1 //===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 // Implementation for the IROutliner which is used by the IROutliner Pass.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/IPO/IROutliner.h"
15 #include "llvm/Analysis/IRSimilarityIdentifier.h"
16 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/IR/Attributes.h"
19 #include "llvm/IR/DIBuilder.h"
20 #include "llvm/IR/DebugInfo.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Mangler.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Transforms/IPO.h"
30 #define DEBUG_TYPE "iroutliner"
33 using namespace IRSimilarity
;
35 // A command flag to be used for debugging to exclude branches from similarity
36 // matching and outlining.
38 extern cl::opt
<bool> DisableBranches
;
40 // A command flag to be used for debugging to indirect calls from similarity
41 // matching and outlining.
42 extern cl::opt
<bool> DisableIndirectCalls
;
44 // A command flag to be used for debugging to exclude intrinsics from similarity
45 // matching and outlining.
46 extern cl::opt
<bool> DisableIntrinsics
;
50 // Set to true if the user wants the ir outliner to run on linkonceodr linkage
51 // functions. This is false by default because the linker can dedupe linkonceodr
52 // functions. Since the outliner is confined to a single module (modulo LTO),
53 // this is off by default. It should, however, be the default behavior in
55 static cl::opt
<bool> EnableLinkOnceODRIROutlining(
56 "enable-linkonceodr-ir-outlining", cl::Hidden
,
57 cl::desc("Enable the IR outliner on linkonceodr functions"),
60 // This is a debug option to test small pieces of code to ensure that outlining
62 static cl::opt
<bool> NoCostModel(
63 "ir-outlining-no-cost", cl::init(false), cl::ReallyHidden
,
64 cl::desc("Debug option to outline greedily, without restriction that "
65 "calculated benefit outweighs cost"));
67 /// The OutlinableGroup holds all the overarching information for outlining
68 /// a set of regions that are structurally similar to one another, such as the
69 /// types of the overall function, the output blocks, the sets of stores needed
70 /// and a list of the different regions. This information is used in the
71 /// deduplication of extracted regions with the same structure.
72 struct OutlinableGroup
{
73 /// The sections that could be outlined
74 std::vector
<OutlinableRegion
*> Regions
;
76 /// The argument types for the function created as the overall function to
77 /// replace the extracted function for each region.
78 std::vector
<Type
*> ArgumentTypes
;
79 /// The FunctionType for the overall function.
80 FunctionType
*OutlinedFunctionType
= nullptr;
81 /// The Function for the collective overall function.
82 Function
*OutlinedFunction
= nullptr;
84 /// Flag for whether we should not consider this group of OutlinableRegions
86 bool IgnoreGroup
= false;
88 /// The return blocks for the overall function.
89 DenseMap
<Value
*, BasicBlock
*> EndBBs
;
91 /// The PHIBlocks with their corresponding return block based on the return
93 DenseMap
<Value
*, BasicBlock
*> PHIBlocks
;
95 /// A set containing the different GVN store sets needed. Each array contains
96 /// a sorted list of the different values that need to be stored into output
98 DenseSet
<ArrayRef
<unsigned>> OutputGVNCombinations
;
100 /// Flag for whether the \ref ArgumentTypes have been defined after the
101 /// extraction of the first region.
102 bool InputTypesSet
= false;
104 /// The number of input values in \ref ArgumentTypes. Anything after this
105 /// index in ArgumentTypes is an output argument.
106 unsigned NumAggregateInputs
= 0;
108 /// The mapping of the canonical numbering of the values in outlined sections
109 /// to specific arguments.
110 DenseMap
<unsigned, unsigned> CanonicalNumberToAggArg
;
112 /// The number of branches in the region target a basic block that is outside
114 unsigned BranchesToOutside
= 0;
116 /// Tracker counting backwards from the highest unsigned value possible to
117 /// avoid conflicting with the GVNs of assigned values. We start at -3 since
118 /// -2 and -1 are assigned by the DenseMap.
119 unsigned PHINodeGVNTracker
= -3;
122 std::pair
<std::pair
<unsigned, unsigned>, SmallVector
<unsigned, 2>>>
124 DenseMap
<hash_code
, unsigned> GVNsToPHINodeGVN
;
126 /// The number of instructions that will be outlined by extracting \ref
128 InstructionCost Benefit
= 0;
129 /// The number of added instructions needed for the outlining of the \ref
131 InstructionCost Cost
= 0;
133 /// The argument that needs to be marked with the swifterr attribute. If not
134 /// needed, there is no value.
135 std::optional
<unsigned> SwiftErrorArgument
;
137 /// For the \ref Regions, we look at every Value. If it is a constant,
138 /// we check whether it is the same in Region.
140 /// \param [in,out] NotSame contains the global value numbers where the
141 /// constant is not always the same, and must be passed in as an argument.
142 void findSameConstants(DenseSet
<unsigned> &NotSame
);
144 /// For the regions, look at each set of GVN stores needed and account for
145 /// each combination. Add an argument to the argument types if there is
146 /// more than one combination.
148 /// \param [in] M - The module we are outlining from.
149 void collectGVNStoreSets(Module
&M
);
152 /// Move the contents of \p SourceBB to before the last instruction of \p
154 /// \param SourceBB - the BasicBlock to pull Instructions from.
155 /// \param TargetBB - the BasicBlock to put Instruction into.
156 static void moveBBContents(BasicBlock
&SourceBB
, BasicBlock
&TargetBB
) {
157 TargetBB
.splice(TargetBB
.end(), &SourceBB
);
160 /// A function to sort the keys of \p Map, which must be a mapping of constant
161 /// values to basic blocks and return it in \p SortedKeys
163 /// \param SortedKeys - The vector the keys will be return in and sorted.
164 /// \param Map - The DenseMap containing keys to sort.
165 static void getSortedConstantKeys(std::vector
<Value
*> &SortedKeys
,
166 DenseMap
<Value
*, BasicBlock
*> &Map
) {
167 for (auto &VtoBB
: Map
)
168 SortedKeys
.push_back(VtoBB
.first
);
170 // Here we expect to have either 1 value that is void (nullptr) or multiple
171 // values that are all constant integers.
172 if (SortedKeys
.size() == 1) {
173 assert(!SortedKeys
[0] && "Expected a single void value.");
177 stable_sort(SortedKeys
, [](const Value
*LHS
, const Value
*RHS
) {
178 assert(LHS
&& RHS
&& "Expected non void values.");
179 const ConstantInt
*LHSC
= cast
<ConstantInt
>(LHS
);
180 const ConstantInt
*RHSC
= cast
<ConstantInt
>(RHS
);
182 return LHSC
->getLimitedValue() < RHSC
->getLimitedValue();
186 Value
*OutlinableRegion::findCorrespondingValueIn(const OutlinableRegion
&Other
,
188 std::optional
<unsigned> GVN
= Candidate
->getGVN(V
);
189 assert(GVN
&& "No GVN for incoming value");
190 std::optional
<unsigned> CanonNum
= Candidate
->getCanonicalNum(*GVN
);
191 std::optional
<unsigned> FirstGVN
=
192 Other
.Candidate
->fromCanonicalNum(*CanonNum
);
193 std::optional
<Value
*> FoundValueOpt
= Other
.Candidate
->fromGVN(*FirstGVN
);
194 return FoundValueOpt
.value_or(nullptr);
198 OutlinableRegion::findCorrespondingBlockIn(const OutlinableRegion
&Other
,
200 Instruction
*FirstNonPHI
= BB
->getFirstNonPHIOrDbg();
201 assert(FirstNonPHI
&& "block is empty?");
202 Value
*CorrespondingVal
= findCorrespondingValueIn(Other
, FirstNonPHI
);
203 if (!CorrespondingVal
)
205 BasicBlock
*CorrespondingBlock
=
206 cast
<Instruction
>(CorrespondingVal
)->getParent();
207 return CorrespondingBlock
;
210 /// Rewrite the BranchInsts in the incoming blocks to \p PHIBlock that are found
211 /// in \p Included to branch to BasicBlock \p Replace if they currently branch
212 /// to the BasicBlock \p Find. This is used to fix up the incoming basic blocks
213 /// when PHINodes are included in outlined regions.
215 /// \param PHIBlock - The BasicBlock containing the PHINodes that need to be
217 /// \param Find - The successor block to be replaced.
218 /// \param Replace - The new succesor block to branch to.
219 /// \param Included - The set of blocks about to be outlined.
220 static void replaceTargetsFromPHINode(BasicBlock
*PHIBlock
, BasicBlock
*Find
,
222 DenseSet
<BasicBlock
*> &Included
) {
223 for (PHINode
&PN
: PHIBlock
->phis()) {
224 for (unsigned Idx
= 0, PNEnd
= PN
.getNumIncomingValues(); Idx
!= PNEnd
;
226 // Check if the incoming block is included in the set of blocks being
228 BasicBlock
*Incoming
= PN
.getIncomingBlock(Idx
);
229 if (!Included
.contains(Incoming
))
232 BranchInst
*BI
= dyn_cast
<BranchInst
>(Incoming
->getTerminator());
233 assert(BI
&& "Not a branch instruction?");
234 // Look over the branching instructions into this block to see if we
235 // used to branch to Find in this outlined block.
236 for (unsigned Succ
= 0, End
= BI
->getNumSuccessors(); Succ
!= End
;
238 // If we have found the block to replace, we do so here.
239 if (BI
->getSuccessor(Succ
) != Find
)
241 BI
->setSuccessor(Succ
, Replace
);
248 void OutlinableRegion::splitCandidate() {
249 assert(!CandidateSplit
&& "Candidate already split!");
251 Instruction
*BackInst
= Candidate
->backInstruction();
253 Instruction
*EndInst
= nullptr;
254 // Check whether the last instruction is a terminator, if it is, we do
255 // not split on the following instruction. We leave the block as it is. We
256 // also check that this is not the last instruction in the Module, otherwise
257 // the check for whether the current following instruction matches the
258 // previously recorded instruction will be incorrect.
259 if (!BackInst
->isTerminator() ||
260 BackInst
->getParent() != &BackInst
->getFunction()->back()) {
261 EndInst
= Candidate
->end()->Inst
;
262 assert(EndInst
&& "Expected an end instruction?");
265 // We check if the current instruction following the last instruction in the
266 // region is the same as the recorded instruction following the last
267 // instruction. If they do not match, there could be problems in rewriting
268 // the program after outlining, so we ignore it.
269 if (!BackInst
->isTerminator() &&
270 EndInst
!= BackInst
->getNextNonDebugInstruction())
273 Instruction
*StartInst
= (*Candidate
->begin()).Inst
;
274 assert(StartInst
&& "Expected a start instruction?");
275 StartBB
= StartInst
->getParent();
278 DenseSet
<BasicBlock
*> BBSet
;
279 Candidate
->getBasicBlocks(BBSet
);
281 // We iterate over the instructions in the region, if we find a PHINode, we
282 // check if there are predecessors outside of the region, if there are,
283 // we ignore this region since we are unable to handle the severing of the
284 // phi node right now.
286 // TODO: Handle extraneous inputs for PHINodes through variable number of
287 // inputs, similar to how outputs are handled.
288 BasicBlock::iterator It
= StartInst
->getIterator();
289 EndBB
= BackInst
->getParent();
291 BasicBlock
*PHIPredBlock
= nullptr;
292 bool EndBBTermAndBackInstDifferent
= EndBB
->getTerminator() != BackInst
;
293 while (PHINode
*PN
= dyn_cast
<PHINode
>(&*It
)) {
294 unsigned NumPredsOutsideRegion
= 0;
295 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
296 if (!BBSet
.contains(PN
->getIncomingBlock(i
))) {
297 PHIPredBlock
= PN
->getIncomingBlock(i
);
298 ++NumPredsOutsideRegion
;
302 // We must consider the case there the incoming block to the PHINode is
303 // the same as the final block of the OutlinableRegion. If this is the
304 // case, the branch from this block must also be outlined to be valid.
305 IBlock
= PN
->getIncomingBlock(i
);
306 if (IBlock
== EndBB
&& EndBBTermAndBackInstDifferent
) {
307 PHIPredBlock
= PN
->getIncomingBlock(i
);
308 ++NumPredsOutsideRegion
;
312 if (NumPredsOutsideRegion
> 1)
318 // If the region starts with a PHINode, but is not the initial instruction of
319 // the BasicBlock, we ignore this region for now.
320 if (isa
<PHINode
>(StartInst
) && StartInst
!= &*StartBB
->begin())
323 // If the region ends with a PHINode, but does not contain all of the phi node
324 // instructions of the region, we ignore it for now.
325 if (isa
<PHINode
>(BackInst
) &&
326 BackInst
!= &*std::prev(EndBB
->getFirstInsertionPt()))
329 // The basic block gets split like so:
333 // region1 br block_to_outline
334 // region2 block_to_outline:
335 // region3 -> region1
339 // br block_after_outline
340 // block_after_outline:
344 std::string OriginalName
= PrevBB
->getName().str();
346 StartBB
= PrevBB
->splitBasicBlock(StartInst
, OriginalName
+ "_to_outline");
347 PrevBB
->replaceSuccessorsPhiUsesWith(PrevBB
, StartBB
);
348 // If there was a PHINode with an incoming block outside the region,
349 // make sure is correctly updated in the newly split block.
351 PrevBB
->replaceSuccessorsPhiUsesWith(PHIPredBlock
, PrevBB
);
353 CandidateSplit
= true;
354 if (!BackInst
->isTerminator()) {
355 EndBB
= EndInst
->getParent();
356 FollowBB
= EndBB
->splitBasicBlock(EndInst
, OriginalName
+ "_after_outline");
357 EndBB
->replaceSuccessorsPhiUsesWith(EndBB
, FollowBB
);
358 FollowBB
->replaceSuccessorsPhiUsesWith(PrevBB
, FollowBB
);
360 EndBB
= BackInst
->getParent();
365 // Refind the basic block set.
367 Candidate
->getBasicBlocks(BBSet
);
368 // For the phi nodes in the new starting basic block of the region, we
369 // reassign the targets of the basic blocks branching instructions.
370 replaceTargetsFromPHINode(StartBB
, PrevBB
, StartBB
, BBSet
);
372 replaceTargetsFromPHINode(FollowBB
, EndBB
, FollowBB
, BBSet
);
375 void OutlinableRegion::reattachCandidate() {
376 assert(CandidateSplit
&& "Candidate is not split!");
378 // The basic block gets reattached like so:
382 // br block_to_outline region1
383 // block_to_outline: -> region2
388 // br block_after_outline
389 // block_after_outline:
392 assert(StartBB
!= nullptr && "StartBB for Candidate is not defined!");
394 assert(PrevBB
->getTerminator() && "Terminator removed from PrevBB!");
395 // Make sure PHINode references to the block we are merging into are
396 // updated to be incoming blocks from the predecessor to the current block.
398 // NOTE: If this is updated such that the outlined block can have more than
399 // one incoming block to a PHINode, this logic will have to updated
400 // to handle multiple precessors instead.
402 // We only need to update this if the outlined section contains a PHINode, if
403 // it does not, then the incoming block was never changed in the first place.
404 // On the other hand, if PrevBB has no predecessors, it means that all
405 // incoming blocks to the first block are contained in the region, and there
406 // will be nothing to update.
407 Instruction
*StartInst
= (*Candidate
->begin()).Inst
;
408 if (isa
<PHINode
>(StartInst
) && !PrevBB
->hasNPredecessors(0)) {
409 assert(!PrevBB
->hasNPredecessorsOrMore(2) &&
410 "PrevBB has more than one predecessor. Should be 0 or 1.");
411 BasicBlock
*BeforePrevBB
= PrevBB
->getSinglePredecessor();
412 PrevBB
->replaceSuccessorsPhiUsesWith(PrevBB
, BeforePrevBB
);
414 PrevBB
->getTerminator()->eraseFromParent();
416 // If we reattaching after outlining, we iterate over the phi nodes to
417 // the initial block, and reassign the branch instructions of the incoming
418 // blocks to the block we are remerging into.
419 if (!ExtractedFunction
) {
420 DenseSet
<BasicBlock
*> BBSet
;
421 Candidate
->getBasicBlocks(BBSet
);
423 replaceTargetsFromPHINode(StartBB
, StartBB
, PrevBB
, BBSet
);
425 replaceTargetsFromPHINode(FollowBB
, FollowBB
, EndBB
, BBSet
);
428 moveBBContents(*StartBB
, *PrevBB
);
430 BasicBlock
*PlacementBB
= PrevBB
;
431 if (StartBB
!= EndBB
)
433 if (!EndsInBranch
&& PlacementBB
->getUniqueSuccessor() != nullptr) {
434 assert(FollowBB
!= nullptr && "FollowBB for Candidate is not defined!");
435 assert(PlacementBB
->getTerminator() && "Terminator removed from EndBB!");
436 PlacementBB
->getTerminator()->eraseFromParent();
437 moveBBContents(*FollowBB
, *PlacementBB
);
438 PlacementBB
->replaceSuccessorsPhiUsesWith(FollowBB
, PlacementBB
);
439 FollowBB
->eraseFromParent();
442 PrevBB
->replaceSuccessorsPhiUsesWith(StartBB
, PrevBB
);
443 StartBB
->eraseFromParent();
445 // Make sure to save changes back to the StartBB.
