jumptable references.
308 MCSymbol *Label = Ctx.createTempSymbol();
309 AsmPrinter.OutStreamer->emitAssignment(Label, Expr);
310 Expr = MCSymbolRefExpr::create(Label, Ctx);
312 break;
315 if (!Expr)
316 Expr = MCSymbolRefExpr::create(Sym, RefKind, Ctx);
318 if (!MO.isJTI() && !MO.isMBB() && MO.getOffset())
319 Expr = MCBinaryExpr::createAdd(
320 Expr, MCConstantExpr::create(MO.getOffset(), Ctx), Ctx);
321 return MCOperand::createExpr(Expr);
324 static unsigned getRetOpcode(const X86Subtarget &Subtarget) {
325 return Subtarget.is64Bit() ? X86::RET64 : X86::RET32;
328 std::optional<MCOperand>
329 X86MCInstLower::LowerMachineOperand(const MachineInstr *MI,
330 const MachineOperand &MO) const {
331 switch (MO.getType()) {
332 default:
333 MI->print(errs());
334 llvm_unreachable("unknown operand type");
335 case MachineOperand::MO_Register:
336 // Ignore all implicit register operands.
337 if (MO.isImplicit())
338 return std::nullopt;
339 return MCOperand::createReg(MO.getReg());
340 case MachineOperand::MO_Immediate:
341 return MCOperand::createImm(MO.getImm());
342 case MachineOperand::MO_MachineBasicBlock:
343 case MachineOperand::MO_GlobalAddress:
344 case MachineOperand::MO_ExternalSymbol:
345 return LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
346 case MachineOperand::MO_MCSymbol:
347 return LowerSymbolOperand(MO, MO.getMCSymbol());
348 case MachineOperand::MO_JumpTableIndex:
349 return LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex()));
350 case MachineOperand::MO_ConstantPoolIndex:
351 return LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex()));
352 case MachineOperand::MO_BlockAddress:
353 return LowerSymbolOperand(
354 MO, AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress()));
355 case MachineOperand::MO_RegisterMask:
356 // Ignore call clobbers.
357 return std::nullopt;
361 // Replace TAILJMP opcodes with their equivalent opcodes that have encoding
362 // information.
363 static unsigned convertTailJumpOpcode(unsigned Opcode) {
364 switch (Opcode) {
365 case X86::TAILJMPr:
366 Opcode = X86::JMP32r;
367 break;
368 case X86::TAILJMPm:
369 Opcode = X86::JMP32m;
370 break;
371 case X86::TAILJMPr64:
372 Opcode = X86::JMP64r;
373 break;
374 case X86::TAILJMPm64:
375 Opcode = X86::JMP64m;
376 break;
377 case X86::TAILJMPr64_REX:
378 Opcode = X86::JMP64r_REX;
379 break;
380 case X86::TAILJMPm64_REX:
381 Opcode = X86::JMP64m_REX;
382 break;
383 case X86::TAILJMPd:
384 case X86::TAILJMPd64:
385 Opcode = X86::JMP_1;
386 break;
387 case X86::TAILJMPd_CC:
388 case X86::TAILJMPd64_CC:
389 Opcode = X86::JCC_1;
390 break;
393 return Opcode;
396 void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
397 OutMI.setOpcode(MI->getOpcode());
399 for (const MachineOperand &MO : MI->operands())
400 if (auto MaybeMCOp = LowerMachineOperand(MI, MO))
401 OutMI.addOperand(*MaybeMCOp);
403 bool In64BitMode = AsmPrinter.getSubtarget().is64Bit();
404 if (X86::optimizeInstFromVEX3ToVEX2(OutMI, MI->getDesc()) ||
405 X86::optimizeShiftRotateWithImmediateOne(OutMI) ||
406 X86::optimizeVPCMPWithImmediateOneOrSix(OutMI) ||
407 X86::optimizeMOVSX(OutMI) || X86::optimizeINCDEC(OutMI, In64BitMode) ||
408 X86::optimizeMOV(OutMI, In64BitMode) ||
409 X86::optimizeToFixedRegisterOrShortImmediateForm(OutMI))
410 return;
412 // Handle a few special cases to eliminate operand modifiers.
413 switch (OutMI.getOpcode()) {
414 case X86::LEA64_32r:
415 case X86::LEA64r:
416 case X86::LEA16r:
417 case X86::LEA32r:
418 // LEA should have a segment register, but it must be empty.
419 assert(OutMI.getNumOperands() == 1 + X86::AddrNumOperands &&
420 "Unexpected # of LEA operands");
421 assert(OutMI.getOperand(1 + X86::AddrSegmentReg).getReg() == 0 &&
422 "LEA has segment specified!");
423 break;
424 case X86::MULX32Hrr:
425 case X86::MULX32Hrm:
426 case X86::MULX64Hrr:
427 case X86::MULX64Hrm: {
428 // Turn into regular MULX by duplicating the destination.
429 unsigned NewOpc;
430 switch (OutMI.getOpcode()) {
431 default: llvm_unreachable("Invalid opcode");
432 case X86::MULX32Hrr: NewOpc = X86::MULX32rr; break;
433 case X86::MULX32Hrm: NewOpc = X86::MULX32rm; break;
434 case X86::MULX64Hrr: NewOpc = X86::MULX64rr; break;
435 case X86::MULX64Hrm: NewOpc = X86::MULX64rm; break;
437 OutMI.setOpcode(NewOpc);
438 // Duplicate the destination.
439 unsigned DestReg = OutMI.getOperand(0).getReg();
440 OutMI.insert(OutMI.begin(), MCOperand::createReg(DestReg));
441 break;
443 // CALL64r, CALL64pcrel32 - These instructions used to have
444 // register inputs modeled as normal uses instead of implicit uses. As such,
445 // they we used to truncate off all but the first operand (the callee). This
446 // issue seems to have been fixed at some point. This assert verifies that.
447 case X86::CALL64r:
448 case X86::CALL64pcrel32:
449 assert(OutMI.getNumOperands() == 1 && "Unexpected number of operands!");
450 break;
451 case X86::EH_RETURN:
452 case X86::EH_RETURN64: {
453 OutMI = MCInst();
454 OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
455 break;
457 case X86::CLEANUPRET: {
458 // Replace CLEANUPRET with the appropriate RET.
459 OutMI = MCInst();
460 OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
461 break;
463 case X86::CATCHRET: {
464 // Replace CATCHRET with the appropriate RET.
465 const X86Subtarget &Subtarget = AsmPrinter.getSubtarget();
466 unsigned ReturnReg = In64BitMode ? X86::RAX : X86::EAX;
467 OutMI = MCInst();
468 OutMI.setOpcode(getRetOpcode(Subtarget));
469 OutMI.addOperand(MCOperand::createReg(ReturnReg));
470 break;
472 // TAILJMPd, TAILJMPd64, TailJMPd_cc - Lower to the correct jump
473 // instruction.
474 case X86::TAILJMPr:
475 case X86::TAILJMPr64:
476 case X86::TAILJMPr64_REX:
477 case X86::TAILJMPd:
478 case X86::TAILJMPd64:
479 assert(OutMI.getNumOperands() == 1 && "Unexpected number of operands!");
480 OutMI.setOpcode(convertTailJumpOpcode(OutMI.getOpcode()));
481 break;
482 case X86::TAILJMPd_CC:
483 case X86::TAILJMPd64_CC:
484 assert(OutMI.getNumOperands() == 2 && "Unexpected number of operands!");
485 OutMI.setOpcode(convertTailJumpOpcode(OutMI.getOpcode()));
486 break;
487 case X86::TAILJMPm:
488 case X86::TAILJMPm64:
489 case X86::TAILJMPm64_REX:
490 assert(OutMI.getNumOperands() == X86::AddrNumOperands &&
491 "Unexpected number of operands!");
492 OutMI.setOpcode(convertTailJumpOpcode(OutMI.getOpcode()));
493 break;
494 case X86::MASKMOVDQU:
495 case X86::VMASKMOVDQU:
496 if (In64BitMode)
497 OutMI.setFlags(X86::IP_HAS_AD_SIZE);
498 break;
499 case X86::BSF16rm:
500 case X86::BSF16rr:
501 case X86::BSF32rm:
502 case X86::BSF32rr:
503 case X86::BSF64rm:
504 case X86::BSF64rr: {
505 // Add an REP prefix to BSF instructions so that new processors can
506 // recognize as TZCNT, which has better performance than BSF.
507 // BSF and TZCNT have different interpretations on ZF bit. So make sure
508 // it won't be used later.
509 const MachineOperand *FlagDef = MI->findRegisterDefOperand(X86::EFLAGS);
510 if (!MF.getFunction().hasOptSize() && FlagDef && FlagDef->isDead())
511 OutMI.setFlags(X86::IP_HAS_REPEAT);
512 break;
514 default:
515 break;
519 void X86AsmPrinter::LowerTlsAddr(X86MCInstLower &MCInstLowering,
520 const MachineInstr &MI) {
521 NoAutoPaddingScope NoPadScope(*OutStreamer);
522 bool Is64Bits = MI.getOpcode() != X86::TLS_addr32 &&
523 MI.getOpcode() != X86::TLS_base_addr32;
524 bool Is64BitsLP64 = MI.getOpcode() == X86::TLS_addr64 ||
525 MI.getOpcode() == X86::TLS_base_addr64;
526 MCContext &Ctx = OutStreamer->getContext();
528 MCSymbolRefExpr::VariantKind SRVK;
529 switch (MI.getOpcode()) {
530 case X86::TLS_addr32:
531 case X86::TLS_addr64:
532 case X86::TLS_addrX32:
533 SRVK = MCSymbolRefExpr::VK_TLSGD;
534 break;
535 case X86::TLS_base_addr32:
536 SRVK = MCSymbolRefExpr::VK_TLSLDM;
537 break;
538 case X86::TLS_base_addr64:
539 case X86::TLS_base_addrX32:
540 SRVK = MCSymbolRefExpr::VK_TLSLD;
541 break;
542 default:
543 llvm_unreachable("unexpected opcode");
546 const MCSymbolRefExpr *Sym = MCSymbolRefExpr::create(
547 MCInstLowering.GetSymbolFromOperand(MI.getOperand(3)), SRVK, Ctx);
549 // As of binutils 2.32, ld has a bogus TLS relaxation error when the GD/LD
550 // code sequence using R_X86_64_GOTPCREL (instead of R_X86_64_GOTPCRELX) is
551 // attempted to be relaxed to IE/LE (binutils PR24784). Work around the bug by
552 // only using GOT when GOTPCRELX is enabled.
