[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / lib / Target / X86 / X86Subtarget.cpp
blob07f535685e8f9703720908e2efa1ce50e31142af
1 //===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the X86 specific subclass of TargetSubtargetInfo.
11 //===----------------------------------------------------------------------===//
13 #include "X86Subtarget.h"
14 #include "GISel/X86CallLowering.h"
15 #include "GISel/X86LegalizerInfo.h"
16 #include "GISel/X86RegisterBankInfo.h"
17 #include "MCTargetDesc/X86BaseInfo.h"
18 #include "X86.h"
19 #include "X86MacroFusion.h"
20 #include "X86TargetMachine.h"
21 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
22 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
23 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
24 #include "llvm/CodeGen/ScheduleDAGMutation.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalValue.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/CodeGen.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include "llvm/TargetParser/Triple.h"
38 #if defined(_MSC_VER)
39 #include <intrin.h>
40 #endif
42 using namespace llvm;
44 #define DEBUG_TYPE "subtarget"
46 #define GET_SUBTARGETINFO_TARGET_DESC
47 #define GET_SUBTARGETINFO_CTOR
48 #include "X86GenSubtargetInfo.inc"
50 // Temporary option to control early if-conversion for x86 while adding machine
51 // models.
52 static cl::opt<bool>
53 X86EarlyIfConv("x86-early-ifcvt", cl::Hidden,
54 cl::desc("Enable early if-conversion on X86"));
57 /// Classify a blockaddress reference for the current subtarget according to how
58 /// we should reference it in a non-pcrel context.
59 unsigned char X86Subtarget::classifyBlockAddressReference() const {
60 return classifyLocalReference(nullptr);
63 /// Classify a global variable reference for the current subtarget according to
64 /// how we should reference it in a non-pcrel context.
65 unsigned char
66 X86Subtarget::classifyGlobalReference(const GlobalValue *GV) const {
67 return classifyGlobalReference(GV, *GV->getParent());
70 unsigned char
71 X86Subtarget::classifyLocalReference(const GlobalValue *GV) const {
72 CodeModel::Model CM = TM.getCodeModel();
73 // Tagged globals have non-zero upper bits, which makes direct references
74 // require a 64-bit immediate. With the small/medium code models this causes
75 // relocation errors, so we go through the GOT instead.
76 if (AllowTaggedGlobals && CM != CodeModel::Large && GV && !isa<Function>(GV))
77 return X86II::MO_GOTPCREL_NORELAX;
79 // If we're not PIC, it's not very interesting.
80 if (!isPositionIndependent())
81 return X86II::MO_NO_FLAG;
83 if (is64Bit()) {
84 // 64-bit ELF PIC local references may use GOTOFF relocations.
85 if (isTargetELF()) {
86 assert(CM != CodeModel::Tiny &&
87 "Tiny codesize model not supported on X86");
88 // In the large code model, all text is far from any global data, so we
89 // use GOTOFF.
90 if (CM == CodeModel::Large)
91 return X86II::MO_GOTOFF;
92 // Large GlobalValues use GOTOFF, otherwise use RIP-rel access.
93 if (GV)
94 return TM.isLargeGlobalValue(GV) ? X86II::MO_GOTOFF : X86II::MO_NO_FLAG;
95 // GV == nullptr is for all other non-GlobalValue global data like the
96 // constant pool, jump tables, labels, etc. The small and medium code
97 // models treat these as accessible with a RIP-rel access.
98 return X86II::MO_NO_FLAG;
101 // Otherwise, this is either a RIP-relative reference or a 64-bit movabsq,
102 // both of which use MO_NO_FLAG.
103 return X86II::MO_NO_FLAG;
106 // The COFF dynamic linker just patches the executable sections.
107 if (isTargetCOFF())
108 return X86II::MO_NO_FLAG;
110 if (isTargetDarwin()) {
111 // 32 bit macho has no relocation for a-b if a is undefined, even if
112 // b is in the section that is being relocated.