451 CandidateSplit
= false;
454 /// Find whether \p V matches the Constants previously found for the \p GVN.
456 /// \param V - The value to check for consistency.
457 /// \param GVN - The global value number assigned to \p V.
458 /// \param GVNToConstant - The mapping of global value number to Constants.
459 /// \returns true if the Value matches the Constant mapped to by V and false if
460 /// it \p V is a Constant but does not match.
461 /// \returns std::nullopt if \p V is not a Constant.
462 static std::optional
<bool>
463 constantMatches(Value
*V
, unsigned GVN
,
464 DenseMap
<unsigned, Constant
*> &GVNToConstant
) {
465 // See if we have a constants
466 Constant
*CST
= dyn_cast
<Constant
>(V
);
470 // Holds a mapping from a global value number to a Constant.
471 DenseMap
<unsigned, Constant
*>::iterator GVNToConstantIt
;
475 // If we have a constant, try to make a new entry in the GVNToConstant.
476 std::tie(GVNToConstantIt
, Inserted
) =
477 GVNToConstant
.insert(std::make_pair(GVN
, CST
));
478 // If it was found and is not equal, it is not the same. We do not
479 // handle this case yet, and exit early.
480 if (Inserted
|| (GVNToConstantIt
->second
== CST
))
486 InstructionCost
OutlinableRegion::getBenefit(TargetTransformInfo
&TTI
) {
487 InstructionCost Benefit
= 0;
489 // Estimate the benefit of outlining a specific sections of the program. We
490 // delegate mostly this task to the TargetTransformInfo so that if the target
491 // has specific changes, we can have a more accurate estimate.
493 // However, getInstructionCost delegates the code size calculation for
494 // arithmetic instructions to getArithmeticInstrCost in
495 // include/Analysis/TargetTransformImpl.h, where it always estimates that the
496 // code size for a division and remainder instruction to be equal to 4, and
497 // everything else to 1. This is not an accurate representation of the
498 // division instruction for targets that have a native division instruction.
499 // To be overly conservative, we only add 1 to the number of instructions for
500 // each division instruction.
501 for (IRInstructionData
&ID
: *Candidate
) {
502 Instruction
*I
= ID
.Inst
;
503 switch (I
->getOpcode()) {
504 case Instruction::FDiv
:
505 case Instruction::FRem
:
506 case Instruction::SDiv
:
507 case Instruction::SRem
:
508 case Instruction::UDiv
:
509 case Instruction::URem
:
513 Benefit
+= TTI
.getInstructionCost(I
, TargetTransformInfo::TCK_CodeSize
);
521 /// Check the \p OutputMappings structure for value \p Input, if it exists
522 /// it has been used as an output for outlining, and has been renamed, and we
523 /// return the new value, otherwise, we return the same value.
525 /// \param OutputMappings [in] - The mapping of values to their renamed value
526 /// after being used as an output for an outlined region.
527 /// \param Input [in] - The value to find the remapped value of, if it exists.
528 /// \return The remapped value if it has been renamed, and the same value if has
530 static Value
*findOutputMapping(const DenseMap
<Value
*, Value
*> OutputMappings
,
532 DenseMap
<Value
*, Value
*>::const_iterator OutputMapping
=
533 OutputMappings
.find(Input
);
534 if (OutputMapping
!= OutputMappings
.end())
535 return OutputMapping
->second
;
539 /// Find whether \p Region matches the global value numbering to Constant
540 /// mapping found so far.
542 /// \param Region - The OutlinableRegion we are checking for constants
543 /// \param GVNToConstant - The mapping of global value number to Constants.
544 /// \param NotSame - The set of global value numbers that do not have the same
545 /// constant in each region.
546 /// \returns true if all Constants are the same in every use of a Constant in \p
547 /// Region and false if not
549 collectRegionsConstants(OutlinableRegion
&Region
,
550 DenseMap
<unsigned, Constant
*> &GVNToConstant
,
551 DenseSet
<unsigned> &NotSame
) {
552 bool ConstantsTheSame
= true;
554 IRSimilarityCandidate
&C
= *Region
.Candidate
;
555 for (IRInstructionData
&ID
: C
) {
557 // Iterate over the operands in an instruction. If the global value number,
558 // assigned by the IRSimilarityCandidate, has been seen before, we check if
559 // the number has been found to be not the same value in each instance.
560 for (Value
*V
: ID
.OperVals
) {
561 std::optional
<unsigned> GVNOpt
= C
.getGVN(V
);
562 assert(GVNOpt
&& "Expected a GVN for operand?");
563 unsigned GVN
= *GVNOpt
;
565 // Check if this global value has been found to not be the same already.
566 if (NotSame
.contains(GVN
)) {
567 if (isa
<Constant
>(V
))
568 ConstantsTheSame
= false;
572 // If it has been the same so far, we check the value for if the
573 // associated Constant value match the previous instances of the same
574 // global value number. If the global value does not map to a Constant,
575 // it is considered to not be the same value.
576 std::optional
<bool> ConstantMatches
=
577 constantMatches(V
, GVN
, GVNToConstant
);
578 if (ConstantMatches
) {
579 if (*ConstantMatches
)
582 ConstantsTheSame
= false;
585 // While this value is a register, it might not have been previously,
586 // make sure we don't already have a constant mapped to this global value
588 if (GVNToConstant
.contains(GVN
))
589 ConstantsTheSame
= false;
595 return ConstantsTheSame
;
598 void OutlinableGroup::findSameConstants(DenseSet
<unsigned> &NotSame
) {
599 DenseMap
<unsigned, Constant
*> GVNToConstant
;
601 for (OutlinableRegion
*Region
: Regions
)
602 collectRegionsConstants(*Region
, GVNToConstant
, NotSame
);
605 void OutlinableGroup::collectGVNStoreSets(Module
&M
) {
606 for (OutlinableRegion
*OS
: Regions
)
607 OutputGVNCombinations
.insert(OS
->GVNStores
);
609 // We are adding an extracted argument to decide between which output path
610 // to use in the basic block. It is used in a switch statement and only
611 // needs to be an integer.
612 if (OutputGVNCombinations
.size() > 1)
613 ArgumentTypes
.push_back(Type::getInt32Ty(M
.getContext()));
616 /// Get the subprogram if it exists for one of the outlined regions.
618 /// \param [in] Group - The set of regions to find a subprogram for.
619 /// \returns the subprogram if it exists, or nullptr.
620 static DISubprogram
*getSubprogramOrNull(OutlinableGroup
&Group
) {
621 for (OutlinableRegion
*OS
: Group
.Regions
)
622 if (Function
*F
= OS
->Call
->getFunction())
623 if (DISubprogram
*SP
= F
->getSubprogram())
629 Function
*IROutliner::createFunction(Module
&M
, OutlinableGroup
&Group
,
630 unsigned FunctionNameSuffix
) {
631 assert(!Group
.OutlinedFunction
&& "Function is already defined!");
633 Type
*RetTy
= Type::getVoidTy(M
.getContext());
634 // All extracted functions _should_ have the same return type at this point
635 // since the similarity identifier ensures that all branches outside of the
636 // region occur in the same place.
638 // NOTE: Should we ever move to the model that uses a switch at every point
639 // needed, meaning that we could branch within the region or out, it is
640 // possible that we will need to switch to using the most general case all of
642 for (OutlinableRegion
*R
: Group
.Regions
) {
643 Type
*ExtractedFuncType
= R
->ExtractedFunction
->getReturnType();
644 if ((RetTy
->isVoidTy() && !ExtractedFuncType
->isVoidTy()) ||
645 (RetTy
->isIntegerTy(1) && ExtractedFuncType
->isIntegerTy(16)))
646 RetTy
= ExtractedFuncType
;
649 Group
.OutlinedFunctionType
= FunctionType::get(
650 RetTy
, Group
.ArgumentTypes
, false);
652 // These functions will only be called from within the same module, so
653 // we can set an internal linkage.
654 Group
.OutlinedFunction
= Function::Create(
655 Group
.OutlinedFunctionType
, GlobalValue::InternalLinkage
,
656 "outlined_ir_func_" + std::to_string(FunctionNameSuffix
), M
);
658 // Transfer the swifterr attribute to the correct function parameter.
659 if (Group
.SwiftErrorArgument
)
660 Group
.OutlinedFunction
->addParamAttr(*Group
.SwiftErrorArgument
,
661 Attribute::SwiftError
);
663 Group
.OutlinedFunction
->addFnAttr(Attribute::OptimizeForSize
);
664 Group
.OutlinedFunction
->addFnAttr(Attribute::MinSize
);
666 // If there's a DISubprogram associated with this outlined function, then
667 // emit debug info for the outlined function.
668 if (DISubprogram
*SP
= getSubprogramOrNull(Group
)) {
669 Function
*F
= Group
.OutlinedFunction
;
670 // We have a DISubprogram. Get its DICompileUnit.
671 DICompileUnit
*CU
= SP
->getUnit();
672 DIBuilder
DB(M
, true, CU
);
673 DIFile
*Unit
= SP
->getFile();
675 // Get the mangled name of the function for the linkage name.
677 llvm::raw_string_ostream
MangledNameStream(Dummy
);
678 Mg
.getNameWithPrefix(MangledNameStream
, F
, false);
680 DISubprogram
*OutlinedSP
= DB
.createFunction(
681 Unit
/* Context */, F
->getName(), MangledNameStream
.str(),
683 0 /* Line 0 is reserved for compiler-generated code. */,
684 DB
.createSubroutineType(
685 DB
.getOrCreateTypeArray(std::nullopt
)), /* void type */
686 0, /* Line 0 is reserved for compiler-generated code. */
687 DINode::DIFlags::FlagArtificial
/* Compiler-generated code. */,
688 /* Outlined code is optimized code by definition. */
689 DISubprogram::SPFlagDefinition
| DISubprogram::SPFlagOptimized
);
691 // Don't add any new variables to the subprogram.
692 DB
.finalizeSubprogram(OutlinedSP
);
694 // Attach subprogram to the function.
695 F
->setSubprogram(OutlinedSP
);
696 // We're done with the DIBuilder.
700 return Group
.OutlinedFunction
;
703 /// Move each BasicBlock in \p Old to \p New.
705 /// \param [in] Old - The function to move the basic blocks from.
706 /// \param [in] New - The function to move the basic blocks to.
707 /// \param [out] NewEnds - The return blocks of the new overall function.
708 static void moveFunctionData(Function
&Old
, Function
&New
,
709 DenseMap
<Value
*, BasicBlock
*> &NewEnds
) {
710 for (BasicBlock
&CurrBB
: llvm::make_early_inc_range(Old
)) {
711 CurrBB
.removeFromParent();
712 CurrBB
.insertInto(&New
);
713 Instruction
*I
= CurrBB
.getTerminator();
715 // For each block we find a return instruction is, it is a potential exit
716 // path for the function. We keep track of each block based on the return
718 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(I
))
719 NewEnds
.insert(std::make_pair(RI
->getReturnValue(), &CurrBB
));
721 std::vector
<Instruction
*> DebugInsts
;
723 for (Instruction
&Val
: CurrBB
) {
724 // We must handle the scoping of called functions differently than
725 // other outlined instructions.
726 if (!isa
<CallInst
>(&Val
)) {
727 // Remove the debug information for outlined functions.
728 Val
.setDebugLoc(DebugLoc());
730 // Loop info metadata may contain line locations. Update them to have no
731 // value in the new subprogram since the outlined code could be from
732 // several locations.
733 auto updateLoopInfoLoc
= [&New
](Metadata
*MD
) -> Metadata
* {
734 if (DISubprogram
*SP
= New
.getSubprogram())
735 if (auto *Loc
= dyn_cast_or_null
<DILocation
>(MD
))
736 return DILocation::get(New
.getContext(), Loc
->getLine(),
737 Loc
->getColumn(), SP
, nullptr);
740 updateLoopMetadataDebugLocations(Val
, updateLoopInfoLoc
);
744 // From this point we are only handling call instructions.
745 CallInst
*CI
= cast
<CallInst
>(&Val
);
747 // We add any debug statements here, to be removed after. Since the
748 // instructions originate from many different locations in the program,
749 // it will cause incorrect reporting from a debugger if we keep the
750 // same debug instructions.
751 if (isa
<DbgInfoIntrinsic
>(CI
)) {
752 DebugInsts
.push_back(&Val
);
756 // Edit the scope of called functions inside of outlined functions.
757 if (DISubprogram
*SP
= New
.getSubprogram()) {
758 DILocation
*DI
= DILocation::get(New
.getContext(), 0, 0, SP
);
763 for (Instruction
*I
: DebugInsts
)
764 I
->eraseFromParent();
768 /// Find the constants that will need to be lifted into arguments
769 /// as they are not the same in each instance of the region.
771 /// \param [in] C - The IRSimilarityCandidate containing the region we are
773 /// \param [in] NotSame - The set of global value numbers that do not have a
774 /// single Constant across all OutlinableRegions similar to \p C.
775 /// \param [out] Inputs - The list containing the global value numbers of the
776 /// arguments needed for the region of code.
777 static void findConstants(IRSimilarityCandidate
&C
, DenseSet
<unsigned> &NotSame
,
778 std::vector
<unsigned> &Inputs
) {
779 DenseSet
<unsigned> Seen
;
780 // Iterate over the instructions, and find what constants will need to be
781 // extracted into arguments.
782 for (IRInstructionDataList::iterator IDIt
= C
.begin(), EndIDIt
= C
.end();
783 IDIt
!= EndIDIt
; IDIt
++) {
784 for (Value
*V
: (*IDIt
).OperVals
) {
785 // Since these are stored before any outlining, they will be in the
786 // global value numbering.
787 unsigned GVN
= *C
.getGVN(V
);
788 if (isa
<Constant
>(V
))
789 if (NotSame
.contains(GVN
) && !Seen
.contains(GVN
)) {
790 Inputs
.push_back(GVN
);
797 /// Find the GVN for the inputs that have been found by the CodeExtractor.
799 /// \param [in] C - The IRSimilarityCandidate containing the region we are
801 /// \param [in] CurrentInputs - The set of inputs found by the
803 /// \param [in] OutputMappings - The mapping of values that have been replaced
804 /// by a new output value.
805 /// \param [out] EndInputNumbers - The global value numbers for the extracted
807 static void mapInputsToGVNs(IRSimilarityCandidate
&C
,
808 SetVector
<Value
*> &CurrentInputs
,
809 const DenseMap
<Value
*, Value
*> &OutputMappings
,
810 std::vector
<unsigned> &EndInputNumbers
) {
811 // Get the Global Value Number for each input. We check if the Value has been
812 // replaced by a different value at output, and use the original value before
814 for (Value
*Input
: CurrentInputs
) {
815 assert(Input
&& "Have a nullptr as an input");
816 if (OutputMappings
.contains(Input
))
817 Input
= OutputMappings
.find(Input
)->second
;
818 assert(C
.getGVN(Input
) && "Could not find a numbering for the given input");
819 EndInputNumbers
.push_back(*C
.getGVN(Input
));
823 /// Find the original value for the \p ArgInput values if any one of them was
824 /// replaced during a previous extraction.
826 /// \param [in] ArgInputs - The inputs to be extracted by the code extractor.
827 /// \param [in] OutputMappings - The mapping of values that have been replaced
828 /// by a new output value.
829 /// \param [out] RemappedArgInputs - The remapped values according to
830 /// \p OutputMappings that will be extracted.
832 remapExtractedInputs(const ArrayRef
<Value
*> ArgInputs
,
833 const DenseMap
<Value
*, Value
*> &OutputMappings
,
834 SetVector
<Value
*> &RemappedArgInputs
) {
835 // Get the global value number for each input that will be extracted as an
836 // argument by the code extractor, remapping if needed for reloaded values.
837 for (Value
*Input
: ArgInputs
) {
838 if (OutputMappings
.contains(Input
))
839 Input
= OutputMappings
.find(Input
)->second
;
840 RemappedArgInputs
.insert(Input
);
844 /// Find the input GVNs and the output values for a region of Instructions.
845 /// Using the code extractor, we collect the inputs to the extracted function.
847 /// The \p Region can be identified as needing to be ignored in this function.
848 /// It should be checked whether it should be ignored after a call to this
851 /// \param [in,out] Region - The region of code to be analyzed.
852 /// \param [out] InputGVNs - The global value numbers for the extracted
854 /// \param [in] NotSame - The global value numbers in the region that do not
855 /// have the same constant value in the regions structurally similar to
857 /// \param [in] OutputMappings - The mapping of values that have been replaced
858 /// by a new output value after extraction.
859 /// \param [out] ArgInputs - The values of the inputs to the extracted function.
