1 //===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the X86 specific subclass of TargetSubtargetInfo.
11 //===----------------------------------------------------------------------===//
13 #include "X86Subtarget.h"
14 #include "GISel/X86CallLowering.h"
15 #include "GISel/X86LegalizerInfo.h"
16 #include "GISel/X86RegisterBankInfo.h"
17 #include "MCTargetDesc/X86BaseInfo.h"
19 #include "X86MacroFusion.h"
20 #include "X86TargetMachine.h"
21 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
22 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
23 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
24 #include "llvm/CodeGen/ScheduleDAGMutation.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalValue.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/CodeGen.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include "llvm/TargetParser/Triple.h"
44 #define DEBUG_TYPE "subtarget"
46 #define GET_SUBTARGETINFO_TARGET_DESC
47 #define GET_SUBTARGETINFO_CTOR
48 #include "X86GenSubtargetInfo.inc"
50 // Temporary option to control early if-conversion for x86 while adding machine
53 X86EarlyIfConv("x86-early-ifcvt", cl::Hidden
,
54 cl::desc("Enable early if-conversion on X86"));
57 /// Classify a blockaddress reference for the current subtarget according to how
58 /// we should reference it in a non-pcrel context.
59 unsigned char X86Subtarget::classifyBlockAddressReference() const {
60 return classifyLocalReference(nullptr);
63 /// Classify a global variable reference for the current subtarget according to
64 /// how we should reference it in a non-pcrel context.
66 X86Subtarget::classifyGlobalReference(const GlobalValue
*GV
) const {
67 return classifyGlobalReference(GV
, *GV
->getParent());
71 X86Subtarget::classifyLocalReference(const GlobalValue
*GV
) const {
72 CodeModel::Model CM
= TM
.getCodeModel();
73 // Tagged globals have non-zero upper bits, which makes direct references
74 // require a 64-bit immediate. With the small/medium code models this causes
75 // relocation errors, so we go through the GOT instead.
76 if (AllowTaggedGlobals
&& CM
!= CodeModel::Large
&& GV
&& !isa
<Function
>(GV
))
77 return X86II::MO_GOTPCREL_NORELAX
;
79 // If we're not PIC, it's not very interesting.
80 if (!isPositionIndependent())
81 return X86II::MO_NO_FLAG
;
84 // 64-bit ELF PIC local references may use GOTOFF relocations.
86 assert(CM
!= CodeModel::Tiny
&&
87 "Tiny codesize model not supported on X86");
88 // In the large code model, all text is far from any global data, so we
90 if (CM
== CodeModel::Large
)
91 return X86II::MO_GOTOFF
;
92 // Large GlobalValues use GOTOFF, otherwise use RIP-rel access.
94 return TM
.isLargeGlobalValue(GV
) ? X86II::MO_GOTOFF
: X86II::MO_NO_FLAG
;
95 // GV == nullptr is for all other non-GlobalValue global data like the
96 // constant pool, jump tables, labels, etc. The small and medium code
97 // models treat these as accessible with a RIP-rel access.
98 return X86II::MO_NO_FLAG
;
101 // Otherwise, this is either a RIP-relative reference or a 64-bit movabsq,
102 // both of which use MO_NO_FLAG.
103 return X86II::MO_NO_FLAG
;
106 // The COFF dynamic linker just patches the executable sections.
108 return X86II::MO_NO_FLAG
;
110 if (isTargetDarwin()) {
111 // 32 bit macho has no relocation for a-b if a is undefined, even if
112 // b is in the section that is being relocated.
113 // This means we have to use o load even for GVs that are known to be
115 if (GV
&& (GV
->isDeclarationForLinker() || GV
->hasCommonLinkage()))
116 return X86II::MO_DARWIN_NONLAZY_PIC_BASE
;
118 return X86II::MO_PIC_BASE_OFFSET
;
121 return X86II::MO_GOTOFF
;
124 unsigned char X86Subtarget::classifyGlobalReference(const GlobalValue
*GV
,
125 const Module
&M
) const {
126 // The static large model never uses stubs.