553 // TODO Delete the workaround when GOTPCRELX becomes commonplace.
554 bool UseGot = MMI->getModule()->getRtLibUseGOT() &&
555 Ctx.getAsmInfo()->canRelaxRelocations();
557 if (Is64Bits) {
558 bool NeedsPadding = SRVK == MCSymbolRefExpr::VK_TLSGD;
559 if (NeedsPadding && Is64BitsLP64)
560 EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
561 EmitAndCountInstruction(MCInstBuilder(X86::LEA64r)
562 .addReg(X86::RDI)
563 .addReg(X86::RIP)
564 .addImm(1)
565 .addReg(0)
566 .addExpr(Sym)
567 .addReg(0));
568 const MCSymbol *TlsGetAddr = Ctx.getOrCreateSymbol("__tls_get_addr");
569 if (NeedsPadding) {
570 if (!UseGot)
571 EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
572 EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
573 EmitAndCountInstruction(MCInstBuilder(X86::REX64_PREFIX));
575 if (UseGot) {
576 const MCExpr *Expr = MCSymbolRefExpr::create(
577 TlsGetAddr, MCSymbolRefExpr::VK_GOTPCREL, Ctx);
578 EmitAndCountInstruction(MCInstBuilder(X86::CALL64m)
579 .addReg(X86::RIP)
580 .addImm(1)
581 .addReg(0)
582 .addExpr(Expr)
583 .addReg(0));
584 } else {
585 EmitAndCountInstruction(
586 MCInstBuilder(X86::CALL64pcrel32)
587 .addExpr(MCSymbolRefExpr::create(TlsGetAddr,
588 MCSymbolRefExpr::VK_PLT, Ctx)));
590 } else {
591 if (SRVK == MCSymbolRefExpr::VK_TLSGD && !UseGot) {
592 EmitAndCountInstruction(MCInstBuilder(X86::LEA32r)
593 .addReg(X86::EAX)
594 .addReg(0)
595 .addImm(1)
596 .addReg(X86::EBX)
597 .addExpr(Sym)
598 .addReg(0));
599 } else {
600 EmitAndCountInstruction(MCInstBuilder(X86::LEA32r)
601 .addReg(X86::EAX)
602 .addReg(X86::EBX)
603 .addImm(1)
604 .addReg(0)
605 .addExpr(Sym)
606 .addReg(0));
609 const MCSymbol *TlsGetAddr = Ctx.getOrCreateSymbol("___tls_get_addr");
610 if (UseGot) {
611 const MCExpr *Expr =
612 MCSymbolRefExpr::create(TlsGetAddr, MCSymbolRefExpr::VK_GOT, Ctx);
613 EmitAndCountInstruction(MCInstBuilder(X86::CALL32m)
614 .addReg(X86::EBX)
615 .addImm(1)
616 .addReg(0)
617 .addExpr(Expr)
618 .addReg(0));
619 } else {
620 EmitAndCountInstruction(
621 MCInstBuilder(X86::CALLpcrel32)
622 .addExpr(MCSymbolRefExpr::create(TlsGetAddr,
623 MCSymbolRefExpr::VK_PLT, Ctx)));
628 /// Emit the largest nop instruction smaller than or equal to \p NumBytes
629 /// bytes. Return the size of nop emitted.
630 static unsigned emitNop(MCStreamer &OS, unsigned NumBytes,
631 const X86Subtarget *Subtarget) {
632 // Determine the longest nop which can be efficiently decoded for the given
633 // target cpu. 15-bytes is the longest single NOP instruction, but some
634 // platforms can't decode the longest forms efficiently.
635 unsigned MaxNopLength = 1;
636 if (Subtarget->is64Bit()) {
637 // FIXME: We can use NOOPL on 32-bit targets with FeatureNOPL, but the
638 // IndexReg/BaseReg below need to be updated.
639 if (Subtarget->hasFeature(X86::TuningFast7ByteNOP))
640 MaxNopLength = 7;
641 else if (Subtarget->hasFeature(X86::TuningFast15ByteNOP))
642 MaxNopLength = 15;
643 else if (Subtarget->hasFeature(X86::TuningFast11ByteNOP))
644 MaxNopLength = 11;
645 else
646 MaxNopLength = 10;
647 } if (Subtarget->is32Bit())
648 MaxNopLength = 2;
650 // Cap a single nop emission at the profitable value for the target
651 NumBytes = std::min(NumBytes, MaxNopLength);
653 unsigned NopSize;
654 unsigned Opc, BaseReg, ScaleVal, IndexReg, Displacement, SegmentReg;
655 IndexReg = Displacement = SegmentReg = 0;
656 BaseReg = X86::RAX;
657 ScaleVal = 1;
658 switch (NumBytes) {
659 case 0:
660 llvm_unreachable("Zero nops?");
661 break;
662 case 1:
663 NopSize = 1;
664 Opc = X86::NOOP;
665 break;
666 case 2:
667 NopSize = 2;
668 Opc = X86::XCHG16ar;
669 break;
670 case 3:
671 NopSize = 3;
672 Opc = X86::NOOPL;
673 break;
674 case 4:
675 NopSize = 4;
676 Opc = X86::NOOPL;
677 Displacement = 8;
678 break;
679 case 5:
680 NopSize = 5;
681 Opc = X86::NOOPL;
682 Displacement = 8;
683 IndexReg = X86::RAX;
684 break;
685 case 6:
686 NopSize = 6;
687 Opc = X86::NOOPW;
688 Displacement = 8;
689 IndexReg = X86::RAX;
690 break;
691 case 7:
692 NopSize = 7;
693 Opc = X86::NOOPL;
694 Displacement = 512;
695 break;
696 case 8:
697 NopSize = 8;
698 Opc = X86::NOOPL;
699 Displacement = 512;
700 IndexReg = X86::RAX;
701 break;
702 case 9:
703 NopSize = 9;
704 Opc = X86::NOOPW;
705 Displacement = 512;
706 IndexReg = X86::RAX;
707 break;
708 default:
709 NopSize = 10;
710 Opc = X86::NOOPW;
711 Displacement = 512;
712 IndexReg = X86::RAX;
713 SegmentReg = X86::CS;
714 break;
717 unsigned NumPrefixes = std::min(NumBytes - NopSize, 5U);
718 NopSize += NumPrefixes;
719 for (unsigned i = 0; i != NumPrefixes; ++i)
720 OS.emitBytes("\x66");
722 switch (Opc) {
723 default: llvm_unreachable("Unexpected opcode");
724 case X86::NOOP:
725 OS.emitInstruction(MCInstBuilder(Opc), *Subtarget);
726 break;
727 case X86::XCHG16ar:
728 OS.emitInstruction(MCInstBuilder(Opc).addReg(X86::AX).addReg(X86::AX),
729 *Subtarget);
730 break;
731 case X86::NOOPL:
732 case X86::NOOPW:
733 OS.emitInstruction(MCInstBuilder(Opc)
734 .addReg(BaseReg)
735 .addImm(ScaleVal)
736 .addReg(IndexReg)
737 .addImm(Displacement)
738 .addReg(SegmentReg),
739 *Subtarget);
740 break;
742 assert(NopSize <= NumBytes && "We overemitted?");
743 return NopSize;
746 /// Emit the optimal amount of multi-byte nops on X86.
747 static void emitX86Nops(MCStreamer &OS, unsigned NumBytes,
748 const X86Subtarget *Subtarget) {
749 unsigned NopsToEmit = NumBytes;
750 (void)NopsToEmit;
751 while (NumBytes) {
752 NumBytes -= emitNop(OS, NumBytes, Subtarget);
753 assert(NopsToEmit >= NumBytes && "Emitted more than I asked for!");
757 void X86AsmPrinter::LowerSTATEPOINT(const MachineInstr &MI,
758 X86MCInstLower &MCIL) {
759 assert(Subtarget->is64Bit() && "Statepoint currently only supports X86-64");
761 NoAutoPaddingScope NoPadScope(*OutStreamer);
763 StatepointOpers SOpers(&MI);
764 if (unsigned PatchBytes = SOpers.getNumPatchBytes()) {
765 emitX86Nops(*OutStreamer, PatchBytes, Subtarget);
766 } else {
767 // Lower call target and choose correct opcode
768 const MachineOperand &CallTarget = SOpers.getCallTarget();
769 MCOperand CallTargetMCOp;
770 unsigned CallOpcode;
771 switch (CallTarget.getType()) {
772 case MachineOperand::MO_GlobalAddress:
773 case MachineOperand::MO_ExternalSymbol:
774 CallTargetMCOp = MCIL.LowerSymbolOperand(
775 CallTarget, MCIL.GetSymbolFromOperand(CallTarget));
776 CallOpcode = X86::CALL64pcrel32;
777 // Currently, we only support relative addressing with statepoints.
778 // Otherwise, we'll need a scratch register to hold the target
779 // address. You'll fail asserts during load & relocation if this
780 // symbol is to far away. (TODO: support non-relative addressing)
781 break;
782 case MachineOperand::MO_Immediate:
783 CallTargetMCOp = MCOperand::createImm(CallTarget.getImm());
784 CallOpcode = X86::CALL64pcrel32;
785 // Currently, we only support relative addressing with statepoints.
786 // Otherwise, we'll need a scratch register to hold the target
787 // immediate. You'll fail asserts during load & relocation if this
788 // address is to far away. (TODO: support non-relative addressing)
789 break;
790 case MachineOperand::MO_Register:
791 // FIXME: Add retpoline support and remove this.