860 /// \param [out] Outputs - The set of values extracted by the CodeExtractor
862 static void getCodeExtractorArguments(
863 OutlinableRegion
&Region
, std::vector
<unsigned> &InputGVNs
,
864 DenseSet
<unsigned> &NotSame
, DenseMap
<Value
*, Value
*> &OutputMappings
,
865 SetVector
<Value
*> &ArgInputs
, SetVector
<Value
*> &Outputs
) {
866 IRSimilarityCandidate
&C
= *Region
.Candidate
;
868 // OverallInputs are the inputs to the region found by the CodeExtractor,
869 // SinkCands and HoistCands are used by the CodeExtractor to find sunken
870 // allocas of values whose lifetimes are contained completely within the
871 // outlined region. PremappedInputs are the arguments found by the
872 // CodeExtractor, removing conditions such as sunken allocas, but that
873 // may need to be remapped due to the extracted output values replacing
874 // the original values. We use DummyOutputs for this first run of finding
875 // inputs and outputs since the outputs could change during findAllocas,
876 // the correct set of extracted outputs will be in the final Outputs ValueSet.
877 SetVector
<Value
*> OverallInputs
, PremappedInputs
, SinkCands
, HoistCands
,
880 // Use the code extractor to get the inputs and outputs, without sunken
881 // allocas or removing llvm.assumes.
882 CodeExtractor
*CE
= Region
.CE
;
883 CE
->findInputsOutputs(OverallInputs
, DummyOutputs
, SinkCands
);
884 assert(Region
.StartBB
&& "Region must have a start BasicBlock!");
885 Function
*OrigF
= Region
.StartBB
->getParent();
886 CodeExtractorAnalysisCache
CEAC(*OrigF
);
887 BasicBlock
*Dummy
= nullptr;
889 // The region may be ineligible due to VarArgs in the parent function. In this
890 // case we ignore the region.
891 if (!CE
->isEligible()) {
892 Region
.IgnoreRegion
= true;
896 // Find if any values are going to be sunk into the function when extracted
897 CE
->findAllocas(CEAC
, SinkCands
, HoistCands
, Dummy
);
898 CE
->findInputsOutputs(PremappedInputs
, Outputs
, SinkCands
);
900 // TODO: Support regions with sunken allocas: values whose lifetimes are
901 // contained completely within the outlined region. These are not guaranteed
902 // to be the same in every region, so we must elevate them all to arguments
903 // when they appear. If these values are not equal, it means there is some
904 // Input in OverallInputs that was removed for ArgInputs.
905 if (OverallInputs
.size() != PremappedInputs
.size()) {
906 Region
.IgnoreRegion
= true;
910 findConstants(C
, NotSame
, InputGVNs
);
912 mapInputsToGVNs(C
, OverallInputs
, OutputMappings
, InputGVNs
);
914 remapExtractedInputs(PremappedInputs
.getArrayRef(), OutputMappings
,
917 // Sort the GVNs, since we now have constants included in the \ref InputGVNs
918 // we need to make sure they are in a deterministic order.
919 stable_sort(InputGVNs
);
922 /// Look over the inputs and map each input argument to an argument in the
923 /// overall function for the OutlinableRegions. This creates a way to replace
924 /// the arguments of the extracted function with the arguments of the new
925 /// overall function.
927 /// \param [in,out] Region - The region of code to be analyzed.
928 /// \param [in] InputGVNs - The global value numbering of the input values
930 /// \param [in] ArgInputs - The values of the arguments to the extracted
933 findExtractedInputToOverallInputMapping(OutlinableRegion
&Region
,
934 std::vector
<unsigned> &InputGVNs
,
935 SetVector
<Value
*> &ArgInputs
) {
937 IRSimilarityCandidate
&C
= *Region
.Candidate
;
938 OutlinableGroup
&Group
= *Region
.Parent
;
940 // This counts the argument number in the overall function.
941 unsigned TypeIndex
= 0;
943 // This counts the argument number in the extracted function.
944 unsigned OriginalIndex
= 0;
946 // Find the mapping of the extracted arguments to the arguments for the
947 // overall function. Since there may be extra arguments in the overall
948 // function to account for the extracted constants, we have two different
949 // counters as we find extracted arguments, and as we come across overall
952 // Additionally, in our first pass, for the first extracted function,
953 // we find argument locations for the canonical value numbering. This
954 // numbering overrides any discovered location for the extracted code.
955 for (unsigned InputVal
: InputGVNs
) {
956 std::optional
<unsigned> CanonicalNumberOpt
= C
.getCanonicalNum(InputVal
);
957 assert(CanonicalNumberOpt
&& "Canonical number not found?");
958 unsigned CanonicalNumber
= *CanonicalNumberOpt
;
960 std::optional
<Value
*> InputOpt
= C
.fromGVN(InputVal
);
961 assert(InputOpt
&& "Global value number not found?");
962 Value
*Input
= *InputOpt
;
964 DenseMap
<unsigned, unsigned>::iterator AggArgIt
=
965 Group
.CanonicalNumberToAggArg
.find(CanonicalNumber
);
967 if (!Group
.InputTypesSet
) {
968 Group
.ArgumentTypes
.push_back(Input
->getType());
969 // If the input value has a swifterr attribute, make sure to mark the
970 // argument in the overall function.
971 if (Input
->isSwiftError()) {
973 !Group
.SwiftErrorArgument
&&
974 "Argument already marked with swifterr for this OutlinableGroup!");
975 Group
.SwiftErrorArgument
= TypeIndex
;
979 // Check if we have a constant. If we do add it to the overall argument
980 // number to Constant map for the region, and continue to the next input.
981 if (Constant
*CST
= dyn_cast
<Constant
>(Input
)) {
982 if (AggArgIt
!= Group
.CanonicalNumberToAggArg
.end())
983 Region
.AggArgToConstant
.insert(std::make_pair(AggArgIt
->second
, CST
));
985 Group
.CanonicalNumberToAggArg
.insert(
986 std::make_pair(CanonicalNumber
, TypeIndex
));
987 Region
.AggArgToConstant
.insert(std::make_pair(TypeIndex
, CST
));
993 // It is not a constant, we create the mapping from extracted argument list
994 // to the overall argument list, using the canonical location, if it exists.
995 assert(ArgInputs
.count(Input
) && "Input cannot be found!");
997 if (AggArgIt
!= Group
.CanonicalNumberToAggArg
.end()) {
998 if (OriginalIndex
!= AggArgIt
->second
)
999 Region
.ChangedArgOrder
= true;
1000 Region
.ExtractedArgToAgg
.insert(
1001 std::make_pair(OriginalIndex
, AggArgIt
->second
));
1002 Region
.AggArgToExtracted
.insert(
1003 std::make_pair(AggArgIt
->second
, OriginalIndex
));
1005 Group
.CanonicalNumberToAggArg
.insert(
1006 std::make_pair(CanonicalNumber
, TypeIndex
));
1007 Region
.ExtractedArgToAgg
.insert(std::make_pair(OriginalIndex
, TypeIndex
));
1008 Region
.AggArgToExtracted
.insert(std::make_pair(TypeIndex
, OriginalIndex
));
1014 // If the function type definitions for the OutlinableGroup holding the region
1015 // have not been set, set the length of the inputs here. We should have the
1016 // same inputs for all of the different regions contained in the
1017 // OutlinableGroup since they are all structurally similar to one another.
1018 if (!Group
.InputTypesSet
) {
1019 Group
.NumAggregateInputs
= TypeIndex
;
1020 Group
.InputTypesSet
= true;
1023 Region
.NumExtractedInputs
= OriginalIndex
;
1026 /// Check if the \p V has any uses outside of the region other than \p PN.
1028 /// \param V [in] - The value to check.
1029 /// \param PHILoc [in] - The location in the PHINode of \p V.
1030 /// \param PN [in] - The PHINode using \p V.
1031 /// \param Exits [in] - The potential blocks we exit to from the outlined
1033 /// \param BlocksInRegion [in] - The basic blocks contained in the region.
1034 /// \returns true if \p V has any use soutside its region other than \p PN.
1035 static bool outputHasNonPHI(Value
*V
, unsigned PHILoc
, PHINode
&PN
,
1036 SmallPtrSet
<BasicBlock
*, 1> &Exits
,
1037 DenseSet
<BasicBlock
*> &BlocksInRegion
) {
1038 // We check to see if the value is used by the PHINode from some other
1039 // predecessor not included in the region. If it is, we make sure
1040 // to keep it as an output.
1041 if (any_of(llvm::seq
<unsigned>(0, PN
.getNumIncomingValues()),
1042 [PHILoc
, &PN
, V
, &BlocksInRegion
](unsigned Idx
) {
1043 return (Idx
!= PHILoc
&& V
== PN
.getIncomingValue(Idx
) &&
1044 !BlocksInRegion
.contains(PN
.getIncomingBlock(Idx
)));
1048 // Check if the value is used by any other instructions outside the region.
1049 return any_of(V
->users(), [&Exits
, &BlocksInRegion
](User
*U
) {
1050 Instruction
*I
= dyn_cast
<Instruction
>(U
);
1054 // If the use of the item is inside the region, we skip it. Uses
1055 // inside the region give us useful information about how the item could be
1056 // used as an output.
1057 BasicBlock
*Parent
= I
->getParent();
1058 if (BlocksInRegion
.contains(Parent
))
1061 // If it's not a PHINode then we definitely know the use matters. This
1062 // output value will not completely combined with another item in a PHINode
1063 // as it is directly reference by another non-phi instruction
1064 if (!isa
<PHINode
>(I
))
1067 // If we have a PHINode outside one of the exit locations, then it
1068 // can be considered an outside use as well. If there is a PHINode
1069 // contained in the Exit where this values use matters, it will be
1070 // caught when we analyze that PHINode.
1071 if (!Exits
.contains(Parent
))
1078 /// Test whether \p CurrentExitFromRegion contains any PhiNodes that should be
1079 /// considered outputs. A PHINodes is an output when more than one incoming
1080 /// value has been marked by the CodeExtractor as an output.
1082 /// \param CurrentExitFromRegion [in] - The block to analyze.
1083 /// \param PotentialExitsFromRegion [in] - The potential exit blocks from the
1085 /// \param RegionBlocks [in] - The basic blocks in the region.
1086 /// \param Outputs [in, out] - The existing outputs for the region, we may add
1087 /// PHINodes to this as we find that they replace output values.
1088 /// \param OutputsReplacedByPHINode [out] - A set containing outputs that are
1089 /// totally replaced by a PHINode.
1090 /// \param OutputsWithNonPhiUses [out] - A set containing outputs that are used
1091 /// in PHINodes, but have other uses, and should still be considered outputs.
1092 static void analyzeExitPHIsForOutputUses(
1093 BasicBlock
*CurrentExitFromRegion
,
1094 SmallPtrSet
<BasicBlock
*, 1> &PotentialExitsFromRegion
,
1095 DenseSet
<BasicBlock
*> &RegionBlocks
, SetVector
<Value
*> &Outputs
,
1096 DenseSet
<Value
*> &OutputsReplacedByPHINode
,
1097 DenseSet
<Value
*> &OutputsWithNonPhiUses
) {
1098 for (PHINode
&PN
: CurrentExitFromRegion
->phis()) {
1099 // Find all incoming values from the outlining region.
1100 SmallVector
<unsigned, 2> IncomingVals
;
1101 for (unsigned I
= 0, E
= PN
.getNumIncomingValues(); I
< E
; ++I
)
1102 if (RegionBlocks
.contains(PN
.getIncomingBlock(I
)))
1103 IncomingVals
.push_back(I
);
1105 // Do not process PHI if there are no predecessors from region.
1106 unsigned NumIncomingVals
= IncomingVals
.size();
1107 if (NumIncomingVals
== 0)
1110 // If there is one predecessor, we mark it as a value that needs to be kept
1112 if (NumIncomingVals
== 1) {
1113 Value
*V
= PN
.getIncomingValue(*IncomingVals
.begin());
1114 OutputsWithNonPhiUses
.insert(V
);
1115 OutputsReplacedByPHINode
.erase(V
);
1119 // This PHINode will be used as an output value, so we add it to our list.
1120 Outputs
.insert(&PN
);
1122 // Not all of the incoming values should be ignored as other inputs and
1123 // outputs may have uses in outlined region. If they have other uses
1124 // outside of the single PHINode we should not skip over it.
1125 for (unsigned Idx
: IncomingVals
) {
1126 Value
*V
= PN
.getIncomingValue(Idx
);
1127 if (outputHasNonPHI(V
, Idx
, PN
, PotentialExitsFromRegion
, RegionBlocks
)) {
1128 OutputsWithNonPhiUses
.insert(V
);
1129 OutputsReplacedByPHINode
.erase(V
);
1132 if (!OutputsWithNonPhiUses
.contains(V
))
1133 OutputsReplacedByPHINode
.insert(V
);
1138 // Represents the type for the unsigned number denoting the output number for
1139 // phi node, along with the canonical number for the exit block.
1140 using ArgLocWithBBCanon
= std::pair
<unsigned, unsigned>;
1141 // The list of canonical numbers for the incoming values to a PHINode.
1142 using CanonList
= SmallVector
<unsigned, 2>;
1143 // The pair type representing the set of canonical values being combined in the
1144 // PHINode, along with the location data for the PHINode.
1145 using PHINodeData
= std::pair
<ArgLocWithBBCanon
, CanonList
>;
1147 /// Encode \p PND as an integer for easy lookup based on the argument location,
1148 /// the parent BasicBlock canonical numbering, and the canonical numbering of
1149 /// the values stored in the PHINode.
1151 /// \param PND - The data to hash.
1152 /// \returns The hash code of \p PND.
1153 static hash_code
encodePHINodeData(PHINodeData
&PND
) {
1154 return llvm::hash_combine(
1155 llvm::hash_value(PND
.first
.first
), llvm::hash_value(PND
.first
.second
),
1156 llvm::hash_combine_range(PND
.second
.begin(), PND
.second
.end()));
1159 /// Create a special GVN for PHINodes that will be used outside of
1160 /// the region. We create a hash code based on the Canonical number of the
1161 /// parent BasicBlock, the canonical numbering of the values stored in the
1162 /// PHINode and the aggregate argument location. This is used to find whether
1163 /// this PHINode type has been given a canonical numbering already. If not, we
1164 /// assign it a value and store it for later use. The value is returned to
1165 /// identify different output schemes for the set of regions.
1167 /// \param Region - The region that \p PN is an output for.
1168 /// \param PN - The PHINode we are analyzing.
1169 /// \param Blocks - The blocks for the region we are analyzing.
1170 /// \param AggArgIdx - The argument \p PN will be stored into.
1171 /// \returns An optional holding the assigned canonical number, or std::nullopt
1172 /// if there is some attribute of the PHINode blocking it from being used.
1173 static std::optional
<unsigned> getGVNForPHINode(OutlinableRegion
&Region
,
1175 DenseSet
<BasicBlock
*> &Blocks
,
1176 unsigned AggArgIdx
) {
1177 OutlinableGroup
&Group
= *Region
.Parent
;
1178 IRSimilarityCandidate
&Cand
= *Region
.Candidate
;
1179 BasicBlock
*PHIBB
= PN
->getParent();
1182 BasicBlock
*IncomingBlock
;
1183 for (unsigned Idx
= 0, EIdx
= PN
->getNumIncomingValues(); Idx
< EIdx
; Idx
++) {
1184 Incoming
= PN
->getIncomingValue(Idx
);
1185 IncomingBlock
= PN
->getIncomingBlock(Idx
);
1186 // If we cannot find a GVN, and the incoming block is included in the region
1187 // this means that the input to the PHINode is not included in the region we
1188 // are trying to analyze, meaning, that if it was outlined, we would be
1189 // adding an extra input. We ignore this case for now, and so ignore the
1191 std::optional
<unsigned> OGVN
= Cand
.getGVN(Incoming
);
1192 if (!OGVN
&& Blocks
.contains(IncomingBlock
)) {
1193 Region
.IgnoreRegion
= true;
1194 return std::nullopt
;
1197 // If the incoming block isn't in the region, we don't have to worry about
1198 // this incoming value.
1199 if (!Blocks
.contains(IncomingBlock
))
1202 // Collect the canonical numbers of the values in the PHINode.
1203 unsigned GVN
= *OGVN
;
1204 OGVN
= Cand
.getCanonicalNum(GVN
);
1205 assert(OGVN
&& "No GVN found for incoming value?");
1206 PHIGVNs
.push_back(*OGVN
);
1208 // Find the incoming block and use the canonical numbering as well to define
1209 // the hash for the PHINode.
1210 OGVN
= Cand
.getGVN(IncomingBlock
);
1212 // If there is no number for the incoming block, it is because we have
1213 // split the candidate basic blocks. So we use the previous block that it
1214 // was split from to find the valid global value numbering for the PHINode.