113 // This means we have to use o load even for GVs that are known to be
114 // local to the dso.
115 if (GV && (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
116 return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
118 return X86II::MO_PIC_BASE_OFFSET;
121 return X86II::MO_GOTOFF;
124 unsigned char X86Subtarget::classifyGlobalReference(const GlobalValue *GV,
125 const Module &M) const {
126 // The static large model never uses stubs.
127 if (TM.getCodeModel() == CodeModel::Large && !isPositionIndependent())
128 return X86II::MO_NO_FLAG;
130 // Absolute symbols can be referenced directly.
131 if (GV) {
132 if (std::optional<ConstantRange> CR = GV->getAbsoluteSymbolRange()) {
133 // See if we can use the 8-bit immediate form. Note that some instructions
134 // will sign extend the immediate operand, so to be conservative we only
135 // accept the range [0,128).
136 if (CR->getUnsignedMax().ult(128))
137 return X86II::MO_ABS8;
138 else
139 return X86II::MO_NO_FLAG;
143 if (TM.shouldAssumeDSOLocal(M, GV))
144 return classifyLocalReference(GV);
146 if (isTargetCOFF()) {
147 // ExternalSymbolSDNode like _tls_index.
148 if (!GV)
149 return X86II::MO_NO_FLAG;
150 if (GV->hasDLLImportStorageClass())
151 return X86II::MO_DLLIMPORT;
152 return X86II::MO_COFFSTUB;
154 // Some JIT users use *-win32-elf triples; these shouldn't use GOT tables.
155 if (isOSWindows())
156 return X86II::MO_NO_FLAG;
158 if (is64Bit()) {
159 // ELF supports a large, truly PIC code model with non-PC relative GOT
160 // references. Other object file formats do not. Use the no-flag, 64-bit
161 // reference for them.
162 if (TM.getCodeModel() == CodeModel::Large)
163 return isTargetELF() ? X86II::MO_GOT : X86II::MO_NO_FLAG;
164 // Tagged globals have non-zero upper bits, which makes direct references
165 // require a 64-bit immediate. So we can't let the linker relax the
166 // relocation to a 32-bit RIP-relative direct reference.
167 if (AllowTaggedGlobals && GV && !isa<Function>(GV))
168 return X86II::MO_GOTPCREL_NORELAX;
169 return X86II::MO_GOTPCREL;
172 if (isTargetDarwin()) {
173 if (!isPositionIndependent())
174 return X86II::MO_DARWIN_NONLAZY;
175 return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
178 // 32-bit ELF references GlobalAddress directly in static relocation model.
179 // We cannot use MO_GOT because EBX may not be set up.
180 if (TM.getRelocationModel() == Reloc::Static)
181 return X86II::MO_NO_FLAG;
182 return X86II::MO_GOT;
185 unsigned char
186 X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV) const {
187 return classifyGlobalFunctionReference(GV, *GV->getParent());
190 unsigned char
191 X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV,
192 const Module &M) const {
193 if (TM.shouldAssumeDSOLocal(M, GV))
194 return X86II::MO_NO_FLAG;
196 // Functions on COFF can be non-DSO local for three reasons:
197 // - They are intrinsic functions (!GV)
198 // - They are marked dllimport
199 // - They are extern_weak, and a stub is needed
200 if (isTargetCOFF()) {
201 if (!GV)
202 return X86II::MO_NO_FLAG;
203 if (GV->hasDLLImportStorageClass())
204 return X86II::MO_DLLIMPORT;
205 return X86II::MO_COFFSTUB;
208 const Function *F = dyn_cast_or_null<Function>(GV);
210 if (isTargetELF()) {
211 if (is64Bit() && F && (CallingConv::X86_RegCall == F->getCallingConv()))
212 // According to psABI, PLT stub clobbers XMM8-XMM15.