792 if (Subtarget->useIndirectThunkCalls())
793 report_fatal_error("Lowering register statepoints with thunks not "
794 "yet implemented.");
795 CallTargetMCOp = MCOperand::createReg(CallTarget.getReg());
796 CallOpcode = X86::CALL64r;
797 break;
798 default:
799 llvm_unreachable("Unsupported operand type in statepoint call target");
800 break;
803 // Emit call
804 MCInst CallInst;
805 CallInst.setOpcode(CallOpcode);
806 CallInst.addOperand(CallTargetMCOp);
807 OutStreamer->emitInstruction(CallInst, getSubtargetInfo());
810 // Record our statepoint node in the same section used by STACKMAP
811 // and PATCHPOINT
812 auto &Ctx = OutStreamer->getContext();
813 MCSymbol *MILabel = Ctx.createTempSymbol();
814 OutStreamer->emitLabel(MILabel);
815 SM.recordStatepoint(*MILabel, MI);
818 void X86AsmPrinter::LowerFAULTING_OP(const MachineInstr &FaultingMI,
819 X86MCInstLower &MCIL) {
820 // FAULTING_LOAD_OP <def>, <faltinf type>, <MBB handler>,
821 // <opcode>, <operands>
823 NoAutoPaddingScope NoPadScope(*OutStreamer);
825 Register DefRegister = FaultingMI.getOperand(0).getReg();
826 FaultMaps::FaultKind FK =
827 static_cast<FaultMaps::FaultKind>(FaultingMI.getOperand(1).getImm());
828 MCSymbol *HandlerLabel = FaultingMI.getOperand(2).getMBB()->getSymbol();
829 unsigned Opcode = FaultingMI.getOperand(3).getImm();
830 unsigned OperandsBeginIdx = 4;
832 auto &Ctx = OutStreamer->getContext();
833 MCSymbol *FaultingLabel = Ctx.createTempSymbol();
834 OutStreamer->emitLabel(FaultingLabel);
836 assert(FK < FaultMaps::FaultKindMax && "Invalid Faulting Kind!");
837 FM.recordFaultingOp(FK, FaultingLabel, HandlerLabel);
839 MCInst MI;
840 MI.setOpcode(Opcode);
842 if (DefRegister != X86::NoRegister)
843 MI.addOperand(MCOperand::createReg(DefRegister));
845 for (const MachineOperand &MO :
846 llvm::drop_begin(FaultingMI.operands(), OperandsBeginIdx))
847 if (auto MaybeOperand = MCIL.LowerMachineOperand(&FaultingMI, MO))
848 MI.addOperand(*MaybeOperand);
850 OutStreamer->AddComment("on-fault: " + HandlerLabel->getName());
851 OutStreamer->emitInstruction(MI, getSubtargetInfo());
854 void X86AsmPrinter::LowerFENTRY_CALL(const MachineInstr &MI,
855 X86MCInstLower &MCIL) {
856 bool Is64Bits = Subtarget->is64Bit();
857 MCContext &Ctx = OutStreamer->getContext();
858 MCSymbol *fentry = Ctx.getOrCreateSymbol("__fentry__");
859 const MCSymbolRefExpr *Op =
860 MCSymbolRefExpr::create(fentry, MCSymbolRefExpr::VK_None, Ctx);
862 EmitAndCountInstruction(
863 MCInstBuilder(Is64Bits ? X86::CALL64pcrel32 : X86::CALLpcrel32)
864 .addExpr(Op));
867 void X86AsmPrinter::LowerKCFI_CHECK(const MachineInstr &MI) {
868 assert(std::next(MI.getIterator())->isCall() &&
869 "KCFI_CHECK not followed by a call instruction");
871 // Adjust the offset for patchable-function-prefix. X86InstrInfo::getNop()
872 // returns a 1-byte X86::NOOP, which means the offset is the same in
873 // bytes. This assumes that patchable-function-prefix is the same for all
874 // functions.
875 const MachineFunction &MF = *MI.getMF();
876 int64_t PrefixNops = 0;
877 (void)MF.getFunction()
878 .getFnAttribute("patchable-function-prefix")
879 .getValueAsString()
880 .getAsInteger(10, PrefixNops);
882 // KCFI allows indirect calls to any location that's preceded by a valid
883 // type identifier. To avoid encoding the full constant into an instruction,
884 // and thus emitting potential call target gadgets at each indirect call
885 // site, load a negated constant to a register and compare that to the
886 // expected value at the call target.
887 const Register AddrReg = MI.getOperand(0).getReg();
888 const uint32_t Type = MI.getOperand(1).getImm();
889 // The check is immediately before the call. If the call target is in R10,
890 // we can clobber R11 for the check instead.
891 unsigned TempReg = AddrReg == X86::R10 ? X86::R11D : X86::R10D;
892 EmitAndCountInstruction(
893 MCInstBuilder(X86::MOV32ri).addReg(TempReg).addImm(-MaskKCFIType(Type)));
894 EmitAndCountInstruction(MCInstBuilder(X86::ADD32rm)
895 .addReg(X86::NoRegister)
896 .addReg(TempReg)
897 .addReg(AddrReg)
898 .addImm(1)
899 .addReg(X86::NoRegister)
900 .addImm(-(PrefixNops + 4))
901 .addReg(X86::NoRegister));
903 MCSymbol *Pass = OutContext.createTempSymbol();
904 EmitAndCountInstruction(
905 MCInstBuilder(X86::JCC_1)
906 .addExpr(MCSymbolRefExpr::create(Pass, OutContext))
907 .addImm(X86::COND_E));
909 MCSymbol *Trap = OutContext.createTempSymbol();
910 OutStreamer->emitLabel(Trap);
911 EmitAndCountInstruction(MCInstBuilder(X86::TRAP));
912 emitKCFITrapEntry(MF, Trap);
913 OutStreamer->emitLabel(Pass);
916 void X86AsmPrinter::LowerASAN_CHECK_MEMACCESS(const MachineInstr &MI) {
917 // FIXME: Make this work on non-ELF.
918 if (!TM.getTargetTriple().isOSBinFormatELF()) {
919 report_fatal_error("llvm.asan.check.memaccess only supported on ELF");
920 return;
923 const auto &Reg = MI.getOperand(0).getReg();
924 ASanAccessInfo AccessInfo(MI.getOperand(1).getImm());
926 uint64_t ShadowBase;
927 int MappingScale;
928 bool OrShadowOffset;
929 getAddressSanitizerParams(Triple(TM.getTargetTriple()), 64,
930 AccessInfo.CompileKernel, &ShadowBase,
931 &MappingScale, &OrShadowOffset);
933 StringRef Name = AccessInfo.IsWrite ? "store" : "load";
934 StringRef Op = OrShadowOffset ? "or" : "add";
935 std::string SymName = ("__asan_check_" + Name + "_" + Op + "_" +
936 Twine(1ULL << AccessInfo.AccessSizeIndex) + "_" +
937 TM.getMCRegisterInfo()->getName(Reg.asMCReg()))
938 .str();
939 if (OrShadowOffset)
940 report_fatal_error(
941 "OrShadowOffset is not supported with optimized callbacks");
943 EmitAndCountInstruction(
944 MCInstBuilder(X86::CALL64pcrel32)
945 .addExpr(MCSymbolRefExpr::create(
946 OutContext.getOrCreateSymbol(SymName), OutContext)));
949 void X86AsmPrinter::LowerPATCHABLE_OP(const MachineInstr &MI,
950 X86MCInstLower &MCIL) {
951 // PATCHABLE_OP minsize
953 NoAutoPaddingScope NoPadScope(*OutStreamer);
955 auto NextMI = std::find_if(std::next(MI.getIterator()),
956 MI.getParent()->end().getInstrIterator(),
957 [](auto &II) { return !II.isMetaInstruction(); });
959 SmallString<256> Code;
960 unsigned MinSize = MI.getOperand(0).getImm();
962 if (NextMI != MI.getParent()->end()) {
963 // Lower the next MachineInstr to find its byte size.
964 MCInst MCI;
965 MCIL.Lower(&*NextMI, MCI);
967 SmallVector<MCFixup, 4> Fixups;
968 CodeEmitter->encodeInstruction(MCI, Code, Fixups, getSubtargetInfo());
971 if (Code.size() < MinSize) {
972 if (MinSize == 2 && Subtarget->is32Bit() &&
973 Subtarget->isTargetWindowsMSVC() &&
974 (Subtarget->getCPU().empty() || Subtarget->getCPU() == "pentium3")) {
975 // For compatibility reasons, when targetting MSVC, it is important to
976 // generate a 'legacy' NOP in the form of a 8B FF MOV EDI, EDI. Some tools
977 // rely specifically on this pattern to be able to patch a function.
978 // This is only for 32-bit targets, when using /arch:IA32 or /arch:SSE.
979 OutStreamer->emitInstruction(
980 MCInstBuilder(X86::MOV32rr_REV).addReg(X86::EDI).addReg(X86::EDI),
981 *Subtarget);
982 } else {
983 unsigned NopSize = emitNop(*OutStreamer, MinSize, Subtarget);
984 assert(NopSize == MinSize && "Could not implement MinSize!");
985 (void)NopSize;
990 // Lower a stackmap of the form:
991 // <id>, <shadowBytes>, ...
992 void X86AsmPrinter::LowerSTACKMAP(const MachineInstr &MI) {
993 SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
995 auto &Ctx = OutStreamer->getContext();
996 MCSymbol *MILabel = Ctx.createTempSymbol();
997 OutStreamer->emitLabel(MILabel);
999 SM.recordStackMap(*MILabel, MI);
1000 unsigned NumShadowBytes = MI.getOperand(1).getImm();
1001 SMShadowTracker.reset(NumShadowBytes);
1004 // Lower a patchpoint of the form:
1005 // [<def>], <id>, <numBytes>, <target>, <numArgs>, <cc>, ...
1006 void X86AsmPrinter::LowerPATCHPOINT(const MachineInstr &MI,
1007 X86MCInstLower &MCIL) {
1008 assert(Subtarget->is64Bit() && "Patchpoint currently only supports X86-64");
1010 SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
1012 NoAutoPaddingScope NoPadScope(*OutStreamer);
1014 auto &Ctx = OutStreamer->getContext();
1015 MCSymbol *MILabel = Ctx.createTempSymbol();
1016 OutStreamer->emitLabel(MILabel);
1017 SM.recordPatchPoint(*MILabel, MI);
1019 PatchPointOpers opers(&MI);
1020 unsigned ScratchIdx = opers.getNextScratchIdx();
1021 unsigned EncodedBytes = 0;
1022 const MachineOperand &CalleeMO = opers.getCallTarget();
1024 // Check for null target. If target is non-null (i.e. is non-zero or is
1025 // symbolic) then emit a call.
1026 if (!(CalleeMO.isImm() && !CalleeMO.getImm())) {
1027 MCOperand CalleeMCOp;
1028 switch (CalleeMO.getType()) {
1029 default:
1030 /// FIXME: Add a verifier check for bad callee types.
1031 llvm_unreachable("Unrecognized callee operand type.");
1032 case MachineOperand::MO_Immediate:
1033 if (CalleeMO.getImm())
1034 CalleeMCOp = MCOperand::createImm(CalleeMO.getImm());
1035 break;
1036 case MachineOperand::MO_ExternalSymbol:
1037 case MachineOperand::MO_GlobalAddress:
1038 CalleeMCOp = MCIL.LowerSymbolOperand(CalleeMO,
1039 MCIL.GetSymbolFromOperand(CalleeMO));
1040 break;
1043 // Emit MOV to materialize the target address and the CALL to target.