127 if (TM
.getCodeModel() == CodeModel::Large
&& !isPositionIndependent())
128 return X86II::MO_NO_FLAG
;
130 // Absolute symbols can be referenced directly.
132 if (std::optional
<ConstantRange
> CR
= GV
->getAbsoluteSymbolRange()) {
133 // See if we can use the 8-bit immediate form. Note that some instructions
134 // will sign extend the immediate operand, so to be conservative we only
135 // accept the range [0,128).
136 if (CR
->getUnsignedMax().ult(128))
137 return X86II::MO_ABS8
;
139 return X86II::MO_NO_FLAG
;
143 if (TM
.shouldAssumeDSOLocal(M
, GV
))
144 return classifyLocalReference(GV
);
146 if (isTargetCOFF()) {
147 // ExternalSymbolSDNode like _tls_index.
149 return X86II::MO_NO_FLAG
;
150 if (GV
->hasDLLImportStorageClass())
151 return X86II::MO_DLLIMPORT
;
152 return X86II::MO_COFFSTUB
;
154 // Some JIT users use *-win32-elf triples; these shouldn't use GOT tables.
156 return X86II::MO_NO_FLAG
;
159 // ELF supports a large, truly PIC code model with non-PC relative GOT
160 // references. Other object file formats do not. Use the no-flag, 64-bit
161 // reference for them.
162 if (TM
.getCodeModel() == CodeModel::Large
)
163 return isTargetELF() ? X86II::MO_GOT
: X86II::MO_NO_FLAG
;
164 // Tagged globals have non-zero upper bits, which makes direct references
165 // require a 64-bit immediate. So we can't let the linker relax the
166 // relocation to a 32-bit RIP-relative direct reference.
167 if (AllowTaggedGlobals
&& GV
&& !isa
<Function
>(GV
))
168 return X86II::MO_GOTPCREL_NORELAX
;
169 return X86II::MO_GOTPCREL
;
172 if (isTargetDarwin()) {
173 if (!isPositionIndependent())
174 return X86II::MO_DARWIN_NONLAZY
;
175 return X86II::MO_DARWIN_NONLAZY_PIC_BASE
;
178 // 32-bit ELF references GlobalAddress directly in static relocation model.
179 // We cannot use MO_GOT because EBX may not be set up.
180 if (TM
.getRelocationModel() == Reloc::Static
)
181 return X86II::MO_NO_FLAG
;
182 return X86II::MO_GOT
;
186 X86Subtarget::classifyGlobalFunctionReference(const GlobalValue
*GV
) const {
187 return classifyGlobalFunctionReference(GV
, *GV
->getParent());
191 X86Subtarget::classifyGlobalFunctionReference(const GlobalValue
*GV
,
192 const Module
&M
) const {
193 if (TM
.shouldAssumeDSOLocal(M
, GV
))
194 return X86II::MO_NO_FLAG
;
196 // Functions on COFF can be non-DSO local for three reasons:
197 // - They are intrinsic functions (!GV)
198 // - They are marked dllimport
199 // - They are extern_weak, and a stub is needed
200 if (isTargetCOFF()) {
202 return X86II::MO_NO_FLAG
;
203 if (GV
->hasDLLImportStorageClass())
204 return X86II::MO_DLLIMPORT
;
205 return X86II::MO_COFFSTUB
;
208 const Function
*F
= dyn_cast_or_null
<Function
>(GV
);
211 if (is64Bit() && F
&& (CallingConv::X86_RegCall
== F
->getCallingConv()))
212 // According to psABI, PLT stub clobbers XMM8-XMM15.
213 // In Regcall calling convention those registers are used for passing
214 // parameters. Thus we need to prevent lazy binding in Regcall.