1216 assert(Cand
.getStartBB() == IncomingBlock
&&
1217 "Unknown basic block used in exit path PHINode.");
1219 BasicBlock
*PrevBlock
= nullptr;
1220 // Iterate over the predecessors to the incoming block of the
1221 // PHINode, when we find a block that is not contained in the region
1222 // we know that this is the first block that we split from, and should
1223 // have a valid global value numbering.
1224 for (BasicBlock
*Pred
: predecessors(IncomingBlock
))
1225 if (!Blocks
.contains(Pred
)) {
1229 assert(PrevBlock
&& "Expected a predecessor not in the reigon!");
1230 OGVN
= Cand
.getGVN(PrevBlock
);
1233 OGVN
= Cand
.getCanonicalNum(GVN
);
1234 assert(OGVN
&& "No GVN found for incoming block?");
1235 PHIGVNs
.push_back(*OGVN
);
1238 // Now that we have the GVNs for the incoming values, we are going to combine
1239 // them with the GVN of the incoming bock, and the output location of the
1240 // PHINode to generate a hash value representing this instance of the PHINode.
1241 DenseMap
<hash_code
, unsigned>::iterator GVNToPHIIt
;
1242 DenseMap
<unsigned, PHINodeData
>::iterator PHIToGVNIt
;
1243 std::optional
<unsigned> BBGVN
= Cand
.getGVN(PHIBB
);
1244 assert(BBGVN
&& "Could not find GVN for the incoming block!");
1246 BBGVN
= Cand
.getCanonicalNum(*BBGVN
);
1247 assert(BBGVN
&& "Could not find canonical number for the incoming block!");
1248 // Create a pair of the exit block canonical value, and the aggregate
1249 // argument location, connected to the canonical numbers stored in the
1251 PHINodeData TemporaryPair
=
1252 std::make_pair(std::make_pair(*BBGVN
, AggArgIdx
), PHIGVNs
);
1253 hash_code PHINodeDataHash
= encodePHINodeData(TemporaryPair
);
1255 // Look for and create a new entry in our connection between canonical
1256 // numbers for PHINodes, and the set of objects we just created.
1257 GVNToPHIIt
= Group
.GVNsToPHINodeGVN
.find(PHINodeDataHash
);
1258 if (GVNToPHIIt
== Group
.GVNsToPHINodeGVN
.end()) {
1259 bool Inserted
= false;
1260 std::tie(PHIToGVNIt
, Inserted
) = Group
.PHINodeGVNToGVNs
.insert(
1261 std::make_pair(Group
.PHINodeGVNTracker
, TemporaryPair
));
1262 std::tie(GVNToPHIIt
, Inserted
) = Group
.GVNsToPHINodeGVN
.insert(
1263 std::make_pair(PHINodeDataHash
, Group
.PHINodeGVNTracker
--));
1266 return GVNToPHIIt
->second
;
1269 /// Create a mapping of the output arguments for the \p Region to the output
1270 /// arguments of the overall outlined function.
1272 /// \param [in,out] Region - The region of code to be analyzed.
1273 /// \param [in] Outputs - The values found by the code extractor.
1275 findExtractedOutputToOverallOutputMapping(Module
&M
, OutlinableRegion
&Region
,
1276 SetVector
<Value
*> &Outputs
) {
1277 OutlinableGroup
&Group
= *Region
.Parent
;
1278 IRSimilarityCandidate
&C
= *Region
.Candidate
;
1280 SmallVector
<BasicBlock
*> BE
;
1281 DenseSet
<BasicBlock
*> BlocksInRegion
;
1282 C
.getBasicBlocks(BlocksInRegion
, BE
);
1284 // Find the exits to the region.
1285 SmallPtrSet
<BasicBlock
*, 1> Exits
;
1286 for (BasicBlock
*Block
: BE
)
1287 for (BasicBlock
*Succ
: successors(Block
))
1288 if (!BlocksInRegion
.contains(Succ
))
1291 // After determining which blocks exit to PHINodes, we add these PHINodes to
1292 // the set of outputs to be processed. We also check the incoming values of
1293 // the PHINodes for whether they should no longer be considered outputs.
1294 DenseSet
<Value
*> OutputsReplacedByPHINode
;
1295 DenseSet
<Value
*> OutputsWithNonPhiUses
;
1296 for (BasicBlock
*ExitBB
: Exits
)
1297 analyzeExitPHIsForOutputUses(ExitBB
, Exits
, BlocksInRegion
, Outputs
,
1298 OutputsReplacedByPHINode
,
1299 OutputsWithNonPhiUses
);
1301 // This counts the argument number in the extracted function.
1302 unsigned OriginalIndex
= Region
.NumExtractedInputs
;
1304 // This counts the argument number in the overall function.
1305 unsigned TypeIndex
= Group
.NumAggregateInputs
;
1307 DenseSet
<unsigned> AggArgsUsed
;
1309 // Iterate over the output types and identify if there is an aggregate pointer
1310 // type whose base type matches the current output type. If there is, we mark
1311 // that we will use this output register for this value. If not we add another
1312 // type to the overall argument type list. We also store the GVNs used for
1313 // stores to identify which values will need to be moved into an special
1314 // block that holds the stores to the output registers.
1315 for (Value
*Output
: Outputs
) {
1317 // We can do this since it is a result value, and will have a number
1318 // that is necessarily the same. BUT if in the future, the instructions
1319 // do not have to be in same order, but are functionally the same, we will
1320 // have to use a different scheme, as one-to-one correspondence is not
1322 unsigned ArgumentSize
= Group
.ArgumentTypes
.size();
1324 // If the output is combined in a PHINode, we make sure to skip over it.
1325 if (OutputsReplacedByPHINode
.contains(Output
))
1328 unsigned AggArgIdx
= 0;
1329 for (unsigned Jdx
= TypeIndex
; Jdx
< ArgumentSize
; Jdx
++) {
1330 if (!isa
<PointerType
>(Group
.ArgumentTypes
[Jdx
]))
1333 if (AggArgsUsed
.contains(Jdx
))
1337 AggArgsUsed
.insert(Jdx
);
1338 Region
.ExtractedArgToAgg
.insert(std::make_pair(OriginalIndex
, Jdx
));
1339 Region
.AggArgToExtracted
.insert(std::make_pair(Jdx
, OriginalIndex
));
1344 // We were unable to find an unused type in the output type set that matches
1345 // the output, so we add a pointer type to the argument types of the overall
1346 // function to handle this output and create a mapping to it.
1348 Group
.ArgumentTypes
.push_back(PointerType::get(Output
->getContext(),
1349 M
.getDataLayout().getAllocaAddrSpace()));
1350 // Mark the new pointer type as the last value in the aggregate argument
1352 unsigned ArgTypeIdx
= Group
.ArgumentTypes
.size() - 1;
1353 AggArgsUsed
.insert(ArgTypeIdx
);
1354 Region
.ExtractedArgToAgg
.insert(
1355 std::make_pair(OriginalIndex
, ArgTypeIdx
));
1356 Region
.AggArgToExtracted
.insert(
1357 std::make_pair(ArgTypeIdx
, OriginalIndex
));
1358 AggArgIdx
= ArgTypeIdx
;
1361 // TODO: Adapt to the extra input from the PHINode.
1362 PHINode
*PN
= dyn_cast
<PHINode
>(Output
);
1364 std::optional
<unsigned> GVN
;
1365 if (PN
&& !BlocksInRegion
.contains(PN
->getParent())) {
1366 // Values outside the region can be combined into PHINode when we
1367 // have multiple exits. We collect both of these into a list to identify
1368 // which values are being used in the PHINode. Each list identifies a
1369 // different PHINode, and a different output. We store the PHINode as it's
1370 // own canonical value. These canonical values are also dependent on the
1371 // output argument it is saved to.
1373 // If two PHINodes have the same canonical values, but different aggregate
1374 // argument locations, then they will have distinct Canonical Values.
1375 GVN
= getGVNForPHINode(Region
, PN
, BlocksInRegion
, AggArgIdx
);
1379 // If we do not have a PHINode we use the global value numbering for the
1380 // output value, to find the canonical number to add to the set of stored
1382 GVN
= C
.getGVN(Output
);
1383 GVN
= C
.getCanonicalNum(*GVN
);
1386 // Each region has a potentially unique set of outputs. We save which
1387 // values are output in a list of canonical values so we can differentiate
1388 // among the different store schemes.
1389 Region
.GVNStores
.push_back(*GVN
);
1395 // We sort the stored values to make sure that we are not affected by analysis
1396 // order when determining what combination of items were stored.
1397 stable_sort(Region
.GVNStores
);
1400 void IROutliner::findAddInputsOutputs(Module
&M
, OutlinableRegion
&Region
,
1401 DenseSet
<unsigned> &NotSame
) {
1402 std::vector
<unsigned> Inputs
;
1403 SetVector
<Value
*> ArgInputs
, Outputs
;
1405 getCodeExtractorArguments(Region
, Inputs
, NotSame
, OutputMappings
, ArgInputs
,
1408 if (Region
.IgnoreRegion
)
1411 // Map the inputs found by the CodeExtractor to the arguments found for
1412 // the overall function.
1413 findExtractedInputToOverallInputMapping(Region
, Inputs
, ArgInputs
);
1415 // Map the outputs found by the CodeExtractor to the arguments found for
1416 // the overall function.
1417 findExtractedOutputToOverallOutputMapping(M
, Region
, Outputs
);
1420 /// Replace the extracted function in the Region with a call to the overall
1421 /// function constructed from the deduplicated similar regions, replacing and
1422 /// remapping the values passed to the extracted function as arguments to the
1423 /// new arguments of the overall function.
1425 /// \param [in] M - The module to outline from.
1426 /// \param [in] Region - The regions of extracted code to be replaced with a new
1428 /// \returns a call instruction with the replaced function.
1429 CallInst
*replaceCalledFunction(Module
&M
, OutlinableRegion
&Region
) {
1430 std::vector
<Value
*> NewCallArgs
;
1431 DenseMap
<unsigned, unsigned>::iterator ArgPair
;
1433 OutlinableGroup
&Group
= *Region
.Parent
;
1434 CallInst
*Call
= Region
.Call
;
1435 assert(Call
&& "Call to replace is nullptr?");
1436 Function
*AggFunc
= Group
.OutlinedFunction
;
1437 assert(AggFunc
&& "Function to replace with is nullptr?");
1439 // If the arguments are the same size, there are not values that need to be
1440 // made into an argument, the argument ordering has not been change, or
1441 // different output registers to handle. We can simply replace the called
1442 // function in this case.
1443 if (!Region
.ChangedArgOrder
&& AggFunc
->arg_size() == Call
->arg_size()) {
1444 LLVM_DEBUG(dbgs() << "Replace call to " << *Call
<< " with call to "
1445 << *AggFunc
<< " with same number of arguments\n");
1446 Call
->setCalledFunction(AggFunc
);
1450 // We have a different number of arguments than the new function, so
1451 // we need to use our previously mappings off extracted argument to overall
1452 // function argument, and constants to overall function argument to create the
1453 // new argument list.
1454 for (unsigned AggArgIdx
= 0; AggArgIdx
< AggFunc
->arg_size(); AggArgIdx
++) {
1456 if (AggArgIdx
== AggFunc
->arg_size() - 1 &&
1457 Group
.OutputGVNCombinations
.size() > 1) {
1458 // If we are on the last argument, and we need to differentiate between
1459 // output blocks, add an integer to the argument list to determine
1460 // what block to take
1461 LLVM_DEBUG(dbgs() << "Set switch block argument to "
1462 << Region
.OutputBlockNum
<< "\n");
1463 NewCallArgs
.push_back(ConstantInt::get(Type::getInt32Ty(M
.getContext()),
1464 Region
.OutputBlockNum
));
1468 ArgPair
= Region
.AggArgToExtracted
.find(AggArgIdx
);
1469 if (ArgPair
!= Region
.AggArgToExtracted
.end()) {
1470 Value
*ArgumentValue
= Call
->getArgOperand(ArgPair
->second
);
1471 // If we found the mapping from the extracted function to the overall
1472 // function, we simply add it to the argument list. We use the same
1473 // value, it just needs to honor the new order of arguments.
1474 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx
<< " to value "
1475 << *ArgumentValue
<< "\n");
1476 NewCallArgs
.push_back(ArgumentValue
);
1480 // If it is a constant, we simply add it to the argument list as a value.
1481 if (Region
.AggArgToConstant
.contains(AggArgIdx
)) {
1482 Constant
*CST
= Region
.AggArgToConstant
.find(AggArgIdx
)->second
;
1483 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx
<< " to value "
1485 NewCallArgs
.push_back(CST
);
1489 // Add a nullptr value if the argument is not found in the extracted
1490 // function. If we cannot find a value, it means it is not in use
1491 // for the region, so we should not pass anything to it.
1492 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx
<< " to nullptr\n");
1493 NewCallArgs
.push_back(ConstantPointerNull::get(
1494 static_cast<PointerType
*>(AggFunc
->getArg(AggArgIdx
)->getType())));
1497 LLVM_DEBUG(dbgs() << "Replace call to " << *Call
<< " with call to "
1498 << *AggFunc
<< " with new set of arguments\n");
1499 // Create the new call instruction and erase the old one.
1500 Call
= CallInst::Create(AggFunc
->getFunctionType(), AggFunc
, NewCallArgs
, "",
1503 // It is possible that the call to the outlined function is either the first
1504 // instruction is in the new block, the last instruction, or both. If either
1505 // of these is the case, we need to make sure that we replace the instruction
1506 // in the IRInstructionData struct with the new call.
1507 CallInst
*OldCall
= Region
.Call
;
1508 if (Region
.NewFront
->Inst
== OldCall
)
1509 Region
.NewFront
->Inst
= Call
;
1510 if (Region
.NewBack
->Inst
== OldCall
)
1511 Region
.NewBack
->Inst
= Call
;
1513 // Transfer any debug information.
1514 Call
->setDebugLoc(Region
.Call
->getDebugLoc());
1515 // Since our output may determine which branch we go to, we make sure to
1516 // propogate this new call value through the module.
1517 OldCall
->replaceAllUsesWith(Call
);
1519 // Remove the old instruction.
1520 OldCall
->eraseFromParent();
1523 // Make sure that the argument in the new function has the SwiftError
1525 if (Group
.SwiftErrorArgument
)
1526 Call
->addParamAttr(*Group
.SwiftErrorArgument
, Attribute::SwiftError
);
1531 /// Find or create a BasicBlock in the outlined function containing PhiBlocks
1534 /// \param Group - The OutlinableGroup containing the information about the
1535 /// overall outlined function.
1536 /// \param RetVal - The return value or exit option that we are currently
1538 /// \returns The found or newly created BasicBlock to contain the needed
1539 /// PHINodes to be used as outputs.
1540 static BasicBlock
*findOrCreatePHIBlock(OutlinableGroup
&Group
, Value
*RetVal
) {
1541 DenseMap
<Value
*, BasicBlock
*>::iterator PhiBlockForRetVal
,
1542 ReturnBlockForRetVal
;
1543 PhiBlockForRetVal
= Group
.PHIBlocks
.find(RetVal
);
1544 ReturnBlockForRetVal
= Group
.EndBBs
.find(RetVal
);
1545 assert(ReturnBlockForRetVal
!= Group
.EndBBs
.end() &&
1546 "Could not find output value!");
1547 BasicBlock
*ReturnBB
= ReturnBlockForRetVal
->second
;
1549 // Find if a PHIBlock exists for this return value already. If it is
1550 // the first time we are analyzing this, we will not, so we record it.
1551 PhiBlockForRetVal
= Group
.PHIBlocks
.find(RetVal
);
1552 if (PhiBlockForRetVal
!= Group
.PHIBlocks
.end())
1553 return PhiBlockForRetVal
->second
;
1555 // If we did not find a block, we create one, and insert it into the
1556 // overall function and record it.
1557 bool Inserted
= false;
1558 BasicBlock
*PHIBlock
= BasicBlock::Create(ReturnBB
->getContext(), "phi_block",
1559 ReturnBB
->getParent());
1560 std::tie(PhiBlockForRetVal
, Inserted
) =
1561 Group
.PHIBlocks
.insert(std::make_pair(RetVal
, PHIBlock
));
1563 // We find the predecessors of the return block in the newly created outlined
1564 // function in order to point them to the new PHIBlock rather than the already
1565 // existing return block.
1566 SmallVector
<BranchInst
*, 2> BranchesToChange
;
1567 for (BasicBlock
*Pred
: predecessors(ReturnBB
))
1568 BranchesToChange
.push_back(cast
<BranchInst
>(Pred
->getTerminator()));
1570 // Now we mark the branch instructions found, and change the references of the
1571 // return block to the newly created PHIBlock.
1572 for (BranchInst
*BI
: BranchesToChange
)
1573 for (unsigned Succ
= 0, End
= BI
->getNumSuccessors(); Succ
< End
; Succ
++) {
1574 if (BI
->getSuccessor(Succ
) != ReturnBB
)
1576 BI
->setSuccessor(Succ
, PHIBlock
);
1579 BranchInst::Create(ReturnBB
, PHIBlock
);
1581 return PhiBlockForRetVal
->second
;
1584 /// For the function call now representing the \p Region, find the passed value
1585 /// to that call that represents Argument \p A at the call location if the
1586 /// call has already been replaced with a call to the overall, aggregate
1589 /// \param A - The Argument to get the passed value for.