1044 // This is encoded with 12-13 bytes, depending on which register is used.
1045 Register ScratchReg = MI.getOperand(ScratchIdx).getReg();
1046 if (X86II::isX86_64ExtendedReg(ScratchReg))
1047 EncodedBytes = 13;
1048 else
1049 EncodedBytes = 12;
1051 EmitAndCountInstruction(
1052 MCInstBuilder(X86::MOV64ri).addReg(ScratchReg).addOperand(CalleeMCOp));
1053 // FIXME: Add retpoline support and remove this.
1054 if (Subtarget->useIndirectThunkCalls())
1055 report_fatal_error(
1056 "Lowering patchpoint with thunks not yet implemented.");
1057 EmitAndCountInstruction(MCInstBuilder(X86::CALL64r).addReg(ScratchReg));
1060 // Emit padding.
1061 unsigned NumBytes = opers.getNumPatchBytes();
1062 assert(NumBytes >= EncodedBytes &&
1063 "Patchpoint can't request size less than the length of a call.");
1065 emitX86Nops(*OutStreamer, NumBytes - EncodedBytes, Subtarget);
1068 void X86AsmPrinter::LowerPATCHABLE_EVENT_CALL(const MachineInstr &MI,
1069 X86MCInstLower &MCIL) {
1070 assert(Subtarget->is64Bit() && "XRay custom events only supports X86-64");
1072 NoAutoPaddingScope NoPadScope(*OutStreamer);
1074 // We want to emit the following pattern, which follows the x86 calling
1075 // convention to prepare for the trampoline call to be patched in.
1077 // .p2align 1, ...
1078 // .Lxray_event_sled_N:
1079 // jmp +N // jump across the instrumentation sled
1080 // ... // set up arguments in register
1081 // callq __xray_CustomEvent@plt // force dependency to symbol
1082 // ...
1083 // <jump here>
1085 // After patching, it would look something like:
1087 // nopw (2-byte nop)
1088 // ...
1089 // callq __xrayCustomEvent // already lowered
1090 // ...
1092 // ---
1093 // First we emit the label and the jump.
1094 auto CurSled = OutContext.createTempSymbol("xray_event_sled_", true);
1095 OutStreamer->AddComment("# XRay Custom Event Log");
1096 OutStreamer->emitCodeAlignment(Align(2), &getSubtargetInfo());
1097 OutStreamer->emitLabel(CurSled);
1099 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1100 // an operand (computed as an offset from the jmp instruction).
1101 // FIXME: Find another less hacky way do force the relative jump.
1102 OutStreamer->emitBinaryData("\xeb\x0f");
1104 // The default C calling convention will place two arguments into %rcx and
1105 // %rdx -- so we only work with those.
1106 const Register DestRegs[] = {X86::RDI, X86::RSI};
1107 bool UsedMask[] = {false, false};
1108 // Filled out in loop.
1109 Register SrcRegs[] = {0, 0};
1111 // Then we put the operands in the %rdi and %rsi registers. We spill the
1112 // values in the register before we clobber them, and mark them as used in
1113 // UsedMask. In case the arguments are already in the correct register, we use
1114 // emit nops appropriately sized to keep the sled the same size in every
1115 // situation.
1116 for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1117 if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I))) {
1118 assert(Op->isReg() && "Only support arguments in registers");
1119 SrcRegs[I] = getX86SubSuperRegister(Op->getReg(), 64);
1120 assert(SrcRegs[I].isValid() && "Invalid operand");
1121 if (SrcRegs[I] != DestRegs[I]) {
1122 UsedMask[I] = true;
1123 EmitAndCountInstruction(
1124 MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I]));
1125 } else {
1126 emitX86Nops(*OutStreamer, 4, Subtarget);
1130 // Now that the register values are stashed, mov arguments into place.
1131 // FIXME: This doesn't work if one of the later SrcRegs is equal to an
1132 // earlier DestReg. We will have already overwritten over the register before
1133 // we can copy from it.
1134 for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1135 if (SrcRegs[I] != DestRegs[I])
1136 EmitAndCountInstruction(
1137 MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I]));
1139 // We emit a hard dependency on the __xray_CustomEvent symbol, which is the
1140 // name of the trampoline to be implemented by the XRay runtime.
1141 auto TSym = OutContext.getOrCreateSymbol("__xray_CustomEvent");
1142 MachineOperand TOp = MachineOperand::CreateMCSymbol(TSym);
1143 if (isPositionIndependent())
1144 TOp.setTargetFlags(X86II::MO_PLT);
1146 // Emit the call instruction.
1147 EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32)
1148 .addOperand(MCIL.LowerSymbolOperand(TOp, TSym)));
1150 // Restore caller-saved and used registers.
1151 for (unsigned I = sizeof UsedMask; I-- > 0;)
1152 if (UsedMask[I])
1153 EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I]));
1154 else
1155 emitX86Nops(*OutStreamer, 1, Subtarget);
1157 OutStreamer->AddComment("xray custom event end.");
1159 // Record the sled version. Version 0 of this sled was spelled differently, so
1160 // we let the runtime handle the different offsets we're using. Version 2
1161 // changed the absolute address to a PC-relative address.
1162 recordSled(CurSled, MI, SledKind::CUSTOM_EVENT, 2);
1165 void X86AsmPrinter::LowerPATCHABLE_TYPED_EVENT_CALL(const MachineInstr &MI,
1166 X86MCInstLower &MCIL) {
1167 assert(Subtarget->is64Bit() && "XRay typed events only supports X86-64");
1169 NoAutoPaddingScope NoPadScope(*OutStreamer);
1171 // We want to emit the following pattern, which follows the x86 calling
1172 // convention to prepare for the trampoline call to be patched in.
1174 // .p2align 1, ...
1175 // .Lxray_event_sled_N:
1176 // jmp +N // jump across the instrumentation sled
1177 // ... // set up arguments in register
1178 // callq __xray_TypedEvent@plt // force dependency to symbol
1179 // ...
1180 // <jump here>
1182 // After patching, it would look something like:
1184 // nopw (2-byte nop)
1185 // ...
1186 // callq __xrayTypedEvent // already lowered
1187 // ...
1189 // ---
1190 // First we emit the label and the jump.
1191 auto CurSled = OutContext.createTempSymbol("xray_typed_event_sled_", true);
1192 OutStreamer->AddComment("# XRay Typed Event Log");
1193 OutStreamer->emitCodeAlignment(Align(2), &getSubtargetInfo());
1194 OutStreamer->emitLabel(CurSled);
1196 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1197 // an operand (computed as an offset from the jmp instruction).
1198 // FIXME: Find another less hacky way do force the relative jump.
1199 OutStreamer->emitBinaryData("\xeb\x14");
1201 // An x86-64 convention may place three arguments into %rcx, %rdx, and R8,
1202 // so we'll work with those. Or we may be called via SystemV, in which case
1203 // we don't have to do any translation.
1204 const Register DestRegs[] = {X86::RDI, X86::RSI, X86::RDX};
1205 bool UsedMask[] = {false, false, false};
1207 // Will fill out src regs in the loop.
1208 Register SrcRegs[] = {0, 0, 0};
1210 // Then we put the operands in the SystemV registers. We spill the values in
1211 // the registers before we clobber them, and mark them as used in UsedMask.
1212 // In case the arguments are already in the correct register, we emit nops
1213 // appropriately sized to keep the sled the same size in every situation.
1214 for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1215 if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I))) {
1216 // TODO: Is register only support adequate?
1217 assert(Op->isReg() && "Only supports arguments in registers");
1218 SrcRegs[I] = getX86SubSuperRegister(Op->getReg(), 64);
1219 assert(SrcRegs[I].isValid() && "Invalid operand");
1220 if (SrcRegs[I] != DestRegs[I]) {
1221 UsedMask[I] = true;
1222 EmitAndCountInstruction(
1223 MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I]));
1224 } else {
1225 emitX86Nops(*OutStreamer, 4, Subtarget);
1229 // In the above loop we only stash all of the destination registers or emit
1230 // nops if the arguments are already in the right place. Doing the actually
1231 // moving is postponed until after all the registers are stashed so nothing
1232 // is clobbers. We've already added nops to account for the size of mov and
1233 // push if the register is in the right place, so we only have to worry about
1234 // emitting movs.
1235 // FIXME: This doesn't work if one of the later SrcRegs is equal to an
1236 // earlier DestReg. We will have already overwritten over the register before
1237 // we can copy from it.
1238 for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1239 if (UsedMask[I])
1240 EmitAndCountInstruction(
1241 MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I]));
1243 // We emit a hard dependency on the __xray_TypedEvent symbol, which is the
1244 // name of the trampoline to be implemented by the XRay runtime.
1245 auto TSym = OutContext.getOrCreateSymbol("__xray_TypedEvent");
1246 MachineOperand TOp = MachineOperand::CreateMCSymbol(TSym);
1247 if (isPositionIndependent())
1248 TOp.setTargetFlags(X86II::MO_PLT);
1250 // Emit the call instruction.
1251 EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32)
1252 .addOperand(MCIL.LowerSymbolOperand(TOp, TSym)));
1254 // Restore caller-saved and used registers.
1255 for (unsigned I = sizeof UsedMask; I-- > 0;)
1256 if (UsedMask[I])
1257 EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I]));
1258 else
1259 emitX86Nops(*OutStreamer, 1, Subtarget);
1261 OutStreamer->AddComment("xray typed event end.");
1263 // Record the sled version.
1264 recordSled(CurSled, MI, SledKind::TYPED_EVENT, 2);
1267 void X86AsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI,
1268 X86MCInstLower &MCIL) {
1270 NoAutoPaddingScope NoPadScope(*OutStreamer);
1272 const Function &F = MF->getFunction();
1273 if (F.hasFnAttribute("patchable-function-entry")) {
1274 unsigned Num;
1275 if (F.getFnAttribute("patchable-function-entry")
1276 .getValueAsString()
1277 .getAsInteger(10, Num))
1278 return;
1279 emitX86Nops(*OutStreamer, Num, Subtarget);
1280 return;
1282 // We want to emit the following pattern:
1284 // .p2align 1, ...
1285 // .Lxray_sled_N:
1286 // jmp .tmpN
1287 // # 9 bytes worth of noops
1289 // We need the 9 bytes because at runtime, we'd be patching over the full 11
1290 // bytes with the following pattern:
1292 // mov %r10, <function id, 32-bit> // 6 bytes
1293 // call <relative offset, 32-bits> // 5 bytes
1295 auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1296 OutStreamer->emitCodeAlignment(Align(2), &getSubtargetInfo());
1297 OutStreamer->emitLabel(CurSled);
1299 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1300 // an operand (computed as an offset from the jmp instruction).