215 return X86II::MO_GOTPCREL
;
216 // If PLT must be avoided then the call should be via GOTPCREL.
217 if (((F
&& F
->hasFnAttribute(Attribute::NonLazyBind
)) ||
218 (!F
&& M
.getRtLibUseGOT())) &&
220 return X86II::MO_GOTPCREL
;
221 // Reference ExternalSymbol directly in static relocation model.
222 if (!is64Bit() && !GV
&& TM
.getRelocationModel() == Reloc::Static
)
223 return X86II::MO_NO_FLAG
;
224 return X86II::MO_PLT
;
228 if (F
&& F
->hasFnAttribute(Attribute::NonLazyBind
))
229 // If the function is marked as non-lazy, generate an indirect call
230 // which loads from the GOT directly. This avoids runtime overhead
231 // at the cost of eager binding (and one extra byte of encoding).
232 return X86II::MO_GOTPCREL
;
233 return X86II::MO_NO_FLAG
;
236 return X86II::MO_NO_FLAG
;
239 /// Return true if the subtarget allows calls to immediate address.
240 bool X86Subtarget::isLegalToCallImmediateAddr() const {
241 // FIXME: I386 PE/COFF supports PC relative calls using IMAGE_REL_I386_REL32
242 // but WinCOFFObjectWriter::RecordRelocation cannot emit them. Once it does,
243 // the following check for Win32 should be removed.
244 if (Is64Bit
|| isTargetWin32())
246 return isTargetELF() || TM
.getRelocationModel() == Reloc::Static
;
249 void X86Subtarget::initSubtargetFeatures(StringRef CPU
, StringRef TuneCPU
,
255 TuneCPU
= "i586"; // FIXME: "generic" is more modern than llc tests expect.
257 std::string FullFS
= X86_MC::ParseX86Triple(TargetTriple
);
258 assert(!FullFS
.empty() && "Failed to parse X86 triple");
261 FullFS
= (Twine(FullFS
) + "," + FS
).str();
263 // Attach EVEX512 feature when we have AVX512 features with a default CPU.
264 // "pentium4" is default CPU for 32-bit targets.
265 // "x86-64" is default CPU for 64-bit targets.
266 if (CPU
== "generic" || CPU
== "pentium4" || CPU
== "x86-64") {
267 size_t posNoEVEX512
= FS
.rfind("-evex512");
268 // Make sure we won't be cheated by "-avx512fp16".
269 size_t posNoAVX512F
=
270 FS
.ends_with("-avx512f") ? FS
.size() - 8 : FS
.rfind("-avx512f,");
271 size_t posEVEX512
= FS
.rfind("+evex512");
272 // Any AVX512XXX will enable AVX512F.
273 size_t posAVX512F
= FS
.rfind("+avx512");
275 if (posAVX512F
!= StringRef::npos
&&
276 (posNoAVX512F
== StringRef::npos
|| posNoAVX512F
< posAVX512F
))
277 if (posEVEX512
== StringRef::npos
&& posNoEVEX512
== StringRef::npos
)
278 FullFS
+= ",+evex512";
281 // Parse features string and set the CPU.
282 ParseSubtargetFeatures(CPU
, TuneCPU
, FullFS
);
284 // All CPUs that implement SSE4.2 or SSE4A support unaligned accesses of
285 // 16-bytes and under that are reasonably fast. These features were
286 // introduced with Intel's Nehalem/Silvermont and AMD's Family10h
287 // micro-architectures respectively.
288 if (hasSSE42() || hasSSE4A())
289 IsUnalignedMem16Slow
= false;
291 LLVM_DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
292 << ", 3DNowLevel " << X863DNowLevel
<< ", 64bit "
293 << HasX86_64
<< "\n");
294 if (Is64Bit
&& !HasX86_64
)
295 report_fatal_error("64-bit code requested on a subtarget that doesn't "
298 // Stack alignment is 16 bytes on Darwin, Linux, kFreeBSD, NaCl, and for all
299 // 64-bit targets. On Solaris (32-bit), stack alignment is 4 bytes
300 // following the i386 psABI, while on Illumos it is always 16 bytes.