213 // In Regcall calling convention those registers are used for passing
214 // parameters. Thus we need to prevent lazy binding in Regcall.
215 return X86II::MO_GOTPCREL;
216 // If PLT must be avoided then the call should be via GOTPCREL.
217 if (((F && F->hasFnAttribute(Attribute::NonLazyBind)) ||
218 (!F && M.getRtLibUseGOT())) &&
219 is64Bit())
220 return X86II::MO_GOTPCREL;
221 // Reference ExternalSymbol directly in static relocation model.
222 if (!is64Bit() && !GV && TM.getRelocationModel() == Reloc::Static)
223 return X86II::MO_NO_FLAG;
224 return X86II::MO_PLT;
227 if (is64Bit()) {
228 if (F && F->hasFnAttribute(Attribute::NonLazyBind))
229 // If the function is marked as non-lazy, generate an indirect call
230 // which loads from the GOT directly. This avoids runtime overhead
231 // at the cost of eager binding (and one extra byte of encoding).
232 return X86II::MO_GOTPCREL;
233 return X86II::MO_NO_FLAG;
236 return X86II::MO_NO_FLAG;
239 /// Return true if the subtarget allows calls to immediate address.
240 bool X86Subtarget::isLegalToCallImmediateAddr() const {
241 // FIXME: I386 PE/COFF supports PC relative calls using IMAGE_REL_I386_REL32
242 // but WinCOFFObjectWriter::RecordRelocation cannot emit them. Once it does,
243 // the following check for Win32 should be removed.
244 if (Is64Bit || isTargetWin32())
245 return false;
246 return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
249 void X86Subtarget::initSubtargetFeatures(StringRef CPU, StringRef TuneCPU,
250 StringRef FS) {
251 if (CPU.empty())
252 CPU = "generic";
254 if (TuneCPU.empty())
255 TuneCPU = "i586"; // FIXME: "generic" is more modern than llc tests expect.
257 std::string FullFS = X86_MC::ParseX86Triple(TargetTriple);
258 assert(!FullFS.empty() && "Failed to parse X86 triple");
260 if (!FS.empty())
261 FullFS = (Twine(FullFS) + "," + FS).str();
263 // Attach EVEX512 feature when we have AVX512 features with a default CPU.
264 // "pentium4" is default CPU for 32-bit targets.
265 // "x86-64" is default CPU for 64-bit targets.
266 if (CPU == "generic" || CPU == "pentium4" || CPU == "x86-64") {
267 size_t posNoEVEX512 = FS.rfind("-evex512");
268 // Make sure we won't be cheated by "-avx512fp16".
269 size_t posNoAVX512F =
270 FS.ends_with("-avx512f") ? FS.size() - 8 : FS.rfind("-avx512f,");
271 size_t posEVEX512 = FS.rfind("+evex512");
272 // Any AVX512XXX will enable AVX512F.
273 size_t posAVX512F = FS.rfind("+avx512");
275 if (posAVX512F != StringRef::npos &&
276 (posNoAVX512F == StringRef::npos || posNoAVX512F < posAVX512F))
277 if (posEVEX512 == StringRef::npos && posNoEVEX512 == StringRef::npos)
278 FullFS += ",+evex512";
281 // Parse features string and set the CPU.
282 ParseSubtargetFeatures(CPU, TuneCPU, FullFS);
284 // All CPUs that implement SSE4.2 or SSE4A support unaligned accesses of
285 // 16-bytes and under that are reasonably fast. These features were
286 // introduced with Intel's Nehalem/Silvermont and AMD's Family10h
287 // micro-architectures respectively.
288 if (hasSSE42() || hasSSE4A())
289 IsUnalignedMem16Slow = false;
291 LLVM_DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
292 << ", 3DNowLevel " << X863DNowLevel << ", 64bit "
293 << HasX86_64 << "\n");
294 if (Is64Bit && !HasX86_64)
295 report_fatal_error("64-bit code requested on a subtarget that doesn't "
296 "support it!");
298 // Stack alignment is 16 bytes on Darwin, Linux, kFreeBSD, NaCl, and for all
299 // 64-bit targets. On Solaris (32-bit), stack alignment is 4 bytes
300 // following the i386 psABI, while on Illumos it is always 16 bytes.