1301 // FIXME: Find another less hacky way do force the relative jump.
1302 OutStreamer->emitBytes("\xeb\x09");
1303 emitX86Nops(*OutStreamer, 9, Subtarget);
1304 recordSled(CurSled, MI, SledKind::FUNCTION_ENTER, 2);
1307 void X86AsmPrinter::LowerPATCHABLE_RET(const MachineInstr &MI,
1308 X86MCInstLower &MCIL) {
1309 NoAutoPaddingScope NoPadScope(*OutStreamer);
1311 // Since PATCHABLE_RET takes the opcode of the return statement as an
1312 // argument, we use that to emit the correct form of the RET that we want.
1313 // i.e. when we see this:
1315 // PATCHABLE_RET X86::RET ...
1317 // We should emit the RET followed by sleds.
1319 // .p2align 1, ...
1320 // .Lxray_sled_N:
1321 // ret # or equivalent instruction
1322 // # 10 bytes worth of noops
1324 // This just makes sure that the alignment for the next instruction is 2.
1325 auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1326 OutStreamer->emitCodeAlignment(Align(2), &getSubtargetInfo());
1327 OutStreamer->emitLabel(CurSled);
1328 unsigned OpCode = MI.getOperand(0).getImm();
1329 MCInst Ret;
1330 Ret.setOpcode(OpCode);
1331 for (auto &MO : drop_begin(MI.operands()))
1332 if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
1333 Ret.addOperand(*MaybeOperand);
1334 OutStreamer->emitInstruction(Ret, getSubtargetInfo());
1335 emitX86Nops(*OutStreamer, 10, Subtarget);
1336 recordSled(CurSled, MI, SledKind::FUNCTION_EXIT, 2);
1339 void X86AsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI,
1340 X86MCInstLower &MCIL) {
1341 NoAutoPaddingScope NoPadScope(*OutStreamer);
1343 // Like PATCHABLE_RET, we have the actual instruction in the operands to this
1344 // instruction so we lower that particular instruction and its operands.
1345 // Unlike PATCHABLE_RET though, we put the sled before the JMP, much like how
1346 // we do it for PATCHABLE_FUNCTION_ENTER. The sled should be very similar to
1347 // the PATCHABLE_FUNCTION_ENTER case, followed by the lowering of the actual
1348 // tail call much like how we have it in PATCHABLE_RET.
1349 auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1350 OutStreamer->emitCodeAlignment(Align(2), &getSubtargetInfo());
1351 OutStreamer->emitLabel(CurSled);
1352 auto Target = OutContext.createTempSymbol();
1354 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1355 // an operand (computed as an offset from the jmp instruction).
1356 // FIXME: Find another less hacky way do force the relative jump.
1357 OutStreamer->emitBytes("\xeb\x09");
1358 emitX86Nops(*OutStreamer, 9, Subtarget);
1359 OutStreamer->emitLabel(Target);
1360 recordSled(CurSled, MI, SledKind::TAIL_CALL, 2);
1362 unsigned OpCode = MI.getOperand(0).getImm();
1363 OpCode = convertTailJumpOpcode(OpCode);
1364 MCInst TC;
1365 TC.setOpcode(OpCode);
1367 // Before emitting the instruction, add a comment to indicate that this is
1368 // indeed a tail call.
1369 OutStreamer->AddComment("TAILCALL");
1370 for (auto &MO : drop_begin(MI.operands()))
1371 if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
1372 TC.addOperand(*MaybeOperand);
1373 OutStreamer->emitInstruction(TC, getSubtargetInfo());
1376 // Returns instruction preceding MBBI in MachineFunction.
1377 // If MBBI is the first instruction of the first basic block, returns null.
1378 static MachineBasicBlock::const_iterator
1379 PrevCrossBBInst(MachineBasicBlock::const_iterator MBBI) {
1380 const MachineBasicBlock *MBB = MBBI->getParent();
1381 while (MBBI == MBB->begin()) {
1382 if (MBB == &MBB->getParent()->front())
1383 return MachineBasicBlock::const_iterator();
1384 MBB = MBB->getPrevNode();
1385 MBBI = MBB->end();
1387 --MBBI;
1388 return MBBI;
1391 static std::string getShuffleComment(const MachineInstr *MI, unsigned SrcOp1Idx,
1392 unsigned SrcOp2Idx, ArrayRef<int> Mask) {
1393 std::string Comment;
1395 // Compute the name for a register. This is really goofy because we have
1396 // multiple instruction printers that could (in theory) use different
1397 // names. Fortunately most people use the ATT style (outside of Windows)
1398 // and they actually agree on register naming here. Ultimately, this is
1399 // a comment, and so its OK if it isn't perfect.
1400 auto GetRegisterName = [](MCRegister Reg) -> StringRef {
1401 return X86ATTInstPrinter::getRegisterName(Reg);
1404 const MachineOperand &DstOp = MI->getOperand(0);
1405 const MachineOperand &SrcOp1 = MI->getOperand(SrcOp1Idx);
1406 const MachineOperand &SrcOp2 = MI->getOperand(SrcOp2Idx);
1408 StringRef DstName = DstOp.isReg() ? GetRegisterName(DstOp.getReg()) : "mem";
1409 StringRef Src1Name =
1410 SrcOp1.isReg() ? GetRegisterName(SrcOp1.getReg()) : "mem";
1411 StringRef Src2Name =
1412 SrcOp2.isReg() ? GetRegisterName(SrcOp2.getReg()) : "mem";
1414 // One source operand, fix the mask to print all elements in one span.
1415 SmallVector<int, 8> ShuffleMask(Mask);
1416 if (Src1Name == Src2Name)
1417 for (int i = 0, e = ShuffleMask.size(); i != e; ++i)
1418 if (ShuffleMask[i] >= e)
1419 ShuffleMask[i] -= e;
1421 raw_string_ostream CS(Comment);
1422 CS << DstName;
1424 // Handle AVX512 MASK/MASXZ write mask comments.
1425 // MASK: zmmX {%kY}
1426 // MASKZ: zmmX {%kY} {z}
1427 if (SrcOp1Idx > 1) {
1428 assert((SrcOp1Idx == 2 || SrcOp1Idx == 3) && "Unexpected writemask");
1430 const MachineOperand &WriteMaskOp = MI->getOperand(SrcOp1Idx - 1);
1431 if (WriteMaskOp.isReg()) {
1432 CS << " {%" << GetRegisterName(WriteMaskOp.getReg()) << "}";
1434 if (SrcOp1Idx == 2) {
1435 CS << " {z}";
1440 CS << " = ";
1442 for (int i = 0, e = ShuffleMask.size(); i != e; ++i) {
1443 if (i != 0)
1444 CS << ",";
1445 if (ShuffleMask[i] == SM_SentinelZero) {
1446 CS << "zero";
1447 continue;
1450 // Otherwise, it must come from src1 or src2. Print the span of elements
1451 // that comes from this src.
1452 bool isSrc1 = ShuffleMask[i] < (int)e;
1453 CS << (isSrc1 ? Src1Name : Src2Name) << '[';
1455 bool IsFirst = true;
1456 while (i != e && ShuffleMask[i] != SM_SentinelZero &&
1457 (ShuffleMask[i] < (int)e) == isSrc1) {
1458 if (!IsFirst)
1459 CS << ',';
1460 else
1461 IsFirst = false;
1462 if (ShuffleMask[i] == SM_SentinelUndef)
1463 CS << "u";
1464 else
1465 CS << ShuffleMask[i] % (int)e;
1466 ++i;
1468 CS << ']';
1469 --i; // For loop increments element #.
1471 CS.flush();
1473 return Comment;
1476 static void printConstant(const APInt &Val, raw_ostream &CS,
1477 bool PrintZero = false) {
1478 if (Val.getBitWidth() <= 64) {
1479 CS << (PrintZero ? 0ULL : Val.getZExtValue());
1480 } else {
1481 // print multi-word constant as (w0,w1)
1482 CS << "(";
1483 for (int i = 0, N = Val.getNumWords(); i < N; ++i) {
1484 if (i > 0)
1485 CS << ",";
1486 CS << (PrintZero ? 0ULL : Val.getRawData()[i]);
1488 CS << ")";
1492 static void printConstant(const APFloat &Flt, raw_ostream &CS,
1493 bool PrintZero = false) {
1494 SmallString<32> Str;
1495 // Force scientific notation to distinguish from integers.
1496 if (PrintZero)
1497 APFloat::getZero(Flt.getSemantics()).toString(Str, 0, 0);
1498 else
1499 Flt.toString(Str, 0, 0);
1500 CS << Str;
1503 static void printConstant(const Constant *COp, unsigned BitWidth,
1504 raw_ostream &CS, bool PrintZero = false) {
1505 if (isa<UndefValue>(COp)) {
1506 CS << "u";
1507 } else if (auto *CI = dyn_cast<ConstantInt>(COp)) {
1508 printConstant(CI->getValue(), CS, PrintZero);
1509 } else if (auto *CF = dyn_cast<ConstantFP>(COp)) {
1510 printConstant(CF->getValueAPF(), CS, PrintZero);
1511 } else if (auto *CDS = dyn_cast<ConstantDataSequential>(COp)) {
1512 Type *EltTy = CDS->getElementType();
1513 bool IsInteger = EltTy->isIntegerTy();
1514 bool IsFP = EltTy->isHalfTy() || EltTy->isFloatTy() || EltTy->isDoubleTy();
1515 unsigned EltBits = EltTy->getPrimitiveSizeInBits();
1516 unsigned E = std::min(BitWidth / EltBits, CDS->getNumElements());
1517 assert((BitWidth % EltBits) == 0 && "Element size mismatch");
1518 for (unsigned I = 0; I != E; ++I) {
1519 if (I != 0)
1520 CS << ",";
1521 if (IsInteger)
1522 printConstant(CDS->getElementAsAPInt(I), CS, PrintZero);
1523 else if (IsFP)
1524 printConstant(CDS->getElementAsAPFloat(I), CS, PrintZero);
1525 else
1526 CS << "?";
1528 } else if (auto *CV = dyn_cast<ConstantVector>(COp)) {
1529 unsigned EltBits = CV->getType()->getScalarSizeInBits();
1530 unsigned E = std::min(BitWidth / EltBits, CV->getNumOperands());
1531 assert((BitWidth % EltBits) == 0 && "Element size mismatch");
1532 for (unsigned I = 0; I != E; ++I) {
1533 if (I != 0)
1534 CS << ",";
1535 printConstant(CV->getOperand(I), EltBits, CS, PrintZero);
1537 } else {
1538 CS << "?";
1542 static void printZeroUpperMove(const MachineInstr *MI, MCStreamer &OutStreamer,
1543 int SclWidth, int VecWidth,
1544 const char *ShuffleComment) {
1545 std::string Comment;
1546 raw_string_ostream CS(Comment);
1547 const MachineOperand &DstOp = MI->getOperand(0);
1548 CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
1550 if (auto *C = X86::getConstantFromPool(*MI, 1)) {
1551 CS << "[";
1552 printConstant(C, SclWidth, CS);
1553 for (int I = 1, E = VecWidth / SclWidth; I < E; ++I) {
1554 CS << ",";
1555 printConstant(C, SclWidth, CS, true);
1557 CS << "]";
1558 OutStreamer.AddComment(CS.str());
1559 return; // early-out
1562 // We didn't find a constant load, fallback to a shuffle mask decode.