301 if (StackAlignOverride
)
302 stackAlignment
= *StackAlignOverride
;
303 else if (isTargetDarwin() || isTargetLinux() || isTargetKFreeBSD() ||
304 isTargetNaCl() || Is64Bit
)
305 stackAlignment
= Align(16);
307 // Consume the vector width attribute or apply any target specific limit.
308 if (PreferVectorWidthOverride
)
309 PreferVectorWidth
= PreferVectorWidthOverride
;
310 else if (Prefer128Bit
)
311 PreferVectorWidth
= 128;
312 else if (Prefer256Bit
)
313 PreferVectorWidth
= 256;
316 X86Subtarget
&X86Subtarget::initializeSubtargetDependencies(StringRef CPU
,
319 initSubtargetFeatures(CPU
, TuneCPU
, FS
);
323 X86Subtarget::X86Subtarget(const Triple
&TT
, StringRef CPU
, StringRef TuneCPU
,
324 StringRef FS
, const X86TargetMachine
&TM
,
325 MaybeAlign StackAlignOverride
,
326 unsigned PreferVectorWidthOverride
,
327 unsigned RequiredVectorWidth
)
328 : X86GenSubtargetInfo(TT
, CPU
, TuneCPU
, FS
),
329 PICStyle(PICStyles::Style::None
), TM(TM
), TargetTriple(TT
),
330 StackAlignOverride(StackAlignOverride
),
331 PreferVectorWidthOverride(PreferVectorWidthOverride
),
332 RequiredVectorWidth(RequiredVectorWidth
),
333 InstrInfo(initializeSubtargetDependencies(CPU
, TuneCPU
, FS
)),
334 TLInfo(TM
, *this), FrameLowering(*this, getStackAlignment()) {
335 // Determine the PICStyle based on the target selected.
336 if (!isPositionIndependent() || TM
.getCodeModel() == CodeModel::Large
)
337 // With the large code model, None forces all memory accesses to be indirect
338 // rather than RIP-relative.
339 setPICStyle(PICStyles::Style::None
);
341 setPICStyle(PICStyles::Style::RIPRel
);
342 else if (isTargetCOFF())
343 setPICStyle(PICStyles::Style::None
);
344 else if (isTargetDarwin())
345 setPICStyle(PICStyles::Style::StubPIC
);
346 else if (isTargetELF())
347 setPICStyle(PICStyles::Style::GOT
);
349 CallLoweringInfo
.reset(new X86CallLowering(*getTargetLowering()));
350 Legalizer
.reset(new X86LegalizerInfo(*this, TM
));
352 auto *RBI
= new X86RegisterBankInfo(*getRegisterInfo());
353 RegBankInfo
.reset(RBI
);
354 InstSelector
.reset(createX86InstructionSelector(TM
, *this, *RBI
));
357 const CallLowering
*X86Subtarget::getCallLowering() const {
358 return CallLoweringInfo
.get();
361 InstructionSelector
*X86Subtarget::getInstructionSelector() const {
362 return InstSelector
.get();
365 const LegalizerInfo
*X86Subtarget::getLegalizerInfo() const {
366 return Legalizer
.get();
369 const RegisterBankInfo
*X86Subtarget::getRegBankInfo() const {
370 return RegBankInfo
.get();
373 bool X86Subtarget::enableEarlyIfConversion() const {
374 return canUseCMOV() && X86EarlyIfConv
;
377 void X86Subtarget::getPostRAMutations(
378 std::vector
<std::unique_ptr
<ScheduleDAGMutation
>> &Mutations
) const {
379 Mutations
.push_back(createX86MacroFusionDAGMutation());
382 bool X86Subtarget::isPositionIndependent() const {
383 return TM
.isPositionIndependent();