1590 /// \param Region - The extracted Region corresponding to the outlined function.
1591 /// \returns The Value representing \p A at the call site.
1593 getPassedArgumentInAlreadyOutlinedFunction(const Argument
*A
,
1594 const OutlinableRegion
&Region
) {
1595 // If we don't need to adjust the argument number at all (since the call
1596 // has already been replaced by a call to the overall outlined function)
1597 // we can just get the specified argument.
1598 return Region
.Call
->getArgOperand(A
->getArgNo());
1601 /// For the function call now representing the \p Region, find the passed value
1602 /// to that call that represents Argument \p A at the call location if the
1603 /// call has only been replaced by the call to the aggregate function.
1605 /// \param A - The Argument to get the passed value for.
1606 /// \param Region - The extracted Region corresponding to the outlined function.
1607 /// \returns The Value representing \p A at the call site.
1609 getPassedArgumentAndAdjustArgumentLocation(const Argument
*A
,
1610 const OutlinableRegion
&Region
) {
1611 unsigned ArgNum
= A
->getArgNo();
1613 // If it is a constant, we can look at our mapping from when we created
1614 // the outputs to figure out what the constant value is.
1615 if (Region
.AggArgToConstant
.count(ArgNum
))
1616 return Region
.AggArgToConstant
.find(ArgNum
)->second
;
1618 // If it is not a constant, and we are not looking at the overall function, we
1619 // need to adjust which argument we are looking at.
1620 ArgNum
= Region
.AggArgToExtracted
.find(ArgNum
)->second
;
1621 return Region
.Call
->getArgOperand(ArgNum
);
1624 /// Find the canonical numbering for the incoming Values into the PHINode \p PN.
1626 /// \param PN [in] - The PHINode that we are finding the canonical numbers for.
1627 /// \param Region [in] - The OutlinableRegion containing \p PN.
1628 /// \param OutputMappings [in] - The mapping of output values from outlined
1629 /// region to their original values.
1630 /// \param CanonNums [out] - The canonical numbering for the incoming values to
1631 /// \p PN paired with their incoming block.
1632 /// \param ReplacedWithOutlinedCall - A flag to use the extracted function call
1633 /// of \p Region rather than the overall function's call.
1634 static void findCanonNumsForPHI(
1635 PHINode
*PN
, OutlinableRegion
&Region
,
1636 const DenseMap
<Value
*, Value
*> &OutputMappings
,
1637 SmallVector
<std::pair
<unsigned, BasicBlock
*>> &CanonNums
,
1638 bool ReplacedWithOutlinedCall
= true) {
1639 // Iterate over the incoming values.
1640 for (unsigned Idx
= 0, EIdx
= PN
->getNumIncomingValues(); Idx
< EIdx
; Idx
++) {
1641 Value
*IVal
= PN
->getIncomingValue(Idx
);
1642 BasicBlock
*IBlock
= PN
->getIncomingBlock(Idx
);
1643 // If we have an argument as incoming value, we need to grab the passed
1644 // value from the call itself.
1645 if (Argument
*A
= dyn_cast
<Argument
>(IVal
)) {
1646 if (ReplacedWithOutlinedCall
)
1647 IVal
= getPassedArgumentInAlreadyOutlinedFunction(A
, Region
);
1649 IVal
= getPassedArgumentAndAdjustArgumentLocation(A
, Region
);
1652 // Get the original value if it has been replaced by an output value.
1653 IVal
= findOutputMapping(OutputMappings
, IVal
);
1655 // Find and add the canonical number for the incoming value.
1656 std::optional
<unsigned> GVN
= Region
.Candidate
->getGVN(IVal
);
1657 assert(GVN
&& "No GVN for incoming value");
1658 std::optional
<unsigned> CanonNum
= Region
.Candidate
->getCanonicalNum(*GVN
);
1659 assert(CanonNum
&& "No Canonical Number for GVN");
1660 CanonNums
.push_back(std::make_pair(*CanonNum
, IBlock
));
1664 /// Find, or add PHINode \p PN to the combined PHINode Block \p OverallPHIBlock
1665 /// in order to condense the number of instructions added to the outlined
1668 /// \param PN [in] - The PHINode that we are finding the canonical numbers for.
1669 /// \param Region [in] - The OutlinableRegion containing \p PN.
1670 /// \param OverallPhiBlock [in] - The overall PHIBlock we are trying to find
1672 /// \param OutputMappings [in] - The mapping of output values from outlined
1673 /// region to their original values.
1674 /// \param UsedPHIs [in, out] - The PHINodes in the block that have already been
1676 /// \return the newly found or created PHINode in \p OverallPhiBlock.
1678 findOrCreatePHIInBlock(PHINode
&PN
, OutlinableRegion
&Region
,
1679 BasicBlock
*OverallPhiBlock
,
1680 const DenseMap
<Value
*, Value
*> &OutputMappings
,
1681 DenseSet
<PHINode
*> &UsedPHIs
) {
1682 OutlinableGroup
&Group
= *Region
.Parent
;
1685 // A list of the canonical numbering assigned to each incoming value, paired
1686 // with the incoming block for the PHINode passed into this function.
1687 SmallVector
<std::pair
<unsigned, BasicBlock
*>> PNCanonNums
;
1689 // We have to use the extracted function since we have merged this region into
1690 // the overall function yet. We make sure to reassign the argument numbering
1691 // since it is possible that the argument ordering is different between the
1693 findCanonNumsForPHI(&PN
, Region
, OutputMappings
, PNCanonNums
,
1694 /* ReplacedWithOutlinedCall = */ false);
1696 OutlinableRegion
*FirstRegion
= Group
.Regions
[0];
1698 // A list of the canonical numbering assigned to each incoming value, paired
1699 // with the incoming block for the PHINode that we are currently comparing
1700 // the passed PHINode to.
1701 SmallVector
<std::pair
<unsigned, BasicBlock
*>> CurrentCanonNums
;
1703 // Find the Canonical Numbering for each PHINode, if it matches, we replace
1704 // the uses of the PHINode we are searching for, with the found PHINode.
1705 for (PHINode
&CurrPN
: OverallPhiBlock
->phis()) {
1706 // If this PHINode has already been matched to another PHINode to be merged,
1708 if (UsedPHIs
.contains(&CurrPN
))
1711 CurrentCanonNums
.clear();
1712 findCanonNumsForPHI(&CurrPN
, *FirstRegion
, OutputMappings
, CurrentCanonNums
,
1713 /* ReplacedWithOutlinedCall = */ true);
1715 // If the list of incoming values is not the same length, then they cannot
1716 // match since there is not an analogue for each incoming value.
1717 if (PNCanonNums
.size() != CurrentCanonNums
.size())
1720 bool FoundMatch
= true;
1722 // We compare the canonical value for each incoming value in the passed
1723 // in PHINode to one already present in the outlined region. If the
1724 // incoming values do not match, then the PHINodes do not match.
1726 // We also check to make sure that the incoming block matches as well by
1727 // finding the corresponding incoming block in the combined outlined region
1728 // for the current outlined region.
1729 for (unsigned Idx
= 0, Edx
= PNCanonNums
.size(); Idx
< Edx
; ++Idx
) {
1730 std::pair
<unsigned, BasicBlock
*> ToCompareTo
= CurrentCanonNums
[Idx
];
1731 std::pair
<unsigned, BasicBlock
*> ToAdd
= PNCanonNums
[Idx
];
1732 if (ToCompareTo
.first
!= ToAdd
.first
) {
1737 BasicBlock
*CorrespondingBlock
=
1738 Region
.findCorrespondingBlockIn(*FirstRegion
, ToAdd
.second
);
1739 assert(CorrespondingBlock
&& "Found block is nullptr");
1740 if (CorrespondingBlock
!= ToCompareTo
.second
) {
1746 // If all incoming values and branches matched, then we can merge
1747 // into the found PHINode.
1749 UsedPHIs
.insert(&CurrPN
);
1754 // If we've made it here, it means we weren't able to replace the PHINode, so
1755 // we must insert it ourselves.
1756 PHINode
*NewPN
= cast
<PHINode
>(PN
.clone());
1757 NewPN
->insertBefore(&*OverallPhiBlock
->begin());
1758 for (unsigned Idx
= 0, Edx
= NewPN
->getNumIncomingValues(); Idx
< Edx
;
1760 Value
*IncomingVal
= NewPN
->getIncomingValue(Idx
);
1761 BasicBlock
*IncomingBlock
= NewPN
->getIncomingBlock(Idx
);
1763 // Find corresponding basic block in the overall function for the incoming
1765 BasicBlock
*BlockToUse
=
1766 Region
.findCorrespondingBlockIn(*FirstRegion
, IncomingBlock
);
1767 NewPN
->setIncomingBlock(Idx
, BlockToUse
);
1769 // If we have an argument we make sure we replace using the argument from
1770 // the correct function.
1771 if (Argument
*A
= dyn_cast
<Argument
>(IncomingVal
)) {
1772 Value
*Val
= Group
.OutlinedFunction
->getArg(A
->getArgNo());
1773 NewPN
->setIncomingValue(Idx
, Val
);
1777 // Find the corresponding value in the overall function.
1778 IncomingVal
= findOutputMapping(OutputMappings
, IncomingVal
);
1779 Value
*Val
= Region
.findCorrespondingValueIn(*FirstRegion
, IncomingVal
);
1780 assert(Val
&& "Value is nullptr?");
1781 DenseMap
<Value
*, Value
*>::iterator RemappedIt
=
1782 FirstRegion
->RemappedArguments
.find(Val
);
1783 if (RemappedIt
!= FirstRegion
->RemappedArguments
.end())
1784 Val
= RemappedIt
->second
;
1785 NewPN
->setIncomingValue(Idx
, Val
);
1790 // Within an extracted function, replace the argument uses of the extracted
1791 // region with the arguments of the function for an OutlinableGroup.
1793 /// \param [in] Region - The region of extracted code to be changed.
1794 /// \param [in,out] OutputBBs - The BasicBlock for the output stores for this
1796 /// \param [in] FirstFunction - A flag to indicate whether we are using this
1797 /// function to define the overall outlined function for all the regions, or
1798 /// if we are operating on one of the following regions.
1800 replaceArgumentUses(OutlinableRegion
&Region
,
1801 DenseMap
<Value
*, BasicBlock
*> &OutputBBs
,
1802 const DenseMap
<Value
*, Value
*> &OutputMappings
,
1803 bool FirstFunction
= false) {
1804 OutlinableGroup
&Group
= *Region
.Parent
;
1805 assert(Region
.ExtractedFunction
&& "Region has no extracted function?");
1807 Function
*DominatingFunction
= Region
.ExtractedFunction
;
1809 DominatingFunction
= Group
.OutlinedFunction
;
1810 DominatorTree
DT(*DominatingFunction
);
1811 DenseSet
<PHINode
*> UsedPHIs
;
1813 for (unsigned ArgIdx
= 0; ArgIdx
< Region
.ExtractedFunction
->arg_size();
1815 assert(Region
.ExtractedArgToAgg
.contains(ArgIdx
) &&
1816 "No mapping from extracted to outlined?");
1817 unsigned AggArgIdx
= Region
.ExtractedArgToAgg
.find(ArgIdx
)->second
;
1818 Argument
*AggArg
= Group
.OutlinedFunction
->getArg(AggArgIdx
);
1819 Argument
*Arg
= Region
.ExtractedFunction
->getArg(ArgIdx
);
1820 // The argument is an input, so we can simply replace it with the overall
1822 if (ArgIdx
< Region
.NumExtractedInputs
) {
1823 LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg
<< " in function "
1824 << *Region
.ExtractedFunction
<< " with " << *AggArg
1825 << " in function " << *Group
.OutlinedFunction
<< "\n");
1826 Arg
->replaceAllUsesWith(AggArg
);
1827 Value
*V
= Region
.Call
->getArgOperand(ArgIdx
);
1828 Region
.RemappedArguments
.insert(std::make_pair(V
, AggArg
));
1832 // If we are replacing an output, we place the store value in its own
1833 // block inside the overall function before replacing the use of the output
1835 assert(Arg
->hasOneUse() && "Output argument can only have one use");
1836 User
*InstAsUser
= Arg
->user_back();
1837 assert(InstAsUser
&& "User is nullptr!");
1839 Instruction
*I
= cast
<Instruction
>(InstAsUser
);
1840 BasicBlock
*BB
= I
->getParent();
1841 SmallVector
<BasicBlock
*, 4> Descendants
;
1842 DT
.getDescendants(BB
, Descendants
);
1843 bool EdgeAdded
= false;
1844 if (Descendants
.size() == 0) {
1846 DT
.insertEdge(&DominatingFunction
->getEntryBlock(), BB
);
1847 DT
.getDescendants(BB
, Descendants
);
1850 // Iterate over the following blocks, looking for return instructions,
1851 // if we find one, find the corresponding output block for the return value
1852 // and move our store instruction there.
1853 for (BasicBlock
*DescendBB
: Descendants
) {
1854 ReturnInst
*RI
= dyn_cast
<ReturnInst
>(DescendBB
->getTerminator());
1857 Value
*RetVal
= RI
->getReturnValue();
1858 auto VBBIt
= OutputBBs
.find(RetVal
);
1859 assert(VBBIt
!= OutputBBs
.end() && "Could not find output value!");
1861 // If this is storing a PHINode, we must make sure it is included in the
1862 // overall function.
1863 StoreInst
*SI
= cast
<StoreInst
>(I
);
1865 Value
*ValueOperand
= SI
->getValueOperand();
1867 StoreInst
*NewI
= cast
<StoreInst
>(I
->clone());
1868 NewI
->setDebugLoc(DebugLoc());
1869 BasicBlock
*OutputBB
= VBBIt
->second
;
1870 NewI
->insertInto(OutputBB
, OutputBB
->end());
1871 LLVM_DEBUG(dbgs() << "Move store for instruction " << *I
<< " to "
1872 << *OutputBB
<< "\n");
1874 // If this is storing a PHINode, we must make sure it is included in the
1875 // overall function.
1876 if (!isa
<PHINode
>(ValueOperand
) ||
1877 Region
.Candidate
->getGVN(ValueOperand
).has_value()) {
1881 Region
.findCorrespondingValueIn(*Group
.Regions
[0], ValueOperand
);
1882 assert(CorrVal
&& "Value is nullptr?");
1883 NewI
->setOperand(0, CorrVal
);
1886 PHINode
*PN
= cast
<PHINode
>(SI
->getValueOperand());
1887 // If it has a value, it was not split by the code extractor, which
1888 // is what we are looking for.
1889 if (Region
.Candidate
->getGVN(PN
))
1892 // We record the parent block for the PHINode in the Region so that
1893 // we can exclude it from checks later on.
1894 Region
.PHIBlocks
.insert(std::make_pair(RetVal
, PN
->getParent()));
1896 // If this is the first function, we do not need to worry about mergiing
1897 // this with any other block in the overall outlined function, so we can
1899 if (FirstFunction
) {
1900 BasicBlock
*PHIBlock
= PN
->getParent();
1901 Group
.PHIBlocks
.insert(std::make_pair(RetVal
, PHIBlock
));
1905 // We look for the aggregate block that contains the PHINodes leading into
1906 // this exit path. If we can't find one, we create one.
1907 BasicBlock
*OverallPhiBlock
= findOrCreatePHIBlock(Group
, RetVal
);
1909 // For our PHINode, we find the combined canonical numbering, and
1910 // attempt to find a matching PHINode in the overall PHIBlock. If we
1911 // cannot, we copy the PHINode and move it into this new block.
1912 PHINode
*NewPN
= findOrCreatePHIInBlock(*PN
, Region
, OverallPhiBlock
,
1913 OutputMappings
, UsedPHIs
);
1914 NewI
->setOperand(0, NewPN
);
1917 // If we added an edge for basic blocks without a predecessor, we remove it
1920 DT
.deleteEdge(&DominatingFunction
->getEntryBlock(), BB
);
1921 I
->eraseFromParent();
1923 LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg
<< " in function "
1924 << *Region
.ExtractedFunction
<< " with " << *AggArg
1925 << " in function " << *Group
.OutlinedFunction
<< "\n");
1926 Arg
->replaceAllUsesWith(AggArg
);
1930 /// Within an extracted function, replace the constants that need to be lifted
1931 /// into arguments with the actual argument.
1933 /// \param Region [in] - The region of extracted code to be changed.