1563 CS << ShuffleComment;
1564 OutStreamer.AddComment(CS.str());
1567 static void printBroadcast(const MachineInstr *MI, MCStreamer &OutStreamer,
1568 int Repeats, int BitWidth) {
1569 if (auto *C = X86::getConstantFromPool(*MI, 1)) {
1570 std::string Comment;
1571 raw_string_ostream CS(Comment);
1572 const MachineOperand &DstOp = MI->getOperand(0);
1573 CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
1574 CS << "[";
1575 for (int l = 0; l != Repeats; ++l) {
1576 if (l != 0)
1577 CS << ",";
1578 printConstant(C, BitWidth, CS);
1580 CS << "]";
1581 OutStreamer.AddComment(CS.str());
1585 void X86AsmPrinter::EmitSEHInstruction(const MachineInstr *MI) {
1586 assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
1587 assert((getSubtarget().isOSWindows() || TM.getTargetTriple().isUEFI()) &&
1588 "SEH_ instruction Windows and UEFI only");
1590 // Use the .cv_fpo directives if we're emitting CodeView on 32-bit x86.
1591 if (EmitFPOData) {
1592 X86TargetStreamer *XTS =
1593 static_cast<X86TargetStreamer *>(OutStreamer->getTargetStreamer());
1594 switch (MI->getOpcode()) {
1595 case X86::SEH_PushReg:
1596 XTS->emitFPOPushReg(MI->getOperand(0).getImm());
1597 break;
1598 case X86::SEH_StackAlloc:
1599 XTS->emitFPOStackAlloc(MI->getOperand(0).getImm());
1600 break;
1601 case X86::SEH_StackAlign:
1602 XTS->emitFPOStackAlign(MI->getOperand(0).getImm());
1603 break;
1604 case X86::SEH_SetFrame:
1605 assert(MI->getOperand(1).getImm() == 0 &&
1606 ".cv_fpo_setframe takes no offset");
1607 XTS->emitFPOSetFrame(MI->getOperand(0).getImm());
1608 break;
1609 case X86::SEH_EndPrologue:
1610 XTS->emitFPOEndPrologue();
1611 break;
1612 case X86::SEH_SaveReg:
1613 case X86::SEH_SaveXMM:
1614 case X86::SEH_PushFrame:
1615 llvm_unreachable("SEH_ directive incompatible with FPO");
1616 break;
1617 default:
1618 llvm_unreachable("expected SEH_ instruction");
1620 return;
1623 // Otherwise, use the .seh_ directives for all other Windows platforms.
1624 switch (MI->getOpcode()) {
1625 case X86::SEH_PushReg:
1626 OutStreamer->emitWinCFIPushReg(MI->getOperand(0).getImm());
1627 break;
1629 case X86::SEH_SaveReg:
1630 OutStreamer->emitWinCFISaveReg(MI->getOperand(0).getImm(),
1631 MI->getOperand(1).getImm());
1632 break;
1634 case X86::SEH_SaveXMM:
1635 OutStreamer->emitWinCFISaveXMM(MI->getOperand(0).getImm(),
1636 MI->getOperand(1).getImm());
1637 break;
1639 case X86::SEH_StackAlloc:
1640 OutStreamer->emitWinCFIAllocStack(MI->getOperand(0).getImm());
1641 break;
1643 case X86::SEH_SetFrame:
1644 OutStreamer->emitWinCFISetFrame(MI->getOperand(0).getImm(),
1645 MI->getOperand(1).getImm());
1646 break;
1648 case X86::SEH_PushFrame:
1649 OutStreamer->emitWinCFIPushFrame(MI->getOperand(0).getImm());
1650 break;
1652 case X86::SEH_EndPrologue:
1653 OutStreamer->emitWinCFIEndProlog();
1654 break;
1656 default:
1657 llvm_unreachable("expected SEH_ instruction");
1661 static unsigned getRegisterWidth(const MCOperandInfo &Info) {
1662 if (Info.RegClass == X86::VR128RegClassID ||
1663 Info.RegClass == X86::VR128XRegClassID)
1664 return 128;
1665 if (Info.RegClass == X86::VR256RegClassID ||
1666 Info.RegClass == X86::VR256XRegClassID)
1667 return 256;
1668 if (Info.RegClass == X86::VR512RegClassID)
1669 return 512;
1670 llvm_unreachable("Unknown register class!");
1673 static void addConstantComments(const MachineInstr *MI,
1674 MCStreamer &OutStreamer) {
1675 switch (MI->getOpcode()) {
1676 // Lower PSHUFB and VPERMILP normally but add a comment if we can find
1677 // a constant shuffle mask. We won't be able to do this at the MC layer
1678 // because the mask isn't an immediate.
1679 case X86::PSHUFBrm:
1680 case X86::VPSHUFBrm:
1681 case X86::VPSHUFBYrm:
1682 case X86::VPSHUFBZ128rm:
1683 case X86::VPSHUFBZ128rmk:
1684 case X86::VPSHUFBZ128rmkz:
1685 case X86::VPSHUFBZ256rm:
1686 case X86::VPSHUFBZ256rmk:
1687 case X86::VPSHUFBZ256rmkz:
1688 case X86::VPSHUFBZrm:
1689 case X86::VPSHUFBZrmk:
1690 case X86::VPSHUFBZrmkz: {
1691 unsigned SrcIdx = 1;
1692 if (X86II::isKMasked(MI->getDesc().TSFlags)) {
1693 // Skip mask operand.
1694 ++SrcIdx;
1695 if (X86II::isKMergeMasked(MI->getDesc().TSFlags)) {
1696 // Skip passthru operand.
1697 ++SrcIdx;
1701 if (auto *C = X86::getConstantFromPool(*MI, SrcIdx + 1)) {
1702 unsigned Width = getRegisterWidth(MI->getDesc().operands()[0]);
1703 SmallVector<int, 64> Mask;
1704 DecodePSHUFBMask(C, Width, Mask);
1705 if (!Mask.empty())
1706 OutStreamer.AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask));
1708 break;
1711 case X86::VPERMILPSrm:
1712 case X86::VPERMILPSYrm:
1713 case X86::VPERMILPSZ128rm:
1714 case X86::VPERMILPSZ128rmk:
1715 case X86::VPERMILPSZ128rmkz:
1716 case X86::VPERMILPSZ256rm:
1717 case X86::VPERMILPSZ256rmk:
1718 case X86::VPERMILPSZ256rmkz:
1719 case X86::VPERMILPSZrm:
1720 case X86::VPERMILPSZrmk:
1721 case X86::VPERMILPSZrmkz:
1722 case X86::VPERMILPDrm:
1723 case X86::VPERMILPDYrm:
1724 case X86::VPERMILPDZ128rm:
1725 case X86::VPERMILPDZ128rmk:
1726 case X86::VPERMILPDZ128rmkz:
1727 case X86::VPERMILPDZ256rm:
1728 case X86::VPERMILPDZ256rmk:
1729 case X86::VPERMILPDZ256rmkz:
1730 case X86::VPERMILPDZrm:
1731 case X86::VPERMILPDZrmk:
1732 case X86::VPERMILPDZrmkz: {
1733 unsigned ElSize;
1734 switch (MI->getOpcode()) {
1735 default: llvm_unreachable("Invalid opcode");
1736 case X86::VPERMILPSrm:
1737 case X86::VPERMILPSYrm:
1738 case X86::VPERMILPSZ128rm:
1739 case X86::VPERMILPSZ256rm:
1740 case X86::VPERMILPSZrm:
1741 case X86::VPERMILPSZ128rmkz:
1742 case X86::VPERMILPSZ256rmkz:
1743 case X86::VPERMILPSZrmkz:
1744 case X86::VPERMILPSZ128rmk:
1745 case X86::VPERMILPSZ256rmk:
1746 case X86::VPERMILPSZrmk:
1747 ElSize = 32;
1748 break;
1749 case X86::VPERMILPDrm:
1750 case X86::VPERMILPDYrm:
1751 case X86::VPERMILPDZ128rm:
1752 case X86::VPERMILPDZ256rm:
1753 case X86::VPERMILPDZrm:
1754 case X86::VPERMILPDZ128rmkz:
1755 case X86::VPERMILPDZ256rmkz:
1756 case X86::VPERMILPDZrmkz:
1757 case X86::VPERMILPDZ128rmk:
1758 case X86::VPERMILPDZ256rmk:
1759 case X86::VPERMILPDZrmk:
1760 ElSize = 64;
1761 break;
1764 unsigned SrcIdx = 1;
1765 if (X86II::isKMasked(MI->getDesc().TSFlags)) {
1766 // Skip mask operand.
1767 ++SrcIdx;
1768 if (X86II::isKMergeMasked(MI->getDesc().TSFlags)) {
1769 // Skip passthru operand.