301 if (StackAlignOverride)
302 stackAlignment = *StackAlignOverride;
303 else if (isTargetDarwin() || isTargetLinux() || isTargetKFreeBSD() ||
304 isTargetNaCl() || Is64Bit)
305 stackAlignment = Align(16);
307 // Consume the vector width attribute or apply any target specific limit.
308 if (PreferVectorWidthOverride)
309 PreferVectorWidth = PreferVectorWidthOverride;
310 else if (Prefer128Bit)
311 PreferVectorWidth = 128;
312 else if (Prefer256Bit)
313 PreferVectorWidth = 256;
316 X86Subtarget &X86Subtarget::initializeSubtargetDependencies(StringRef CPU,
317 StringRef TuneCPU,
318 StringRef FS) {
319 initSubtargetFeatures(CPU, TuneCPU, FS);
320 return *this;
323 X86Subtarget::X86Subtarget(const Triple &TT, StringRef CPU, StringRef TuneCPU,
324 StringRef FS, const X86TargetMachine &TM,
325 MaybeAlign StackAlignOverride,
326 unsigned PreferVectorWidthOverride,
327 unsigned RequiredVectorWidth)
328 : X86GenSubtargetInfo(TT, CPU, TuneCPU, FS),
329 PICStyle(PICStyles::Style::None), TM(TM), TargetTriple(TT),
330 StackAlignOverride(StackAlignOverride),
331 PreferVectorWidthOverride(PreferVectorWidthOverride),
332 RequiredVectorWidth(RequiredVectorWidth),
333 InstrInfo(initializeSubtargetDependencies(CPU, TuneCPU, FS)),
334 TLInfo(TM, *this), FrameLowering(*this, getStackAlignment()) {
335 // Determine the PICStyle based on the target selected.
336 if (!isPositionIndependent() || TM.getCodeModel() == CodeModel::Large)
337 // With the large code model, None forces all memory accesses to be indirect
338 // rather than RIP-relative.
339 setPICStyle(PICStyles::Style::None);
340 else if (is64Bit())
341 setPICStyle(PICStyles::Style::RIPRel);
342 else if (isTargetCOFF())
343 setPICStyle(PICStyles::Style::None);
344 else if (isTargetDarwin())
345 setPICStyle(PICStyles::Style::StubPIC);
346 else if (isTargetELF())
347 setPICStyle(PICStyles::Style::GOT);
349 CallLoweringInfo.reset(new X86CallLowering(*getTargetLowering()));
350 Legalizer.reset(new X86LegalizerInfo(*this, TM));
352 auto *RBI = new X86RegisterBankInfo(*getRegisterInfo());
353 RegBankInfo.reset(RBI);
354 InstSelector.reset(createX86InstructionSelector(TM, *this, *RBI));
357 const CallLowering *X86Subtarget::getCallLowering() const {
358 return CallLoweringInfo.get();
361 InstructionSelector *X86Subtarget::getInstructionSelector() const {
362 return InstSelector.get();
365 const LegalizerInfo *X86Subtarget::getLegalizerInfo() const {
366 return Legalizer.get();
369 const RegisterBankInfo *X86Subtarget::getRegBankInfo() const {
370 return RegBankInfo.get();
373 bool X86Subtarget::enableEarlyIfConversion() const {
374 return canUseCMOV() && X86EarlyIfConv;
377 void X86Subtarget::getPostRAMutations(
378 std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
379 Mutations.push_back(createX86MacroFusionDAGMutation());
382 bool X86Subtarget::isPositionIndependent() const {
383 return TM.isPositionIndependent();