1934 void replaceConstants(OutlinableRegion
&Region
) {
1935 OutlinableGroup
&Group
= *Region
.Parent
;
1936 // Iterate over the constants that need to be elevated into arguments
1937 for (std::pair
<unsigned, Constant
*> &Const
: Region
.AggArgToConstant
) {
1938 unsigned AggArgIdx
= Const
.first
;
1939 Function
*OutlinedFunction
= Group
.OutlinedFunction
;
1940 assert(OutlinedFunction
&& "Overall Function is not defined?");
1941 Constant
*CST
= Const
.second
;
1942 Argument
*Arg
= Group
.OutlinedFunction
->getArg(AggArgIdx
);
1943 // Identify the argument it will be elevated to, and replace instances of
1944 // that constant in the function.
1946 // TODO: If in the future constants do not have one global value number,
1947 // i.e. a constant 1 could be mapped to several values, this check will
1948 // have to be more strict. It cannot be using only replaceUsesWithIf.
1950 LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST
1951 << " in function " << *OutlinedFunction
<< " with "
1953 CST
->replaceUsesWithIf(Arg
, [OutlinedFunction
](Use
&U
) {
1954 if (Instruction
*I
= dyn_cast
<Instruction
>(U
.getUser()))
1955 return I
->getFunction() == OutlinedFunction
;
1961 /// It is possible that there is a basic block that already performs the same
1962 /// stores. This returns a duplicate block, if it exists
1964 /// \param OutputBBs [in] the blocks we are looking for a duplicate of.
1965 /// \param OutputStoreBBs [in] The existing output blocks.
1966 /// \returns an optional value with the number output block if there is a match.
1967 std::optional
<unsigned> findDuplicateOutputBlock(
1968 DenseMap
<Value
*, BasicBlock
*> &OutputBBs
,
1969 std::vector
<DenseMap
<Value
*, BasicBlock
*>> &OutputStoreBBs
) {
1971 bool Mismatch
= false;
1972 unsigned MatchingNum
= 0;
1973 // We compare the new set output blocks to the other sets of output blocks.
1974 // If they are the same number, and have identical instructions, they are
1975 // considered to be the same.
1976 for (DenseMap
<Value
*, BasicBlock
*> &CompBBs
: OutputStoreBBs
) {
1978 for (std::pair
<Value
*, BasicBlock
*> &VToB
: CompBBs
) {
1979 DenseMap
<Value
*, BasicBlock
*>::iterator OutputBBIt
=
1980 OutputBBs
.find(VToB
.first
);
1981 if (OutputBBIt
== OutputBBs
.end()) {
1986 BasicBlock
*CompBB
= VToB
.second
;
1987 BasicBlock
*OutputBB
= OutputBBIt
->second
;
1988 if (CompBB
->size() - 1 != OutputBB
->size()) {
1993 BasicBlock::iterator NIt
= OutputBB
->begin();
1994 for (Instruction
&I
: *CompBB
) {
1995 if (isa
<BranchInst
>(&I
))
1998 if (!I
.isIdenticalTo(&(*NIt
))) {
2013 return std::nullopt
;
2016 /// Remove empty output blocks from the outlined region.
2018 /// \param BlocksToPrune - Mapping of return values output blocks for the \p
2020 /// \param Region - The OutlinableRegion we are analyzing.
2022 analyzeAndPruneOutputBlocks(DenseMap
<Value
*, BasicBlock
*> &BlocksToPrune
,
2023 OutlinableRegion
&Region
) {
2024 bool AllRemoved
= true;
2025 Value
*RetValueForBB
;
2027 SmallVector
<Value
*, 4> ToRemove
;
2028 // Iterate over the output blocks created in the outlined section.
2029 for (std::pair
<Value
*, BasicBlock
*> &VtoBB
: BlocksToPrune
) {
2030 RetValueForBB
= VtoBB
.first
;
2031 NewBB
= VtoBB
.second
;
2033 // If there are no instructions, we remove it from the module, and also
2034 // mark the value for removal from the return value to output block mapping.
2035 if (NewBB
->size() == 0) {
2036 NewBB
->eraseFromParent();
2037 ToRemove
.push_back(RetValueForBB
);
2041 // Mark that we could not remove all the blocks since they were not all
2046 // Remove the return value from the mapping.
2047 for (Value
*V
: ToRemove
)
2048 BlocksToPrune
.erase(V
);
2050 // Mark the region as having the no output scheme.
2052 Region
.OutputBlockNum
= -1;
2057 /// For the outlined section, move needed the StoreInsts for the output
2058 /// registers into their own block. Then, determine if there is a duplicate
2059 /// output block already created.
2061 /// \param [in] OG - The OutlinableGroup of regions to be outlined.
2062 /// \param [in] Region - The OutlinableRegion that is being analyzed.
2063 /// \param [in,out] OutputBBs - the blocks that stores for this region will be
2065 /// \param [in] EndBBs - the final blocks of the extracted function.
2066 /// \param [in] OutputMappings - OutputMappings the mapping of values that have
2067 /// been replaced by a new output value.
2068 /// \param [in,out] OutputStoreBBs - The existing output blocks.
2069 static void alignOutputBlockWithAggFunc(
2070 OutlinableGroup
&OG
, OutlinableRegion
&Region
,
2071 DenseMap
<Value
*, BasicBlock
*> &OutputBBs
,
2072 DenseMap
<Value
*, BasicBlock
*> &EndBBs
,
2073 const DenseMap
<Value
*, Value
*> &OutputMappings
,
2074 std::vector
<DenseMap
<Value
*, BasicBlock
*>> &OutputStoreBBs
) {
2075 // If none of the output blocks have any instructions, this means that we do
2076 // not have to determine if it matches any of the other output schemes, and we
2077 // don't have to do anything else.
2078 if (analyzeAndPruneOutputBlocks(OutputBBs
, Region
))
2081 // Determine is there is a duplicate set of blocks.
2082 std::optional
<unsigned> MatchingBB
=
2083 findDuplicateOutputBlock(OutputBBs
, OutputStoreBBs
);
2085 // If there is, we remove the new output blocks. If it does not,
2086 // we add it to our list of sets of output blocks.
2088 LLVM_DEBUG(dbgs() << "Set output block for region in function"
2089 << Region
.ExtractedFunction
<< " to " << *MatchingBB
);
2091 Region
.OutputBlockNum
= *MatchingBB
;
2092 for (std::pair
<Value
*, BasicBlock
*> &VtoBB
: OutputBBs
)
2093 VtoBB
.second
->eraseFromParent();
2097 Region
.OutputBlockNum
= OutputStoreBBs
.size();
2099 Value
*RetValueForBB
;
2101 OutputStoreBBs
.push_back(DenseMap
<Value
*, BasicBlock
*>());
2102 for (std::pair
<Value
*, BasicBlock
*> &VtoBB
: OutputBBs
) {
2103 RetValueForBB
= VtoBB
.first
;
2104 NewBB
= VtoBB
.second
;
2105 DenseMap
<Value
*, BasicBlock
*>::iterator VBBIt
=
2106 EndBBs
.find(RetValueForBB
);
2107 LLVM_DEBUG(dbgs() << "Create output block for region in"
2108 << Region
.ExtractedFunction
<< " to "
2110 BranchInst::Create(VBBIt
->second
, NewBB
);
2111 OutputStoreBBs
.back().insert(std::make_pair(RetValueForBB
, NewBB
));
2115 /// Takes in a mapping, \p OldMap of ConstantValues to BasicBlocks, sorts keys,
2116 /// before creating a basic block for each \p NewMap, and inserting into the new
2117 /// block. Each BasicBlock is named with the scheme "<basename>_<key_idx>".
2119 /// \param OldMap [in] - The mapping to base the new mapping off of.
2120 /// \param NewMap [out] - The output mapping using the keys of \p OldMap.
2121 /// \param ParentFunc [in] - The function to put the new basic block in.
2122 /// \param BaseName [in] - The start of the BasicBlock names to be appended to
2123 /// by an index value.
2124 static void createAndInsertBasicBlocks(DenseMap
<Value
*, BasicBlock
*> &OldMap
,
2125 DenseMap
<Value
*, BasicBlock
*> &NewMap
,
2126 Function
*ParentFunc
, Twine BaseName
) {
2128 std::vector
<Value
*> SortedKeys
;
2130 getSortedConstantKeys(SortedKeys
, OldMap
);
2132 for (Value
*RetVal
: SortedKeys
) {
2133 BasicBlock
*NewBB
= BasicBlock::Create(
2134 ParentFunc
->getContext(),
2135 Twine(BaseName
) + Twine("_") + Twine(static_cast<unsigned>(Idx
++)),
2137 NewMap
.insert(std::make_pair(RetVal
, NewBB
));
2141 /// Create the switch statement for outlined function to differentiate between
2142 /// all the output blocks.
2144 /// For the outlined section, determine if an outlined block already exists that
2145 /// matches the needed stores for the extracted section.
2146 /// \param [in] M - The module we are outlining from.
2147 /// \param [in] OG - The group of regions to be outlined.
2148 /// \param [in] EndBBs - The final blocks of the extracted function.
2149 /// \param [in,out] OutputStoreBBs - The existing output blocks.
2150 void createSwitchStatement(
2151 Module
&M
, OutlinableGroup
&OG
, DenseMap
<Value
*, BasicBlock
*> &EndBBs
,
2152 std::vector
<DenseMap
<Value
*, BasicBlock
*>> &OutputStoreBBs
) {
2153 // We only need the switch statement if there is more than one store
2154 // combination, or there is more than one set of output blocks. The first
2155 // will occur when we store different sets of values for two different
2156 // regions. The second will occur when we have two outputs that are combined
2157 // in a PHINode outside of the region in one outlined instance, and are used
2158 // seaparately in another. This will create the same set of OutputGVNs, but
2159 // will generate two different output schemes.
2160 if (OG
.OutputGVNCombinations
.size() > 1) {
2161 Function
*AggFunc
= OG
.OutlinedFunction
;
2162 // Create a final block for each different return block.
2163 DenseMap
<Value
*, BasicBlock
*> ReturnBBs
;
2164 createAndInsertBasicBlocks(OG
.EndBBs
, ReturnBBs
, AggFunc
, "final_block");
2166 for (std::pair
<Value
*, BasicBlock
*> &RetBlockPair
: ReturnBBs
) {
2167 std::pair
<Value
*, BasicBlock
*> &OutputBlock
=
2168 *OG
.EndBBs
.find(RetBlockPair
.first
);
2169 BasicBlock
*ReturnBlock
= RetBlockPair
.second
;
2170 BasicBlock
*EndBB
= OutputBlock
.second
;
2171 Instruction
*Term
= EndBB
->getTerminator();
2172 // Move the return value to the final block instead of the original exit
2174 Term
->moveBefore(*ReturnBlock
, ReturnBlock
->end());
2175 // Put the switch statement in the old end basic block for the function
2176 // with a fall through to the new return block.
2177 LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc
<< " for "
2178 << OutputStoreBBs
.size() << "\n");
2179 SwitchInst
*SwitchI
=
2180 SwitchInst::Create(AggFunc
->getArg(AggFunc
->arg_size() - 1),
2181 ReturnBlock
, OutputStoreBBs
.size(), EndBB
);
2184 for (DenseMap
<Value
*, BasicBlock
*> &OutputStoreBB
: OutputStoreBBs
) {
2185 DenseMap
<Value
*, BasicBlock
*>::iterator OSBBIt
=
2186 OutputStoreBB
.find(OutputBlock
.first
);
2188 if (OSBBIt
== OutputStoreBB
.end())
2191 BasicBlock
*BB
= OSBBIt
->second
;
2193 ConstantInt::get(Type::getInt32Ty(M
.getContext()), Idx
), BB
);
2194 Term
= BB
->getTerminator();
2195 Term
->setSuccessor(0, ReturnBlock
);
2202 assert(OutputStoreBBs
.size() < 2 && "Different store sets not handled!");
2204 // If there needs to be stores, move them from the output blocks to their
2205 // corresponding ending block. We do not check that the OutputGVNCombinations
2206 // is equal to 1 here since that could just been the case where there are 0
2207 // outputs. Instead, we check whether there is more than one set of output
2208 // blocks since this is the only case where we would have to move the
2209 // stores, and erase the extraneous blocks.
2210 if (OutputStoreBBs
.size() == 1) {
2211 LLVM_DEBUG(dbgs() << "Move store instructions to the end block in "
2212 << *OG
.OutlinedFunction
<< "\n");
2213 DenseMap
<Value
*, BasicBlock
*> OutputBlocks
= OutputStoreBBs
[0];
2214 for (std::pair
<Value
*, BasicBlock
*> &VBPair
: OutputBlocks
) {
2215 DenseMap
<Value
*, BasicBlock
*>::iterator EndBBIt
=
2216 EndBBs
.find(VBPair
.first
);
2217 assert(EndBBIt
!= EndBBs
.end() && "Could not find end block");
2218 BasicBlock
*EndBB
= EndBBIt
->second
;
2219 BasicBlock
*OutputBB
= VBPair
.second
;
2220 Instruction
*Term
= OutputBB
->getTerminator();
2221 Term
->eraseFromParent();
2222 Term
= EndBB
->getTerminator();
2223 moveBBContents(*OutputBB
, *EndBB
);
2224 Term
->moveBefore(*EndBB
, EndBB
->end());
2225 OutputBB
->eraseFromParent();
2230 /// Fill the new function that will serve as the replacement function for all of
2231 /// the extracted regions of a certain structure from the first region in the
2232 /// list of regions. Replace this first region's extracted function with the
2233 /// new overall function.
2235 /// \param [in] M - The module we are outlining from.
2236 /// \param [in] CurrentGroup - The group of regions to be outlined.
2237 /// \param [in,out] OutputStoreBBs - The output blocks for each different
2238 /// set of stores needed for the different functions.
2239 /// \param [in,out] FuncsToRemove - Extracted functions to erase from module
2240 /// once outlining is complete.
2241 /// \param [in] OutputMappings - Extracted functions to erase from module
2242 /// once outlining is complete.
2243 static void fillOverallFunction(
2244 Module
&M
, OutlinableGroup
&CurrentGroup
,
2245 std::vector
<DenseMap
<Value
*, BasicBlock
*>> &OutputStoreBBs
,
2246 std::vector
<Function
*> &FuncsToRemove
,
2247 const DenseMap
<Value
*, Value
*> &OutputMappings
) {
2248 OutlinableRegion
*CurrentOS
= CurrentGroup
.Regions
[0];
2250 // Move first extracted function's instructions into new function.
2251 LLVM_DEBUG(dbgs() << "Move instructions from "
2252 << *CurrentOS
->ExtractedFunction
<< " to instruction "
2253 << *CurrentGroup
.OutlinedFunction
<< "\n");
2254 moveFunctionData(*CurrentOS
->ExtractedFunction
,
2255 *CurrentGroup
.OutlinedFunction
, CurrentGroup
.EndBBs
);
2257 // Transfer the attributes from the function to the new function.
2258 for (Attribute A
: CurrentOS
->ExtractedFunction
->getAttributes().getFnAttrs())
2259 CurrentGroup
.OutlinedFunction
->addFnAttr(A
);
2261 // Create a new set of output blocks for the first extracted function.
2262 DenseMap
<Value
*, BasicBlock
*> NewBBs
;
2263 createAndInsertBasicBlocks(CurrentGroup
.EndBBs
, NewBBs
,
2264 CurrentGroup
.OutlinedFunction
, "output_block_0");
2265 CurrentOS
->OutputBlockNum
= 0;
2267 replaceArgumentUses(*CurrentOS
, NewBBs
, OutputMappings
, true);
2268 replaceConstants(*CurrentOS
);
2270 // We first identify if any output blocks are empty, if they are we remove
2271 // them. We then create a branch instruction to the basic block to the return
2272 // block for the function for each non empty output block.
2273 if (!analyzeAndPruneOutputBlocks(NewBBs
, *CurrentOS
)) {
2274 OutputStoreBBs
.push_back(DenseMap
<Value
*, BasicBlock
*>());
2275 for (std::pair
<Value
*, BasicBlock
*> &VToBB
: NewBBs
) {
2276 DenseMap
<Value
*, BasicBlock
*>::iterator VBBIt
=
2277 CurrentGroup
.EndBBs
.find(VToBB
.first
);
2278 BasicBlock
*EndBB
= VBBIt
->second
;
2279 BranchInst::Create(EndBB
, VToBB
.second
);
2280 OutputStoreBBs
.back().insert(VToBB
);
2284 // Replace the call to the extracted function with the outlined function.
2285 CurrentOS
->Call
= replaceCalledFunction(M
, *CurrentOS
);
2287 // We only delete the extracted functions at the end since we may need to
2288 // reference instructions contained in them for mapping purposes.