1770 ++SrcIdx;
1774 if (auto *C = X86::getConstantFromPool(*MI, SrcIdx + 1)) {
1775 unsigned Width = getRegisterWidth(MI->getDesc().operands()[0]);
1776 SmallVector<int, 16> Mask;
1777 DecodeVPERMILPMask(C, ElSize, Width, Mask);
1778 if (!Mask.empty())
1779 OutStreamer.AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask));
1781 break;
1784 case X86::VPERMIL2PDrm:
1785 case X86::VPERMIL2PSrm:
1786 case X86::VPERMIL2PDYrm:
1787 case X86::VPERMIL2PSYrm: {
1788 assert(MI->getNumOperands() >= (3 + X86::AddrNumOperands + 1) &&
1789 "Unexpected number of operands!");
1791 const MachineOperand &CtrlOp = MI->getOperand(MI->getNumOperands() - 1);
1792 if (!CtrlOp.isImm())
1793 break;
1795 unsigned ElSize;
1796 switch (MI->getOpcode()) {
1797 default: llvm_unreachable("Invalid opcode");
1798 case X86::VPERMIL2PSrm: case X86::VPERMIL2PSYrm: ElSize = 32; break;
1799 case X86::VPERMIL2PDrm: case X86::VPERMIL2PDYrm: ElSize = 64; break;
1802 if (auto *C = X86::getConstantFromPool(*MI, 3)) {
1803 unsigned Width = getRegisterWidth(MI->getDesc().operands()[0]);
1804 SmallVector<int, 16> Mask;
1805 DecodeVPERMIL2PMask(C, (unsigned)CtrlOp.getImm(), ElSize, Width, Mask);
1806 if (!Mask.empty())
1807 OutStreamer.AddComment(getShuffleComment(MI, 1, 2, Mask));
1809 break;
1812 case X86::VPPERMrrm: {
1813 if (auto *C = X86::getConstantFromPool(*MI, 3)) {
1814 unsigned Width = getRegisterWidth(MI->getDesc().operands()[0]);
1815 SmallVector<int, 16> Mask;
1816 DecodeVPPERMMask(C, Width, Mask);
1817 if (!Mask.empty())
1818 OutStreamer.AddComment(getShuffleComment(MI, 1, 2, Mask));
1820 break;
1823 case X86::MMX_MOVQ64rm: {
1824 if (auto *C = X86::getConstantFromPool(*MI, 1)) {
1825 std::string Comment;
1826 raw_string_ostream CS(Comment);
1827 const MachineOperand &DstOp = MI->getOperand(0);
1828 CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
1829 if (auto *CF = dyn_cast<ConstantFP>(C)) {
1830 CS << "0x" << toString(CF->getValueAPF().bitcastToAPInt(), 16, false);
1831 OutStreamer.AddComment(CS.str());
1834 break;
1837 case X86::MOVSDrm:
1838 case X86::VMOVSDrm:
1839 case X86::VMOVSDZrm:
1840 case X86::MOVSDrm_alt:
1841 case X86::VMOVSDrm_alt:
1842 case X86::VMOVSDZrm_alt:
1843 case X86::MOVQI2PQIrm:
1844 case X86::VMOVQI2PQIrm:
1845 case X86::VMOVQI2PQIZrm:
1846 printZeroUpperMove(MI, OutStreamer, 64, 128, "mem[0],zero");
1847 break;
1849 case X86::MOVSSrm:
1850 case X86::VMOVSSrm:
1851 case X86::VMOVSSZrm:
1852 case X86::MOVSSrm_alt:
1853 case X86::VMOVSSrm_alt:
1854 case X86::VMOVSSZrm_alt:
1855 case X86::MOVDI2PDIrm:
1856 case X86::VMOVDI2PDIrm:
1857 case X86::VMOVDI2PDIZrm:
1858 printZeroUpperMove(MI, OutStreamer, 32, 128, "mem[0],zero,zero,zero");
1859 break;
1861 #define MOV_CASE(Prefix, Suffix) \
1862 case X86::Prefix##MOVAPD##Suffix##rm: \
1863 case X86::Prefix##MOVAPS##Suffix##rm: \
1864 case X86::Prefix##MOVUPD##Suffix##rm: \
1865 case X86::Prefix##MOVUPS##Suffix##rm: \
1866 case X86::Prefix##MOVDQA##Suffix##rm: \
1867 case X86::Prefix##MOVDQU##Suffix##rm:
1869 #define MOV_AVX512_CASE(Suffix) \
1870 case X86::VMOVDQA64##Suffix##rm: \
1871 case X86::VMOVDQA32##Suffix##rm: \
1872 case X86::VMOVDQU64##Suffix##rm: \
1873 case X86::VMOVDQU32##Suffix##rm: \
1874 case X86::VMOVDQU16##Suffix##rm: \
1875 case X86::VMOVDQU8##Suffix##rm: \
1876 case X86::VMOVAPS##Suffix##rm: \
1877 case X86::VMOVAPD##Suffix##rm: \
1878 case X86::VMOVUPS##Suffix##rm: \
1879 case X86::VMOVUPD##Suffix##rm:
1881 #define CASE_128_MOV_RM() \
1882 MOV_CASE(, ) /* SSE */ \
1883 MOV_CASE(V, ) /* AVX-128 */ \
1884 MOV_AVX512_CASE(Z128)
1886 #define CASE_256_MOV_RM() \
1887 MOV_CASE(V, Y) /* AVX-256 */ \
1888 MOV_AVX512_CASE(Z256)
1890 #define CASE_512_MOV_RM() \
1891 MOV_AVX512_CASE(Z)
1893 // For loads from a constant pool to a vector register, print the constant
1894 // loaded.
1895 CASE_128_MOV_RM()
1896 printBroadcast(MI, OutStreamer, 1, 128);
1897 break;
1898 CASE_256_MOV_RM()
1899 printBroadcast(MI, OutStreamer, 1, 256);
1900 break;
1901 CASE_512_MOV_RM()
1902 printBroadcast(MI, OutStreamer, 1, 512);
1903 break;
1904 case X86::VBROADCASTF128rm:
1905 case X86::VBROADCASTI128rm:
1906 case X86::VBROADCASTF32X4Z256rm:
1907 case X86::VBROADCASTF64X2Z128rm:
1908 case X86::VBROADCASTI32X4Z256rm:
1909 case X86::VBROADCASTI64X2Z128rm:
1910 printBroadcast(MI, OutStreamer, 2, 128);
1911 break;
1912 case X86::VBROADCASTF32X4rm:
1913 case X86::VBROADCASTF64X2rm:
1914 case X86::VBROADCASTI32X4rm:
1915 case X86::VBROADCASTI64X2rm:
1916 printBroadcast(MI, OutStreamer, 4, 128);
1917 break;
1918 case X86::VBROADCASTF32X8rm:
1919 case X86::VBROADCASTF64X4rm:
1920 case X86::VBROADCASTI32X8rm:
1921 case X86::VBROADCASTI64X4rm:
1922 printBroadcast(MI, OutStreamer, 2, 256);
1923 break;
1925 // For broadcast loads from a constant pool to a vector register, repeatedly
1926 // print the constant loaded.
1927 case X86::MOVDDUPrm:
1928 case X86::VMOVDDUPrm:
1929 case X86::VMOVDDUPZ128rm:
1930 case X86::VPBROADCASTQrm:
1931 case X86::VPBROADCASTQZ128rm:
1932 printBroadcast(MI, OutStreamer, 2, 64);
1933 break;
1934 case X86::VBROADCASTSDYrm:
1935 case X86::VBROADCASTSDZ256rm:
1936 case X86::VPBROADCASTQYrm:
1937 case X86::VPBROADCASTQZ256rm:
1938 printBroadcast(MI, OutStreamer, 4, 64);
1939 break;
1940 case X86::VBROADCASTSDZrm:
1941 case X86::VPBROADCASTQZrm:
1942 printBroadcast(MI, OutStreamer, 8, 64);
1943 break;
1944 case X86::VBROADCASTSSrm:
1945 case X86::VBROADCASTSSZ128rm:
1946 case X86::VPBROADCASTDrm:
1947 case X86::VPBROADCASTDZ128rm:
1948 printBroadcast(MI, OutStreamer, 4, 32);
1949 break;
1950 case X86::VBROADCASTSSYrm:
1951 case X86::VBROADCASTSSZ256rm:
1952 case X86::VPBROADCASTDYrm:
1953 case X86::VPBROADCASTDZ256rm:
1954 printBroadcast(MI, OutStreamer, 8, 32);
1955 break;
1956 case X86::VBROADCASTSSZrm:
1957 case X86::VPBROADCASTDZrm:
1958 printBroadcast(MI, OutStreamer, 16, 32);
1959 break;
1960 case X86::VPBROADCASTWrm:
1961 case X86::VPBROADCASTWZ128rm:
1962 printBroadcast(MI, OutStreamer, 8, 16);
1963 break;
1964 case X86::VPBROADCASTWYrm:
1965 case X86::VPBROADCASTWZ256rm:
1966 printBroadcast(MI, OutStreamer, 16, 16);
1967 break;
1968 case X86::VPBROADCASTWZrm:
1969 printBroadcast(MI, OutStreamer, 32, 16);
1970 break;
1971 case X86::VPBROADCASTBrm:
1972 case X86::VPBROADCASTBZ128rm:
1973 printBroadcast(MI, OutStreamer, 16, 8);
1974 break;
1975 case X86::VPBROADCASTBYrm:
1976 case X86::VPBROADCASTBZ256rm:
1977 printBroadcast(MI, OutStreamer, 32, 8);
1978 break;
1979 case X86::VPBROADCASTBZrm:
1980 printBroadcast(MI, OutStreamer, 64, 8);
1981 break;
1985 void X86AsmPrinter::emitInstruction(const MachineInstr *MI) {
1986 // FIXME: Enable feature predicate checks once all the test pass.
1987 // X86_MC::verifyInstructionPredicates(MI->getOpcode(),
1988 // Subtarget->getFeatureBits());
1990 X86MCInstLower MCInstLowering(*MF, *this);
1991 const X86RegisterInfo *RI =
1992 MF->getSubtarget<X86Subtarget>().getRegisterInfo();
1994 if (MI->getOpcode() == X86::OR64rm) {
1995 for (auto &Opd : MI->operands()) {
1996 if (Opd.isSymbol() && StringRef(Opd.getSymbolName()) ==
1997 "swift_async_extendedFramePointerFlags") {
1998 ShouldEmitWeakSwiftAsyncExtendedFramePointerFlags = true;
2003 // Add comments for values loaded from constant pool.
2004 if (OutStreamer->isVerboseAsm())
2005 addConstantComments(MI, *OutStreamer);
2007 // Add a comment about EVEX compression
2008 if (TM.Options.MCOptions.ShowMCEncoding) {
2009 if (MI->getAsmPrinterFlags() & X86::AC_EVEX_2_LEGACY)
2010 OutStreamer->AddComment("EVEX TO LEGACY Compression ", false);
2011 else if (MI->getAsmPrinterFlags() & X86::AC_EVEX_2_VEX)
2012 OutStreamer->AddComment("EVEX TO VEX Compression ", false);
2013 else if (MI->getAsmPrinterFlags() & X86::AC_EVEX_2_EVEX)
2014 OutStreamer->AddComment("EVEX TO EVEX Compression ", false);
2017 switch (MI->getOpcode()) {
2018 case TargetOpcode::DBG_VALUE:
2019 llvm_unreachable("Should be handled target independently");
2021 case X86::EH_RETURN:
2022 case X86::EH_RETURN64: {
2023 // Lower these as normal, but add some comments.