2289 FuncsToRemove
.push_back(CurrentOS
->ExtractedFunction
);
2292 void IROutliner::deduplicateExtractedSections(
2293 Module
&M
, OutlinableGroup
&CurrentGroup
,
2294 std::vector
<Function
*> &FuncsToRemove
, unsigned &OutlinedFunctionNum
) {
2295 createFunction(M
, CurrentGroup
, OutlinedFunctionNum
);
2297 std::vector
<DenseMap
<Value
*, BasicBlock
*>> OutputStoreBBs
;
2299 OutlinableRegion
*CurrentOS
;
2301 fillOverallFunction(M
, CurrentGroup
, OutputStoreBBs
, FuncsToRemove
,
2304 std::vector
<Value
*> SortedKeys
;
2305 for (unsigned Idx
= 1; Idx
< CurrentGroup
.Regions
.size(); Idx
++) {
2306 CurrentOS
= CurrentGroup
.Regions
[Idx
];
2307 AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup
.OutlinedFunction
,
2308 *CurrentOS
->ExtractedFunction
);
2310 // Create a set of BasicBlocks, one for each return block, to hold the
2311 // needed store instructions.
2312 DenseMap
<Value
*, BasicBlock
*> NewBBs
;
2313 createAndInsertBasicBlocks(
2314 CurrentGroup
.EndBBs
, NewBBs
, CurrentGroup
.OutlinedFunction
,
2315 "output_block_" + Twine(static_cast<unsigned>(Idx
)));
2316 replaceArgumentUses(*CurrentOS
, NewBBs
, OutputMappings
);
2317 alignOutputBlockWithAggFunc(CurrentGroup
, *CurrentOS
, NewBBs
,
2318 CurrentGroup
.EndBBs
, OutputMappings
,
2321 CurrentOS
->Call
= replaceCalledFunction(M
, *CurrentOS
);
2322 FuncsToRemove
.push_back(CurrentOS
->ExtractedFunction
);
2325 // Create a switch statement to handle the different output schemes.
2326 createSwitchStatement(M
, CurrentGroup
, CurrentGroup
.EndBBs
, OutputStoreBBs
);
2328 OutlinedFunctionNum
++;
2331 /// Checks that the next instruction in the InstructionDataList matches the
2332 /// next instruction in the module. If they do not, there could be the
2333 /// possibility that extra code has been inserted, and we must ignore it.
2335 /// \param ID - The IRInstructionData to check the next instruction of.
2336 /// \returns true if the InstructionDataList and actual instruction match.
2337 static bool nextIRInstructionDataMatchesNextInst(IRInstructionData
&ID
) {
2338 // We check if there is a discrepancy between the InstructionDataList
2339 // and the actual next instruction in the module. If there is, it means
2340 // that an extra instruction was added, likely by the CodeExtractor.
2342 // Since we do not have any similarity data about this particular
2343 // instruction, we cannot confidently outline it, and must discard this
2345 IRInstructionDataList::iterator NextIDIt
= std::next(ID
.getIterator());
2346 Instruction
*NextIDLInst
= NextIDIt
->Inst
;
2347 Instruction
*NextModuleInst
= nullptr;
2348 if (!ID
.Inst
->isTerminator())
2349 NextModuleInst
= ID
.Inst
->getNextNonDebugInstruction();
2350 else if (NextIDLInst
!= nullptr)
2352 &*NextIDIt
->Inst
->getParent()->instructionsWithoutDebug().begin();
2354 if (NextIDLInst
&& NextIDLInst
!= NextModuleInst
)
2360 bool IROutliner::isCompatibleWithAlreadyOutlinedCode(
2361 const OutlinableRegion
&Region
) {
2362 IRSimilarityCandidate
*IRSC
= Region
.Candidate
;
2363 unsigned StartIdx
= IRSC
->getStartIdx();
2364 unsigned EndIdx
= IRSC
->getEndIdx();
2366 // A check to make sure that we are not about to attempt to outline something
2367 // that has already been outlined.
2368 for (unsigned Idx
= StartIdx
; Idx
<= EndIdx
; Idx
++)
2369 if (Outlined
.contains(Idx
))
2372 // We check if the recorded instruction matches the actual next instruction,
2373 // if it does not, we fix it in the InstructionDataList.
2374 if (!Region
.Candidate
->backInstruction()->isTerminator()) {
2375 Instruction
*NewEndInst
=
2376 Region
.Candidate
->backInstruction()->getNextNonDebugInstruction();
2377 assert(NewEndInst
&& "Next instruction is a nullptr?");
2378 if (Region
.Candidate
->end()->Inst
!= NewEndInst
) {
2379 IRInstructionDataList
*IDL
= Region
.Candidate
->front()->IDL
;
2380 IRInstructionData
*NewEndIRID
= new (InstDataAllocator
.Allocate())
2381 IRInstructionData(*NewEndInst
,
2382 InstructionClassifier
.visit(*NewEndInst
), *IDL
);
2384 // Insert the first IRInstructionData of the new region after the
2385 // last IRInstructionData of the IRSimilarityCandidate.
2386 IDL
->insert(Region
.Candidate
->end(), *NewEndIRID
);
2390 return none_of(*IRSC
, [this](IRInstructionData
&ID
) {
2391 if (!nextIRInstructionDataMatchesNextInst(ID
))
2394 return !this->InstructionClassifier
.visit(ID
.Inst
);
2398 void IROutliner::pruneIncompatibleRegions(
2399 std::vector
<IRSimilarityCandidate
> &CandidateVec
,
2400 OutlinableGroup
&CurrentGroup
) {
2401 bool PreviouslyOutlined
;
2403 // Sort from beginning to end, so the IRSimilarityCandidates are in order.
2404 stable_sort(CandidateVec
, [](const IRSimilarityCandidate
&LHS
,
2405 const IRSimilarityCandidate
&RHS
) {
2406 return LHS
.getStartIdx() < RHS
.getStartIdx();
2409 IRSimilarityCandidate
&FirstCandidate
= CandidateVec
[0];
2410 // Since outlining a call and a branch instruction will be the same as only
2411 // outlinining a call instruction, we ignore it as a space saving.
2412 if (FirstCandidate
.getLength() == 2) {
2413 if (isa
<CallInst
>(FirstCandidate
.front()->Inst
) &&
2414 isa
<BranchInst
>(FirstCandidate
.back()->Inst
))
2418 unsigned CurrentEndIdx
= 0;
2419 for (IRSimilarityCandidate
&IRSC
: CandidateVec
) {
2420 PreviouslyOutlined
= false;
2421 unsigned StartIdx
= IRSC
.getStartIdx();
2422 unsigned EndIdx
= IRSC
.getEndIdx();
2423 const Function
&FnForCurrCand
= *IRSC
.getFunction();
2425 for (unsigned Idx
= StartIdx
; Idx
<= EndIdx
; Idx
++)
2426 if (Outlined
.contains(Idx
)) {
2427 PreviouslyOutlined
= true;
2431 if (PreviouslyOutlined
)
2434 // Check over the instructions, and if the basic block has its address
2435 // taken for use somewhere else, we do not outline that block.
2436 bool BBHasAddressTaken
= any_of(IRSC
, [](IRInstructionData
&ID
){
2437 return ID
.Inst
->getParent()->hasAddressTaken();
2440 if (BBHasAddressTaken
)
2443 if (FnForCurrCand
.hasOptNone())
2446 if (FnForCurrCand
.hasFnAttribute("nooutline")) {
2448 dbgs() << "... Skipping function with nooutline attribute: "
2449 << FnForCurrCand
.getName() << "\n";
2454 if (IRSC
.front()->Inst
->getFunction()->hasLinkOnceODRLinkage() &&
2455 !OutlineFromLinkODRs
)
2458 // Greedily prune out any regions that will overlap with already chosen
2460 if (CurrentEndIdx
!= 0 && StartIdx
<= CurrentEndIdx
)
2463 bool BadInst
= any_of(IRSC
, [this](IRInstructionData
&ID
) {
2464 if (!nextIRInstructionDataMatchesNextInst(ID
))
2467 return !this->InstructionClassifier
.visit(ID
.Inst
);
2473 OutlinableRegion
*OS
= new (RegionAllocator
.Allocate())
2474 OutlinableRegion(IRSC
, CurrentGroup
);
2475 CurrentGroup
.Regions
.push_back(OS
);
2477 CurrentEndIdx
= EndIdx
;
2482 IROutliner::findBenefitFromAllRegions(OutlinableGroup
&CurrentGroup
) {
2483 InstructionCost RegionBenefit
= 0;
2484 for (OutlinableRegion
*Region
: CurrentGroup
.Regions
) {
2485 TargetTransformInfo
&TTI
= getTTI(*Region
->StartBB
->getParent());
2486 // We add the number of instructions in the region to the benefit as an
2487 // estimate as to how much will be removed.
2488 RegionBenefit
+= Region
->getBenefit(TTI
);
2489 LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit
2490 << " saved instructions to overfall benefit.\n");
2493 return RegionBenefit
;
2496 /// For the \p OutputCanon number passed in find the value represented by this
2497 /// canonical number. If it is from a PHINode, we pick the first incoming
2498 /// value and return that Value instead.
2500 /// \param Region - The OutlinableRegion to get the Value from.
2501 /// \param OutputCanon - The canonical number to find the Value from.
2502 /// \returns The Value represented by a canonical number \p OutputCanon in \p
2504 static Value
*findOutputValueInRegion(OutlinableRegion
&Region
,
2505 unsigned OutputCanon
) {
2506 OutlinableGroup
&CurrentGroup
= *Region
.Parent
;
2507 // If the value is greater than the value in the tracker, we have a
2508 // PHINode and will instead use one of the incoming values to find the
2510 if (OutputCanon
> CurrentGroup
.PHINodeGVNTracker
) {
2511 auto It
= CurrentGroup
.PHINodeGVNToGVNs
.find(OutputCanon
);
2512 assert(It
!= CurrentGroup
.PHINodeGVNToGVNs
.end() &&
2513 "Could not find GVN set for PHINode number!");
2514 assert(It
->second
.second
.size() > 0 && "PHINode does not have any values!");
2515 OutputCanon
= *It
->second
.second
.begin();
2517 std::optional
<unsigned> OGVN
=
2518 Region
.Candidate
->fromCanonicalNum(OutputCanon
);
2519 assert(OGVN
&& "Could not find GVN for Canonical Number?");
2520 std::optional
<Value
*> OV
= Region
.Candidate
->fromGVN(*OGVN
);
2521 assert(OV
&& "Could not find value for GVN?");
2526 IROutliner::findCostOutputReloads(OutlinableGroup
&CurrentGroup
) {
2527 InstructionCost OverallCost
= 0;
2528 for (OutlinableRegion
*Region
: CurrentGroup
.Regions
) {
2529 TargetTransformInfo
&TTI
= getTTI(*Region
->StartBB
->getParent());
2531 // Each output incurs a load after the call, so we add that to the cost.
2532 for (unsigned OutputCanon
: Region
->GVNStores
) {
2533 Value
*V
= findOutputValueInRegion(*Region
, OutputCanon
);
2534 InstructionCost LoadCost
=
2535 TTI
.getMemoryOpCost(Instruction::Load
, V
->getType(), Align(1), 0,
2536 TargetTransformInfo::TCK_CodeSize
);
2538 LLVM_DEBUG(dbgs() << "Adding: " << LoadCost
2539 << " instructions to cost for output of type "
2540 << *V
->getType() << "\n");
2541 OverallCost
+= LoadCost
;
2548 /// Find the extra instructions needed to handle any output values for the
2551 /// \param [in] M - The Module to outline from.
2552 /// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze.
2553 /// \param [in] TTI - The TargetTransformInfo used to collect information for
2554 /// new instruction costs.
2555 /// \returns the additional cost to handle the outputs.
2556 static InstructionCost
findCostForOutputBlocks(Module
&M
,
2557 OutlinableGroup
&CurrentGroup
,
2558 TargetTransformInfo
&TTI
) {
2559 InstructionCost OutputCost
= 0;
2560 unsigned NumOutputBranches
= 0;
2562 OutlinableRegion
&FirstRegion
= *CurrentGroup
.Regions
[0];
2563 IRSimilarityCandidate
&Candidate
= *CurrentGroup
.Regions
[0]->Candidate
;
2564 DenseSet
<BasicBlock
*> CandidateBlocks
;
2565 Candidate
.getBasicBlocks(CandidateBlocks
);
2567 // Count the number of different output branches that point to blocks outside
2569 DenseSet
<BasicBlock
*> FoundBlocks
;
2570 for (IRInstructionData
&ID
: Candidate
) {
2571 if (!isa
<BranchInst
>(ID
.Inst
))
2574 for (Value
*V
: ID
.OperVals
) {
2575 BasicBlock
*BB
= static_cast<BasicBlock
*>(V
);
2576 if (!CandidateBlocks
.contains(BB
) && FoundBlocks
.insert(BB
).second
)
2577 NumOutputBranches
++;
2581 CurrentGroup
.BranchesToOutside
= NumOutputBranches
;
2583 for (const ArrayRef
<unsigned> &OutputUse
:
2584 CurrentGroup
.OutputGVNCombinations
) {
2585 for (unsigned OutputCanon
: OutputUse
) {
2586 Value
*V
= findOutputValueInRegion(FirstRegion
, OutputCanon
);
2587 InstructionCost StoreCost
=
2588 TTI
.getMemoryOpCost(Instruction::Load
, V
->getType(), Align(1), 0,
2589 TargetTransformInfo::TCK_CodeSize
);
2591 // An instruction cost is added for each store set that needs to occur for
2592 // various output combinations inside the function, plus a branch to
2593 // return to the exit block.
2594 LLVM_DEBUG(dbgs() << "Adding: " << StoreCost
2595 << " instructions to cost for output of type "
2596 << *V
->getType() << "\n");
2597 OutputCost
+= StoreCost
* NumOutputBranches
;
2600 InstructionCost BranchCost
=
2601 TTI
.getCFInstrCost(Instruction::Br
, TargetTransformInfo::TCK_CodeSize
);
2602 LLVM_DEBUG(dbgs() << "Adding " << BranchCost
<< " to the current cost for"
2603 << " a branch instruction\n");
2604 OutputCost
+= BranchCost
* NumOutputBranches
;
2607 // If there is more than one output scheme, we must have a comparison and
2608 // branch for each different item in the switch statement.
2609 if (CurrentGroup
.OutputGVNCombinations
.size() > 1) {
2610 InstructionCost ComparisonCost
= TTI
.getCmpSelInstrCost(
2611 Instruction::ICmp
, Type::getInt32Ty(M
.getContext()),
2612 Type::getInt32Ty(M
.getContext()), CmpInst::BAD_ICMP_PREDICATE
,
2613 TargetTransformInfo::TCK_CodeSize
);
2614 InstructionCost BranchCost
=
2615 TTI
.getCFInstrCost(Instruction::Br
, TargetTransformInfo::TCK_CodeSize
);
2617 unsigned DifferentBlocks
= CurrentGroup
.OutputGVNCombinations
.size();
2618 InstructionCost TotalCost
= ComparisonCost
* BranchCost
* DifferentBlocks
;
2620 LLVM_DEBUG(dbgs() << "Adding: " << TotalCost
2621 << " instructions for each switch case for each different"
2622 << " output path in a function\n");
2623 OutputCost
+= TotalCost
* NumOutputBranches
;
2629 void IROutliner::findCostBenefit(Module
&M
, OutlinableGroup
&CurrentGroup
) {
2630 InstructionCost RegionBenefit
= findBenefitFromAllRegions(CurrentGroup
);
2631 CurrentGroup
.Benefit
+= RegionBenefit
;
2632 LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup
.Benefit
<< "\n");
2634 InstructionCost OutputReloadCost
= findCostOutputReloads(CurrentGroup
);
2635 CurrentGroup
.Cost
+= OutputReloadCost
;
2636 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup
.Cost
<< "\n");
2638 InstructionCost AverageRegionBenefit
=
2639 RegionBenefit
/ CurrentGroup
.Regions
.size();
2640 unsigned OverallArgumentNum
= CurrentGroup
.ArgumentTypes
.size();
2641 unsigned NumRegions
= CurrentGroup
.Regions
.size();
2642 TargetTransformInfo
&TTI
=
2643 getTTI(*CurrentGroup
.Regions
[0]->Candidate
->getFunction());
2645 // We add one region to the cost once, to account for the instructions added
2646 // inside of the newly created function.
2647 LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit
2648 << " instructions to cost for body of new function.\n");
2649 CurrentGroup
.Cost
+= AverageRegionBenefit
;
2650 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup
.Cost
<< "\n");
2652 // For each argument, we must add an instruction for loading the argument
2653 // out of the register and into a value inside of the newly outlined function.
2654 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
2655 << " instructions to cost for each argument in the new"
2657 CurrentGroup
.Cost
+=
2658 OverallArgumentNum
* TargetTransformInfo::TCC_Basic
;
2659 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup
.Cost
<< "\n");
2661 // Each argument needs to either be loaded into a register or onto the stack.
2662 // Some arguments will only be loaded into the stack once the argument
2663 // registers are filled.
2664 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
2665 << " instructions to cost for each argument in the new"
2666 << " function " << NumRegions
<< " times for the "
2667 << "needed argument handling at the call site.\n");
2668 CurrentGroup
.Cost
+=
2669 2 * OverallArgumentNum
* TargetTransformInfo::TCC_Basic
* NumRegions
;
2670 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup
.Cost
<< "\n");
2672 CurrentGroup
.Cost
+= findCostForOutputBlocks(M
, CurrentGroup
, TTI
);
2673 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup
.Cost
<< "\n");
2676 void IROutliner::updateOutputMapping(OutlinableRegion
&Region
,
2677 ArrayRef
<Value
*> Outputs
,
2679 // For and load instructions following the call
2680 Value
*Operand
= LI
->getPointerOperand();
2681 std::optional
<unsigned> OutputIdx
;
2682 // Find if the operand it is an output register.
2683 for (unsigned ArgIdx
= Region
.NumExtractedInputs
;
2684 ArgIdx
< Region
.Call
->arg_size(); ArgIdx
++) {
2685 if (Operand
== Region
.Call
->getArgOperand(ArgIdx
)) {
2686 OutputIdx
= ArgIdx
- Region
.NumExtractedInputs
;
2691 // If we found an output register, place a mapping of the new value
2692 // to the original in the mapping.
2696 if (!OutputMappings
.contains(Outputs
[*OutputIdx
])) {
2697 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI
<< " to "
2698 << *Outputs
[*OutputIdx
] << "\n");
2699 OutputMappings
.insert(std::make_pair(LI
, Outputs
[*OutputIdx
]));
2701 Value
*Orig
= OutputMappings
.find(Outputs
[*OutputIdx
])->second
;
2702 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig
<< " to "
2703 << *Outputs
[*OutputIdx
] << "\n");
2704 OutputMappings
.insert(std::make_pair(LI
, Orig
));
2708 bool IROutliner::extractSection(OutlinableRegion
&Region
) {
2709 SetVector
<Value
*> ArgInputs
, Outputs
, SinkCands
;
2710 assert(Region
.StartBB
&& "StartBB for the OutlinableRegion is nullptr!");
2711 BasicBlock
*InitialStart
= Region
.StartBB
;
2712 Function
*OrigF
= Region
.StartBB
->getParent();
2713 CodeExtractorAnalysisCache
CEAC(*OrigF
);
2714 Region
.ExtractedFunction
=
2715 Region
.CE
->extractCodeRegion(CEAC
, ArgInputs
, Outputs
);
2717 // If the extraction was successful, find the BasicBlock, and reassign the
2718 // OutlinableRegion blocks
2719 if (!Region
.ExtractedFunction
) {
2720 LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region
.StartBB
2722 Region
.reattachCandidate();
2726 // Get the block containing the called branch, and reassign the blocks as
2727 // necessary. If the original block still exists, it is because we ended on
2728 // a branch instruction, and so we move the contents into the block before
2729 // and assign the previous block correctly.
2730 User
*InstAsUser
= Region
.ExtractedFunction
->user_back();
2731 BasicBlock
*RewrittenBB
= cast
<Instruction
>(InstAsUser
)->getParent();
2732 Region
.PrevBB
= RewrittenBB
->getSinglePredecessor();
2733 assert(Region
.PrevBB
&& "PrevBB is nullptr?");
2734 if (Region
.PrevBB
== InitialStart
) {
2735 BasicBlock
*NewPrev
= InitialStart
->getSinglePredecessor();
2736 Instruction
*BI
= NewPrev
->getTerminator();
2737 BI
->eraseFromParent();
2738 moveBBContents(*InitialStart
, *NewPrev
);
2739 Region
.PrevBB
= NewPrev
;
2740 InitialStart
->eraseFromParent();
2743 Region
.StartBB
= RewrittenBB
;
2744 Region
.EndBB
= RewrittenBB
;
2746 // The sequences of outlinable regions has now changed. We must fix the
2747 // IRInstructionDataList for consistency. Although they may not be illegal
2748 // instructions, they should not be compared with anything else as they
2749 // should not be outlined in this round. So marking these as illegal is
2751 IRInstructionDataList
*IDL
= Region
.Candidate
->front()->IDL
;
2752 Instruction
*BeginRewritten
= &*RewrittenBB
->begin();
2753 Instruction
*EndRewritten
= &*RewrittenBB
->begin();
2754 Region
.NewFront
= new (InstDataAllocator
.Allocate()) IRInstructionData(
2755 *BeginRewritten
, InstructionClassifier
.visit(*BeginRewritten
), *IDL
);
2756 Region
.NewBack
= new (InstDataAllocator
.Allocate()) IRInstructionData(
2757 *EndRewritten
, InstructionClassifier
.visit(*EndRewritten
), *IDL
);
2759 // Insert the first IRInstructionData of the new region in front of the
2760 // first IRInstructionData of the IRSimilarityCandidate.
2761 IDL
->insert(Region
.Candidate
->begin(), *Region
.NewFront
);
2762 // Insert the first IRInstructionData of the new region after the
2763 // last IRInstructionData of the IRSimilarityCandidate.
2764 IDL
->insert(Region
.Candidate
->end(), *Region
.NewBack
);
2765 // Remove the IRInstructionData from the IRSimilarityCandidate.
2766 IDL
->erase(Region
.Candidate
->begin(), std::prev(Region
.Candidate
->end()));
2768 assert(RewrittenBB
!= nullptr &&
2769 "Could not find a predecessor after extraction!");
2771 // Iterate over the new set of instructions to find the new call
2773 for (Instruction
&I
: *RewrittenBB
)
2774 if (CallInst
*CI
= dyn_cast
<CallInst
>(&I
)) {
2775 if (Region
.ExtractedFunction
== CI
->getCalledFunction())
2777 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(&I
))
2778 updateOutputMapping(Region
, Outputs
.getArrayRef(), LI
);
2779 Region
.reattachCandidate();
2783 unsigned IROutliner::doOutline(Module
&M
) {
2784 // Find the possible similarity sections.
2785 InstructionClassifier
.EnableBranches
= !DisableBranches
;
2786 InstructionClassifier
.EnableIndirectCalls
= !DisableIndirectCalls
;
2787 InstructionClassifier
.EnableIntrinsics
= !DisableIntrinsics
;
2789 IRSimilarityIdentifier
&Identifier
= getIRSI(M
);
2790 SimilarityGroupList
&SimilarityCandidates
= *Identifier
.getSimilarity();
2792 // Sort them by size of extracted sections
2793 unsigned OutlinedFunctionNum
= 0;
2794 // If we only have one SimilarityGroup in SimilarityCandidates, we do not have
2795 // to sort them by the potential number of instructions to be outlined
2796 if (SimilarityCandidates
.size() > 1)
2797 llvm::stable_sort(SimilarityCandidates
,
2798 [](const std::vector
<IRSimilarityCandidate
> &LHS
,
2799 const std::vector
<IRSimilarityCandidate
> &RHS
) {
2800 return LHS
[0].getLength() * LHS
.size() >
2801 RHS
[0].getLength() * RHS
.size();
2803 // Creating OutlinableGroups for each SimilarityCandidate to be used in
2804 // each of the following for loops to avoid making an allocator.
2805 std::vector
<OutlinableGroup
> PotentialGroups(SimilarityCandidates
.size());
2807 DenseSet
<unsigned> NotSame
;
2808 std::vector
<OutlinableGroup
*> NegativeCostGroups
;
2809 std::vector
<OutlinableRegion
*> OutlinedRegions
;
2810 // Iterate over the possible sets of similarity.
2811 unsigned PotentialGroupIdx
= 0;
2812 for (SimilarityGroup
&CandidateVec
: SimilarityCandidates
) {
2813 OutlinableGroup
&CurrentGroup
= PotentialGroups
[PotentialGroupIdx
++];
2815 // Remove entries that were previously outlined
2816 pruneIncompatibleRegions(CandidateVec
, CurrentGroup
);
2818 // We pruned the number of regions to 0 to 1, meaning that it's not worth
2819 // trying to outlined since there is no compatible similar instance of this
2821 if (CurrentGroup
.Regions
.size() < 2)
2824 // Determine if there are any values that are the same constant throughout
2825 // each section in the set.
2827 CurrentGroup
.findSameConstants(NotSame
);
2829 if (CurrentGroup
.IgnoreGroup
)
2832 // Create a CodeExtractor for each outlinable region. Identify inputs and
2833 // outputs for each section using the code extractor and create the argument
2834 // types for the Aggregate Outlining Function.
2835 OutlinedRegions
.clear();
2836 for (OutlinableRegion
*OS
: CurrentGroup
.Regions
) {
2837 // Break the outlinable region out of its parent BasicBlock into its own
2838 // BasicBlocks (see function implementation).
2839 OS
->splitCandidate();
2841 // There's a chance that when the region is split, extra instructions are
2842 // added to the region. This makes the region no longer viable
2843 // to be split, so we ignore it for outlining.
2844 if (!OS
->CandidateSplit
)
2847 SmallVector
<BasicBlock
*> BE
;
2848 DenseSet
<BasicBlock
*> BlocksInRegion
;
2849 OS
->Candidate
->getBasicBlocks(BlocksInRegion
, BE
);
2850 OS
->CE
= new (ExtractorAllocator
.Allocate())
2851 CodeExtractor(BE
, nullptr, false, nullptr, nullptr, nullptr, false,
2852 false, nullptr, "outlined");
2853 findAddInputsOutputs(M
, *OS
, NotSame
);
2854 if (!OS
->IgnoreRegion
)
2855 OutlinedRegions
.push_back(OS
);
2857 // We recombine the blocks together now that we have gathered all the
2858 // needed information.
2859 OS
->reattachCandidate();
2862 CurrentGroup
.Regions
= std::move(OutlinedRegions
);
2864 if (CurrentGroup
.Regions
.empty())
2867 CurrentGroup
.collectGVNStoreSets(M
);
2870 findCostBenefit(M
, CurrentGroup
);
2872 // If we are adhering to the cost model, skip those groups where the cost
2873 // outweighs the benefits.
2874 if (CurrentGroup
.Cost
>= CurrentGroup
.Benefit
&& CostModel
) {
2875 OptimizationRemarkEmitter
&ORE
=
2876 getORE(*CurrentGroup
.Regions
[0]->Candidate
->getFunction());
2878 IRSimilarityCandidate
*C
= CurrentGroup
.Regions
[0]->Candidate
;
2879 OptimizationRemarkMissed
R(DEBUG_TYPE
, "WouldNotDecreaseSize",
2880 C
->frontInstruction());
2881 R
<< "did not outline "
2882 << ore::NV(std::to_string(CurrentGroup
.Regions
.size()))
2883 << " regions due to estimated increase of "
2884 << ore::NV("InstructionIncrease",
2885 CurrentGroup
.Cost
- CurrentGroup
.Benefit
)
2886 << " instructions at locations ";
2888 CurrentGroup
.Regions
.begin(), CurrentGroup
.Regions
.end(),
2889 [&R
](OutlinableRegion
*Region
) {
2892 Region
->Candidate
->frontInstruction()->getDebugLoc());
2894 [&R
]() { R
<< " "; });
2900 NegativeCostGroups
.push_back(&CurrentGroup
);
2903 ExtractorAllocator
.DestroyAll();
2905 if (NegativeCostGroups
.size() > 1)
2906 stable_sort(NegativeCostGroups
,
2907 [](const OutlinableGroup
*LHS
, const OutlinableGroup
*RHS
) {
2908 return LHS
->Benefit
- LHS
->Cost
> RHS
->Benefit
- RHS
->Cost
;
2911 std::vector
<Function
*> FuncsToRemove
;
2912 for (OutlinableGroup
*CG
: NegativeCostGroups
) {
2913 OutlinableGroup
&CurrentGroup
= *CG
;
2915 OutlinedRegions
.clear();
2916 for (OutlinableRegion
*Region
: CurrentGroup
.Regions
) {
2917 // We check whether our region is compatible with what has already been
2918 // outlined, and whether we need to ignore this item.
2919 if (!isCompatibleWithAlreadyOutlinedCode(*Region
))
2921 OutlinedRegions
.push_back(Region
);
2924 if (OutlinedRegions
.size() < 2)
2927 // Reestimate the cost and benefit of the OutlinableGroup. Continue only if
2928 // we are still outlining enough regions to make up for the added cost.
2929 CurrentGroup
.Regions
= std::move(OutlinedRegions
);
2931 CurrentGroup
.Benefit
= 0;
2932 CurrentGroup
.Cost
= 0;
2933 findCostBenefit(M
, CurrentGroup
);
2934 if (CurrentGroup
.Cost
>= CurrentGroup
.Benefit
)
2937 OutlinedRegions
.clear();
2938 for (OutlinableRegion
*Region
: CurrentGroup
.Regions
) {
2939 Region
->splitCandidate();
2940 if (!Region
->CandidateSplit
)
2942 OutlinedRegions
.push_back(Region
);
2945 CurrentGroup
.Regions
= std::move(OutlinedRegions
);
2946 if (CurrentGroup
.Regions
.size() < 2) {
2947 for (OutlinableRegion
*R
: CurrentGroup
.Regions
)
2948 R
->reattachCandidate();
2952 LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup
.Cost
2953 << " and benefit " << CurrentGroup
.Benefit
<< "\n");
2955 // Create functions out of all the sections, and mark them as outlined.
2956 OutlinedRegions
.clear();
2957 for (OutlinableRegion
*OS
: CurrentGroup
.Regions
) {
2958 SmallVector
<BasicBlock
*> BE
;
2959 DenseSet
<BasicBlock
*> BlocksInRegion
;
2960 OS
->Candidate
->getBasicBlocks(BlocksInRegion
, BE
);
2961 OS
->CE
= new (ExtractorAllocator
.Allocate())
2962 CodeExtractor(BE
, nullptr, false, nullptr, nullptr, nullptr, false,
2963 false, nullptr, "outlined");
2964 bool FunctionOutlined
= extractSection(*OS
);
2965 if (FunctionOutlined
) {
2966 unsigned StartIdx
= OS
->Candidate
->getStartIdx();
2967 unsigned EndIdx
= OS
->Candidate
->getEndIdx();
2968 for (unsigned Idx
= StartIdx
; Idx
<= EndIdx
; Idx
++)
2969 Outlined
.insert(Idx
);
2971 OutlinedRegions
.push_back(OS
);
2975 LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions
.size()
2976 << " with benefit " << CurrentGroup
.Benefit
2977 << " and cost " << CurrentGroup
.Cost
<< "\n");
2979 CurrentGroup
.Regions
= std::move(OutlinedRegions
);
2981 if (CurrentGroup
.Regions
.empty())
2984 OptimizationRemarkEmitter
&ORE
=
2985 getORE(*CurrentGroup
.Regions
[0]->Call
->getFunction());
2987 IRSimilarityCandidate
*C
= CurrentGroup
.Regions
[0]->Candidate
;
2988 OptimizationRemark
R(DEBUG_TYPE
, "Outlined", C
->front()->Inst
);
2989 R
<< "outlined " << ore::NV(std::to_string(CurrentGroup
.Regions
.size()))
2990 << " regions with decrease of "
2991 << ore::NV("Benefit", CurrentGroup
.Benefit
- CurrentGroup
.Cost
)
2992 << " instructions at locations ";
2994 CurrentGroup
.Regions
.begin(), CurrentGroup
.Regions
.end(),
2995 [&R
](OutlinableRegion
*Region
) {
2996 R
<< ore::NV("DebugLoc",
2997 Region
->Candidate
->frontInstruction()->getDebugLoc());
2999 [&R
]() { R
<< " "; });
3003 deduplicateExtractedSections(M
, CurrentGroup
, FuncsToRemove
,
3004 OutlinedFunctionNum
);
3007 for (Function
*F
: FuncsToRemove
)
3008 F
->eraseFromParent();
3010 return OutlinedFunctionNum
;
3013 bool IROutliner::run(Module
&M
) {
3014 CostModel
= !NoCostModel
;
3015 OutlineFromLinkODRs
= EnableLinkOnceODRIROutlining
;
3017 return doOutline(M
) > 0;
3020 PreservedAnalyses
IROutlinerPass::run(Module
&M
, ModuleAnalysisManager
&AM
) {
3021 auto &FAM
= AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
).getManager();
3023 std::function
<TargetTransformInfo
&(Function
&)> GTTI
=
3024 [&FAM
](Function
&F
) -> TargetTransformInfo
& {
3025 return FAM
.getResult
<TargetIRAnalysis
>(F
);
3028 std::function
<IRSimilarityIdentifier
&(Module
&)> GIRSI
=
3029 [&AM
](Module
&M
) -> IRSimilarityIdentifier
& {
3030 return AM
.getResult
<IRSimilarityAnalysis
>(M
);
3033 std::unique_ptr
<OptimizationRemarkEmitter
> ORE
;
3034 std::function
<OptimizationRemarkEmitter
&(Function
&)> GORE
=
3035 [&ORE
](Function
&F
) -> OptimizationRemarkEmitter
& {
3036 ORE
.reset(new OptimizationRemarkEmitter(&F
));
3040 if (IROutliner(GTTI
, GIRSI
, GORE
).run(M
))
3041 return PreservedAnalyses::none();
3042 return PreservedAnalyses::all();