2024 Register Reg = MI->getOperand(0).getReg();
2025 OutStreamer->AddComment(StringRef("eh_return, addr: %") +
2026 X86ATTInstPrinter::getRegisterName(Reg));
2027 break;
2029 case X86::CLEANUPRET: {
2030 // Lower these as normal, but add some comments.
2031 OutStreamer->AddComment("CLEANUPRET");
2032 break;
2035 case X86::CATCHRET: {
2036 // Lower these as normal, but add some comments.
2037 OutStreamer->AddComment("CATCHRET");
2038 break;
2041 case X86::ENDBR32:
2042 case X86::ENDBR64: {
2043 // CurrentPatchableFunctionEntrySym can be CurrentFnBegin only for
2044 // -fpatchable-function-entry=N,0. The entry MBB is guaranteed to be
2045 // non-empty. If MI is the initial ENDBR, place the
2046 // __patchable_function_entries label after ENDBR.
2047 if (CurrentPatchableFunctionEntrySym &&
2048 CurrentPatchableFunctionEntrySym == CurrentFnBegin &&
2049 MI == &MF->front().front()) {
2050 MCInst Inst;
2051 MCInstLowering.Lower(MI, Inst);
2052 EmitAndCountInstruction(Inst);
2053 CurrentPatchableFunctionEntrySym = createTempSymbol("patch");
2054 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
2055 return;
2057 break;
2060 case X86::TAILJMPd64:
2061 if (IndCSPrefix && MI->hasRegisterImplicitUseOperand(X86::R11))
2062 EmitAndCountInstruction(MCInstBuilder(X86::CS_PREFIX));
2063 [[fallthrough]];
2064 case X86::TAILJMPr:
2065 case X86::TAILJMPm:
2066 case X86::TAILJMPd:
2067 case X86::TAILJMPd_CC:
2068 case X86::TAILJMPr64:
2069 case X86::TAILJMPm64:
2070 case X86::TAILJMPd64_CC:
2071 case X86::TAILJMPr64_REX:
2072 case X86::TAILJMPm64_REX:
2073 // Lower these as normal, but add some comments.
2074 OutStreamer->AddComment("TAILCALL");
2075 break;
2077 case X86::TLS_addr32:
2078 case X86::TLS_addr64:
2079 case X86::TLS_addrX32:
2080 case X86::TLS_base_addr32:
2081 case X86::TLS_base_addr64:
2082 case X86::TLS_base_addrX32:
2083 return LowerTlsAddr(MCInstLowering, *MI);
2085 case X86::MOVPC32r: {
2086 // This is a pseudo op for a two instruction sequence with a label, which
2087 // looks like:
2088 // call "L1$pb"
2089 // "L1$pb":
2090 // popl %esi
2092 // Emit the call.
2093 MCSymbol *PICBase = MF->getPICBaseSymbol();
2094 // FIXME: We would like an efficient form for this, so we don't have to do a
2095 // lot of extra uniquing.
2096 EmitAndCountInstruction(
2097 MCInstBuilder(X86::CALLpcrel32)
2098 .addExpr(MCSymbolRefExpr::create(PICBase, OutContext)));
2100 const X86FrameLowering *FrameLowering =
2101 MF->getSubtarget<X86Subtarget>().getFrameLowering();
2102 bool hasFP = FrameLowering->hasFP(*MF);
2104 // TODO: This is needed only if we require precise CFA.
2105 bool HasActiveDwarfFrame = OutStreamer->getNumFrameInfos() &&
2106 !OutStreamer->getDwarfFrameInfos().back().End;
2108 int stackGrowth = -RI->getSlotSize();
2110 if (HasActiveDwarfFrame && !hasFP) {
2111 OutStreamer->emitCFIAdjustCfaOffset(-stackGrowth);
2112 MF->getInfo<X86MachineFunctionInfo>()->setHasCFIAdjustCfa(true);
2115 // Emit the label.
2116 OutStreamer->emitLabel(PICBase);
2118 // popl $reg
2119 EmitAndCountInstruction(
2120 MCInstBuilder(X86::POP32r).addReg(MI->getOperand(0).getReg()));
2122 if (HasActiveDwarfFrame && !hasFP) {
2123 OutStreamer->emitCFIAdjustCfaOffset(stackGrowth);
2125 return;
2128 case X86::ADD32ri: {
2129 // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri.
2130 if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS)
2131 break;
2133 // Okay, we have something like:
2134 // EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL)
2136 // For this, we want to print something like:
2137 // MYGLOBAL + (. - PICBASE)
2138 // However, we can't generate a ".", so just emit a new label here and refer
2139 // to it.
2140 MCSymbol *DotSym = OutContext.createTempSymbol();
2141 OutStreamer->emitLabel(DotSym);
2143 // Now that we have emitted the label, lower the complex operand expression.
2144 MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2));
2146 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
2147 const MCExpr *PICBase =
2148 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext);
2149 DotExpr = MCBinaryExpr::createSub(DotExpr, PICBase, OutContext);
2151 DotExpr = MCBinaryExpr::createAdd(
2152 MCSymbolRefExpr::create(OpSym, OutContext), DotExpr, OutContext);
2154 EmitAndCountInstruction(MCInstBuilder(X86::ADD32ri)
2155 .addReg(MI->getOperand(0).getReg())
2156 .addReg(MI->getOperand(1).getReg())
2157 .addExpr(DotExpr));
2158 return;
2160 case TargetOpcode::STATEPOINT:
2161 return LowerSTATEPOINT(*MI, MCInstLowering);
2163 case TargetOpcode::FAULTING_OP:
2164 return LowerFAULTING_OP(*MI, MCInstLowering);
2166 case TargetOpcode::FENTRY_CALL:
2167 return LowerFENTRY_CALL(*MI, MCInstLowering);
2169 case TargetOpcode::PATCHABLE_OP:
2170 return LowerPATCHABLE_OP(*MI, MCInstLowering);
2172 case TargetOpcode::STACKMAP:
2173 return LowerSTACKMAP(*MI);
2175 case TargetOpcode::PATCHPOINT:
2176 return LowerPATCHPOINT(*MI, MCInstLowering);
2178 case TargetOpcode::PATCHABLE_FUNCTION_ENTER:
2179 return LowerPATCHABLE_FUNCTION_ENTER(*MI, MCInstLowering);
2181 case TargetOpcode::PATCHABLE_RET:
2182 return LowerPATCHABLE_RET(*MI, MCInstLowering);
2184 case TargetOpcode::PATCHABLE_TAIL_CALL:
2185 return LowerPATCHABLE_TAIL_CALL(*MI, MCInstLowering);
2187 case TargetOpcode::PATCHABLE_EVENT_CALL:
2188 return LowerPATCHABLE_EVENT_CALL(*MI, MCInstLowering);
2190 case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL:
2191 return LowerPATCHABLE_TYPED_EVENT_CALL(*MI, MCInstLowering);
2193 case X86::MORESTACK_RET:
2194 EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
2195 return;
2197 case X86::KCFI_CHECK:
2198 return LowerKCFI_CHECK(*MI);
2200 case X86::ASAN_CHECK_MEMACCESS:
2201 return LowerASAN_CHECK_MEMACCESS(*MI);
2203 case X86::MORESTACK_RET_RESTORE_R10:
2204 // Return, then restore R10.
2205 EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
2206 EmitAndCountInstruction(
2207 MCInstBuilder(X86::MOV64rr).addReg(X86::R10).addReg(X86::RAX));
2208 return;
2210 case X86::SEH_PushReg:
2211 case X86::SEH_SaveReg:
2212 case X86::SEH_SaveXMM:
2213 case X86::SEH_StackAlloc:
2214 case X86::SEH_StackAlign:
2215 case X86::SEH_SetFrame:
2216 case X86::SEH_PushFrame:
2217 case X86::SEH_EndPrologue:
2218 EmitSEHInstruction(MI);
2219 return;
2221 case X86::SEH_Epilogue: {
2222 assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
2223 MachineBasicBlock::const_iterator MBBI(MI);
2224 // Check if preceded by a call and emit nop if so.
2225 for (MBBI = PrevCrossBBInst(MBBI);
2226 MBBI != MachineBasicBlock::const_iterator();
2227 MBBI = PrevCrossBBInst(MBBI)) {
2228 // Pseudo instructions that aren't a call are assumed to not emit any
2229 // code. If they do, we worst case generate unnecessary noops after a
2230 // call.
2231 if (MBBI->isCall() || !MBBI->isPseudo()) {
2232 if (MBBI->isCall())
2233 EmitAndCountInstruction(MCInstBuilder(X86::NOOP));
2234 break;
2237 return;
2239 case X86::UBSAN_UD1:
2240 EmitAndCountInstruction(MCInstBuilder(X86::UD1Lm)
2241 .addReg(X86::EAX)
2242 .addReg(X86::EAX)
2243 .addImm(1)
2244 .addReg(X86::NoRegister)
2245 .addImm(MI->getOperand(0).getImm())
2246 .addReg(X86::NoRegister));
2247 return;
2248 case X86::CALL64pcrel32:
2249 if (IndCSPrefix && MI->hasRegisterImplicitUseOperand(X86::R11))
2250 EmitAndCountInstruction(MCInstBuilder(X86::CS_PREFIX));
2251 break;
2254 MCInst TmpInst;
2255 MCInstLowering.Lower(MI, TmpInst);
2257 // Stackmap shadows cannot include branch targets, so we can count the bytes
2258 // in a call towards the shadow, but must ensure that the no thread returns
2259 // in to the stackmap shadow. The only way to achieve this is if the call
2260 // is at the end of the shadow.
2261 if (MI->isCall()) {
2262 // Count then size of the call towards the shadow
2263 SMShadowTracker.count(TmpInst, getSubtargetInfo(), CodeEmitter.get());
2264 // Then flush the shadow so that we fill with nops before the call, not
2265 // after it.
2266 SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
2267 // Then emit the call
2268 OutStreamer->emitInstruction(TmpInst, getSubtargetInfo());
2269 return;
2272 EmitAndCountInstruction(TmpInst);